Files

Abstract

This study reports on a Cu-sputtered film on polystyrene (PS) leading to the discoloration/degradation of methylene blue (MB) under low intensity solar simulated irradiation. Direct current magnetron sputtering (DCMS) was used to graft uniform, adhesive Cu/Cu oxides on the polystyrene substrate. The kinetics of Cu-PS mediated MB-discoloration adding H2O2 was observed to take place within 90-120 min. The surface potential and pH variation was followed on the Cu-PS surface during MB-discoloration. Insight is provided for the observed changes relating them to the dye discoloration mechanism. The concentration, mean-free path and lifetime of the oxidative radical leading to MB-degradation were estimated. The Cu/Cu-oxides on the PS were characterized by X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) evidence for redox catalysis involving Cu(I)/Cu(II)-species was detected during MB-discoloration. Also by XPS the surface atomic percentage concentration was determined for the topmost Cu-PS layers. The Cu-PS coatings were also investigated for their optical and crystallographic properties. (C) 2016 Elsevier B.V. All rights reserved.

Details

Actions

Preview