
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 1

HEAL-WEAR: an Ultra-Low Power Heterogeneous
System for Bio-Signal Analysis

Loris Duch, Member, IEEE, Soumya Basu, Rubén Braojos, Giovanni Ansaloni, Member, IEEE,
Laura Pozzi, Member, IEEE, David Atienza, Fellow, IEEE

Abstract—Personalized healthcare devices enable low-cost, un-
obtrusive and long-term acquisition of clinically-relevant bio-
signals. These appliances, termed Wireless Body Sensor Nodes
(WBSNs), are fostering a revolution in health monitoring for
patients affected by chronic ailments. Nowadays, WBSNs often
embed complex digital processing routines, which must be
performed within an extremely tight energy budget. Addressing
this challenge, in this paper we introduce a novel computing
architecture devoted to the ultra-low power analysis of bio-
signals. Its heterogeneous structure comprises multiple processors
interfaced with a shared acceleration resource, implemented as
a Coarse-Grained Reconfigurable Array (CGRA). The CGRA
mesh effectively supports the execution of the intensive loops that
characterize bio-signal analysis applications, while requiring a
low reconfiguration overhead. Moreover, both the processors and
the reconfigurable fabric feature Single-Instruction / Multiple-
Data (SIMD) execution modes, which increase efficiency when
multiple data streams are concurrently processed. The run-time
behavior on the system is orchestrated by a light-weight hard-
ware mechanism, which concurrently synchronizes processors
for SIMD execution and regulates access to the reconfigurable
accelerator. By jointly leveraging run-time reconfiguration and
SIMD execution, the illustrated heterogeneous system achieves,
when executing complex bio-signal analysis applications, speed-
ups of up to 11.3x on the considered kernels and up to 37.2%
overall energy savings, with respect to an ultra-low power multi-
core platform which does not feature CGRA acceleration.

Index Terms—Ultra-low power architectures, Coarse-Grained
Reconfigurable Arrays, Wireless Body Sensor Nodes, Bio-Medical
Signal Processing.

I. INTRODUCTION

ACCORDING to recent studies [1], more than 50 billion
devices will be connected to the internet by 2020. A

large portion of this amount will be constituted by autonomous
devices, the so-called Internet of Things (IoT). The IoT
revolution will enable major innovations in the interactions
between humans and machines. Among those breakthroughs, it
will have an important impact on healthcare provision, greatly
lowering the cost for the long-term monitoring of chronic
diseases [2], as well as improving the lifestyle of affected
patients. This scenario is nowadays especially relevant, since
the ageing of the world population and the prevalence of
unhealthy habits have turned chronic cardiovascular diseases
into the leading cause of death worldwide, even ahead of
infectious agents [3]. In this context, wearable IoT devices,

L. Duch, S. Basu, R. Braojos and D. Atienza are with the Embed-
ded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland, e-mail: {loris.duch, soumya.basu, ruben.braojoslopez,
david.atienza}@epfl.ch.

G. Ansaloni and L. Pozzi are with the Università della Svizzera Italiana
(USI), Lugano, Switzerland, e-mail: {giovanni.ansaloni, laura.pozzi}@usi.ch.

also known as Wireless Body Sensor Nodes (WBSNs), have
emerged as a cost-effective unobtrusive solution to perform
continuous monitoring of clinically-relevant data, outside of
a hospital environment and with little supervision from the
medical staff [4]. WBSNs are able to autonomously acquire
bio-signals with various modalities, such as blood oxygenation
(SpO2), electromyograms (EMGs), etc. Among them, the
most common one, on which we focus in this paper, is
the electrocardiogram (ECG) [5], that measures the electrical
activity of the heart.

A key requirement for WBSN is that they must operate for
extended periods of time while relying on small batteries, thus
requiring a high energy efficiency. In this context, the energy
bottleneck of most WBSNs, which only perform acquisition
and transmission, usually resides in the wireless communica-
tion stage, because the slow dynamics of bio-signals allow
their acquisition while employing little energy [6].

A striking alternative is embodied by “smart” WBSNs,
which perform advanced on-board Digital Signal Processing
(DSP) to extract high-level relevant features from acquisitions
[7]. In this approach, only features (as opposed to samples)
are sent through the energy-hungry wireless link, potentially
resulting in large energy gains [8], [9]. Nonetheless, these
benefits can only be leveraged by performing the DSP stage
itself within a small energy envelope. In fact, thanks to
progresses in the design of domain-specific analog-to-digital
converters [10], [11] and wireless protocols [12], DSP tends to
dominate the energy budget of smart WBSNs [13], so that any
increase in its efficiency has a tangible impact at the system
level.

With the end of Dennard scaling [14], and further reductions
in supply voltages hampered by the unreliability of SRAM
memories when operating in a near-threshold regime [15],
nowadays the most promising opportunities for increasing
the energy efficiency of digital processing platforms resides
at the architectural level, requiring a careful and domain-
specific optimization. In this context, low-power multi-core
architectures [15]–[18] have been proposed to leverage the
intrinsic code parallelism of bio-signal DSP applications [19]–
[21].

Herein we introduce the HEterogeneous and reconfigurable
ultrA-Low power architecture for WEARable Body Sensor
Nodes (HEAL-WEAR), a domain-specific digital processing
platform that operates at ultra-low power levels, harnessing
multiple energy-wise optimization opportunities deriving from
the application characteristics of bio-signal analysis DSP.

A high-level block scheme of HEAL-WEAR is presented in



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 2

ADC

Instr.
memory

Data 
memory

TX

Kernels

SIMD Multi-core

SIMD CGRA

HEAL-WEAR DSP Architecture

WBSN

μP μP μP μP

Fig. 1. HEAL-WEAR couples a multi-core processor with a CGRA unit,
supporting SIMD execution in both resources.

Figure 1. First, as processing is usually divided in well-defined
phases, HEAL-WEAR, similarly to [16], employs multiple
homogeneous cores to spread the execution of the control-
dominated parts of applications over several processors.

Second, hardware acceleration is provided to efficiently
execute the computational kernels of the applications, i.e.:
compact and intensive code sections, which account for a
vast portion of the overall DSP run-time. To maintain a high
degree of flexibility, the accelerator is programmable at the
operation level, as a Coarse-Grained Reconfigurable Array
(CGRA) mesh [22], [23]. In this way, a variety of kernels,
possibly unknown at design time, can be supported, avoiding
the high area, energy and configuration overhead typical of
the fine-grained reconfigurability provided by FPGAs [24].
While private CGRAs could be provided for each processor,
this strategy would not be efficient, as it would involve a high
degree of resource replication. In HEAL-WEAR, instead, a
single CGRA mesh is embedded in the system as a shared
resource, which is time- and space-multiplexed among the
processors through pipelining and partial reconfiguration.

Third, the system supports Single-Instruction/Multiple-Data
(SIMD) execution modes, both during software execution and
hardware acceleration. SIMD opportunities are common in
bio-signal DSP, which often involves simultaneous processing
of different data sources. The HEAL-WEAR architecture
leverages SIMD in order to (a) coalesce accesses performed by
different processors to the memory subsystem, (b) minimize
the number of reconfigurations required to map accelerated
loops and (c) streamline the control logic of the CGRA
fabric, whose cells embed multiple datapaths. The resulting
SIMD-CGRA therefore supports the execution of simultaneous
acceleration requests, issued by processors executing in SIMD.

The run-time orchestration of the execution among the
resources of such heterogeneous system is not a trivial task,
especially when, as in the proposed platform, system manage-
ment must be achieved with little area, energy and timing over-

heads. To accomplish it, we introduce a hardware/software
mechanism based on a dedicated instruction set extension
and a system controller, interfaced with the processors and
the CGRA mesh. The controller is able to synchronize the
threads on the multiple cores and, at the same time, manage
the acceleration requests and their execution on the CGRA.

The energy benefit deriving from the approach embod-
ied in HEAL-WEAR is two-fold. First, by separating the
computation- and control-intensive parts of applications, each
of them is efficiently mapped on dedicated resources. Second,
the speed-up ensuing from hardware acceleration decreases
the ratio between active and idle times, which can then be
leveraged by supporting aggressive deep-sleep modes.

The main contributions of the paper are the following:
1) We introduce and explore the performance, from an

energy-efficiency perspective, of a novel coarse-grained
reconfigurable array, optimized for SIMD operations.

2) We detail how the developed SIMD-CGRA can be inte-
grated in an ultra-low power multi-core system devoted
to bio-signal analysis.

3) We propose a unified and low-overhead mechanism to
jointly support synchronization among cores, acceleration
of kernels and power management at the system level.

4) We showcase the energy benefit of the HEAL-WEAR
multi-core heterogeneous system when performing com-
plex signal analysis on multi-lead ECG acquisitions.

The rest of the paper is structured as follows: Section II
summarizes related works in the field. Section III illustrates
the design of the SIMD-CGRA, while Section IV describes
how such resource can be efficiently embedded in a multi-core
system and shared by multiple processors. Then, Section V
describes the developed experimental framework, used to
investigate the performance and energy efficiency of HEAL-
WEAR. Obtained results are shown and discussed in Section
VI. Finally, Section VII summarizes the main conclusions of
this work.

II. STATE-OF-THE-ART

Embedded bio-signal processing applications have been
conceived to monitor a large number of chronic pathologies
[25], [26], such as cardiac arrhythmias [27], sleep apneas [28],
or Parkinson symptoms [29].

To sustain these complex signal processing workloads at
ultra-low power levels, a number of domain-specific digi-
tal processors have been proposed. These architectures usu-
ally feature a small area footprint in combination with ad-
vanced power management schemes, performing dynamic
Voltage/Frequency Scaling (VFS) to adapt to different work-
load conditions at run-time [15], [30], [31]. Aggressive VFS
can degrade the performance of computing platforms beyond
the real-time requirements of the intended applications. To
reclaim a high level of performance, multi-core architectures
can be employed [18], [32], exploiting the parallelism intrinsic
in bio-signal processing algorithms when multiple signals are
concurrently processed. The authors of [33] demonstrated
that multi-cores operating at low voltages and frequencies
(down to few MHz) outperform single-cores, even for the light
workloads that characterize embedded cardiac DSP.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 3

An orthogonal strategy to maximize energy efficiency is
the use of dedicated hardware blocks (custom instructions
[34] or dedicated accelerators [35]) to efficiently support
computationally-intensive segments of applications. While this
strategy can result in orders-of-magnitude power reductions,
it is also inflexible, as each block can perform a single
function. These characteristics are even more pre-eminent
when accelerators are shared by multiple cores [36], [37],
because requests for accelerated functions must be arbitrated.

In this context, reconfigurable solutions are good candi-
dates to couple the efficiency typical of dedicated hardware
with the degree of flexibility required by a wide variety
of computational kernels. However, bit-level reconfigurable
arrays (such as FPGAs) present huge overheads in terms of
area and power consumption, with respect to fixed-function
ASICs [24]. CGRAs dramatically reduce these overheads by
being programmable only at the operation level, which allows
efficient mapping of kernels [22], [38]. Indeed, in [23] the use
of CGRAs is advocated based on energy efficiency considera-
tions, while in [39] a coarse-grained array was proposed for the
efficient analysis of EEG acquisitions. Scheduling the kernels
on CGRA meshes is not straightforward, as operations must
be assigned to a spatially distributed RC element, as well as
to a temporally defined execution cycle. For the experimental
evaluation presented in Section VI, this task was performed
manually, mimicking the automated modulo strategy described
in [40]. Other CGRA scheduling algorithms include [41], [42],
[43] and [44].

Herein, we exploit the parallel nature of coarse-grained
reconfiguration by interconnecting a CGRA instance as a
shared accelerator in a multi-core system. Our approach has
some similarities with the one presented in [45]. Nonetheless,
the authors of that work adopt the limiting assumption that the
reconfigurable fabric can be accessed by only one core at the
time. Conversely, we instead concurrently support requests by
different cores, either in a Multiple-Instruction / Multiple-Data
(MIMD) or in a SIMD fashion. As opposed to [46], which
only considers SIMD at the multi-processor level, our paper
investigates the benefits of also supporting SIMD-kernels,
adopting a multi-datapath CGRA.

III. DOMAIN-SPECIFIC SHARED CGRA

Similarly to FPGAs, CGRA architectures are structured
as a two-dimensional mesh of Reconfigurable Cells (RCs),
tightly interconnected with each other. The structure of the
RCs differentiates CGRAs from FPGAs: while the latter can
perform any boolean function of the input data, thus providing
bit-level flexibility, the functionality of RCs is defined at the
operation level, by embedding a dedicated ALU coupled with
a small local register file. This arrangement allows CGRAs to
efficiently execute Data Flow Graphs (DFGs), extracted from
loop-intensive code segments (kernels), in a spatial way [40].

As opposed to fixed-function ASICs, CGRAs can be re-
programmed at run-time. Their configuration overhead, as well
as the area devoted to the configuration logic, is orders-of-
magnitude smaller than that of fine-grained FPGAs, as only
the desired ALU operations and the routing of operands must

be specified for each cell. Hence, only a short configuration
interval is sufficient to provide this information [47]. Multiple
operations can be cyclically performed by each cell on the
mesh [48], by providing a set of configuration words and
activating the proper one at each clock cycle, during execution.

CGRAs are particularly effective in the acceleration of
loops. Their structure allows to partially overlap the execution
of different iterations, a technique termed modulo scheduling
and initially developed for VLIW processors [49]. The speed-
up obtained by modulo scheduling loops is determined by the
achieved initiation interval, which measures the difference,
in clock cycles, between the start of two subsequent loop
iterations. The achievable initiation interval for a loop is
limited by the amount of RC resources, as well as by the
presence of loop-carried dependencies.

A. SIMD-CGRA

The SIMD-CGRA employed in the HEAL-WEAR archi-
tecture is composed of 16 RCs, organized in a 4x4 mesh and
connected by nearest-neighbour links in a torus configuration.
Figure 3 provides a high-level view of the mesh, while Figure
2 details the structure of RCs. A defining feature of the
reconfigurable array employed in this work is that, as opposed
to state-of-the-art CGRAs [41], our design features multiple
datapaths in each cell. In this way, single-instructions/multiple-
data execution can be efficiently supported. Datapaths (DPs)

Fig. 2. RC architecture of the SIMD-CGRA, highlighting a) the datapath
structure, and b) the format of the configuration words. All datapaths in the
RC receive the same configuration word at each clock cycle.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 4

Fig. 3. Block scheme of the SIMD-CGRA.

are composed of an ALU, a local register file, and the
multiplexers required to select the input operands (from the
register file, or from the output of its own ALU, or from those
of neighbouring RCs).

The ALU can execute arithmetic operations (addition, sub-
traction, multiplication), arithmetic and logic shifts, and bit-
wise operations (AND, OR, XOR). In addition, execution
branches are supported by if-conversion, i.e., both branches
of an “if” statement are executed, and the correct result is
then selected based on the outcome of the test condition. To
do so, 1-bit flags (zero, negative and overflow) are generated
by arithmetic and shift operations. These flags are routed along
with data, and used by a dedicated MUX operation. Finally,
one ALU per column can perform a square root instruction.

As shown in Figure 2, the DPs belonging to the RCs
share the same set of configuration words. Therefore, multiple
instances of the same kernel can operate in parallel on different
data sets. Instances of the same kernel called by different cores
are mapped onto different DPs inside RCs. As kernel instances
do not exchange data, no links are present between DPs in a
cell, but only among corresponding DPs in neighbouring RCs.

At run-time, the functionality of the DPs of an RC is
dictated by its active configuration word, selected among the
ones stored in its local configuration registers. Column-wise
program counters (named PCs in Figure 3) are in charge of
this selection at each clock cycle, so that different kernels can
be concurrently mapped on each column of the SIMD-CGRA.

At the periphery of the reconfigurable mesh, a multi-channel
DMA block is in charge of providing the interface toward
the system data memory. Such transfers operate using data
memory ports of the processors that requested the execution
of the kernel, therefore they do not require dedicated read and
write connections toward the memory subsystem.

B. CGRA Execution Flow
At run-time, each kernel mapped in the CGRA requires a

configuration and an execution phase. During configuration,

the parameters of the kernel invocation (such as the addresses
of input and output data in memory and the number of
iterations) are retrieved from the issuing processors and are
used to configure the program counters of the employed
mesh columns and the required DMA channels. The proper
configuration words are then transferred from a dedicated
CGRA configuration RAM to the configuration registers of
each cell. Kernels may have different sizes, so they may be
mapped on multiple columns, up to the entire CGRA mesh.
They can also be invoked with a varying SIMD width ranging
from one (i.e., no SIMD) to the number of DPs available in
each cell. If the SIMD width exceeds the DP width, the kernel
invocation is split into multiple copies, mapped on different
CGRA regions. If instead the SIMD width of the kernels is
less than the number of DPs per cell, unused DPs are power
gated to save static and dynamic energy.

Once mapped, the modulo-scheduled [49] kernel is activated
and the RCs compute the desired output, which are stored by
the DMA engine in the system data memory. To avoid a multi-
ported implementation of the CGRA configuration RAM, and
a replication of the configuration logic, a single (possibly
SIMD) kernel is configured at a time. Execution of different
kernels can instead proceed concurrently on separate CGRA
columns, effectively employing the available RCs.

IV. MULTI-CORE SYSTEM

The SIMD-CGRA mesh described in the previous section
is interfaced in the HEAL-WEAR platform with a multi-core
system, whose structure and run-time paradigm are detailed
in this section. The system leverages the potential of parallel
processing at two different levels to maximize its energy
efficiency. First, at the thread level, it supports a flexible
SIMD execution strategy over multiple cores. Second, at the
loop level, it allows for spatial execution of computation
intensive kernels (possibly in SIMD) on the coarse-grained
reconfigurable mesh.

The system allows for a time- and space-shared utilization
of the CGRA module to execute the kernels to be accelerated.
Cores are clock-gated when requesting an acceleration, waiting
for synchronisation after branches and when no input data is
available. CGRA columns (RCs and configuration memory)
are power-gated when not in use, as no content has to be
retained across subsequent executions of accelerated functions.
These features are provided by a unified mechanism support-
ing fine-grained code synchronization, power management and
acceleration of computational hotspots. Its design is detailed
in the following parts of this Section.

A. Hardware and software components

The block diagram of the HEAL-WEAR system is depicted
on Figure 4. Cores can be individually clock-gated when idle
(i.e., when waiting for another core to finish its task or when
an acceleration is performed on the CGRA), reducing their
dynamic energy requirements.

Processors are interconnected to multi-banked instruction
and data memories through combinational crossbars. The data
memory space is partitioned in a shared section, devoted to
inter-processor communication, and in private sections for



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 5

Fig. 4. High-level view of the HEAL-WEAR platform.

each core. Similarly to [50], the crossbars coalesce memory
requests when the same data or instruction is read by multiple
cores in SIMD mode. This occurrence is frequent in bio-signal
applications, since the same signal processing routine is often
performed on different input streams, and executed on different
processors.

Nonetheless, data-dependent branches can cause the execu-
tion flow on cores acting in SIMD to diverge. To recover, at the
end of those branches, from run-time divergences, we adopt
a solution based on the hardware synchronization mechanism
first introduced in [16]. In addition to re-establishing SIMD
execution when necessary, the Synchronizer of HEAL-WEAR
also coordinates the instruction memory accesses (avoiding
conflicts) and clock-gates the cores waiting for input data or
for the completion of a requested CGRA acceleration.

To accomplish this last task, the Synchronizer is interfaced
to a CGRA Controller. The role of the controller is to coor-
dinate the acceleration requests from the cores to the CGRA
through a request queue. The controller checks that sufficient
resources are available at run-time to map an accelerated
function. It also arbitrates the access to the reconfigurable
accelerator when multiple requests for different kernels are
received in the same clock cycle. Finally, it is in charge of
coalescing requests of the same kernels from cores executing
in SIMD. In this last case, kernels are concurrently mapped
as SIMD-kernels on different DPs of the same reconfigurable
cells. In case more SIMD requests are issued than the SIMD
width of the CGRA, the ones corresponding to the cores with
the lower processor identifier (PID), are executed first.

Storage for the configuration words used to program kernels
on the CGRA fabric is provided by a Configuration RAM. As
detailed in Section III, each word dictates the functionality of
a reconfigurable cell (RC) at a given clock cycle during the
execution of a kernel iteration.

At the software (instruction set) level, the HEAL-WEAR
architecture features the synchronization instructions intro-
duced by the authors of [16]. Calls to these instructions
allow proper management of the execution flow of a target
application executed on the multiple cores, enforcing energy-

Fig. 5. Acceleration request execution flow diagram.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 6

efficient SIMD execution when possible and managing
producer-consumer relationships between threads.

A further instruction set extension supports acceleration
requests to the SIMD-CGRA. It is defined as ACCEL #literal,
where the literal specifies the unique kernel ID that the core
wants to execute on the CGRA. The interaction between the
hardware CGRA controller and the custom ACCEL instruction
is described in the next subsection.

B. Acceleration Request Execution Flow

Acceleration requests by the processors are processed ac-
cording to the flow-chart presented in Figure 5, whose steps
are detailed in the following.

Step 1: Before requesting the execution of a kernel on the
CGRA with the ACCEL instruction, each core has to configure
a set of private memory-mapped registers, only accessible by
the corresponding core and the CGRA. These registers are
used to define run-time parameters, which can change from
one kernel invocation to another. They specify:

• The address and length of the input data to be processed
by the kernel running on the CGRA.

• The address and length of the buffer where results have
to be delivered by the kernel executing on the CGRA.

• The number of required loop iterations.
• Possible kernel invariants.
Step 2: After setting the value of these registers, the ACCEL

instruction with the correct configuration ID is called by the
core. Consequently, an acceleration request signal is raised
from the corresponding core and forwarded with the config-
uration ID to the CGRA Controller through the Synchronizer
(cf. Figure 4). In the meantime, the core is clock gated and
the acceleration request received by the CGRA Controller is
stored into a request queue.

Step 3: For each request popped from the queue, the CGRA
Controller reads two configuration words (#0 and #1) from the
Configuration RAM. The first word (#0) is used to address
and specify the length of the kernel configuration. The second
one (#1) specifies the resources (RCs and CGRA columns)
required to accelerate the desired kernel. These two words are
temporarily stored in local registers until Step 5.

Step 4: Before forwarding the request signal to the CGRA
mesh, the CGRA Controller searches for a number of free
RCs column(s) equal to the ones required by the desired
acceleration. Based on a local representation of the current
CGRA execution state, this task is performed in three steps:

a) The CGRA Controller checks if this request was already
mapped on the CGRA. To do so, the controller considers
the required amount of RC columns forming a kernel
and tries to find contiguous available RC columns already
configured with the requested configuration ID.

b) If this search step fails, the CGRA Controller tries to find
the first set of contiguous unused RC columns.

c) If all the RC columns have been used at least once, the
CGRA Controller tries to find the first set of contiguous
RC columns not in use (i.e. not currently used by a kernel
on the CGRA). If insufficient resources are available, the

execution is stalled and waits until the release of some
RC columns by other kernels.

When available RC columns have been identified, a column
index (i.e. configuration location) is determined, specifying the
location of the first column of the kernel mapping.

Step 5: When the CGRA Controller finds suitable RC
columns to execute the kernel, it sends an acceleration request
signal to the CGRA, along with the acceleration ID, the
retrieved location and the previously read configuration words.

Steps 6 and 7: The CGRA acknowledges the request and,
if necessary, fetches the remaining configuration words corre-
sponding to the accepted acceleration from the Configuration
RAM to program the RCs of the used columns.

Step 8: When the kernel is ready, the execution starts. The
outputs computed by the kernel are written in data memory,
so that they can be used by the requesting core(s) after the
kernel completion.

Step 9 and 10: Finally, resources in the local state repre-
sentation of the CGRA are released, and a wake up signal is
sent through the CGRA Controller and the Synchronizer, to
the cores which have previously requested the acceleration,
thus allowing them to continue their execution.

V. EXPERIMENTAL SETUP

In this section, we first describe the architectural param-
eters of HEAL-WEAR and the framework we developed to
investigate its performance. Then, we illustrate the baseline
systems. Finally, we detailed the employed benchmarks and
the accelerated kernels.

A. Hardware Architecture and Simulation Parameters

To evaluate the energy and performance benefits of the
HEAL-WEAR platform, we developed a hybrid framework,
which comprises both a post-synthesis and a (higher-level)
cycle-accurate view of the system. Its block scheme is pre-
sented in Figure 6.

The RTL implementation, cycle-accurate model and com-
piler of the processors were defined using Synopsys ASIP

Compiler

Processor

SystemC
(w. energy & area 

params.)

Other system 
components

(RTL & SystemC, 
w. energy & area 

params.)

SIMD-CGRASystem

SystemC 
platform 
simulator

SystemC
(w. energy & area 

params.)

Power 
characterization

Power 
characterization

Synthesis & 
simulation

Area Run-time Energy

Synthesis & 
simulation

Model
(ASIP Designer)

Application 
source code (.c)

Kernel configuration 
bit-streams

RTL Tech. 
lib.

RTL

Tech. 
lib.

Fig. 6. Block scheme of the experimental framework, comprising RTL and
cycle-accurate system views.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 7

Designer [51]. As in [15], each processing core adopts a
simple Harvard architecture, featuring a three-stage pipeline.
The gate count (12 Kilogates) and the energy-per-cycle of
the processors is comparable to that of the low-power ARM
Cortex M0 architecture [52].

The SIMD-CGRA accelerator was instead designed from
the ground up as an RTL template, allowing the definition of
architectural parameters through configuration directives. The
mesh comprises 4 rows and 4 columns of RCs, which suffice to
map the biggest kernel considered in this study. We considered
three different scenarios, having one, two and three DPs per
RC, respectively. Its run-time behavior was also modeled in
the SystemC simulator. A similar strategy was followed for
the other system blocks, such as memories and interconnects.

The complete system includes 8 processors, a data memory
of 64 kBytes (32k words of 16 bits) and an instruction memory
of 96 kBytes (32k words of 24 bits). The Configuration RAM
has a size of 6 kBytes (1.5k words of 32 bits), which is
sufficient to store all the configurations of the considered
kernels. Each RC has 16 configuration registers, while each
DP has a 4-word local register file. The operating frequency
is set at 1 MHz for all the benchmarks, except for the
computationally intensive 8L-CS benchmark (cf. Section V-C),
which operates at 2 MHz, in order to respect the real-time
constraint.

Area numbers were directly derived from the synthesized
netlist of the system, varying the architectural parameters of
the SIMD-CGRA. We employed a 65nm UMC low-leakage
technology library, at a supply voltage of 0.9V. To accurately
measure the energy consumption, long logic simulations would
be required to collect the switching-activities corresponding
to the processing of entire ECG windows. Such approach
would lead, in turn, to time-consuming simulations at the
post-synthesis level which would make the space exploration
unfeasible. Instead, post-synthesis simulations were used on
a smaller scale, only to perform the energy characterization
of the different system blocks. To this end, similarly to
the approach in [16], we evaluated (using Synopsys Design
Compiler and Mentor Graphics Modelsim) the performance
of the multi-processor architecture when executing small syn-
thetic benchmarks, both with and without SIMD execution. In
addition, we simulated (again, at the post-synthesis level) the
execution of all kernels on the SIMD-CGRA.

Through this analysis we derived detailed energy profiles
for each of the system computational components (processors,
RCs) when in active and sleep mode, and the power required
for memory accesses. The behavior of the system components
while in sleep mode depends on whether their state must be
retained or not across idle periods. DPs can be safely power-
gated when not in use, because values residing in the SIMD-
CGRA local register files are not used after a kernel execution.
On the other hand, CGRA configuration memories are clock-
(but not power-) gated, so that their content can be reused
by a further invocation of the same kernel. Processors are
also clock-gated when idle, since the content of their internal
registers must be preserved at run-time.

The energy profiles, along with the run-time required for
the execution of the CGRA kernels, were imported in the

Fig. 7. Task graph of the 6L-MF and 6L-MMD benchmarks.

Fig. 8. Task graph of the RP-CLASS benchmark. The shaded part is only
activated when an abnormal heartbeat is detected by the classifier.

Fig. 9. Task graph of the 8L-CS benchmark.

cycle accurate (SystemC) simulator, which allows much faster
experimental evaluations. Using the simulator, we gathered
metrics such as the number of active or inactive clock cy-
cles for each processor and CGRA RC, and data/instruction
memory accesses. By combining the information provided
at each abstraction level, we were therefore able to gather
the performance metrics of the system over long simulated
periods of time. At the cycle-accurate level, each benchmark
was executed for a total of 10 seconds, corresponding to
processing 5000 ECG samples extracted from the T-Wave
Alternans Challenge database [53].

B. Target and Baseline Systems

Previous studies have showcased that multi-core architec-
tures achieve higher energy efficiency than single-core ones
when performing bio-signal applications [16], [50], [54].
Hence, inhere we consider a homogeneous multi-core system



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 8

as a baseline solution, and evaluate the further energy and
performance gains obtained by the HEAL-WEAR system.

In more detail, we focused on three different architectural
configurations, described below.

• Multi-core architecture only: No CGRA is present, and
the applications are entirely executed by the processors.
This system is similar to the one described in [16].
It supports SIMD execution to reduce accesses to the
instruction and the data memories. A comparative evalu-
ation with respect to this baseline therefore explores the
efficiency of a shared reconfigurable acceleration resource
in the WBSN digital signal processing domain.

• Multi-core architecture with single DP CGRA: Processors
are interfaced with a CGRA having only one DP per RC.
Hence, the execution of SIMD kernels is not supported,
and SIMD acceleration requests are mapped on different
CGRA regions. This setup corresponds to the platform
described in [46].

• HEAL-WEAR – Multi-core architecture with SIMD-
CGRA: Target architecture, as described in Sections III
and IV. It presents multiple DPs in each RC, allowing
the efficient acceleration of SIMD kernels. We have
considered CGRA instances having two or three DPs per
RC.

C. Bio-Medical Benchmarks

Experimental evidence was gathered for the above-
mentioned platforms when processing ECG records acquired
with a sampling rate of 500Hz per lead, common in high-
quality ambulatorial recordings [53]. Four complex cardiac
processing routines are evaluated as benchmark applications.

• 6L-MF: Six-lead Morphological Filtering (MF). Removes
artifacts (due to muscles activity, system AC supply
interferences and base drift caused by breathing) from an
ECG acquisition, using structuring elements to remove
low- or high-frequency noise components, according to
the algorithm described in [55]. This benchmark operates
in parallel on six different input streams and is therefore
mapped on six cores (cf. Figure 7).

• 6L-MMD: Six-lead delineation using Multi-scale Mor-
phological Derivatives (MMD) [56]. It detects the char-
acteristic fiducial points (P, Q, R, S and T, as depicted

Fig. 10. ECG fiducial points of a normal heartbeat.

in Figure 10) of each heartbeat. This application relies
on 6L-MF to properly filter the acquires signals, then
performs a Root-Mean-Square (RMS) combination of the
filtered streams, and finally the delineation of the fiducial
points. It is divided into three different tasks mapped on
eight processing cores, as shown in Figure 7.

• RP-CLASS: Uses a heartbeat neuro-fuzzy classifier, oper-
ating on a single-lead, to identify pathological heartbeats,
by applying a random projection over the heartbeat sam-
ples [57]. When a heartbeat abnormality is detected, a
three-lead delineation is activated for a short window of
signal. RP-CLASS is mapped onto six cores (cf. Figure
8), among which the four cores in the delineation chain
are seldom activated.

• 8L-CS: Eight-lead Compressed Sensing (CS) algorithm
[34], mapped onto eight cores (cf. Figure 9), which
applies a 50% lossy compression on the input ECG.

The selected applications present different workloads and
computational characteristics: the execution of 8L-CS is dom-
inated by a single and intense kernel, which is always executed
in SIMD. RP-CLASS, on the other hand, has a more com-
plex run-time behaviour and fewer opportunities for SIMD
execution. 6L-MMD and 6L-MF represent a middle ground
in-between those two extremes.

D. Accelerated Kernels

The computational kernels of the considered applications
were identified with the aid of a profiling pass [58] developed
on top of the LLVM compiler infrastructure [59]. Kernels were
selected among the most frequently executed basic blocks
of the application, discarding candidates which contained
constructs that could not be executed on the CGRA, such
as dynamic memory allocations. A possible extension of our
framework is the full automation of this step, adapting existing
instruction set extension identification techniques, such as the
ones proposed by [60] and [61]. A pass built on LLVM was
also used to derive the Data Flow Graphs (DFGs) of the
kernels, which were then modulo-scheduled on the CGRA. In
this way, we derived the number of columns and RCs required
by the kernels, the operations performed at each clock cycle
during a kernel execution, the number of cycles per iteration,
and ultimately the content of each configuration word.

Using this strategy, we selected the following kernels:

• Dbl Min Srch performs a search of the first and second
minimum values inside a window of samples. This kernel
is used by the cores running the MF algorithm.

• Dbl Max Srch, similarly to Dbl Min Srch, performs a
search of the first and second maximum values inside
a window of samples. This kernel is used by the cores
running the MF algorithm.

• Min Max Srch determines the minimum and maximum
limit values used during the erosion and dilation steps
[55], executed by the cores running the MF algorithm.

• Sqrt 32 executes a 32 bits square root algorithm. This ker-
nel is used by the core performing the RMS combination
of the filtered ECG signals.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 9

TABLE I
KERNELS UTILIZATION PER APPLICATION. EACH CELL INDICATES THE

NUMBER OF PROCESSING CORES REQUESTING EACH ACCELERATION.

Kernels
Apps 6L-MF 6L-MMD RP-CLASS 8L-CS

Dbl Min Srch 6 cores 6 cores 3 cores -
Dbl Max Srch 6 cores 6 cores 3 cores -
Min Max Srch 6 cores 6 cores 3 cores -

Sqrt 32 - 1 core 1 core -
Lin Srch - 1 core 1 core -
Apply RP - - 1 core -

Lin Min Max - - 1 core -
CS - - - 8 cores

• Lin Srch performs a linear search of the two minimum
values and two maximum values inside an array of
samples. Its execution is more compact than the one of
the kernels Dbl Min Srch and Dbl Max Srch executed
sequentially. This kernel is used by the core executing
the RMS combination of the filtered ECG signals.

• Apply RP calculates the random projection [57] on a
signal window, by performing a matrix-vector multipli-
cation. This kernel is used by the core executing the
classifier.

• Lin Min Max performs a linear search of a single mini-
mum value and single maximum value inside an array of
samples. This kernel is used by the core performing the
classification task.

• CS computes the sequence of random indexes necessary
to perform the Compressed Sensing. This kernel is used
by the cores running the CS algorithm.

Table I shows, for each application, which kernels are
accelerated, and how many cores request them.

VI. EXPERIMENTAL RESULTS

This section showcases the performance of the heteroge-
neous HEAL-WEAR system in a bottom-up fashion. First,
the performance, area and energy-efficiency of the SIMD-
CGRA is evaluated when executing individual kernels. Then,
a system-level assessment is performed on the overall platform
and over all benchmark applications, and is concluded by
providing insights on the trade-off implied by different choices
for the CGRA SIMD width.

A. CGRA Performance Evaluation

1) Kernels Execution Speed-up: Figure 11 shows the speed-
ups of the considered kernels when executed on the CGRA,
with respect to their execution time on the processors. They
range from 0.8x to 11.3x, depending on the kernel structure
(e.g.: number of iterations, initiation interval) as well as the
number of DPs embedded in the cells of the CGRA mesh
(the CGRA SIMD width). For each kernel, the presented data
considers both configuration and execution time, as well as
the overhead due to the management of acceleration requests.
Since kernels compete for the limited CGRA resources, their

Fig. 11. Average speed-up with kernels running on the multi-core + CGRA
platform w.r.t. kernels running only on the multi-core platform.

speedup may vary across invocations. Hence, Figure 11 pro-
vides average, maximum and minimum speedup values for the
cases having a non-negligible variance.

In all cases, kernels require a smaller execution time on
the CGRA than in the processors. The CS kernel on a 1 DP
CGRA is an outlier, as it has a speedup of 0.8x (a slowdown),
due to the high amount of contention during its execution.
Such a contention level is substantially reduced by increasing
the number of DPs, as SIMD accelerations can be configured
and mapped in parallel on the CGRA, ultimately improving
run-time performance. In fact, the average execution time
decreases for all kernels when a SIMD-CGRA is employed,
allowing for instance the CS kernel to reach 1.6x speedup
when multi-DPs are employed.

2) Resource Utilization Analysis: By employing multi-DP
RCs, concurrent SIMD accelerations can be mapped and
executed at the same time on the same set of RC columns.
To investigate how much the different kernels benefit from
SIMD-CGRA, Figure 12 depicts the repartition of the different
types of acceleration calls over the execution of the considered
benchmarks for single- and multi-DP configurations. In this
figure, kernels Sqrt 32, Lin Srch, Apply RP and Lin Min Max
run on a single core and thus can not take advantage of the
SIMD execution mode (cf. Table I in Section V-D). For these
cases, Figure 12 only shows one bar that remains identical for
the different configurations. On the other hand, kernels Min
Max Srch and CS benefits the most from the SIMD mode,
with 100% of the acceleration requests executed in this mode.

In addition to improving the execution speed-up of the
kernels and the parallelism on the CGRA mesh, the SIMD
execution mode allows also a faster access time to the ac-
celerator. When the cores request a kernel acceleration, a
variable waiting time occurs between the moment in which
the request is received by the Synchronizer and the moment
in which it is transmitted to the accelerator by the CGRA



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 10

Fig. 12. Repartition of kernel acceleration requests types, depending on
employed datapath configuration.

Controller. This waiting time is depicted on Figure 13 for the
different DP configurations. As shown by this figure, there is
a sharp drop between the 1 DP case and the other datapath
configurations. In fact, the 1 DP configuration induces a large
amount of contention on the CGRA, i.e. 17.9x more waiting
time in average for all the considered benchmarks with the 1
DP configuration compared to the 2 DP one.

3) Kernels Energy Consumption: Figure 14 compares the
total energy consumed when executing the selected kernels in
each application, on the multi-core architecture only and on
the CGRA with different SIMD widths. The data is aggregated
across all invocations of a kernel in the indicated benchmark.

The figure highlights that execution on the CGRA is more
energy-efficient than in software by a large margin. Moreover,
by supporting SIMD in the CGRA mesh, further energy
savings can be achieved, especially for kernels which present
a high ratio of concurrent calls by multiple cores (Dbl Min
Srch, Dbl Max Srch, Min Max Srch and CS) (cf. Figure 12).
The average savings relative to these kernels for a CGRA with
a SIMD width of 2, averaged over all the applications where

Fig. 13. Average waiting time (in cycles) spent for each acceleration
request (called by the cores executing the different benchmarks), before being
configured and executed on the CGRA.

Fig. 14. Energy consumption of the different kernels. For each kernel, the
bars are normalized to the SW-only consumption, which is indicated on the
right side of the graph.

the kernels are used, range from 53% (Dbl Max Srch) to more
than 90.8% (Min Max Srch).

4) CGRA Area Footprint Exploration: Table II details the
breakdown of the area footprint of the different CGRA com-
ponents. An important part of the mesh footprint is used by
the Configuration RAM, which occupies more than half of the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 11

CGRA real estate in the case of 2 DP instance (which requires
roughly 0.5mm2). The Configuration RAM size could be
reduced by supporting less kernels per application (or smaller
ones), or by storing configurations in a compressed form [62].
The mesh itself is extremely compact, as only few operations
have to be supported by the ALUs and only a simple control
logic is required. While ALUs supporting the square root
operation are bigger than the ones who do not, such overhead
has a small overall impact, as this feature is present only in
one cell per column.

In fact, each DP inside an RC (ALUs + local register file +
multiplexers) are smaller than the configuration memory of the
RC itself. Since the configuration storage and the control logic
are shared among the different DPs, the overhead of doubling
the SIMD width from one to two is therefore only 33%.

B. System-Level Assessment

In this section, we investigate the energy benefits, area
overhead and run-time performance of HEAL-WEAR.

1) Energy Consumption per Application: Figure 15 ana-
lyzes the energy consumed by the multi-core platform with
and without the SIMD-CGRA, for the processing of the
targeted applications. The processing system including the
CGRA accelerator results in significant energy savings for
all the considered benchmarks, ranging from 9.2% to 37.2%.
The maximum reduction of energy consumption is observed
for the 8L-CS application, because its workload is mostly
concentrated in the accelerated CS kernel. Substantial energy
gains are also noted in the case of 6L-MF and 6L-MMD
applications, which similarly spend a large amount of their
processing time in the accelerated kernels. Even in the case
of the RP-CLASS application, where there are far fewer
acceleration calls (cf. Figure 12), the obtained energy savings
are still significant (9.2%). Furthermore, Figure 15 highlights
that using the SIMD-CGRA improves energy efficiency, as the
accelerator takes advantage of SIMD processing.

2) Platform Area Breakdown: This section investigates
the effects of using the proposed SIMD-CGRA on the area
footprint of the whole system. Figure 16 displays the area
breakdown of the different components of the envisaged
HEAL-WEAR platform. It showcases that the addition of the

TABLE II
CGRA AREA EXPLORATION (IN 65 NM UMC TECHNOLOGY LIBRARY)

Component Area
(µm2)

Configuration register (per RC) 6721.5
CGRA control 5227.9

Cell control (per RC) 881.7
Register file (per DP ) 1374.2
Multiplexers (per DP ) 822.9

ALU (per DP ) 3962.8
ALU sqrt (per DP ) 7859.1
Configuration RAM 278978.2
Total CGRA area (1 DP) 361591.2
Total CGRA area (2 DPs) 484900.7
Total CGRA area (3 DPs) 593348.6

Fig. 15. System energy consumption for processing the different benchmark
applications.

CGRA with a single DP results in the increase of the area
occupied by only 29.5%, with respect to a multi-core system
alone. Moreover, the area cost of extending the CGRA to
support SIMD kernels is marginal: less than 9% of the total
area for each additional DP. Thus, the area penalty deriving
from the adoption of complex multi-DP cells, which achieve a
better energy efficiency when the execution of SIMD kernels
dominate at run-time (as seen in Section VI-B1), is affordable.
For example, in the case of the 8L-CS benchmark, the system
energy consumption is 29.9% lower when a CGRA with 2
DPs per RC is used instead of a single-DP CGRA. In that
case, the system area penalty incurred due to the additional
DP is only 5.8%.

3) CGRA SIMD width: From a design perspective, the
choice of which SIMD width to support is a trade-off be-
tween complexity and flexibility. A higher SIMD degree can
potentially decrease energy consumption by harnessing more

Fig. 16. Area breakdown of HEAL-WEAR platforms, embedding a CGRA
with different SIMD widths.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 12

Fig. 17. Multi-core and CGRA utilization time in the considered platforms
(% of the total run-time).

parallelism from applications. On the other hand, the design
of more complex RCs require more silicon area, and a more
elaborate controller. Ultimately, the parallelism supported by
the accelerator should closely match the one present in the
kernels of application.

A configuration with a single DP per cell is clearly sub-
optimal. As discussed in Section VI-A1, in the case of the
example CS kernel, the adoption of a single-DP mesh even
results in a slowdown (instead of a speedup), due to the
presence of a high level of contention, which leads to signifi-
cant waiting times (reported in Section VI-A2). Ultimately, as
detailed in Section VI-A3, the energy efficiency of a single-
datapath CGRA trails that of an alternative supporting SIMD,
Figure 15 shows that the energy savings when using a CGRA
with 2 DPs per RC are very similar to the case when 3 DPs
are employed, while requiring a bigger area (Section VI-A4).
Therefore, a choice of 2 DPs per RC strikes a good trade-off
between performance, energy efficiency and silicon area for
the considered benchmarks.

We highlight the good performance of this configuration
by analyzing in Figure 17 the utilization of its computing
components. Results show that, when the system is interfaced
with a 2 DPs SIMD-CGRA, the active time of the cores is
decreased on average from 58.7% to 31.6%, compared to
the software-only version. This reduction is instrumental in
improving the overall power consumption of the platform, be-

cause of the superior energy efficiency of the CGRA module.
Moreover, for all the studied benchmarks, a SIMD-CGRA
with 3 DPs only provides marginal benefits with respect to
the 2 DPs configuration, justifying the choice of the SIMD-
CGRA employing 2 DPs per RC. Finally, Figure 17 also
shows that in the case of the computationally intensive 8L-CS
benchmark, the overall utilization of the multi-core system
and the CGRA is below 50% when employing a multi-DP
configuration, allowing a potential reduction of the operating
frequency from 2 MHz to 1 MHz.

VII. CONCLUSION

Energy efficiency is a major concern in the design of
digital systems across the computing landscape. It is espe-
cially important in the context of Internet of Things (IoT)
appliances, where the power budget is drastically limited. To
achieve the required ultra-low-power operating levels, a careful
optimization of the architectural components is mandatory.
For such optimization to be effective, it must be domain-
specific, i.e.: it has to take into account and exploit the
characteristics of target workloads. Herein, we addressed this
complex endeavour by proposing the HEAL-WEAR platform,
a heterogeneous architecture devoted to bio-signal processing
applications.

In this domain, the run-time execution profile of applica-
tions is often divided between control-dominated phases
and computationally-intensive ones, presenting with compact
loops (kernels). The illustrated HEAL-WEAR platform can
efficiently support both: the former on multiple ultra-low
power processing cores, the latter by employing a coarse-
grained reconfigurable array interfaced to the cores as a
shared acceleration resource. Moreover, bio-signal analysis
applications often process multiple input sources in parallel.
We leverage this characteristic as an energy-saving feature by
supporting SIMD modes in the processor as well as in CGRA.
The resource management of HEAL-WEAR is performed with
a low-overhead strategy, based on a dedicated Instruction Set
Extension, which is interpreted by a lightweight hardware
synchronizer to orchestrate the run-time execution of bio-
signal processing applications.

The above-mentioned features allow the HEAL-WEAR
platform to achieve tangible energy savings of up to 37.2%
when executing complex ECG processing applications, in
comparison to an equivalent multi-core solution that does not
feature hardware acceleration.

ACKNOWLEDGMENT

This work has been partially supported by the E4Bio (grant
no. 200021 159853) RTD project evaluated by the Swiss NSF,
as well as by the BodyPoweredSenSE (grant no. 20NA21
143069) RTD project evaluated by the Swiss NSF and funded
by Nano-Tera.ch with Swiss Confederation financing.

REFERENCES

[1] D. Evans, “The Internet of Things: How the Next Evolution of the
Internet Is Changing Everything,” http://www.cisco.com/c/dam/en us/
about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf, April 2011.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 13

[2] MEP Heart Group., “Cardiovascular diseases facts and figures,” http:
//www.mepheartgroup.eu/index.php/facts-a-figures, August 2016.

[3] World Health Organization., “Cardiovascular diseases,” http://www.who.
int/topics/cardiovascular diseases/en, August 2016.

[4] P. Bonato, “Wearable sensors and systems,” IEEE Engineering in
Medicine and Biology Magazine, vol. 29, no. 3, pp. 25–36, May 2010.

[5] R. Vecht et al., “ECG diagnosis in clinical practice.” London, UK:
Springer-Verlag, 2009.

[6] F. Zhang et al., “Design of ultra-low power biopotential amplifiers for
biosignal acquisition applications,” IEEE Transactions on Biomedical
Circuits and Systems (TBioCAS), vol. 6, no. 4, pp. 344–355, August
2012.

[7] R. Braojos et al., “Ultra-low power design of wearable cardiac monitor-
ing systems,” in 51st ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2014, pp. 1–6.

[8] F. Chen et al., “Energy-aware design of compressed sensing systems for
wireless sensors under performance and reliability constraints,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 3,
pp. 650–661, March 2013.

[9] H. Mamaghanian et al., “Compressed sensing for real-time energy-
efficient ECG compression on wireless body sensor nodes,” IEEE
Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2456–2466,
Sept 2011.

[10] D. Daly et al., “A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with
comparator redundancy,” IEEE Journal of Solid-State Circuits, vol. 44,
no. 11, pp. 3030–3038, Nov 2009.

[11] E. Nemati et al., “A wireless wearable ECG sensor for long-term
applications,” IEEE Communications Magazine, vol. 50, no. 1, pp. 36–
43, January 2012.

[12] Texas Instruments, S. Kamath and J. Lindh, “Measuring Bluetooth
Low Energy Power Consumption,” http://www.ti.com/lit/an/swra347a/
swra347a.pdf, 2016.

[13] R. Braojos et al., “Nano-engineered architectures for ultra-low power
wireless body sensor nodes,” in 2016 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Oct
2016, pp. 1–10.

[14] R. H. Dennard et al., “Design of ion-implanted MOSFET’s with very
small physical dimensions,” IEEE Journal of Solid-State Circuits (JSSC),
vol. 9, no. 5, pp. 256–268, October 1974.

[15] M. Ashouei et al., “A voltage-scalable biomedical signal processor run-
ning ECG using 13pJ/cycle at 1MHz and 0.4V,” in IEEE International
Solid-State Circuits Conference (ISSCC), February 2011, pp. 332–334.

[16] R. Braojos et al., “Hardware/software approach for code synchronization
in low-power multi-core sensor nodes,” in Design, Automation Test in
Europe Conference Exhibition (DATE). IEEE, March 2014, pp. 1–6.

[17] D. Bortolotti et al., “Rakeness-based compressed sensing on ultra-
low power multi-core biomedicai processors,” in Proceedings of the
2014 Conference on Design and Architectures for Signal and Image
Processing, Oct 2014, pp. 1–8.

[18] I. Al Khatib et al., “MPSoC ECG biochip: A multiprocessor system-on-
chip for real-time human heart monitoring and analysis,” in Proceedings
of the 3rd Conference on Computing Frontiers. New York, NY, USA:
ACM, 2006, pp. 21–28.

[19] V. Annese et al., “A digital processor architecture for combined
EEG/EMG falling risk prediction,” in 2016 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2016, pp. 714–719.

[20] O. Bai et al., “A wireless, smart EEG system for volitional control
of lower-limb prosthesis,” in TENCON 2015 - 2015 IEEE Region 10
Conference, Nov 2015, pp. 1–6.

[21] N. Sarkany et al., “The design of a mobile multi-channel bio-signal
measuring system for rehabilitation purposes,” in 2014 14th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications
(CNNA), July 2014, pp. 1–2.

[22] L. Ming-hau et al., “Design and implementation of the morphosys recon-
figurable computing processor,” Journal of Signal Processing Systems,
vol. 24, no. 2-3, pp. 147–164, March 2000.

[23] N. Ozaki et al., “Cool Mega-Arrays: Ultralow-power reconfigurable
accelerator chips,” IEEE Micro, vol. 31, no. 6, pp. 6–18, Nov 2011.

[24] I. Kuon et al., “Measuring the gap between FPGAs and ASICs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 26, no. 2, pp. 203–215, February 2007.

[25] Y. Hao et al., “Wireless body sensor networks for health-monitoring
applications,” Physiological measurement, vol. 29, no. 11, p. R27,
November 2008.

[26] A. Pantelopoulos et al., “A survey on wearable sensor-based systems for
health monitoring and prognosis,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C Applications and Reviews, vol. 40, no. 1, pp.
1–12, October 2010.

[27] R. Fensli et al., “A wearable ECG-recording system for continuous
arrhythmia monitoring in a wireless tele-home-care situation,” in 18th
IEEE Symposium on Computer-Based Medical Systems (CBMS), June
2005, pp. 407–412.

[28] N. Oliver et al., “HealthGear: a real-time wearable system for monitoring
and analyzing physiological signals,” in IEEE International Workshop
on Wearable and Implantable Body Sensor Networks (BSN), April 2006,
pp. 1–4.

[29] M. Sung et al., “Wearable feedback systems for rehabilitation,” Journal
of NeuroEngineering and Rehabilitation (JNER), vol. 2, no. 1, p. 1, June
2005.

[30] M. Seok et al., “The phoenix processor: A 30pW platform for sensor
applications,” in IEEE Symposium on VLSI Circuits (VLSIC), June 2008,
pp. 188–189.

[31] S. R. Sridhara et al., “Microwatt embedded processor platform for med-
ical system-on-chip applications,” IEEE Journal of Solid-State Circuits
(JSSC), vol. 46, no. 4, pp. 721–730, April 2011.

[32] Y. He et al., “Xetal-Pro: An ultra-low energy and high throughput SIMD
processor,” in 47th ACM/IEEE Design Automation Conference (DAC),
June 2010, pp. 543–548.

[33] A. Y. Dogan et al., “Power/performance exploration of single-core and
multi-core processor approaches for biomedical signal processing,” in
Proceedings of the 21st International Conference on Integrated Circuit
and System Design: Power and Timing Modeling, Optimization, and
Simulation. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 102–111.

[34] J. Constantin et al., “TamaRISC-CS: An ultra-low-power application-
specific processor for compressed sensing,” in IEEE/IFIP 20th Inter-
national Conference on VLSI and System-on-Chip (VLSI-SoC), October
2012, pp. 159–164.

[35] J. Kwong et al., “An energy-efficient biomedical signal processing
platform,” IEEE Journal of Solid-State Circuits (JSSC), vol. 46, no. 7,
pp. 1742–1753, July 2011.

[36] F. Conti et al., “Synthesis-friendly techniques for tightly-coupled integra-
tion of hardware accelerators into shared-memory multi-core clusters,”
in International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). IEEE, September 2013, pp. 1–10.

[37] P. Garcia et al., “Kernel sharing on reconfigurable multiprocessor
systems,” in International Conference on Electrical and Computer
Engineering (ICECE). IEEE, December 2008, pp. 225–232.

[38] F. Bouwens et al., “Architectural exploration of the ADRES coarse-
grained reconfigurable array,” in Reconfigurable Computing: Architec-
tures, Tools and Applications. Springer, March 2007, pp. 1–13.

[39] K. Patel et al., “Coarse-grained reconfigurable array based architecture
for low power real-time seizure detection,” Journal of Signal Processing
Systems, vol. 82, no. 1, pp. 55–68, 2016.

[40] B. Mei et al., “Exploiting loop-level parallelism on coarse-grained recon-
figurable architectures using modulo scheduling,” in Design, Automation
Test in Europe Conference Exhibition (DATE), March 2003, pp. 296–
301.

[41] T. Peyret et al., “An automated design approach to map applications
on CGRAs,” in Proceedings of the 24th Edition of the Great Lakes
Symposium on VLSI, May 2014, pp. 229–230.

[42] G. Ansaloni et al, “Slack-aware scheduling on coarse-grained recon-
figurable arrays,” in Design, Automation Test in Europe Conference
Exhibition (DATE). IEEE, March 2011, pp. 1–4.

[43] P. Theocharis et al., “A bimodal scheduler for coarse-grained reconfig-
urable arrays,” ACM Trans. Archit. Code Optim., vol. 13, no. 2, pp.
15:1–15:26, Jun. 2016.

[44] H. Park et al., “Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques. New
York, NY, USA: ACM, 2008, pp. 166–176.

[45] L. Chen et al., “Shared reconfigurable fabric for multi-core customiza-
tion,” in 48th ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2011, pp. 830–835.

[46] L. Duch et al., “A multi-core reconfigurable architecture for ultra-low
power bio-signal analysis,” in IEEE Biomedical Circuits and Systems
(BioCAS), October 2016, pp. 1–4.

[47] B. De Sutter et al., Handbook of Signal Processing Systems. Springer,
July 2010, ch. Coarse-Grained Reconfigurable Array Architectures.

[48] G. Ansaloni et al., “EGRA: A coarse-grained reconfigurable architectural
template,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 6, pp. 1062–1074, June 2011.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: SPECIAL ISSUE ON IOT 14

[49] B. R. Rau, “Iterative module scheduling: an algorithm for software
pipelining loops,” in Microarchitecture, 1994. MICRO-27. Proceedings
of the 27th Annual International Symposium on, November 1994, pp.
63–74.

[50] A. Y. Dogan et al., “Synchronizing code execution on ultra-low-power
embedded multi-channel signal analysis platforms,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), March 2013, pp.
396–399.

[51] “ASIP Designer,” https://www.synopsys.com/dw/ipdir.php?ds=
asip-designer, 2017.

[52] ARM, “Cortex-M0 Processor,” https://www.arm.com/products/
processors/cortex-m/cortex-m0.php, 2017.

[53] “PhysioBank,” http://www.physionet.org/physiobank/, August 2016.
[54] A. Y. Dogan et al., “Low-power processor architecture exploration for

online biomedical signal analysis,” IET Circuits, Devices Systems (IET-
CDS), vol. 6, no. 5, pp. 279–286, September 2012.

[55] Y. Sun et al., “ECG signal conditioning by morphological filtering,”
Computers in Biology and Medicine (CBM), vol. 32, no. 6, pp. 465–
479, November 2002.

[56] F. Rincon et al., “Development and evaluation of multilead wavelet-
based ECG delineation algorithms for embedded wireless sensor nodes,”
IEEE Transactions on Information Technology in Biomedicine (T-ITB),
vol. 15, no. 6, pp. 854–863, November 2011.

[57] R. Braojos et al., “A methodology for embedded classification of
heartbeats using random projections,” in Design, Automation Test in
Europe Conference Exhibition (DATE), March 2013, pp. 899–904.

[58] G. Zacharopoulos and L. Pozzi, “ClrFreqCFGPrinter: A tool for fre-
quency annotated control flow graph generation,” in European LLVM
Developers Meeting, March 2017.

[59] C. Lattner et al., “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in International Symposium on Code
Generation and Optimization (CGO), March 2004.

[60] J. Cong et al., “Application-specific instruction generation for config-
urable processor architectures,” in Proceedings of the 2004 ACM/SIGDA
12th International Symposium on Field Programmable Gate Arrays.
New York, NY, USA: ACM, 2004, pp. 183–189.

[61] L. Pozzi et. al, “Exact and approximate algorithms for the extension of
embedded processor instruction sets,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 7, pp.
1209–29, Jul. 2006.

[62] B. Egger et al., “A space- and energy-efficient code compres-
sion/decompression technique for coarse-grained reconfigurable archi-
tectures,” in 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO), Feb 2017, pp. 197–209.

Loris Duch received the M.Sc. degree in Engineer-
ing, Physics, Electronics and Materials, specialized
in digital integrated circuit design from the Grenoble
Institute of Technology (Grenoble INP), France, in
2014. He is currently working toward the Ph.D.
degree in Microsystems and Microelectronics at the
École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland. His main research interests include:
hardware and software co-design exploration, multi-
core architectures, energy vs. reliability aware circuit
optimization and ultra-low power integrated circuit

design, in the field of bio-medical signal processing.

Soumya Basu is a Ph.D. student at the Embed-
ded Systems Laboratory at the École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. He re-
ceived his Masters degree in 2013 from the Po-
litecnico di Torino, Italy, specializing in embedded
systems. His research interests lie in ultra-low power
hardware-software co-design methods, mainly focus-
ing on reconfigurable architectures for bio-medical
signal processing. His parallel research interest is on
the application of energy-aware inexact computation
methods in the afore-mentioned domain.

Rubén Braojos is currently a post-doctoral re-
searcher at the Embedded Systems Laboratory (ESL)
at the École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland, where he obtained his Ph.D.
degree in electrical engineering in 2016. He received
his B.Sc and M.Sc. degrees in computer science and
engineering from Complutense University of Madrid
(UCM), Spain, in 2008 and 2010. His research in-
terests include embedded bio-signal processing, low-
power architectures for embedded systems, hard-
ware/software co-design methodologies for energy

efficiency and Wireless Body Sensor Nodes applied to the field of healthcare
monitoring.

Giovanni Ansaloni is currently a post-doctoral re-
searcher at the Faculty of Informatics of Universitá
della Svizzera Italiana (USI-Lugano, Switzerland).
From 2011 to 2015, he was a researcher at EPFL
(Lausanne, Switzerland). He received the M.Sc. de-
gree in Electronic Engineering from University of
Ferrara (Italy) in 2003, the MAS degree from the
ALaRI institute (Switzerland) in 2005 and the Ph.D.
Degree from University of Lugano (Switzerland) in
2011. His research efforts focus on smart Wireless
Body Sensor Nodes systems and applications, in-

cluding software optimizations of processing algorithms for bio-signal analysis
and architectural explorations of ultra-low-power WBSN platforms.

Laura Pozzi received a Ph.D. degree in computer
engineering from Politecnico di Milano, Italy, in
2000, and she is currently a Full Professor at the
Faculty of Informatics, University of Lugano (USI),
Switzerland. Previously she was a post-doctoral re-
searcher at EPFL, a research engineer with STMi-
croelectronics in California, and an Industrial Visitor
at UC Berkeley. Prof. Pozzi has served as Associate
Editor of the IEEE Transactions on Computer-Aided
Design (TCAD) and IEEE Design and Test, and
is in the Technical Program Committee of several

international conferences in the areas of Compilers and Architectures for
Embedded Systems. Her research interests include automating embedded
processor customisation, high performance compiler techniques, innovative
reconfigurable fabrics, and, more recently, computational biology.

David Atienza (M’05-SM’13-F’16) is associate pro-
fessor of electrical and computer engineering, and
director of the Embedded Systems Laboratory (ESL)
at the Swiss Federal Institute of Technology Lau-
sanne (EPFL), Switzerland. He received his Ph.D.
in computer science and engineering from UCM,
Spain, and IMEC, Belgium, in 2005. His research
interests include system-level design and thermal-
aware optimization methodologies for 2D/3D high-
performance multi-processor system-on-chip (MP-
SoC) and ultra-low power system architectures for

wireless body sensor nodes. He is a co-author of more than 250 papers in
peer-reviewed international journals and conferences, several book chapters,
and seven patents. Dr. Atienza received an ERC Consolidator Grant in 2016,
the IEEE CEDA Early Career Award in 2013, the ACM SIGDA Outstanding
New Faculty Award in 2012, and a Faculty Award from Sun Labs at Oracle
in 2011. He served as DATE 2015 Program Chair and DATE 2017 General
Chair. He is a Senior Member of ACM and an IEEE Fellow.


