Dislocation cross-slip in fcc solid solution alloys

Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Published in:
Acta Materialia, 128, 135-148
Year:
2017
Publisher:
Oxford, Elsevier
ISSN:
1359-6454
Keywords:
Laboratories:




 Record created 2017-05-01, last modified 2018-03-18


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)