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Abstract: Let Fq be a finite field of q elements, where q is a large odd prime power and

Q = a1xc11 + ⋅ ⋅ ⋅ + adxcdd ∈ Fq[x1, . . . , xd],

where 2 ≤ ci ≤ N, gcd(ci , q) = 1, and ai ∈ Fq for all 1 ≤ i ≤ d. A Q-sphere is a set of the form

{x ∈ Fdq | Q(x − b) = r},

where b ∈ Fdq , r ∈ Fq. We prove bounds on the number of incidences between a point set P and a Q-sphere
set S, denoted by I(P, S), as the following:

!!!!!!!!!
I(P, S) − |P||S|

q

!!!!!!!!!
≤ qd/2√|P||S|.

We also give a version of this estimate over finite cyclic rings ℤ/qℤ, where q is an odd integer. As a conse-
quence of the above bounds, we give an estimate for the pinned distance problem and a bound on the num-
ber of incidences between a random point set and a random Q-sphere set in Fdq . We also study the finite field
analogues of some combinatorial geometry problems, namely, the number of generalized isosceles triangles,
and the existence of a large subset without repeated generalized distances.
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1 Introduction
Let Fq be a finite field of q elements, where q is a large odd prime power. Let P be a set of points, L a set of
lines over Fdq , and I(P, L) the number of incidences between P and L. Bourgain, Katz, and Tao [4] proved that
for any 0 < α < 2 and |P|, |L| ≤ N = qα, I(P, L) ≲ N3/2−ϵ, where ϵ = ϵ(α). By employing the Erdős–Rényi graph
(see Lemma 2.1 for the definition), the third author [17] improved this bound in the case 1 ≤ α ≤ 2, and gave
the following estimate.

Theorem 1.1. Let P be a set of points, and let L be a set of lines in F2q. Then we have

I(P,L) ≤ |P||L|
q

+ q1/2√|P||L|.
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The above result was also proved for points and hyperplanes, and for points and k-subspaces (see [3, 17] for
more details).

Let Q = a1xc11 + ⋅ ⋅ ⋅ + adxcdd ∈ Fq[x1, . . . , xd], where 2 ≤ ci ≤ N, for some constant N > 0, gcd(ci , q) = 1,
and ai ∈ Fq for all 1 ≤ i ≤ d. We define the generalized sphere, or Q-sphere, centered at b = (b1, . . . , bd) of
radius r ∈ Fq to be the set {x ∈ Fdq | Q(x − b) = r}. Themain purpose of this paper is to give a similar bound on
the number of incidences between points and generalized spheres by employing the spectral graph method.
With the same method, we also consider some related problems in Sections 4 and 5. Our main result is the
following.

Theorem 1.2. LetP be a set of points, and let S be a set of Q-spheres with arbitrary radii inFdq . Then the number
of incidences between points and spheres satisfies

!!!!!!!!!
I(P, S) − |P||S|

q

!!!!!!!!!
≤ qd/2√|P||S|. (1.1)

Cilleruelo, Iosevich, Lund, Roche-Newton and Rudnev [8] have independently proved equation (1.1) when
Q(x) = ∑d

i=1 x2i . In this case, we also obtain a similar estimate over finite rings (see [16] for the Szemerédi–
Trotter theorem over finite rings).

Theorem 1.3. LetP be a set of points, and let S be a set of spheres with arbitrary radii inℤdq , q is an odd integer.
Then the number of incidences between points and spheres satisfies

!!!!!!!!!
I(P, S) − |P||S|

q

!!!!!!!!!
≤ √2τ(q) qd

γ(q)d/2
√|P||S|,

where γ(q) is the smallest prime divisor of q, and τ(q) the number of divisors of q.

Generalized pinned distances. Let P(x) ∈ Fq[x1, . . . , xd] be a polynomial and E ⊂ Fdq . Given x ∈ Fdq , we de-
note the pinned P-distance set determined by E and x by ∆P(E, x) = {P(y − x) ∈ Fq | y ∈ E}. We are interested
in finding the elements x ∈ Fdq and the size of E ⊂ Fdq such that ∆P(E, x) ≳ q. In the case P(x) = x21 + ⋅ ⋅ ⋅ + x2d,
Chapman, Erdoğan,Hart, Iosevich andKoh [5] proved that for any subsetE ⊂ Fdq such that |E| ≥ q(d+1)/2, there
exists a subset E� ⊂ E such that |E�| ∼ |E|, and for every y ∈ E� we have |∆P(E, y)| > q

2 . Cilleruelo, Iosevich,
Lund, Roche-Newton and Rudnev [8] reproved the same result using their bound on number of incidences
between points and spheres.

In this general setting, the main difficulty in this problem is that we do not know the explicit form of the
polynomial P(x). Koh and Shen [10] found some conditions on P(x) to obtain the desired bound. We remark
that if P is a diagonal polynomial of the form∑d

j=1 ajxsj , the conditions of Koh and Shen are satisfied. However,
if we consider the polynomial Q(x) = ∑d

j=1 ajxcjj , where the exponents cj are distinct, then we have not found
any reference which shows that those conditions are satisfied.

As a consequence of Theorem 1.2, the following result can be derived in a similar way to how [8] derived
their result from their bound on the number of incidences between points and spheres. It generalizes the
pinned distance results of [5].

Theorem 1.4. Let E ⊂ Fdq with |E| > √(1 − c2)/c4 ⋅ q(d+1)/2 for some 0 < c < 1. Then the number of points p ∈ E

satisfying |∆Q(E, p)| > (1 − c)q is at least (1 − c)|E|.

Incidences between a random point set and a random Q-sphere set. It follows from Theorem 1.2 that if P
is a set of points and S is a set of Q-spheres such that |P||S| > qd+2, then there exists at least one incidence
pair (p, S) ∈ P × S with p ∈ s. We improve the bound qd+2 in the sense that for any α ∈ (0, 1) it suffices to
take t ≥ Cαq randomly chosen points and spheres over Fdq to guarantee that the probability of no incidences
is exponentially small, namely αt, when q is large enough. We remark that the ideas in this part are similar
to the case between points and lines in [20]. More precisely, our result is the following theorem.

Theorem 1.5. For any α > 0, there exist an integer q0 = q0(α) and a number Cα > 0with the following property:
When a point set P and a Q-sphere set S, where |P| = |S| = t ≥ Cαq are chosen randomly in Fdq , the probability
of {(p, s) ∈ P × S | p ∈ s} = 0 is at most αt, provided that q ≥ q0.
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Generalized isosceles triangles. Given a set E of n points in ℝ2, let h(E) be the number of isosceles trian-
gles determined by E. Define h(n) = min|E|=n h(E). Pach and Tardos [13] proved that h(n) = O(n2.136). In the
present paper, we consider the finite field version of this problem. Let us give some notation: A Q-isosceles
triangle at a vertex x is a triple of distinct elements (x, y, z) ∈ Fdq × Fdq × Fdq such that Q(x − y) = Q(x − z). We
will show that for any subsetE inFdq such that its cardinality is large enough, the number of isosceles triangles
determined by E is (1 + o(1))|E|3/q. This result is a generalization of previous results in [5, 18, 21].

Theorem 1.6. Given a set of n points E in Fdq , d ≥ 2. If |E| ≫ q
2(d+1)

3 , then the number of isosceles triangles
determined by E is (1 + o(1))|E|3/q.

Here and throughout, X ≳ Y means that X ≥ CY for some constant C and X ≫ Y means that Y = o(X), where
X, Y are viewed as functions of the parameter q.

Distinct distance subset. Given a set E of n points inℝ2, let g(E) be the maximal cardinality of a subset U in
E such that no distance determined by U occurs twice. Define g(n) = min|E|=n g(E). Charalambides [6] proved
that n1/3/(log n) ≲ g(n) ≲ n1/2/(log n)1/4, where the upper bound is obtained from the Erdős distinct distance
problem (see [9, 11] formore details, earlier results, and results in higher dimensions). In this paper, we study
the finite field analogue of this problem.

Given a set of n points E ⊂ Fdq , a subset U ⊂ E is called a distinct Q-distance subset if there are no four
distinct points x, y, z, t ∈ U such that Q(x − y) = Q(z − t). Using the samemethod that Thiele used inℝ2 (see
[1, p. 191] for more details), we show that for any large enough set E in Fdq , there exists a distinct Q-distance
subset of cardinality at least Cq1/3, for some constant C. More precisely, we have the following estimate:

Theorem 1.7. Let E be a subset in Fdq , d ≥ 2, satisfying |E| ≫ q2(d+1)/3. If UQ ⊂ E is a maximal distinct
Q-distance subset of E, then q1/3 ≲ |UQ| ≲ q1/2.

About the work of Cilleruelo, Iosevich, Lund, Roche-Newton and Rudnev. After we finished a draft of this
paper,we learned that Cilleruelo, Iosevich, Lund, Roche-Newton andRudnev [8] had independently obtained
the same bound for the number of incidences between points and spheres in the case Q(x) = ∑d

i=1 x2i , using
the elementary method introduced in [7].

2 Spectra of graphs and digraphs

2.1 Pseudo-random graphs

Let us recall some notions about (n, d, λ)-graphs from Alon and Spencer in [2]. Given an undirected graph G,
let λ1(G) ≥ λ2(G) ≥ ⋅ ⋅ ⋅ ≥ λn(G) be the eigenvalues of its adjacency matrix. The quantity

λ(G) = max{λ2(G), −λn(G)}

is called the second eigenvalue of G. A graph G = (V, E) is called an (n, d, λ)-graph if it is d-regular, has n
vertices, and the second eigenvalue of G is at most λ. It is well known (see [2, Chapter 9] for more details)
that if λ is much smaller than the degree d, then G has certain random-like properties. For two (not nec-
essarily disjoint) subsets of vertices U,W ⊂ V, let e(U,W) be the number of ordered pairs (u, w) such that
u ∈ U, w ∈ W, and (u, w) is an edge of G. We first recall the following well-known lemma (see, for example,
[2, Corollary 9.2.5]).

Lemma 2.1. Let G = (V, E) be an (n, d, λ)-graph. For any two sets B, C ⊂ V, we have
!!!!!!!!!
e(B, C) − d|B||C|

n

!!!!!!!!!
≤ λ√|B||C|.

Let PG(q, d) denote the projective space of dimension d − 1 over the finite field Fq. Let ER(Fdq) denote the
graph with vertex set PG(q, d), and two vertices x, y are connected by an edge if x ⋅ y = 0. In the case d = 2,
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this graph is called Erdős–Rényi graph. The third author used the spectrum of ER(Fdq) and Lemma 2.1 to
prove Theorem 1.1 (see [17] for more details).

In order to prove Theorem 1.3, we use the sum-product graph defined as the following. The vertex
set of the sum-product graph SP(ℤd+1q ) is the set V(SP(ℤd+1q )) = ℤq × ℤdq . Two vertices U = (a, b) and
V = (c, d) ∈ V(SP(ℤd+1q )) are connected by an edge, (U, V) ∈ E(SP(ℤd+1q )), if and only if a + c = b ⋅ d. Our
construction is similar to that of Solymosi in [14]. We have the following lemma about the spectrum of the
sum-product graph SP(ℤd+1q ).

Lemma 2.2 ([22, Lemma 4.1]). For any d ≥ 1, the sum-product graph SP(ℤd+1q ) is a

(qd+1, qd ,√2τ(q) qd

γ(q)d/2
)-graph.

However, it seems difficult to use the spectrum of an undirected graph to analyze the number of incidences
between points and Q-spheres, where Q(x) ∈ Fq[x1, . . . , xd] is an arbitrary diagonal polynomial. In the next
subsection, we will introduce the Cayley graph and some notions from Vu [23] to deal with this problem.

2.2 Pseudo-random digraphs

Let G be a directed graph (digraph) on n verticeswhere the in-degree and out-degree of each vertex are both d.
The adjacencymatrix AG is defined as follows: aij = 1 if there is a directed edge from i to j, and zero otherwise.
Let λ1(G), . . . , λn(G) be the eigenvalues of AG. These numbers are complex numbers, so we cannot order
them, but we have |λi| ≤ d for any 1 ≤ i ≤ n. Define λ1(G) = d, λ(G) := max|λi(G)| ̸=d |λi(G)|.

A digraph G is called an (n, d, λ)-digraph if it has n vertices, the in-degree and out-degree of each vertex
is d, and λ(G) ≤ λ.

Let G be an (n, d, λ)-digraph. For any two (not necessarily disjoint) subsets U,W ⊂ V, let e(U,W) be the
number of orderedpairs (u, w) ∈ U ×W such thatÚÚ→uw is an edge ofG. Vu [23, Lemma3.1] developed adirected
version of Lemma 2.1.

Lemma 2.3. Let G = (V, E) be an (n, d, λ)-digraph. For any two sets B, C ⊂ V, we have
!!!!!!!!!
e(B, C) − d|B||C|

n

!!!!!!!!!
≤ λ√|B||C|.

Let H be a finite abelian group, and let S be a subset of H. The Cayley graph is the digraph CS(H) = (H, E),
where the vertex set is H, and there is a directed edge from vertex x to vertex y if and only if y − x ∈ S. It is
clear that every vertex of CS(H) has out-degree |S|. We define the graph CQ(Fd+1q ) to be the Cayley graph with
H = Fq × Fdq and S = {(x0, x) ∈ Fq × Fdq | x0 + Q(x) = 0}, i.e.

E(CQ(Fd+1q )) = {((x0, x), (y0, y)) ∈ H × H | x0 − y0 + Q(x − y) = 0}.

We have the following result on the spectrum of CQ(Fd+1q ):

Lemma 2.4 (see [19, Lemma 3.2]). For any odd prime power q, d ≥ 1, CQ(Fd+1q ) is a (qd+1, qd , qd/2)-digraph.

As a corollary, we obtain the following result for the graph we use in the proof of Theorem 1.6:

Lemma 2.5. For any odd prime power q, d ≥ 1, let Q�(x1, . . . , x2d) be a polynomial in Fq[x1, . . . , x2d] defined
by Q� = Q(x1, . . . , xd) − Q(xd+1, . . . , x2d). Then CQ� (F2d+1q ) is a (q2d+1, q2d , qd)-digraph.

3 Proofs of Theorem 1.2 and Theorem 1.3
Proof of Theorem 1.2. We use the Cayley graph CQ(Fd+1q ) to prove Theorem 1.2. Let P = {(xi1, . . . , xid)}i be
a set of n points in Fdq , and let S = {(ri , (yi1, . . . , yid))}i be a set of pairs of radii and centers representing
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Q-spheres in S. Let U = {(0, xi1, . . . , xid)}i ⊂ Fd+1q and W = {(ri , yi1, . . . , yid)}i ⊂ F
d+1
q . Then the number of

incidences between points and Q-spheres is the number of edges between U andW in CQ(Fd+1q ). Using Lem-
mas 2.3 and 2.4, Theorem 1.2 follows.

Proof of Theorem 1.3. We use the sum-product graph SP(ℤd+1q ) to prove Theorem 1.3. We identify each
point (b1, . . . , bd) in P with a vertex (−b21 − ⋅ ⋅ ⋅ − b2d , b1, . . . , bd) ∈ ℤ

d+1
q of SP(ℤd+1q ), and each sphere

(x1 − a1)2 + ⋅ ⋅ ⋅ + (xd − ad)2 = r in S with a vertex (r − a21 − ⋅ ⋅ ⋅ − a2d , −2a1, . . . , −2ad) ∈ ℤ
d+1
q of SP(ℤd+1q ).

Let U ⊂ ℤd+1q be the set of points corresponding to P, and W ⊂ ℤd+1q the set of points corresponding to S.
Then the number of incidences between points and spheres is the number of edges between U andW in the
sum-product graph SP(ℤd+1q ). By Lemma 2.1 and Lemma 2.2, Theorem 1.3 follows.

Remark. The authors have not found any reference for a version ofWeil’s theorem over finite ringsℤdm, which
is the crucial component of the proof of Lemma 2.4. Therefore, it seems hard to prove Theorem 1.2 for a more
general polynomial Q(x) over finite rings using directed graphs. We note that Lemmas 2.4 and 2.5 also hold
for the general case Q(x1, . . . , xd) = ∑d

i=1 fi(xi), where deg(fi) ≥ 2, gcd(deg(fi), q) = 1 for all i. Therefore, all
of the results in this paper over finite fields also hold for this case.

4 Generalized pinned distance problem
In this section, we give a proof of Theorem 1.4. Our proof is similar to the proof of [8, Corollary 1, Corollary 2].
First we prove that

1
|E|

∑
p∈E

|∆Q(E, p)| > (1 − c2)q.

We identify each point p = (b1, . . . , bd) ∈ E with a point (0, b1, . . . , bd) ∈ Fd+1q , and each pair

(p = (b1, . . . , bd), t),

where t ∈ ∆Q(E, p) with a point (t, b1, . . . , bd) ∈ Fd+1q . Let U ⊂ Fd+1q be the set of points corresponding
to E, and let W ⊂ Fd+1q be the set of points corresponding to point-distance pairs. Then we have |U| = |E|,
and |W| = ∑p∈E |∆Q(E, p)|. Moreover, one can easily see that U,W are vertex subsets of the Cayley digraph
CQ(Fd+1q ). The number of edges between U andW is |E|2, since each point in E contributes |E| edges between
U andW. It follows from Lemmas 2.3 and 2.4 that

|E|2 ≤ e(U,W) ≤
|U||W|
q

+ qd/2√|U||W|

=
|E| ∑p∈E |∆Q(E, p)|

q
+ qd/2√|E| ∑

p∈E
|∆Q(E, p)|. (4.1)

If 1
|E| ∑p∈E |∆Q(E, p)| ≤ (1 − c2)q, it follows from (4.1) that

|E|2 ≤ |E|2(1 − c2) + q(d+1)/2|E|√(1 − c2),

|E| ≤ √ (1 − c2)
c4

q(d+1)/2.

This would be a contradiction. Therefore,

∑
p∈E

|∆Q(E, p)| > (1 − c2)q|E|. (4.2)

Let us define E� := {p ∈ E : |∆Q(E, p)| > (1 − c)q}. Suppose that |E�| < (1 − c)|E|, hence

∑
p∈E\E� |∆Q(E, p)| ≤ (|E| − |E�|)(1 − c)q, (4.3)
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and
∑
p∈E� |∆Q(E, p)| ≤ q|E�|. (4.4)

Putting inequalities (4.3) and (4.4) together, we obtain

∑
p∈E

|∆Q(E, p)| ≤ (1 − c)q|E| + cq|E�| < (1 − c)q|E| + cq(1 − c)|E| = (1 − c2)q|E|.

The theorem follows because this contradicts inequality (4.2).

5 Related problems

5.1 Incidences between random points and Q-spheres

To prove Theorem 1.5, we need the following lemma (see [12, Lemma 8], and [20, Lemma 2.3] for more
details).

Lemma 5.1. Let {Gn = G(Un , Vn)}∞n=1 be a sequence of bipartite graphs with |Vn| = |Un| → ∞ as n → ∞, and
let d̄(Gn) be the average degree of Gn. Assume that for any ϵ > 0, there exists an integer v(ϵ) and a number
c(ϵ) > 0 such that

e(A, B) ≥ c(ϵ)|A||B| d̄(Gn)
|Vn|

for all |Vn| = |Un| ≥ v(ϵ) and all A ⊂ Vn , B ⊂ Un satisfying |A||B| ≥ ϵ|Vn|2. Then for any α > 0, there exists an
integer v(α) and a number C(α) with the following property: if one chooses a random subset S of Vn of cardi-
nality t and a random subset T of Un of the same cardinality t, then the probability of G(S, T) being empty is at
most αt provided that t ≥ C(α)|Vn|/d̄(Gn) and |Vn| ≥ v(α).

We notice that the Lemma 5.1 also holds when {Gn}n is a sequence of digraphs.

Proof of Theorem 1.5. Let Bq,d be a bipartite digraph with vertex set V(CQ(Fd+1q )) × V(CQ(Fd+1q )), where
CQ(Fd+1q ) is the Cayley graph defined as in Lemma 2.4 and the edge set

{((x0, x), (y0, y)) ∈ Fd+1q × Fd+1q | (x0 − y0) + Q(x − y) = 0}.

With the same identification of the point set and the Q-sphere set as in proof of Theorem 1.2, we obtain two
corresponding sets U andW, where |U| = |P|, |W| = |S|. Thus, the number of incidences between points and
spheres is the number of edges between U andW. By Lemmas 2.3 and 2.4, we obtain

!!!!!!!!!
e(U,W) −

|U||W|
q

!!!!!!!!!
≤ qd/2√|U||W|. (5.1)

For any ϵ > 0 such that |U||W| ≥ ϵq2d+2 and qd ≥ 4
ϵ , we have from inequality (5.1) that

e(U,W) >
qd

2qd+1
|U||W| =

d̄(Bq,d)
|V(Bq,d)|

|U||W|.

Let c(ϵ) = 1, v(ϵ) ≥ (4ϵ )
(d+1)/d. Then the theorem follows from Lemma 5.1.

5.2 Generalized isosceles triangles

We give a proof of Theorem 1.6. Let

U = {(1, x, x) ∈ {1} × E × E}, W = {(1, y, z) ∈ {1} × E × E}.



N. D. Phuong, T. Pham and L. A. Vinh, Incidences between points and generalized spheres | 455

One can easily see that |U| = |E|, |W| = |E|2. Let

T1 = {(1, x, x, 1, y, z) ∈ {1} × E × E × {1} × E × E | Q(x − y) = Q(x − z)}.

Then the cardinality of T1 is the number of edges between the sets U andW in the graph CQ� (F2d+1q ) (defined
as in Lemma 2.5). It follows from Lemmas 2.3 and 2.5 that

!!!!!!!!!
|T1| −

|U||W|
q

!!!!!!!!!
≤ qd√|U||W|.

Thus, if |E| ≫ q2(d+1)/3, then we have |T1| = (1 + o(1))|E|3/q. We notice that T1 also contains the tuples
(1, x, x, 1, x, y) with Q(x − y) = 0 which correspond to the edges between the vertices (1, x, x) ∈ U and
(1, x, y) ∈ W. Let us denote the set of such tuples by Terr, then one can easily see that 1

2 |Terr| is the number
of pairs (x, y) ∈ E × E such that Q(x − y) = 0, since each pair (x, y) with Q(x − y) = 0 contributes two edges
((1, x, x), (1, x, y)) and ((1, x, x), (1, y, x)). It follows from Lemmas 2.3 and 2.4 that

!!!!!!!!!
|Terr| −

|E|2

q

!!!!!!!!!
≤ qd/2√|E|2.

Thus, if |E| ≫ q2(d+1)/3, d ≥ 2, then |Terr| = |E|2/q = o(1)|E|3/q. Therefore, thenumber ofQ-isosceles triangles
determined by E is (1 + o(1))|E|3/q.

5.3 Distinct distance subset

In order to prove Theorem 1.7, we need the following theorem on the cardinality of a maximal independent
set of a hypergraph due to Spencer [15].

Theorem 5.2. Let H be a k-uniform hypergraph with n vertices and m ≥ n/k edges, and let α(H) denote the
independence number of H. Then

α(H) ≥ (1 −
1
k)⌊(

1
k
nk

m )

1
k−1

⌋.

Proof of Theorem 1.7. Let

T2 = {(1, p1, q1, 1, p2, q2) ∈ {1} × E × E × {1} × E × E | Q(p1 − q1) = Q(p2 − q2)}.

With the same arguments in the proof of Theorem 1.6, we obtain |T2| ≤ |E|4
q + qd|E|2. Thus, if |E| ≫ q(d+1)/2,

then
|T2| = (1 + o(1)) |E|

4

q
.

A 4-tuple of distinct elements in E4 is called regular if all six generalized distances determined are distinct.
Otherwise, it is called singular. Let H be the 4-uniform hypergraph on the vertex set V(H) = E, whose edges
are the singular 4-tuples of E.

It follows from Theorem 1.6 that the number of 4-tuples containing a triple induced an isosceles tri-
angle is at most ((1 + o(1))|E|3/q) ⋅ |E| = (1 + o(1))|E|4/q when |E| ≫ q2(d+1)/3. Thus the number of edges
of H containing a triple induced an isosceles triangle is at most (1 + o(1))|E|4/q. On the other hand, since
T2 = (1 + o(1))|E|4/q when |E| ≫ q(d+1)/2, the number of 4-tuples (p1, q1, p2, q2) in E4 satisfying

Q(p1 − q1) = Q(p2 − q2)

equals (1 + o(1))|E|4/q when |E| ≫ q(d+1)/2. Thus, if |E| ≫ q2(d+1)/3 with d ≥ 2, then

|E(H)| ≤ 2|E|4
q

.

It follows from Theorem 5.2 that

α(H) ≥ C{{
{

|E|4

|E(H)|
}}
}

1/3
= Cq1/3.
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Since there is no repeated generalized distance determined by the independent set of H, we have

|UQ| ≥ α(H) ≥ Cq1/3.

Moreover, it is easy to see that there is at least one repeated generalized distance determined by any set
of√2q1/2 + 1 elements since there are only q = |Fq| distances over Fdq . Thus, the theorem follows.
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