
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

3D Spectral Nonrigid Registration of
Facial Expression Scans

Gabriel L. Cuendet, Student member, IEEE, Christophe Ecabert, Marina Zimmermann, Student
member, IEEE, Hazım K. Ekenel, and Jean-Philippe Thiran, Senior Member, IEEE

Abstract—In this paper, we introduce a new template-based spectral nonrigid registration method in which the target is represented
using multilevel partition of unity (MPU) implicit surfaces and the template is embedded in a discrete Laplace-Beltrami based spectral
representation using the manifold harmonics transform (MHT). The implicit surface parametrization of the target allows us to avoid
computing correspondences during the registration as in classical nonrigid iterative closest point (ICP) techniques. It also allows us to
denoise the 3D scans and fill the holes by interpolating the noisy 3D data and to incorporate different types of 3D surfaces into our
model, independently of their original parametrization. We take advantage of spectral geometry processing methods to compute a
spectral embedding of the template and use it as a parametric surface deformation model. We optimize the nonrigid deformation
directly in the spectral domain, thus effectively reducing the size of the parameter space as compared with the classical per vertex
affine transformation deformation model. In addition, we introduce a new 3D facial expressions database, EPFL3DFace, on which we
apply the proposed method to nonrigidly register 3D face scans that contain different expressions. This database consists of 3D scans
of 120 subjects posing 35 different facial expressions. These include various standard prototypical facial expressions as well as
individual action units, visemes, and the facial movement of biting one’s own upper lip, which are suitable for a large variety of
applications.

Index Terms—3D face analysis, Nonrigid registration, 3D facial expressions database, Mesh deformation, Computational geometry,
Spectral mesh processing
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1 INTRODUCTION

FACIAL image analysis and synthesis have attracted a
significant amount of attention in the last two decades

from the computer vision and computer graphics research
communities. These two communities have both tackled
different but related problems: face recognition [1] [2] [3],
head pose estimation [4], gaze tracking [5] [6], visual speech
recognition, [7] facial expression recognition [8] [9] [10] [11],
synthesis of 3D faces [12], facial animation [13] [14] [15], and
face or expression transfer [16] [17].

The approaches that address these problems can benefit
from the availability of low-cost 3D scanners such as the Mi-
crosoft Kinect R© and take advantage of 3D facial images and
3D face models to avoid limitations inherent to 2D images
such as self occlusions or sensitivity to head pose variations.
Building a complete 3D face model from the ground up
is still very demanding as the amount of data required to
obtain a model which takes into account a large amount
of variations in terms of identity and facial expressions is
high and not easily available from public databases. The
variance in appearance is influenced by factors such as age,
gender and ethnicity, and when also taking facial expression
variations into account, sampling the space of combinations
of all these variations simply becomes intractable.

A certain number of databases consisting of 3D repre-
sentations of the face have been proposed. An important
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difference between the databases is whether or not the 3D
shapes share a common parametrization. Tasks like syn-
thesis of 3D faces or facial animation require a generative
model of shapes. These generative models must be learned
from a database of consistently parametrized, i.e. registered,
instances. Thus, the main challenge in constructing a gener-
ative model is to re-parameterize the example surfaces such
that semantically corresponding points, e.g. the nose tips or
mouth corners, share the same location in the parametriza-
tion domain. Existing 3D face models where 3D scans are
registered and statistical analysis is performed include the
MPI 3D Morphable Model (3DMM) [18], the multilinear face
model [19], the Basel Face Model, [20], FaceWarehouse [21],
the Large Scale Facial Model (LSFM) [22], the Surrey Face
Model (SFM) [23] and the Robust Multilinear Model (RMM)
[24], but amongst these, only FaceWarehouse and the RMM
are trained with a large number of subjects and different
facial expressions. These 3D face models are learned from
large databases of 3D facial surfaces, containing represen-
tative examples spanning the range of variations that the
model will be able to capture. As an example, a model
learned only from 3D surfaces of neutral faces will not fit
well on expressive faces nor be able to capture the variation
between a smiling face and a sad face.

In this work, we contribute to the availability of more 3D
facial surfaces by introducing EPFL3DFace, a new database
consisting of 120 subjects performing 35 expressions. We
show that the subspace spanned by our 120 subjects, among
which 87% are Caucasian, extends the subspace spanned
by the subjects from FaceWarehouse [21], another publicly
available database of fully registered 3D facial scans includ-
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ing a variety of facial expressions.
In order to allow for statistical modeling, for example

with a morphable model, a multilinear model, a blendshape
model, etc., the scanned 3D facial surfaces have to be
put into dense correspondence by nonrigidly registering
the 3D surfaces. The general strategy is for each scan to
deform a template, the floating surface, or source S such
that it matches the scan or target surface T . The template
parametrization is thus transferred to each of the scans. In
this work, we propose to compute a spectral embedding
of the source and use that representation to constrain the
possible deformations. Deforming the source in the spectral
domain allows to choose which frequency band to focus
on, depending on required properties. In our case, the
deformation model obtained by embedding the source in
the spectral domain allows us to optimize the deformation
over the parameters corresponding to low frequencies and
enforce this deformation to be smooth. Moreover, this also
presents the advantage of providing a compact deformation
model as compared to as-rigid-as-possible deformation. Thus,
the number of parameters to optimize can be kept small, as
demonstrated in this work, where our deformation model
is parameterized with approximately 100 times less param-
eters than the well known per-vertex affine transform. We also
propose to represent the target as an implicit surface in order
to avoid computing correspondences, when evaluating the
distance between the source and the target and the gradient
of that distance. This representation allows to approximate
rather than interpolate the surface, which is beneficial in the
case of noisy surfaces.

Establishing correspondences from one surface to an-
other has been investigated in several fields and under dif-
ferent names such as nonrigid registration, alignment, match-
ing, mesh morphing, cross-parameterization or correspondence
estimation. A few of the most relevant methods are discussed
hereafter and we refer the reader to the book of Bronstein et
al. [25] or the surveys of Van Kaick et al. [26] and Tam et al.
[27] for more exhaustive reviews of the different methods.

In the remaining of this paper, we first review some
important related work in the fields of computer graphics
and computer vision and provide a comparison with our
work. Section 3 describes the new nonrigid registration
method that we propose. We then introduce EPFL3DFace,
our database of 3D facial expressions in section 4 and
present results achieved by the proposed method on the
new database in section 5. Finally section 6 summarizes the
contributions of this work and discusses a few directions for
future work.

2 PREVIOUS WORK

Blanz and Vetter first introduced the term morphable model
[18] to describe their parametric face modeling technique
based on a large number of 3D face scans. In order to
establish correspondence between all individual face scans,
they use cylindrical coordinates both for color and geome-
try information and adapted the optical flow algorithm to
compute a vector field of displacement between points [33].
Their method is well suited for data acquired with a 3D
scanner using cylindrical coordinates or that can easily be
converted to that particular planar representation.

In [34], the authors present a template-based nonrigid
registration method to compute dense point-to-point corre-
spondence between surfaces with the same overall struc-
ture, but substantial variation in shape, such as human
bodies. They formulate this as an optimization problem
over a set of per vertex affine transformations. The objective
function includes three terms: a data term defined as the
sum of squared distances between spatially close vertices
on the source and the target surfaces, a smoothness term
which enforces that neighboring affine transformations are
as similar as possible and a marker term defined as the sum
of squared distances between a set of marker’s locations on
the template surface and on the target surface. By ensuring
the smoothness of the transformations over the surface, they
define an as-rigid-as-possible per vertex affine transform further
constrained with a set of 3D marker locations. By using
domain knowledge inherent in the template surface, this
method is robust to incomplete surface data and is able to
fill in holes or poorly captured parts of the surface.

Vlasic et al. [19] applied this template-fitting procedure
to 3D face scans and described multilinear face models for
expression transfer. In [35] Mpiperis et al. follow a method
similar to [34] but add an error term looking for corre-
spondences directed from the target surface to the source
and not only in the other direction. They claim that this
is important at the beginning of the optimization process
when the source is far from the target and it helps avoiding
local minima by making the resulting vector field smoother.

Extending the idea of iterative closest point (ICP) [36]
to nonrigid registration and in particular defining optimal
steps using a series of stiffness weights to regularize the
deformation described in [34], Amberg et al. defined the
optimal step Nonrigid ICP (NICP) [37]. They express the
cost function as a least squares problem, thus being able
to determine in each step of the algorithm the optimal
deformation, in the sense that it exactly minimizes the cost
function for fixed stiffness and correspondences.

Further extending the method, Cheng et al. proposed
to incorporate a statistical shape prior [38] into the fitting
procedure of NICP in order to avoid noisy fitting results
and even non-face like fitting due to its weak constraint
on the shape geometry. The statistical shape prior is a de-
formable 3D face model [39], [40], whose optimal controlling
parameters are solved in an alternating manner. Along the
same line, Brunton et al. [41] proposed a detailed review of
statistical shape models. They emphasize that to incorporate
a statistical shape model to fit to data, instead of a template-
based approach with a nonrigid ICP approach and regular-
ization constraints, can significantly reduce the search space.
This results in the ability to reconstruct the underlying shape
in the presence of severe noise or occlusions.

Weise et al. [13] also followed a nonrigid ICP approach,
optimizing a cost function composed of three terms. Nev-
ertheless, they introduced a combination of point-to-point
distance and point-to-plane distance as discussed in [42]
in the data-term and expressed the smoothness term as a
membrane energy on the displacement vectors, using the
standard cotangent discretization of the Laplace-Beltrami
operator.

Sumner et al. [32] introduced an embedded deformation
model composed of a collection of affine transformations
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Name subj. expr. v. Acquisition/Source landm.
3D Morphable Model (3DMM), MPI Tübingen [18] 200 Neutral ≈70k Cyberware
Spacetime Faces [28] 1 384 23.728k Custom structured light scanner
Multilinear face model [19] 15 + 16 10 + 10 ≈30k 3dMD/3Q’s 21
Human Face [29] 1 15 ≈2k Custom structured light scanner
Basel Face Model [20] 200 Neutral 53.49k ABW-3D
FaceWarehouse [21] 150 20 (47) 11.51k Microsoft Kinect R© 74
Large Scale Facial Model (LSFM) [22] 9663 Neutral 53.215k 3dMD
Surrey Face Model (SFM) [23] 169 Neutral 29.587k 1 3dMDface 46
Robust Multilinear Model (RMM) [24] 205 23 5.996k Bosphorus [30] & BU-3DFE [31]
EPFL3DFace 120 35 11.51k Microsoft Kinect R© 74

TABLE 1
Comparison of registered 3D face databases and 3D face models in terms of number of subjects (subj.), number of expressions (expr.), number of
vertices of the aligned surfaces (v.), sensor used for data acquisition, and number of landmarks (landm.). Note that in the RMM, no new 3D data

are recorded, but 3D data from the Bosphorus [30] and BU-3DFE [31] databases are registered using [32].

organized in a graph structure. One transformation is as-
sociated with each node of a graph embedded in R3, so
that the graph provides spatial organization to the de-
formations. Each affine transformation induces a localized
deformation on the nearby space. That approach was later
adapted by Li et al. [43] to handle motion in the data. This
nonrigid registration approach is successfully used for real-
time performance-based facial animation in [15].

In [44] Zell et al. extended the nonrigid ICP approach to
surfaces which cannot be considered near-isometric and for
which the closest point correspondences might be invalid by
first mapping the source and target surfaces into a simpler
space and computing correspondences there. The simpler
space is a smoothed, feature-less version of the input models
computed by a joint fairing technique based on Laplacian
smoothing. To compute correspondences, they iteratively
minimize a cost function, which includes three terms: a data
term and a marker term, similarly to previously described
approaches, and a smoothness term defined as the norm of
the Laplacians of vertex displacements, similar to the one
used in [13].

Recently, Huber et al. released the Surrey Face Model
(SFM) [23], a multi-resolution 3D morphable face model
trained with 169 subjects with a neutral facial expres-
sion. Their nonrigid registration method was previously
described in [45] and is an iterative coarse to fine method
based on [46]. This method comprises three steps: first land-
marks on the source and the target surfaces are brought into
correspondence using thin plate spline (TPS) interpolation
technique. Then, corresponding points on the source and the
target are computed. The search for corresponding closest
points takes into account not only the distance between
points on the source and the target surfaces but also the
angle between their normals, and the difference between
curvature shape indices. Finally the positions of the source
points are optimized in an as-rigid-as-possible fashion.

Bolkart et al. [24] emphasize the chicken-and-egg nature
of the problem of training a new statistical face model: given
a set of shapes and dense correspondences, a statistical
model can be learned and given a representative model,
better correspondences can be computed among a set of
shapes. They propose a fully automatic approach to opti-
mize the correspondences for 3D face databases based on
multilinear statistical models using groupwise multilinear
correspondences [24]. This method measures the model
quality and optimizes the registration in such a way that the

quality of both the model and the registration improve but
an initial registration remains necessary. In their work, they
first use a blendshape model to address the expression fit-
ting problem. The 3D blendshapes were manually generated
using a commercial software. To further nonrigidly deform
the template corresponding to the correct expression, they
use an embedded deformation framework [32]. This method
was applied to two existing databases of 3D facial surfaces,
the Bosphorus database [30] and the BU-3DFE database [31]
and resulted in the Robust Multilinear Model (RMM) [24].

As an alternative to nonrigid ICP, some methods com-
pute correspondences between two surfaces by embedding
the intrinsic geometry of one surface into the other using
generalized multi-dimensional scaling (GMDS) [47]. The
good performance of this kind of methods has been demon-
strated for face recognition and are an alternative to deal
with variations due to facial expressions [48] [29]. As GMDS
methods do not impose that close-by points on one surface
map to close-by points on the other, the results are often
spatially inconsistent.

In existing 3D facial expression databases, only Face-
Warehouse, a 3D facial expression database for visual com-
puting, released by Cao et al. [21], has both a large number
of subjects and a variety of facial expressions. It consists
of registered 3D surfaces of the head of 150 subjects per-
forming 19 facial expressions plus a neutral face. The facial
surfaces of the subjects were acquired with a Microsoft
Kinect R©. To register the 3D scans together, they used a two-
step process, close to the nonrigid ICP methods described
above. In the first step, Blanz and Vetter’s morphable model
[20] is automatically fitted and used as a parametric tem-
plate. The nonrigid alignment between the fitted model and
each of the neutral scans is then refined by allowing the
obtained mesh to deform using a Laplacian-based mesh
deformation algorithm [49]. Finally, the scans containing
facial expressions are aligned using a deformation transfer
algorithm [50] and refined with the same Laplacian-based
mesh deformation algorithm.

Table 1 provides a comparison of EPFL3DFace, our
new face expressions database with respect to existing 3D
face models and databases in which the facial surfaces
have been registered and are in dense correspondence with
each other. In existing 3D facial expression databases, only
FaceWarehouse [21] has both a large number of subjects

1. Multiresolution model with different levels of detail and number
of vertices: 29.587k / 16.759k / 3.448k
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and a variety of facial expressions. In comparison to that
database, EPFL3DFace provides additional visemes suitable
for visual speech recognition applications, additional facial
expressions, and an extreme facial movement. In total,
EPFL3DFace contains 35 scans for each subject, whereas
FaceWarehouse contains 20 scans. In addition, FaceWare-
house and EPFL3DFace contain subjects from different pop-
ulations, mostly Asian in FaceWarehouse and mostly Cau-
casian in EPFL3DFace, and can be considered as comple-
mentary in that respect.

In our nonrigid registration pipeline, we propose to
embed the template in the spectral domain using a manifold
harmonics transform (MHT) [51] and use this embedding as a
surface deformation model. Indeed, by optimizing over the
parameters corresponding to lower frequencies, we enforce
the deformation to be smooth. Moreover, depending on the
number of frequencies Mfreq chosen, the number of parame-
ters to optimize, 3×Mfreq, is much smaller than in the case of
per-vertex affine transform, 12 ×Nvert as Mfreq < Nvert. As an
example, in our experiments, the template hasNvert = 11510
vertices. That would results in 138’120 parameters to op-
timize in a per-vertex affine transform model but our spec-
tral embedding uses 500 basis functions, resulting in 1500
parameters to optimize in our transformation model, thus
reducing the number of parameters by a factor 92.

A second keypoint of our method is the implicit surface
representation [52] of the target 3D scans in order to over-
come the problem of point correspondence. By representing
the target as an analytical implicit surface, defined as the
zero level-set of a squared distance function, the distance
of any point to the surface is obtained by evaluating the
value of the implicit function at that point. Moreover, when
computing the implicit surface representation, the implicit
function can approximate the original scan, thus effectively
removing noise and filling holes.

3 METHODS

The complete alignment pipeline is composed of the follow-
ing steps, described in detail in the following subsections:
first, the template is rigidly aligned to the target such that
both surfaces share the same scale, position and orientation
in space. This initial rigid alignment is described in sub-
section 3.1. The different parts of the nonrigid registration
are then described in subsection 3.2: the similarity measure
using implicit surface representation in subsection 3.2.1, the
transformation model using MHT in subsection 3.2.2 and
the complete objective function and optimization process in
subsection 3.2.3.

3.1 Initial rigid 3D scan registration
Our scans are, in general, not rigidly aligned with the
template. Before being able to nonrigidly align the source
to the target, it is essential to compensate for unknown rigid
transformations such as scale, translation and rotation.

3D feature points, or landmarks, are used to compute the
rigid transform between the source and the target such that
the source is rigidly aligned to the target. First, 68 landmarks
are manually annotated on the source. Note that this is done
only once as the sources used for each expression are already
registered.

Then, similar to the approach used in the LSFM [22],
we automatically detect the same 68 landmarks on each
target. An image is first generated by projecting the 3D
surface on the image plane of a frontal virtual camera.
We then detect the landmarks on this image using a state-
of-the-art facial feature detection algorithm [53] based on
the supervised descent method (SDM) [54]. In order to get
the 3D positions of the landmarks on the target, we back-
project the 2D positions of the landmarks with the known
projection matrix of the virtual camera and intersect these
rays with the 3D surface. The landmarks on the jaw are often
less precisely located on the 3D surface due to the fact that
the back-projected rays are almost tangential to the surface
and thus a small imprecision in 2D becomes a large error
in the intersection. For that reason, we discard these when
computing the rigid transform.

Finally, the rigid transform, i.e. the translation and ro-
tation between the two sets of 3D landmarks is computed
as a weighted least-squares problem using a singular value
decomposition (SVD) [55], [56]. The scaling factor between
the two sets is retrieved as well. The scaling, translation, and
rotation are applied to the source and the resulting shape
is used for the nonrigid registration described in the next
section.

3.2 Nonrigid 3D scan registration
Each scanned 3D facial surface needs to be re-parametrized
into a consistent form, where the number of vertices, the
triangulation, and the anatomical meaning of each vertex
are consistent across all surfaces. The general strategy is
for each scan to deform a rigidly aligned template, the
source, S such that it matches the scan or target surface,
T . The deformation model, which ensures a meaningful
deformation, is denoted by χ and the quality of the match
is measured by a similarity measure.

S = {pi|i = 1, ..., NS} χ7−→ T = {qi|i = 1, ..., NT }. (1)

This dense correspondence problem is referred to as
nonrigid registration and is defined by three main elements:

• a similarity measure, dependent on the representa-
tions of the source S and the target T ,

• a transformation model χ, which describes allowed
deformations of the source, and

• an objective function, which combines the similarity
measure and the transformation model and is opti-
mized with a numerical optimizer.

In the next subsections 3.2.1 to 3.2.3, we will detail each
of these three elements.

3.2.1 Similarity measure with implicit surface representa-
tion
In classical nonrigid ICP approaches, correspondences need
to be computed in order to be able to evaluate the distance
between the source and the target. These are unknowns as
this is precisely what we are looking for in the first place.
Several iterative approaches have been proposed based on
spatial proximity of points, either using a point-to-point or a
point-to-plane distance and looking for correspondences from
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the source to the target or the opposite, or a combination of
both [13] [42]. The correspondence problem gets even more
complicated, when the quality of one or both surfaces is
low. In particular, holes and noisy parts in the target further
complicate the search for correspondence.

We propose to use an implicit surface representation
for the target in order to avoid having to estimate cor-
respondences. The surface is then implicitly represented
as the zero level-set of a distance function d : R3 7→ R.
Choosing carefully that function allows to approximate the
input surface rather than interpolate it, thus smoothing it
and filling holes. In addition, desirable properties of an
implicit surface reconstruction method include speed and
low memory overhead.

As the value of the function is the signed distance to
the surface, evaluating a distance between the source and
the target can be achieved by simply summing the squared
value of the implicit function at each vertex of the source,
as described in equation (2). This does not require searching
for correspondences.

dist2(S, T ) =
∑
i

d (pi)
2
. (2)

Multilevel partition of unity (MPU) implicits provide fast,
accurate, and adaptive reconstructions of complex shapes
[52]. The main advantage of MPU is to define approximants
locally, thus avoiding the overhead of a global support,
and integrate them together by weighting each of them.
Following the original method, we use the quadratic B-
spline to generate weight functions.

MPU uses a hierarchical structure to adaptively divide
the region of space containing the input set of shape vertices.
We use an Octree structure, starting from the bounding cube
of the shape and computing an approximation of the points
enclosed in a sphere of radius R. The radius of the sphere
is proportional to the main diagonal d of the current cell
R = αd. When the computed local max-norm approxima-
tion error ε is greater than a user-specified threshold ε0,
the cell is subdivided and the process is repeated. If the
initial sphere does not contain enough points to compute
the approximation, the radius is iteratively increased until
the sphere contains a user-defined minimum number of
points Nmin. In that case, the cell is not further subdivided,
independently of the approximation error and unlike the
original method in which the initial sphere needs to be
empty to stop the subdivision. The local max-norm approxi-
mation error ε is estimated according to the Taubin distance
[57] and is given by equation (3).

ε = max
|pi−c|<R

|Q(pi)|/|∇Q(pi)|. (3)

The choice of the approximants allows to address dif-
ferent scenarios: locally planar surfaces, surfaces with sharp
edges, etc., as emphasized in [52]. Following the original
method, we implemented the bivariate quadratic polyno-
mial and the general quadric approximants. To give an
intuition, the bivariate quadratic polynomial is best suited to
approximate local smooth patches, and the general quadric
provides consistent approximations on larger parts of the
surface which might contain more than one sheet.

αi,j

βi,j

vj

vi

Ωi

Fig. 1. Angles and local averaging area,Ωi, used in the discrete Laplace-
Beltrami operator

In practice, the surfaces we are implicitly representing,
our scans, are mainly composed of local smooth patches in
the region of interest, the face region, and noisy boundaries.
Therefore, we only use the bivariate quadratic polynomial
approximant. This and the choice of Nmin have shown to
be critical, when implicitly representing the scans from our
database as explained in section 4.

3.2.2 Transformation model
When deforming the source toward the target, the trans-
formation model defines the possible transformations of
the source in order to avoid overfitting, prohibit arbitrary
deformations, and favor reasonable ones and reduce the
dimensionality of the problem. Intuitively, coarse, global
deformations should be applied first and then refined with
fine, local deformations. In general, smoothness should also
be preserved.

Per-vertex displacements are thus modeled using spec-
tral tools [58]. They offer an intuitive control over deforma-
tions where coarse, global deformations are embedded in
the low frequencies and fine, localized deformations in the
high frequencies. By selecting a number of lower frequencies
m� n, the number of vertices in the source, the dimensions
of the optimization problem are reduced. Moreover, the
built-in smoothness of the low frequencies helps to avoid
overfitting.

The Laplacian framework and differential representa-
tions allow to describe surface meshes through their differ-
ential properties. As a generalization of Fourier analysis the
Manifold Harmonics Basis (MHB) and corresponding Manifold
Harmonics Transform (MHT) introduced in [51] provide a re-
parametrization tool which allows us to represent a mesh
with potentially fewer coefficients and more interestingly
to constrain the deformation of the mesh, when changing
the coefficients in ways that preserve the smoothness of the
mesh.

Manifold harmonics are defined as the eigenfunctions of
the discrete Laplace operator. The basis vectors of the MHT
are thus the eigenvectors hk of the discrete Laplacian as
described in equation (4).

hk = [Hk
1 , ...,H

k
n] satisfies −Qhk = λDhk. (4)

The matrix Q is called the stiffness matrix and is defined
by the cotangent formula:

Qi,j =

{
1
2 (cot(αi,j) + cot(βi,j)) when i 6= j

−∑
kQi,k when i = j.
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where the angles αi,j and βi,j are illustrated in figure 1.
The diagonal matrix D is called the lumped mass matrix

and is defined by:

Di,i =
∑

t∈St(i)

Ωt,

where St(i) denotes the set of triangles incident to i and Ωt
the local averaging area of triangle t. In our case, we use the
barycentric cell as local averaging area. The barycentric cell
connects the triangle barycenter with the edges’ midpoints.
The eigendecomposition of the discrete Laplacian described
by equation (4) is computed using the band-by-band algo-
rithm described in [51], which takes advantage of the Shift-
Invert spectral transform.

To compute the transform of the function x from geomet-
ric space to frequency space, x is projected onto the manifold
harmonics basis through the inner product. The MHT of x
is a vector [x̃1, x̃2, ..., x̃m] given by equation (5).

x̃k =< x,Hk >= xTDhk =
n∑
i=1

xiDi,iH
k
i . (5)

The inner product contains D in order to ensure orthogo-
nality of the basis, as the Laplacian is not symmetric, due to
the weights Di,i which scale the lines of Q.

The inverse transform, to map the function x̃ in fre-
quency space into its geometric space is given by equation
(6).

xi =
m∑
k=1

x̃kH
k
i . (6)

H is a basis containing the spectral modes of variation
of the shape. We thus represent a new shape as the original
source shape p̄ and a linear combination of spectral defor-
mations, as described in equation (7).

p(α) = p̄+Hα, (7)

where α is a vector of spectral coefficients. Setting α to zero
yields the initial shape, without deformation.

Furthermore, as described in section 3.1, the source has
been rigidly aligned to the target beforehand. Nevertheless,
as pointed out by Blanz et al. [59], the result of this rigid pre-
alignment is sub-optimal, since the optimal rigid alignment
depends on the source after deformation. Thus we need
to include translation and rotation in the transformation
model. Translation is included in the first spectral basis,
which is a constant vector, and we include a linearized
rotation similarly to [59] as described in equation (8).

Rv ≈cγsγ + cθsθ + cφsφ + v (8)

sγ =(−y1, x1, 0,−y2, x2, 0, ...)T

sθ =(0,−z1, y1, 0,−z2, y2, ...)T

sφ =(z1, 0,−x1, z2, 0,−x2, ...)T

The complete transformation model is thus given by
equation (9).

p(cγ , cθ, cφ,α) = p̄+ cγsγ + cθsθ + cφsφ +Hα. (9)

3.2.3 Objective function
Combining the transformation model and the implicit sur-
face distance measure, we can evaluate the similarity be-
tween the deformed source and the target for a given set
of parameters α, cγ , cθ , cφ. We define the data fitting term
Edata of our objective function as in equation (10).

Edata = dt (p̄+ cγsγ + cθsθ + cφsφ +Hα) . (10)

We noticed that, due to the relatively low accuracy of
the Kinect, the eye regions often do not contain enough
details to correctly align the eyes. This causes the eyes of
the source to slide on the flat region around the eyes of
the target surface, ending in incorrect positions. To further
constrain the eye regions, we use 3D landmarks around the
eyes. On the target, these landmarks are detected with high
accuracy during the rigid alignment step, whereas on the
source, they have been manually annotated. The landmarks
detection and annotation process is detailed in section 3.1.
In order to constrain the eye regions, we add a term to the
objective function penalizing large distances between the
landmarks on the source and the corresponding landmarks
on the target. This term is defined in equation (11).

El =
nl∑
i=1

‖p̂i − q̂i‖22, (11)

where nl is the number of landmarks, p̂i are the landmarks
on the source and q̂i are the landmarks on the target.

As discussed in section 3.2.2, we want to favor low
frequencies over high frequencies, thus we add a regulariza-
tion term Eb to penalize higher bending of the deformation.
This regularization term is defined in equation (12).

Eb = ‖ΛHα‖22, (12)

where ΛH is a diagonal matrix of eigenvalues corresponding
to the spectral bases.

A second regularization term Em penalizes the magni-
tude of the deformation, as defined in equation (13).

Em = ‖α‖22. (13)

The complete objective function is given in equation (14).

E = Edata + β0El + β1Eb + β2Em. (14)

We use a gradient descent solver to minimize E. In our
experiments, we chose β0 = 1e−4, β1 = 2e−3 and β2 = 2e−4

empirically.

4 EPFL3DFACE DATABASE

We have collected EPFL3DFace, a new 3D facial expressions
database, for the study. The 3D facial surfaces have been
nonrigidly registered with the method presented such that
they are all in dense correspondence. This allows the use of
EPFL3DFace database to train a 3D statistical model of the
face, for example a morphable model, a multilinear model or
a blendshape model, for a large variety of applications, such
as but not limited to facial expression recognition, visual
speech recognition, morphological analysis of the face, etc.

We recorded 120 subjects performing 35 facial expres-
sions, while sitting still on a rotating chair. The subjects were
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Fig. 3. Examples of scans from the database: (a) jaw forward (AU29),
(b) viseme /uh/, (c) surprise

facing a Microsoft Kinect R© for Windows v.1 at a distance of
50-70 cm. A screen in front of the subjects was displaying
instructions on how to perform each expression with visual
examples. At the same time, an operator was explaining
and demonstrating how to perform the expression. Each
subject had to perform each expression and stay perfectly
still, while the operator was rotating the chair at an angle of
±60◦ − 90◦. This operation took approximately 15 seconds
on average.

Figure 2 shows the age, gender, and ethnicity distribu-
tions of the subjects included in EPFL3DFace database. In
general, the population is slightly biased towards young
men, as the subjects were recruited mainly in the electrical
engineering department of the university. With 43% women
and 57% men, the gender distribution is still reasonably
well balanced. The ethnicity is strongly biased towards Cau-
casian, with 87% of the subjects included in the database.
This is a wanted feature of the database making it com-
plementary to FaceWarehouse [21], which mainly contains
Asian subjects. We discuss this aspect in more detail in
section 5.2. We also recorded the country of origin and the
mother-tongue of the subjects.

We recorded each subject with a neutral facial expres-
sion, with the eyes open, and then instructed them to
perform different facial expressions. These include proto-
typical expressions: anger, sadness, surprise, fear, disgust,

happiness, and variants: anger with mouth slightly open,
sad surprise and grin. They also include specific action units
(AU): closed eyes (AU43), mouth open (AU25), brow lower
(AU04), brow raiser (AU01), jaw left and right (AU30), jaw
forward (AU29), mouth left and right, dimples (AU14), chin
raiser (AU17), lips funneler (AU22), lips puckerer (AU18),
lips roll (AU28), and cheek blow (AU33). Nine visemes are
also included representing the following phonemes /ah/,
/uh/, /axr/, /eh/, /l/, /m/, /n/, /f/, /iy/ and one
extreme facial movement: biting their own top lip.

In order to generate a smooth and low-noise 3D mesh
from noisy and incomplete depth maps, we aggregated
multiple depth maps from different view points in order
to construct a full view of the face for each expression and
subject by using the Kinect Fusion algorithm2 [60], [61].
Thus, a 3D facial surface was obtained for each expression
of each subject. Figure 3 shows three examples of obtained
scans.

4.1 Nonrigid alignment of the database scans
As mentioned in section 2, in order to allow for statistical
modeling of the faces in EPFL3DFace database, these need
to be put in dense correspondence. We nonrigidly align all
the scans in the database such that all the expressions of
all the subjects share a common parametrization using the
method described in section 3. This allows for statistical
modeling of the variations due both to the identity and the
expression.

Our method is based on the deformation of a single tem-
plate shape. The advantage of not requiring a full statistical
shape model (see sec. 2) but only a static template comes
at the price of a larger sensitivity to the initialization. This
implies that in order to converge to the target, the initial
template to be deformed should be close already. Since we
observed that the 3D shape of the face varies significantly
due to changes in facial expressions, we decided to use a
separate template for each facial expression.

We take advantage of the FaceWarehouse [21] database
and compute one mean shape for each expression. For

2. A lightweight, reworked and optimized version of
KinFu, originally shared in PCL in 2011, is available on
https://github.com/Nerei/kinfu remake
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Fig. 4. Visualization of some of the spectral bases bi. The amplitude of the deformation for each vertex is normalized over the first 500 bases where
−A is the maximum deformation amplitude towards the inside of the surface and +A the maximum towards the outside of the surface.

(a) N = 50
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(c) N = 200
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(g) N = 5000
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(h) N = 10000
E = 99.95%
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Fig. 5. (a)-(h) Reconstructions of the FaceWarehouse neutral mean shape using the first N bases, keeping E percent of the energy. (i) The original
shape.

each expression in EPFL3DFace, we select as template the
FaceWarehouse mean shape closest to that expression. Some
expressions have direct correspondences in both databases
as the set of expressions from FaceWarehouse is included in
EPFL3DFace. For the remaining expressions in EPFL3DFace,
we manually selected the closest corresponding expression
in FaceWarehouse.

An important advantage of using different templates
for each expression is that we do not need to perform
any kind of expression transfer. Indeed, the templates of
all expressions are already registered together. After reg-
istration, the scans of different expressions are in dense
correspondence, since the templates used for registration are
in dense correspondence.

In practice, we do not evaluate all the vertices of the
source in the implicit function of equation (2), but only
the vertices lying on the face. Due to the fact that we use
the closest expression mean shape of FaceWarehouse as the
source for each expression in EPFL3DFace, the topologies of
the source and the targets are very different. FaceWarehouse
mean shapes are closed surfaces, homeomorphic to a sphere,
whereas the scans are bounded surfaces, homeomorphic to
a plane. Moreover, the scans of the head are only partial and
information is missing on the top and the back of the head.
That is not the case with the FaceWarehouse shapes. Trying
to align all the vertices of such shapes onto our scans would
not be reasonable as they do not share the same topologies
and do not contain the same information even though there
is an overlap. Thus, we define the set of landmarks lying on
the face to use in the implicit distance computation defined
in equation (2). Note that the deformation is still applied
to the whole shape. In summary, the whole source shape
is deformed such that the distance between vertices on the
face and the target is minimized.

This nonrigid alignment process is repeated for each scan

in the database, resulting in a database of registered 3D
surfaces of 120 subjects, performing 35 different expressions
and facial movements. This database is available to the
research community upon request.

5 RESULTS

In this section we discuss qualitative results obtained with
the proposed method on the collected database. In subsec-
tion 5.1, we show a few of the manifold harmonic bases that
are used to constrain the nonrigid deformation as well as
different reconstructions obtained with a varying number
of bases and discuss the influence of the number of bases. In
subsection 5.2, we then show visual results and compare the
obtained deformed shapes with their corresponding targets.
We also provide detailed visualization of the spectral defor-
mation process and analyze the evolution of the different
terms in the objective function. Finally in subsection 5.3,
we visualize the manifolds of shapes and compare these
manifolds between an existing database, FaceWarehouse,
and our new database.

The lack of ground truth is the main obstacle to a
quantitative validation of the method. Indeed, as it is a
dense registration problem, the locations of each and ev-
ery landmarks of the source would need to be manually
annotated. Depending on the number of vertices in the
source, this represents several thousands of 3D locations
for each 3D face scan. Moreover, this problem is largely
under-constrained. Ultimately, the topology and geometry
of the target is transferred to the source, but these are not
uniquely defined by the 3D locations of the vertices. As an
example, moving one vertex of the source along the surface
of the target does not necessarily change the quality of the
alignment.
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(a) (b) (c) (d)

Fig. 6. Alignment results. (a) Color target (b) Rigidly aligned source
(c) Result of the nonrigid alignment (d) Target without color (for better
comparison).

5.1 Spectral basis visualization

Figure 4 shows the first 3 bases and a few other bases corre-
sponding to higher frequencies. Note that basis 0 is constant
and is not depicted in the figure. As expected, spectral
bases corresponding to lower frequencies show smoother
deformations of the surface, whereas higher frequencies
provide more localized deformations. The choice of the
number of bases to consider in the deformation model is
thus guided by the level of details at which the deformation
is expected to fit. A very important consideration is that
this resolution is only the resolution of the deformation and
not the resolution of the obtained mesh. Indeed, the spectral
content of all other frequencies outside the frequency band
considered in the deformation model is retrieved from the
source shape p̄ in equation (7).

In order to get a better intuition of the resolution of the
deformation, figure 5 shows different reconstructions of the
FaceWarehouse [21] mean shape with neutral expression.
These were obtained by computing the MHT, transforming
the shape into the spectral domain, setting all the spectral
coefficients x̃ to zero except the first N coefficients and
taking the inverse transform to return to the spatial domain.
In short, the source has been filtered with a low-pass filter,
whose cut-off frequency varies with the number of bases
kept.

Experimentally, we found that keeping the first 500
bases is a reasonable trade-off between the resolution of
the deformation and the compactness of the deformation
model. The energy of the template that is kept in these
500 bases corresponds to 90.02% of the total energy. With
500 bases, the resolution of the deformation is sufficient to
deform shapes with a given expression toward the scans
representing the same expression or close ones on subjects
with different identities, as explained in section 5.2.

5.2 Spectral alignment

We present the results of the complete nonrigid alignment
process on a neutral scan of the EPFL3DFace database in
figure 6. Figure 6a shows the clean and normalized color
scan from the database. The corresponding mean shape
from FaceWarehouse is then rigidly aligned to the scan
using 3D landmarks, as detailed in section 3.1. In that case,
the source is the neutral expression mean shape. The re-
sulting scaled, translated, and rotated mean shape is shown
in figure 6b. That rigidly aligned source is then nonrigidly

Fig. 7. Database subspaces visualization. FaceWarehouse, × Mean
shape FaceWarehouse, Caucasian subjects from EPFL3dFace,
Asian subjects form EPFL3dFace, South American subjects from
EPFL3dFace.

deformed following the method described in section 3.2
and the result is shown in figure 6c. For better visual
comparison, the target is shown again, without texture, in
figure 6d. It should be noted that even though the rigid
alignment does not retrieve the exact pose of the target,
as shown by a comparison of the head poses between
figures 6a and 6b, this misalignment is corrected during
the nonrigid alignment by the linearized rotation term of
the transformation model described in equation (8). Figure
9 presents additional results on two subjects performing
seven other expressions or facial movements. Due to the
figure’s size, it is placed at the end of the paper.

In order to get a better understanding of the spectral
deformation process, figure 8 shows the evolution of the
different terms in the objective function as well as corre-
sponding shapes, magnitudes of deformation, and distances
to the target for a few steps of the optimization. Overall, the
data term and the sum of all terms decrease with the number
of iterations and seem to have converged at the end of the
optimization process. The role of the bending regularization
term is clear in the first steps of the optimization, where it
prevents extreme, non-realistic deformations to dominate as
seen in iteration 1 in figure 8a.

5.3 Facial manifold visualization
In order to validate the intuition that training 3D face mod-
els using scans of people from different populations yields
different manifolds, we visualize the manifold of scans from
the FaceWarehouse database as well as EPFL3DFace using
t-SNE [62]. Following the idea of Booth et al. [22], we train a
simple principal component analysis (PCA) model of the
neutral faces in FaceWarehouse and EPFL3DFace, project
the training samples onto that d-dimensional subspace and
use t-SNE to generate a 2D visualization of that subspace.
We then label the samples according to which database they
belong to. Figure 7 shows the resulting visualization.

More specifically, we represent each shape as a vector
S = (x0, y0, z0, ..., xk, yk, zk), with k = 5956, the number of
vertices lying on the face, as defined in section 4.1. We then
compute a PCA decomposition of the matrix whose rows
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are the shape vectors. Only the first 96 eigenvectors, which
together explain more than 99% of the variance of the data,
are kept. Each shape is then projected on the PCA basis, thus
effectively reducing the original high number of dimensions
of these. The new parametrization of the shapes in the
PCA basis is the input to the t-SNE algorithm. t-SNE then
projects the data to a low-dimensional subspace, typically
2D, while preserving similarities between data points and
allows to visualize the structure of the data [62]. In this 2D
space, we then label each point, which corresponds to each
shape, according to the database that shape belongs to. For
EPFL3DFace, we also chose to label the different ethnicities
differently. This is not possible for FaceWarehouse, as we
do not have the ground truth labels for the ethnicity of the
subjects.

In the visualization in figure 7, shapes from different
databases appear to be clustered and these clusters span
different part of the subspace. Moreover, all the shapes
from EPFL3DFace are obtained by nonrigidly deforming
the mean shape of the corresponding expression in Face-
Warehouse, represented as a cross in figure 7. This mean
shape, the neutral expression in that case, is thus effectively
deformed in a way that is complementary to the existing
shapes in FaceWarehouse.

6 CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper, we introduce a new method to nonrigidly
register a template to 3D surfaces. We take advantage
of spectral geometry processing methods and propose to
use manifold harmonic transform (MHT) to constrain the
deformation of the template, while enforcing smoothness
and reducing the number of parameters in the deformation
model. More advanced use of the spectral nature of that
deformation model needs to be further investigated. For
example, it could be beneficial to select a different frequency
band in which to deform the template, depending on the
template, the level of details and the application. In our case,

we show qualitatively that we obtain a reasonable level of
details using only the first 500 spectral bases.

In addition, we propose to use an implicit surface repre-
sentation based on multilevel partition of unity (MPU) for
the target. This presents two main advantages: first, this new
representation of the target surface allows to denoise the
surface by approximating rather than interpolating it and
fill in missing data. Second, the evaluation of the distance
to the target is considerably simplified and is reduced
to evaluating the implicit function, avoiding the need for
correspondences.

Finally, we apply the proposed method on 3D facial
scans in order to align them, or put them in dense corre-
spondence. This is required to perform statistical analysis on
the set of shapes and ultimately train a 3D statistical shape
model. The nonrigidly registered set of shapes constitutes
a new database of 3D facial expressions, EPFL3DFace, con-
taining 120 subjects performing 35 different facial expres-
sions and movements. This database is available to the re-
search community upon request. We show that EPFL3DFace
is complementary to the existing FaceWarehouse database
and that both of them can be combined such that the number
of subjects is increased by 80% and that they span a larger
subspace.
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