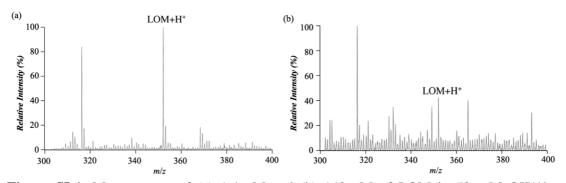
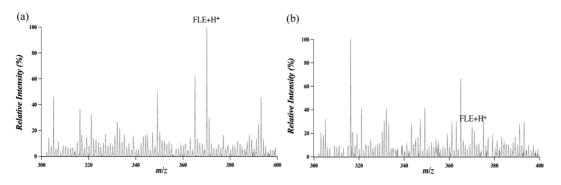
Supporting information

Electrostatic Spray Ionization from 384-well Microtiter Plates for Mass Spectrometry Analysis based Enzyme Assay and Drug Metabolism Screening


Liang Qiao^{1,2,#}, Xiaoqin Zhong^{1,#}, Emna Belghith¹, Yan Deng^{1,3}, Tzu-En Lin¹, Elena Tobolkina¹, Baohong Liu², Hubert H. Girault^{1,*}

1. Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland


2. Chemistry Department, Fudan University, 200433, Shanghai, China

3. College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China

#: these authors contribute equally to the work.

Figure SI-1: Mass spectra of (a) 1.4 μ M and (b) 140 nM of LOM in 50% MeOH/49% H₂O/1% acetic acid by 384-well plate ESTASI-MS.

Figure SI-2: Mass spectra of (a) 1.4 μ M and (b) 140 nM of FLE in 50% MeOH/49% H₂O/1% acetic acid by 384-well plate ESTASI-MS.

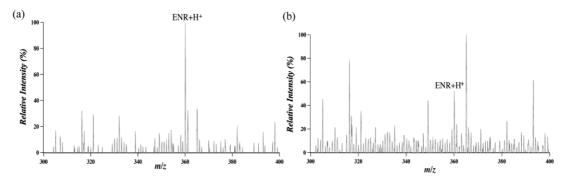
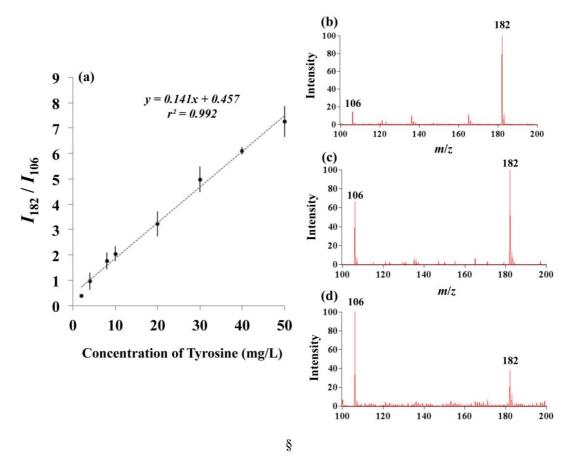



Figure SI-3: Mass spectra of (a) 1.4 μ M and (b) 140 nM of ENR in 50% MeOH/49% H₂O/1% acetic acid by 384-well plate ESTASI-MS.

Figure SI-4: (a) Liner curve fitted for tyrosine quantification with internal standard calibration method. I_{182}/I_{106} : relative ion intensities between tyrosine (I_{182}) and serine (I_{106}). (b), (c) and (d) Mass spectra for 50 mg/L, 8 mg/L and 2 mg/L of tyrosine, respectively. The analyses were performed with direct ESTASI-MS from a 384-well plate, each well containing 10 μ L of analyte solution in 50% MeOH/49% H₂O/1% acetic acid. The internal standard of serine was always kept at 10 mg/L. Error bar shows standard deviation (n=3).

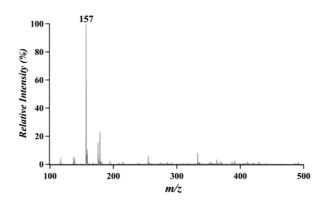
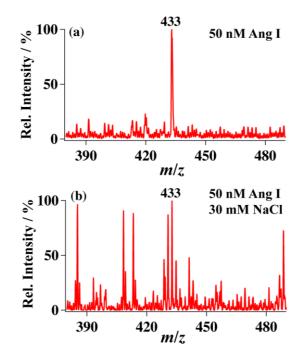



Figure SI-5: Mass spectrum of 2 mM cupferron in 50% MeOH/49% $H_2O/1\%$ acetic acid by direct infusion ESI-MS.

Figure SI-6: The test of ESTASI tolerance to salt by analysing 10 μ L 50 nM Ang I in the wells of a 384-well plate. The buffer of 50% methanol, 49% H₂O and 1% acetic acid contained (a) 0 or (b) 30 mM NaCl.

Calculation of half maximal inhibitory concentration (IC₅₀).

IC₅₀ could be deduced from the Cheng-Prusoff equation (IC₅₀ = $K_i + K_i[S]/K_m$) with the Michaelis constant of K_m , inhibition constant of K_i and the substrate concentration [S]. The K_m of tyrosinase for tyrosine is 0.5 mM,¹ the concentration of tyrosine [S] in our case was 0.3 mM, and K_i is estimated around 0.4 mM from the fitted curve for the equation of $K_{apparent}$ = $K_m (1 + [I]/K_i)$ reported in a literature,² where K_m/K_i was determined as 1.25. Thus, the IC₅₀ is calculated as ~0.5 mM when using 0.3 mM of tyrosine.

References:

(1) Espin, J. C.; Jolivet, S.; Wichers, H. J. J. Agric. Food Chem. 1999, 47, 3495-3502.
(2) Xie, L. P.; Chen, Q. X.; Huang, H. A.; Liu, X. D.; Chen, H. T.; Zhang, R. Q. Int. J. Biochem. Cell Biol. 2003, 35, 1658-1666.