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Abstract
Networks are commonly used to represent key processes in biology; examples include tran-

scriptional regulatory networks, protein-protein interaction (PPI) networks, metabolic net-

works, etc. Databases store many such networks, as graphs, observed or inferred.

Generative models for these networks have been proposed. For PPI networks, current models

are based on duplication and divergence (D&D): a node (gene) is duplicated and inherits some

subset of the connections of the original node.

An early finding about biological networks is modularity: a higher-level structure is prevalent

consisting of well connected subgraphs with less substantial connectivity to other such sub-

graphs. While D&D models spontaneously generate modular structures, neither have these

structures been compared with those in the databases nor are D&D models known to maintain

and evolve them. Given that the preferred generative models are based on D&D, the network

inference models are also based on the same principle.

We describe NEMo (Network Evolution with Modularity), a new model that embodies mod-

ularity. It consists of two layers: the lower layer is a derivation of the D&D process thus node-

and-edge based, while the upper layer is module-aware. NEMo allows modules to appear

and disappear, to fission and to merge, all driven by the underlying edge-level events using

a duplication-based process. We also introduce measures to compare biological networks in

terms of their modular structure.

We present an extensive study of six model organisms across six public databases aimed at un-

covering commonalities in network structure. We then use these commonalities as reference

against which to compare the networks generated by D&D models and by our module-aware

model NEMo. We find that, by restricting our data to high-confidence interactions, a num-

ber of shared structural features can be identified among the six species and six databases.

When comparing these characteristics with those extracted from the networks produced by

D&D models and our NEMo model, we further find that the networks generated by NEMo

exhibit structural characteristics much closer to those of the PPI networks of the model organ-

isms. We conclude that modularity in PPI networks takes a particular form, one that is better

approximated by the module-aware NEMo model than by other current models.

Finally, we draft the ideas for a module-aware network inference model that uses an altered

form of our module-aware NEMo as the core component, from a parsimony perspective.

Key words: generative model, evolutionary model, PPI network, evolutionary event, modular-

ity, network topology
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Résumé
Les réseaux sont souvent utilisés pour représenter les processus importants en biologie ; les

exemples incluent les réseaux transcriptionnels regulatoires, les réseaux d’interactions entre

les protéines, les réseaux métaboliques, etc. Plusieurs bases de données accumulent de tels

réseaux, sous forme de graphes, observés ou déduitsc.

Plusieurs modèles génératifs ont été proposés pour ces réseaux. Pour les réseaux d’interations

entre les protéines, les modèles actuels sont basés sur la duplication et la divergence (D&D) :

un noeud (un gène ou une protéine) est dupliqué et il hérite un sous-ensemble des arêtes

(interactions) du noeud original.

On a tôt découvert que la plupart des réseaux biologiques ont une structure modulaire : ils

consistent de sous-graphes, chaque sous-graphe bien connecté, mais avec des connexions

moins substantielles avec les autre sous-graphes.

Alors que les modèles D&D génèrent spontanément des structures modulaires, celles-ci n’ont

pas encore été comparées avec celles présentes dans les bases de données. En outre, on ne

sait pas si les modèles D&D peuvent maintenir ces réseaux aussi-bien que les évoluer. Etant

donné que les modèles génératifs sont souvent basés sur D&D, les modèles inférentiels le sont

aussi.

Nous décrivons NEMo ("Network Evolution with Modularity"), un nouveau modèle qui prends

en compte la modularité. Il consiste en deux niveaux : le niveau inférieur est une dérivation

du processus D&D, et donc basé sur les noeuds et les arêtes ; le niveau supérieur prends en

compte la modularité. NEMo permet aux modules d’apparaître, de disparaître, de fissioner

et de fusionner, chaque fois le produit d’événements sous-jacents au niveau inférieur.

Nous présentons aussi des mesures pour comparer les réseaux biologiques en termes de leur

structure modulaire.

Nous présentons une étude approfondie de six organismes modèles au travers de six bases

de données publiques. Notre but est de découvrir des commonalités dans les structures des

réseaux. Ensuite, ces commonalités sont utilisées comme référence dans la comparaison

des réseaux générés par les modèles D&D et par notre modèle NEMo. En n’utilisant que les

interactions de haute fiabilité (pour éliminer le bruit), nous découvrons un certain nombre

des caractéristiques structurelles communes aux six espèces et six bases de données. En com-

parant ces caractéristiques avec celles extraites des réseaux produits par les modèles D&D et

notre NEMo, nous trouvons en plus que les réseaux générés par NEMo possédent les carac-

téristiques structurelles qui sont plus proches de celles dans les réseaux des interactions entre

les protéines de nos organismes modèles. Nous déduisons que le modularité dans les réseaux
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des interactions entre les protéines prends une forme spécifique qui est mieux approximée

par le modèle NEMo que par les modèles courants tels que D&D.

Enfin, nous ébauchons des idées pour un modèle inferentiel qui prenne en compte la modu-

larité. Ce modèle est basé sur notre NEMo et sur la parcimonie.

Mots clefs : modèle génératif, modèle évolutionnaire, réseau d’interactions entre les protéines,

événement d’évolution, modularité, topologie d’un réseau
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1 Introduction

Biological processes, such as those of metabolism, transcriptional regulatory systems, protein-

protein interactions (PPI), etc, are known to be the source for functionality of living organisms.

Key processes in biology are commonly represented by networks. They are typically modeled

as a graph, directed or undirected, where edges or arcs represent interactions and vertices

represent actors (genes, proteins, metabolites, etc.). However, biology is often more com-

plicated than what appears in a network. For example, protein-protein interactions can be

location- or time-dependent. For example, a protein A, that has an interaction with protein

B and C as stored in the network graph, might be suppressed by protein B at a given time,

while activated by C at another time, but both interactions cannot happen at the same time.

Thus, we keep in mind that with these data stored in biological networks we mostly get a static

global representation of all dynamic processes at any time aggregated together.

Current methods for building such network graphs mainly approach from two different sides:

on the one hand the experimental determination of specific interactions (expensive and

time-consuming) and high-throughput experimental methods such as affinity-purification

mass spectrometry (AP MS)) [1] (which suffer from large error rates, such as large numbers

of false positives for AP MS); on the other hand since establishing experimentally the exis-

tence of a particular interaction is expensive and time-consuming, most published networks

have been inferred through computational methods ranging from datamining the literature

(see, e.g., [2, 3, 4]) to inferring the evolutionary history of the networks from present obser-

vations [5, 6, 7, 8]. (Makino and McLysaght [9] present a thorough discussion of evolutionary

approaches to PPI networks.)

The rapid growth of experimentally measured data in biology requires effective computa-

tional models to uncover biological mechanisms in the data. Understanding the evolution

of biological networks and reconstructing their evolutionary history can provide insight into

many biological aspects. Building evolutionary models for the former can for example help

understand at what pace they evolved or how their modular structure arises. Inferencing the

network history for the latter supports for example estimating the age of nodes and modeling

the evolution of interactions based on the inferred histories. While the network inference

1



Chapter 1. Introduction

strongly depends on the evolutionary model used as the core component, the evolutionary

model can also be indirectly evaluated using the outcome of the inference model.

In this dissertation, we focus our work on protein-protein interaction (PPI) networks as a repre-

sentative of biological networks and related evolutionary models as well as inference models.

1.1 Current PPI Databases

Many databases storing protein-protein interaction (PPI) network information are available.

PPI networks are often built through a process of accretion, by adding new actors and new

interactions as they are observed, published, or inferred, with the result that errors in many cur-

rent PPI (as well as other biological) networks tend to be false positives (errors of commission)

rather than false negatives (errors of omission).

A variety of databases, with vastly different levels of curation and annotation, store these net-

works, some with the aim of gathering all plausible interactions, others focused on interactions

obtained through specific methods. The networks stored range from large graphs, such as the

human PPI network in the STRING database with well over 4 million interactions [10], down

to quite small ones, such as the manually curated Human Protein Reference Database [11]

with ca. 40’000 interactions, or less than 1% of the number in STRING. This large discrepancy

underlines the difference in philosophy between various PPI databases and illustrates why

testing models or inferences against databases must be done with great care. Even a cursory

reading of the literature shows that agreement among findings is rather limited, due in part

to the variety of samples used and the dynamic nature of the networks, but also in good part

because of the difficulty of inference.

Fortunately, the more inclusive databases also offer a confidence score for their entries; pre-

vious experience indicated that restricting the entries to those with high confidence scores

led to a subnetwork much more in line with those of other databases. For such databases, we

use both the full network and a subnetwork consisting of only high-confidence entries.

We work with six data sources, some of which include several data sources. We chose six model

organisms that are represented in most of these databases: E. coli, S. cerevisiae, C. elegans, D.

melanogaster, M. musculus, and H. sapiens. Our data sources are thus the following:

STRING: The full STRING database [10] aims to provide a global perspective for as many

organisms as feasible, tolerating lower-quality data and computational predictions,

and thus including many inferred indirect interactions (which we view as false positive

entries). STRING provides an evidence score for each interaction; we chose a high

threshold of 900 to filter out as many indirect and low-quality interactions as possible.

HPRD: The manually curated HPRD [12] database maintains the PPI network for just one

species, H. sapiens, and gives the network with the fewest false positives.
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MAGNA++: In the paper describing the MAGNA++ algorithm [13] for global network align-

ment, the authors use a testbed with PPI networks for H. sapiens (9’141 proteins and

41’456 interactions) [14], for E. coli (1’941 proteins and 3’989 interactions) [15], and for

S. cerevisiae (2’390 proteins and 161’277 interactions) [16].

HitPredict: This database stores experimentally determined protein-protein interactions

with reliability scores [17, 18]. Nearly all entries are assigned a confidence score ”Low”

or ”High”, thus defining a complete dataset, Pa , and a high-confidence subset, Ph ,

respectively.

DIP: The manually curated Database of Interacting Proteins (DIP) [19] stores experimentally

determined interactions between proteins with confidence annotations. We use the full

dataset, Da , and the set of entries assigned confidence value “core,” Dc .

FunctionalNet: The server of FunctionalNet (www.functionalnet.org) collects probabilistic

functional gene networks for a small number of species. We take the HumanNet [20] for

H. sapiens, the Wormnet [21, 22] for C. elegans, and the YeastNet [23] for S. cerevisiae.

The database provides full networks of all interactions, F j , and benchmark sets, Fb .

Table 1.1 shows which species is represented in which database. Throughout this paper, S900

stands for the dataset with confidence scores at least 900 in the STRING database, H for HPRD,

M for MAGNA++, Pa and Ph for HitPredict, Da and Dc for DIP, and F j and Fb for FunctionalNet.

Table 1.1 – PPI networks in various databases.

Species S / S900 H M Pa Ph Da Dc F j Fb

E.c. + - + + + + + - -
S.c. + - + + + + + + +
C.e. + - - + + + + + +

D.m. + - - - - + + - -
M.m. + - - + + + + - -
H.s. + + + + + + + + +

Table 1.2 provides a brief description with the general characteristics of these PPI networks

in the various databases and versions. In these tables, S stands for STRING’s complete dataset,

S900 stands the filtered dataset of confidence score > 900, H for HPRD, M for MAGNA++, and

P for HitPredict.
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Table 1.2 – General characteristics of the six PPI networks in various databases.

Species Source #nodes #edges

E.c. S900 3’251 14’555
S.c. S900 5’162 68’190
H.s. S900 10’974 118’803

M.m. S900 10’020 125’427
C.e. S900 6’232 62’512

D.m. S900 6’946 62’423
H.s. H 9’673 39’198
E.c. M 1’941 3’989
S.c. M 2’390 16’127
H.s. M 9’141 41’456
E.c. Pa 3’351 20’239
S.c. Pa 6’019 84’740
H.s. Pa 16’637 155’616

M.m. Pa 5’011 12’135
C.e. Pa 5’011 12’135
E.c. Ph 2’512 9’407
S.c. Ph 5’218 60’248
H.s. Ph 14’213 135’718

M.m. Ph 5’064 12’117
C.e. Ph 3’093 7’328
E.c. Da 2’940 12’261
S.c. Da 5’176 22’975
H.s. Da 4’873 7’750

M.m. Da 2’331 2’577
C.e. Da 2’749 4’171

D.m. Da 7’011 23’262
E.c. Dc 1’433 2’126
S.c. Dc 2’409 5’300
H.s. Dc 4’671 7’336

M.m. Dc 331 2’577
C.e. Dc 2’226 189

D.m. Dc 634 706
S.c. F j 5’808 362’421
H.s. F j 46’243 476’399
C.e. F j 15’139 993’367
S.c. Fb 4’172 81’953
H.s. Fb 5’369 270’704
C.e. Fb 5’178 626’342
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1.2 Current Generative Models for PPI Networks

Understanding the evolution of biological networks can provide insight into many biological

aspects, e.g., at what pace they evolved or how their modular structure arises; as well as which

were in the past. Network inference strongly depends on the evolutionary model used as

the core component. The mechanisms in PPI networks are seemingly different than in other

networks. All evolutionary models for PPIs networks to date are based on the addition or

removal of the basic constituent elements of the network: vertices (proteins) and edges (pair-

wise interactions). In terms of complexity and verisimilitude, however, models proposed to

date vary widely. Most of the recent models are based on duplication followed by divergence,

denoted D&D [24, 25], in which a vertex is duplicated (think of a gene duplication) and inherits

some randomly chosen subset of the connections of the original vertex (the copy of the gene

initially produces much the same protein as the original and so enters into much the same

interactions). Most evolutionary biologists view gene duplication (single gene, a segment of

genes, or even the entire genome) as the most important source of diversification in genomic

evolution [26, 27], so models based on D&D have become widely used for PPI networks.

It is to note that by our best knowledge, the models by now are purely generative — increasing

the size of the network at each step — and thus do not match biological reality.

Example: Duplication-Mutation with Complementarity (DMC)

A commonly accepted and applied variation on the D&D model is the duplication-mutation

with complementarity (DMC) model [28, 29, 30]. DMC forbids the simultaneous loss of the

same interaction in the original and in the copy and allows the duplicated gene to gain a direct

interaction with the original gene. The model has one evolutionary event, namely node du-

plication with subsequent mutation and complementarity. It begins with a simple, connected

two-node graph. The growth process is sketched in Fig. 1.1. The new node (yellow) v enters the

network by being duplicated from the anchor node (green) u; it first inherits all neighbors from

its anchor node (dashed lines), then with some probability of mutation qmod either the anchor

or the duplicated node can lose its link to the neighbor, and as the complementarity step the

duplicated node might build a link to its anchor node with some probability qcon (dotted line).

Figure 1.1 – A scheme of the evolutionary process of DMC

Another variant of D&D is the duplication-mutation-random mutation (DMR) model [31].

DMR allows the introduction of new interactions (not among those involving the original

vertex) between the duplicate vertex and some random vertices in the network.

According to the findings of Navlakha and Kingsford [29], the DMC simulated networks resem-

5



Chapter 1. Introduction

ble the PPI network of the drosophila melanogaster [28], especially compared to the resulting

networks of other models, e.g., the forest-fire (FF) model proposed by Leskovec et al. [32]

that emulates certain properties of social networks, the Preferential attachment model that

generates ’scale-free’ networks with a power-law degree distribution simulating the growth

of the web, or DMR, given the data published at the given time.

1.2.1 Functional Modules in PPI networks

An early finding about biological networks such as regulatory networks and PPI networks

was the clear presence of modularity [33, 34]: these networks are not homogeneous, with

comparable connectivity patterns at every vertex, but instead present a higher-level structure

consisting of well connected subgraphs with less substantial connectivity to other such sub-

graphs. While some of the models devised for networks lead automatically to the emergence

of modules within the network [35], these models are purely generative—increasing the size

of the network at each step—and thus do not match biological reality. Moreover, the type

of modular structure resulting from these models has not yet been characterized nor been

compared to those found in biological networks.

1.3 Current Frameworks for Inference Models

Due to the unvailability of information of ancestral biological networks, including the protein-

protein interactions (PPI) networks, many questions could not be answered, for example,

how old is a node (protein) and how to estimate its age; or how to model the evolution of

interactions based on the inferred histories? Reconstructing the evolutionary history of PPI

networks helps answering this kind of questions and estimating the past of any given network

(of extant species). It also can support tracking the emergence of prevalent network’s clusters

and motifs and investigating how the network’s modular structure arises and how they are

affected by environmental changes. While the network inference strongly depends on the

evolutionary model used as the core component, the evolutionary model can also be indirectly

evaluated using the outcome of the inference model.

Given the network data extracted and stored as well as the evolutionary model, the ancestral

network can be inferred from data of just one organism at a time as the authors of the frame-

work NetArch proposed [29]. Elucidating mechanisms in one organism at a time strongly

depends on the quality of the available data. However, as discussed in section 1.1 there is

a high variance of quality and uncertainty of today’s PPI network databases. This intrinsic

difficulty has led some research groups to go beyond the inference of a single network from

data about one organism and to use comparative methods.

In comparative methods knowledge from a well studied system is transferred to another one

under study. Pairwise comparative methods, while more powerful, still offer only limited

protection against noise and high variability. This weakness in turn has led to the use of evolu-
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tionary methods that use several different organisms and carry out simultaneous inference on

all of them [5, 9, 7]—a type of inference that falls within the category of transfer learning [36].

Apart from data about a large variety of organisms, good consensus about the evolutionary

relationships among these organisms is also needed. The latter can be used to integrate the

former in a well-founded manner and thus gaining significant power in the analysis.

For this approach to inference and analysis Zhang et al. coined the term phylogenetic transfer of

knowledge (PTK) [37]. A PTK analysis considers a family of organisms with known evolutionary

relationships and "transfers" biological knowledge among the organisms in accordance with

these relationships. The output of a PTK analysis thus includes both predicted (or refined)

target data for the extant organisms and inferred details about their evolutionary history. The

PTK framework can not only be applied to PPI networks, but can and has been used for many

kinds of biological data. The annotation of gene functions [38, 39, 40], the improvement

of the inference of regulatory networks for a family of species within a maximum likehood

framework [41, 42, 43, 7] or the predicting and refining of protein structures [] are just a few

examples to mention.

1.3.1 Single-lineage Inference

A representative of the models inferring the network’s evolutionary history from data of just

one organism at a time is presented in Network Archaeology (NetArch) [29]. NetArch aims at

reconstructing ancient networks from present-day PPIs using a likelihood-based framework.

The authors proposed several algorithms to reconstruct the growth history of a present-day

network that they then compare with each other. Their method finds the most probable

previous state of the graph by applying an assumed growth model backwards in time. Growth

models considered in NetArch include the duplication-mutation with complementarity (DMC)

model [30, 28], the forest fire model [32], and the preferential attachment that generates ’scale-

free’ networks with a power-law degree distribution. In NetArch the node identities are

retained to be able to track the history of individual nodes. Using this methodology, they

estimate protein ages in the yeast PPI network that are in good agreement with sequence-

based estimates of age and with structural features of protein complexes. The quality of the

inferred histories with each growth model is compared and show that the inference with a

duplication-based evolutionary model outperforms the others.

NetArch [29] takes the PPI network data of one extant species at a time as input and recon-

structs the network history by reversing the growth model. The general maximum likelihood

framework used in NetArch for the inference of network history is depicted in the following.

Let Gt and G∗
t−Δt be a snapshot of the network at a given time t and t −Δt , respectively, while

G∗
t−Δt resembles a precursor network of G∗

t . Then the most probable ancestral graph G∗
t−Δt

can be inferred by finding the maximum a posteriori [29]:

G∗
t−Δt := argmax

Gt−Δt

Pr (Gt−Δt |Gt , M ,Δt )
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Due to the immense search space that grows exponential in size with Δt , the inference is

made feasible by a heuristic simplification by setting Δt = 1. Thus, the network at time t −Δt

is determined by t times repeated single-stepwise reversal of the growth model. Applying

Bayesian the last recent node that entered is determined by [29]:

G∗
t−1 := argmax

Gt−1

Pr (Gt |Gt−1,M )Pr (Gt−1|M)

Pr (Gt |M)
= argmax

Gt−1

Pr (Gt |Gt−1,M )Pr (Gt=1|M)

Embedding the DMC model into this likelihood-based framework with qmod and qcon as

DMC’s model parameters, the aim is to find which node v most recently entered the current

network Gt and which is the anchor node u from Gt−1 that v is duplicated from [29]:

argmax
(u,v)

γuv

n

∏
N (u)∩N (v)

(1−qmod )
∏

N (u)ΔN (v)

qmod

2

1.3.2 Multi-lineage Inference

Due to restrictions and weaknesses of single-lineage models as well as pairwise comparative

methods, evolutionary methods that infer the history based on several different organisms

simultaneously are getting more popular [5, 9, 7]—a type of inference that falls within the

category of transfer learning [36, 37]. Apart from data about a large variety of organisms,

good consensus about the evolutionary relationships among these organisms is also needed.

The latter can be used to integrate the former in a well-founded manner and thus gaining

significant power in the analysis.

For this approach to inference and analysis Zhang et al. coined the term phylogenetic transfer of

knowledge (PTK) [37]. A PTK analysis considers a family of organisms with known evolutionary

relationships and "transfers" biological knowledge among the organisms in accordance with

these relationships. The output of a PTK analysis thus includes both predicted (or refined)

target data for the extant organisms and inferred details about their evolutionary history. The

PTK framework can be used not only to infer the history of PPI networks, but also for many

other kinds of biological data. The annotation of gene functions [38, 39, 40], the improvement

of the inference of regulatory networks for a family of species within a maximum likehood

framework [41, 42, 43, 7] or the prediction and refinement of protein structures [37] are just a

few examples to mention.

The overall structure of a PTK framework can be generalized in Fig. 1.2. It illustrates how the

phylogenetic information can be exploited. Each node in this tree denotes a network for an

organism. The blue nodes with black edges denote the inferred ancestral networks, thus they

are output of the inference model; the blue nodes with red edges and the gray nodes represent

the correct and the noisy data of the extant species, respectively. This distinction between

the correct and the noisy data of extant networks is not considered in every model, e.g., in

some work for ancestral reconstruction [44, 45], but mostly in refinement models [43]. The
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olive-green bold arrows along the phylogenetic tree represent what the evolutionary model

supposes and the vertical red bold arrows between the correct and the noisy version of the

extant species show where the noise model is applied.

Figure 1.2 – A scheme of the a graphical model, as pictured in PTK

Given the graphical model as shown in Fig. 1.2 and the evolutionary model as the fundamen-

tal component, a scoring function then needs to be chosen for the complete design of the

inference algorithm. Depending on the data, reconciliation of gene and species trees might

be necessary. There are approaches based on Hidden Markov ideas, e.g., tHMM model [46].

Most researchers used a probabilistic framework [5, 44, 29, 47, 41, 7], in which the scoring

function is typically a likelihood score, but a few formulated the inference as a combinatorial

optimization problem, in effect using a maximum parsimony criterion [48, 45, 49].

SOPH [49] is an example of parsimony-based inference models exploiting PTK. As an approach

that sums-over-parsimonious-histories (SOPH) it aims at finding the parsimonious or low-cost

set of interaction gain and loss events that leads best to the PPI networks of extant species. This

combinatorial problem is reformulated into an instance of the optimal derivation problem on

a directed, ordered, acyclic hypergraph. This reduces the solution space and allows an efficient

counting of the number of solutions of costs close to the optimal. To turn the network history

inference problem into the optimal derivation problem, each hypervertex in the hypergraph

stores a tuple of a pair of nodes (proteins) and a state: present or absent. The state is to denote

whether there is an interaction between the two nodes (proteins) within the same species just

before either of the proteins duplicates. The hyperedges are assigned costs — the total sum of

costs for the optimal solution is to be minimized or close to the minimum. Additional to the

inference of the network history, the rest of the information stored in this hypergraph can also

help in inferring the order in which the proteins were duplicated within a species.

For the experiments, gene trees for each of the orthology groups of the proteins are created

and reconciled with species tree for the phylogenetic tree. Then, the performance of SOPH on

the inference is evaluated using leave-one-out cross-validation on pairs of orthology groups.

The experiments are run with five herpes virus PPI networks.

ProPhyC [43] is another interesting framework that is rather a refinement model instead of

an inference framework. ProPhyC differentiates between the correct and the noisy networks

of extant species as depicted in Fig. 1.2. It is based on a probabilistic graphical model, using
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simultaneously the information of several organisms of which their evolutionary relationship

is known, thus transfers the knowledge amongst them.

ProPhyC was mainly tested on regulatory network data, but the framework can be modified

and adjusted to other kinds of biological data. The input is the phylogenetic tree, the evolution-

ary model relevant for biological regulatory networks, and the noisy regulatory networks of a

family of species; its output is the refined networks and ancestral networks. As the underlying

evolutionary model, ProPhyC considers gene duplication and loss as well as interaction dupli-

cation and loss during the evolution. Following a gene duplication, the new gene can either

inherit all neighbors from its ancestor or it can randomly gain interactions with some nodes

in the network. The structure of a network is decoded using binary adjacent matrices—0 for

non-existance and 1 for existance of an interaction. The matrix of the "smaller" network is

then embedded into that of a larger network and x instead of a 0 or a 1 implies that the protein

was not yet there in this network. The parameters for the evolutionary model are the base

frenquencies of the interactions — probability for 0-1 for gain and 1-1 for loss of interaction.

Thus, all networks are represented by matrices of the same size. as well as probabilities for

gene duplication and loss. Additionally, a noise model is applied to correct and refine the

noisy networks of extant organisms.

1.4 Contribution of this Dissertation

In this dissertation, we first describe the preliminaries of our work, as well as a brief introduc-

tion of the existing generating and inferencing models in Chapter 2. In chapter 3, we introduce

NEMo, our module-aware two-level model, and show how it performs in generative as well as

evolutionary mode versus the D&D models. In Chapter 4, we perform an extended research

on modularity in PPI networks, from the perspective of networks characteristics and models

of evolution. We present the ideas of an inference model based on NEMo in Chapter 5. Finally,

we come to conclusions and discussions in Chapter 6.

All the work presented in this thesis is the author’s. It has been carried out in close collaboration

with Prof. Bernard Moret, Dr. Xiuwei Zhang who has been involved in valuable discussions,

and the MS students Ms. Gabriela C. Racz and Ms. Qijia Jiang who participated in finding and

evaluating the measures. participated in the research.
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2 Preliminaries

In this chapter, we discuss preliminary questions and issues that need to be solved for our

final models and analysis.

As discussed in Sec. 1.2.1, modularity is now commonly viewed as a main characteristics of

living systems, including PPI networks. While the widely used D&D model (and, by extension,

its various derivatives) automatically gives rise to modular structures, these models are purely

generative, i.e., any development of the network is only possible upon an increase of the size

of the network. However, this does not fit the biological reality.

Thus, we developed NEMo, a model for network evolution with modularity — it is a module-

aware model, generative and evolutionary at the samt time. Then, we use it as the evolutionary

model for our inference model to reconstruct the evolutionary history of PPI networks.

2.1 Finding Seed Graphs

An evolutionary model needs an initial graph to start with, also called seed graph. Seed graphs

have been found to play an important role in the results of the models [50, 51, 52]. Even the

D&D models and their variations [30, 28] are found to be sensitive and only able to capture

topological features of the PPI networks available at that time, given a “right” seed network.

On the other hand, other models like the preferential attachment methods have not been able

to achieve these topological similarities. As a "right" seed network, the authors describe a

network that includes two sizable cliques with many interactions between them. Recall that

cliques are subnetworks in a graph that are complete by themselves, i.e., all vertices within a

clique are connected with each other.

For the generative mode of our module-aware model NEMo we find that for very small seed

graphs (size 7 or smaller) the network becomes extinct too easily. This arises from the setup

of NEMo that it allows not just node duplication but also direct node loss as an evolutionary

event, as well as edge gain and edge loss. Thus, we first start with a seed graph of size 8. As for

the structure of the seed graph, we find that the need of two sizable cliques well connected to
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each other as a seed graph is a strong prerequisite and we hope NEMo to be less restricted

than the D&D models. Thus, we start with a seed graph of size 8 with some modularity and

want to see if NEMo is able to balance itself after many iterations. For further investigation, we

also ran NEMo on another seed graph of size 14. Both networks have parts of clear clustered

cluster as well as parts of less clear structure. They are drafted in Fig. 2.2.

seed network of 8 nodes seed network of 14 nodes

Figure 2.1 – The two seed graphs for NEMo, with 8 nodes (left) and 14 nodes (right)

Our observation is that in both cases of the 8-nodes as well as the 14-nodes as the seed graph,

NEMo can balance itself. After several hundreds of evolutionary steps the structure of the

resulting networks were without noticable difference w.r.t. the measures we choose 2.3.

For the evolutionary mode of NEMo the model is supposed to work with something already

existing and resembling a living organism’s network in further evolution. Thus, we let NEMo

start with a network evolved by a D&D model as well as by NEMo. The results are discussed in

Sec. 3.4.3.

2.2 Clustering Algorithms

Such a model as our module-aware NEMo requires the identification of modules within a

network and the extraction and quantification of some high-level attributes that can be used to

measure similarity. Methodologies used in much of the work on the identification of functional

modules [53, 54, 55] are not applicable here, as we deal with an anonymous graph, not with

annotated proteins. We rely in part on clustering algorithms (to detect clusters, which we

regard as potential modules, within the graph) and in part on matching high-level attributes

of actual PPI networks and using these attributes to measure drift in the course of evolution.

We stress that the clusters found by the clustering algorithms are conceptually not the same

as the functional modules in real-world PPI networks: what the clustering algorithms get is a

snapshot of a state of the network during the evolution potentially seeing only some subset of

interactions that form some functional modules or seeing randomly induced and insignificant,

noisy interactions (e.g., silent mutations in biology), while the functional modules in PPI

networks are stable and functional, thus significant structures. Results of clustering algorithms
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are referred to as suggestions to how the real-world functional modular structure can look.

There are several families of clustering algorithms used in the biological domain. In our study

for our evolutionary model, we use two clustering algorithms of different families to better

evaluate the robustness of the NEMo framework.

The first one is ClusterOne (Clustering with Overlapping Neighborhood Expansion) [56], a

graph clustering algorithm that allows overlapping clusters. It has been useful for detecting

protein complexes in PPI networks tolerating nodes to have multiple-module membership.

This fits the generally assumed idea that a protein can have several functions and thus can

take membership in more than one functional module. ClusterOne iteratively takes a single

seed vertex of the graph and greedily adds or removes vertices w.r.t. to cohesiveness. Having

multiple possibly overlapping such groups formed, the groups then can be merged, according

to the parameter thresholds chosen, e.g., minimum density within a final cluster.

The second clustering algorithm that we use is MCL (Markov Clustering Algorithm) [57, 58, 59].

MCL finds clusters by iterative flow simulation, at each iteration first an expansion is operated,

followed by an inflation. The former resembles the spreading out of the flow (reachability and

connectivity) and it coincides with matrix multiplication; the latter corresponds to an amplifi-

cation of the signal: strong flow within a cluster and evaporating flow between clusters. MCL

is tuned through the inflation parameter that enhances the contrast between well connected

and poorly connected subgraphs, strongly influencing the number of clusters returned by

MCL. We use both the preset inflation value, 2.0 (MC Lde f ), and that recommended in [60],

1.8 (MC L1.8).

For both seed graphs, the resulting clustering of each method is shown in Fig. 2.2 and Fig. 2.3.

ClusterOne, -d = 0.143 MCL default parameters: -I=2.0 MCL -I 1.8 parameters

Figure 2.2 – The seed graph with 8 nodes and its clusterings

It is interesting to observe that for our seed graph of 8 nodes, ClusterOne (where density

threshold = graph density/2) and MC L1.8 with inflation parameter 1.8 both find the same 2

clusters, while MCL with default parameters MC Lde f divides the network into three clusters,

as depicted in Fig. 2.2. On the other hand, for the seed graph of 14 nodes ClusterOne obtains a

clustering with three clusters having two modules overlapping by in total three nodes (marked

yellow), while both MCL settings lead to the same four clusters without any overlap of modules.

In Table 2.1 we present the number of clusters found by each of the algorithms in the networks
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ClusterOne, -d = 0.143 MCL, default parameters MCL, -I 1.8

Figure 2.3 – The seed graph with 14 nodes and its clusterings

provided by the various data sources and versions as mentioned in Sec. 1.1 of the six species

of our interest.

Clearly, if one aimed at characterising the PPI networks of each organism by simply clustering

the data available, it has pitfalls, as shown in the number of clusters found by the same

algorithm for E. coli on the various databases, going from 16 clusters among 4’145 nodes in

STRING to 1’151 clusters among 3’351 nodes in HitPredict—values that again differ by around

two orders of magnitude. Thus, just the number of clusters found by these three clustering

algorithms are not considered as a measure for the assessment.

Since for the real PPI networks it is not yet known for every node its "correct" membership, this

observation leads us to continue using all three clustering methods for our further research on

our models. We are thus more interested in if there are trends and tendencies of the network’s

topology when growing or evolving the networks.

Dynamic Clustering

The clustering algorithms we use for NEMo as discussed in Sec. 2.2 work with static networks.

After a number of evolutionary steps the clusterizer gets the static snapshot of the dynamically

evolving network at that point and clusters it independently from any additional information.

For our inference algorithm based on the module-aware concept of NEMo, we want to find a

way to dynamically adjust the clustering of the network.

Dynamic clustering of networks and partly their visualization have been applied to many

fields of interest, from realtime study for traffic adaptations of Wireless Systems [61], over

urban traffic congestion patterns [62, 63], dynamic neural communities of brain networks [64],

modeling for gene expression data [65, 66], to social networks, etc. Social networks reflect

interactions between individuals. Studying such networks can support research in many areas,

e.g., animal behavior (ecology) [67, 68, 69, 70], spreading of infectious diseases (epidemiology),

terrorrists’ network, etc. These networks all exhibit the prevalence of clusters and they reveal

high dynamics and flexibility in their topological structure.
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An example for a publicly available tool is CommDy [67, 68, 71] — a tool for Dynamic Com-

munity Identification specialized in animal networks. It provides an implementation of the

algorithms for detecting dynamic communities presented by Tantipathananandh [67, 68].

CommDy’s approach is to transform the problem statement into a combinatorial optimization

problem. The authors define a "social cost" for nodes leaving their community, switching

their membership, and "visiting" (shortly attached to) other communities. This social cost

is to be optimized globally and is minimized within clusters. The input for CommDy is a

dynamic (social) network, i.e., a time series of static networks. The algorithm keeps track of

when individuals change membership to which cluster, and for how long they leave if they

come back.

This appeals to our concern about the static reclustering of a snapshot sample of the network:

the local structure of clusters can be insignificantly temporarily modified (e.g., a random

mutation induced gain or loss of an edge that might be reversed in the next step) but switched

back soon again — this scenario resembles a silent mutation in the biological evolution.

If there are many of these distorted noisy signals in the network in the given snapshot, the

clustering results are difficult to be evaluated. Making use of the concept of dynamic clustering,

we keep track of the nodes’ membership for a few generations and the "social cost" as can

assist in "choosing" the membership. A generation here refers to the period between two

clusterings.

2.3 Assessing Network Similarity

In order to evaluate the output of NEMo, we must find a way to compare them with the

real-world PPI networks and the networks generated by other models.

There exist network alignment tools to assess biological networks and their similarity. Most

of these tools first rely on a sequence alignment to match the annotated nodes and then the

network topology is included. This is however not applicable for the output of the evolutionary

simulation models. We need to be able to evaluate and compare networks completely on their

structure and topology.

Thus, we must first quantify significant attributes of PPI networks. The resulting features can

then be used to measure the similarity of our generated networks to real networks, as well

as the differences between networks generated by our model and networks generated under

existing models. Similarity here refers to structural and topological features such as modularity

and connectivity: we need to compare networks very different in size and composition and

so cannot use tools such as network alignment methods. We thus propose a set of features

applicable to hall networks, features chosen to measure global properties of networks and to

quantify aspects of modularity.

Most of these features proposed are commonly used in the analysis of networks [55, 72, 52];

several are modified so as to provide a level of independence from size—bacterial PPI networks
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are necessarily smaller than mammalian PPI networks, while simulations can be run at all sizes.

For each network, we compute the number of nodes, the number of edges, and the degree

distribution; we also run the ClusterOne cluster algorithm (always with the same parameters)

and store the number of clusters as well as the size and composition of each cluster. We then

compute the following five global measures.

Cluster Coefficient (CC): The CC is based on triplets of vertices. A triplet is open if connected

with two edges, closed if connected with all three edges. The CC is just the ratio of the

number of closed triplets divided by the total number of (open or closed) triplets [73].

Graph Density (GD): The density of a graph is the ratio of the actual number of edges to the

number of possible edges.

Diameter (�): The diameter of a graph is the length of the longest simple path in the graph.

Fraction of Edges Inside (FEI): FEI is the fraction of edges contained within modules. We ex-

pect it to be high since PPI networks contain highly connected substructures (modules)

that have only few connections to vertices outside the substructure[72, 74, 44].

Gini coefficient (Gini): If household i has a yearly income of xi , then the Gini coefficient of

the population is given by

G =
∑n

i=1

∑n
j=1 |xi −x j |

2n
∑n

i=1 xi
.

For our use in studying modularity we define the “income" of a node as the degree of

the node plus the sum of the degrees of its immediate neighbors.

Average Shortest Path (SPM): the mean of all pairwise shortest paths in the graph.

Tail Size (TS)+: A simple representation of the tail of the degree distribution, TS is fraction of

the number of nodes with degree higher than one-third of that maximum node degree.

+ TS was only used at the beginning when developing NEMo, see Chapter 3.
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Table 2.1 – General characteristics of the six PPI networks in the various databases, with
clustering results.

Species Source #nodes #edges #clusters #clusters #clusters
Cluster1 MCL MCL1.8

E.c. S900 3’251 14’555 470 600 524
S.c. S900 5’162 68’190 686 564 409
H.s. S900 10’974 118’803 1’131 1’219 956

M.m. S900 10’020 125’427 872 1’117 925
C.e. S900 6’232 62’512 615 791 661

D.m. S900 6’946 62’423 732 1’004 873
H.s. H 9’673 39’198 2’104 2’424 1’965
E.c. M 1’941 3’989 381 908 760
S.c. M 2’390 16’127 309 460 425
H.s. M 9’141 41’456 1’671 3’771 3’130
E.c. Pa 3’351 20’239 170 915 607
S.c. Pa 6’019 84’740 10 178 89
H.s. Pa 16’637 155’616 3’418 858 479

M.m. Pa 5’011 12’135 1’002 1’049 1’002
C.e. Pa 5’011 12’135 919 1’184 919
E.c. Ph 2’512 9’407 575 731 942
S.c. Ph 5’218 60’248 982 178 125
H.s. Ph 14’213 135’718 2’983 625 360

M.m. Ph 5’064 12’117 897 983 827
C.e. Ph 3’093 7’328 574 191 652
E.c. Da 2’940 12’261 802 908 810
S.c. Da 5’176 22’975 1’091 1’229 967
H.s. Da 4’873 7’750 1’054 1’072 1’072

M.m. Da 2’331 2’577 558 683 616
C.e. Da 2’749 4’171 543 726 541

D.m. Da 7’011 23’262 1’877 2’223 1’885
E.c. Dc 1’433 2’126 500 570 528
S.c. Dc 2’409 5’300 436 521 455
H.s. Dc 4’671 7’336 1’023 1’214 1’048

M.m. Dc 331 2’577 558 683 616
C.e. Dc 2’226 189 80 130 84

D.m. Dc 634 706 161 180 163
S.c. F j 5’808 362’421 10 593 97
H.s. F j 46’243 476’399 33 3’370 2’014
C.e. F j 15’139 993’367 81 1’545 968
S.c. Fb 4’172 81’953 430 204 75
H.s. Fb 5’369 270’704 366 163 146
C.e. Fb 5’178 626’342 178 77 168
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2.4 Phylogenetic Tree Reconstruction

For our inference model we do not consider single-lineage methods, but evolutionary methods

inferring the history based on several organisms simultaneously. Therefore, the phylogenetic

tree with our six organisms of interest as leaves is needed. Usually, the phylogenetic tree is

given or reconstructed from DNA or protein sequence data what is feasible for organisms of

the same family, where the same genes mostly exist in all involved species considered. Often,

the species tree’s structure differs slightly from the gene trees’ structures, thus mostly, a gene

and species tree reconciliation is needed.

However, our study includes species across the biota: fauna, fungi, and bacteria are repre-

sented. Moreover, we work at such coarse granularity that hardly any of the work in reconcili-

ation applies. Rates would vary enormously among species and, more damagingly, among

modules and within modules. Reconciliation approaches mostly look at a few isolated genes

and is based on sequence data. The underlying phylogeny is known, of course, but we cannot

assume rates or lengths – unless perhaps we do it in generations.

Thus, we propose to consult results from network alignment (e.g., IsoRank [75], IsoRankN [76])

and functional modules detection (e.g., [54]) and perform a parsimony approach on phylo-

genetic tree reconstruction, i.e., we aim at reconstructing a phylogenetic tree that explains

the data with the least evolutionary distance (e.g., evolutionary events). Since we assume

the topology of the tree to be given and have the leaf data, we deal with a small parsimony

problem. In this case, Fitch’s algorithm [77] (Section 2.5) can be applied. For both of these

preprocessing steps, we take networks stored in the databases STRING and DIP since all of

our organisms are represented.

2.5 Fitch’s Algorithm

Given the small parsimony problem (tree topology given), one representative parsimonious

algorithm for phylogenetic tree reconstruction is the Fitch’s Algorithm [77]. The Fitch’s al-

gorithm takes n species as the leaves of a given tree as input and finds the set of minimal

number of operations needed to achieve the parsimonious states of the internal nodes of

the tree in two traversals. The Fitch’s algorithm assumes that any state can convert into any

other state and the conversion of states is position-independent. At first, it starts at the leaves

and traverses the tree to the root in a post-order way, determining a set of all possible states

(e.g., nucleotides for genes or amino acids for proteins) for each internal node: if at node i the

intersection of the states of its children j and k is empty, then i keeps the union of all states

of j and k, otherwise i keeps all states that j and k have in common (as depicted in Fig. 2.4);

then, it traverses the tree back from the root to the leaves in a pre-order manner choosing the

ancestral states for the internal nodes in a parsimonious manner (Fig. 2.5).

We want to exploit this same idea for our phylogenetic tree reconstruction. Based on global

network alignment we can uniformly encode for the states (proteins) in the different species’
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PPI networks. Additionally, we have a second level on top of the PPI network level that resem-

bles the modular structure of the networks where each node of the network thus represents a

module. Details are discussed in Section 5.

2.6 Network Alignment

The underlying assumption of an alignment of two or more PPI networks is that two functional

ortholog proteins in two different PPI networks are likely to interact with proteins in the

corresponding networks that are functionally orthologs themselves [?, ?, ?].

Algorithms for PPI network alignment use biological (e.g., amino acid sequences of proteins)

and topological (e.g., network structures) information to align two networks. If the alignment

of functionally conserved interactions is of higher interest, the topological information is

found to be of higher importance than the information provided by sequence alignment [?].

We need network alignment to create efficient network encoding. Orthologous proteins of

different networks are considered as the same node in the global representation. For our

purpose of network evolution and inference with modularity, we also consider those aligned

parts of the network with modular structure or of high similarity as functionally identical. This

helps for the Fitch’s algorithm to be applied on the modular level of our inference model.

The two main families of approaches in PPI network alignment are local and global network

alignment. In local network alignment the search focuses on small but highly conserved

subnetworks between two networks, while in global network alignment the focus lies in

aligning all or most of the proteins between two networks to find large subgraphs that are

functionally and topologically conserved over all nodes.

With what has been discussed, global network alignment would be the preferred choice for our

case. Furthermore, instead of pairwise network alignment [13, 78, ?], we propose to perform

multiple network alignment [75, 76, 79, 80] on the PPI networks of all six species to obtain a
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common framework that all networks can be embed into.
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3 NEMo

While, as noted earlier, the D&D model (and, by extension, its various derivatives) will auto-

matically give rise to modular structures, it does so in scenarios of unrestricted growth: no

edge deletions are allowed other than those that occur as part of a vertex duplication and a

vertex gets deleted only indirectly, if and when its degree is reduced to zero. In that sense, the

D&D, while a generative model, is not an evolutionary model: it can only grow networks, not

evolve them while keeping their size within some fixed range. The same is true of its several

variants.

3.1 NEMo — a two-level Model

Our aim is to produce a generative model that is also an evolutionary model, a model that

we can later use for reconstructing the evolutionary history of PPI networks. Under such a

model, a network may grow, shrink, or, most commonly, vary in size within some bounded

range. Since the dominant growth operator is duplication and since this operator typically

adds multiple edges to the network, random (i.e., unrelated to other events) deletion of edges

must be fairly common. We conjectured that, under such a model, modularity would not

necessarily be preserved—simply because, under such a model, the selection of interactions

to lose is independent of the modular structure. Since modules appear both necessary to life

and quite robust against mutations, a model of evolution of PPI networks that is biased (as

nature appears to be) in favor of the survival of modules would need to “know" about the

module structure. (From an evolutionary standpoint, mutations that remove interactions

within modules would be under negative selection.)

We therefore designed a two-level model, NEMo. In NEMo a PPI network is represented as

a graph, with nodes representing proteins and undirected edges representing undirected

interactions between pairs of proteins.

Events in NEMo occur at the lower level and are based on the D&D model, suitably augmented.

The main event in a D&D model is node duplication. Node duplication copies an existing
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node and all of its connections, thereby creating a new node and a collection of new edges; in

addition, some of the edges copied as well as some of the new edges created are probabilisti-

cally lost as part of the same event. We retain this even in NEMo, but allow the newly created

node to be connected to an additional node, randomly chosen within the graph. (The loss of

edges in the D&D model corresponds to the common evolutionary adaptation that reduces

the level of conservation in genes that exist in multiple copies; most of the time the resulting

divergence in the gene sequence will lead to a loss of interaction, but it is also possible that it

will lead to a gain.) We also add an independent gain or loss event for each node: with low

probability, a node can establish a new connection to a previously unconnected node.

The higher level is "module-aware" so that evolutionary events can be classified as within

a module or between modules. Such a model requires the identification of modules within

a network and the extraction and quantification of some high-level attributes that can be

used to measure similarity. Methodologies used in much of the work on the identification

of functional modules [53, 81, 55] are not applicable here, as we deal with an anonymous

graph, not with annotated proteins, so we use clustering to identify modular structures, with

a clustering algorithm that supports node overlap between clusters. (Many proteins have

multiple domains and thus naturally interact with very different proteins and even a single-

domain protein can be part of several pathways or modules: hence we need a similar flexibility

in the definition of modules in our model.)

(a) (b)

Figure 3.1 – A schema of the evolutionary process of NEMo. It shows how a network can look
(a) after multiple timesteps; (b) after reclustering

More precisely, events affecting nodes and edges can be classified into four categories: node

gain, node loss, edge gain, and edge loss. Node gain occurs exclusively through duplication

of an existing node, a duplication that typically also results in both edge gains and edge

losses. Node loss removes a randomly chosen node, reflecting such biological events as

mutation in transcription factors or pseudogene formation. (As in the D&D models, it is also

possible to lose a node through progressive loss of edges until the node has degree zero.)

Edge loss (other than edges losses associated with a node duplication) removes a randomly

chosen edge and reflects such biological events as domain mutations, structural mutations,

subfunctionalization, and the like. Edge gain (other than edge gains associated with a node

duplication) connects a previously unconnected pair of nodes and thus reflects many of

the same events that can also cause edge loss, such as domain or structural mutations, or

progressive neofunctionalization.

The higher level of the model reflects the modular structure and influences the event chain
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as follows. First, we allow up to one event to occur in each module within the same step.

That is, whereas existing models treat the network as one unit and allow a single event at a

time, our model treats the network as a collection of subgraphs (modules) and allows up to

one event in each subgraph. Multiple events within the same step can more closely model

interconnected events—events in two different modules, for instance, can affect the same

shared node. Second, we distinguish intramodular events (all four events can be intramodular)

from intermodular events (only edge gains and losses can be intermodular), allowing us to

use different parameters for the two types. We use this flexibility to introduce a slight bias

in favor of intramodular edges over intermodular edges. Finally and crucially, while we

automatically place a duplicate node within the same module as the original node, we also

periodically recompute the subgraph decomposition, thereby “discovering" changes in the

module structure and recording evolutionary events at the module level as module emergence,

module disappearance, fusion of modules, and fission of modules. (These module-level events

are thus not independently generated, but come into being as a consequence of node- and

edge-level events.) Recomputing the modular structure can be done at fixed intervals (in the

results presented below, the recomputation takes places after one third, two thirds, and all of

the steps, for instance) or once the current modular structure has diverged sufficiently from

the last recorded one.

In an evolutionary simulation using NEMo, at each step, each module may record no event

or one lower-level event; in the latter case, that event may be an intramodular event (node

duplication, node loss, edge loss, or intramodular edge gain) or an intermodular event (in-

termodular edge loss or gain). The parameter controlling the “no event" outcome at each step

can be used to allow the simulation of distinct evolutionary rates in different modules while

the parameter controlling intramodular vs. intermodular events can be used to introduce a

bias in favor of module conservation. (Note that, when a node loss occurs, the node is removed

from its module, but not from any overlapping module: it is removed entirely from the network

only when it is the target of node loss and appears in one module only.) Very small modules

can easily disappear as a consequence of just a few node and/or edge losses and are thus

somewhat unstable when all modules are assigned the same loss and gain parameter values.

For the identification of modules we rely on clustering algorithms to detect clusters, which

we regard as potential modules, within the graph. There are several families of clustering

algorithms used in the biological domain. As mentioned in Section 2.2, methodologies used in

much of the work on the identification of functional modules [53, 81, 55] deal with annotated

proteins and are thus not applicable to an unannotated graph. In this study, we use mainly

ClusterOne [56], a graph clustering algorithm that allows clusters with overlapping nodes and

has proved useful for detecting protein complexes in PPI networks. We also use a Markov

clustering algorithm, MCL [57, 59, 58], which finds the clusters by iterative flow simulation.

The question remains when to trigger the reclustering process. One option is after a fixed

number of evolutionary events or steps (recall that in a step NEMo allows up to as many

evolutionary events as it has clusters); on the other hand, it could be after x events or steps
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where x is a ratio depending on the size of the network; more sophisticatedly, it could be

triggered by evaluating the topological structure of the network — if the structure has changed

sufficiently w.r.t. to some measures, recluster, otherwise wait. For our purposes we chose

the first two options as just to validate the concept of NEMo without tuning too much: in

the growth mode, reclustering is iteratively triggered the number of steps reaches the size

of the growing network at the beginning of this time frame; while in the evolutionary mode,

reclustering is triggered after a fixed number of evolutionary steps (recall that NEMo allows in

a step up to as many evolutionary events as it has clusters).

We have kept the design of NEMo as simple as possible and used as few parameters as possible:

in the absence of deeper knowledge (richer annotation) for PPI networks, multiplying param-

eters only invites errors and possible overfitting. (The lack of information about functionality

is particularly problematic, since it makes it difficult to distinguish a direct interaction from

an indirect one and, as we pointed out in the introduction, many PPI network databases do

not make that distinction.) With more data and a better understanding of the role of network

structure, the basic set of parameters we used in this study can be expanded; in particular,

module-specific values can be assigned to (or inferred for) various parameters.

3.2 Assessing Modularity

To evaluate NEMo, we compare its output with natural PPI networks and the output of D&D

models w.r.t. a set of features that we described in Sec. 2.3. Let’s recall that for this evaluation

of NEMo, we use the following features: Cluster Coefficient (CC), Graph Density (GD), Fraction

of Edges Inside (FEI), Diameter (�), Shortest Path Mean (SPM), Gini Coefficient (Gini).

For the FEI the networks need to be clustered. Therefore, we applied ClusterOne and MCL

with default parameter setting (MC Lde f ).

Initially, we included the Tail Size (TS) as one of the global measures: TS is a simple represen-

tation of the tail of the degree distribution. It is fraction of the number of nodes with degree

higher than one-third of that maximum node degree. However, since TS strongly correlates

with degree distribution, we omitted TS in further research, since we keep track of the degree

distribution.

3.3 Results on Natural PPI Networks

For the data, we choose to work with model organisms, as they have large numbers of doc-

umented, high-confidence interactions. For the start, we picked the three species with the

largest number of such interactions, E. Coli, S. Cerevisiae, and H. Sapiens. These sources

were considered at this step to investigate the discrepancies among the networks in cur-

rent databases: STRING, HPRD, the experimental setup of MAGNA++, and HitPredict. For a

detailed description of the data sources, please refer to Section 1.1.
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We recall that STRING database [10] aims to provide a global perspective for as many organ-

isms as feasible, tolerating lower-quality data and computational predictions. Due to this bias,

STRING includes a large number of indirect interactions, which we treat as false positives,

since our aim is to evolve a network of direct interactions. Fortunately, STRING stores an

evidence score for each interaction to allow elimination of false positive entries by the user. We

thus used both the complete dataset and a subset filtered by using a high threshold of > 900

on the evidence scores.) For other sources, we consulted the manually curated H. sapiens

PPI network databse HPRD [12] and the experimental setup of the MAGNA++ algorithm [13],

which aims at maximizing accuracy in global network alignment: an H. sapiens PPI network of

9’141 proteins and 41’456 interactions [14], an E. coli PPI network [15] of high-confidence of

1’941 proteins with 3’989 interactions, and a yeast S. cerevisiae PPI network with 2’390 proteins

and 161’277 PPIs [16]. We also use the database HitPredict [18, 17], which stores experimen-

tally determined protein-protein interactions with reliability scores; for this database, we also

included the network of C. elegans as an additional reference.

Thus, we run the feature analysis in this step on the filtered STRING database with score > 900,

the complete HPRD dataset, the complete MAGNA++ datasets, and the complete datasets of

HitPredict.

For clustering (that is, to identify putative modules), we used both ClusterOne and MCL.

A brief description of these PPI networks in the various databases and versions is provided in

Table 2.2: number of nodes and edges, as well as the number of clusters found by ClusterOne

and MC Lde f .

Table 3.1 presents the values of each measure for the reference PPI networks in the various

databases. In this table, S stands for STRING’s complete dataset, S900 stands the filtered dataset

of confidence score > 900, H for HPRD, M for MAGNA++, and P for HitPredict.

The very large differences in size among the databases for the same network are striking: the

STRING database has well over 4 million edges for the human PPI network, whereas the HPRD

database has fewer than 40’000, or less than 1% of the number in STRING. This large discrep-

ancy underlines the difference in philosophy between various PPI databases and illustrates

why testing models or inferences against databases must be done with great care. For instance,

simply clustering the graph has pitfalls, as shown in the number of clusters found by the same

algorithm for E. coli on the various databases, going from 16 clusters among 4’145 nodes in

STRING to 1’151 clusters among 3’351 nodes in HitPredict—values that again differ by around

two orders of magnitude. The graphs themselves are all sparse (graph density is low, even for

the relatively denser STRING networks), but some structural differences are clear, although the

reason for any such difference is not always clear: differences between the numbers of proteins

and interactions stored in the databases, differences between the complexity of the networks,

or differences between the organisms’ metabolic needs and lifestyles. The Gini coefficient

points to significant inequality of distribution in the degree of one-level neighborhoods—Gini

coefficients above 0.6 for income per capita are very rare in today’s world—, but the values are
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Table 3.1 – Values of our measures for the reference PPI networks in various databases

Species Src CC GD � FEI FEI Gini SPM
Cluster1 MCL

E.c. S 0.21 0.066 5 1.01 - 0.342 1.9
S.c. S 0.28 0.046 7 1.09 - 0.511 2.1
H.s. S 0.23 0.023 - 0.95 - 0.614 -
E.c. S900 0.44 0.003 17 0.71 0.69 0.781 5.6
S.c. S900 0.43 0.005 14 0.80 0.70 0.802 3.7
H.s. S900 0.39 0.002 13 0.63 0.56 0.720 3.8
H.s. H 0.16 0.001 14 0.54 0.28 0.679 4.2
E.c. M 0.34 0.002 23 0.92 0.72 0.678 7.1
S.c. M 0.44 0.006 18 0.97 0.83 0.852 4.8
H.s. M 0.16 0.001 14 0.56 0.34 0.669 4.1
E.c. P 0.17 0.004 9 0.65 0.23 0.636 3.3
S.c. P 0.30 0.005 7 0.34 0.90 0.469 2.5
H.s. P 0.22 0.001 8 0.30 0.80 0.533 3.0
C.e. P 0.06 0.001 12 0.47 0.46 0.700 4.6

* values of FEI can exceed 1 due to multiple membership of nodes: edges shared by two nodes that both belong to multiple
modules are counted more than once.

quite variable across the databases. The fraction of edges inside modules displays one of the

more striking differences, being very high for networks in STRING, HPRD, and MAGNA++, but

much lower in networks in HitPredict, presumably because HitPredict is good at excluding

indirect interactions that simply shortcut paths through transitive closure.

We also tested these networks for one of the characteristic attributes of social networks, small-

world networks, and scale-free networks, namely a degree distribution that follows a power

law. The conclusion is very clear for the STRING networks: they do not follow a power law,

as the plot in Figure 3.2, left, clearly shows—a power law would result in an oblique line, not

in the complex curve shown in the figure. It is less clear for the other three databases; in fact,

for E. coli, the plot appears to support a hypothesis of an underlying power law, at least in

HitPredict, as shown in Figure 3.2, right.

3.4 Results on Simulations

3.4.1 Simulation goals and setup

The goal of our simulations is to verify the ability of NEMo to produce networks with char-

acteristics similar to those of the natural PPI networks and also to compare the networks it

produces with those produced without the module-aware level and with those produced by

D&D models. In particular, we want to test the ability of NEMo to sustain modules in networks

not undergoing growth, but subject only to evolutionary changes—where gain of proteins and
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Figure 3.2 – The degree distribution for the E. coli network in STRING (left) and HitPredict
(right), both complete dataset

interactions is balanced by loss of same. Therefore we run two distinct series of simulations,

one for generation and one for evolution.

The first series uses both the DMC model [30], perhaps the most commonly used model in the

D&D family today, and NEMo to grow networks to fixed sizes. We then compute our features

on these networks and compare both types of generated networks with the PPI networks of

the model organisms. Since DMC is not module-aware, but claimed to generate modular net-

works [35], whereas NEMo is explicitly module-aware, we want to see how well the character-

istics of each type of generated network compare to the PPI networks of the model organisms.

In the second series of simulations, we use NEMo in steady-state mode (balanced gains

and losses) over many steps to evolve networks produced during the first simulation series.

Our main intent here is to observe the evolution (mostly in terms of size, edge density, and

modules) of the networks. We use parameters for NEMo that give it a slight bias towards

growth, mostly to prevent the natural variance of the process from “starving" too many of the

networks.

3.4.2 Results for network generation

We set parameters of our model for simulating growth of the network and compare the

resulting networks with those built with the standard DMC model for similar sizes, as well as

with the PPI networks from the three model organisms. (In generative mode, NEMo is not just

module aware, but also reclusters the network regularly.)

We compute our network features for each of these networks, but report mean values over

the set of simulations. Table 3.2 shows these means, preceded for convenience by the same

features shown for PPI networks (from Table 2). DMC and NEMo both generate networks with

features comparable to those observed in the PPI networks collected from HPRD, MAGNA,

and HitPredict, although the significantly lower clustering coefficient of the DMC-generated
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Chapter 3. NEMo

Table 3.2 – Values of our features for the generated networks and the reference PPI networks in
various databases

Species Source CC GD � FEI Gini SPM

H.s. H 0.16 0.001 14 0.54 0.679 4.2
H.s. S 0.23 0.023 - 0.95 0.614 -
H.s. S900 0.39 0.002 13 0.63 0.720 3.8
H.s. M 0.16 0.001 14 0.56 0.669 4.1
H.s. P 0.22 0.001 8 0.30 0.533 3.0
E.c. S 0.21 0.066 5 1.01 0.342 1.9
E.c. S900 0.44 0.003 17 0.71 0.781 5.6
E.c. M 0.34 0.002 23 0.92 0.678 7.1
E.c. P 0.17 0.004 9 0.65 0.636 3.3
S.c. S 0.28 0.046 7 1.09 0.511 2.1
S.c. S900 0.43 0.005 14 0.80 0.802 3.7
S.c. M 0.44 0.006 18 0.97 0.852 4.8
S.c. P 0.30 0.005 7 0.34 0.469 2.5
C.e. P 0.06 0.001 12 0.47 0.700 4.6

DMC-gen500 0.05 0.004 22 0.95 0.362 7.0
NEMo-gen500 0.14 0.008 17 0.96 0.373 6.7

network (0.05 as compared to 0.14 for the NEMo-generated network) indicates a less resolved

modular structure. (All PPI networks from databases have larger clustering coefficients than

the generated networks, but the size of networks matters in this respect, as does the number

of additional, indirect interaction edges.) The Gini coefficients of the generated networks

are comparable and are considerably smaller than those of the networks from the databases,

which is to be expected from a model used in generative mode—the generation gives little

time for module-level events such as merging and splitting that contribute to the unequal

distribution of neighborhood degrees.

3.4.3 Results for network evolution

In the second step of our experiments we test the ability of NEMo to simulate the evolution of

a PPI network (with roughly balanced node gain and loss rates) while preserving modularity

and also test how NEMo’s behavior is affected by its initial condition by using both DMC- and

NEMo-generated networks at time zero. We want to observe the evolution of the network after

a larger number of events, so we (arbitrarily) choose 600 steps—recall that NEMo allows up

to one event per module at each step, so that the 600 steps can yield a much larger number

of events. Figure 3.3 shows the changes in network size (numbers of edges and vertices)

and structure (numbers of modules) as an initial network is evolved through 600 steps, with

reclustering into modules taking place after 200 and 400 steps.
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3.4. Results on Simulations
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Figure 3.3 – Evolution of network characteristics under the NEMo model over 600 steps, with
reclustering into modules at 200 and 400 steps. Top line shows the total number of edges,
second line the number of vertices, third line the number of modules, fourth line the size of
the largest module, and bottom line the number of singleton modules.

Evolution of network characteristics under the NEMo model over 600 steps, with reclustering

into modules at 200 and 400 steps. Top line shows the total number of edges, second line the

number of vertices, third line the number of modules, fourth line the size of the largest module,

and bottom line the number of singleton modules.

The main observation here is that NEMo, when started with a DMC-generated network (part

(a) of the figure), begins by reconfiguring the network, reducing its number of vertices by about

one third over the first hundred steps and replacing edges. It then moves into much the same

mode as depicted in part (b) of the figure, which shows a steady evolutionary behavior mixed

with a small bias towards growth. The implication is that, while the DMC-generated network

may have a modular structure, that structure is not really compatible with the type of structure

our two-level model embodies: the module structure built by DMC is somehow “wrong" and
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needs to be heavily modified before the model can enter a stable phase. In particular, observe

that the graph density of the DMC-generated network is low and gets swiftly increased by

NEMo, while the initial number of modules is high and gets switfly decreased by NEMo as a

consequence of the removal of many nodes. After the first 200 steps and the first reclustering

of modules, the evolution follows the same path as that followed immediately when working

from a NEMo-generated intial graph, as seen in part (b) of the figure. Part (b) shows variance

in the rate of increase in the number of edges, partly a consequence of the node duplication

process—duplicating a few high-degree nodes in rapid succession quickly increases the overall

degree of the network, while also increasing the number of high-degree nodes. Most NEMo

simulations show a mixed growth rate within the 600 simulation steps, indicating that NEMo

is flexible and allows a reshaping and restructuring of a network while keeping the network

size pretty stable. The node-edge ratio for biological PPI networks (see Table 1.2) shows that

the number of edges is some multiple (larger than 1) of the number of nodes, but that this

multiple is quite variable. Thus, the flexibility and dynamics that NEMo enables are important.

The mild generative bias we deliberately introduced into the evolutionary simulations can be

harmlessly removed for evolving NEMo-generated networks and, through larger numbers of

steps, evolving a modular structure closer to that of the PPI networks from the databases.

The module-aware level of NEMo derives its power from its ability to distinguish intermodular

from intramodular events. However, NEMo uses this power in a minimal way, by assigning

slightly different probabilities to the two classes of events—in evolutionary terms, it simulates

a slightly stronger negative selection for intramodular interactions than for intermodular

interactions. The distinction between the two classes of events could be used to a much larger

extent, but our results show that even this minimal intervention, consistent with a selective

pressure to preserve modularity while allowing modules themselves to adapt, suffices to create

a significant difference in the types of networks produced.
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4 Modularity in PPI Networks

We want to test whether the introduction of modularity into the evolutionary model makes a

difference in the properties of the generated networks compared to biological networks. This

verification is important before we move on to the evolutionary inference based on this idea.

To this end, we present the results of simulations and compare the networks thus produced

to the consensus networks currently stored in a variety of databases for model organisms.

Our comparisons are based on both network alignment ideas and new measures aimed at

quantifying modularity, so we also discuss the usefulness of these measures and evaluate

published PPI networks with respect to these measures. Our measures of modularity can be

used to analyze the general characteristics of PPI networks and clearly distinguish the various

models organisms. Our findings support the accepted bias of published networks towards

false positives and the often reported distribution of modules into a few large subgraphs and a

collection of much smaller subgraphs; NEMo produces networks with the latter characteristic

and maintains it even when it has reached a target range of sizes and simply makes small

changes to the structure of the network. We show that, after filtering out interactions (edges)

of lower confidence, we can identify a number of structural features, both at the level of the

entire network and at the level of individual modules, that extend across both species and

databases. These structural features can then be taken as references in our second step, in

which we compare them with comparable features produced by existing network models

as well as by our NEMo model, in order to characterize how well these various models do

in generating the type of structure and modularity observed in PPI networks. We show that

NEMo, a model that explicitly takes modularity into account, comes much closer to producing

these same structural features than current models (all of which operate strictly at the node

and edge level).
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4.1 Materials and Methods

4.1.1 Data on PPI networks

Compared to the initial evaluation we presented with NEMo 3.3, we conduct this further and

deeper research on a set of six databases, some of which include several data sources. Addi-

tionally, we pick six model organisms that are represented in most of these databases, namely

E. coli, S. cerevisiae, C. elegans, D. melanogaster, M. musculus, and H. sapiens as references.

As we showed in last chapter (and in NEMo [82]), PPI networks for the same species can vary

enormously from one database to the next. In particular, databases such as STRING [10] that

seek to amass as many interactions as possible have very little in common with databases

such as HPRD [12], which is manually curated for a single organism. Fortunately, the more

inclusive databases also offer a confidence score for their entries and our previous experience

indicated that restricting the entries to those with high confidence scores led to a subnetwork

much more in line with those of other databases. Thus we used both the full network (all

entries in the database) and a subnetwork consisting of only high-confidence entries for these

inclusive databases.

Additionally to the data sources we used in Section 3.3, we add two new data sources:

DIP The manually curated Database of Interacting Proteins (DIP) [19] stores experimentally

determined interactions between proteins with confidence annotations. We use the full

dataset, Da , and the set of entries assigned confidence value “core," Dc .

FunctionalNet The server of FunctionalNet (www.functionalnet.org) collects probabilistic

functional gene networks for a small number of species. We take the HumanNet [20] for

H. sapiens, the Wormnet [21, 22] for C. elegans, and the YeastNet [23] for S. cerevisiae.

The probability of an interaction to be a true functional linkage between two genes is

represented by a log-likehood score for the respective entry. The networks are provided

with a full network of all interactions, F j , and a benchmark set, Fb .

Thus, now our complete set of data sources consists of: STRING, HPRD, MAGNA++, HitPredict,

DIP, and FunctionalNet (detailed description to the complete set of data sources can be found

in Section 1.1. Table 1.1 shows which species is represented in which data source. Also

throughout this chapter, S900 stands for the dataset with confidence scores at least 900 in the

STRING database, H for HPRD, M for MAGNA++, Pa and Ph for HitPredict, Da and Dc for DIP,

and F j and Fb for FunctionalNet.

4.1.2 Clustering algorithms

Also for this extended research on the modularity in PPI networks, the modules are com-

puted in the network through clustering. We again use two main clustering algorithms:
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ClusterOne [56] and MCL [57, 59, 58] . ClusterOne is guided by a density threshold that we

define as half of the network’s overall density. MCL’s inflation parameter enhances the contrast

between well connected subgraphs and poorly connected ones and plays a major role in the

number of clusters found [60]—larger inflation parameters tend to yield finer-grade partitions.

Brohee et al. also found through a series of experiments that a value of 1.8 for the inflation

rate did best for networks with stronger and weaker connected components. So we compute

clusters with both the pre-set default value (2.0) (MC Lde f ) and 1.8 (MC L1.8).

Table 4.1 shows the complete information on how many clusters (modules) each clustering

algorithm found in the networks in the various databases and versions. To run ClusterOne,

we set the minimum size of a cluster to 1, the minimum density within a cluster to half of the

global density of the network, and no penalty. Singleton nodes with no module membership

are counted as individual modules of size 1. Note that the number of identified clusters can be

quite variable between the three versions, but more commonly is strongly correlated among

the three.
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Table 4.1 – General characteristics of the six PPI networks in various databases.

Species Source # nodes # edges # clusters # clusters # clusters
Cluster1 MCL MCL -I1.8

E.c. S900 3’251 14’555 470 600 524
S.c. S900 5’162 68’190 686 564 409
H.s. S900 10’974 118’803 1’131 1’219 956

M.m. S900 10’020 125’427 872 1’117 925
C.e. S900 6’232 62’512 615 791 661

D.m. S900 6’946 62’423 732 1’004 873
H.s. H 9’673 39’198 2’104 2’424 1’965
E.c. M 1’941 3’989 381 908 760
S.c. M 2’390 16’127 309 460 425
H.s. M 9’141 41’456 1’671 3’771 3’130
E.c. Pa 3’351 20’239 170 915 607
S.c. Pa 6’019 84’740 10 178 89
H.s. Pa 16’637 155’616 3’418 858 479

M.m. Pa 5’011 12’135 1’002 1’049 1’002
C.e. Pa 5’011 12’135 919 1’184 919
E.c. Ph 2’512 9’407 575 731 942
S.c. Ph 5’218 60’248 982 178 125
H.s. Ph 14’213 135’718 2’983 625 360

M.m. Ph 5’064 12’117 897 983 827
C.e. Ph 3’093 7’328 574 191 652
E.c. Da 2’940 12’261 802 908 810
S.c. Da 5’176 22’975 1’091 1’229 967
H.s. Da 4’873 7’750 1’054 1’072 1’072

M.m. Da 2’331 2’577 558 683 616
C.e. Da 2’749 4’171 543 726 541

D.m. Da 7’011 23’262 1’877 2’223 1’885
E.c. Dc 1’433 2’126 500 570 528
S.c. Dc 2’409 5’300 436 521 455
H.s. Dc 4’671 7’336 1’023 1’214 1’048

M.m. Dc 331 2’577 558 683 616
C.e. Dc 2’226 189 80 130 84

D.m. Dc 634 706 161 180 163
S.c. F j 5’808 362’421 10 593 97
H.s. F j 46’243 476’399 33 3’370 2’014
C.e. F j 15’139 993’367 81 1’545 968
S.c. Fb 4’172 81’953 430 204 75
H.s. Fb 5’369 270’704 366 163 146
C.e. Fb 5’178 626’342 178 77 168
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4.1.3 Measures

For the evaluation, we chose the same measures as mentioned before for NEMo: Clustering

Coefficient (CC), Graph Density (GD), Fraction of Edges Inside (FEI), Diameter (�), Shortest

Path Mean (SPM), Gini coefficient (Gini). Again, we compute the same six measures both

on the entire network and on individual modules. We plot these measures as well as degree

distributions, to look for power laws and other distributions and compare plots across data

sources and across species in order to discern general similarities across species or databases.

Similarity here refers to structural and topological features such as modularity and connectiv-

ity: we need to compare networks very different in size and composition and so cannot use

tools such as network alignment methods. The six measures we compute both for the entire

network and for each module are:

4.1.4 Simulations

The final part of our paper compares networks generated under various models with the

common structural features discovered in the study of the PPI databases. We run a standard

D& D model and as well as two version of our NEMo model, the normal version where the

modular structure is re-evaluated during the evolution of the network and a deliberately

crippled one in which no such re-evaluation takes place. We vary the number of steps, the

interval between re-evaluations of the modular structure, the size of the networks, and the

initial networks, along with some of the parameters of the NEMo model that affect the balance

between inter- and intra-module events. Specifics of these parameter settings are given in the

discussion of results.

4.2 The Structure of PPI Networks

We present some of our main findings regarding measures for our six PPI networks across the

six databases, starting with global measures, then moving on to module-by-module measures.

A complete table of all of our measures on all possible PPI inputs will be found on our web site.

4.2.1 Global PPI network structure

The very large differences in size among the databases for the same network are striking:

the STRING database has well over 4 million edges for the human PPI network, whereas the

HPRD database has fewer than 40’000, or less than 1% of the number in STRING. This large

discrepancy illustrates why testing models or inferences against databases must be done with

great care. For instance, simply clustering the graph has pitfalls, as shown in the number of

clusters found by the same algorithm for E. coli on the various databases, going from 16 clusters

among 4’145 nodes in STRING to 1’151 clusters among 3’351 nodes in HitPredict—values that

again differ by around two orders of magnitude. As we are interested in commonalities, we
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must keep in mind the effects of size on what we observe.

The plots in Figure 4.1 provide a visualization of some of these measures in the various

Figure 4.1 – FEI over # E/#M plots across all data sources.

databases and versions.

The global clustering coefficient (CC) ranges from [0.03,0.45] overall, with just one exception

(the benchmark set of FunctionalNet), with a much narrower range for most databases. Net-

works in S900 have a CC in [0.39,0.45] across all six species; in HitPredict the range is [0.05,0.30]

for Pa and [0.08,0.43] for Ph ; in DIP the range is [0.02,0.16] for Da and [0.08,0.28] for Dc ; and in

the full set of FunctionalNet, the range is [0.22,0.24]. In contrast, the range for the benchmark

set of FunctionalNet is [0.74,0.89].

The fraction of edges inside (some module), or FEI, depends somewhat on the clustering

algorithm, but typically stays within a small range. Using the MCL algorithm (with or without

inflation) gives rise to clusterings with very similar FEI values across the species, while the

values for ClusterOne tend to be somewhat larger, but also within a small range. For instance,
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for the six species in S900i, MCLde f gives FEI values in [0.55,0.75], MCL1.8 in [0.63,0.81], and

ClusterOne in [0.64,0.91]. A similar pattern holds for HPRD and the MAGNA++ networks, but

the values are much lower for the networks in HitPredict, possibly because HitPredict is good

at excluding indirect interactions that simply shortcut paths through transitive closure.

In contrast, the Gini coefficient, while always fairly high, shows a nearly uniform distribution

between 0.5 and 1 across the instances: it is very high in STRING(> 900), around 0.8; in H

and M around 0.7; in P: between 0.46 and 0.7. (Observe that the Gini coefficient changes only

negligibly for the filtered networks: although a filtered network has fewer edges, the removal

of edges also disconnects poorly connected nodes, which consequently disappear fromw the

filtered network and thus no longer contribute “poor" individuals to the Gini computation.)

The diameter is assumed to anticorrelate with the graph density as Figure 4.2 supports, but

of course it depends on the nature of the network structure provided by the source. Across

databases and species, it lies in [9,25]. For some databases, there exists only little variance

between the full and filtered set as in HitPredict and FunctionalNet: the full set Pa the diameter

∈ [9,14] vs graph density ∈ [0.0007,0.001], while in the filtered set Ph has diameter ∈ [8.13] vs

graph density ∈ [0.0009,0.005]; for FunctionalNet the diameter of Fb ([8,9]) is a subset of F j

([6,12]). S900 seems to be relatively small variance in diameter [13,22] with graph densities in

[0.002,0.005]. Interestingly, in DIP the core data Dc show a larger variance in diameter [5,26]

than the full Da with [11,25] with a similar density range [0.0006,0.003].

4.2.2 Modular PPI network structure

Given the very large number of data points here, our interest shifts from commonality in

values to commonality in behavior with respect to simple variables such as cluster size. And

here again, some similarities are apparent. For instance, Figure 4.1 plots on a log-log scale the

histograms of three different basic attributes of modules computed by three different clustering

algorithms from three different databases for three different organisms, yet all clearly follow

a power law. (The other possible histograms are all similar.) Once again, however, some

measures do not show much commonality: the Gini coefficients for modules, while generally

smaller than their corresponding value for the entire network, show no clear pattern, nor does

graph density. For a visualization of the distribution of these latter two features, please refer to

Figure 4.6 and 4.7 in Section 4.3.2.

4.3 Simulation Results and Comparison

Once we have identified common structural features in the PPI networks, we can use them

as references in our second step. We compare them with comparable features produced by

existing network models as well as by our NEMo model, in order to characterize how well

these various models do in generating the type of structure and modularity observed in PPI

networks. We let networks evolve under the commonly used 1-layer D&D model and our
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Figure 4.2 – diameter over graph density, across all data sources.

2-layer, module-aware, NEMo model. We then subject the resulting networks to a global and

modular feature analysis.

In a first test, we let the D&D model and our NEMo model start with a random network of

roughly 500 nodes and run for 2’000 steps. The NEMo model reclusters the network after every

500 steps to update the decomposition into modules. Note that, while 2’000 steps run with

D&D results in 2’000 evolutionary events, 2’000 steps run with NEMo can result in a different

number of evolutionary events, depending on the parameters.

All networks are clustered at the end of the simulation with (1) MCLde f , (2) MCL1.8, and (3)

ClusterOne with minimum size of a module "1", a modular density of at least 1
2 of the global

density, and no penalty. We compare the values from the generated networks with the values

from the database networks to assess their closeness. To investigate the impact of module-

awareness in models, we run the NEMo simulations with two values of the parameter that

controls the inter- vs intramodular exchange and evolution.
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Figure 4.3 – Histograms of the max degree, number of nodes, and number of edges all follow a
power law.

4.3.1 Global structure of simulated networks

The clustering coefficient was highlighted as one of the global measures that showed consis-

tency across the PII networks in the databases. The NEMo networks, while producing values in

the range of [0.1,0.15] that are lower than the database networks, come much closer than the

D&D networks, which produce very small CC values in the range of [0.0009,0.01] and suffer

from high variance.

The Gini coefficients, while varying without clear pattern, were consistently at or above 0.5 for

the database networks. The NEMo networks produce smaller Gini values in a much tighter

range around 0.4, while the D&D networks produce even smaller values in an even tighter

range around 0.35.

Both, D&D and NEMo evolve networks with relatively high diameters compared to the PPI

networks: The D&D networks have diameters ∈ [14,21] (with an outlier 27) with graph density

of ca [0.004,0.007], while NEMo’s diameters are of higher values and variance [22,31] with

graph density [0.001,0.006], both features mostly anticorrelated to each other. In NEMo, the

diameter’s value can even grow within one run up to 2x of the lowest DIA. Reclustering the

network during the evolutionary process with mcl inflation parameter 1.8 seems to give the

network a less high diameter.

The main observation here is that both NEMo and DMC indeed show similar structure to the

real-world PPI networks, although NEMo gets closer in most of the cases.
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4.3.2 Modular simulation network structure

The module-aware level of NEMo derives its power from its ability to distinguish intermodular

from intramodular events. However, NEMo uses this power in a minimal way, by assigning

slightly different probabilities to the two classes of events—in evolutionary terms, it simulates

a slightly stronger negative selection for intermodular events than for intramodular events.

The distinction between the two classes of events could be used to a much larger extent,

but our results show that even this minimal intervention, consistent with a selective pres-

sure to preserve modularity while allowing modules themselves to adapt, suffices to create

a significant difference in the types of networks produced.

For an easier visualization, we compare the plots of the maximum degree distribution of 2

randomly chosen D&D evolved networks (Fig 4.4) with NEMo evolved ones (Fig 4.5). In Fig 4.4

each row represents the same network sample, while each column represents the modular

results reclustered with ClusterOne, MCLde f , and MCL1.8, respectively. In the sequence of

NEMo evolved network as shown in Fig 4.5, a power law of modular edge distribution shapes

up in the process. This trend can be observed in other modular feature distributions, e.g.

nodes distribution, deg_max distribution, etc. We omit more data and plots right now due to

limited space. At the same time we have the less clearly shaped distributions for the modular

Figure 4.4 – the modular maximum degree distributions of samples of D&D evolved networks.

density and Gini coefficients. Nevertheless, the distribution plots always show a closer shape

of NEMo evolved network structure than the D&D derived one compared to the real-world

PPI network structures. In Fig. 4.6 and Fig. 4.7 representative sample plots are shown for the
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Figure 4.5 – the modular maximum degree distribution of NEMo evolved networks develops
into an underlying power law distribution.

D&D and NEMo evolved networks.

Figure 4.6 – the modular Gini distribution in comparison: (1) C.elegans in DIPal l , (2) H.sapiens
in HPRD, (3) D&D evolved sample network, (4) NEMo evolved sample network.

Details

For the simulations we run the D&D one-level model and the two-level NEMo with two set-

tings of parameters. The parameters can be grouped into three classes: the probabilities

for a node duplication event with subsequent divergence (qcon , qmod , and qnew ), the gen-

eral probabilities of an evolutionary event (pg ai nn , plossn , pg ai ne , plossn ), and the thresholds

that determine whether, at a given step, there will be an intermodular or intramodular or

no evolutionary event for a given module (thi nter mod , thi ntr amod , thno). For the one-level

standard evolutionary models one cannot tune anything with the threshold probabilities. For

the two-level module-aware NEMo model, we use the same probabilities for the evolutionary

events, but use different values for the probabilities affecting modules to see whether and how

the module-awareness affects the network’s evolution and the resulting structure.

41



Chapter 4. Modularity in PPI Networks

Figure 4.7 – the modular density distribution in comparison: (1) C.elegans in Dal l , (2)
H.sapiens in HPRD, (3) D&D evolved sample network, (4) NEMo evolved sample network.

Since existing models other than NEMo are generative rather than evolutionary models, there

is hardly any reference values for the parameters for an evolutionary setup that would allow

the network to evolve without an enforced growth in network size. Therefore, we adjusted

values given in the literature to produce a more evolutionary setup.

The parameter settings for the experiments for the evolutionary setup are as follows:

Table 4.2 – Parameter settings

setting 1 setting 2 setting 3
(D&D) (NEMo1) (NEMo2)

qcon 0.1 0.1 0.1
qmod 0.4 0.4 0.4
qnew 0.1 0.1 0.1
pg ai nn 0.31 0.25 0.25
pl ossn 0.13 0.15 0.4
pg ai ne 0.26 0.3 0.3
plosse 0.3 0.3 0.3
thi nter mod - 0.35 0.3
thi ntr amod - 0.35 0.4
thno - 0.3 0.3
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As mentioned in Section 1.3, current inference models consider D&D models as their core

component — the evolutionary model. Thus, inference models to date do not embed the

network’s modular structure during the inference process. Given the findings in the previous

chapters, we draft our ideas for a framework of a module-aware inference model to reconstruct

ancient networks from extant network information. Please be aware, that this is not yet a

mature model, but a draft still undergoing tests and adjustments.

In common practice, an inference model needs as input a phylogenetic tree, an underlying

evolutionary model, and the data at the leaf nodes of the phylogenetic tree.

The phylogenetic tree is mostly built by reconciliating gene and species trees to get the exact

set of evolutionary events. This approach works hardly for our case as discussed in Section 2.4,

since we work at such coarse granularity on the base of PPI networks with such far distant

species that to our knowledge none of the work in reconciliation applies. Evolutionary rates

would vary enormously among species and, more damagingly, among modules and within

modules. Nevertheless, we assume that the topology of our evolutionary tree is trusted, but

neither rates nor lengths can be assumed.

Apart from the PPI networks as the lower level of the model we need a modular structure

representation as an upper level for the module-awareness of the inference. With tools

detecting functional modules in PPI networks [53, 53, 54, 83] and network alignment tools

that are sequence-based and topology-based [75, 76] we find the functional module network

to serve as the upper level of the input. Note that it is this upper level of the network that

guides how and where the evolutionary events will take place: inter- or intramodular or no

evolutionary event at a given step. With this, we aim at borrowing the idea of Fitch’s algorithm

(Section 2.5) to obtain the phylogenetic tree that contains also the modular information for

the ancestral nodes.

Since we have an idea of the phylogenetic tree, the underlying evolutionary model, and the

leaf data, we now aim at a simple and least parameterized approach for the inference: a
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parsimony based approach that minimizes the total tree length, which in turn defines a

measure of evolutionary distance between two networks. It should take as input a NEMo

based evolutionary model, a two-level phylogenetic tree that is obtained using e.g. the Fitch’s

algorithm, and a scoring function based on similarity measures that helps measuring the

evolutionary distance between networks. There are still a few subproblems that need to be

addressed: 1) although we know how to get information about orthology between proteins,

there is no direct way of retrieving module orthology; 2) parsimonious approaches have been

applied to sequence data, however how to apply them on our data of the PPI networks and how

to keep the module information? For 1) we can think of a way to combine protein orthology

information with network clustering and alignment results; the 2) we can apply an efficient

encoding of the networks, s.t. the networks can be represented as sequences.

5.1 Underlying Evolutionary Model

The underlying module-aware evolutionary model based on NEMo needs to be adjusted

towards the parsimonious trait of our inference model: an option is to neglect the node loss and

edge loss events as evolutionary events. Thus, a node can only be lost by subsequent deletion

of its interactions to other proteins, thus by loss of its functionality; since edge loss events

would be also neglected, the loss of an interaction only happens during the divergence process

upon a node duplication where either the original anchor node or the newly entered duplicate

node loses its interaction to a shared adjacent node. We are then left with two evolutionary

events: node gain, that is a version of the commonly accepted duplication-divergence process,

and edge gain, that allows modification of the network topology independently from the

node gain event without an increase of the network size, in the evolutionary process; in the

inference procedure, they are mirrored to resemble the removal of a node and removal of an

edge, respectively.

5.2 Phylogenetic Tree

As discussed in Section 2.4, a simple reconciliation of gene and species trees does not suffice

for the reconstruction of the phylogenetic tree in our case. Similar to NEMo, we aim at a two-

level model where the PPI network is the underlying network represented as a graph, where

proteins are represented by nodes and interactions between pairs of proteins by undirected

edges, while a modular structure of the network is represented in the upper level. Evolutionary

events to be inferred happen in the lower level — that is still the driving force for changes for

the PPI network, as in NEMo. The upper level represents the functional modular structure

of the network bound to the lower level, the PPI network — we can start with well defined

functional modules detected by existing tools [83]. Therefore, a phylogenetic tree involving

both levels is desired.

The two-level phylogenetic tree as input to our model can be obtained as follows:
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1. globally align the PPI networks of the extant species that are also the leaf networks of

the tree:

Multiple global network alignment allows us to uniformly encode the nodes in the net-

works: the aligned nodes get the same identifiers, while the others are then "dangling"

nodes who are not represented in the other network.

2. cluster the leaf networks under precondition of being node-disjoint:

Each cluster is then regarded as a node in the higher level: those clusters of two networks

that share aligned protein node content above some threshold thcl_i den , e.g., 60%, are

considered "homologous" modules. Thus, the upper level of the networks are also

aligned.

3. apply Fitch’s algorithm, as described in Section 2.5, on the lower level network that

resembles the PPI network.

At every last common ancestor (LCA), we list and store the options of possible evolution-

ary changes w.r.t. to the non-equal scores for inter- vs. intramodularity events. Thus,

on the way down along the tree, a biased scoring, thus biased parsimony approach is

performed.

In most parsimonious scenarious, the evolutionary distance that also defines the tree length is

measured by the minimum number of evolutionary steps needed to transform one network

into another. However, if we still allow every module of the network to have up to one inferred

evolutionary event at an inference step, the number of events is less easily controlled or

even enforced. Thus, either we deprive this property of the original evolutionary model and

force one evolutionary event in only one module at an evolutionary step, or we include other

features s.a. the network’s modular structure in computing the edge length of the phylogenetic

tree. An option therefore is the network similarity on the lower (PPI network) and the upper

level (modular network) similarity obtained by alignment.

5.3 Inference Procedure

For the inference procedure we can follow the same idea as in NEMo: at any evolutionary

step, inference model allows up to one evolutionary event to be inferred in each module; with

some probabilities a node or an edge is identified as the one that "last entered" the network; a

differentiation between intramodular (both events) and intermodular events (only interaction

gain) is made. Since the lower level of the model represents the PPI network that is the driving

force for the inference, the upper level with the modular structure should play again a directing

role. This can be expressed as a biased parsimony along the branch length.

How the modules can arise and disappear is connected to how and when the network is

reclustered. In contrast to NEMo, we want our inference model to consider clustering without

module overlapping, e.g., each node is forced to have membership in only one module. Since

we are drafting a parsimonious model with only node and edge gain as evolutionary events,
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Chapter 5. Inference Model

some noises s.a. silent mutations are negligible. Continuative thoughts are discussed in

Section 5.6.

For exemplification purpose, we take the following sample networks for further presentation:
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Figure 5.1 – sample network N1 with two
identified clusters
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Figure 5.2 – sample network N2 with
three identified clusters

The sample network N1 in Fig. 5.1 has two "modules": red cluster with 4 nodes and a green

cluster with 5 nodes, while the sample network N2 in Fig. 5.2 has three "modules": red cluster

with 3 nodes, a green cluster with 4 nodes, and a blue cluster with 3 nodes. The red and green

clusters of N1 and N2 can be aligned as being homologous.

According to Fitch’s algorithm and to our previously described mechanism, the network of the

N1’s and N2’s least common ancestor (LCA) can look like in Fig. 5.3:
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Figure 5.3 – LCA of N1 and N2

5.4 Encoding

Three groups of information are of interest: adjacency between two proteins (adjacendy

information), existence of a protein and its modular membership (network content), and

transitions of adjacency states between each evolutionary step (transitions).

An intuitive approach to use binary encoding to represent the existence or nonexistence,

character set S = {0,1}. If a protein exists, then its content entry is encoded by 1, otherwise

0. Similarly, in the adjacency matrix, if two nodes are adjacent, then the adjacency entry is 1,

otherwise 0. However, since we want to embed all networks into a comon framework, missing

nodes in a network that appear in some other network is a common phenomenon. In this case,

we propose the rows and columns of this missing node to be filled with x, thus the character

set for the adjacency matrix is S′ = {0,1, x}, similarly to the encoding in ProPhyC [43].
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For the encoding of modular memberships we can approach as follows: according to our

findings as shown in Table 2.1, the real-world networks of our choices have up to over 3.700

clusters. Thus, we propose the following encoding: each cluster is represented by a binary

code of 13 digits, thus allowing more than 8.000 distinct clusters. It also allows the ordering and

sorting the modules lexically. Thus, each node is represented by a 14 digits code: the first digit

describes its presence or absence and the remaining 13 digits decode its module-membership:

for a non-existing protein, its modular membership can be decoded by all the 13 digits with

"1", since we assume that the number of clusters identified will not come close to this range of

213.

In Table 5.1 and Table 5.2 , we see the encoded information of the network N1 shown in Fig. 5.1

and N2 in Fig. 5.2, with the adjacency information left of the || and the content and module

state right of ||.

For visualization purposes, we replace the 13 digit binary code for the modules by a 3 digit

letter code for our examples, where the "ZZZ" represents no membership:

N1 a b c d e f g h i j k
a 0 1 0 0 0 0 0 0 0 0 0 a 1AAA
b 1 1 1 0 0 0 0 0 0 0 0 b 1AAA
c 0 1 0 1 1 0 0 0 0 0 0 c 1AAA
d 0 0 1 0 0 0 0 0 0 0 0 d 1AAA
e 0 0 1 0 0 1 0 0 0 0 0 e 1AAB
f 0 0 0 0 1 0 1 0 0 0 0 f 1AAB
g 0 0 0 0 0 1 0 1 0 0 0 g 1AAB
h 0 0 0 0 0 0 1 0 1 0 0 h 1AAB
i 0 0 0 0 0 0 0 1 0 0 0 i 1AAB
j x x x x x x x x x x x j xZZZ
k x x x x x x x x x x x k xZZZ

Table 5.1 – encoded information of the network N1, the adjacency information on the left and
the content state on the right of ||.

During the network’s evolution, we consider between each evolutionary step the following

transitions of adjacency states:

0→0 no change in the adjacency state between the two nodes:

the interaction does not exist, while both nodes exist, in both ancestral and descendant

network

0→1 interaction gain: the two proteins were not connected in the ancestral network, but are

adjacent in the descendant network

0→x the interaction does not exist in the anstral network but both nodes existed; while in the

descendant network, at least one of the nodes is lost
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N2 a b c d e f g h i j k
a x x x x x x x x x x x a xZZZ
b 0 1 1 0 0 0 0 0 0 0 0 b 1AAA
c 0 1 0 1 1 0 0 0 0 0 0 c 1AAA
d 0 0 1 0 0 0 0 0 0 0 0 d 1AAA
e 0 0 1 0 0 1 0 0 0 0 0 e 1AAB
f 0 0 0 0 1 0 1 0 0 0 0 f 1AAB
g 0 0 0 0 0 1 0 1 0 0 0 g 1AAB
h 0 0 0 0 0 0 1 0 1 0 0 h 1AAB
i 0 0 0 0 0 0 0 1 0 1 1 i 1AAC
j 0 0 0 0 0 0 0 1 1 0 0 j 1AAC
k 0 0 0 0 0 0 0 1 1 0 0 k 1AAC

Table 5.2 – encoded information of the network N2, the adjacency information on the left and
the content state on the right of ||.

1→0 interaction loss: the two proteins were connected in the anstral network but have

lost their adjacency in the current network, both proteins still exist in the descendant

network

1→1 no change in the adjacency state between these two nodes, the interaction still exists

1→x loss of interaction and of at least one of the two nodes

x→0 one of the two nodes did not exist in the ancestral network, but in the descendant

network both nodes exist, but without a connecting interaction

x→1 one of the two nodes did not exist in the ancestral network, but in the descendant

network both nodes exist, with an interaction connecting them

x→x at least one of the two nodes is missing in the ancestral network, as it is in the descendant

network

The protein existence states result from the adjacency transitions:

0→0 the protein neither exists in the ancestral network of last step, nor in the descendant

network

0→1 node gain: the protein did not exist in the ancestral network but occurs in the descendant

network

1→0 node loss: the protein existed in the ancestral network but has disappeared in the

descendant network

1→1 the protein existed in the ancestral network and remains in the descendant network.
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W.r.t. modular membership: every node is "born" with a modular membership (any duplicate

node inherits its membership from its anchor node) and it loses its membership (i.e., gets

assigned "ZZZ") at the time of its "death" (when losing all functions, thus all interactions).

A node’s modular membership cannot be changed directly by evolutionary events, but only

upon a reclustering.

The transition matrix T ′ for S′ can be derived from the parameters of the evolutionary model

(discussed later). Assuming that due to our parsimonious setup at most one node gain or

one edge gain event can happen in a module at any evolutionary step, we get the following

observable transitions:

T ′ =

⎧⎪⎨
⎪⎩

t00 t01 t0x

t10 t11 t1x

tx0 tx1 txx

⎫⎪⎬
⎪⎭

Although we have a parsimonious approach, edge loss as a resulting evolutionary event is

inevitable, since the evolutionary event of a node gain includes the possible removal of the

edges between the neighbors and either the newly entered or the originally duplicated node

(anchor node) directly upon node duplication. Thus, even though we neglect the direct node

loss as an evolutionary event, the consequential node loss is possible if the anchor node loses

all its interactions to its duplicate.

If there is no visible change in the state from one evolutionary step to the previous one, it

can result from not having had any evolutionary event in this module at this step, or a more

interesting case: from the biological point of view it could be a silent mutation. Since we opt

for a parsimonious approach to reduce the feasibility and complexity of our model, we neglect

the latter.

Let the network size be n. For a (sub)network of ns nodes, there are
∑ns−1

i=1 i = ns (ns−1)
2 possible

edges. Recall that qcon is the probability of one of either the anchor or the duplicate node to

lose its interaction with their shared neighbors upon node duplication, qmod is the probability

of the newly gained node adding an interaction to another random node in the network; ns

and nt are number of nodes in the subnetworks s and t ; pno , pi ntr am , and pi nter m are the

probabilities for no interaction, intramodular and intermodular interaction at the given step

for the module respectively; dn is the degree of the node.

Thus, we end up with the following adjacency transition probabilities:

t00&t11: pno

t01: pi nter mod ×pg ai ne × 1
ns (ns−1)

1
nt (nt−1)

+ pi ntr am ×pg ai ne × 1
ns (ns−1)2

+ pi ntr am ×pg ai nn × 1
2 (1−qcon)

+ pi ntr am ×pg ai nn × (qmod ) 1
ns (ns−1)

t10: pi ntr am ×pg ai nn ×qcon

tx0: pi ntr am ×pg ai nn × n−dn
ns

+ pi ntr am ×pg ai nn × dn
ns

×qmod

tx1: pi ntr am ×pg ai nn × dn
ns

(1−qmod )

txx : 1−pi ntr am ×pg ai nn × 1
ns

t0x &t1x : pi ntr am ×dn ×qmod
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as well as for the content states:

0→0: pno

0→1: pi ntr amod ×pg ai nn

1→0: pi ntr amod ×pg ai nn ×dn qmod

1→1: pno

With these probabilities we achieve indireclty a weighted version of parsimony.

5.5 Scoring function

For our parsimonious approach, we target at optimizing a scoring function based on similarity

measures.

We want to start with preferably easy measures, e.g., an evolutionary distance measure that

attempts to "count" the number of evolutionary events in the NEMO model necessary to

transform one network into the other.

We would like to additionally include information from modular topology: e.g., the number of

modules, the percentage of nodes that share the "same" module across networks. This needs

deeper research and discussions, though.

Thus, let x be the # of events needed to transform a network into another, let f () be a function

that takes different scores for inter- vs. intramodular events into consideration, and let Cm be

the coverage of nodes sharing the "same" module, our scoring function could be presented as

follows:

minimize f
(∑

(x)
)
−Cm (5.1)

A more sophisticated way is to score based on topological changes during the evolution, e.g.,

based on (a subset of) our features introduced in Sections 3.2 and 4.1.3. With our current

approach this would lead to exploding complexity and running time.

5.6 Clustering

A challenge remains the decision of when and how a module arises or disappears. A module

can only visibly arise upon reclustering after the network’s topology has changed; on the other

hand, it can disappear when the network loses all nodes that were originally in the module or

also due to reclustering.

For the clustering, there are two issues to be investigated: first, which clustering methods to

choose; second, how to choose the timing when to recluster.

For our evolutionary model NEMo, we used two clustering models often applied on biological
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data, e.g., PPI network: ClusterOne and MCL that do not rely on protein annotation, since

in an evolutionary model we deal with an anonymous graph. However, when inferencing

we start with real-world PPI networks of extant species. Thus the nodes are proteins, mostly

annotated, and we can make use of PPI network functional module identification models and

tools [83].

We discussed earlier the fact that the biological networks including PPI networks have a high

dynamics with changing structures that is hard to be captured by a static clustering method

on just a snapshot of the evolving network.

Extensive research has been done on detecting communities in these networks with high

dynamics, e.g., social networks, that change over time. We figure that this idea of identifying

communities in dynamic social networks can be connected to the identification of modules

in biological networks. As mentioned in Sec. 2.2, there are many clustering algorithms and a

few tools ready to be tested directly for dynamic clustering. Social network analysis does not

necessarily fit on dynamic networks analysis, though. For many of the application purposes,

the size of the given network (number of nodes) remains at the same scale — e.g., for the

dynamic analysis of the urban traffic information on all streets and crossings is fixed and given,

or for the community analysis of groups of zebras within a period of a few weeks. However,

solving dynamic clustering mostly needs immense time complexity growing with the size of

the network — with PPI networks being naturally very large, we might be not able to directly

apply methods and tools for dynamic clustering, but rather fuse other biological clustering

methods with their concepts and ideas for our inference model.

The second question to be addressed is when to recluster. Recall that for NEMo, in the growth

mode, reclustering was triggered after x steps where x equals the size of the growing network

at the beginning of this time frame, thus making each frame a generation; while during the

evolutionary process, reclustering happened after a fixed number of evolutionary steps (NEMo

allows in a step up to as many evolutionary events as it has clusters). How does our inference

model decide when to recluster? When reclustering too frequently, the noise factor is increased

and most modifications tend to be rather instable and insignificant; when reclustering too

rarely, the model is at risk of missing important signals, thus functional modules. Having the

reclustering happening at the "right" time is tricky and crucial at the same time.

We aim at a dynamic reclustering—the network will be reclustered when some distance

measure in the topological structure of the network exceeds a margin.

However, for the start we consider (again) a rather fixed reclustering frame. Since our inference

model is designed in a parsimonious way, the evolutionary progression is in proportion to

network size. We could start with very basic reclustering mechanisms: after the network

size has shrinked by some threshold, the networks need to be reclustered. The issue with

reclustering is that then the modular alignment needs to be adjusted leading to high time

complexity. Thus, the threshold needs to be chosen carefully.
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In later improvements, dynamic clustering can be brought in and might reveal more interesting

behaviour of our model.

5.7 Evaluation

We need to compare the generated results from the simulated history with results from module-

unaware inference models.

Input / Leaf data: From the six data sources we used to test and evaluate NEMo, we use the

data from two for the inference model: STRING and DIP — only these two cover data of all

six reference organisms of our choice, see Table 1.1. We are going to run experiments on the

filtered STRING dataset S900 of confidence score > 900, the complete DIP Da set, and filtered

DIP Dc dataset for our six organisms.

For the evaluation of our inference framework, especially the upper level is interesting. The

inner nodes of the PTK framework (Fig. 1.2), that resembles the least common ancestors

(LCA) we initialize their module aware upper level by outputs of network alignments [75, 76].

Distance between these LCAs by network alignment and the model induced upper-level

network will be measured: Are the initialized LCA and its underlying PPI network embedded

in the inferred network or are both significantly close in similarity? Especially the modular

structure represented in the upper level might be tricky to validate due to different clusteirng

algorithms and the huge search space from a combinatoric point of view.

52



6 Conclusion and Discussion

We presented NEMo, a module-aware evolutionary model for PPI networks. The emphasis of

NEMo, as compared to existing models for PPI networks, is on evolution rather than generation:

whereas existing models (and the first layer of NEMo, which is a variant of existing models)

are known to generate a modular structure when growing networks, we were interested in a

model that would evolve existing networks, using the same basic set of evolutionary events.

The salient feature of NEMo is a module-aware layer that sits above the event layer and distin-

guishes between intermodular and intramodular events. The awareness is achieved through

periodic recomputation (triggered by sampling and analysis for drift) of the modular structure.

The uses to which this awareness are put are minimal: NEMo simply gives a slightly higher

probability to intramodular events than to intermodular events, thereby slightly favoring con-

servation of modules. The details of the model are broadly adjustable: the algorithm used to

detect modules, the number and nature of parameters used to control intra- vs. intermodular

events, the features chosen to characterize the network, and the distance measure used to mea-

sure drift in order to decide when to re-evaluate the composition of modules, are all flexible.

Our simulation results show that its second layer enables NEMo to run through large numbers

(as compared to the size of the network) of evolutionary events, balanced so as not to affect

the expected size of the network, while preserving the characteristics of its original (growth-

derived) modular structure. To the best of our knowledge, this is the first such result and it

paves the way for phylogenetic analyses as well as population studies of PPI networks.

As discussed by Makino and McLysaght [9], however, the number of factors that could affect

the evolution of PPI networks is very large. NEMo captures only a small subset of these factors,

since it works just on the graph structure and, at the level of individual events, makes the same

independence assumptions as current models. Interdependent events or hidden underlying

events present serious challenges. Incorporating externally supplied data (in addition to the

network itself) makes sense in a data-rich era, but will require, for each type of data, further

development of the model.
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Furthermore, we studied in detail the PPI networks of six model species as found in six different

public databases, looking for common structural features. Using a collection of six measures

at both the overall network level and the individual module level, we identified a number of

such features, some easily captured in a single number (such the clustering coefficient) and

others best presented through plots that demonstrate unmistakable power laws or uniform

distributions. Remarkably, these features are shared across databases as well as across species,

so that they can serve as reference points for the development of generative and evolutionary

models for PPI networks. In that spirit, we tested a standard duplication and divergence (D&D)

model, along with our own, module-aware, NEMo model, to ascertain how close these models

come to reproducing the reference features extracted from PPI networks. Our results provide

strong evidence that a suitable model needs to work at a more global level than individual

nodes or edges, as NEMo easily outperformed the D&D models in these tests. Further work

includes inverting the NEMo model for inference and parameterizing it to suit a particular

organism so as to recover ancestral information.

Last, but not least, after the successful embedding of modularity into an evolutionary model

that is the crucial component an inference model, we draft a module-aware network inference

model. We propose it to be parsimony based and

Future work on the evolutionary model can be performed in the field of the dynamic recluster-

ing in NEMo. It can include an internal validation system: a reclustering can be only triggered

when the topological structure of the network has changed sufficiently, e.g., revealed by an

analysis of the measures (e.g., by Principle Component Analysis). Dynamic reclustering can

also be of interest for the inference model to catch the most possible important evolutionary

changes but neglecting most possible noise.

Additionally, a more refined scoring function for the parsimony inference problem can be

needed, as well as experiments to assess, evaluate, and compare our inference framework with

other current inference frameworks.

54



Bibliography

[1] J. Morris et al., “Affinity purification–mass spectrometry and network analysis to un-

derstand protein-protein interactions,” Nature Protocols, vol. 9, no. 11, pp. 2539–2554,

2014.

[2] E. Marcotte, I. Xenarios1, and D. Eisenberg, “Mining literature for protein–protein inter-

actio,” Bioinformatics, vol. 17, pp. 359–363, 2001.

[3] Y. Hao, X. Zhu, M. Huang, and M. Li, “Discovering patterns to extract protein-protein

interactions from the literature,” Bioinformatics, vol. 21, no. 15, pp. 3294–3300, 2005.

[4] A. Abi-Haidar et al., “Uncovering protein interaction in abstracts and text using a novel

linear model and word proximity networks,” Genome Biol., vol. 9 (Suppl 2), no. S11, 2008.

[5] J. Dutkowski and J. Tiuryn, “Phylogeny-guided interaction mapping in seven eukaryotes,”

BMC Bioinformatics, vol. 10, no. 1, pp. 393–xxx, 2009.

[6] X. Zhang and B. Moret, “Refining transcriptional regulatory networks using network

evolutionary models and gene histories,” Algorithms for Mol. Biol., vol. 5, no. 1, 2010.

[7] ——, “Refining regulatory networks through phylogenetic transfer of information,”

ACM/IEEE Trans. on Comput. Biol. & Bioinf., vol. 9, no. 4, pp. 1032–1045, 2012.

[8] S. Sahraeian and B.-J. Yoon, “A network synthesis model for generating protein interaction

network families,” PLoS ONE, vol. 7, no. 8, e41474, 2012.

[9] T. Makino and A. McLysaght, “Evolutionary analyses of protein interaction networks,” in

Biological Data Mining in Protein Interaction Networks, X.-L. Li and S.-K. Ng, Eds., 2009,

pp. 169–181.

[10] D. Szklarczyk et al., “String v10: protein-protein interaction networks, integrated over the

tree of life.” Nucleic Acids Res., vol. 43, pp. D447–D452, 2015.

[11] T. Prasad et al., “The Human Protein Reference Database–2009 update,” Nucleic Acids

Res., vol. 37, pp. D767–D772, 2009.

[12] T. S. K. e. a. Prasad, “Human protein reference database–2009 update.” Nucleic Acids

Research, vol. 37, pp. D767–72, 2009.

55



Bibliography
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[79] V. Gligorijević, N. Malod-Dognin, and N. Pržulj, “Fuse: multiple network alignment via

data fusion,” Bioinformatics, vol. 32, no. 8, pp. 1195–1203, April 2016.

[80] J. Dohrmann and S. R, “The smal web server: global multiple network alignment from

pairwise alignments. the smal web server: global multiple network alignment from pair-

wise alignments. the smal web server: global multiple network alignment from pairwise

alignments. the smal web server: global multiple network alignment from pairwise align-

ments. he smal web server: global multiple network alignment from pairwise alignment,”

Bioinformatics, vol. 32, no. 21, pp. 3330–3332, November 2016.

[81] M. Dittrich et al., “Identifying functional modules in protein-protein interaction networks:

an integrated exact approach,” in Proc. 16th Int’l Conf. on Intelligent Systems for Mol. Biol.

(ISMB’08), in Bioinformatics, vol. 24, no. 13, 2008, pp. i223–i231.

[82] M. Ye, G. C. Racz, Q. Jiang, X. Zhang, and B. M. E. Moret, NEMo: An Evolutionary Model

with Modularity for PPI Networks. Springer International Publishing, 2016, pp. 224–236.

[83] J. Ji, A. Zhang, C. Liu, X. Quan, and Z. Liu, “Survey: Functional module detection from

protein-protein interaction networks,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 26, no. 2, pp. 261–277, Feb 2014.

61





Min YE  ––  CURRICULUM VITAE 

 
Address  Chemin du Bochet 18 
  Ecublens, CH-1024 
Date of Birth April 22nd 1985 
Nationality Chinese 
 

 
 
Phone  +41 78 603 8876 
Email min.ye@epfl.ch 
  minye.epfl@gmail.com

EDUCATION  
2012-2017 PhD of Computer Science (advisor: Prof. Bernard M.E. Moret) 

Thesis title: “Models and Algorithms in Biological Network Evolution with Modularity” 
 Laboratory for Computational Biology and Bioinformatics (LCBB), School of Computer and 

Communication Sciences (IC), Swiss Federal Institute of Technology Lausanne (EPFL), 
Switzerland  

2008-2011  M.Sc. of Computational Molecular Biology/Bioinformatics (advisor: Prof. Gerhard Weikum) 
   Thesis title: “Text mining for building a biomedical knowledge base on diseases, risk factors, and 

symptoms”  
   Department of Databases and Information Systems, Max Planck Institute for Computer Science 

(MPII) Germany, Saarland University, Germany  

2007-2008  Exchange studies in Business Chinese and Computer Science  
 Shanghai Jiao Tong University (P.R. China)  

2004-2007 B.Sc. of Computational Molecular Biology/Bioinformatics (advisor: Prof. Volkhard Helms)  
 Thesis title: “Shape Analysis of Protein Binding Pockets as Foundation for Dynamic 

Pharmacophore Modeling” (in German: “Formanalyse von transienten Protein-Bindungstaschen 
als Vorarbeit für dynamische Pharmakophor-Modellierung”)  

 Chair for Computational Biology, Center for Bioinformatics (CBI), Saarland University (Germany) 
  

TEACHING EXPERIENCES 
2014-2016 Guest lectures (course “Advanced Algorithms” at EPFL)  
2013-2016 Teaching assistants for: Advanced Algorithms (Master and Ph.D. level),  

  Computational Biology (Master level), Mathematical analysis 
2014-2016 Mentoring of Master and internship students, supervising their projects  
 

HONORS AND AWARDS 
2017 Best Paper Award @Proc. 9th Conf. on Bioinformatics and Computational Biology BiCoB’17 
22/10/2016  3rd Price @First EPFL Business Case Competition, Consulting Society, EPFL, Switzerland 
2016 Award for outstanding leader of Chinese Students and Scholars Associations in 2015 Switzerland 

@Department of Education, Embassy of the People’s Republic of China, Bern, Switzerland 
2013  Best Teaching Assistant Award @School of Computer and Communication Sciences (IC), EPFL 
 

LANGUAGES 

Chinese  native speaker  
German  native speaker 

English  fluent  
French intermediate

 



PUBLICATIONS 
Ye, M., Zhang, X., and Moret, B.M.E., "Modularity in PPI Networks: Characteristics of existing networks and 
models of evolution,” Proc. 9th Conf. on Bioinformatics and Computational Biology BiCoB’17, 155-163 (2017).  

Ye, M., Racz, G., Jiang, Q., Zhang, X., and Moret, B.M.E., “NEMo, an evolutionary model with modularity for 
PPI networks,” IEEE Trans. on NanoBioscience 16, 2 (2017), 1-9.  

Ye, M., Racz, G., Jiang, Q., Zhang, X., and Moret, B.M.E., "NEMo: An evolutionary model with modularity for 
PPI networks," Proc. 12th Int’l Syp, Bioinformatics Research & Appls. ISBRA’2016, in Lecture Notes in Computer 
Science 9683, 224-236 (2016). 

Zhang, X., Ye, M., and Moret, B.M.E., “Phylogenetic transfer of knowledge for biological networks,” PeerJ 
PrePrints 2:e401v1 (2014).  

Romero, V., Ye, M., Albrecht, M., Eom, J.-H., and Weikum, G., "DIDO: a disease-determinants ontology from 
web sources," Proc. of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New 
York, NY, USA, 237-240 (2011).  
 

SELECTED PROFESSIONAL EXPERIENCE & ACHIEVEMENTS 

ACADEMIA & RESEARCH 
10/2011-05/2017 EPF Lausanne (EPFL), Switzerland | Research scientist (PhD research)  
    Methodology and algorithm development for modeling the evolution of biological networks 

• Model and algorithm design to study modularity in biological networks 
• Methodology for model testing and validation, large-scale data analysis and interpretation 
• Measures and characterization of network structure and modularity 

10/2010-07/2011 Max Planck Institute for Computer Science (MPII), Germany | Research scientist  
    Text mining for building a biomedical knowledge base on diseases, risk factors, and symptoms 

• Model and algorithm for text mining to build and populate knowledge base  
• Data processing and analysis, database integration 

08/2009-10/2009 Fraunhofer Institute for Biomedical Engineering (IBMT), Germany | Research intern  
    Slow motion adaptation of cells, realization by LabView, experimental in the area of biohybrid 
    systems 
 

EXTRA-CURRICULAR PROJECTS  

03/2014  Chinese Students’ and Scholar’s Association (CSSA) Lausanne, Switzerland | President  
 – 12/2015 Representing the CSSA Lausanne (over 400 members), interacting with the Chinese embassy, Swiss 
 authorities, promoting Sino-Swiss relations, enhancing internal interactions; organized over 30 events  
09/2015 TechInSuisse 2015  FutureInChina, Switzerland | Organizer  
 Co-initiator, organizer; coordinator between CSSA & Creapark Sàrl, multilingual master of ceremony 
02/2015 Swiss-wide Chinese Spring Festival Gala 2015 | General producer & co-director  
  http://www.cnedu-ch.org/publish/portal64/tab4128/info114840.htm 
  http://www.iwuf.org/news/2015/0408/750.html 
  Producer: main organizer, staff recruiter, staff manager, planning, networking, budget, event 

coordinator  
  Co-director: recruiting and auditing performers, artistic co-director 
 

HOBBIES 
Sports (rock climbing, dancing), traveling, cooking; theatre and opera; interacting between cultures  




