000227674 001__ 227674
000227674 005__ 20181203024643.0
000227674 0247_ $$2doi$$a10.1007/s00208-016-1432-z
000227674 022__ $$a0025-5831
000227674 02470 $$2ISI$$a000398175700011
000227674 037__ $$aARTICLE
000227674 245__ $$aOn irreducible subgroups of simple algebraic groups
000227674 260__ $$aHeidelberg$$bSpringer Heidelberg$$c2017
000227674 269__ $$a2017
000227674 300__ $$a51
000227674 336__ $$aJournal Articles
000227674 520__ $$aLet G be a simple algebraic group over an algebraically closed field K of characteristic p >= 0, let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG-module, which is p-restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples (G, H, V) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples (G, H, V) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG-module.
000227674 700__ $$aBurness, Timothy C.$$uUniv Bristol, Sch Math, Bristol BS8 1TW, Avon, England
000227674 700__ $$0243569$$aMarion, Claude$$g196415
000227674 700__ $$0243571$$aTesterman, Donna M.$$g133751
000227674 773__ $$j367$$k3-4$$q1259-1309$$tMathematische Annalen
000227674 909C0 $$0252563$$pGR-TES$$xU12576
000227674 909CO $$ooai:infoscience.tind.io:227674$$pSB$$particle
000227674 917Z8 $$x133751
000227674 937__ $$aEPFL-ARTICLE-227674
000227674 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000227674 980__ $$aARTICLE