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r é s u m é

Nous donnons une nouvelle caractérisation de l’inégalité de Sobolev logarithmique.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical Sobolev inequality translates information about the derivatives of a function into information about the 
size of the function itself. Precisely, for a function u with square summable gradient in dimension N , one obtains that 
u is 2N/(N − 2)-summable, that is a gain in summability that depends on N and tends to deteriorate as N → ∞. On 
the other hand, since the middle 1950s, people have started looking at possible replacements of the Sobolev inequality in 
order to provide an improvement in the summability independent of the dimension N , which can be done in terms of the 
integrability properties of u2 log u2. This was firstly done by Stam [23], who proved the logarithmic Sobolev inequality with 
Gauss measure dG

∫

RN

u2 log
u2

‖u‖2
2,dG

dG ≤ 1

π

∫

RN

|∇u|2 dG , dG = e−π|x|2 dx.

The formula was originally discovered in quantum field theory in order to handle estimates that are uniform in the space 
dimension, for systems with a large number of variables. A different proof and further insight was obtained by Gross in 
[17]. See also the work of Adams and Clarke [1] for an elementary proof of the previous inequality. These properties are 
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widely used in statistical mechanics, quantum field theory and differential geometry. A variant of the logarithmic Sobolev 
inequality with Gauss measure is given by the following one-parameter family of Euclidean inequalities [18, Theorem 8.14]∫

RN

u2 log
u2

‖u‖2
2

dx + N(1 + log a)‖u‖2
2 ≤ a2

π

∫

RN

|∇u|2 dx,

for any u ∈ H1(RN ) and a > 0. A version of this inequality for fractional Sobolev spaces H s(RN ) can be found in [13]. 
Recently, some new characterization of the Sobolev spaces were provided in [2,19,21] (see also [3–9,20]) in terms of the 
following family of nonlocal functionals

Iδ(u) :=
∫ ∫

{|u(y)−u(x)|>δ}

δ2

|x − y|N+2
dx dy, δ > 0,

where u is a measurable function on RN . In particular, if N ≥ 3 and Iδ(u) < ∞ for some δ > 0, then in [21] it was proved 
that ∫

{|u|>λN δ}
|u|2N/(N−2)dx ≤ CN Iδ(u)N/(N−2), (1.1)

for some positive constants CN and λN . This is a sort of nonlocal improvement of the classical Sobolev inequality, and it is 
also possible to show that in the singular limit δ ↘ 0 one recovers the classical Sobolev result, since Iδ converges to the 
Dirichlet energy up to a normalization constant. The aim of this note is to remark that in this context also a logarithmic 
type estimate holds. Thus we have that the summability gain independent of N can be controlled in terms of Iδ(u).

More precisely, we have the following theorem.

Theorem 1.1. Let u ∈ L2(RN ) (N ≥ 3). There is a positive constant CN such that∫

RN

u2

‖u‖2
2

log
u2

‖u‖2
2

dx + N

2
log‖u‖2

2 ≤ N

2
log

(
CNδ

4
N ‖u‖

2N−4
N

2 + CN Iδ(u)

)
,

for all δ > 0. In particular, if u ∈ L2(RN ) is such that Iδ(u) < ∞ for some δ > 0, then∫

RN

u2 log u2dx < +∞. (1.2)

Proof. By a simple normalization argument, we may reduce the assertion to proving that∫

RN

u2 log u2dx ≤ N

2
log

(
CNδ

4
N + CN Iδ(u)

)
, for all δ > 0, (1.3)

for any u ∈ L2(RN ) such that ‖u‖2 = 1. Considering the normalized outer measure

μ(E) :=
∫
E

u2(x)dx, μ(RN) = 1,

and using Jensen’s inequality for concave nonlinearities and with measure μ, we have

log

⎛
⎜⎝

∫

RN

|u| 2N
N−2 dx

⎞
⎟⎠ = log

⎛
⎜⎝

∫

RN

|u| 4
N−2 dμ

⎞
⎟⎠ ≥

∫

RN

log |u| 4
N−2 dμ = 2

N − 2

∫

RN

u2 log u2dx. (1.4)

On the other hand, applying (1.1), we derive that, for all δ > 0,

2

N − 2

∫

RN

u2 log u2dx ≤ log
(

D Nδ
4

N−2 + CN Iδ(u)
N

N−2

)
,

for some positive constant D N , which implies (1.3). Here we used the fact that∫
|u| 2N

N−2 dx ≤ λ
4

N−2
N δ

4
N−2 ,
{|u|≤λNδ}
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since 
∫
RN u2 dx = 1. �

Defining a notion of entropy as typical in statistical mechanics:

Entμ( f ) :=
∫

RN

f

‖ f ‖1,μ
log

f

‖ f ‖1,μ
dμ + N

2
log‖ f ‖1,μ, f ≥ 0, ‖ f ‖1,μ :=

∫
f dμ,

the conclusion of the previous results reads as

u ∈ L2(RN), ∃δ > 0 : Iδ(u) < +∞ =⇒ EntLN (u2) < +∞.

Remark 1.2 (Logarithmic NLS). If u ∈ H1(RN ), then the results of [19] show that

lim
δ↘0

Iδ(u) = Q N

∫

RN

|∇u|2dx, (1.5)

for some constant Q N > 0. Hence, passing to the limit as δ ↘ 0 in the inequality of Theorem 1.1, one recovers classical 
forms of the logarithmic inequality. The logarithmic Schrödinger equation

i∂tφ + �φ + φ log |φ|2 = 0, φ : [0,∞) ×R
N →C, N ≥ 3, (1.6)

admits applications to quantum mechanics, quantum optics, transport and diffusion phenomena, theory of superfluidity and 
Bose–Einstein condensation (see [25] and [10–12]). The standing waves solutions to (1.6) solve the following semi-linear 
elliptic problem

−�u + ωu = u log u2, u ∈ H1(RN). (1.7)

These equations were recently investigated in [15,24]. From a variational point of view, the search for solutions to (1.7)
can be associated with the study of critical points (in a nonsmooth sense) of the lower semi-continuous functional J :
H1(RN ) →R ∪ {+∞} defined by

J (u) = 1

2

∫

RN

|∇u|2 dx + ω + 1

2

∫

RN

u2 dx − 1

2

∫

RN

u2 log u2 dx,

which is well defined by the logarithmic Sobolev inequality. Due to Theorem 1.1 and (1.5), one could handle a kind of 
nonlocal approximations of (1.7), formally defined for δ > 0 by

I ′δ(u) + ωu = u log u2,

which are associated with the energy functional Jδ : H1(RN ) → R ∪ {+∞} defined by

Jδ(u) = Iδ(u) + ω + 1

2

∫

RN

u2 dx − 1

2

∫

RN

u2 log u2 dx.

Since there holds Iδ(u) ≤ CN
∫
RN |∇u|2dx for all δ > 0 and u ∈ H1(RN ) (cf. [19, Theorem 2]), the energy functional Jδ is well 

defined, for every δ > 0.

Remark 1.3 (Magnetic case). If A :RN →R
N is locally bounded and u : RN →C, we set

�u(x, y) := e
i(x−y)·A

(
x+y

2

)
u(y), x, y ∈R

N .

It was observed in [14] that the following diamagnetic inequality holds

||u(x)| − |u(y)|| ≤ ∣∣�u(x, x) − �u(x, y)
∣∣, for a.e. x, y ∈R

N .

In turn, by defining

I A
δ (u) :=

∫
{|�u(x,y)−�u(x,x)|>δ}

δ2

|x − y|N+2
dx dy,

we have

Iδ(|u|) ≤ I A
δ (u), for all δ > 0 and all measurable u : RN →C. (1.8)
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Then, Theorem 1.1 yields the following magnetic logarithmic Sobolev inequality. For u ∈ L2(RN ), there is a positive constant 
CN such that

∫

RN

|u|2
‖u‖2

2

log
|u|2
‖u‖2

2

dx + N

2
log‖u‖2

2 ≤ N

2
log

(
CNδ

4
N ‖u‖

2N−4
N

2 + CN I A
δ (u)

)
.

Notice that, since Iδ(|u|) ≈ ‖∇|u|‖2
2 as δ ↘ 0 [19] and I A

δ (u) ≈ ‖∇u − iAu‖2
2 as δ ↘ 0 [22], from inequality (1.8) one recovers 

‖∇|u|‖2 ≤ ‖∇u − iAu‖2, which follows from the well-know diamagnetic inequality for the gradients |∇|u|| ≤ |∇u − iAu|, 
see [18].

As a companion to Theorem 1.1, we also have the following theorem.

Theorem 1.4. Let u ∈ L2(RN ) (N ≥ 3). Assume that there exists a non-decreasing function F : R+ → R
+ such that F (ts) ≤ tβ F (s)

for any s, t ≥ 0 and some β > 0 and

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+2

dx dy < +∞. (1.9)

Then there exists a positive constant CN,F such that

∫

RN

u2

‖u‖2
2

log
u2

‖u‖2
2

dx + N

2
log‖u‖β

2 ≤ N

2
log

⎛
⎜⎝CN,F ‖u‖β

2 + CN,F

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+2

dx dy

⎞
⎟⎠ .

In particular, condition (1.2) holds.

Proof. Consider the statement when ‖u‖2 = 1. In light of inequality (1.4), since by [21, Proposition 6] there exists CN > 0
and λN > 0 such that

∫
{|u|>λN F (1/2)}

|u|2N/(N−2)dx ≤ CN

⎛
⎜⎝ 1

F (1/2)

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+2

dx dy

⎞
⎟⎠

N/(N−2)

, (1.10)

by arguing as in the previous proof, we get

2

N − 2

∫

RN

u2 log u2 ≤ log

⎛
⎜⎝D N,F + D N,F

⎛
⎜⎝

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+2

dx dy

⎞
⎟⎠

N/(N−2)⎞
⎟⎠ ,

where we used the fact that∫
{|u|≤λN F (1/2)}

|u| 2N
N−2 dx ≤ λ

4
N−2
N F (1/2)

4
N−2 ,

since 
∫
RN u2 dx = 1. Then, we get

∫

RN

u2 log u2 ≤ N

2
log

(
CN,F + CN,F

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+2

dx dy
)
.

In the general case, using the sub-homogeneity condition on F yields

∫

RN

u2

‖u‖2
2

log
u2

‖u‖2
2

≤ N

2
log

(
CN,F + CN,F

‖u‖β

2

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+2

dx dy
)
,

which yields the desired conclusion. �
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Remark 1.5 (Lp(RN )-version). If p > 1 and N > p, one has a variant of (1.4), namely

log

⎛
⎜⎝

∫

RN

|u| Np
N−p dx

⎞
⎟⎠ ≥ p

N − p

∫

RN

|u|p log |u|pdx. (1.11)

Then, by arguing as in the proofs of Theorems 1.1 and 1.4 with

u �→
∫ ∫

{|u(y)−u(x)|>δ}

δp

|x − y|N+p
dx dy, u �→

∫

R2N

F (|u(x) − u(y)|)
|x − y|N+p

dx dy, (1.12)

in place of Iδ(u) and (1.9) respectively, it is possible to get the corresponding log-Sobolev inequalities as for the case p = 2, 
via the results of [21]. In particular, if u ∈ Lp(RN ) and the functionals in (1.12) are finite at u for some δ > 0, then∫

RN

|u|p log |u|pdx < +∞.

The Euclidean logarithmic Sobolev inequalities for the p-case have been intensively studied, see, e.g., the work of Del Pino 
and Dolbeault [16] and the references therein.
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