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and many others that made my life in Switzerland just amazing.

Last but not the least, I would like to thank my beloved family for being the greatest

source of my happiness. I am thankful to my mum and dad, Zorica and Dragan Nikolić,
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Abstract

The focus of the thesis is the utilization of the data collected using state-of-the-art

tracking technologies for the characterization and modeling of pedestrian movements.

In this context, the main objectives are the development of (i) data-driven definitions of

fundamental variables and (ii) data-inspired mathematical formulations of fundamental

relationships characterizing pedestrian traffic.

The motivation of this research comes from the analysis of a real dataset collected in the

train station in Lausanne, Switzerland. To collect the raw data, a large-scale network of

smart sensors has been deployed in the station. We consider this case study to illustrate

and validate our methodology.

The definitions of fundamental traffic variables (speed, density and flow), existing in the

literature are extended through a data-driven discretization framework. The framework

is based on spatio-temporal Voronoi diagrams, designed using pedestrian trajectory data.

The new definitions are (i) independent from an arbitrarily chosen discretization, (ii)

appropriate for the multi-directional composition of pedestrian traffic, (iii) able to reflect

the heterogeneity of pedestrian population and (iv) applicable to pedestrian trajectories

described either analytically or as a sample of points. The performance of the approach

and its advantages are illustrated empirically. Our approach outperforms the existing

methodologies from the literature, in terms of the smoothness of the results, and in

terms of the robustness with respect to the simulation noise and sampling frequency.

To represent fundamental relationships of pedestrian traffic, we introduce probabilistic

speed-density models. The approach is motivated by the high scatter in the data that

we have analyzed. To characterize the observed pattern we relax the homogeneity as-

sumption of the equilibrium relationships, and propose two models. The first model is

based on distributional assumptions. The second model is more advanced, and it in-

cludes structures that are designed to capture specific aspects of the walking behavior.

Various empirical tests validate the specification of both models. Contrasted with ex-

isting approaches, they yield a more realistic representation of the empirically observed

phenomena.

This thesis contributes with respect to the utilization of data potential in modeling of

fundamental aspects related to pedestrian traffic. This becomes essential in the context

of the growing data revolution and interconnected technologies that can help improve the

safety and convenience of pedestrians. The methodological framework is fairly general,

and it can be adapted to various pedestrian facilities.
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Keywords: individual pedestrian trajectories, time and space discretization, three-
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Résumé

Le sujet principal de cette thèse concerne l’utilisation de trajectoires de piétons collectées

par des techniques à la pointe de la recherche afin de caractériser et modéliser les mou-

vements de piétons. Dans ce contexte, les principaux objectifs sont (i) le développement

de variables fondamentales à partir d’observations empiriques et (ii) la formulation

mathématique des relations fondamentales caractérisant les flux de piétons.

Cette recherche est inspirée d’analyses effectuées sur des données réelles collectées dans

la gare de Lausanne, Suisse. Pour récolter ces trajectoires de piétons, un large réseau

de capteurs intelligents a été installé dans la gare. Nous utilisons ce cas d’étude pour

valider notre méthodologie et nos modèles.

Les variables fondamentales (vitesse, densité et débit) définies dans la littérature sont

étendues avec une discrétisation inspirée des données enregistrées. Plus précisément,

des diagrammes de Voronoi spatio-temporels sont créés en se basant sur les trajectoires

des piétons. Les nouvelles définitions qui en découlent sont (i) indépendantes d’une

discrétisation arbitrairement choisie, (ii) adéquates pour adresser l’aspect multidirec-

tionnel des flux piétonniers, (iii) capables de représenter l’hétérogénéité de la population

et (iv) peuvent être appliquées pour les trajectoires de piétons représentées de façon an-

alytique ou comme suite de points. Comme mentionné précédemment, nous avons validé

les performances de notre approche de façon empirique. Celle-ci produit de meilleurs

résultats que les méthodologies existantes à la fois en terme de régularité des résultats,

de robustesse face à l’échantillonnage et de robustesse face au bruit induit par les simu-

lations.

Une nouvelle méthode inspirée des données récoltées permet la définition des relations

fondamentales de trafic. Nous utilisons de façon novatrice les distributions statistiques

combinées avec les diagrammes vitesse-densité afin d’ajouter une dimension probabiliste

à ces diagrammes. Ce choix est motivé par la grande variabilité présente dans les

données. De plus, afin de caractériser les motifs observés dans les données, nous pro-

posons deux modèles dans lesquels nous assouplissons la contrainte d’homogénéité des

équations d’équilibre. Le premier est basé sur des distributions statistiques tandis que

le second est plus sophistiqué en introduisant des structures qui prennent en compte des

aspects particuliers du comportement des piétons. Afin de valider les résultats plusieurs

tests empiriques ont été effectués. Contrairement aux modèles classiques, les nôtres

produisent des résultats représentant de façon plus fidèle les phénomènes observés en

réalité.

Cette thèse contribue à l’exploitation du potentiel offert par la quantité croissante de
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données dans le domaine de la modélisation des principes fondamentaux des flux de

piétons. Ceci est essentiel aujourd’hui, au vu de l’accroissement de la quantité et du

type de données résultant des technologies connectées, afin d’améliorer le confort et la

sécurité des piétons. La méthodologie développée dans cette thèse est suffisamment

générale pour être appliquée à différentes situations, notamment des infrastructures

différentes.

Mots-clés: trajectoires individuelles de piétons, discrétisation spatio-temporel, pavage

tridimensionnel de Voronoi, variables fondamentales de trafic, relations fondamentales

de trafic, diagrammes vitesse-densité, modèle probabiliste, hétérogénéité, classes latentes
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1
Introduction

This chapter is organized into four parts. The first part (Section 1.1) provides essential

context for the thesis, and outlines the main research motivation. The second (Sec-

tion 1.2) and the third part (Section 1.3) present objectives, respectively contributions

of the research that is proposed in the thesis. The last part (Section 1.4) describes the

structure of the thesis.

1.1 Context and motivation

The data created in various fields has dramatically increased over the last years. Thanks

to the advances in information technology, the data volume in the world expanded by

nearly five times during only five years (Gantz and Reinsel, 2011). The main sources of

data nowadays are (i) the operation and trading information in enterprises, (ii) human

interaction and position information in the world of Internet and mobile devices (e.g.

chatting records, forum posts, searching entries, video, audio and image files, etc.) and

(iii) scientific research. By the year of 2030, Internet of Things (IoT) is predicted to

become dominant in data generation (Chen et al., 2014). It refers to a vast amount of

networking sensors deployed all over the world, that are collecting and transmitting data

from different areas (e.g. industry, agriculture, transportation, medical care, geography,

etc.).

The growth of data allows for answering questions previously considered to be beyond
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our reach. It brings about new opportunities for discovering new values, and helps to

gain an in-depth understanding of unknown, but potentially useful information. The

applications include enterprise management, the analysis of social networks-oriented

data, medical and healthcare services, collective intelligence, smart grid, etc. The smart

city is an example of the application of IoT data (Bowerman et al., 2000; Petrolo et al.,

2014). It has arised as a new paradigm to tackle key challenges related to the rapid

urban growth over recent years (e.g. increased traffic and congestion, climate change,

exhaustion of local resources, changes in the physical environment, and in the form and

spatial structure of cities). The cities of the future are expected to improve the quality

of their residents’ lives by relaying on the growing data revolution, and interconnected

and networked technologies. Transportation and mobility of people are essential fields

for building innovative and effective solutions within this context. Traffic lights that

adjust based on vehicular flows (Lämmer and Helbing, 2008), real-time estimation of

travel times (Skabardonis and Geroliminis, 2008), autonomous and connected vehicles

(Talebpour and Mahmassani, 2016), and monitoring and management of pedestrian

traffic (Daamen and Hoogendoorn, 2003; Alahi et al., 2014) are just a few of the ideas

that can help improve the safety and convenience of people in the future.

As a consequence of an intense urbanization, congestion has become an issue of the

modern society. As such, it is typical for pedestrians facilities as well. The examples

range from transportation hubs, such as airports (Kalakou and Moura, 2014) and train

stations (Daamen, 2004; Van den Heuvel and Hoogenraad, 2014; Hänseler et al., 2014,

2017), to museums (Yoshimura et al., 2014; Kanda et al., 2007), music festivals (Naini

et al., 2011; Duives et al., 2014a), commercial centers (Lam and Cheung, 2000; Yaeli

et al., 2014), university campuses (Danalet et al., 2014), crosswalks (Lam et al., 2002;

Rastogi et al., 2013) or even religious infrastructures (Algadhi and Mahmassani, 1990;

Helbing et al., 2007). Congestion in pedestrian facilities represents a phenomenon with a

negative impact on pedestrian dynamics. It prevents pedestrians from achieving efficient

movements and may lead to an increase in travel time, delays and potential collisions

among pedestrians. A simple application of a particular policy, without the previous

study of the concrete problem, might lead to some very costly trial and error solutions.

Thus, a sophisticated understanding and modeling of the data behind complex pedes-

trian movement patterns (Bierlaire and Robin, 2009) is necessary for (i) an efficient

planning and management of future pedestrian facilities and (ii) the optimization of

current infrastructure and operations.

Data collection for pedestrian flow and behavior analysis used to be particularly cumber-

some. Typically, manual counting methods (on-site or on videos) and surveys distributed

to randomly selected individuals were the main sources of data. Nowadays, automatic

pedestrian detection and tracking methods have evolved tremendously, allowing for more

comprehensive analyses (Bauer et al., 2009). In order to obtain an empirical understand-

ing of pedestrian movements, different empirical studies were conducted and reported in

the literature. For instance, it was observed that directness, habits, pleasantness, safety,
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pollution and noise levels are some of the important attributes for pedestrian route

choice (Bovy and Stern, 2012; Seneviratne and Morrall, 1985). Other empirical stud-

ies have revealed the existence of relationships between traffic indicators (Weidmann,

1993). Self-organized structures in pedestrian flows, such as lane formation (Daamen

and Hoogendoorn, 2003; Hoogendoorn and Daamen, 2004), and phenomena like stop

and go waves (Helbing et al., 2007), herding (Helbing et al., 2005), the faster is slower

(Helbing and Johansson, 2010), the zipper effect (Hoogendoorn and Daamen, 2005),

were also empirically discovered.

Data is also crucial to the process of model formulation, calibration and validation.

The empirical observations have inspired a number of theories and models of pedestrian

movements. They are utilized to describe and predict pedestrian movement at strategic,

tactical, and operational level (Hoogendoorn and Bovy, 2004). The models concerned

with strategic decisions (departure time choice, activity pattern choice) are important

for the assessment of pedestrian demand (Danalet, 2015). The models at tactical level

are focused on activity scheduling and route-choice (Borgers and Timmermans, 1986;

Cheung and Lam, 1998; Stubenschrott et al., 2014). Together with the models at op-

erational level (walking behavior), they are used to evaluate quality levels of pedestrian

traffic, and have been applied to support the design and planning processes in many

areas related to pedestrians (Daamen, 2004). The modeling of pedestrian walking be-

havior attracts a significant attention. For instance, there are approaches that are based

on social force-fields (Helbing and Molnar, 1995), cellular automata (Blue and Adler,

2001), continuum flow (Hughes, 2002; Hoogendoorn et al., 2014), utility maximization

(Robin et al., 2009) and queuing theory (Cheah and Smith, 1994; Løv̊as, 1994). A com-

prehensive review of the existing approaches and their evaluation can be found in Duives

et al. (2013).

The fundamental quantities used at both levels, to observe and to model the traffic of

pedestrians, are density (k), speed (v) and flow (q). Density is expressed as the number

of pedestrians per unit of space at a given moment in time; flow is interpreted as the

number of pedestrians per unit of time and per unit of length; velocity is expressed in

unit of length per unit of time (Daamen, 2004). Several definitions of these variables are

proposed in the literature (Duives et al., 2015; Zhang, 2012). However, little concern is

dedicated to the nature of spatial and temporal discretization underlying the definitions.

The basic issue is that there are many possible ways to discretize continuous space and

time for the purpose of defining traffic variables. Yet, studies normally report the analysis

for one particular discretization scheme whose choice is often arbitrary. Furthermore, it

is the highly heterogeneous and complex nature of pedestrian movement behavior that

accounts for simplifications regarding pedestrian flow characterization. The definitions of

pedestrian traffic variables are usually developed on the grounds of drawing the parallels

between pedestrian and vehicular traffic. This is due to the fact that the field of vehicular

flow modeling is quite well established (Daganzo and Newell, 1995; Hoogendoorn and

Bovy, 2001). However, this analogy is considered useful to some extent, because of large
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differences that exist between the two types of traffic flow. In comparison to roadways,

where vehicular flow is separated by directions and hence is regulated, pedestrian flow is

such that pedestrian facilities permit them to move in a multi-directional fashion. The

lack of strict rules for pedestrians to follow allows them to occupy any part of walkway

so they are able to change their speed and direction faster than vehicles (Blue and Adler,

2001).

The relationships between density and flow, density and speed, and flow and speed,

are referred to as the fundamental relationships. They are specified under the assump-

tion that the traffic system is at equilibrium, that is stationary and homogenous. The

fundamental relationships play an important role in the field (Weidmann, 1993; Daa-

men, 2004). They represent simple models capable of predicting pedestrian flow under

specific circumstances, and are thus useful for planning and designing of pedestrian fa-

cilities (Zhang, 2012). They are also a required input or calibration criterion for models

of pedestrian dynamics (Hänseler et al., 2014; Blue and Adler, 2001). The existing mod-

els of these macroscopic relationships are rather descriptive than explanatory, and they

lack generality (Hoogendoorn, 2001). More importantly, empirical analyses reported

in the literature reveal significant scatter in the data, which eliminates the use of a

unique equilibrium relationship (Cheung and Lam, 1998; Daamen et al., 2005; Steffen

and Seyfried, 2010). A possible approach to capture this complex phenomenon consists

in modeling explicitly the exact underlying walking process and the explicit interactions

at the disaggregate level. It would allow to test various hypotheses, at the expense of

losing computational efficiency (Duives et al., 2013). An alternative approach, based on

an aggregate representation of the pedestrian traffic, is still missing.

Although advanced theories and pedestrian models at strategic, tactical, and opera-

tional level exit, the fundamental aspects related to pedestrian movement are still not

adequately treated. This is where this thesis aims at making a contribution, by exploit-

ing the great potential of the available data. We propose a data-driven approach to

pedestrian traffic characterization, and an econometric perspective in modeling the rela-

tionship between traffic characteristics. Our analyses are predominantly based on a real

dataset of pedestrian trajectories, which is collected in the train station in Lausanne,

Switzerland (Alahi et al., 2011, 2014). The infrastructure data and train timetables are

also available for this case study. Additionally, we make use of the data from a controlled

experiment performed by the Technical University of Delft (Daamen and Hoogendoorn,

2003), and the data obtained using pedestrian simulation tools (Campanella et al., 2014).

1.2 Objectives

The goal of this thesis is the exploitation of the data collected using state-of-the-art

technologies in dealing with the issues related to the characterization and modeling of
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pedestrian movements. In that context, the objectives are threefold:

1. Pedestrian flow characterization

(a) To develop a data-driven mathematical framework for spatio-temporal dis-

cretization suitable for pedestrian flow studies.

(b) To define fundamental traffic variables in a pedestrian-oriented manner, and

within developed discretization scheme.

2. Pedestrian flow modeling

(a) To process and analyze a rich set of pedestrian data, in order to identify

phenomena characterizing the relationships between fundamental traffic vari-

ables.

(b) To propose a theory representing discovered phenomena.

(c) To operationalize the proposed theory through the development of suitable

mathematical framework.

3. Application

(a) To apply developed models on empirical data, so as to evaluate the perfor-

mance and applicability of the framework.

(b) To provide directions for the use of the models in practice.

1.3 Contributions

This thesis contributes with respect to the utilization of data potential in modeling of

fundamental aspects related to pedestrian traffic. The main scientific contributions of

this thesis include:

1. Pedestrian flow characterization

(a) Data-driven discretization (Chapter 3) - The derivation of a discretization

framework that is based on spatio-temporal Voronoi diagrams. It is designed

through the utilization of pedestrian trajectories.

(b) Data-driven characterization (Chapter 3) - The definition of fundamental

traffic variables that are (i) independent of an arbitrarily chosen discretiza-

tion, (ii) appropriate for the multi-directional composition of pedestrian traf-

fic, (iii) able to reflect the heterogeneity of pedestrian population and (iv) ap-

plicable to pedestrian trajectories described either analytically or as a sample

of points.
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2. Pedestrian flow modeling - The development of methodologies for representing

speed-density relationships for pedestrian traffic, in particular taking the observed

nature of the data into account. The scatter is represented by relaxing the equi-

librium assumption in two ways

(a) Probabilistic speed-density relationship (Chapter 4) - Implicitly accounting

for the heterogeneity of speeds by bringing together first principles and an

econometric approach. The approach is probabilistic and utilizes only the

information contained in pedestrian trajectory data.

(b) Multi-class speed-density relationship (Chapter 5) - Explicitly explaining the

heterogeneity of speeds by using latent class methodology. The approach is

probabilistic and combines different data sources (e.g. traffic condition data,

infrastructure data, characteristics of individuals, etc.).

The developed fundamental models are applied to different case studies in order to

evaluate their performance and to illustrate their advantages, with respect to exist-

ing approaches. Our data-driven characterization is shown to outperform the existing

methodologies from the literature, in terms of the smoothness of the results, and in terms

of the robustness with respect to the simulation noise and sampling frequency. With

respect to speed-density relationships, various empirical tests validate the proposed data-

inspired model specifications. Contrasted with existing approaches, our approach yields

a more realistic representation of the empirically observed phenomena.

1.4 Thesis structure

The thesis is structured as described in the following.

Chapter 2 presents a review of the state-of-the-art with respect to the data that is

available in the context of pedestrian movements, and characterization and modeling of

fundamental aspects of pedestrian movements. The chapter also provides a review of

the literature associated with vehicular traffic theory, that is relevant for pedestrians.

Chapter 3 describes the proposed methodology for the derivation of the spatio-temporal

discretization framework. Based on this framework, we derive the definitions of the

pedestrian traffic variables, that is density, flow and velocity.

The preliminary ideas of the methodology presented in this chapter are published as:

Nikolić, M., and Bierlaire, M. (2014). Pedestrian-oriented flow char-

acterization, Transportation Research Procedia 2:359-366.

Nikolić, M., and Bierlaire, M. (2015). Pedestrian flow characterization
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based on spatio-temporal Voronoi tessellations. Proceedings of the

15th Swiss Transportation Research Conference (STRC) 15-17 April,

2015.

This chapter is based on the article published as:

Nikolić, M. and Bierlaire, M. (2016). Data-driven characterization of

pedestrian flows. Technical report TRANSP-OR 160815.

The article has been accepted for publication in the proceedings and a special issue of an

academic journal for the 22nd International Symposium on Transportation and Traffic

Theory, Northwestern University, July 24-26, 2017.

Chapter 4 introduces a probabilistic speed-density relationship for pedestrians. The

model is able to implicitly account for the heterogeneity of pedestrian flows. As such, it

is useful in the context where pedestrian trajectory data is the only available information.

The preliminary ideas of the methodology presented in this chapter are published as:

Nikolić, M., Farooq, B., and Bierlaire, M. (2013). Exploratory analy-

sis of pedestrian flow characteristics in mobility hubs using trajectory

data. Proceedings of the Swiss Transportation Research Conference

(STRC) 24-26 April, 2013.

Nikolić, M., Bierlaire, M., and Farooq, B. (2014). Probabilistic speed-

density relationship for pedestrians based on data driven space and

time representation. Proceedings of the Swiss Transportation Research

Conference (STRC) 14-16 May, 2014.

This chapter has been published as:

Nikolić, M., Bierlaire, M., and Farooq, B. (2015). Probabilistic speed-

density relationship for pedestrian traffic: a data-driven approach.

Technical report TRANSP-OR 150411.

Nikolić, M.,Bierlaire, M., Farooq, B. and de Lapparent, M. (2016).

Probabilistic speed-density relationship for pedestrian traffic, Trans-

portation Research Part B: Methodological 89: 58 - 81.

Chapter 5 develops the model of speed-density relationship using the latent class method-

ology. The heterogeneity of speeds is, in this case, explicitly explained using variables

related to train timetables, pedestrian type and infrastructure data.

This chapter is based on the article:
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Nikolić, M., Bierlaire, M., Lapparent, M. and Scarinci, R. (2017).

Multi-class speed-density relationship for pedestrian traffic. Technical

report TRANSP-OR 170115.

Chapter 6 summarizes the contributions of the thesis and determines future research

directions.
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2
State of the Art

This chapter is organized into four parts. The first part (Section 2.1) focuses on data that

is available in the context of pedestrian movements. The second part (Section 2.2) deals

with the characterization of pedestrian traffic. The third part (Section 2.3) discusses

the models of speed-density relationships for pedestrians. The chapter is finalized by

drawing some conclusions in Section 2.4

In addition to the approaches proposed for pedestrian movements characterization and

modeling, we also consider those from the vehicular traffic theory. The approaches

derived in the field of vehicular traffic are relevant for pedestrians as well, but for most

applications in pedestrian flow theory they can not be directly used.

2.1 Pedestrian data

Data is essential in understanding and modeling of different phenomena, as well as in

the process of calibration and validation of the models. A number of different technolo-

gies have been developed and used in recent years to collect data related to pedestrians.

The data collections have been performed for different purposes (e.g. health, market-

ing, transportation, etc.) and at different scales (e.g. city, facilities), as elaborated in

Danalet (2015). We focus on pedestrian movement data collected in normal situations.

Within this context, the data is predominantly used to gain better understanding about

pedestrian movement behavior, and to access the demand and the level of service of
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pedestrian facilities. This is important in order to provide services related to pedestrian

comfort, convenience, efficiency and safety (Bauer et al., 2009).

Different types of pedestrian movement data are reported and utilized in the literature.

They can be roughly classified into three main categories: survey data, counts and

trajectories. Each data type is associated with specific data collection technologies,

and the corresponding opportunities and limitations. In the following, we provide a

description of these data types, and discuss their importance.

2.1.1 Survey data

Survey data on pedestrian movement behavior are typically obtained using revealed

preference questionnaires. The questionnaires ask the respondent to describe their past

choices, such as the path they followed for a specific trip, and to report about it. They

are usually distributed to randomly selected individuals in pedestrian facilities (Kalakou

and Moura, 2014), or conducted via mail, telephone or computer assisted tools (Kazagli

et al., 2014). This technique allows to gather additional information, such as socio-

demographic, trip context data (e.g. purpose), and potentially description of unchosen

alternatives (Kazagli et al., 2014). Complex logistics, selection bias, low temporal and

spatial accuracy and recall bias, since it relies on respondents memory, are the main

drawbacks related to this data type.

The data collected by means of surveys is commonly used at strategic and tactical

level, solely or together with other data sources (Hoogendoorn and Bovy, 2004). For

instance, Verlander and Heydecker (1997) have presented an application of a sample

survey of daily walks in an urban area in studying route choice for pedestrians. In

Kalakou and Moura (2014), a survey data is used to estimate location choice models

for a given activity type. Lin and Chen (2013) report the use of passenger survey

data, collected at Taiwan’s Taoyuan International Airport, to examine the relationship

between passengers’ shopping motivations and their commercial activities at airports.

2.1.2 Count data

Pedestrian count data are typically represented as a pair of the number of people crossing

a particular (virtual) section and a time stamp. The traditional method to obtain

pedestrian counts is the manual one. This method is simple, low-cost and reliable. The

human factor and the complexity of the scene appear to be crucial for counting accuracy

in this case (Diogenes et al., 2007; Greene-Roesel et al., 2008).

Turnstiles, infra-red beams and switching mats are exemplary representatives of the

automatic counting methods. They allow for the collection of count data at low cost.
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On the other hand, the accuracy of such methods is low and it depends on the separation

of pedestrians. Also, the installation of the equipment might be an issue, as well as the

sparsity of the observations (Bauer et al., 2009).

More sophisticated counting systems rely on video-based techniques. A number of com-

puter vision algorithms have been developed for extracting pedestrian counts from video

footage (Sexton et al., 1995; Zhang and Sexton, 1997; Tan et al., 2011; Chen et al.,

2006). These systems deliver reliable observations, but are limited by higher cost and

installation issues (e.g. require top view locations). Counts can also be obtained from

sales (Hänseler, 2016) or automatic fare collection data, i.e., check-in and check-out of

passengers (Van den Heuvel and Hoogenraad, 2014).

Pedestrian count data, obtained manually or automatically, can be used to obtain the

information on flow rates or calibrate pedestrian demand and flow models (Cascetta and

Russo, 1997; Hänseler, 2016).

2.1.3 Trajectory data

Pedestrian trajectory data are provided in the form of individual-specific pairs of con-

secutive time and location observations. Different tracking methods have been designed

to collect this type of data.

Pedestrian trajectories are usually collected exploiting video footage. In Daamen and

Hoogendoorn (2003) the individual trajectories were collected using digital video cameras

during controlled experiments at the Technical University of Delft in the Netherlands.

Wong et al. (2010) carried out the experiments in a sports hall in Hong Kong, and

collected video footage on 89 controlled experiments. Plaue et al. (2014) conducted a

multi-directional pedestrian flow experiment in the entrance hall of a university building

at TU Berlin, Germany, and the setting is video-recorded using three networked cameras.

Hoogendoorn et al. (2003) propose a computer vision-based approach to extract individ-

ual pedestrian data from video sequences. A methodology for generating individualized

trajectories from video footage is also discussed in Mehner et al. (2015). Antonini et al.

(2006) propose a framework for detection and tracking of pedestrians in video sequences,

which is based on a combination of image processing methods and behavioral models

of pedestrian dynamics. In addition to high cost of video-based systems, Bauer et al.

(2009) indicate that abrupt object motion, changing appearance patterns and occlusions

lead to major difficulties in video-based tracking.

To overcome the high cost and limitations of traditional data collection methods, simpler

approaches have emerged. They are based on wireless technologies, among which WiFi

and Bluetooth are particularly attractive (Lesani and Miranda-Moreno, 2016). With

Bluetooth and WiFi, a unique media access control (MAC) address for each device is
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obtained and thus each device can be monitored as it moves through a network. WiFi

and Bluetooth traces offer the opportunity to collect panel data in the long term. The

issue with these technologies is the low accuracy and temporal resolution, and strong

sample bias (Liu et al., 2007). Pedestrian data collected using wirelesses technologies are

topically employed to study route and activity choice. Yaeli et al. (2014) analyze pedes-

trian behavior in stores based on WiFi traces. Danalet (2015) proposes methodologies

to detect and model activity episodes from WiFi data. The data collected via wireless

technologies is also used to obtain the information on OD patterns (Versichele et al.,

2012; Kim et al., 2015) and to analyze and improve the attractiveness of pedestrian facil-

ities (Kanda et al., 2007). Also, in Hänseler (2016) it is discussed that the combination

of WiFi or Bluetooth traces with count data may provide better understanding about

prevailing traffic conditions.

Technological progress have encouraged the use of smart sensors (e.g. optical, thermal

and depth sensors) in pedestrian facilities for surveillance purposes (Alahi et al., 2013).

Due to their falling cost, a large number of optical sensors is already installed in public

spaces. Their usage in tracking pedestrians is however limited by their high sensitivity

to reflections. Thermal sensors are less affected by changes of lighting conditions, but

should be installed high enough to avoid self-occlusion. To deal with the occlusion

problems, depth sensors are preferred. The main drawbacks of depth sensors is their

limited monitoring range (up to 7 meters) (Alahi et al., 2013). Clearly, every sensing

modality features some advantages and limitations. Requirements for protection from

vandalism and bad weather conditions play an additional role in all the cases (Hänseler,

2016). Alahi et al. (2014, 2011) presented the mathematical framework that handles

the inputs from different sensors to allow for high accuracy in pedestrian detection and

tracking. Their methodology is applied to a real case study involving a Lausanne railway

station, Switzerland. Pedestrian trajectories from this case study are utilized to calibrate

a dynamic pedestrian propagation model proposed by Hänseler et al. (2014), which is

applicable to congested and multi-directional flows.

Pedestrian trajectory data contain useful information regarding pedestrian motion. De-

tailed observations obtained using cameras and smart sensors are extremely important

for the estimation and validation of pedestrian models at operational level (Johansson

et al., 2007; Hoogendoorn and Daamen, 2007). However, socio-economic information is

missing in this case.

2.1.4 Other data

Depending on the purpose of a particular study, the availability of other data sources

might be also desirable. Pedometers can be useful for the analysis of walking patterns

(Whitt et al., 2004). Several studies also employ information available from online social

media websites to study pedestrian movements. Wood et al. (2013) use the locations of
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photographs in flickr to estimate visitation rates, and information from the profiles of

the photographers to derive travelers’ origins. Dashti et al. (2014) show how tweets can

be used to support a digital survey of a region and to navigate optimal paths. In some

circumstances, the attributes of a particular facility, such as detailed dimensions and

locations of relevant parts (e.g. access doors, shops, etc.) is of particular importance

(Hui et al., 2009; Hillier and Tzortzi, 2006; Haq and Luo, 2012; Kalakou and Moura,

2014). In transportation hubs, for instance, timetables and schedules have a significant

impact on the usage of facilities (Daamen, 2004). Domain knowledge by practitioners

about attractive areas or peak periods may also provide a significant insight regarding

the model specification.

2.2 Traffic characterization

Traffic characterization is usually based on the quantities such as velocity, density and

flow. They represent the main Level of Service (LoS) indicators. Also, they are the

fundamental variables used to model traffic related phenomena.

The definitions of traffic variables rely on spatial and temporal units obtained using

particular discretization scheme. The definition of the discretization scheme is not triv-

ial. It is related to different issues that are well recognized in the field of geography

(Openshaw, 1983; Çöltekin et al., 2011) and dynamic systems (Beck and Roepstorff,

1987). The research from geography field have demonstrated that the results of any

spatio-temporal analysis depend severely on the underlying discretization. The problem

appears in two dimensions, space and time (known as Modifiable Areal Unit Problem -

MAUP and Modifiable Temporal Unit Problem - MTUP). For instance, analysis of data

using grid-based spatial discretization differs from analysis performed using hexagon

cells. Similarly, temporal discretization may distort or exaggerate the actual temporal

pattern existing in data if it is based on an arbitrary choice. It is therefore essential that

the discretization rely on a meaningful basis relevant for the purpose of the study. The

definition of discretization scheme has to precede any attempt to define characteristics

based on it.

This section first focuses on vehicular traffic characterization. We then present the

approaches specific to pedestrian traffic characterization and their comparison.

2.2.1 Vehicular traffic

The most general and widely used definitions of vehicular traffic variables are proposed

by Edie (1963). The definitions are derived based on the trajectories of vehicles i =

1, ..., N in the time-space region A. The shape of the region A is usually rectangular
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with duration dt and length dx. The definitions are given as

k(A) =

N∑
i=1

ti

dxdt
, (2.1)

q(A) =

N∑
i=1

xi

dxdt
, (2.2)

v(A) =

N∑
i=1

xi

N∑
i=1

ti

, (2.3)

where ti and xi are the time spent by vehicle i, respectively the distance traversed

by vehicle i in the region A. This approach is applicable to any time-space domain of

interest and provides consistent results in observations and modeling. The determination

of the shape, the size and the placement of the time-space region A is however left to

the modeler.

Some authors propose a “vehicle-based” discretization (Jabari et al., 2014; Treiber and

Kesting, 2013). The definitions of the indicators with this discretization are consistent

with the classical definitions of Edie (1963), but with the space-time intervals chosen

to fit exactly one vehicle each. Let xi−1(t) and xi(t) denote the positions of the leader,

i−1, and the follower, i, at time t. The spacing is defined as si(t) = xi−1(t)−xi(t). The

density at time t is defined as the inverse of the spacing si(t) measured at that time

k(x, t) =
1

si(t)
, for x ∈ [xi(t), xi−1(t)). (2.4)

Let ti(x) denote the time when vehicle i crosses position x. The time headway is defined

as hi(x) = ti(x) − ti−1(x). The flow at position x is defined as the inverse of the time

headway hi(x) measured at that location

q(x, t) =
1

hi(x)
, for t ∈ (ti−1(x), ti(x)]. (2.5)

Speed is defined as the ratio between flow and density

v(x, t) =
si(t)

hi(x)
, for x ∈ [xi(t), xi−1(t)), t ∈ (ti−1(x), ti(x)], (2.6)
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and it represents a mean speed for vehicle i. This microscopic approach allows to preserve

the heterogeneity of driver population.

2.2.2 Pedestrian traffic

One of the first approaches to pedestrian flow characterization was proposed by Fruin

(1971). In this method a grid-based spatial discretization is considered and density is

defined as

k(x, y, t) =
NA(t)

|A| , for (x, y) ∈ A, (2.7)

where A is a grid cell, |A| is the area of A, andNA(t) represents the number of pedestrians

present in the cell A at a specific time instant t. The instantaneous velocity of pedestrian

i at t is specified using the following formulation

�vi(t) =

(
xi(t2)

yi(t2)

)
−

(
xi(t1)

yi(t1)

)
t2 − t1

, (2.8)

where (xi(t), yi(t))
T refers to the position of pedestrian i, and t1 and t2 define the time

instants before, respectively after time t. In general, no guidance is provided for the

selection of these time instants. The velocity within the cell A is then given as the

average of individual instantaneous velocities

�v(x, y, t) =

∑NA
i=1 �vi(t)

NA
, for (x, y) ∈ A. (2.9)

The flow is determined using the fundamental flow equation

�q(x, y, t) = k(x, y, t)�v(x, y, t), (2.10)

which holds only if (2.9) represents space-mean speed, that is when t2 approaches t1 in

(2.8). In the rest of the thesis, we refer to this method as the grid-based method (GB).

The range-based method (RB) is similar to the grid-based method (Duives et al., 2015).

The difference is that a circle defined by radius r at any discrete location in space is

used instead of rectangular cells.

In van Wageningen-Kessels et al. (2014) (similar to Saberi and Mahmassani (2014))

the definitions of Edie (1963) are extended by studying pedestrian traffic in a three-

dimensional time-space diagram A (of length dx, width dy and duration dt) with pedes-

trians i = 1, ..., N . The density is defined as the average number of pedestrians in the
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region [dx× dy] during time period dt

k(A) =

N∑
i=1

ti

dxdydt
, (2.11)

where ti is the time during which pedestrian i is present in the region A. The flow is

defined in x and y directions as

�q(A) =

(
qx(A)

qy(A)

)
=

⎛
⎜⎜⎜⎝

N∑

i=1
xi

dxdydt
N∑

i=1
yi

dxdydt

⎞
⎟⎟⎟⎠ , (2.12)

where xi and yi are the distances traveled in A in direction x, respectively y by pedestrian

i. The velocity in direction x (or y) is defined as the average distance traveled in x

direction (or in y direction) divided by the total time spent

�v(A) =

(
vx(A)

vy(A)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N∑

i=1
xi

N∑

i=1
ti

N∑

i=1
yi

N∑

i=1
ti

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.13)

At the limit dt → 0, the density converges to the number of pedestrians present in

[dx× dy] at a specific moment in time. At the limit dx → 0 (dy → 0) flow converges to

the number of pedestrians per unit of time and per unit of length. In the rest of the

thesis, we refer to this method as the XY-T method.

Another approach is provided by Helbing et al. (2007). This method defines the char-

acteristics at any point (x, y) by weighting the relative influence of the surrounding

pedestrians using Gaussian distance-dependent weight function

f

⎛
⎝(

xi(t)

yi(t)

)
−

(
x

y

)⎞
⎠ =

1

πR2
exp

⎛
⎝−

∥∥∥∥∥
(

xi(t)

yi(t)

)
−

(
x

y

)∥∥∥∥∥
2

R2

⎞
⎠, (2.14)

where R represents the distance up-to-which the influence of pedestrians is taken into

account, and (xi(t), yi(t)
T the location of pedestrian i. The density is defined as

k(x, y, t) =
∑
i

f

⎛
⎝(

xi(t)

yi(t)

)
−

(
x

y

)⎞
⎠. (2.15)
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The velocity is given by

�v(x, y, t) =

∑
i
�vi(t)f

⎛
⎝(

xi(t)

yi(t)

)
−

(
x

y

)⎞
⎠

∑
i
f

⎛
⎝(

xi(t)

yi(t)

)
−

(
x

y

)⎞
⎠

, (2.16)

where �vi(t) is the velocity of pedestrian i at time t, which is given by (2.8). The flow

is determined using the fundamental flow equation (2.10). In the rest of the thesis, we

refer to this method as the exponentially weighted distance method (EW).

Steffen and Seyfried (2010) propose the method in which the spatial discretization is

adjusted to the data through the use of Voronoi diagrams (Okabe et al., 2000). The

Voronoi space decomposition assigns a personal region Ai to each pedestrian i, in such

a way that each point in the personal region is closer to i than to any other pedestrian,

with respect of the Euclidean distance. The density at position (x, y) at time t is defined

as

k(x, y, t) =
1

|Ai| , for (x, y) ∈ Ai, (2.17)

where |Ai| is the area of Ai. The velocity is defined based on position differences of

pedestrian i between time instances t1 and t2

�v(x, y, t) =

(
xi(t2)

yi(t2)

)
−

(
xi(t1)

yi(t1)

)
t2 − t1

, for (x, y) ∈ Ai, (2.18)

where (xi(t), yi(t)
T is the location of pedestrian i at time t. Time instances t1 and t2

are determined such that the effect of the swaying movement of pedestrians is reduced,

which requires an extensive pre-processing of each pedestrian trajectory. The flow within

an interval is defined using fractional counts obtained from Voronoi cells: half a person

has passed a segment if half of the Voronoi cell has passed it. With the procedure defined

above different definitions of density in an area A are possible. For instance, Steffen and

Seyfried (2010) proposed

kA =
N∑N

i=1 |Ai|
, (2.19)

where N refers to the number of Voronoi cells overlapping with the area A. The space-

mean speed in the observation area A is then

vA =

∑N
i=1 v(x, y, t)

N
, (2.20)
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where the sum is taken over the instantaneous speeds of all persons that are in A at

time t. In the rest of the thesis, we refer to this method as the Voronoi-based method

(VB).

There also exist headway-based approaches for the definition of density variable, such as

Harmonically Weighted Mean Distance and Minimum Distance, both with or without a

vision field taken into account. According to Duives et al. (2015), these approaches are

not capable of providing correct and consistent estimation and are therefore excluded

from the further analysis in our study.

2.2.3 Comparison of methods

A summary of general characteristics of the approaches to pedestrian traffic charac-

terization is provided in Table 2.1. We first compare the approaches in terms of the

scale that is considered, that is in terms of whether the characterization is defined by

using the information about a single pedestrian (microscopic) or multiple pedestrians

(macroscopic). Then, the analysis is made with respect to the exact way the spatial

and temporal aggregation is performed at a given scale. Finally, the approaches are

contrasted in terms of the type of data required to perform the characterization.

Method Scale
Spatial aggregation Temporal aggregation

Data type
Unit Assumptions Unit Assumptions

XY-T Macroscopic Area
Shape
Size

Location
Interval Duration Trajectories

Grid-based (GB) Macroscopic Cell
Size

Location
Interval Duration

Trajectories
Sync. sample

Range-based (RB) Macroscopic Circle
Radius
Location

Interval Duration
Trajectories
Sync. sample

Exponentially-weighted (EW) Macroscopic Range
Influence function
Range of influence

Interval Duration
Trajectories
Sync. sample

Voronoi-based (VB) Microscopic Voronoi cell Boundary conditions Interval Duration
Trajectories
Sync. sample

Table 2.1: Characteristics of the approaches to pedestrian traffic characterization

Most of the methods (XY-T, GB, RB, EW) rely on macroscopic approach. This approach

does not always comply with the nature of the underlying system. Pedestrians differ

in many ways (Weidmann, 1993; Bierlaire and Robin, 2009) and studying pedestrian

movement at the macroscopic level may lead to the loss of heterogeneity. Also, by using

macroscopic definitions, velocity and flow vectors may nullify if the pedestrians do not

all move in the same direction. As for the XY-T method, van Wageningen-Kessels et al.

(2014) state that “if about half of the pedestrians walks from left to right, and the rest

walks in the other direction, this causes the flows and velocities in x direction to (almost)

cancel out”. The same example can be used to conclude that the GB, the RB and the

EW method suffer from the same issue. On the other hand, microscopic characterization

18



2.2. TRAFFIC CHARACTERIZATION

(employed in the VB method) is able to reflect these particularities of pedestrian traffic.

It is further supported by detailed movement data (at the individual level) that is more

and more available due to the advances in tracking technologies (Bauer et al., 2009). The

microscopic approach is characterized by higher computational burden, which becomes

less problematic in the era of high-performance computers.

All the approaches have in common the arbitrary chosen temporal intervals for the

specification of velocity and flow indicators. Most of them (XY-T, GB, RB, EW) ad-

ditionally depend on an arbitrary spatial aggregation. These may generate noise in the

data and the results may be highly sensitive to minor changes. The choice of the shape,

size and locations of the spatial units in the methods XY-T, GB and RB influences the

results significantly (Steffen and Seyfried, 2010). Also, the use of fixed aggregation over

time might cause large fluctuations in the indicator values when pedestrians cross the

boundaries of the aggregation units. An additional level of arbitrariness is introduced

when a pedestrian is exactly at the border between two units, and an arbitrary decision

must be made about what unit she belongs to (Duives et al., 2015). Indicators obtained

using the EW approach strongly depend on the radius R and, in general, on the choice

of the influence function f , given by (2.14). The VB method of Steffen and Seyfried

(2010) is the only one that addresses the issue of arbitrary aggregation in space through

a data-driven approach. The spatial units in this approach are not fixed over time. Ag-

gregation follows the trend of the data by computing Voronoi diagrams for every time

step. The issue is that Voronoi diagram is potentially not enclosed. There is no clear

understanding about where to put the Voronoi boundaries in directions where no other

pedestrians are present. Steffen and Seyfried (2010) use a restriction of the individual

cells in size (2m2) to deal with this issue, which is active only for a few cells.

An analytical description of the trajectories is required for the XY-T method. Conse-

quently, interpolation has to be used when sampled data is available, which is another

source of errors. Note that in Table 2.1 we consider the general formulation of the XY-T

method. If the limit conditions are considered (e.g. dt → 0), the method can be also

applied on discrete trajectory data. The methods GB, RB, EW and VB can be applied

on trajectories described either analytically or as a sample of points. If a sample of

points is used, all the approaches require a tracking technology that produces synchro-

nized samples. Often, the cameras used to track pedestrians in a distributed network of

cameras operate with different sampling frequency or produce observations at irregular

intervals. In this case not all trajectories have observations at the same time instants,

which might lead to the underestimation of the indicators. It is therefore necessary to

perform the interpolation of trajectories when using non-synchronized samples, before

applying the methods.
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2.3 Speed-density relationships

The relationships between density and flow, density and speed, and flow and speed are

referred to as the fundamental relationships. Speed-density relationships are predomi-

nantly used in the literature. They are useful for planning and designing of pedestrian

facilities. They are also a required input or calibration criterion for models of pedestrian

dynamics. The relationships are specified under the assumption that the traffic system

is at equilibrium, that is stationary and homogenous.

2.3.1 Equilibrium relationships

The fundamental diagram that corresponds to stationary and homogenous traffic was

first introduced empirically in the field of vehicular traffic by Greenshields et al. (1935).

This study established the relationship between spacing (the inverse of density) and

speed in a form of a simple linear equation. Since then there have been many empirical

studies that were aimed at improving this relationship. A comprehensive review of the

models proposed in this field is given in Wang et al. (2013). Some of the established

deterministic empirical relationships are listed in Table 2.2, where vf is the free-flow

speed, v0 is the average travel speed in stop-and-go conditions, kj is the jam density, kc
is the critical density, and λ, θ, θ1 and θ2 are parameters.

Source Specification Parameters

Greenshields et al. (1935) v(k) = vf

(
1− k

kj

)
vf , kj

Underwood (1961) v(k) = vf exp
(
− k

kc

)
vf , kc

Newell (1961) v(k) = vf (1− exp(− λ
vf
( 1k − 1

kj
)) vf , kj , λ

Drake et al. (1967) v(k) = vf exp
(−θk2

)
vf , θ

Wang et al. (2013) v(k) = v0 +
vf−v0

(1+exp( k−kc
θ1

)θ2
v0, vf , kc, θ1, θ2

Units: k[veh/km ], v[ km/h ]

Table 2.2: Deterministic fundamental relationships - vehicular traffic

Another stream of the literature establishes the fundamental relations by analyzing

the behavior of microscopic car-following models under the equilibrium conditions at

the aggregate level. Different car-following models result in different specifications of

fundamental relations (Jabari et al., 2014). Also, the study of Geroliminis and Daganzo

(2008) revels that a macroscopic fundamental diagram (MFD) linking space-mean flow,

density and speed exists on a large urban area.

In the context of pedestrian traffic, fundamental relations are usually established by
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fitting deterministic curves to empirical data. Both linear and nonlinear speed-density

models have been proposed, as reported in Table 2.3, where vf is the free flow speed,

kj the jam density, and θ and γ are parameters. The linearity of the speed-density

relationship has long been questioned for both vehicular and pedestrian flows (Daamen,

2004). An alternative specification has been proposed by Tregenza (1976) where speed

decreases exponentially with the increase in density, whereas Weidmann (1993) proposed

the so-called Kladek-formula, with a double S-form. The exponential specifications of

the relationship appeared to be better for describing the behavior of pedestrian walking

speed (Cheah and Smith, 1994). In comparison to fundamental relationships from ve-

hicular traffic, the relationship proposed by Weidmann (1993) corresponds to the model

proposed by Newell (1961), while the relationship proposed by Tregenza (1976) can

be regarded as the generalization of the model proposed by Underwood (1961). Ras-

togi et al. (2013) have shown that the speed-density relationship of pedestrian flow on

sidewalks also follows the model presented in Underwood (1961).

The proposed relationships clearly differ in terms of functional form, but also in terms

of the values of their parameters and supports. For instance, jam density (the maximum

density achieved under congestion) goes from 3.8 ped/m2 to 10 ped/m2, the reported

critical density (the maximum density achievable under free flow) ranges from 1.7 ped/m2

to 7 ped/m2 (Seyfried et al., 2010) and the mean of the free-flow speed estimated in dif-

ferent studies is 1.34 m/s while its standard deviation is 0.37 m/s (Daamen, 2004). The

researchers have suggested several explanations for these deviations: the cultural differ-

ences, the differences between pedestrian facilities and the effects of the environment,

flow composition, measurement methods, etc. (Seyfried et al., 2010).

Source Specification Parameters

Older (1968)
Navin and Wheeler (1969)
Fruin (1971)
Tanaboriboon et al. (1986)
Lam et al. (1995)

v(k) = vf − θk vf , θ

DiNenno (2002) v(k) = vf − vfθk vf , θ

Tregenza (1976) v(k) = vf exp
(−(kθ )

γ
)

vf , γ, θ

Weidmann (1993) v(k) = vf

{
1− exp

(
−γ

(
1
k − 1

kj

))}
vf , kj , γ

Rastogi et al. (2013) v(k) = vf exp(−k
θ ) vf , θ

Units: k[ped/m2 ], v[m/s ]

Table 2.3: Deterministic fundamental relationships - pedestrian traffic

Simulation-based fundamental relationships are predominantly obtained via cellular au-

tomaton models. For instance, Blue and Adler (1998) specified an unidirectional cellular

automaton model that produces a speed-density relationship similar to the one proposed
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by Weidmann (1993). Few studies propose the specifications of fundamental relations

derived from first principles (Flötteröd and Lämmel, 2015; Hoogendoorn et al., 2014).

2.3.2 Scatter in empirical observations

The findings from several studies (Cheung and Lam, 1998; Daamen et al., 2005; Steffen

and Seyfried, 2010), question the deterministic approach of the listed studies. They

indeed report a significant scatter in the empirical speed-density relationship. The ob-

served scatter is not possible to predict by the proposed deterministic models. Cheung

and Lam (1998) have reported different distributions of the speed data observed for var-

ious ranges of density. In this study, speeds are less evenly distributed for lighter traffic

conditions, which is explained by higher freedom that pedestrians have in controlling

their movements. This indicates that in addition to density, other factors are likely to

influence the speed of pedestrians. In the field of vehicular traffic, the observed scatter-

ing is explained by non-stationary dynamical aspects of the traffic system (Treiber and

Helbing, 2003), or by the impact of driver heterogeneity (Kim and Zhang, 2008; Jabari

et al., 2014).

Weidmann (1993) has empirically shown that the trip purpose of pedestrians represents

one of the relevant factors. According to this study free-flow speed of shopping pedes-

trians is 1.04 m/s, it is 1.45 m/s for commuters and 0.99 m/s for tourists. The speed

of pedestrians appears to be affected by the age and the gender as well. According to

Bowman and Vecellio (1994), the walking speed of pedestrians who are 60 years old and

older is significantly lower than for the rest of the adult population. Weidmann (1993)

has reported that children (under 12 years) are not capable of attaining the same speed

as adults. According to the same study, walking speed of men is found to be 1.41 m/s,

whereas for women it is lower (1.27 m/s). Microscopic approaches capture this complex

phenomena by modeling the exact underlying walking process and interactions at the

level of individuals (Johansson et al., 2007; Hoogendoorn and Bovy, 2004). Although

being highly precise, these approaches suffer from high computational time and require

a great deal of dissagregate data.

There are several ways to account for the observed heterogeneity in speed at more

aggregate level. They can be roughly divided into two categories: the approaches based

on physical laws and those based on econometric principles. The examples from the

first category are macroscopic models of vehicular traffic that have adopted individual-

level speed-density relations (Colombo, 2003; Khoshyaran and Lebacque, 2009; Lebacque

and Khoshyaran, 2013). Mesoscopic models, on the other hand, describe pedestrian

behavior in terms of probabilities (e.g. velocity distributions). For instance, the gas-

kinetic pedestrian flow model proposed by Hoogendoorn and Bovy (2000) describes the

dynamics of the so-called pedestrian phase-space density, which represents a combination

of the density and the speed distribution.
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The models from the second category can be derived from a deterministic model by

allowing for uncertainty, or from a model which itself is probabilistic. In the field of

vehicular traffic, Wang et al. (2013) proposed a model derived by adding Gaussian

noise to the existing deterministic relationships. This can potentially lead to unrealistic

outcomes (e.g. negative speed values). Jabari et al. (2014) proposed a probabilistic

speed-density relationship based on a microscopic car-following model. Probabilistic

features are incorporated by introducing random parameters capturing population het-

erogeneity. However, limited behavioral basis exists to help in the specification of the

distribution of these parameters. Also, such approach has the disadvantage of poten-

tially allowing for behaviorally and physically implausible parameter values, depending

on the choice of distributions. An alternative for dealing with heterogeneity is a two-

stage approach, where the data is first segmented based on some observed characteristics

(e.g. socio-economic or demographic variables). The segmentation can be performed us-

ing automated clustering schemes (Ge et al., 2012; Lee et al., 2007) or manually. The

assignment of the individual observations to different segments is deterministic in this

approach. In the second stage, a separate model is estimated for each predefined seg-

ment in the population (Weidmann, 1993). The issue of imprecise parameter estimates

may arise due to potentially small sample sizes in some segments. Also, segmentation

is usually performed based on a single characteristic and assumed to be error-free. In

reality, the heterogeneity may come from multiple factors, which may introduce errors

in the second stage.

2.4 Summary

Various forms of data have been collected for the purpose of studying pedestrian flow

and behavior. The main representatives include survey, count and trajectory data.

Each of them is related to certain advantages and disadvantages. In most of the studies,

typically only one type of data is used. The studies in which multiple data types have

been combined are extremely rare. The most detailed information on pedestrian motion

is contained in trajectory data. However, in many cases, cost and privacy issues do not

allow the use of high precision sensors covering an entire pedestrian infrastructure.

From the above literature review, it can be concluded that the characterization of pedes-

trian movements that is (i) independent of arbitrarily chosen values, in both space and

time, (ii) capable to reflect the heterogeneity of the population, (iii) in accordance with

multi-directional pedestrian flows, and (iv) applicable to continuous and discrete pedes-

trian trajectory data, is still missing. Also, the existing models of speed-density rela-

tionships for pedestrian traffic are not designed to capture the complex aspects related

to high scattering. This is where our study makes a contribution.

We propose methodologies for pedestrian flow characterization and modeling that utilize
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the potential of the data itself. The approach for the definition of fundamental traffic

variables proposed in Chapter 3 is data-driven. It relies on the microscopic definitions

of Edie (1963), adopted for pedestrian traffic, and extended through a data-driven dis-

cretization framework. We propose an alternative approach to account for the scatter

in pedestrian fundamental relationships, as observed in the data. First, a probabilistic

model of speed-density relationship is developed in Chapter 4. The model implicitly

accounts for the heterogeneity of pedestrian flows by bringing together first principles

and a data-inspired approach. The model specification ensures the physical correctness

of the results, but lacks behavior-oriented explanatory power. The second model, pro-

posed in Chapter 5, deals with this issue by relying on the latent class modeling (LCM)

methodology (Frühwirth-Schnatter, 2006). The LCM approach has been proven to be

valuable in capturing unobserved heterogeneity and characterization of the latent classes

(Walker and Li, 2007).
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3
Data-driven spatio-temporal discretization for

pedestrian flow characterization

This chapter is based on the article:

Nikolić, M. and Bierlaire, M. (2016). Data-driven characterization

of pedestrian flows. Technical report TRANSP-OR 160815.

It has been accepted for publication in the proceedings and a special issue of an aca-

demic journal for the 22nd International Symposium on Transportation and Traffic

Theory.

The work has been performed by the candidate under the supervision of Prof. Michel

Bierlaire.

In this chapter, we propose a novel approach to pedestrian flow characterization. The

definitions of density, flow and velocity existing in the literature are extended through

a spatio-temporal discretization framework that is independent from arbitrarily chosen

values. We propose to adjust the discretization to the data itself using a data-driven

approach. The approach is based on spatio-temporal Voronoi diagrams designed through

the utilization of pedestrian trajectories. The methodology proposed here relies on

the microscopic definitions of Edie (1963) adopted for pedestrian traffic, and extended

through a data-driven discretization.

25



CHAPTER 3. DATA-DRIVEN SPATIO-TEMPORAL DISCRETIZATION FOR
PEDESTRIAN FLOW CHARACTERIZATION

The structure of the chapter is as follows. Section 3.1 provides a formal introduction of

the basic elements involved in our analysis. Section 3.2 describes the proposed method-

ology for the derivation of the spatio-temporal discretization framework. Based on this

framework, we derive the definitions of the pedestrian traffic variables, that is density,

flow and velocity. Section 3.3 empirically illustrates the performance of the approach

by using synthetic data. Finally, Section 3.4 summarizes the outcomes of the proposed

methodology.

3.1 Preliminaries

We consider a space-time representation and denote the area of interest by Ω ⊂ R
3.

An orthonormal basis of this space is considered. The distance along each of the two

spatial axes is expressed in meters, and the unit for time is seconds. The triplet p =

(px, py, pt) = (x, y, t) ∈ Ω represents a physical position (x, y) in space at a specific time

t. It is assumed that Ω is convex, that is obstacle-free, and bounded.

The trajectory of pedestrian i is a curve in space and time. It is a set of points

Γi : {pi(t)|pi(t) = (xi(t), yi(t), t)}, (3.1)

indexed by time t that spans the horizon of the analysis, and xi(t) and yi(t) are the

coordinates of the position of pedestrian i at time t.

In practice, the analytical description of a trajectory is seldom available. Instead, the

pedestrian trajectory data is collected through an appropriate tracking technology (Alahi

et al., 2014; Daamen and Hoogendoorn, 2003). In this case time is discretized and the

trajectory is described as a finite collection of triplets (a sample of points)

Γi : {pis|pis = (xis, yis, ts)}, (3.2)

where s = [1, 2, ..., Ti] and ts = [t1, t2, ..., tTi ] correspond to the available sample.

The speed along the continuous trajectory of pedestrian i is given by

vi(t) = (x′i(t), y
′
i(t), 1). (3.3)

Interpolation methods or finite differences (forward, backward or central) approximation

can be used with sampled data.
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3.2 Methodology

This section is organized in four parts. The first part presents the derivation of the

spatio-temporal discretization framework using a data-driven approach. In the sec-

ond part, we define pedestrian traffic variables, that is density, flow and velocity. The

variables are defined by revising the existing microscopic definitions according to the

proposed discretization (as motivated in Chapter 2). In the third part, we present con-

crete suggestions for the operationalization of the general and abstract concepts related

to the discretization framework. The last part focuses on the implementation details.

3.2.1 Data-driven discretization

We propose the discretization in space and time that is defined based on three-dimensional

(3D) Voronoi diagrams associated with pedestrian trajectories. We call the set of tra-

jectories the generator set Γ = {Γ1, ...,Γn}, consistently with the literature. We assume

that elements in Γ do not intersect each other. This assumption is reasonable, as two

pedestrians cannot be at the exact same place at the exact same time. The main idea for

defining the partition of Ω is that (i) every point p ∈ Ω belongs to a unique discretiza-

tion unit, (ii) each discretization unit is assigned to one generator Γi ∈ Γ according to

a certain assignment rule and (iii) the resulting discretization units associated with the

trajectories are collectively exhaustive and mutually exclusive. Therefore, the partition-

ing is characterized by the assignment of each point p ∈ Ω to one generator from Γ.

The discretization units are then defined as the set of points p assigned to the same

generator.

Given a non-empty space Ω and a generator set Γ, the assignment rule δΓ of a point

p ∈ Ω to an element of Γ is in the literature (Okabe et al., 2000) often specified in terms

of distance relations D (not necessary distance metric). The point p is assigned to the

“closest” generator in term of a given distance:

δΓ(p,Γi) =

{
1, D(p,Γi) ≤ D(p,Γj), ∀j �= i

0, otherwise.
(3.4)

Note that this rule is ambiguous for points p that are equidistant to two trajectories. In

this case, an additional arbitrary rule must be used. For instance, if D(p,Γi) = D(p,Γj),

then it can be decided that p is assigned to Γi if i ≤ j.

If the generators are continuous trajectories (3.1), the distance may be defined as

D(p,Γi) = min
t
{d(p, pi(t))|pi(t) ∈ Γi,Γi ∈ Γ, p ∈ Ω}, (3.5)

where d(p, q) is the distance between two points p and q in Ω. Concrete examples of this
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distance function are discussed in Section 3.2.3. Similarly, if the generators are sampled

(3.2), the distance may be defined as

D(p,Γi) = min
s

{d(p, pis)|pis ∈ Γi,Γi ∈ Γ, p ∈ Ω}. (3.6)

Under the assignment rule (3.4), we consider the set of points Vi assigned to Γi

Vi = {p|δΓ(p,Γi) = 1, p ∈ Ω,Γi ∈ Γ}, (3.7)

which represents a personal spatio-temporal region associated with pedestrian i. For

each i, Vi is a convex subset of Ω called a Voronoi cell. Collectively, they represent a

Voronoi diagram. The assumption that Ω is obstacle-free and bounded (Section 3.1)

allows for the creation of non-degenerate Voronoi diagrams

V = {V1, ..., Vn}, (3.8)

generated by Γ.

In a three-dimensional space Ω the plane through the point p0 = (x0, y0, t0) and with

non-zero normal vector �n = (a, b, c) has equation

P�n,p0 : ax+ by + ct+ d = 0, (3.9)

where d = −ax0 − by0 − ct0. We define the set of points A(Vi,P�n,p0) corresponding to

the intersection of the cell Vi and the plane P�n,p0

A(Vi,P�n,p0) = {p|p ∈ {Vi ∩ P�n,p0}}. (3.10)

For �n = (0, 0, 1) we have a plane parallel to the x-y plane and its intersection with Vi is

given as

A(Vi,P(0,0,1),p0) = {p|p ∈ Vi and pt = t0}. (3.11)

It represents a set of dimension 2 or a physical area on the floor (illustrated in Figure 3.1

(left)), at time t0. The area of this cell is denoted by |A(Vi,P(0,0,1),p0)|, with the unit in

m2. Similarly, for �n = (a, b, 0) we have

A(Vi,P(a,b,0),p0) = {p|p ∈ Vi and apx + bpy = ax0 + by0}. (3.12)

It is the set of dimension 2 or a segment on the floor occupied by pedestrian i in the

direction perpendicular to �n = (a, b, 0) during the time interval spanning Vi. The area

of the cell is denoted by |A(Vi,P(a,b,0),p0)|, with the unit in ms. Note that if �n = (1, 0, 0)

and �n = (0, 1, 0), the corresponding planes are parallel to the x-t, respectively the y-t

plane (illustrated in Figure 3.1 (right)).
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Figure 3.1: 3D Voronoi-based discretization: Set A(Vi,P(0,0,1),p0) (left); Set
A(Vi,P(a,b,0),p0) (right)

3.2.2 Definitions of pedestrian traffic variables

Assume that the Voronoi cell Vi is associated with position (x, y, t) ∈ Ω. The density

at (x, y, t) is defined as the inverse of the area of the set A(Vi,P(0,0,1),(x,y,t)) assigned to

pedestrian i at time t

k(x, y, t) =
1

|A(Vi,P(0,0,1),(x,y,t))|
, (3.13)

where A(Vi,P(0,0,1),(x,y,t)) is given by (3.11) and |A(Vi,P(0,0,1),(x,y,t))| is the area of this

set. The location (x, y) determines pedestrian i and the corresponding setA(Vi,P(0,0,1),(x,y,t)).

The unit of k(x, y, t) is a number of pedestrians per square meter. This definition is con-

sistent with (2.11), adapted to this 3D Voronoi context.

The flow in the direction determined by the vector �e = (a, b) is defined as the inverse of

the area of the set A(Vi,P(a,b,0),(x,y,t)) assigned to pedestrian i

�qe(x, y, t) =
1

|A(Vi,P(a,b,0),(x,y,t))|
, (3.14)
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where A(Vi,P(a,b,0),(x,y,t)) is given by (3.12) and |A(Vi,P(a,b,0),(x,y,t))| is the area of this

set. The point (x, y, t) determines pedestrian i and the corresponding setA(Vi,P(a,b,0),(x,y,t)).

The set (Vi,P(a,b,0),(x,y,t)) belongs to the spatio-temporal domain. Therefore, the unit

of �qe(x, y, t) is a number of pedestrians per meter per second. The flow in x and

y directions is obtained considering the inverse of the areas |A(Vi,P(1,0,0),(x,y,t))| and
|A(Vi,P(0,1,0),(x,y,t))|, consistently with (2.12).

Adopting the usual definition of the velocity (the ratio between the flow and density),

from (3.13) and (3.14) we have

�ve(x, y, t) =
�qe(x, y, t)

k(x, y, t)
=

|A(Vi,P(0,0,1),(x,y,t))|
|A(Vi,P(a,b,0),(x,y,t))|

. (3.15)

It represents the mean speed of pedestrian i (Jabari et al., 2014) in the direction deter-

mined by the vector �e = (a, b), expressed in meters per second. Note that the framework

allows for the specification and measurement of the indicators �qe(x, y, t) and �ve(x, y, t)

in any direction �e of interest.

The proposed definitions (3.13)-(3.15) are independent from arbitrarily chosen intervals

in space and time, due to the fact that they rely on a data-driven discretization. Our

approach is microscopic and therefore suitable for multi-directionl nature of pedestrian

flows and able to preserve the heterogeneity of pedestrians (Jabari et al., 2014). The

issues characteristic for the macroscopic approach, discussed in Chapter 2, do not appear

at the microscopic level. Also, the proposed definitions can be applied on continuous or

sampled trajectories. The samples, in general, do not need to be synchronized.

We refer to the proposed approach as the 3D Voronoi characterization (3DVoro).

3.2.3 Spatio-temporal distances

The proposed framework is fairly general, and can accommodate various methods to

generate the Voronoi diagrams, based on different definitions of the distance between

two points. To construct 3D Voronoi diagrams (Section 3.2.1), we need to define the

exact form of the distance relation d used in (3.5) and (3.6). Applying the Euclidean

distance in R
3 looks like a natural choice. However, it is important to keep in mind that it

would mix units in square meters with units in seconds. We propose here several ways to

deal with it. First, we propose to restrict the Euclidean distance in the spatial dimension,

and consider each point in time as independent. Second, we propose distances in R
3 that

convert seconds into meters using speed. Third, we account for the pedestrian dynamics

to define the distance, anticipating his future position. Finally, we define a distance

through the identification of points that are equidistant. Their respective performance

is empirically evaluated in Section 3.3.
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We denote by p = (x, y, t) a point from Ω. An observation from the trajectory of

pedestrian i is denoted by pi = (xi, yi, ti). It refers to either pi(t) or pis, depending on

the context.

3.2.3.1 Spatial Euclidean distance

The first distance that we propose is defined with respect to the standard Euclidean

distance in the spatial dimension, that is

dE(p, pi) =

{ √
(x− xi)2 + (y − yi)2, t = ti

∞, otherwise.
(3.16)

Intuitively, each point in time is independent. This is motivated by the availability of

snapshots of the floor area at given points in time. This implies that all pedestrians in

the area must be observed at the exact same time.

We refer to the characterization obtained using this distance as the Euclidean 3D Voronoi

characterization (E-3DVoro).

3.2.3.2 Time-Transform distances

We define the set of three distances that apply a conversion parameter, expressed in

meters per second, to transform the temporal difference between the points into the

spatial one. They are denoted as the Time-Transform distances (dTT1 , dTT2 , dTT3). The

distances differ in terms of the choice of the conversion parameter and in the way of

coupling the spatial and temporal component. They are defined as

dTT1(p, pi) =
√

(x− xi)2 + (y − yi)2 + v2(t− ti)2, (3.17)

where v is a parameter representing the typical speed of pedestrians (a value of v = 1.34

m/s is used in our experiments, Weidmann (1993)),

dTT2(p, pi) =
√

(x− xi)2 + (y − yi)2 + v̂i(ti)2(t− ti)2, and (3.18)

dTT3(p, pi) =
√

(x− xi)2 + (y − yi)2 + v̂i(ti)|t− ti|, (3.19)

where v̂i(ti) is the speed at time t on trajectory Γi. The choice of the conversion pa-

rameter v̂i(ti) in (3.18) and (3.19) allows to treat moving pedestrians in a different way

than standing pedestrians.
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The distances (3.17) and (3.18) combine the spatial and temporal components based on

the Euclidean norm, using two different values for the speed. In (3.19), the components

are considered as independent and kept separately. The distance dTT3 is defined as a

weighted sum of two norms. When t = ti, all distances are equivalent to (3.16).

We refer to the characterization obtained using these three distances as the Time-

Transform 3D Voronoi characterization (TT1-3DVoro, TT1-3DVoro, TT1-3DVoro).

3.2.3.3 Predictive distance

The Predictive distance anticipates the forward movement of pedestrians. The antici-

pated positions xai and yai are extrapolated from the current velocities of pedestrians for

a time determined by the anticipation time t− ti

xai = xai (t) = xi + (t− ti)v
x
i (ti), (3.20)

yai = yai (t) = yi + (t− ti)v
y
i (ti), (3.21)

where vxi (ti) and vyi (ti) are the speed of pedestrian i at ti in x, respectively y, direction.

The distance is specified as

dP (p, pi) =

{ √
(xai − x)2 + (yai − y)2, t− ti ≥ 0

∞, otherwise.
(3.22)

Note that it is not a metric distance, as it is not symmetric. The anticipation time

extends from zero to a positive value (t − ti). Points p that are backward in time with

respect to the current positions of pedestrian are considered infinitely distant. When

t = ti, the distance reduces to the standard R
2 Euclidean distance. The consideration of

individual speeds allows for the distinction between pedestrians that perform movement

from those that stand.

We refer to the characterization obtained using this distance as the Predictive 3D Voronoi

characterization (P-3DVoro).

3.2.3.4 Mahalanobis distance

The Mahalanobis distance is specified as

dM (p, pi) =
√

(p− pi)TMi(p− pi), (3.23)

32



3.2. METHODOLOGY

where Mi is a change of variable matrix. It is a symmetric, positive-definite matrix,

which defines how the distances are measured in different spatio-temporal directions

from the perspective of pedestrian i. To implement this distance we need to determine

the matrix Mi. We do so by identifying 6 points in Ω such that they are equidistant to pi
for the Mahalanobis distance. We take into account the information about the speed and

direction of pedestrians, in the sense that the points that are in the movement direction

of a pedestrian are “closer” than the points from other directions.

Formally, we consider three directions of interest. First, we define the normalized direc-

tion of movement in the space-time dimensions

d1(ti) =
vi(ti)

||vi(ti)|| , ||d
1(ti)|| = 1, (3.24)

where vi(ti) is the speed along the trajectory of pedestrian i given by (3.3). We next

define a normalized spatial direction orthogonal to d1(ti), that is

d2(ti) =

⎛
⎜⎝ d1x(ti)

d2y(ti)

0

⎞
⎟⎠ , (3.25)

such that d1(ti)
Td2(ti) = 0 and ||d2(ti)|| = 1. The third direction is for time

d3(ti) =

⎛
⎜⎝ 0

0

Δt

⎞
⎟⎠ , (3.26)

where Δt is typically determined by the sampling frequency and ||d3(ti)|| = Δt.

We determine the matrix Mi, and the distance dM , such that the following points in the

defined directions are all at distance α from the point pi. The key feature is that, in

the direction of movement, the distances do not refer to the position at time t, but the

positions at time t+Δt and t−Δt. The points S1 and S2 in the d1 direction are at α

and −α from the positions at time t+Δt, respectively t−Δt

S1(ti, α) = pi +Δtvi(ti) + αd1(ti), (3.27)

S2(ti, α) = pi −Δtvi(ti)− αd1(ti). (3.28)

In the direction d2 we consider the point S3 that is at α from the point pi

S3(ti, α) = pi + αd2(ti), (3.29)
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and the point S4 that is at −α from the point pi

S4(ti, α) = pi − αd2(ti). (3.30)

Similarly, in time direction d3 we consider the point S5 that is at α from the point pi

S5(ti, α) = pi + αd3(ti), (3.31)

and the point S6 that is at −α from the point pi

S6(ti, α) = pi − αd3(ti). (3.32)

This is illustrated in Figure 3.2.

Figure 3.2: Mahalanobis distance - illustration

In standard Euclidean space we have that

||S1(ti, α)− pi|| = ||S2(ti, α)− pi|| = Δt||vi(ti)||+ α. (3.33)

It shows that, in the direction d1, the forward and backward distances are stretched by

the quantity Δt||vi(ti)||. This is designed to anticipate the movement of pedestrians.

The additional term vanishes when Δt → 0. The approach also allows to deal with

moving pedestrians and standing pedestrians in a different way. The distance in the d2

direction is consistent with Euclidean distance

||S3(ti, α)− pi|| = ||S4(ti, α)− pi|| = ||αd2(ti)|| = α. (3.34)

The distance in time direction d3 is proportional to the time discretization

||S5(ti, α)− pi|| = ||S6(ti, α)− pi|| = ||αd3(ti)|| = αΔt. (3.35)

In particular, it shrinks to zero when Δt → 0.

In our experiments, a value of α = 1 is used.
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We refer to the characterization obtained using this distance as the Mahalanobis 3D

Voronoi characterization (M-3DVoro).

3.2.4 Implementation details

The Voronoi diagrams for higher order generators (such as curves) in higher dimensions

are difficult to compute in an exact way (Hoff III et al., 1999). For a number of appli-

cations an approximation of the exact diagram is considered (Schueller, 2007; Rong and

Tan, 2007; Park et al., 2006; Fuchida et al., 2005).

We also use an approximate algorithm for the implementation of the Voronoi diagram

detailed in Section 3.2.1. The area of interest, Ω, is discretized into regular cells. The

cells are used in the assignment rule (3.4), instead of points p. In the literature, this

approximation is known as the Näıve algorithm (Van der Putte, 2009).

The presented algorithm is merely one possibility. It is intuitive, but does not feature

high computational efficiency. To improve the efficiency of the algorithm, specialized

data structures can be considered (e.g. kd-tree), as discussed in Rigaux et al. (2001).

However, the aim of our study is to illustrate the performance of the proposed methodol-

ogy, and not to contribute to the field of computational geometry. The analysis of other

algorithms to construct Voronoi diagrams is therefore out of the scope of this thesis.

3.3 Empirical analysis

The performance of our approach is evaluated based on synthetic data that is generated

using the NOMAD simulation tool (Campanella et al., 2014; Hoogendoorn and HL Bovy,

2003). The flow is simulated in a 4 meters by 4 meters area, during 10 seconds for uni-

directional (Uni) flow composition. The data is generated for two different scenarios.

In the first scenario, we consider lower demand (1.2 pedestrians per second) and homo-

geneous pedestrian population (LD −HomoPop). The homogeneity of the population

is reflected through (approximately) homogenous walking speed of pedestrians. We use

the average speed value of 1.34 m/s, according to the study of Weidmann (1993). In the

second scenario, we consider higher demand (3.6 pedestrians per second) and heteroge-

neous pedestrian population (HD −HeteroPop). To represent the heterogeneity in the

population, we consider three sub-populations (slow, average and fast) with respective

speeds of 0.5 m/s, 1.3 m/s and 2.1 m/s. Each sub-population has roughly the same size.

Our objective is to analyze the nature of the results obtained using our approach, and

the robustness of the approach with respect to the simulation noise and with respect to

the sampling frequency. The performance of the 3DVoro method (for all the distances)
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is compared with the performance of the XY-T and VB methods. The consideration of

these two methods is motivated by the empirical comparisons of the existing approaches

presented in Duives et al. (2015), where it has been concluded that the XY-T and VB

methods perform the best. In the application of the XY-T method, the parameters of the

cells A reported in Duives et al. (2015) are used: a time interval of 1 second, and a grid

cell size of 1 × 1 meter. Note that, the VB method corresponds to the E-3DVoro when

used for the discrete time instants to discretize the spatial dimension only. Therefore,

the VB method will not be considered separately.

3.3.1 Nature of the results

The aim of this section is to assess the effects of the discretization on the nature of the

corresponding values of traffic variables. For this purpose we randomly select points in

space where density, velocity and flow are measured across time. The observed pattern

in the measures is similar across the selected points. It is illustrated for one specific

point in Figure 3.3.

A discrete nature of the measures can be observed in case of the XY-T method. This

method leads to large fluctuations, in particular for density and flow variables. The

jumps occur due to the fact that these variables are directly linked to the number of

pedestrians, and entering or exiting of the XY-T discretization units by pedestrians

affects the indicators considerably.

The 3DVoro method for all the distances lead to similar results. Density and flow

measures do not change abruptly. They are characterized by smoother transitions,

compared to the XY-T method. Also, the microscopic nature of the approach allows to

correlate the momentary speed of an individual pedestrian with the availability of space

(as illustrated Figure 3.3).

3.3.2 Robustness with respect to the simulation noise

In this section we analyze the performance of the approach when frequent pedestrian

observations are available. For this purpose we consider synthetic trajectories obtained

for minimal trajectory step (0.1 second). In the case of the XY-T method, the distances

traveled and the times spent by pedestrians in regions A (Chapter 2) are obtained using

interpolation.

We synthesize 100 sets of pedestrian trajectories for each scenario and evaluate the vari-

ance of the indicators across these replications. The described settings of the simulator

remain unchanged for a given scenario. The indicators (k, v, q) are calculated for each

set of the trajectories via 3DVoro (for all the distances) and the XY-T method. The
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(a) Density indicator

(b) Flow indicator

(c) Velocity indicator

Figure 3.3: Nature of the results - UniLD−HomoPop

methods are compared based on the standard deviation of the indicators at specific

points due to simulation noise.

Let M represent the method (3DVoro or XY-T), r a realization of NOMAD simulation

(r = 1, ..., 100) and p a point from Ω. We denote by θMr (p) = (kMr (p), vMr (p), qMr (p))

a vector of indicators at point p obtained by applying the method M to the rth set of

trajectories. For each method we calculate the standard deviation of the indicators at p

as

σM
R (p) =

√√√√ 1

R

R∑
r=1

(θMr (p)− μM
R (p))2, (3.36)
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where μM
R (p) = 1

R

∑R
r=1 θ

M
r (p) and R = 100. This procedure is repeated for 1000

randomly selected points p (these points are the same across simulation). The results

are reported using boxplot representation in Figure 3.4 for UniLD−HomoPop, and in

Figure 3.5 for UniHD−HeteroPop.

The standard deviations of the indicators are larger for UniHD−HeteroPop for all the

methods, compared to UniLD−HomoPop. This can be explained by the larger changes

in the data due to higher complexity of the system in UniHD−HeteroPop. However, a

similar trend is noticeable in the results for both scenarios.

The results for the density indicator (Figure 3.4a and Figure 3.5a), and for the flow

indicator (Figure 3.4b and Figure 3.5b), are similar across different 3DVoro distances

for both scenarios. In the case of speed, E-3DVoro exhibits larger standard deviations

as compared to other 3DVoro methods for UniLD−HomoPop (Figure 3.4c). This suggests

that 3DVoro with distances that account for the speed and/or movement direction of

pedestrians lead to lower variance in the results when demand is low. When demand is

higher (Figure 3.5c), higher number of pedestrian trajectories leads to similar behavior

of different distances, and consequently to similar results.

In comparison to 3DVoro approach, in the XY-T method the simulation noise is signif-

icantly amplified. The results suggest that the changes of trajectories, even though for

the same simulated settings, dramatically affect the measured indicators of the XY-T

method.

3.3.3 Robustness with respect to the sampling frequency

In order to evaluate the effectiveness of the approach when sampled data is available, we

consider the samples of points from the synthetic trajectories. The samples are obtained

using different sampling frequencies (3 s−1, 2 s−1, 1 s−1 and 0.5 s−1), as illustrated in

Figure 3.6. The feature of interest is the robustness of the approach with respect to the

sampling frequency. That is, the ability of the approach to produce stable results even

in the lack of frequent observations.

We can deal with sampled data in two ways. First, we generate trajectories using linear

interpolation (Figure 3.6). The speed along trajectories is approximated, using finite

differences. The indicators are then obtained via 3DVoro applied to the interpolated

trajectories. In the second case we apply 3DVoro directly to the sampled data. The in-

dicators calculated on the true synthetic trajectories, generated using minimal step, are

used as a benchmark. The indicators obtained using samples and interpolated trajec-

tories are compared at 1000 randomly selected points to the corresponding benchmark

values. These points are the same across all the methods.
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We list in Table 3.1 and Table 3.2 the statistics (mean, mode, median and 90%-quantile)

corresponding to resulting differences in the case of density indicator, for UniLD−HomoPop,

respectively UniHD−HeteroPop. The statistics show similar trends for velocity and flow

indicators, as illustrated in Appendix A (Table A.1 - Table A.4). To demonstrate the

performance, we show the results corresponding to the extreme values of the considered

sampling frequencies (3 s−1 and 0.5 s−1). In the tables, IT refers to the value of a given

statistic obtained based on interpolated trajectories; SoP refers to the value of a given

statistic obtained based on sample of points. Gray color of the cells in the tables is used

to indicate the overall best value of the considered statistic. Note that in this case the

E-3DVoro and the XY-T method can be applied only when the points from samples are

interpolated.

In general, the 3DVoro method outperforms the XY-T method. The lowest differences

between the indicators calculated based on sample of points or interpolated trajectories

and the benchmark vales are achieved using the 3DVoro method.

The interpolation appears to be a better choice for 3DVoro when the sampling frequency

is high, in both scenarios. This is expected, given that more data points used for

interpolation yield lower interpolation error. In this case, the Time-Transform distances

lead to the best performance of the 3DVoro approach, and in particular TT1-3DVoro.

When the sampling frequency is low, 3DVoro applied directly to the sample is associated

with the best effectiveness. In UniLD−HomoPop, the distances that take into account the

speed and/or direction of pedestrians (in particular TT2-3DVoro, P-3DVoro and M-

3DVoro) are the most satisfactory. In UniHD−HeteroPop, the preferred characterization

is based on the Time-Transform distances (particularly TT1-3DVoro).

We have also analyzed the robustness to the sampling frequency for bi-directional flow

composition and for both scenarios, BiLD−HomoPop and BiHD−HeteroPop. Table 3.3 and

Table 3.4 report the statistics corresponding to resulting differences in the case of density

indicator. The statistics show similar trends as for the uni-directional flow composition.

In summary, the Time-Transform 3D Voronoi characterization is the most robust with

respect to the sampling frequency when more data is available (the sampling frequency

equal to 3 s−1 or the demand equal to 3.6 pedestrians per second). When less data

is available (the sampling frequency equal to 0.5 s−1 and the demand equal to 1.2

pedestrians per second), the distances accounting for the dynamics of pedestrians lead

to the best robustness with respect to the sampling.
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.47e−02 / 1.25e−02 / 1.25e−02 / 6.25e−02 /
E-3DVoro 1.17e−02 / 0 / 4.48e−04 / 3.96e−02 /
TT1-3DVoro 2.70e−03 6.70e−03 0 0 3.00e−04 2.30e−03 7.30e−03 1.02e−02

TT2-3DVoro 5.80e−03 3.50e−02 0 2.80e−03 6.00e−04 2.08e−02 1.50e−02 6.69e−02

TT3-3DVoro 5.40e−03 4.34e−02 0 8.00e−03 6.00e−04 2.83e−02 1.32e−02 9.22e−02

P-3DVoro 8.20e−03 5.36e−02 0 6.10e−03 2.40e−03 3.03e−02 1.30e−02 1.14e−01

M-3DVoro 4.50e−03 5.65e−02 0 6.80e−03 1.10e−03 4.55e−02 1.28e−02 1.04e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.90e−01 / 1.00e−01 / 1.50e−01 / 3.38e−01 /
E-3DVoro 1.64e−01 / 1.12e−02 / 1.46e−01 / 3.02e−01 /
TT1-3DVoro 2.54e−01 1.27e−01 1.35e−02 9.00e−03 1.16e−01 8.97e−02 3.41e−01 2.25e−01

TT2-3DVoro 1.64e−01 1.22e−01 1.44e−02 1.06e−02 1.21e−01 7.30e−02 3.52e−01 2.33e−01

TT3-3DVoro 1.89e−01 1.24e−01 1.84e−02 1.09e−02 1.24e−01 7.88e−02 3.40e−01 2.31e−01

P-3DVoro 3.19e−01 1.21e−01 3.26e−02 6.20e−03 1.43e−01 7.43e−02 3.36e−01 2.10e−01

M-3DVoro 1.97e−01 1.24e−01 3.48e−02 9.90e−03 1.41e−01 7.72e−02 3.21e−01 2.31e−01

(b) Sampling frequency: 0.5 s−1

Table 3.1: Robustness to the sampling frequency of density indicator - UniLD−HomoPop

3.4 Summary

In this chapter a novel methodology for pedestrian traffic characterization is proposed.

The definitions of pedestrian traffic variables that we have put forward are based on

data-driven partitioning in space and time. As such, they resolve the issue of arbitrary

selection of spatial discretization units (typical for XY-T, GB, RB) or spatial influ-

ence functions (typical for EW), and for the first time provide the way for data-driven

temporal discretization. The discretization framework is designed via three-dimensional

Voronoi diagrams directly generated from pedestrian trajectory data. It can be de-

signed based on trajectories available either in the form of an analytical description or

as a finite collection of points. The samples, in general, do not need to be synchronized.

On the other hand, the existing methods (XY-T, GB, RB, EW, VB) can be applied

on trajectories described either analytically or as a synchronized sample of points. The

methodological framework is fairly general, and the exact characterization of the Voronoi

diagrams can be adapted to specific situations. We have proposed different definitions of

distances for the construction of the diagrams, and assessed them in quantitative terms.

Also, the proposed definitions of the indicators are microscopic. They are therefore able

to reflect the heterogeneity of pedestrians, and suitable for the multi-directional com-

position of pedestrian flows. Note that the methods XY-T, GB, RB and EW rely on

macroscopic approach, which does not always comply with the nature of the underlying

system (see Section 2.2.3).

The performance of the proposed approach is evaluated using synthetic data. It has been

shown, for these datasets, that our approach outperforms the considered approaches from
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 2.05e−02 / 0 / 1.25e−02 / 5.00e−02 /
E-3DVoro 1.43e−02 / 0 / 2.67e−02 / 2.64e−02 /
TT1-3DVoro 8.00e−03 4.55e−02 0 0 8.00e−04 1.75e−02 2.36e−02 8.52e−02

TT2-3DVoro 1.49e−02 1.07e−01 0 0 3.20e−03 5.72e−02 3.33e−02 2.21e−01

TT3-3DVoro 1.24e−02 1.60e−01 0 0 3.50e−03 9.62e−02 2.98e−02 3.41e−01

P-3DVoro 2.10e−02 1.66e−01 0 0 4.20e−03 1.16e−01 5.27e−02 3.64e−01

M-3DVoro 1.31e−02 2.40e−01 0 0 2.50e−03 1.75e−01 2.91e−02 5.58e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 5.29e−01 / 1.63e−01 / 4.75e−01 / 1.01e00 /
E-3DVoro 4.02e−01 / 0 / 2.49e−01 / 1.03E+00 /
TT1-3DVoro 4.06e−01 2.90e−01 3.10e−01 2.48e−02 2.64e−01 1.65e−01 9.21e−01 7.12e−01

TT2-3DVoro 3.92e−01 4.58e−01 2.85e−01 2.34e−01 2.48e−01 2.34e−01 9.30e−01 1.11E+00
TT3-3DVoro 4.41e−01 5.07e−01 2.89e−01 5.89e−02 2.37e−01 3.06e−01 9.81e−01 1.17E+00
P-3DVoro 4.31e−01 3.71e−01 1.40e−03 0 2.58e−01 1.80e−01 9.43e−01 7.29e−01

M-3DVoro 4.34e−01 5.01e−01 3.16e−01 1.36e−01 2.75e−01 3.52e−01 9.96e−01 9.80e−01

(b) Sampling frequency: 0.5 s−1

Table 3.2: Robustness to the sampling frequency of density indicator - UniHD−HeteroPop

the literature (XY-T and VB), in terms of the smoothness of the results, the robustness

to the simulation noise and the robustness with respect to the sampling frequency. As

for the robustness to the simulation noise, 3DVoro with distances that account for the

speed and/or movement direction of pedestrians lead to lower variance in the results

when demand is low. When demand is higher, higher number of data leads to similar

behavior of different distances. As for the robustness to the sampling frequency, when

the sampling frequency is high, 3DVoro based on interpolated trajectories shows better

results. When the sampling frequency is low, 3DVoro based on sample of points exhibit

better performance. The analysis in the case of sampled data suggests that (i) when

more data is available, either because of higher sampling frequency (3 s−1) or higher

demand (3.6 pedestrians per second), TT1-3DVoro is the most robust with respect to

the sampling frequency; (ii) when less data is available, due to lower sampling frequency

(0.5 s−1) and lighter traffic conditions (the demand of 1.2 pedestrians per second), the

distances that account for the speed and the movement direction of pedestrians (TT2-

3DVoro, P-3DVoro and M-3DVoro) exhibit the best robustness.

A sensitivity analysis for the parameters affecting the characterization (parameters v and

α in Section 3.2.3) is one direction of further investigation. Also, more research is needed

to determine the performance of this approach in other scenarios and to understand its

potential limitations.
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 6.50e−02 / 0 / 0 / 8.65e−03 /
E-3DVoro 1.20e−02 / 0 / 0 / 4.66e−03 /
TT1-3DVoro 3.58e−03 1.08e−02 0 0 0 1.02e−03 4.16e−03 6.15e−03

TT23DVoro 8.13e−03 1.18e−02 0 0 0 2.35e−03 8.09e−03 1.29e−02

TT3-3DVoro 1.49e−02 2.06e−02 0 3.91e−03 0 8.43e−03 7.46e−03 3.10e−02

P-3DVoro 2.29e−02 5.42e−02 0 1.94e−03 0 2.72e−02 9.25e−03 1.06e−01

M-3DVoro 2.15e−02 4.82e−02 0 4.31e−02 0 2.42e−02 7.69e−03 1.29e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.66e−01 / 0 / 6.84e−02 / 7.00e−01 /
E-3DVoro 1.65e−01 / 0 / 1.19e−01 / 3.40e−01 /
TT1-3DVoro 1.68e−01 1.29e−01 3.50e−02 5.02e−02 8.50e−02 5.70e−02 3.85e−01 2.62e−01

TT2-3DVoro 1.70e−01 1.02e−01 4.52e−02 5.63e−02 8.49e−02 6.15e−02 3.82e−01 5.57e−01

TT3-3DVoro 1.80e−01 1.18e−01 4.82e−02 6.06e−02 8.80e−02 6.55e−02 3.83e−01 2.65e−01

P-3DVoro 2.02e−01 1.60e−01 3.69e−02 4.84e−02 9.36e−02 6.73e−02 4.14e−01 3.01e−01

M-3DVoro 1.80e−01 1.55e−01 4.80e−02 3.36e−02 1.01e−01 9.27e−02 4.38e−01 3.08e−01

(b) Sampling frequency: 0.5 s−1

Table 3.3: Robustness to the sampling frequency of density indicator - BiLD−HomoPop

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 2.85e−02 / 0 / 3.28e−03 / 1.00e−01 /
E-3DVoro 3.00e−02 / 0 / 9.64e−03 / 6.50e−02 /
TT1-3DVoro 1.15e−01 2.78e−02 0 0 7.90e−04 8.78e−03 2.32e−02 4.94e−02

TT2-3DVoro 9.72e−02 9.34e−02 0 0 3.21e−03 5.16e−02 3.50e−02 2.15e−01

TT3-3DVoro 4.89e−02 1.05e−01 0 0 2.83e−03 5.91e−02 3.56e−02 2.62e−01

P-3DVoro 1.15e−01 1.70e−01 0 3.33e−02 4.79e−03 6.28e−02 4.65e−02 2.61e−01

M-3DVoro 1.15e−01 1.52e−01 0 8.33e−02 4.55e−03 7.20e−02 5.35e−02 3.51e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T
E-3DVoro 2.79e−01 / 0 / 1.29e−01 / 7.14e−01 /
TT1-3DVoro 4.49e−01 2.58e−01 5.70e−03 1.99e−03 1.54e−01 1.34e−01 8.43e−01 6.64e−01

TT2-3DVoro 3.71e−01 2.98e−01 4.28e−02 9.34e−02 1.61e−01 1.40e−01 8.07e−01 7.90e−01

TT3-3DVoro 9.82e−01 3.56e−01 4.34e−02 6.70e−03 1.64e−01 1.38e−01 7.76e−01 7.74e−01

P-3DVoro 3.82e−01 3.15e−01 2.32e−03 6.74e−03 1.53e−01 1.61e−01 9.09e−01 7.22e−01

M-3DVoro 4.08e−01 3.77e−01 1.89e−02 1.47e−02 1.90e−01 1.74e−01 7.91e−01 8.18e−01

(b) Sampling frequency: 0.5 s−1

Table 3.4: Robustness to the sampling frequency of density indicator - BiHD−HeteroPop
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(a) Standard deviation of density indicator;

(b) Standard deviation of flow indicator;

(c) Standard deviation of velocity indicator;

Figure 3.4: Robustness to the simulation noise - UniLD−HomoPop.
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(a) Standard deviation of density indicator;

(b) Standard deviation of flow indicator;

(c) Standard deviation of velocity indicator;

Figure 3.5: Robustness to the simulation noise - UniHD−HeteroPop.

44



3.4. SUMMARY

Sa
m

pl
in

g 

In
te

rp
ol

at
io

n 

True 
trajectories Samples Interpolated 

trajectories 

k, v, q k, v, q k, v, q 

Figure 3.6: Sampling of trajectories and interpolation
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4
Probabilistic speed-density relationship for

pedestrian traffic

This chapter is based on the article:

Nikolić, M.,Bierlaire, M., Farooq, B. and de Lapparent, M. (2016).

Probabilistic speed-density relationship for pedestrian traffic,

Transportation Research Part B: Methodological 89: 58 - 81.

The work has been performed by the candidate under the supervision of Prof. Michel

Bierlaire, Prof. Bilal Farooq, and Matthieu de Lapparent PhD.

In this chapter, we propose a methodology to represent the speed-density relationship

of pedestrian traffic in a probabilistic way. This is motivated by the analysis of data

collected from the train station in Lausanne, Switzerland, as well as data collected from a

controlled experiment by the Technical University of Delft (Daamen and Hoogendoorn,

2003). The empirical analysis of these pieces of data shows high scatter in the data.

The scatter is explicitly represented by relaxing the homogeneity assumption of the

equilibrium speed-density relationship. Our approach is not inspired by the physics of

the underlying system. Instead, it represents the application of statistical techniques in

pedestrian flow modeling.

The structure of the chapter is as follows. In Section 4.1, we first define the variables
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involved in the model. We then derive the macroscopic relationships between these

indicators, starting from first principles. Based on this theoretical model, we introduce

a probabilistic speed-density relationship in Section 4.2. Section 4.3 presents the two

case studies from Lausanne and Delft mentioned above. It reports the empirical analysis

of the two case studies and emphasizes the limitations of the state of the art approaches

on these concrete examples. Section 4.4 and Section 4.5 illustrate the proposed model

on the two case studies. Parameter estimation and model validation are discussed in

details. Section 4.6 summarizes the outcomes of the proposed methodology.

4.1 Foundation

This section first presents the assumptions related to the quantities involved in our

analysis, that is speed and density indicators at the microscopic level. We then present

the derivation of the macroscopic relationships between the quantities. It serves as a

basis for our modeling framework in Section 4.2.

4.1.1 Density and speed indicators

The trajectory of pedestrian i is a curve in space and time, that is

pi(t) = (xi(t), yi(t), t), (4.1)

where time t spans the horizon of the analysis [t0, tf ], and xi(t) and yi(t) are the coordi-

nates of the position of pedestrian i at time t in a given system of coordinates (typically,

we express time in seconds, and use an orthonormal basis for the spatial dimensions).

In practice, the pedestrian trajectory data are collected through an appropriate tracking

technology (e.g. Daamen and Hoogendoorn, 2003; Alahi et al., 2011). In this case, the

time is discretized and the trajectory is described as a finite collection of triples

pis = (xis, yis, ts), (4.2)

where ts = (t0, t1, . . . , tf ) corresponds to the available sample. We assume that the

position of each pedestrian is known at each time ts of the discretization.

Different measurement methods have been proposed in the literature in order to obtain

density and speed indicators from pedestrian trajectories (Chapter 2). Our aim is to

be as much independent from the aggregation level as possible and to preserve the

heterogeneity of pedestrian population. We rely on a data-driven measurement method

inspired by the one proposed by Steffen and Seyfried (2010). This method is based

on the spatial discretization that is adjusted to the data through the use of Voronoi
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diagrams (Okabe et al., 2000).

The Voronoi space decomposition assigns a personal region to each pedestrian i, in such

a way that each point in the personal region is closer to i than to any other pedestrian,

with respect of the Euclidean distance. In the presence of sampled data defined by (4.2),

for each s = 0, . . . , f and each pedestrian i, the personal region Vis is defined as

Vis =

{(
x

y

)∣∣∣∣∣
∥∥∥∥∥
(

x

y

)
−

(
xis
yis

)∥∥∥∥∥
2

≤
∥∥∥∥∥
(

x

y

)
−

(
xjs
yjs

)∥∥∥∥∥
2

, ∀j
}
. (4.3)

We assume that each point (x, y) in space is associated with a unique Voronoi region at

time ts, corresponding to the region associated with pedestrian i, that is V (x, y, ts) = Vis.

Note that if (x, y) is exactly on the border between two or more regions, the unique region

associated to it has to be arbitrarily defined.

Given the space discretization specified above, the density of pedestrians at position

(x, y) at time ts is

kis = k(x, y, ts) =
1

|Vis| , (4.4)

where Vis is the unique Voronoi region that contains (x, y) at time ts, and |Vis| is the

area of Vis. The unit is the number of pedestrians per surface unit (typically, square

meter). Figure 4.1 illustrates the map of density values obtained through the utilization

of (4.4) for a given time instant.

Figure 4.1: Voronoi-based density map

The velocity of pedestrian i at time t is given by

�vi(t) = vi(t)�di(t), (4.5)

where �di(t) is the (normalized) direction of pedestrian i at time t and vi(t) is the mag-

nitude of the velocity vector, or speed. If the functions xi(t) and yi(t) in (4.1) are
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differentiable in t, it is defined as

vi(t) =

√√√√(
dxi(t)

dt

)2

+

(
dyi(t)

dt

)2

. (4.6)

In the presence of discretized data, the speed is approximated using finite differences,

for instance

vis =

√√√√(
Δxis
Δt

)2

+

(
Δyis
Δt

)2

, (4.7)

where Δxis = xi,s+1 − xi,s−1, Δyis = yi,s+1 − yi,s−1, and Δt = ts+1 − ts−1.

This definition assumes that the direction of the flow is unique at each point in time and

space. It is therefore appropriate for the analysis of speed at an individual level. The

definition may not result in the desired outcome if more aggregate characteristics are of

interest, in particular if pedestrians in the same area do not walk in the same direction.

For instance, if half of pedestrians walk in one direction and the rest in the opposite

direction, but both with the same speed, their velocity vectors would cancel out at the

aggregate level.

4.1.2 Equilibrium speed-density relationships

In order to derive the relationship between the indicators defined in Section 4.1.1 at

the macroscopic level, we start from first principles. Similar to the approach presented

in Hoogendoorn et al. (2014), the microscopic Social Force Model (SFM) proposed by

Helbing and Molnar (1995) represents the basis of the derivation. The model explains

the acceleration of pedestrian i through the influence of neighboring pedestrians j

�ai =
�vfi − �vi

τi
− Ci

∑
j

exp(−Rij

Bi
)�nij(λi + (1− λi)

1 + cos(φij)

2
), (4.8)

where �vfi is the desired velocity, �vi is the current velocity, τi is the relaxation time

(the time needed to accelerate/decelerate to the desired velocity), Ci is the interaction

strength, Rij is the distance between pedestrians i and j, Bi is a scaling parameter, �nij

is the unit vector pointing from pedestrian i to j, λi denotes the anisotropy parameter

and it ranges from 0 to 1 (λi = 1 implies isotropy), and φij denotes the angle between

the direction of i and the position of j.

Consistently with many studies reported in the literature that are focused on the funda-

mental diagram (Chapter 2), we assume isotropic traffic conditions (identical properties
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in all directions). This leads to the model given as

ai =
vfi − vi

τi
− F r

i , (4.9)

where F r
i indicates the influence of the interaction between pedestrian i with other

pedestrians j for isotropic conditions (the isotropic repulsive force). It is given as

F r
i = Ci

∑
j

exp(−Rij

Bi
). (4.10)

A pedestrian i experiences a greater repulsive force F r
i as other pedestrians are closer

to i. This can be also reflected through a concept of a personal space associated with

a pedestrian. Voronoi diagrams provide a way to derive a personal space “belonging”

to a pedestrian, based on the position of i and the positions of neighbors j (see (4.3)).

Given that the inverse of a personal space corresponds to density (as defined in (4.4)),

the equation (4.9) can be rewritten as

ai =
vfi − vi

τi
− Ciki. (4.11)

Under the assumption that traffic conditions are stationary (ai = 0), equation (4.11)

results in the relationship between microscopic speed and density indicators

vi = vfi − γiki, (4.12)

where γi = τiCi. To establish one-to-one speed-density relationship we further assume

that pedestrian population is homogenous. This means that all the pedestrians have

the same movement parameters (free-flow speed vf and sensitivity to congestion γ). In

homogenous traffic under stationarity the distances between the pedestrians are also

the same, so the densities are. Under these equilibrium conditions the fundamental

speed-density relationship is

ve = ve(k) = vf − γk, (4.13)

where subscript ’e’ denotes equilibrium. The resulting relationship correspond to the

ones proposed by Older (1968), Navin and Wheeler (1969), Fruin (1971), Tanaboriboon

et al. (1986) and Lam et al. (1995) (Table 2.3). It is also in agreement with the model of

Hoogendoorn et al. (2014) for isotropic, homogenous and stationary traffic conditions.

Different SFM assumptions can lead to different fundamental relations under the equilib-

rium assumptions. If the closeness between pedestrians is assumed to affect the free-flow

speed (e.g. the free-flow speed is an exponentially decreasing function of density), the
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resulting isotropic SFM can be specified as

ai =
vfi exp(−(kiθi )

γi)− vi

τi
, (4.14)

where θi and γi are the pedestrian-specific parameters. For pedestrian traffic at equilib-

rium (acceleration is zero and all pedestrians possess the same movement parameters)

the relationship between speed and density resulting from (4.14) is given as

ve = ve(k) = vf exp(−(
k

θ
)γ). (4.15)

This specification coincides with the speed-density relationship proposed by Tregenza

(1976) (Table 2.3).

4.2 Methodology

We propose a probabilistic model to characterize speed-density relations. The model

is derived by preserving the stationarity assumption and relaxing the homogeneity as-

sumption of equilibrium relations derived in Section 4.1.2. In addition to the general

modeling framework, we also present concrete suggestions for the operationalization of

the derived model.

4.2.1 Model derivation

We assume that the speed of pedestrians is a random variable (V ), such that for each

density level there is a distribution of speed values rather than one deterministic value

(Figure 4.2). We assume that the following properties characterize this distribution:

P1: The distribution of speed is continuous with positive support;

P2: The distribution of speed is unimodal.

The first property is in accordance with the physical characteristic of the speed, being

that the speed is a continuous variable whose values cannot be negative. The second

property is introduced with a purpose of maintaining the model parsimonious, and it

is also motivated by the empirical analysis presented in Section 4.3. Furthermore, we

denote by fslow(ξ|k) the probability density function of the speed values lower than the

equilibrium speed ve(k), and by ffast(ξ|k) the probability density function of the speed

values greater than the equilibrium speed ve(k), both of which are conditional on density.
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pd
f 

Figure 4.2: Probabilistic speed-density relationship

We define the probability density function of the speed as

fV (ξ|ve(k), θslow(k), θfast(k)) =
{

fslow(ξ|ve(k), θslow(k)), ξ ≤ ve(k)

ffast(ξ|ve(k), θfast(k)), ξ ≥ ve(k),
(4.16)

where θslow(k) and θfast(k) are the density-dependent parameters that characterize slow,

respectively fast, regime. The presented modeling assumptions are further supported by

the data, as discussed in Section 4.3.

We do not give a specific formulation to individual random effects that may exist. In-

stead, we assume that individual random effects (i) are independent from other sources

of randomness and do not correlate with any of the observed explanatory variable (e.g.

density); (ii) do not affect the parameters’ estimates and (iii) enter in an additive way

the location parameters of the speed distribution.

For the illustration of the proposed methodology we need to specify the exact form of

ve(k), fslow(ξ|ve(k), θslow(k)) and ffast(ξ|ve(k), θfast(k)). In principle any specification

may be chosen, as long as the required properties P1 and P2 are satisfied. We give some

operational comments and propose concrete examples below.
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4.2.2 Operational comments

The proposed specification of the speed-density relationship (4.16) does not satisfy the

properties of the C1 class functions. The maximum likelihood estimation of its pa-

rameters may therefore involve complex non-smooth optimization algorithms. Also, the

value of ve(k) is not observed and has to be modeled. To address these issues we adopt

a mixing technique, where ve(k) is assumed to be distributed according to a parametric

distribution fve(k)(ζ; θve(k)) with density-dependent parameters θve(k).

The resulting likelihood function is

fPedProb-vk(ξ|k; θslow(k), θfast(k), θve(k)) =
∫ ∞

ζ=0
fV (ξ|ζ; θslow(k), θfast(k))fve(k)(ζ; θve(k))dζ,

(4.17)

where fV (ξ|ζ; θslow(k), θfast(k)) is defined by (4.16). The model is called PedProb-vk,

which stands for Pedestrian Probabilistic speed (v) - density (k) relationship.

4.2.3 Exemplary specification

We suggest a linear model for the distribution of the speed of the slow component, since

it is well adjusted to impose the lower bound of the distribution at zero

fslow(ξ|ve(k), αk, βk) =
βk − αk

ve(k)
ξ + αk, (4.18)

where 0 ≤ ξ ≤ ve(k), and αk ≥ 0 and βk ≥ 0 are parameters dependent on k. They are

such that fslow(0|k) = αk and fslow(ve(k)|k) = βk. We adopt a simple specification for

the parameters αk, βk. We assume that they depend on the density k in the following

way

αk(aα, bα) = aαk + bα, (4.19)

and

βk(aβ , bβ) = aβk + bβ (4.20)

where aα ≥ 0, bα ≥ 0, aβ ≥ 0 and bβ ≥ 0. They are such that α0 = bα and β0 = bβ .

The specifications (4.19) and (4.20) capture the relationship between the density level

and the shape of speed distribution as suggested by the data (Section 4.3). When the

density is lower, low speed values are less frequent and speed distribution is more spread.

When the density is higher, low speed values are more frequent, speed distribution is

less spread and the speed values close to the mode are more frequent.
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We propose an exponential model for the distribution of the speed of the fast component

ffast(ξ|ve(k), βk, λ) = exp(−λξ + log(βk) + λve(k)), (4.21)

where ξ ≥ ve(k), ve(k) and βk are defined as above, and λ ≥ 0 is an additional pa-

rameter, defining the rate of the exponential distribution. The choice of the exponential

specification is well suited to avoid any arbitrariness in imposing the upper bound, while

preventing arbitrary high values at the same time. The normalizing constant is in this

example equal to αk+βk
2 ve(k) +

βk
λ .

Note that, the value determined by ve(k) represents the mode of the distribution (dfV (ξ|ve(k),αk,βk,λ)
dξ =

0 when ξ(k) = ve(k)). If ξ = ve(k), the values of fslow(ξ|k) and ffast(ξ|k) coincide, and are

both equal to βk. When k = 0, then fslow(0|k) = bα, fslow(ve(k)|k) = ffast(ve(k)|k) = bβ
and ffast(ξ|k) < bβ if ξ > ve(k). When k → ∞, then fslow(0|k) = ffast(0|k) → ∞ and

ffast(ξ|k) → 0. The parameters characterizing the distribution of each component are

illustrated in Figure 4.3.

We use a symmetric triangular distribution for mixing defined on the interval [v̄e(k) −
σ(k), v̄e(k)+σ(k)], where v̄e(k) is the mean of the distribution and σ(k) = 1

1+exp(η) v̄e(k)

fve(k)(ζ; v̄e(k), σ(k)) =

⎧⎪⎨
⎪⎩

ζ−v̄e(k)+σ(k)
σ(k)2

, v̄e(k)− σ(k) ≤ ζ ≤ v̄e(k)
v̄e(k)+σ(k)−ζ

σ(k)2
, v̄e(k) < ζ ≤ v̄e(k) + σ(k)

0, ζ < v̄e(k)− σ(k) or ζ > v̄e(k) + σ(k).

(4.22)

The choice of this specific distribution is motivated by the simple closed form of its

probability density function and cumulative density function. The proposition for the

specification of σ(k) insures that the property P1 is satisfied. The specification of v̄e(k)

is typically a deterministic speed-density relationship such as those presented in Sec-

tion 4.1.2.

Putting everything together, the distribution of the speed in our example is given by

fPedProb-vk(ξ|k;αk, βk, λ, v̄e(k), σ(k)) =

∫ v̄e(k)+σ(k)

ζ=v̄e(k)−σ(k)
fV (ξ|ζ;αk, βk, λ)fve(k)(ζ; v̄e(k), σ(k))dζ,

(4.23)

where the distributions of the slow and the fast component are defined by (4.18),

respectively (4.21), and fve(k)(ζ; v̄e(k), σ(k)) is defined by (4.22). For this specifica-

tion, the integral (4.23) does not have a closed-form, and numerical integration or

Monte-Carlo simulation is required. However, other specifications of fve(k)(ζ; θve(k)),
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Figure 4.3: Illustration of the model - one density level

fslow(ξ|ve(k), θslow(k)) and ffast(ξ|ve(k), θfast(k)) may lead to a closed-form formula-

tion, as illustrated in Appendix B.

We emphasize that the proposed specification is merely one possibility, and the frame-

work is general and other specifications are possible (e.g. different functional forms

of ve(k), fve(k)(ζ; θve(k)), fslow(ξ|ve(k), θslow(k)) and ffast(ξ|ve(k), θfast(k)), different

smoothing strategies, etc). To illustrate and validate our approach, we perform next

the analysis on two case studies (Section 4.4, Section 4.5).

4.2.4 Estimation procedure

For the estimation of the model parameters, we use quasi-maximum likelihood estima-

tion.1 As each pedestrian generates several piece of data, there is serial correlation

1Quasi-maximum likelihood estimation differs from full information maximum likelihood estimation
in the sense that it is necessary to explicitly specify the covariance structure for the latter.
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among these observation. If ignored, the unobserved/ unmodeled covariance among the

observations of a same individual in the estimation procedure leads to consistent but

inefficient estimates (Gourieroux et al., 1984; Trognon, 1987; Wooldridge, 2010). This

holds as long as the first order moment of the distribution of the endogenous variable

is not affected by its higher order moments (Gourieroux et al., 1984), i.e. independence

between mean and higher moments. In this case, the Rao-Cramer bound is not reached,

and a block bootstrap method must be used for the calculation of the standard errors of

the estimates (Hall et al., 1995; Davison and Hinkley, 1997; Davidson and MacKinnon,

2004). It is also convenient to assume that there is no correlation across pedestrians,

and that the observations of one and the same pedestrian are serially correlated due to

unobserved time invariant specific effects. Bootstrap replications are thus based on the

sampling over blocks, where each block contains the series of the observations of one

individual. We adopt these assumptions in the case studies presented below.

4.3 Case studies and empirical investigation

The motivation of this research comes from the analysis of two real datasets, that we

use below to illustrate and validate our approach.

4.3.1 Lausanne train station

The first dataset is collected in a pedestrian underpass of the train station of Lausanne,

Switzerland. Figure 4.4 shows the layout of the studied area. It covers approximately

685 m2. The underpass is frequently used especially during the morning and afternoon

peak hours since it connects the exterior of the train station to the main platforms. It

also acts as a connection between mostly residential south and the center of the city in

the north.

Figure 4.4: Lausanne train station - pedestrian underpass West
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To collect the raw data, a large-scale network of smart sensors has been deployed in the

station. The underlying technology is based on infrared and depth sensors that detect

silhouettes and track each pedestrian in the scene covered by the network. The track-

ing engine uses a sparsity driven framework (Alahi et al., 2011, 2014) to link detected

pedestrians over the network of sensors.

It results in a dataset of 25,603 trajectories, collected during a time period between 07:00

and 08:00 on February 12, 13, 14, 15 and 18, 2013. The temporal resolution of every

trajectory ranges from 10 to 25 points per second and it has been processed to obtain

the position of every pedestrian in the scene at every second. The average length of the

trajectories is 78 meters and the duration of a pedestrians’ stay in the underpass ranges

from 15 seconds to 2.2 minutes.

Note that we have selected only trajectories collected in the shaded area shown in Fig-

ure 4.4, referring to a corridor. The trajectories from the ramps and stairs (denoted as

P1-P9) are not considered in this study. Indeed, as explained by Daamen (2004) and

Weidmann (1993), the walking behavior and, therefore, the speed-density relationship,

varies with the type of infrastructure.

In the rest of the thesis, we refer to this case study as the Lausanne case study.

4.3.2 Controlled experiment

The second set of data has been collected during a controlled experiment at the Technical

University of Delft in the Netherlands (Daamen and Hoogendoorn, 2003). The individ-

uals participating in the experiment were instructed to walk along a corridor that is 10

meters long and 4 meters wide, at a normal speed, and to pass through a bottleneck of

1 meter in width (see Figure 4.5, where individuals walk from right to left).

The scene was filmed from the top by digital cameras. The individual trajectories were

extracted from the digital video sequences.

The experiment lasted about 15 minutes. A total of 1,123 trajectories were collected,

where the position of each individual is available every 0.1 second. The average length of

the trajectories is similar inside and upstream of the bottleneck and it is approximately

5 meters. The average travel time of the trajectories upstream of the bottleneck is 10

seconds, whereas inside the bottleneck it is lower (approximately 5 seconds).

Note that we have selected trajectories collected in the rectangular area (5 meters long

and 4 meters wide) upstream of the bottleneck (Figure 4.5). As explained by Duives

et al. (2014b, Figure 4), this is where the variability is observed.

In the rest of the thesis, we refer to this case study as the Delft case study.
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Figure 4.5: Narrow bottleneck experiment (Daamen and Hoogendoorn, 2003)

4.3.3 Empirical analysis

The speed-density profiles corresponding to the Lausanne and the Delft case studies are

obtained from the measurement method presented in Section 4.1.1. In Figure 4.6, each

circle corresponds to one observation, that is, one pedestrian at one specific time in the

horizon. The x coordinate of the circle corresponds to the density, calculated from (4.4),

and its y coordinate corresponds to the speed calculated from (4.7).

Figure 4.6a plots 270,291 observations corresponding to the peak hour of February 12,

2013 for the Lausanne case study. The same pattern was observed on any weekday.

Figure 4.6b plots 119,156 observations for the Delft case study.

A high scattering is observed in both cases (Figure 4.6). The density ranges from 0 to

approximately 7 pedestrians per square meter. In the Lausanne case, the speed ranges

from 0 to 5.72 meters per second (that is about 21 km/h), and 99% of the observations

are between 0 and 2.42 meters per second (that is about 9 km/h). In the Delft case, the

speed ranges from 0 to 2.87 meters per second (that is about 10 km/h). The difference

in the speed distribution is attributed to the controlled nature of the experiment in

Delft, where individuals where instructed to walk at normal speed, resulting to a lower

variance compared to Lausanne, where no instruction was given. For the same reason,

low speeds where not observed at low density in Delft, contrarily to Lausanne.

To investigate this data in more details, the speed distributions at various density levels

are presented in Figures 4.7 and 4.8 for the Lausanne and Delft case study, respectively.

In both cases, a higher level of variability is noticeable at lower densities, compared to
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(a) Lausanne case study (b) Delft case study

Figure 4.6: Speed-density profiles

higher densities where the distribution of speed is less spread and shifted towards lower

values.

The deterministic models for the speed-density relationship proposed in the literature

(Chapter 2) appear to be inadequate for representing the observed patterns. Clearly,

density is not the only factor influencing pedestrians’ speed. We emphasize that there

are different sources of uncertainty that can contribute to the observed pattern: (i) the

variability due to the nature of the system (e.g. heterogeneity of behavior, interaction

of behaviors such as people walking in groups, the existence of multi-directional flows

that are more chaotic) and (ii) measurement errors (e.g. discretization and measurement

noise, technological issues). The Voronoi based approach is completely data-driven and

designed to minimize the spatial discretization errors. Given the type of the available

data, these sources are not separable from each other. Instead, the proposed probabilistic

model for the speed-density relationship accounts for the whole uncertainty at once.

4.4 Case study: Lausanne

We illustrate and validate now the model on the Lausanne dataset, introduced in Sec-

tion 4.3.1. The process involves analyzing the goodness of fit (Section 4.4.1), qualitative

and quantitative comparison of the distributions predicted by the model and empirical

ones (Section 4.4.2). We also analyze the predictive performance of the model when

applied to data that were not used in model estimation (Section 4.4.3).
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4.4.1 Model Estimation

The dataset used for the estimation consists of 1,269,393 pairwise speed-density ob-

servations corresponding to the peak hour of February 12, 13, 14, 15 and 18, 2013.

The descriptive statistics of the estimation dataset are presented in Table 4.1. The

dataset is categorized according to six levels of service (LoS) proposed by Fruin (1971)

for pedestrian facilities, labeled from A to F. Table 4.1 shows that the largest part of

the observations falls below the LoS F. Actually, 99% of the observations are below 2.06

ped/m2.

LoS Number of observations

A (k ≤ 0.31 ped/m2) 644546
B (k ∈ (0.31 - 0.43 ped/m2]) 174116
C (k ∈ (0.43 - 0.71 ped/m2]) 229808
D (k ∈ (0.71 - 1.11 ped/m2]) 133812
E (k ∈ (1.11 - 2.17 ped/m2]) 76725
F (k > 2.17 ped/m2) 10386

Table 4.1: Estimation data classified according to LoS (Fruin, 1971) - Lausanne case
study

The estimation results for the model (4.23) presented in Section 4.2.3 are shown in

Table 4.2. The number of iterations (200) for the block bootstrap has been determined

by computing bootstrap approximation of the mean square error of the estimates (Ross,

2013b, Section 8.3). The parameter v̄e(k) is specified in the model (4.13).

All estimates have the expected sign and value. The results also show the low standard

errors of all parameters and their statistical significance (t-test) at a usual significance

level (0.05).2

The positive sign of the parameter aα shows that αk, that is the likelihood of low speeds,

increases with density. Similarly, the positive sign of the parameter aβ shows that βk,

that is the likelihood of the mode of the speed distribution, also increases with density.

The signs and the estimated values of the parameters vf and γ are consistent with the

ones reported in the literature and with the trend observed in the data. The low variance

of the parameter η is as expected, since the mixing distribution (4.22) is introduced for

the smoothing purposes.

The estimated equilibrium speed-density relationship is shown in Figure 4.9. Note that

it suggests the absence of the decreasing part in the corresponding flow-density relation-

ship. This is due to the fact the density in the considered system is below its critical

2The high significance of the parameters can also be attributed to the large number of observations
used for the model estimation.
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Parameter Value Std err (block bootstrap) t-test

aα 0.0393 4.78e−03 8.52
bα 0.00708 8.85e−04 7.87
aβ 0.00487 2.41e−03 2.10
bβ 0.142 3.71e−03 38.4
λ 3.53 1.70e−03 2.07e03

vf 1.29 2.85e−03 4.57e02

γ 0.0512 3.85e−03 13.4
η 3.48 1.25e−03 2.77e03

logL -783942.897
Number of parameters 8
Number of observations 1269393

Table 4.2: Estimation results - Lausanne case study

value.

Various alternative specifications of the model have been investigated in order to repre-

sent the speed-density relationship. The first alternative specification (denoted as the

specification A), assumes the Kumaraswamy distribution of speed values (e.g. Nikolić

et al. (2014)). In the second specification (denoted as the specification B), the speed

values are assumed to be generated from the Rayleigh distribution. The third specifica-

tion (denoted as the specification C), assumes the Weibull distribution of speed values.

In all cases the parameters of the distributions are allowed to vary with density. Also,

the alternative specification of PedProb-vk is considered (denoted as the specification

D), where we tried for v̄e(k) the specification proposed by Weidmann (1993) (Table 2.3).

All alternative specifications resulted in a poorer fit with respect to PedProb-vk, when

compared by the means of the Bayesian information criterion - BIC (Wasserman, 2000):

BIC = −2 · logL+ r · log(n) (4.24)

where n is the number of the observations, r is the number of parameters to be estimated

and L is the value of the likelihood function of the model. The model with the lowest

BIC is preferred. Indeed, the BIC values shown in Table 4.3 suggest that the PedProb-vk

represents the best compromise between the model accuracy and simplicity among all

evaluated specifications.

4.4.2 Kolmogorov-Smirnov validation

The validation is performed by comparing the distribution functions of the estimated

model, and the empirical distributions from the dataset. The analysis is carried out
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at different density levels. Figure 4.10 shows the probability density functions of the

model (model pdf) and the data (empirical histogram) at the same density level. The

corresponding cumulative density functions (model cdf and empirical cdf) are plotted in

Figure 4.11. Qualitatively, the match between the two is pretty satisfactory.

For the quantitative analysis, we use the Kolmogorov-Smirnov probability distance met-

ric (Massey, 1951)

Dk = max
v

∣∣∣Fmodel(v|k)− Fdata(v|k)
∣∣∣, (4.25)

where Fmodel(v|k) corresponds to the model cdf and Fdata(v|k) to the empirical cdf. This

metric represents the maximum value of the absolute vertical difference between the two

cumulative distribution functions. It is reported in Figure 4.12a.

We calculate the p-value of the Kolmogorov-Smirnov statistic using simulation (Ross,

2013a, p. 257), with 100 simulation runs. The model (4.23) is simulated using the

rejection method (Ross, 2013b, Section 5.2) on draws from a Rayleigh distribution. The

results are shown in Figure 4.12b. They suggest that there is no evidence in the data to

reject PedProb-vk at significance level 0.05 for all levels of density except maybe for the

one corresponding to densities close to zero.

4.4.3 Specification test

In order to test the robustness of the proposed specification, we have performed the

validation that consists in splitting the dataset into two subsets. The model is re-

estimated on one subset and the remaining data, unused for estimation, is used for

validation purposes. The procedure consisting of the following steps is repeated 100

times:

1. A sample of 80% of pairwise speed-density observations is selected using simple

random selection.

2. The parameters of the model are estimated using the generated sample.

3. The Kolmogorov-Smirnov statistic Dk (4.25) is calculated to compare the esti-

mated model and the data on the remaining 20% of the dataset.

In Figure 4.13a, we compare the value of Dk calculated on the full dataset (in dashed

line) with the values calculated with the above mentioned procedure. The 100 values

are summarized using a box plot at each level of density. These results are satisfactory.

The specification is robust and no over-fitting is detected.
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To be more precise, we also calculate the p-value for each value of Dk calculated with

the above mentioned procedure. For this purpose we use simulation (Ross, 2013a, p.

252), with 100 simulation runs. The box plot of the estimated p-values are shown in

Figure 4.13b. The results do not allow to reject the hypothesis that the data and the

model follow the same distribution, at a usual level of significance.

4.5 Case study: Delft

In this section we illustrate and validate the model on the Delft dataset, described

in Section 4.3.2. The process involves qualitative and quantitative comparison of the

distributions predicted by the model and empirical ones (Section 4.5.2), and the analysis

of the predictive performance of the model when applied to unseen data (Section 4.5.3).

4.5.1 Model Estimation

The dataset used for estimation consist of 119,156 pairwise speed-density values observed

upstream of the bottleneck. The data has been classified according to the LoS standard

of Fruin (1971), showing that now the majority of the observations corresponds to the

LoS C, D, E and F (Table 4.4). Consequently 99% of the data is below the density value

of 3.9 ped/m2. This is as expected, given the existence of flow constraint (in the form

of a narrow bottleneck) that in this case causes congestion upstream of the bottleneck.

The parameters of the model (4.23) have been estimated, where v̄e(k) is specified by

the model (4.15). The estimation results are shown in Table 4.5. The sign and the

magnitude of the parameters are as expected. The standard errors of the parameters

were computed via block bootstrap method (see Section 4.2.4). The results also indicate

a high significance of the estimated values.

The positive sign of the parameter aα shows that αk, that is the likelihood of low speeds,

increases with density. Similarly, the positive sign of the parameter aβ shows that βk,

that is the likelihood of the mode of the speed distribution, also increases with density.

The signs and the estimated values of the parameters vf , θ and γ of the model (4.15)

are in accordance with the trend observed in the data.

The value of the parameter λ is higher than the one for the Lausanne case study, which

is consistent with the reduced range of speed values in the data. Finally, the value of

the parameter η is slightly lower than that of Lausanne case study.

The estimated equilibrium speed-density relationship is shown in Figure 4.14.
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4.5.2 Kolmogorov-Smirnov validation

The agreement between the model predictions and the observations from the estimation

dataset is illustrated in Figure 4.15 and Figure 4.16. The Kolmogorov-Smirnov distances

(4.25) between the model cdf and the empirical cdf are illustrated in the Figure 4.17a.

The agreement between the model predictions with data appears to be less satisfactory

for lower density levels, as we have fewer data with low speed at low density levels. This

is an artefact of the experimental nature of the data (see discussion in Section 4.3.3).

The quality of the fit for higher density levels (which is of greater interest for applica-

tions anyway) is satisfactory. Figure 4.17a shows that the smallest Kolmogorov-Smirnov

distances correspond to the density levels which are characterized by the largest number

of observations (Table 4.4).

The p-values are estimated using the procedure described in Section 4.4.2 and shown in

Figure 4.17b. Again, there is no evidence in the data to reject PedProb-vk at significance

level 0.05 for most of the density levels. The p-values less than 0.05 are observed for

lower density levels, up to 0.3 ped/m2, and for density levels greater than 3.5 ped/m2.

In the former case low p-values are caused by the experimental nature of the data (as

discussed above), while in the latter a low number of observations (0.02% of the data)

is insufficient to reach any conclusion.

4.5.3 Specification test

We test the robustness of the model specification by performing the validation using

80% of the data for estimation and the remaining 20% for validation (see Section 4.4.3).

The Kolmogorov-Smirnov statistics for different density levels from 100 simulation runs

and corresponding p-values are shown using box plot representation in Figure 4.18a and

Figure 4.18b, respectively. The above results validate the model also for the Delft case

study.

4.6 Summary

This chapter points out a major shortcoming in the existing literature in terms of ex-

plaining the heterogeneity in the high resolution datasets on pedestrian flows. These

datasets are available more and more thanks to advancements in computer vision and

sensors technology, and their power needs to be utilized.

The chapter contributes by developing a probabilistic model of speed-density relationship

for pedestrians to tackle this heterogeneity. The approach is inspired by the analyzed
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data and it results in the model that is parsimonious and flexible. It relies on relatively

few assumptions, and can be efficiently adjusted to accommodate different behavioral

situations and different types of infrastructure.

Model estimation and validation performed in this chapter are based on two different

and extensive case studies (data from a real scene and from controlled experiments).

Various statistical tests empirically validate the proposed model specification and indi-

cate its high performance across case studies. Results also show satisfactory predictive

capabilities of the model.

The proposed model implicitly captures the impact of pedestrian heterogeneity on the

form of macroscopic relationships of pedestrian flow. Thus, the model does not provide

the way to explore what are the microscopic factors influencing pedestrian walking be-

havior at macroscopic level, and to what extent. We address this matter in the next

chapter (Chapter 5).

66



4.6. SUMMARY

(a) k < 0.1 ped/m2 (b) k = 0.1 ped/m2

(c) k = 0.2 ped/m2 (d) k = 0.3 ped/m2

(e) k =0.4 ped/m2 (f) k = 0.5 ped/m2

Figure 4.7: Speed distributions for different density levels - Lausanne case study
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(a) k < 0.1 ped/m2 (b) k = 1 ped/m2

(c) k = 2 ped/m2 (d) k = 2.5 ped/m2

(e) k = 3 ped/m2 (f) k = 3.5 ped/m2

Figure 4.8: Speed distributions for different density levels - Delft case study
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Figure 4.9: Equilibrium relationship - Lausanne case study

Model specification A B C D PedProb-vk

logL -891878.142 -897336.414 -895420.690 -845079.532 -783942.897
# parameters 8 3 4 9 8
# observations 1269393 1269393 1269393 1269393 1269393

BIC 1783868.715 1794678.828 1790897.596 1690285.550 1567998.226

Table 4.3: Goodness of Fit (BIC) - Lausanne case study

LoS Number of observations

A (k ≤ 0.31 ped/m2) 9288
B (k ∈ (0.31 - 0.43 ped/m2]) 6967
C (k ∈ (0.43 - 0.71 ped/m2]) 20497
D (k ∈ (0.71 - 1.11 ped/m2]) 21540
E (k ∈ (1.11 - 2.17 ped/m2]) 37114
F (k > 2.17 ped/m2) 23750

Table 4.4: Estimation data classified according to LoS (Fruin, 1971) - Delft case study

69



CHAPTER 4. PROBABILISTIC SPEED-DENSITY RELATIONSHIP FOR PEDESTRIAN
TRAFFIC

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(a) k < 0.1 ped/m2

(156,578 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(b) k = 0.2 ped/m2

(470,223 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(c) k = 0.4 ped/m2

(267,644 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(d) k = 0.6 ped/m2

(148,500 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(e) k = 0.8 ped/m2

(130,962 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(f) k = 1 ped/m2

(77,909 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(g) k = 1.2 ped/m2

(47,727 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(h) k = 1.5 ped/m2

(23,828 observations)

0 2 4 6
0

0.5

1

1.5

Speed (m/s)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Empirical observations
Model

(i) k = 2 ped/m2

(11,148 observations)

Figure 4.10: Comparison between model predictions (probability density) and empirical
observations - Lausanne case study
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Figure 4.11: Comparison between model predictions (cumulative density) and empirical
observations - Lausanne case study
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Figure 4.12: Kolmogorov-Smirnov validation - Lausanne case study
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Figure 4.13: Specification test - Lausanne case study
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Parameter Value Std err (block bootstrap) t-test

aα 0.165 6.62e−02 2.08
bα 0.244 6.97e−02 3.11
aβ 0.166 6.85e−02 2.49
bβ 0.965 5.97e−02 16.4
λ 6.90 1.41e−02 4.89e02

vf 1.87 4.92e−02 38.1
θ 1.13 6.03e−02 18.3
γ 0.545 4.31e−02 13.1
η 3.29 3.28e−02 1.00e02

logL -3642.944
Number of parameters 9
Number of observations 119156

Table 4.5: Estimation results - Delft case study
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Figure 4.14: Equilibrium relationship - Delft case study
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Figure 4.15: Comparison between model predictions (probability density) and empirical
observations - Delft case study
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Figure 4.16: Comparison between model predictions (cumulative density) and empirical
observations - Delft case study
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Figure 4.17: Kolmogorov-Smirnov validation - Delft case study
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Figure 4.18: Specification test - Delft case study
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5
Multi-class speed-density relationship for

pedestrian traffic

This chapter is based on the article:

Nikolić, M., Bierlaire, M., Lapparent, M. and Scarinci, R. (2017).

Multi-class speed-density relationship for pedestrian traffic.

Technical report TRANSP-OR 170115.

The work has been performed by the candidate under the supervision of Prof. Michel

Bierlaire, Matthieu de Lapparent PhD., and Riccardo Scarinci PhD.

The objective of this chapter is the derivation of multi-class model for pedestrian speed-

density relationship. It is motivated by (i) a high scatter in real data that precludes

the use of traditional equilibrium relationships, and (ii) the lack of behavior-oriented ex-

planatory power of PedProb-vk (Chapter 4) when describing the observed phenomenon.

The model is derived based on the latent class methodology. In addition to the gen-

eral modeling framework, we present some concrete model specifications. Real data is

utilized to test the performance of the approach. The approach is able to reveal funda-

mental properties causing the heterogeneity in population and describe their impact on

pedestrian movement. We also show the advantages of the proposed approach compared

to approaches from the literature. The proposed model is flexible, and it provides richer

information than traditional models.
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The structure of the chapter is as follows. Section 5.1 describes the proposed method-

ological framework for the derivation of the multi-class speed-density relationship. Sec-

tion 5.2 presents the empirical analysis based on the data collected in Lausanne (Switzer-

land) train station. In Section 5.3 we empirically illustrate the performance of the ap-

proach. Section 5.4 summarizes the outcomes of the proposed methodology.

5.1 Methodology

This section first describes the general modeling framework and presents concrete sug-

gestions for the model specification. Then, data requirements and model estimation

method are discussed.

5.1.1 Modeling framework

Let (vi, ki, Xi) be a triplet representing the speed vi, the density ki and the vector of

observable characteristics Xi (such as age, trip purpose, etc.) associated with individual

i. We assume that the population is partitioned into J classes (sub-populations) of

pedestrians. In this framework, the individual speeds vi are random variables. It is

assumed that the speed is influenced by the prevailing density, and that this relationship

varies across classes. Therefore, the distribution of vi is characterized by its probability

density function conditional on the density ki experienced by individual i and the class

j

fj(vi|ki, j; θj(ki)), (5.1)

where θj(ki) are parameters. We refer to this distribution as a class-specific model

(CSM). Each class may be characterized by a different probability distribution of the in-

dividual speeds. However, in most applications it is assumed that all class densities arise

from the same parametric distribution family (Frühwirth-Schnatter, 2006). We assume

that this distribution is continuous with positive support. This property is in accordance

with the physical characteristic of the speed, being that the speed is a continuous vari-

able whose values cannot be negative. Note that the density ki is not class dependent,

as all pedestrians contribute to the density, irrespectively of the class they belong to.

The specification of the parameters θj(ki), which characterize the class-specific speed

distribution, is assumed to vary with the density of pedestrians. The assumption is mo-

tivated by empirical observations (Cheung and Lam, 1998) that suggest different trend

of speed distribution for different density levels (e.g. the mean and the spread of the

speed distribution decrease with increase in the density of pedestrians). For instance,

this dependency can be represented using deterministic speed-density relationships, such

as those presented in Table 2.3. Some concrete examples are shown in Section 5.1.2.
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The class of pedestrian i cannot be directly observed. Therefore, we propose a class

membership model (CMM) that provides the probability that a pedestrian i, character-

ized by her socio-economic characteristics Xi, belongs to class j

Pr(j|Xi;βj), (5.2)

where βj are parameters. The CMM can take a number of forms. A typical assumption is

based on a fitness function, that is a continuous variable measuring how much individual

i fits into class j. For example, a linear formulation would consist in

Ui,j = Vi,j + εi,j = CSCj + βjXi + εi,j , (5.3)

where CSCj and βj are unknown parameters to be estimated from data, and εi,j is

a random term. The assumption is that the individual belongs to the class with the

highest value of the fitness function. A specific distribution assumption for εi,j leads to

a specific probability model. The exact specification of Vi,j , and in particular the exact

list of characteristics involved in Xi, is application dependent. We show some examples

in Section 5.1.2.

The multi-class speed-density model (MC-vk) is obtained by combining the CSM and

the CMM as follows

fMC−vk(vi|ki, Xi; θj(ki), βj) =

J∑
j=1

fj(vi|ki, j; θj(ki))︸ ︷︷ ︸
CSM

Pr(j|Xi;βj)︸ ︷︷ ︸
CMM

. (5.4)

The described framework is illustrated in Figure 5.1.

The latent classes can be assumed a priori or interpreted a posteriori. The a priori spec-

ification of classes can be based on the information from the literature about different

pedestrian sub-populations (e.g business and leisure travelers, or children, adults and

seniors), and their preferred walking speed and the attitude towards congestion (Daa-

men, 2004; Weidmann, 1993). The a posteriori interpretation of latent classes should be

supported by the estimation results.

5.1.2 Exemplary specification

For the illustration of the model, we need to assume the number of classes (J), and to

specify the exact form of the CMM and the CSM. We assume the existence of two classes

(J = 2), denoted as class C1 and class C2, in order to keep the model parsimonious

and to avoid potential over-fitting. Note that other models with higher number of

classes are estimated for the train station context and compared using statistical tests

in Section 5.3.1.3. The results of this comparison show that the two-class model is
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Behavioral profile of 
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Traffic condition data 

Class membership 
model (CMM) 

Class-specific 
model (CSM) 

Multi-class speed-density 
relationship (MC-vk) 

Figure 5.1: Modeling framework

superior for this case study.

We suggest the Rayleigh model for the distribution of the speed in each class

fj(vi|ki, j, θj(ki)) = vi
θ2j (ki)

exp(− v2i
2θ2j (ki)

), (5.5)

which is driven by only one parameter, the scale θj(ki). The choice of the Rayleigh

distribution is motivated by its properties (continuous distribution that is defined on

the positive support) that are in accordance with the physical properties of the speed.

The mean of a Rayleigh random variable is expressed as μj(ki) = θj(ki)
√

π/2. We model

the mean as the linear class-specific equilibrium speed-density relationship for all classes

μj(ki) = vf,j − γjki, (5.6)

where vf,j and γj are class-specific parameters, referring to the free-flow speed, respec-

tively the sensitivity to congestion. These parameters are expected to vary across classes

such that they reflect the class-specific behavior. The equilibrium relationship in (5.6)

is derived in Chapter 4, Section 4.1.2 from the social force model proposed by Helbing

and Molnar (1995), for isotropic, homogenous and stationary traffic conditions. It also

corresponds to the relationships proposed by Older (1968), Navin and Wheeler (1969),

Fruin (1971), Tanaboriboon et al. (1986) and Lam et al. (1995) (Table 2.3).
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Each pedestrian is assumed to belong to one class only (pedestrians do not switch

among classes over time). This is consistent with the literature on vehicular traffic

(van Wageningen-Kessels, 2013). We assume that the error term εi,j in (5.3) is i.i.d.

type 1 Extreme Value (EV1(0,1)) across classes and individuals. This assumption yields

the binary logit CMM, defined as

Pr(j|Xi;βj) =
eVi,j∑2
j=1 e

Vi,j
. (5.7)

The quality of the CMM depends on the available information about the behavioral

profiles of pedestrians, that constitutes the deterministic part of the model (Vi,j). For

instance, various studies have shown that, in general, the age (children, adults, seniors),

the gender (female, male) and the trip purpose (leisure, commuters, shoppers, business)

of pedestrians have an effect on their movement behavior (Chapter 2, Section 2.3). If

this information is available, the deterministic parts of the fitness function for each class

and pedestrian can be defined as

Vi,1 = CSC1 + βCHILD,1CHILDi + βADULT,1ADULTi + βFEMALE,1FEMALEi

Vi,2 = βLEISURE,2LEISUREi + βCOMMUTERS,2COMMUTERSi+

βSHOPPERS,2SHOPPERSi,

(5.8)

where SENIOR, MALE and BUSINESS are considered as the reference levels of the

corresponding discrete variables. Depending on the context, some additional information

may be also useful. For instance, in transportation hubs, such as train stations, metro

stations or airports, the type of passenger (arriving, departing, transferring), the time

to departure, the distance that pedestrians need to traverse, the presence of luggage and

walking in groups appear as relevant factors. Similarly, the opening hours of shops in

commercial centers, or highlights in museums, interacted with the cultural background

of pedestrians, can be valuable in explaining the class membership.

Note that the framework described in Section 5.1.1 is general and allows for different

specifications to be tested. To assess the performance of our approach, we present the

analysis on a real case study in Section 5.3.

5.1.3 Data requirements

In order for the presented framework to be applied, the following data must be available.

The key type of data, like for any such model, is the traffic condition data. It includes

individual speed and density observations, necessary for the estimation of the model.

They can be extracted from the individual trajectory data, that is the data provided

in the form of individual-specific pairs of consecutive time and location observations.
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Ideally, trajectories are collected using precise pedestrian tracking systems with high

temporal resolution. For instance, the systems based on optical, thermal and depth

sensors (Alahi et al., 2011, 2014) or digital cameras (Daamen and Hoogendoorn, 2003).

Pedestrian trajectories can be also obtained using wireless technologies such as WiFi or

Bluetooth. The issue with these technologies is the low temporal resolution and strong

sample bias (Danalet, 2015). In this case, the combination of WiFi or Bluetooth traces

with count data may provide better understanding about prevailing traffic conditions

(Hänseler, 2016).

Although the class membership model could be specified without any explanatory vari-

able, the quality of the model would benefit from characteristics of individuals. This

means that the more information is available about pedestrian characteristics, the easier

it will be to obtain a good class membership model. This information includes typical

socio-economic and demographic data, such as age, gender, health conditions, culture,

trip purpose, etc. As mentioned in Section 5.1.2, depending on the type and the purpose

of pedestrian facilities, additional types of data would be useful. For instance, the ap-

parent types of data are (i) the type of passenger, the time to departure, the presence of

luggage and walking in groups in public transport facilities, (ii) the points of pedestrians’

interest in museums and the attractivity of these points, (iii) opening hours of shops and

restaurants in commercial centers, (iv) concert schedules and toilets’ locations in music

festivals, (v) pollution and noise levels experienced by pedestrians in urban streets, etc.

To collect the mentioned characteristics various recall methods may be used, including

paper-based surveys distributed to individuals (Bachu et al., 2001; Kalakou and Moura,

2014), smartphone-based applications (Ohmori et al., 2005; Cottrill et al., 2013; Ball

et al., 2014; Zhao et al., 2015), and web-based methods (Bohte and Maat, 2009).

In case data collection using recall methods is not performed, it is possible to compen-

sate, to some extent, by relying on the available information from pedestrian trajectories

and some other sources (e.g. attributes of a facility, timetables and schedules in trans-

portation hubs, etc.). This is demonstrated in Section 5.2.2.

5.1.4 Estimation procedure

With respect to traffic condition data, we assume the availability of individual observa-

tions collected over multiple time instants. This means that traffic condition data has

panel nature, and the speed observations of a single individual are likely to be correlated

across time. This is usually referred to as serial correlation. The issue arises due to un-

observed individual factors that persist over time. If ignored it leads to consistent but

inefficient estimators (Gourieroux et al., 1984). To address the issue of serial correlation

we introduce an agent effect, αi, in the mean of the speed distribution that drives the
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CSM (Wooldridge, 2005). We assume that it is exponentially distributed

f(αi;μαi) =
1

μαi

exp(− αi

μαi

), (5.9)

where μαi is the mean. The agent effect is assumed to be independently and identically

distributed across pedestrians, but remains constant within the observations of a given

pedestrian. The choice of the exponential specification is motivated by its positive

support. Also, it is well suited to avoid any arbitrariness in imposing the upper bound,

while preventing arbitrary high values at the same time. The likelihood conditional on

class j for the observations of pedestrian i in the described panel setting is as follows

f(vi1, ..., viTi |ki1, ..., kiTi , j; θj(ki)) =

∫
αi

Ti∏
t=1

fj(vit|kit, j, αi; θj(kit))f(αi;μαi)dαi, (5.10)

where Ti is the number of observations of individual i, and vi1, ..., viTi and ki1, ..., kiTi are

the sequences of speed, respectively density observations associated with this individual.

Contrary to traffic condition data, pedestrian characteristics (e.g. age, gender, etc.)

are assumed to be time independent during the observation period. Each pedestrian

is associated with one observation of the considered characteristics. For instance, the

age category of a pedestrian is adult and her gender is female. This means that the

class membership probability is calculated only once, and it remains constant across all

speed-density observations for a given pedestrian (the error terms εi,j (5.3) are not time

dependent). Therefore, the issue of serial correlation does not appear at the CMM level.

We also assume that the error terms of the CSM and the CMM are not correlated, as

in Walker and Li (2007).

Combining the CSM and the CMM, the contribution of individual i to the likelihood is

given as

f(vi1, ..., viTi |ki1, ..., kiTi , Xi; θj(ki), βj) =
2∑

j=1

{∫
αi

Ti∏
t=1

fj(vit|kit, j, αi; θj(kit))f(αi;μαi)dαi

}
Pr(j|Xi;βj).

(5.11)

The integral in (5.11) is approximated via simulation as

f(vi1, ..., viTi |ki1, ..., kiTi , Xi; θj(ki), βj) =
2∑

j=1

{
1

R

R∑
r=1

Ti∏
t=1

fj(vit|kit, j, αi,r; θj(kit))

}
Pr(j|Xi;βj),

(5.12)

where R refers to the number of draws from f(αi;μαi). The likelihood function for the
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sample of N individuals (i = 1, ..., N) is given by

L =

N∏
i=1

f(vi1, ..., viTi |ki1, ..., kiTi , Xi; θj(ki), βj) =

N∏
i=1

{
2∑

j=1

{
1

R

R∑
r=1

Ti∏
t=1

fj(vit|kit, j, αi,r; θj(kit))

}
Pr(j|Xi;βj)

}
,

(5.13)

that is to be maximized.

5.2 Case study and empirical analysis

We illustrate the methodology and analyze its performance using the Lausanne case

study, described in Chapter 4, Section 4.3.1. In the underpass (Figure 4.4), 33 depth

sensors are installed. The placement of the sensors is such that the major part of the

underpass is monitored (Alahi et al., 2013). However, blind areas exist (the areas that

are not covered by the sensors), where missing data are completed using an inter-sensor

tracking algorithm (Alahi et al., 2011). In this chapter we make a distinction and call

the observations form the covered areas the “detected” observations, and those from the

uncovered areas the “imputed” observations. This distinction is made in order to reduce

the effect of errors due to technological issues in the calculation of the density indicator,

as elaborated in Section 5.2.1.

In addition to detailed pedestrian trajectories, the infrastructure data, that is detailed

plans containing the locations and dimensions of all relevant parts of the monitored

system, is also available. We also have access to the train timetable for the period under

study. The arrival and departure times and the assigned tracks are thus known for all

trains.

We first present the analysis of traffic condition data, that is speed and density observa-

tions. We then discuss the factors used to explain the class membership of individuals.

5.2.1 Speed and density observations

The speed-density profile corresponding to the Lausanne case study (Figure 5.3) is ob-

tained from the Voronoi-based measurement method presented in Chapter 4, Section 4.1.

As described, the Voronoi space decomposition assigns a personal region to each pedes-

trian i, based on the positions of pedestrians. The position of “detected” observations is

considered to be accurate, while the position of “imputed” observations might be sub-

ject to inter-sensor tracking algorithm errors (Alahi et al., 2011). Therefore, the Voronoi

spatial discretization is in this chapter performed based on “detected” observations only
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(Figure 5.2). We, however, need to account for the existence of the pedestrians whose

observations are marked as “imputed”. To do so, the density at each point p = (x, y, ts)

is computed as

k(x, y, ts) =
ndetected
Vis

+ nimputed
Vis

|Vis| , (x, y) ∈ Vis, (5.14)

where ts = (t0, ..., tf ) corresponds to the available sample, |Vis| is the area of Voronoi

cell Vis assigned to “detected” pedestrian i at time ts, and ndetected
Vis

and nimputed
Vis

refer

to the number of “detected”, respectively “imputed” observations within the cell Vis.

The speed is approximated using finite differences, based on the “detected” observations

(Chapter 4, Section 4.1).

Detected data 
 
Imputed data 

Figure 5.2: Spatial discretization based on “detected” observations

In Figure 5.3, each circle corresponds to one observation, that is, one pedestrian at one

specific time. The x coordinate of the circle corresponds to the density, and its y coor-

dinate corresponds to the speed. The figure plots 154,417 observations corresponding to

the peak hour of February 13, 2013. The same pattern was observed on any weekday.

A high scattering is observed in Figure 5.3. The density ranges from 0 to approximately

7 pedestrians per square meter, and 99% of the observations are below 1.4 pedestrians

per square meter. The speed ranges from 0 to approximately 6 meters per second, and

99% of the observations are below 2.42 meters per second.

The deterministic models for the speed-density relationship proposed in the literature
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Figure 5.3: Speed-density profile

(Chapter 2 , Section 2.3.1) appear to be inadequate for representing the observed pattern.

5.2.2 Characteristics associated with pedestrians

In addition to the speeds and densities, we extract additional variables that are used in

the model: the pedestrian type, the OD distance, the peak and off-peak periods and the

time to departure. In the following, we explain each factor separately.

The pedestrian type refers to the classification of pedestrians based on their OD pairs.

The definition of OD areas depends on the layout of a train station, and it includes the

stairs and ramps to the platforms (denoted as P1-P9 in Figure 4.4) and the entrance/exit

areas. We consider four pedestrian types

1. arriving passenger (AP) - pedestrians originating from a platform and exiting the

station,

2. departing passenger (DP) - pedestrians walking to a platform to embark on their

trains,
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3. transferring passenger (TP) - pedestrians whose origin and destination are different

platforms,

4. non-passenger (NP) - pedestrians whose origin and destination are not a platform

(e.g. pedestrians that go shopping in the station, or use the underpass to reach

the other side of the city).

Between 8% and 9% of pedestrians each day are not classified, due to the mismatch of

their initial and/or final observations with any of the predefined zones that indicate ori-

gins and destinations. These observations are considered for the calculation of density,

but are not taken into account at the level of the CMM. Figure 5.4 shows the percentage

of pedestrians belonging to each of the four types across days. The pattern is relatively

stable over days, and it indicates that the majority of pedestrians are arriving and de-

parting. Figure 5.5 illustrates the speed distributions for these two types of pedestrians,
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Figure 5.4: Number of pedestrians per pedestrian type

for a particular density level. It shows that arriving passengers tend to walk with lower

speeds, compared to departing passengers. The shift of the distribution for departing

passengers towards higher values can be explained by the fact that they are more likely

to be under time pressure (to embark on the trains) than the arriving ones.

The OD distance (OD) is associated with each pedestrian based on the corresponding

OD pair. The OD distances are calculated as the shortest Euclidean physical distance

between each origin and destination. The distances range from approximately 3 meters

to 80 meters, as shown in Figure 5.6.
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Figure 5.5: Speed distribution per pedestrian type (k=0.6 ped/m2)

The peak and off-peak periods are defined based on the number of people observed over

time for each day (Figure 5.7). For the temporal aggregation we consider the inter-

vals that are 5 minutes long. Peak periods (PP) refer to the intervals where the local

maxima of the number of people are observed, and off-peak periods (OPP) refer to all

other intervals. For February 13, 2013, for instance, the peak periods are 07:15-07:20

and 07:40-07:45. We expect that pedestrians are characterized with different walking

behavior, depending on the period when they are observed.

The time to departure (TTD) is obtained by exploiting the information contained in the

train timetable. We define the time to departure as the difference between the departure

time of the next train from the platform that the pedestrian is going to and the time

at which the pedestrian is first observed in the underpass. The distribution of time to

departure is shown in Figure 5.8. It ranges from a few seconds to approximately 50

minutes. The distribution suggests that most of the people arrive to the train station

approximately 3 minutes (the mode of the distribution) before the train departure. It

is natural to assume that people that have more time to the departure of their trains

behave differently from those rushing to catch their trains.

We also explored the impact of the group behavior on the speeds of pedestrians. We

adopted spatial clustering together with temporal frequent patterns analysis to identify

the pedestrians walking in groups. In the spatial clustering step, we used the values

proposed by McPhail and Wohlstein (1982) for the features characterizing pedestrians

that walk in groups (e.g. distances pedestrians keep between each other, differences in

speeds and directions). However, less than one percent of the population was identified

to walk in groups, and the analysis with respect to this factor showed no significant

effect on the speed at which pedestrians move. The factor is therefore excluded from
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Figure 5.6: OD distance distribution

further analysis.

To investigate the case study data in more details, we consider the speed distributions

with respect to the mentioned factors at various density levels. The analysis is presented

in Appendix C, Figure C.1 - Figure C.4 and Table C.2. The findings are in agreement

with our assumption on the pedestrian heterogeneity reflected through different walking

speeds. They suggest that density is not the only factor influencing pedestrians’ speed

and that the observed heterogeneity in speed values might come from multiple factors.

5.3 Applying the framework

The framework proposed in Section 5.1 is illustrated on the Lausanne case study. The

CSM is specified in the model (5.5). The CMM is specified as the logit model given in

(5.7), with the deterministic parts of the fitness function defined as

Vi,1 = CSC1 + βDP,1DPi + βTP,1TPi + βNP,1NPi

Vi,2 = βTTD,2TTDi + βPP,2PPi + βOD,2ODi,
(5.15)

where the variables are described in Section 5.2.2. This CMM specification is motivated

by the analysis presented in Section 5.2. We present below the model estimation results

and detailed examination of each component of the model. Also, comparisons with the

existing models and practical implications are discussed.
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Figure 5.7: Number of pedestrians grouped into intervals of 5 minutes

5.3.1 Model estimation

For the estimation of the model parameters, we use maximum likelihood procedure.

The estimation results of the presented model are shown in Table 5.1. We use R =

200 draws from (5.9) for the simulation of the integral in (5.13). The standard errors

are calculated using bootstrapping (Chapter 4). All estimates have the expected sign

and value. The results also show the low standard errors of the parameters and their

statistical significance at a usual significance level (0.05).

5.3.1.1 Class-specific model

The parameter estimates of the class-specific models show how movement behavior vary

across classes.

The signs and the estimated values of the parameters vf,1,γ1,vf,2 and γ2 are consistent

with the ones reported in the literature. The corresponding class-specific speed-density

relationships are shown in Figure 5.9.

The parameters μα1 and μα2 show that agent effect distributions are characterized with

similar mean in both classes.

We make inferences on the movement behavior of each class based on the estimated pa-

rameters of the CSM. The C1 class pedestrians are characterized with a higher free-flow

walking speed and significantly lower sensitivity to congestion, compared to pedestrians

belonging to C2 class. We thus call C1 the class of “pedestrians less sensitive to con-

gestion” and C2 the class of “pedestrians more sensitive to congestion”. The classes are
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Parameter Value Std err t-test

CSC1 -0.682 2.82e−02 -2.35e01

βDP,1 2.02 7.50e−03 2.69e02

βTP,1 1.46 2.90e−02 4.99e01

βNP,1 7.16 2.63e−02 2.72e02

βTTD,2 0.00125 2.61e−04 4.9500

βPP,2 1.31 2.00e−02 6.58e01

βOD,2 0.0207 2.65e−03 8.24e00

vf,1 1.08 2.24e−03 4.84e02

γ1 0.0478 3.05e−03 1.52e01

vf,2 0.984 3.26e−02 2.90e01

γ2 0.186 2.51e−03 7.38e01

μα1 0.0985 4.09e−03 2.32e01

μα2 0.121 1.87e−02 5.98e00

logL -519050.63
Number of parameters 13
Number of observations 747385

Table 5.1: Estimation results
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Figure 5.8: Distribution of time to departure

relevant for the context of pedestrian movement in train stations.

5.3.1.2 Class membership model

The parameter estimates of the class membership model show what are the underlying

factors leading to different movement behavior.

The class-specific constant CSC1 has negative sign denoting that, the rest of fitness

functions being equal, pedestrians in the train station are less likely to belong to C1

class than to C2.

The positive sign of the parameters βDP,1, βTP,1 and βNP,1 indicates that departing,

transferring and non-passengers are more likely to be in class C1, compared to arriving

passengers.

The positive sign of the parameters βTTD,2 and βOD,2 shows that as pedestrians have

more time to departure and longer distances to traverse, they are more likely to belong

to C2. Similarly, the sign of the parameter βPP,2 shows that pedestrians are more likely

to be of C2 during peak periods with respect to off-peak periods.

Figure 5.10a shows the average probability over the sample of belonging to each class

wj =

∑N
i=1 Pr(j|Xi;βj)

N
, (5.16)

where N refers to the number of individuals. According to the predictions of the model,
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Figure 5.9: Class-specific speed-density relationships

39.77% of pedestrians are “pedestrians less sensitive to congestion” (C1) and 60.23%

are “pedestrians more sensitive to congestion” (C2). Figure 5.10b indicates the higher

share of C1 class in the case of departing and transferring passengers, compared to

arriving passengers. This is expected, given that departing and transferring passengers

are usually associated with higher time pressure that drives their more “aggressive”

behavior. It is however not clear whether the high share of C1 class in the case of non-

passengers can be related to some behavioral aspects, or to the fact that OD pairs of

non-passengers correspond to the main flow direction in the underpass. It is documented

in the literature that pedestrians constituting the main flow are characterized by higher

walking speeds (Wong et al., 2010).
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Figure 5.10: Shares per class

Figure 5.11 shows the predicted value of time to departure and OD distance for pedestri-
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ans in each class. The predicted values represent the weighted average of each variable,

where the weight is the probability of being in a particular class. As expected, pedes-

trians in class 1 (less sensitive to congestion) on average have less time to departure

and shorter distances to traverse, compared to pedestrians in class 2 (more sensitive to

congestion).
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Figure 5.11: Class profiling

The results indicate the existence of relatively strong profiling. However, the segmen-

tation of a population is not deterministically determined. Even though the parameter

estimates in Table 5.1 suggest that the characteristics associated with pedestrians sig-

nificantly influence the segmentation of considered population, a probabilistic model is

necessary.

5.3.1.3 Alternative specifications

We have also performed a sensitivity analysis to investigate the potential existence of

one and three sub-populations. The suggested model represents a form of a clustering

analysis of data. Compared to the standard clustering methods, it is a probabilistic

model-based approach. The issue of determining the correct number of classes is there-

fore reduced to model selection problem in the probabilistic framework. We asses the

goodness of the model by the means of the Bayesian information criterion (Wasserman,

2000)

BIC = −2 · logL+m · log(n), (5.17)

where n is the number of observations, m is the number of unknown parameters and

L is the value of the likelihood function of the model. The statistics are reported in

Table 5.2, indicating that models with multiple classes are preferred over a single-class

model. Although the best value of the logL is achieved for the three-class model, the

BIC statistic suggests that the two-class model represents the best compromise between

the model accuracy and simplicity among all evaluated specifications. It also provides

the most satisfactory behavioral interpretation of the results.
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Various alternative specifications of the model with two classes have been investigated,

and the results are listed in Table 5.3. They differ from the proposed model in terms of

assumed class-specific speed-density relationships and agent effect distributions. Linear

speed-density relationships in Table 5.3 correspond to those proposed by Older (1968),

Navin and Wheeler (1969), Fruin (1971), Tanaboriboon et al. (1986) and Lam et al.

(1995) (Table 2.3). Exponential speed-density relationships refer to the relationship

proposed by Rastogi et al. (2013) (Table 2.3). All alternative specifications resulted in a

poorer fit with respect to the proposed model (BIC=1038277.07, Table 5.2), according

to the BIC.

5.3.2 Qualitative analysis

In this section we analyze in a qualitative way how well the model represents the data.

The analysis considers the distribution functions of the estimated model, and the empiri-

cal distributions from the dataset. It is carried out at different density levels. Figure 5.12

shows the probability density functions of the model (model pdf) and the data (empirical

histogram) at the same density level. Qualitatively, the match between the two is pretty

satisfactory. In particular this is the case for the density levels which are characterized

by the largest number of observations (Table 5.4). Note that unimodality of distribution

in the probabilistic model proposed in Chapter 4, Section 4.2.1 is also consistent with

the MC-vk (Figure 5.12).

Figure 5.13 shows the predictions of the models proposed in the literature (Table 2.3)

at the aggregate level. The density and space-mean speed are in this case measured in

a cell A using (2.19), respectively (2.20). The cell is placed in the middle of the corridor

(Figure 4.4) and its area is |A| = 1m2. Note that the scattered pattern also appears

when more aggregate measures are considered (Figure 5.13). We have estimated the

parameters of the deterministic models from Table 2.3 using linear regression on the

measured values. All the considered models appear to be inadequate for representing

the observed phenomena. The goodness of fit across the models is similar and shows

significant discrepancy between observed values and the values predicted by the models.

For instance, the sum of squared errors of prediction ranges from 271.8 to 273.2, the

adjusted coefficient of determination is around -9.835e−05 and the root-mean-square

error is in the range from 0.3339 to 0.3348.

TheMC-vk is more complex than traditional speed-density relationships. Our exemplary

specification has 13 parameters (Table 5.1), while the deterministic models proposed in

the literature have from two to three parameters (Table 2.3). Yet, the MC-vk relies on

relatively few assumptions and it is easy to analyze by using simulation. Moreover, the

presented analysis suggests that it results in the predictions that are more consistent

with empirical observations.
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5.3.3 Posterior analysis

The estimated model allows for the calculation of posterior probabilities of class-membership

for each observation

Pr(j|vi, ki, Xi; θj(ki), βj) =
Pr(j|Xi;βj)fj(vi|ki, j; θj(ki))∑2
j=1 Pr(j|Xi;βj)fj(vi|ki, j; θj(ki))

. (5.18)

The assessment of posterior probabilities allows to assign an observation to multiple

classes with different degrees of membership, or to perform the so-called “soft” clustering.

This form of clustering is desirable when the information about probabilities is useful.

It provides more information than classical methods, where each observation belongs to

only one class (“hard” clustering).

Figure 5.14 shows the posterior class-membership probabilities of the observations in the

speed-density plot for the class of “pedestrians less sensitive to congestion” (C1). They

indicate how strongly each observation belongs to this class. Darker gray color indicates

higher posterior probability, and lighter gray color corresponds to lower posterior prob-

ability. The results indicate relatively strong separation of the observations. It can be

observed that higher speed values belong to C1 class more strongly than lower speed

values, for all density levels. The results of the analysis are in line with our expectations.

They show the capability of the model to capture the structure of the data better than

the traditional models.

5.3.4 Practical implications

The proposed model can be used by the operators as an instrument for policy making

(e.g. long run planning) and daily operations (e.g. to control the flow). For instance,

using the estimated CMM it is possible to examine the influence that the modification

of the explanatory variables values has on the split of pedestrians among the classes. We

look at the effect of the reduction of time to departure for departing and transferring

passengers, assuming all the rest remains unchanged. Such a reduction is typically the

result of the modification of the train time table in the train station. The reduction

of 10%, 20%, 30%, 40% and 50% is considered. Figure 5.15 indicates the increase in

the share of “pedestrians less sensitive to congestion” class, and decrease in the share of

“pedestrians more sensitive to congestion” class, with the decrease in time to departure.

This observation is in accordance with our expectations.

The presented analysis suggests that the model can be utilized for the analysis of the

effects of such scenarios on the movement behavior of pedestrians. This is important

for a variety of applications, such as the impact of different scenarios on the resulting

LoS within train stations. Also, the evaluation can be further augmented by posterior
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analysis of the class membership probabilities (Section 5.3.3). Moreover, the proposed

methodology is not case specific. It is general and can be simply adopted to other specific

applications.

5.4 Summary

In this chapter, a latent class model for speed-density relationship for pedestrian traffic

is proposed. Differently from approaches in the literature, it is a multi-class model

designed to account for the heterogeneity of speed observed in the data. The model

uses the latent classes to relax the homogeneity assumption of equilibrium speed-density

relationships.

To illustrate the proposed methodology, we use the data collected in the train station in

Lausanne, Switzerland. The analysis confirms the existence of multiple classes of pedes-

trians characterized by different movement behavior. The resulting behavior is relevant

for the studied situation. In addition to density, the observed pattern is explained by

factors related to pedestrian type, train timetable and infrastructure. The proposed

model thus represents a flexible tool for (i) recognizing the main factors driving the het-

erogeneity in population and (ii) describing the impact of heterogeneity on pedestrian

movement. Being conceptually insightful, the model can be further used to support the

derivation of pedestrian flow models from the first principles.

We present various analyses using empirical data that illustrate the performance of the

model. In contrast to the existing approaches, the suggested model features a behavior-

oriented explanatory power. As such, it provides more realistic representation of the

observed phenomena, and it is better suited for forecasting analysis.
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Model 1 class 2 classes 3 classes

logL -529000.76 -519050.63 -519007.51
# parameters 3 13 23
# observations 747385 747385 747385

BIC 1058042.09 1038277.07 1038326.07

Table 5.2: Goodness of fit - BIC

Model Ma Mb Mc Md Me

Speed-density rel. C1 Linear Linear Exponential Linear Linear
Speed-density rel. C2 Linear Exponential Exponential Exponential Exponential

Agent effect distribution C1 Rayleigh Rayleigh Rayleigh Log-normal Exponential
Agent effect distribution C2 Rayleigh Rayleigh Rayleigh Log-normal Exponential

logL -519952.55 -525143.19 -525064.29 -529320.93 -519070.04
# parameters 13 13 13 13 13
# observations 747385 747385 747385 747385 747385

BIC 1040080.92 1050462.20 1050304.40 1058817.69 1038315.91

Table 5.3: Goodness of fit for alternative specifications - BIC

LoS Number of observations

A (k ≤ 0.31 ped/m2) 417032 (56%)
B (k ∈ (0.31 - 0.43 ped/m2]) 98964 (13%)
C (k ∈ (0.43 - 0.71 ped/m2]) 128335 (17%)
D (k ∈ (0.71 - 1.11 ped/m2]) 76918 (10%)
E (k ∈ (1.11 - 2.17 ped/m2]) 26136 (4%)

Table 5.4: Estimation data classified according to LoS (Fruin, 1971)
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(a) k < 0.1 ped/m2 (b) k = 0.1 ped/m2

(c) k = 0.2 ped/m2 (d) k = 0.3 ped/m2

(e) k = 0.4 ped/m2 (f) k = 0.5 ped/m2

Figure 5.12: Comparison between model predictions and empirical observations
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Figure 5.13: Deterministic models

Figure 5.14: Posterior probabilities of the observations for C1

102



5.4. SUMMARY
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Figure 5.15: Scenario analysis - train timetable modification
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6
Conclusion

In this concluding chapter, we first summarize the main findings of the presented re-

search (Section 6.1). Then, the implications of the research for both science and practice

are described (Section 6.2). Finally, we discuss some aspects that require further inves-

tigation and outline future research directions (Section 6.3).

6.1 Main findings

The main conclusion of the research presented in this thesis is that the questions related

to complex phenomena of pedestrian movements can be answered engaging the latest

revolutions in modern digital technologies. Data collected through innovative sensors

opens the door to fresh insights and ideas in this field, and thus stimulate a paradigm

shift. One aspect involves data-driven approach. The data-driven approach that we have

put forward has led to a substantial refinement of fundamental theories and models in

relation to pedestrian movements. The usefulness and applicability of this approach is

demonstrated in this thesis using different case studies. The principal contributions of

new methodologies that we propose are listed in the following.

We have proposed a novel methodology for pedestrian traffic characterization. The

definitions of pedestrian traffic variables that we develop are based on data-driven parti-

tioning in space and time. As such, they resolve the issue of arbitrary selection of spatial

discretization units or spatial influence functions typical for the methods existing in the
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literature. Also, our approach for the first time provides the way for data-driven dis-

cretization in temporal domain. Therefore, it allows for the characterization that is

independent from arbitrarily chosen discretization intervals, and subsequently leads to

more reliable results.

The discretization framework is based on spatio-temporal Voronoi diagrams designed

through the utilization of pedestrian trajectories. It is applicable to pedestrian trajecto-

ries described analytically, but also as a sample of points. This is important for practical

implementations, when the analytical description of a trajectory is hardly available and

one often deals with discrete observations. On the other hand, the existing methods can

be applied on trajectories described either analytically or as a synchronized sample of

points. Otherwise, they might lead to the underestimation of the indicators.

The proposed definitions of pedestrian traffic variables are also microscopic. Thus, they

address the issue of the existing methods that rely on macroscopic approach, which does

not always comply with the nature of the underlying system. Thanks to macroscopic

nature, the characterization of pedestrian flows that we put forward is by design appro-

priate for the multi-directional composition of pedestrian traffic. It is also able to reflect

the heterogeneity of the pedestrian population.

Synthetic data is used to empirically investigate the performance of our pedestrian flow

characterization and to illustrate its advantages. Our approach outperforms the con-

sidered approaches from the literature, in terms of the smoothness of the results, and

in terms of the robustness with respect to the simulation noise and with respect to the

sampling frequency. As such, the approach is advantageous for observing and modeling

pedestrian movements in a realistic and robust manner.

An explorative data analysis, using the proposed definitions of fundamental traffic char-

acteristics, has revealed a pattern in speed-density relationship that is not possible to

capture using traditional models. We propose a fundamentally different approach, and

revise the underlying assumptions of traditional models to account for the nature of

the data. Unlike deterministic approaches in the literature, our approach is probabilis-

tic. The traditional equilibrium assumption with respect to macroscopic relationships

is relaxed to account for the heterogeneity of pedestrian population. The first model

(PedProb-vk) is a probabilistic relationship that is able to implicitly account for the

heterogeneity of pedestrian flows. The second model (MC-vk) combines a data-inspired

and a behavioral approach using probabilistic latent class methodology. The heterogene-

ity of speeds is, in this case, explicitly explained using information on train timetables,

pedestrian type and infrastructure data. The models provide the way to explore the

impact of pedestrian heterogeneity on macroscopic relationships of pedestrian flow. The

PedProb-vk model is rather descriptive than explanatory. On the other hand, the MC-vk

model represents a tool useful for recognizing the main factors driving the heterogeneity

in the population. It also allows statistical inference about latent classes.
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Various tests validate empirically the specifications of the models representing speed-

density relationships for pedestrians. For this purpose, two different and extensive case

studies, data from a real scene and from controlled experiments, are employed. The

ability of the models to reproduce real-world data is also illustrated. In contrast to the

existing approaches, the suggested models provide more realistic representation of the

observed phenomena.

The presented methodologies, for both pedestrian flow characterization and modeling,

are flexible and fairly general. The exact specifications can be adapted to specific situ-

ations with little effort.

6.2 Theoretical and practical implications

Detailed observations on pedestrian movements allow for new empirical findings. These

findings consequently support the development of solid, empirically supported theoretical

and conceptual basis, and finally the development of powerful models. This is achievable

only if the methods used for the measurement and analysis are in compliance with the

nature and the resolution of the data. Otherwise, the potential of the data is reduced

or completely eliminated.

Our approach to pedestrian flow characterization utilizes the gain obtained using new

data collection technologies. Being entirely adjusted to the data, it allows for the revela-

tion of new empirical phenomena. This has a direct effect on pedestrian flow modeling,

by influencing the modeling approach and underlying assumptions.

The proposed probabilistic approach to model macroscopic flow relationships (MC-vk)

allows investigating and explaining observed phenomena through the impact of pedes-

trian heterogeneity and the operations in pedestrian infrastructures. As such, it allows

formulating new theories from first principles, based on empirical evidence. These mod-

els can be combined with a conservation principle in dynamic continuum and discrete

models, leading to probabilistic conservation laws for the representation of the pedes-

trian motion. This would allow the detailed analysis of the effects of heterogeneity on

pedestrian dynamics.

Moreover, the presented work has also practical implications. Proposed methodolo-

gies may be utilized by practitioners as such or jointly with other models of pedestrian

movements. The variables speed, density and flow represent the main level of service

indicators, and the definitions proposed in this thesis allow for the level of service anal-

ysis at a resolution down to individual level, and the utilization of the gain obtained

by the new tracking technologies. Contrasted with existing approaches, the proposed

probabilistic models yield a more realistic representation of the empirically observed phe-

nomena. They are useful for testing scenarios when planning, designing and modifying
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infrastructures or designing public transit timetables. This is beneficial in practice so

as to ensure that (i) infrastructures’ operations are efficient and smooth, and (ii) people

enjoy their stay in infrastructures.

The proposed data-driven framework can be applied to various pedestrian facilities. In

addition to train stations, the suggested models can be useful to support defining the

layout of other infrastructures (e.g. shopping malls, museums or even urban walking

areas), the location of stands and other facilities during festivals and similar events, or

the location of ticket machines and the optimization of schedules in other transportation

hubs (e.g. metro stations, airports). The proposed underlying modeling principles would

remain the same, and potential adaptations concern the assumptions related to a specific

context.

6.3 Future research directions

In this section we discuss some aspects that can be subject of further investigation.

Also, new research directions, triggered by the research presented in this thesis, are

established.

The set of distances proposed in this thesis to characterize the Voronoi diagrams can be

extended. In particular, an interesting research topic would be to relate the definition

of the distance with some behavioral assumptions about the pedestrian movements.

For example, it has been recognized that pedestrians are affected much stronger by

stimuli that appear within their vision field (Johansson et al., 2007). To account for the

anisotropy of pedestrian movements, weighted versions of the proposed distances could

be further studied. The weights would be modeled based on the movement direction of

pedestrians and their vision field.

Future research can also be directed towards the characterization in the presence of

obstacles. One possibility would be to extend a generator set from pedestrian trajectories

to trajectories and areas, where areas represent obstacles. This would result in three-

dimensional discretization where each pedestrian and each obstacle are associated with

their own, non-overlapping, spatio-temporal units.

Another aspect that could be pursued is the consideration of speed dynamics (e.g. state

dependence) in both models, PedProb-vk and MC-vk. In this case the data generating

process would be different from the one assumed in this thesis, and all the above state-

ments and estimation method would need to be reconsidered. In the presence of lagged

speeds and random individual effects there is correlation between unobservables and

the lagged dependent variable. The current quasi-maximum likelihood estimator would

lead to inconsistent estimates, while the full information maximum likelihood estimator

would involve more simulation-based inference and working on the initial value problem.
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Therefore conditional maximum likelihood estimation using a correction as proposed by

Wooldridge (2005) would be a good starting methodological point to extent the model.

Also, the PedProb-vk and MC-vk as such are insufficient to explain the multi-directional

nature of pedestrian flows. As further steps, the possibility of addressing this issue by

adapting the approach proposed in Nikolić and Bierlaire (2014) can be considered. In this

case, pedestrian traffic would be considered as being composed of different streams that

interact within the same space. This assumption would lead to stream-based macroscopic

relationships, similar to Xie and Wong (2015). A stream definition is typically direction-

based and assumed to be exogenous. For instance, it might be designed depending on the

type of problem or learned from sample sets of data by utilizing the principal component

analysis. This way it would be possible to capture the existence of multiple directions,

which constitute the pedestrian flow pattern, at macroscopic level.

Our probabilistic macroscopic relations are well suited for real-time flow estimation

and traffic forecasting applications (Jabari et al., 2014). They also form the basis for

more advanced applications, such as pedestrian flow simulation and the management of

pedestrian traffic (e.g. route guidance, flow control, etc.), which can be tested in future

research.

In our analysis, no socio-economic information was available. Therefore, collection of

pedestrian characteristics, such as age, gender, health conditions, trip purpose, etc.,

and their combination with already available information can be considered as well. In

particular, the examination of the influence of these additional explanatory factors on

the performance of the MC-vk would be an interesting research aspect.

One interesting direction is also the consideration of a sequential classification approach

and its comparison with the proposed integrated approach employed in the derivation

of the MC-vk. It would involve cluster analysis first (e.g. feature-based, shape-based),

followed by the estimation of separate, cluster-specific traffic relationships.

In order to develop models of good performance, strong theoretical basis has to be

built. Different theories have been proposed in the past, and most of their concepts

are derived independently from empirical analysis (Daamen, 2004). The MC-vk model

can be further used to support the derivation of pedestrian flow models from the first

principles. Being conceptually insightful, it encourages the formulation of theoretical

concepts that are empirically supported.

Finally, future research can also be directed towards the examination of the effective-

ness of proposed methodologies in other behavioral situations, and in other types of

infrastructure.

This thesis has explored what we can do with the data expansion within the context

of fundamental models of pedestrian movements. However, there are studies concerned
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about what we should do with data. In those cases the emphasis is placed on moral,

ethical, and potentially legal issues created by the data growth and data availability.

These issues, in addition to technical or infrastructural restrictions, are the main causes

of still insufficient data from real sites. The lack of data concerns both movement and

characteristics of pedestrians. The “big data” revolution is expected to surpass this

problem in the near future and make heterogeneous and massive amount of information

on pedestrian movement increasingly available. From an academic standpoint, data

availability is essential in achieving the goals related to the convenience and safety of

pedestrians.
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3DVoro: Additional analysis

In this chapter the robustness with respect to the sampling frequency of the velocity and

flow indicators is illustrated. As discussed in Chapter 3, the 3DVoro method in general

leads to the smaller differences between the indicators calculated based on sample of

points or interpolated trajectories and the benchmark values than the XY-T method.

It is interesting to notice that the XY-T method results in the most satisfactory estima-

tion of speed only in UniLD−HomoPop for high sampling frequency (Table A.1a). This

can be explained by the simulated homogenous speed conditions that the fixed-grid dis-

cretization is able to reflect. When the sampling frequency is lower (Table A.1b), or

when traffic conditions are more complex (Table A.2), the performance of this method

deteriorates, in regard to the speed estimation.
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 4.30e−03 / 0 / 3.40e−03 / 1.16e−02 /
E-3DVoro 1.55e−01 / 0 / 3.56e−02 / 4.99e−01 /
TT1-3DVoro 9.60e−03 2.31e−02 0 0 2.20e−03 9.38e−03 2.79e−02 4.85e−02

TT2-3DVoro 2.04e−02 7.66e−02 0 4.10e−03 5.80e−03 4.48e−02 6.48e−02 1.68e−01

TT3-3DVoro 1.81e−02 9.15e−02 0 8.00e−04 5.70e−03 4.51e−02 5.42e−02 2.15e−01

P-3DVoro 2.98e−02 1.38e−01 0 5.90e−03 1.41e−02 7.90e−02 5.75e−02 2.92e−01

M-3DVoro 1.88e−02 1.46e−01 0 2.00e−04 5.90e−03 1.04e−01 5.95e−02 3.22e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 5.80e−01 / 1.02 / 3.26e−01 / 1.42 /
E-3DVoro 1.77 / 4.36e−02 / 7.11e−01 / 1.27 /
TT1-3DVoro 5.42e−01 5.40e−01 2.28e−02 2.10e−03 3.43e−01 3.02e−01 1.04 9.66e−01

TT2-3DVoro 5.11e−01 5.56e−01 1.39e−01 8.20e−03 3.15e−01 3.17e−01 1.07 1.04
TT3-3DVoro 6.08e−01 5.52e−01 3.72e−02 7.50e−03 3.29e−01 3.18e−01 1.05 1.05
P-3DVoro 5.60e−01 5.41e−01 8.75e−02 1.30e−03 3.32e−01 3.04e−01 9.76e−01 9.82e−01

M-3DVoro 5.03e−01 5.43e−01 3.93e−02 6.91e−02 3.76e−01 3.15e−01 1.08 9.52e−01

(b) Sampling frequency: 0.5 s−1

Table A.1: Robustness to the sampling frequency of velocity indicator - UniLD−HomoPop

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.92e−02 / 9.60e−03 / 6.20e−03 / 3.42e−02 /
E-3DVoro 3.17e−02 / 0 / 6.30e−03 / 3.86e−02 /
TT1-3DVoro 1.57e−02 6.18e−02 0 0 6.10e−03 1.87e−02 3.23e−02 1.30e−01

TT2-3DVoro 1.83e−02 1.38e−01 0 1.73e−02 7.90e−03 4.27e−02 3.82e−02 3.88e−01

TT3-3DVoro 1.85e−02 1.88e−01 0 1.00e−01 8.00e−03 6.46e−02 4.08e−02 4.87e−01

P-3DVoro 2.93e−02 2.05e−01 0 7.96e−02 9.00e−03 9.82e−02 6.49e−02 5.29e−01

M-3DVoro 2.14e−02 3.16e−01 0 5.10e−03 8.00e−03 1.47e−01 4.37e−02 8.21e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 5.73e−01 / 1.15 / 3.51e−01 / 1.58 /
E-3DVoro 1.01 / 8.57e−01 / 3.85e−01 / 1.67 /
TT1-3DVoro 5.82e−01 5.80e−01 8.69e−01 5.85e−02 4.51e−01 3.13e−01 1.40 1.28
TT2-3DVoro 5.76e−01 5.67e−01 9.40e−01 1.02e−01 3.75e−01 2.64e−01 1.54 1.16
TT3-3DVoro 5.79e−01 5.94e−01 8.50e−01 5.73e−02 3.70e−01 2.77e−01 1.46 1.29
P-3DVoro 5.66e−01 5.62e−01 8.92e−01 4.61e−02 3.83e−01 2.95e−01 1.38 1.26
M-3DVoro 6.27e−01 7.11e−01 9.13e−01 1.43e−02 5.05e−01 2.86e−01 1.55 1.49

(b) Sampling frequency: 0.5 s−1

Table A.2: Robustness to the sampling frequency of velocity indicator - UniHD−HeteroPop
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Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 1.93e−02 / 0 / 1.77e−02 / 7.73e−02 /
E-3DVoro 1.65e−02 / 0 / 5.60e−03 / 3.75e−02 /
TT1-3DVoro 3.00e−04 7.60e−03 0 0 0 2.60e−03 8.00e−04 1.74e−02

TT2-3DVoro 1.40e−03 4.16e−02 0 0 0 3.17e−02 3.60e−03 8.99e−02

TT3-3DVoro 1.30e−03 4.65e−02 0 4.32e−02 0 3.48e−02 3.90e−03 1.14e−01

P-3DVoro 2.70e−03 4.69e−02 0 1.41e−02 8.00e−04 2.27e−02 5.50e−03 1.29e−01

M-3DVoro 1.20e−03 5.09e−02 0 4.75e−02 0 3.54e−02 2.50e−03 1.23e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 2.55e−01 / 1.45e−01 / 2.45e−01 / 5.06e−01 /
E-3DVoro 4.17e−01 / 6.50e−02 / 1.27e−01 / 3.83e−01 /
3DVoro-δTT1 1.74e−01 1.50e−01 1.79e−01 8.00e−04 1.13e−01 8.77e−02 3.21e−01 2.98e−01

TT1-3DVoro 2.07e−01 1.53e−01 1.92e−01 1.00e−04 1.39e−01 8.52e−02 3.71e−01 3.29e−01

TT2-3DVoro 2.33e−01 1.52e−01 2.05e−01 3.00e−04 1.48e−01 8.46e−02 3.63e−01 3.27e−01

TT2-3DVoro 2.17e−01 1.43e−01 1.53e−01 1.40e−03 1.34e−01 8.49e−02 3.01e−01 2.98e−01

M-3DVoro 1.75e−01 1.48e−01 1.83e−01 1.00e−04 1.36e−01 9.11e−02 3.43e−01 3.22e−01

(b) Sampling frequency: 0.5 s−1

Table A.3: Robustness to the sampling frequency of flow indicator - UniLD−HomoPop

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 2.75e−02 / 2.30e−03 / 1.75e−02 / 7.21e−02 /
E-3DVoro 1.09e−02 / 0 / 8.70e−04 / 2.83e−02 /
TT1-3DVoro 7.80e−03 6.06e−02 0 0 7.00e−04 1.21e−02 2.22e−02 1.58e−01

TT2-3DVoro 1.05e−02 1.45e−01 0 0 1.10e−03 6.08e−02 2.78e−02 3.11e−01

TT3-3DVoro 1.06e−02 2.03e−01 0 0 1.00e−03 8.27e−02 2.19e−02 4.64e−01

P-3DVoro 1.62e−02 1.95e−01 0 4.86e−02 1.80e−03 8.54e−02 3.70e−02 4.90e−01

M-3DVoro 1.29e−02 3.06e−01 0 0 1.60e−03 1.48e−01 2.92e−02 8.95e−01

(a) Sampling frequency: 3 s−1

Mean Mode Median 90% quantile
Method

IT SoP IT SoP IT SoP IT SoP
XY-T 5.18e−01 / 3.50e−01 / 4.48e−01 / 1.09 /
E-3DVoro 6.54e−01 / 3.69e−01 / 2.03e−01 / 1.54 /
TT1-3DVoro 4.99e−01 4.02e−01 1.06e−01 6.49e−02 3.24e−01 1.81e−01 1.35 9.43e−01

TT2-3DVoro 5.66e−01 4.16e−01 1.47e−01 5.55e−02 2.73e−01 1.73e−01 1.57 1.21
TT3-3DVoro 5.91e−01 4.45e−01 1.53e−01 1.57e−01 2.94e−01 1.71e−01 1.68 1.31
P-3DVoro 4.81e−01 4.28e−01 5.53e−02 3.98e−02 2.22e−01 1.89e−01 1.34 1.12
M-3DVoro 6.41e−01 4.47e−01 9.07e−02 4.55e−02 3.97e−01 1.73e−01 1.66 1.24

(b) Sampling frequency: 0.5 s−1

Table A.4: Robustness to the sampling frequency of flow indicator - UniHD−HeteroPop
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PedProb-vk: Alternative specifications

The integral (4.17) can be simplified in some circumstances and can be solved in a closed

form. Consider the following probability density function of the speed that is defined on

the interval [ve(k)− ω(k), ve(k) + ω(k)]

fV (ξ|ve(k), ω(k)) =

⎧⎪⎨
⎪⎩

ξ−ve(k)+ω(k)
ω(k)2

, ve(k)− ω(k) ≤ ξ ≤ ve(k)
ve(k)+ω(k)−ξ

ω(k)2
, ve(k) ≤ ξ ≤ ve(k) + ω(k)

0, ξ < ve(k)− ω(k) or ξ > ve(k) + ω(k).

(B.1)

If the symmetric triangular distribution (4.22) is the assumed mixing distribution, the

resulting probabilistic speed-density relationship is given as

fPedProb-vk(ξ|k; v̄e(k), ω(k), σ(k)) =
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω(k)+ξ−v̄e(k)
ω2(k)

, ξ ≤ v̄e(k)− σ(k)

ω(k)−σ(k)
3

ω(k)2
− (ξ−v̄e(k))

2

σ(k)ω(k)2
− (ξ−v̄e(k))

3

3σ(k)2ω(k)2
, v̄e(k)− σ(k) < ξ ≤ v̄e(k)

ω(k)−σ(k)
3

ω(k)2
− (ξ−v̄e(k))

2

σ(k)ω(k)2
+ (ξ−v̄e(k))

3

3σ(k)2ω(k)2
, v̄e(k) < ξ ≤ v̄e(k) + σ(k)

ω(k)−ξ+v̄e(k)
ω2(k)

, ξ > v̄e(k) + σ(k).

(B.2)

Similarly, if we assume the uniform mixing distribution defined on the interval [v̄e(k)−
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α(k), v̄e(k) + α(k)]

fve(k)(ζ; v̄e(k), α(k)) =

{
1

2α(k) , v̄e(k)− α(k) ≤ ζ ≤ v̄e(k) + α(k)

0, ζ < v̄e(k)− α(k) or ζ > v̄e(k) + α(k),
(B.3)

the resulting probabilistic speed-density relationship is given as

fPedProb-vk(ξ|k; v̄e(k), ω(k), α(k)) =⎧⎪⎪⎨
⎪⎪⎩

ξ+ω(k)−v̄e(k)
ω(k)2

, ξ ≤ v̄e(k)− α(k)

−α(k)−2ω(k)
2ω(k)2

− (ξ−v̄e(k))2

2α(k)ω(k)2
, v̄e(k)− α(k) < ξ ≤ v̄e(k) + α(k)

−ξ+ω(k)+v̄e(k)
ω(k)2

, ξ > v̄e(k) + α(k).

(B.4)
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C
MC-vk: Additional analysis

The speed observations (Chapter 5, Section 5.2) are aggregated based on Levels of Service

(LoS) standard for pedestrian facilities proposed by Fruin (1971). The levels are labeled

from A to F, as shown in Table C.1. We consider the levels A-E, given that the largest

LoS Density range [ped/m2]

A k ≤ 0.31
B k ∈ (0.31 - 0.43]
C k ∈ (0.43 - 0.71]
D k ∈ (0.71 - 1.11]
E k ∈ (1.11 - 2.17]
F k > 2.17

Table C.1: LoS (Fruin, 1971)

part of the observations falls below the LoS F (99%) of the observations are below 1.4

pedestrians per square meter.

The box-plots of the distributions are shown in Figure C.1, Figure C.2, Figure C.3 and

Figure C.4 for different pedestrian types, respectively OD distances, periods and time

to departure.

For the purpose of the analysis we discretize the range of OD distances and time to

departure into segments. We consider distances shorter than 10 meters (short distances -

SD), distances between 10 meters and 30 meters (medium distances - MD), and distances

longer than 30 meters (long distances - LD). Time to departure interval is segmented
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into time intervals shorter than 5 minutes (short intervals - SI), and time intervals longer

than 5 minutes (long intervals - LI). The bottom and top of the boxes in Figure C.1 -

Figure C.4 are the first and third quartiles, and the line inside the box is the median. The

ends of the whiskers represent the 2nd and the 98th percentiles. The analysis indicates

dissimilar trends, in particular with respect to speed distributions for different pedestrian

types (Figure C.1) and different ranges of OD distances (Figure C.2).
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Figure C.1: Speed distribution for different pedestrian types and different LoS

For the quantitative analysis, we use Kolmogorov-Smirnov test (Massey, 1951). For each

LoS and each factor we test the hypothesis that speed distributions for different factor

values represent the same population. The results are shown in Table C.2. The test

rejects the hypothesis in all cases, at the 5% significance level.
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Figure C.2: Speed distribution for different OD distances and different LoS
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Figure C.3: Speed distribution for peak and off-peak periods and different LoS
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Figure C.4: Speed distribution for different time to departure and different LoS
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LoS
p-value

AP-DP AP-TP AP-NP DP-TP DP-NP TP-NP

LoS A 0 0 0 2.38e−213 0 5.16e−65

LoS B 3.21e−113 9.02e−94 3.73e−256 1.04e−38 6.75e−133 1.99e−37

LoS C 4.61e−188 1.88e−106 0 7.71e−24 3.97e−147 5.80e−96

LoS D 3.16e−82 1.28e−93 4.22e−192 1.53e−37 1.40e−84 2.29e−34

LoS E 1.70e−24 8.80e−29 1.13e−51 3.63e−09 7.73e−19 3.00e−11

(a) Pedestrian types

LoS
p-value

SD-MD SD-LD MD-LD

LoS A 2.55e−187 0 0
LoS B 3.25e−51 2.14e−175 4.08e−156

LoS C 9.71e−89 6.05e−215 8.78e−131

LoS D 1.55e−50 1.81e−106 1.22e−70

LoS E 2.57e−14 9.45e−30 4.50e−24

(b) OD distances

LoS p-value

LoS A 1.89e−206

LoS B 9.28e−48

LoS C 1.24e−79

LoS D 6.76e−36

LoS E 1.24e−18

(c) Peak/off-peak periods

LoS p-value

LoS A 2.54e−12

LoS B 1.11e−04

LoS C 2.83e−02

LoS D 4.35e−02

LoS E 2.66e−06

(d) Time to departure

Table C.2: p-value of Kolmogorov-Smirnov statistic
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Nikolić, M., and Bierlaire, M. (2015). Pedestrian flow characterization based on spatio-temporal
Voronoi tessellations. Proceedings of the 15th Swiss Transportation Research Conference
(STRC) 15-17 April, 2015.
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Nikolić, M., and Bierlaire, M., Data-driven characterization of pedestrian flows. 16th Swiss
Transportation Research Conference, May 18, 2016, Ascona, Switzerland

136
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