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CLOAKING USING COMPLEMENTARY MEDIA FOR

ELECTROMAGNETIC WAVES

Hoai-Minh Nguyen*

Abstract. Negative index materials are artificial structures whose refractive index has negative
value over some frequency range. The study of these materials has attracted a lot of attention in
the scientific community not only because of their many potential interesting applications but also
because of challenges in understanding their intriguing properties due to the sign-changing coefficients
in equations describing their properties. In this paper, we establish cloaking using complementary media
for electromagnetic waves. This confirms and extends the suggestions of Lai et al. [Phys. Rev. Lett. 102
(2009) 093901] for the full Maxwell equations. The analysis is based on the reflecting and removing
localized singularity techniques, three-sphere inequalities, and the fact that the Maxwell equations can
be reduced to a weakly coupled second order elliptic equations.
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1. Introduction

Negative index materials (NIMs) are artificial structures whose refractive index has negative value over
some frequency range. These materials were investigated theoretically by Veselago in [33]. The existence of
such materials was confirmed by Shelby et al. in [32]. The study of NIMs has attracted a lot of attention in
the scientific community not only because of their many potential interesting applications but also because of
challenges in understanding intriguing properties of these materials.

One of the interesting applications of NIMs is cloaking using complementary media, which was inspired by the
concept of complementary media, see [14, 16, 23, 31]. Cloaking using complementary media was proposed and
studied numerically by Lai et al. in [14] in two dimensions. The idea of this cloaking technique is to cancel the light
effect of an object using its complementary media. Cloaking using complementary media was mathematically
established in [20] for the quasistatic regime. The method used in [20] also works for the Helmholtz equation.
Nevertheless, it requires small size of the cloaked region for large frequency due to the use of the (standard)
three-sphere inequality. In [26], we gave a proof of cloaking using complementary media in the finite frequency
regime for acoustic waves without imposing any condition on the size of the cloaked region. To successfully
apply the approach in [20], we established a new three-sphere inequality for the Helmholtz equations which
holds for arbitrary radii.
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Another cloaking object technique using NIMs is cloaking an object via anomalous localized resonance tech-
nique. This was suggested and studied in [22]. Concerning this cloaking technique, an object is cloaked by the
complementary property (or more precisely by the doubly complementary property) of the medium; hence the
cloaking device is independent of cloaked objects. This cloaking technique is inspired by the work of Milton
and Nicorovici in [15]. In their work, they discovered cloaking a source via anomalous localized resonance for
constant radial plasmonic structures in the two-dimensional quasistatic regime (see [4, 8, 13, 17, 18, 24] for
recent results in this direction). Another interesting application of NIMs is superlensing, i.e., the possibility to
beat the Rayleigh diffraction limit: no constraint between the size of the object and the wavelength is imposed,
see [19, 23] and references therein.

Two difficulties in the study of cloaking using complementary media are as follows. Firstly, the problem is
unstable. This can be explained by the fact that the equations describing the phenomena have sign-changing
coefficients; hence the ellipticity and the compactness are lost in general. Secondly, the localized resonance might
appear, i.e., the field explodes in some regions and remains bounded in some others as the loss goes to 0. It is
worthy noting that the character of resonance associated with NIMs is quite complex; localized resonance and
complete resonance can occur in very similar settings, see [25].

In this paper, we study cloaking using complementary media for electromagnetic waves (Thm. 1.1). Let us
now describe in details a scheme to cloak an arbitrary object using complementary media for the Maxwell
equations. A more general class of schemes is considered in Section 4. Let Br denote the ball centered at the
origin and of radius r in R3 unless specified otherwise and let 〈·, ·, 〉 denote the Euclidean scalar product in
R3. Assume that the cloaked region is the annulus B2r2 \ Br2 in R3 for some r2 > 0 in which the medium is
characterized by a pair of two matrix-valued functions (εO, µO) of the permittivity εO and the permeability µO
of the region. The assumption on the cloaked region by all means imposes no restriction since any bounded set
is a subset of such a region provided that the radius and the origin are appropriately chosen. We assume that
εO and µO are uniformly elliptic, i.e.,

1

Λ
|ξ|2 ≤

〈
εO(x)ξ, ξ

〉
≤ Λ|ξ|2 and

1

Λ
|ξ|2 ≤

〈
µO(x)ξ, ξ

〉
≤ Λ|ξ|2 ∀ ξ ∈ R3, a.e. x ∈ Br2 \Br1 . (1.1)

In this paper, we use schemes in the spirit of [20] with roots in the work of Lai et al. [14]. The cloak then
contains two parts. The first one, in Br2 \ Br1 , makes use of complementary media to cancel the effect of the
cloaked region and the second one, in Br1 , is to fill the space which “disappears” from the cancellation by the
homogeneous medium. Concerning the first part, instead of B2r2 \ Br2 , we consider Br3 \ Br2 for some r3 > 0
as the cloaked region in which the medium is given by

(
ε̃O, µ̃O

)
=


(
εO, µO

)
in B2r2 \Br2 ,(

I, I
)

in Br3 \B2r2 .
(1.2)

The (reflecting) complementary medium in Br2 \Br1 is then given by(
F−1∗ ε̃O, F

−1
∗ µ̃O

)
, (1.3)

where F : Br2 \ B̄r1 → Br3 \ B̄r2 is the Kelvin transform with respect to ∂Br2 , i.e.,

F (x) =
r22
|x|2

x. (1.4)

Here

T∗a(y) =
∇T (x)a(x)∇T T (x)

J(x)
, (1.5)
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Figure 1. Cloaking scheme for an object (εO, µO) in B2r2 \ Br2 . Two parts are used: the
complementary one in Br2 \ Br1 (the red region) which is the complementary medium of the
medium (ε̃O, µ̃O) in Br3 \Br2 and the filling space part in Br1 (the blue region). (Color online.)

where x = T −1(y) and J(x) = det∇T (x) for a diffeomorphism T . It follows that

r1 = r22/r3. (1.6)

Note that in the definition of T∗ given in (1.5), J(x) := det∇T (x) not |det∇T (x)| as often used in the acoustic
setting.1 With this convention, one can easily verify that F−1∗ ε and F−1∗ µ are negative symmetric matrices
since det∇F (x) < 0. This clarifies the point that one uses NIMs to construct a complementary medium for the
cloaked object.

Concerning the second part, the medium in Br1 is given by(
(r23/r

2
2)I, (r23/r

2
2)I
)
. (1.7)

Taking into account the loss, the medium in the whole space R3 is thus characterized by (εδ, µδ) defined as
follows (see Fig. 1 for the case δ = 0)

(εδ, µδ) =



(
ε̃O, µ̃O

)
in Br3 \Br2 ,(

F−1∗ ε̃O + iδI, F−1∗ µ̃O + iδI
)

in Br2 \Br1 ,(
(r23/r

2
2)I, (r23/r

2
2)I
)

in Br1 ,(
I, I
)

in R3 \Br3 .

(1.8)

Physically, εδ and µδ are the permittivity and permeability of the medium, k denotes the frequency, and the
imaginary parts of εδ and µδ in Br2 \ Br1 describe the dissipative property (the loss) of this (negative index)
region.

1This convention is very suitable for the electromagnetic setting when a change of variables is used (see (2.43) of Lem. 2.8).
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Given (a current) j ∈
[
L2(R3)

]3
with compact support, let (Eδ, Hδ), (E,H) ∈ [H

loc
(curl,R3)]2 be respectively

the unique outgoing solutions to the Maxwell systems∇× Eδ = ikµδHδ in R3

∇×Hδ = −ikεδEδ + j in R3,
(1.9)

and ∇× E = ikH in R3

∇×H = −ikE + j in R3.
(1.10)

For an open subset Ω of R3, the following standard notations are used:

H(curl, Ω) :=
{
u ∈ [L2(Ω)]3; ∇× u ∈ [L2(Ω)]3

}
,

‖u‖H(curl,Ω) := ‖u‖L2(Ω) + ‖∇ × u‖L2(Ω),

and

H
loc

(curl, Ω) :=
{
u ∈ [L2

loc
(Ω)]3; ∇× u ∈ [L2

loc
(Ω)]3

}
.

Recall that a solution (E ,H) ∈ [H
loc

(curl,R3 \BR)]2 (for some R > 0) of the system∇× E = ikH in R3 \BR,

∇×H = −ikE in R3 \BR,

is said to satisfy the outgoing condition (or the Silver-Müller radiation condition) if

E × x+ rH = O(1/r), (1.11)

as r = |x| → +∞.
We shall extend (ε̃O, µ̃O) by (I, I) in Br2 and still denote this extension by (ε̃O, µ̃O). We also assume that

(ε̃O, µ̃O) is C2 in Br3 . (1.12)

Condition (1.12) is required for the use of the unique continuation principle and three-sphere inequalities for
Maxwell equations.

Cloaking effect of scheme (1.8) (see Fig. 1) is mathematically confirmed in the following main result of this
paper.

Theorem 1.1. Let R0 > r3, j ∈
[
L2(R3)

]3
with supp j ⊂⊂ BR0 \ Br3 and let (Eδ, Hδ), (E,H) ∈[

H
loc

(curl,R3)
]2

be the unique outgoing solution to (1.9) and (1.10) respectively. Given 0 < γ < 1/2, there
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exists a positive constant ` = `(γ) > 0, depending only on the elliptic constant of ε̃O and µ̃O in B2r2 \Br2 and
‖(ε̃O, µ̃O)‖W 2,∞(B4r2

) such that if r3 > `r2 then

‖(Eδ, Hδ)− (E,H)‖H(curl,BR\Br3 ) ≤ CRδ
γ‖j‖L2 , (1.13)

for some positive constant CR independent of j and δ.

For an observer outside Br3 , the medium in Br3 looks like the homogeneous one by (1.10): one has cloaking.
The starting point of the proof of Theorem 1.1 is to use reflections (see (3.1) and (3.2)) to obtain Cauchy

problems. We then explore the construction of the cloaking device (its complementary property), use various
three-sphere inequalities (Lems. 2.5 and 2.7), and the removing localized singularity technique to deal with the
localized resonance. Using reflections is also the starting point in the study of stability of Helmholtz equations
with sign changing coefficients in [21] (see also [6, 12, 30] for different approaches) and also plays a role in the
study of superlensing applications of hyperbolic metamaterials in [7]. A numercial algorithm used for NIMs in
the spirit [21] is considered in [1]. Various techniques developed to study NIMs were explored in the context of
interior transmission eigenvalues in [27]. The study of NIMs in time domain is recently investigated in [10, 28]
and references therein.

The paper is organized as follows. The proof of Theorem 1.1 is given in Section 3 after presenting several
useful results in Section 2. In Section 4, we present a class of cloaking schemes via the concept of reflecting
complementary media.

2. Preliminaries

In this section, we present several results which are used in the proof of Theorem 1.1. We first recall a known
result on the trace of H(curl, D) (see [3, 9]).

Lemma 2.1. Let D be a smooth open bounded subset of R3 and set Γ = ∂D. The tangential trace operator

γ0 : H(curl, D) → H−1/2(divΓ , Γ )
u 7→ u× ν

is continuous. Moreover, for all φ ∈ H−1/2(divΓ , Γ ), there exists u ∈ H(curl, D) such that

γ0(u) = φ and ‖u‖H(curl,D) ≤ C‖φ‖H−1/2(divΓ ,Γ ),

for some positive constant C independent of φ.

Here

H−1/2(divΓ , Γ ) :=
{
φ ∈ [H−1/2(Γ )]3; φ · ν = 0 and divΓ φ ∈ H−1/2(Γ )

}

‖φ‖H−1/2(divΓ ,Γ ) := ‖φ‖H−1/2(Γ ) + ‖ divΓ φ‖H−1/2(Γ ).

The next result implies the well-posedness and a priori estimates of (Eδ, Hδ) defined in (1.9).

Lemma 2.2. Let k > 0, 0 < δ < 1, R0 > 0, D ⊂ BR0
be a smooth bounded open subset of R3. Let ε, µ be two

real measurable matrix-valued functions defined in R3 such that ε, µ are uniformly elliptic and piecewise C1 in
R3, and

ε = µ = I in R3 \BR0 . (2.1)
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Set, for δ > 0,

(εδ, µδ) =

(−ε+ iδI,−µ+ iδI) if x ∈ D,

(ε, µ) otherwise.
(2.2)

Let j ∈ L2(R3) with supp j ⊂ BR0 . There exists a unique outgoing solution (Eδ, Hδ) ∈ [H
loc

(curl,R3)]2 to the
Maxwell system ∇× Eδ = ikµδHδ in R3,

∇×Hδ = −ikεδEδ + j in R3.
(2.3)

Moreover,

‖(Eδ,Hδ)‖2H(curl,BR) ≤ CR
(

1

δ
‖j‖L2‖(Eδ,Hδ)‖L2(supp j) + ‖j‖2L2

)
. (2.4)

Here CR denotes a positive constant depending on R, R0, ε, µ but independent of j and δ. Consequently, we
have

‖(Eδ,Hδ)‖H(curl,BR) ≤
CR
δ
‖j‖L2 . (2.5)

Proof. The existence of (Eδ,Hδ) can be derived from the uniqueness of (Eδ,Hδ) as usual. The uniqueness of
(Eδ,Hδ) can be deduced from the estimates of (Eδ,Hδ). Estimate (2.5) is a direct consequence of (2.4). We
hence only give the proof of (2.4). We have, by (2.3),

∇× (µ−1δ ∇× Eδ)− k
2εδEδ = ikj in R3.

Set

Mδ =
1

δ
‖j‖L2‖(Eδ,Hδ)‖L2(supp j) + ‖j‖2L2 .

We have

∇× (µ−1δ ∇× Eδ)− k
2εδEδ = ikj in R3. (2.6)

Multiplying this equation by Ēδ (the conjugate of Eδ), integrating in BR, and using the fact that supp j ⊂ BR0
,

we have, for R > R0,∫
BR

〈µ−1δ ∇× Eδ,∇× Eδ〉 −
∫
∂BR

〈
(µ−1δ ∇× Eδ)× ν, Eδ

〉
− k2

∫
BR

〈εδEδ, Eδ〉 =

∫
BR

〈ikj, Eδ〉.

Since µδ = I and so ∇× Eδ = ikHδ in R3 \BR0
, we derive that, for R > R0,∫

BR

〈µ−1δ ∇× Eδ,∇× Eδ〉+

∫
∂BR

〈ikHδ, Eδ × ν〉 − k2
∫
BR

〈εδEδ, Eδ〉 =

∫
BR

〈ikj, Eδ〉.
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Letting R → +∞, using the outgoing condition (Eδ(x) × ν(x) = −Hδ(x) + O(1/R2) for x ∈ ∂BR), and
considering the imaginary part, we obtain

‖Eδ‖2H(curl,D) ≤ CMδ. (2.7)

This implies, by Lemma 2.1, with the notation Γ = ∂D,

‖Eδ × ν‖2H−1/2(divΓ ,Γ ) ≤ CMδ. (2.8)

Using the equations of (Eδ,Hδ) in D, we derive from (2.7) that

‖Hδ‖2H(curl,D) ≤ CMδ; (2.9)

which yields, by Lemma 2.1 again,

‖Hδ × ν‖2H−1/2(divΓ ,Γ ) ≤ CMδ. (2.10)

Let Dc
1 be the unbounded connected component of R3 \ D̄ and let Dc

2 be the complement of Dc
1 in R3 \ D̄, i.e.,

Dc
2 = (R3 \ D̄) \Dc

1.2 We have ∇× Eδ = ikµHδ in Dc
1,

∇×Hδ = −ikεEδ + j in Dc
1.

It follows that

‖(Eδ,Hδ)‖H(curl,BR∩Dc1) ≤ CR
(
‖j‖L2 + ‖Eδ × ν‖H−1/2(div∂Dc1

,∂Dc1)

)
.

We deduce from (2.8) that

‖(Eδ,Hδ)‖2H(curl,BR∩Dc1)
≤ CRMδ, (2.11)

and, by Lemma 2.3 below, we derive from (2.8) and (2.10) that

‖(Eδ,Hδ)‖2H(curl,Dc2)
≤ CMδ. (2.12)

A combination of (2.7), (2.9), (2.11), and (2.12) yields

‖(Eδ,Hδ)‖H(curl,BR) ≤ CRMδ; (2.13)

which is (2.4).

In the proof of Lemma 2.2 we use the following result whose proof follows directly from the unique continuation
principle for the Maxwell equations (see e.g., [2, 5, 29]) via a contradiction argument.

2We will apply Lemma 2.2 with D = Br2 \Br1 ; in this case Dc
1 = R3 \ B̄r2 and Dc

2 = Br1 .
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Lemma 2.3. Let k > 0, D be a smooth bounded open subset of R3, f, g ∈ [L2(D)]3, and h1, h2 ∈
H−1/2(div∂D, ∂D), and let ε and µ be two piecewise C1, symmetric uniformly elliptic matrix-valued functions
defined in D. Assume that (E ,H) ∈ [H(curl, D)]2 is a solution to

∇× E = ikµH+ f in D,

∇×H = −ikεE + g in D,

H× ν = h1; E × ν = h2 on ∂D.

Then

‖(E ,H)‖H(curl,D) ≤ C
(
‖(f, g)‖L2(D) + ‖(h1, h2)‖H−1/2(divΓ ,∂D)

)
, (2.14)

for some positive constant C depending on D, ε, µ, and k but independent of f , g, h1, and h2.

We next present a known result which reveals a connection between Maxwell equations with weakly coupled
elliptic systems.

Lemma 2.4. Let D be an open subset of R3, ε, µ be two matrix-valued functions defined in D, and let (E ,H) ∈[
H1(D)

]2
be a solution of the system ∇× E = ikµH in D,

∇×H = −ikεE in D.
(2.15)

Then, for 1 ≤ a ≤ 3,

div(µ∇Ha) + div(∂aµH− ikµεaεE) = 0 in D, (2.16)

div(ε∇Ea) + div(∂aεE + ikεεaµH) = 0 in D. (2.17)

Here the bc component εabc (1 ≤ b, c ≤ 3) of εa (1 ≤ a ≤ 3) denotes the usual Levi Civita permutation, i.e.,

εabc =

sign (abc) if abc is a permuation,

0 otherwise.
(2.18)

Proof. The proof is quite simple as follows. Using the fact, for 1 ≤ a ≤ 3,

∂aH = ∇Ha + εa(∇×H) and ∂aE = ∇Ea + εa(∇× E),

we derive from (2.15) that, for 1 ≤ a ≤ 3,

∂aH = ∇Ha − ikεaεE and ∂aE = ∇Ea + ikεaµH in D. (2.19)

Since

div(µH) = 0 in D,
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it follows that, for 1 ≤ a ≤ 3,

0 = ∂a div(µH) = div(µ∂aH) + div(∂aµH) in D.

This implies, by the first identity of (2.19),

div(µ∇Ha) + div(∂aµH− ikµεaεE) = 0 in D;

which is (2.16). Similarly, we obtain (2.17).

Hadamard proved the following three-circle inequality: Assume that ∆v = 0 in BR∗ \ BR∗ ⊂ R2 and 0 <
R∗ < R1 < R2 < R3 < R∗. Then

‖v‖L∞(∂BR2
) ≤ ‖v‖αL∞(∂BR1

)‖v‖
1−α
L∞(∂BR3

),

with α = ln(R3/R2)/ ln(R3/R1). Here is its variant which is used in the proof of Theorem 1.1.

Lemma 2.5. Let d = 2, 3, k, R∗, R
∗ > 0, and let v ∈ H1(BR∗ \BR∗) be a solution to the equation ∆v+k2v = 0

in BR3 \BR1 ⊂ Rd. We have, for R∗ ≤ R1 < R2 < R3 ≤ R∗,

‖v‖H(∂BR2
) ≤ C‖v‖αH(BR1

)‖v‖
1−α
H(BR3

), (2.20)

where α = ln(R3/R2)/ ln(R3/R1) and C is a positive constant depending only on k, R∗, and R∗. Here

‖v‖H(∂Br) := ‖v‖H1/2(∂Br) + ‖∂rv‖H−1/2(∂Br). (2.21)

Remark 2.6. Note that in the case k 6= 0, one must use both the information of v and its normal derivative
in (2.21); otherwise the conclusion does not hold in general, see [26] for a discussion on this matter.

Before giving the proof of Lemma 2.5, we recall some properties of the spherical Bessel and Neumann functions
and the Bessel and Neumann functions of large order. We first introduce, for n ≥ 1,

ĵn(t) = 1 · 3 · · · (2n+ 1)jn(t) and ŷn = − yn(t)

1 · 3 · · · (2n− 1)
, (2.22)

and for n ≥ 0,

Ĵn(r) = 2nn!Jn(r) and Ŷn(r) =
πi

2n(n− 1)!
Yn(r), (2.23)

where jn and yn are the spherical Bessel and Neumann functions, and Jn and Yn are the Bessel and Neumann
functions of order n respectively. Then, see, e.g., [11], (2.37), (2.38), (3.57), and (3.58), as n→ +∞,

ĵn(r) = rn
[
1 +O(1/n)

]
, ŷn(r) = r−n−1

[
1 +O(1/n)

]
, (2.24)

Ĵn(t) = tn
[
1 +O(1/n)

]
, and Ŷn(t) = t−n

[
1 +O(1/n)

]
. (2.25)
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One also has, see, e.g., ([11], (2.36) and (3.56)),

jn(r)y′n(r)− j′n(r)yn(r) =
1

r2
(2.26)

and

Jn(r)Y ′n(r)− J ′n(r)Yn(r) =
2

πr
. (2.27)

We are ready to give:

Proof of Lemma 2.5. By rescaling, one can assume that k = 1. We consider the case d = 2 and d = 3 separately.

Case 1: d=3. Since ∆v + v = 0 in BR3
\BR1

, v can be represented in the form

v =

∞∑
n=1

n∑
m=−n

(
anmĵn(|x|) + bnmŷn(|x|)

)
Y nm(x̂) in BR3

\BR1
,

for anm ∈ C and x̂ = x/|x| where Y nm is the spherical harmonic function of degree n and of order m. In what
follows in this proof, C denotes a positive constant depending only on R∗ and R∗ and can change from one place
to another and a ∼ b means that a ≤ Cb and b ≤ Ca. Using the fact (Y nm) is an orthonormal basis of L2(∂B1)
and

∆∂B1
Y nm + n(n+ 1)Y nm = 0 on ∂B1,

we derive that, for R1 ≤ r ≤ R3,

‖v‖2H(∂Br)
∼
∞∑
n=1

n∑
m=−n

(
n|cnm(r)|2 + n−1|dnm(r)|2

)
, (2.28)

where

cnm(r) = anmĵn(r) + bnmŷn(r) and dnm(r) = anmĵ
′
n(r) + bnmŷ

′
n(r). (2.29)

From (2.28) and (2.29), we have

‖v‖2H(∂Br)
≤ C

∞∑
n=1

n∑
m=−n

(
|anm|2

(
n|ĵn(r)|2 + n−1|ĵ′n(r)|2

)
+ |bnm|2

(
n|ŷn(r)|2 + n−1|ŷ′n(r)|2

))
;

which yields, by (2.24),

‖v‖2H(∂Br)
≤ C

∞∑
n=1

n∑
m=−n

(
nr2n|anm|2 + nr−2n|bnm|2

)
. (2.30)

From (2.29), we have

anm =
cnm(r)ŷ′n(r)− dnm(r)ŷn(r)

ĵn(r)ŷ′n(r)− ĵ′n(r)ŷn(r)
and bnm =

cnm(r)ĵ′n(r)− dnm(r)ĵn(r)

ŷn(r)ĵ′n(r)− ŷ′n(r)ĵn(r)
. (2.31)
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From (2.26), we obtain, for some cn 6= 0,

ŷn(r)ĵ′n(r)− ŷ′n(r)ĵn(r) =
cn
t2
. (2.32)

Combining (2.24), (2.31), and (2.32) yields

|anm| ≤ C
(
|cnm|r−n + n−1|dnm|r−n

)
and |bnm| ≤ C

(
|cnm|rn + n−1|dnm|rn

)
. (2.33)

We derive from (2.28) and (2.33) that

∞∑
n=1

n∑
m=−n

(
nr2n|anm|2 + nr−2n|bnm|2

)
≤ C‖v‖2H(∂Br)

. (2.34)

A combination of (2.30) and (2.34) yields

‖v‖2H(∂Br)
∼
∞∑
n=1

n∑
m=−n

(
nr2n|anm|2 + nr−2n|bnm|2

)
. (2.35)

Inequality (2.20) is now a consequence of (2.35) after applying Hölder’s inequality and noting that R2 =
Rα1R

1−α
3 .

Case 2: d=2. Since ∆v + v = 0 in BR∗ \BR∗ , one can represent v of the form

v =

∞∑
n=0

∑
±

(
an,±Ĵn(|x|) + bn,±Ŷn(|x|)

)
e±inθ in BR∗ \BR∗ ,

with the convention a0,− = a0,+ and b0,− = b0,+. Using (2.25) and (2.27), as in the previous case, one can prove
that

‖v‖2H(∂Br)
∼
∞∑
n=0

∑
±

(
nr2n|an,±|2 + n−1r−2n|bn,±|2

)
. (2.36)

Inequality (2.20) is now a consequence of (2.35) after applying Hölder’s inequality and noting that R2 =
Rα1R

1−α
3 .

We next state a three-sphere inequality for an “elliptic system”.

Lemma 2.7. Let m,n ∈ N (m ≥ 2, n ≥ 1), 0 < R∗ < R1 < R2 < R3 < R∗, c1, c2 > 0 and let M1, · · · ,Mn be
such that Mk is an (m ×m) matrix defined in BR∗ ⊂ Rm for 1 ≤ k ≤ n.3 Assume that Mk is Lipschitz and
uniformly elliptic in BR∗ for 1 ≤ k ≤ n and V ∈

[
H1(BR3

\ B̄R1
)
]n

satisfies

|div(Mk∇Vk)| ≤ c1|∇V |+ c2|V | a.e. in BR3
\ B̄R1

for 1 ≤ k ≤ n. (2.37)

There exists a constant q ≥ 1, depending only on m, n, and the elliptic and the Lipschitz constants of Mk for
1 ≤ k ≤ n such that, for any λ0 > 1 and R2 ∈ (λ0R1, R3/λ0), we have

‖V ‖H(∂BR2
) ≤ C‖V ‖αH(∂BR1

)‖V ‖
1−α
H(∂BR3

) where α :=
R−q2 −R

−q
3

R−q1 −R
−q
3

, (2.38)

3In this lemma, Br denotes the ball centered at the origin with radius r in Rm.
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and

‖Vk‖H(∂Br) = ‖Vk‖H1/2(∂Br) + ‖Mk∇Vk · er‖H−1/2(∂Br), ‖V ‖H(∂Br) =

n∑
k=1

‖Vk‖H(∂Br). (2.39)

Here C is a positive constant depends on the elliptic and the Lipschitz constants of Mk (1 ≤ k ≤ n), c1, c2,
R∗, R

∗,m, n, and λ0 but independent of v.

In inequality (2.38), the constant q does not depend on c1, c2, R∗, R
∗ but the constant C does. No upper

bound on R∗ is imposed as often required in a three-sphere inequality for Helmholtz equations (see e.g., Thm. 4.1
from [2]). Nevertheless, both information of V and M∇V · er are used (2.39); this is the key point to ensure
that (2.38) holds without imposing any condition on R∗. Lemma 2.7 is proved in Theorem 2 from [26], for the
case n = 1. The proof for the case n ≥ 1 follows similar and is omitted.

We finally state a change of variables formula

Lemma 2.8. Let D,D′ be two bounded connected open subsets of R3 and T : D → D′ be bijective such that
T ∈ C1(D̄) and T −1 ∈ C1(D̄′). Assume that ε, µ ∈ [L∞(D)]3×3, j ∈ [L2(D)]3 and (E,H) ∈ [H(curl, D)]2 is a
solution to ∇× E = ikµH in D,

∇×H = −ikεE + j in D.

Define (E′, H ′) in D′ as follows

E′(x′) = T ∗ E(x′) := ∇T −T (x)E(x) and H ′(x′) = T ∗H(x′) := ∇T −T (x)H(x), (2.40)

with x′ = T (x). Then (E′, H ′) is a solution to∇
′ × E′ = ikµ′H ′ in D′,

∇′ ×H ′ = −ikε′E′ + j′ in D′,
(2.41)

where

ε′ = T∗ε, µ′ = T∗µ, j′ = T∗j,

and

T∗ε(x′) =
∇T (x)ε(x)∇T T (x)

J(x)
, T∗µ(x′) =

∇T (x)µ(x)∇T T (x)

J(x)
, and T∗j(x′) =

j(x)

J(x)
, (2.42)

with x = T −1(x′) and J(x) = det∇T (x). Assume in addition that D is of class C1 and T = T
∣∣
∂D

: ∂D → ∂D′

is a diffeomorphism. We have4

if E × ν = g and H × ν = h on ∂D then E′ × ν′ = T∗g and H ′ × ν′ = T∗h on ∂D′, (2.43)

where T∗ is given in (2.44).

4Here ν and ν′ denote the outward unit normal vector on ∂D and ∂D′.
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For a tangential vector field g defined in ∂D, we denote

T∗g(x′) = sign · ∇∂DT(x)g(x)

|det∇∂DT(x)|
with x′ = T(x), (2.44)

where sign := det∇T (x)/|det∇T (x)| for some x ∈ D.

Remark 2.9. In the change of variables, the definition of T ∗ in (2.40) is different from T∗ in (2.42). It is worthy
remembering that for electromagnetic fields (2.40) is used whereas for sources, (1.5) is involved. In the proof of
Theorem 1.1, we use both (2.41) and (2.43). Assertion (2.41) is known and used in the cloaking via a change of
variables technique, assertion (2.43) is less known – see e.g., Lemma 7 from [23].

3. Proof of Theorem 1.1

Let (E
(1)
δ , H

(1)
δ ) ∈

[
H1
loc

(curl,R3 \Br2)
]2

be the reflection of (Eδ, Hδ) through ∂Br2 by the Kelvin transform
F with respect to ∂Br2 , i.e.,

(
E

(1)
δ , H

(1)
δ

)
=
(
F ∗ Eδ, F ∗Hδ

)
in R3 \Br2 , (3.1)

where F∗ is defined by (2.40). Let
(
E

(2)
δ , H

(2)
δ

)
∈
[
H(curl, Br3)

]2
be the reflection of (E

(1)
δ , H

(1)
δ ) through ∂Br3

by the Kelvin transform G : R3 \Br3 7→ Br3 with respect to ∂Br3 ., i.e., G(x) = r23x/|x|2 and

(
E

(2)
δ , H

(2)
δ

)
=
(
G ∗ E(1)

δ , G ∗H(1)
δ

)
in Br3 . (3.2)

Since G ◦ F (x) =
(
r23/r

2
2

)
x and G∗F∗ = (G ◦ F )∗, it follows from (1.5) and (1.7) that

(G∗F∗εδ, G∗F∗µδ) = (G∗F∗εO, G∗F∗µO) = (I, I) in Br3 . (3.3)

Set

Data(j, δ) :=

(
1

δ
‖(Eδ, Hδ)‖L2(BR0

\Br3 )‖j‖L2 + ‖j‖2L2

)1/2

. (3.4)

Applying Lemma 2.2 to D = Br2 \Br1 , we have

‖(Eδ, Hδ)‖2[L2(BR0
)]2 ≤ CData(j, δ)2. (3.5)

Here and in what follows in the proof, C denotes a positive constant independent of δ and j and the fact ` > 10
is assumed.

The proof now is divided into two steps.

• Step 1: We prove that if ` is large enough then

‖(E(1)
δ − Eδ)× ν, (H

(1)
δ −Hδ)× ν‖H−1/2(divΓ ,∂B2r2

) ≤ Cδγ+1/2Data(j, δ). (3.6)
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• Step 2: Define

(Eδ,Hδ) =


(Eδ, Hδ) in R3 \Br3 ,

(Eδ, Hδ)−
(
E

(1)
δ − E

(2)
δ , H

(1)
δ −H

(2)
δ

)
in Br3 \B2r2 ,(

E
(2)
δ , H

(2)
δ

)
in B2r2 .

We prove that if (3.6) holds then

‖(Eδ,Hδ)− (E,H)‖L2(BR\Br3 ) ≤ Cδ
γ‖j‖L2 . (3.7)

It is clear that the conclusion follows after Steps 1 and 2.

Step 1: Using the fact that

ikF−1∗ µ̃O + iδI = ik
(
F−1∗ µ̃O + (δ/k)F−1∗ F∗I

)
in Br2 \Br1

and

−ikF−1∗ ε̃O + iδI = −ik
(
F−1∗ ε̃O − (δ/k)F−1∗ F∗I

)
in Br2 \Br1 ,

and applying Lemma 2.8, we have∇× E
(1)
δ = ikµ̃OH

(1)
δ + iδF∗IH

(1)
δ in Br3 \Br2 ,

∇×H(1)
δ = −ikε̃OE(1)

δ + iδF∗IE
(1)
δ in Br3 \Br2 ,

(3.8)

and (
E

(1)
δ × ν,H

(1)
δ × ν

)
=
(
Eδ × ν,Hδ × ν

)∣∣∣
ext

on ∂Br2 . (3.9)

In (3.9), we use the fact that F (x) = x on ∂Br2 . Set

(ε, µ) =

(ε̃O, µ̃O) in Br3 \Br2 ,

(I, I) otherwise.

Let
(
E

(1)
δ ,H

(1)
δ

)
∈ [H

loc
(R3)]2 be the unique outgoing solution to∇×E

(1)
δ = ikµH

(1)
δ + iδ1Br3\Br2F∗IH

(1)
δ in R3,

∇×H
(1)
δ = −ikεE(1)

δ + iδ1Br3\Br2F∗IE
(1)
δ in R3.

(3.10)

Here 1D denotes the characteristic function of a subset D of R3. Note that ε, µ are uniformly elliptic. Using
(3.5), we can derive from (3.10) (see [23], Lem. 4) that

‖
(
E

(1)
δ ,H

(1)
δ

)
‖H(curl,Br3\Br2 ) ≤ CδData(j, δ). (3.11)
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Set

(Ẽδ, H̃δ) =


(
E

(1)
δ − Eδ −E

(1)
δ , E

(1)
δ −Hδ −H

(1)
δ

)
in Br3 \Br2 ,(

−E
(1)
δ ,−H

(1)
δ

)
in Br2 .

It follows from (3.8) and (3.10) that ∇× Ẽδ = ikµH̃δ in Br3 ,

∇× H̃δ = −ikεẼδ in Br3 .
(3.12)

Applying Lemma 2.4, we have, for 1 ≤ a ≤ 3,

div
(
ε∇Ẽδ,a

)
= −div

(
∂aεẼδ + ikεεaµH̃δ

)
in Br3

and

div
(
µ∇H̃δ,a

)
= −div

(
∂aµH̃δ − ikµεaεδẼδ

)
in Br3 ,

where εabc (1 ≤ a, b, c ≤ 3) denote the usual Levi Civita permutation, see (2.18). Let q be the constant in
Lemma 2.7 with m = 3, n = 6, M1 = M2 = M3 = ε, and M4 = M5 = M6 = µ. Define, for 0 < r ≤ r3,

‖Ẽ‖H(∂Br) = ‖Ẽ‖H1/2(∂Br) + ‖ε∇Ẽ · er‖H−1/2(∂Br),

and

‖H̃‖H(∂Br) = ‖H̃‖H1/2(∂Br) + ‖µ∇H̃ · er‖H−1/2(∂Br).

By Lemma 2.7, there exists some positive constant C independent of δ such that

‖
(
Ẽδ, H̃δ

)
‖H(∂B2r2

) ≤ C‖
(
Ẽδ, H̃δ

)
‖αH(∂Br2/2)

‖
(
Ẽδ, H̃δ

)
‖1−αH(∂B4r2

), (3.13)

with

α =
(2r2)−q − (4r2)−q

(r2/2)−q − (4r2)−q
=

2−q − 4−q

2q − 4−q
. (3.14)

Since ε = µ = I in Br2 ∪ (Br3 \Br3/4) (recall that ` > 10), it follows from (3.12) that

∆Ẽδ + k2Ẽδ = ∆H̃δ + k2H̃δ = 0 in Br3 \B2r2 .

Applying Lemma 2.5, we have

‖(Ẽ, H̃)‖H(∂B4r2
) ≤ C‖(Ẽ, H̃)‖βH(∂B2r2

)‖(Ẽ, H̃)‖1−βH(∂Br3/2)
, (3.15)

where

β = ln
( r3

4r2

)/
ln
( r3

2r2

)
. (3.16)
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Combining (3.13) and (3.15) yields

‖
(
Ẽδ, H̃δ

)
‖H(∂B2r2 )

≤ C‖
(
Ẽδ, H̃δ

)
‖ρH(∂Br2/2)

‖
(
Ẽδ, H̃δ

)
‖1−ρH(∂Br3/2)

, (3.17)

with

ρ =
α

1− (1− α)β
. (3.18)

On the other hand, since

∆Ẽδ + k2Ẽδ = ∆H̃δ + k2H̃δ = 0 in Br2 ∪ (Br3 \B2r2),

we derive that

‖(Ẽ, H̃)‖H(∂Br2/2)
≤ C‖(Ẽ, H̃)‖L2(Br2 )

and ‖(Ẽ, H̃)‖H(∂Br3/2)
≤ C‖(Ẽ, H̃)‖L2(Br3\Br3/4). (3.19)

From (3.5), (3.11), (3.17), and (3.19), we obtain

‖
(
Ẽδ, H̃δ

)
‖H(∂B2r2

) ≤ CδρData(j, δ). (3.20)

By taking l large enough, we derive from (3.14), (3.16), and (3.18) that ρ > 1/2 + γ if r3 > lr2. The conclusion
of Step 1 follows.

Step 2: We have, since G(x) = x on ∂Br3 ,

[Eδ × ν] = (E
(1)
δ − E

(2)
δ )× ν = 0 on ∂Br3 ,

and

[Hδ × ν] = (H
(1)
δ −H

(2)
δ )× ν = 0 on ∂Br3 .

Applying Lemma 2.8 (see also (3.8)), we obtain∇× Eδ = ikHδ + iδF∗IH
(1)
δ 1Br3\Br2 in R3 \ ∂B2r2 ,

∇×Hδ = −ikEδ + j + iδF∗IE
(1)
δ 1Br3\Br2 in R3 \ ∂B2r2 .

(3.21)

We derive from (3.5) and (3.6) (see ([23], Lem. 4)) that

‖(Eδ,Hδ)‖H(curl,BR0
\∂Br3 ) ≤ C

(
‖j‖L2 + δγ+1/2Data(j, δ)

)
. (3.22)

Since γ > 0 and (Eδ,Hδ) = (Eδ, Hδ) in R3 \Br3 , it follows from (3.4) and (3.22) that

‖(Eδ,Hδ)‖H(curl,BR0
\Br3 )]2 ≤ C‖j‖L2 .

We obtain from (3.4) that

Data(j, δ) ≤ Cδ−1/2‖j‖L2 ; (3.23)
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which in turn implies, by (3.6),

‖(E(1)
δ − Eδ)× ν, (H

(1)
δ −Hδ)× ν‖[

H−1/2(divΓ ,∂B2r2
)
]2 ≤ Cδγ‖j‖L2 . (3.24)

It is clear from (1.10) and (3.21) that∇× (Eδ − E) = −ik(Hδ −H) in R3 \ ∂B2r2 ,

∇× (Hδ −H) = ik(Eδ − E) in R3 \ ∂B2r2 .

Using (3.24), one obtains the conclusion of Step 2.

The proof is complete. �

Remark 3.1. The definition of (Eδ,Hδ) is one of the key points of the proof. The idea is to remove from

(Eδ, Hδ) the term (E
(1)
δ −E

(2)
δ , H

(1)
δ −H

(2)
δ ) in Br3 \B2r2 ; which is singular in general. This is the spirit of the

removing of localized singularity technique introduced in [19, 20].

4. Further discussion

The requirement that F is the Kelvin transform with respect to ∂Br2 in Theorem 1.1 can be relaxed. In fact, as
seen in the proof of Theorem 1.1, one can replace the Kelvin transform by any transformation F : Br2 \ B̄r1 →
Br3 \ B̄r2 such that i) F (x) = x on ∂Br2 ; ii) There exists a diffeomorphism extension of F , which is still
denoted by F , from Br2 \ {0} onto R3 \ B̄r2 ; iii) There exists a diffeomorphism G : R3 \ B̄r3 → Br3 \ {0} such
that G ∈ C1(R3 \Br3), G(x) = x on ∂Br3 , and G ◦F : Br1 → Br3 is a diffeomorphism if one sets G ◦F (0) = 0.
In this context, the first layer in Br2 \ Br1 is also given by (1.3) and the second layer in Br1 is changed
correspondingly by (

F−1∗ G−1∗ I, F−1∗ G−1∗ I
)
. (4.1)

Set

(εδ, µδ) =



(
ε̃O, µ̃O

)
in Br3 \Br2 ,(

F−1∗ ε̃O + iδI, F−1∗ µ̃O + iδI
)

in Br2 \Br1 ,(
F−1∗ G−1∗ I, F−1∗ G−1∗ I

)
in Br1 ,(

I, I
)

in R3 \Br3 .

(4.2)

We have

Proposition 4.1. Let R0 > r3, j ∈
[
L2(R3)

]3
with supp j ⊂⊂ BR0 \ Br3 and let (Eδ, Hδ) ∈

[
H
loc

(curl,R3)
]2

be the unique outgoing solution to (1.9) where (εδ, µδ) is given by (4.2) and let (E,H) ∈
[
H
loc

(curl,R3)
]2

be the
unique outgoing solution to (1.10). Given 0 < γ < 1/2, there exists a positive constant ` = `(γ) > 0, depending
only on the elliptic constant of ε̃O and µ̃O in B2r2 \Br2 and ‖(ε̃O, µ̃O)‖W 2,∞(B4r2 )

such that if r3 > `r2 then

‖(Eδ, Hδ)− (E,H)‖H(curl,BR\Br3 ) ≤ CRδ
γ‖j‖L2 , (4.3)

for some positive constant CR independent of j and δ.
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The constants γ and `(γ) in Proposition 4.1 can be chosen as the ones in Theorem 1.1. The proof of
Proposition 4.1 follows the same line as the one of Theorem 1.1 and is omitted.
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[20] H.-M. Nguyen, Cloaking using complementary media in the quasistatic regime. Ann. Inst. Henri Poincaré Anal. Non Linéaire
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