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Abstract

Over the years, indoor scene parsing has attracted a
growing interest in the computer vision community. Exist-
ing methods have typically focused on diverse subtasks of
this challenging problem. In particular, while some of them
aim at segmenting the image into regions, such as object or
surface instances, others aim at inferring the semantic la-
bels of given regions, or their support relationships. These
different tasks are typically treated as separate ones. How-
ever, they bear strong connections: good regions should re-
spect the semantic labels; support can only be defined for
meaningful regions; support relationships strongly depend
on semantics. In this paper, we therefore introduce an ap-
proach to jointly segment the instances and infer their se-
mantic labels and support relationships from a single input
image. By exploiting a hierarchical segmentation, we for-
mulate our problem as that of jointly finding the regions in
the hierarchy that correspond to instances and estimating
their class labels and pairwise support relationships. We
express this via a Markov Random Field, which allows us
to further encode links between the different types of vari-
ables. Inference in this model can be done exactly via in-
teger linear programming, and we learn its parameters in
a structural SVM framework. Our experiments on NYUv2
demonstrate the benefits of reasoning jointly about all these
subtasks of indoor scene parsing.

1. Introduction
Indoor scene understanding is one of the core challenges

in computer vision. It aims at providing detailed informa-
tion about the objects in a scene, such as their type and how
they interact with each other. Such a level of understand-
ing could have a high impact in many applications, such as
personal robotics, where, to be able to interact with objects,

one needs to reason about their semantics and how they are
placed relative to each other.

In essence, indoor scene parsing is a complex problem
that consists of multiple subtasks, such as segmenting the
scene into meaningful regions [2, 7, 18], such as object
or surface instances, predicting semantic labels for every
pixel in the scene [16, 4, 22] and reasoning about the sup-
port relationships of different regions [11, 6, 19, 15]. In
the literature, with the exception of [20] that jointly reasons
about regions and semantics, existing approaches typically
tackle these subtasks independently. These subtasks, how-
ever, truly are strongly connected. For instance, the support
relationship of two regions is highly correlated with their
semantics; reasoning about support can be facilitated by us-
ing semantically meaningful regions. By addressing these
tasks separately, or sequentially, existing methods cannot
leverage the full collective power of all these dependencies.

In this paper, we therefore introduce an approach to
jointly segment the instances and infer their semantic la-
bels and support relationships in an indoor scene from a
single input image. To this end, we exploit a hierarchical
segmentation and formulate our problem as that of find-
ing the regions corresponding to instances in this hierarchy,
while simultaneously predicting a semantic label for each
such region and the support relationship between any pair of
such regions. We jointly express these subtasks in a single
Markov Random Field (MRF). This allows us to effectively
encode the dependencies between them, thus leveraging all
the connections underlying our overall problem.

We perform inference in the resulting MRF exactly by
formulating it as an integer linear programming problem.
To cope with the size of this problem, we propose to make
use of a regressor trained to predict the overlap of each re-
gion with a ground-truth instance to effectively prune the
region candidates. Thanks to the efficiency of this reduced
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inference strategy, we can learn the parameters of our model
using structural Support Vector Machines (SVM). To this
end, we design a loss function that reflects the multi-task
nature of our indoor scene parsing formalism.

We demonstrate the effectiveness of our approach on the
NYUv2 dataset [19]. Our experiments evidence that ac-
counting for the dependencies between regions, their se-
mantics and their support helps improving the prediction of
the corresponding variables, with a particularly high impact
on support relationships.

2. Related Work
Indoor scene understanding has been an important re-

search focus in the computer vision community. As dis-
cussed above, this challenging problem consists of multiple
subtasks. In particular, here, we tackle the tasks of instance
segmentation, semantic labeling and support relationships
prediction. We therefore focus the discussion below to the
methods that have proposed to address these tasks.

Segmenting an image into regions has attracted a huge
interest over the years [1, 2, 3, 18]. A complete review of
this literature goes beyond the scope of this paper. Here,
we briefly discuss the ones that have been used for indoor
scene understanding. In this context, the most direct ap-
proach consists of using standard over-segmentation meth-
ods, such as SLIC [1], Mean-Shift [3] and normalized-
cut [18]. In [14], multiple such over-segmentations were
employed jointly for monocular normal estimation. By con-
trast, many approaches favor exploiting hierarchical seg-
mentations [1, 2, 7, 9]. While some works then select spe-
cific levels in this hierarchy [23, 17], others aim to automati-
cally find the best active regions in it, e.g., that fit the image
contours [9], or whose pixel intensities follow a Gaussian
distribution [10]. Segmentation, however, often acts as a
pre-processing step to later perform some other task.

In particular, semantic segmentation methods have often
relied on pre-defined image regions [17, 19, 7, 21]. The
motivation behind this was both computational cost and ro-
bustness to noise. Indeed, early approaches to semantic seg-
mentation often relied on MRFs, in which inference can
be expensive when working at pixel level. Furthermore,
working with regions allows one to regularize the predic-
tions spatially. With the recent advent of Deep Learning,
and progress in efficient inference methods [12], many ap-
proaches now work directly at the level of pixels [16, 4, 22].

By contrast, when it comes to estimating support rela-
tionships, the notion of regions remains necessary. The idea
of estimating support was introduced in [19], where a hi-
erarchical segmentation was used to predict support from
below, from behind or no support between pairs of regions.
In this context, [6] predicts the height and extent of sur-
faces that can support objects or people. In [11] , instead of
2D segments, support is defined between 3D boxes. More

recently, [15] proposed to make use of object classes and
physical stability to reason about support relationships be-
tween regions. All these methods make use of an RGBD
image as input. By contrast, here, we aim to predict support
from a single, standard RGB image.

More importantly, most of the methods discussed above
tackle a single subtask of the challenging indoor scene un-
derstanding problem. The only exceptions we are aware of
are [20], which jointly selects active regions in a hierarchy
and predicts their semantic label, and [19], which jointly
reason about semantics and support relationships. Both of
these works, however, also makes use of RGBD as input.
By contrast, here, we aim to jointly segment the object or
surface instances and infer their semantics and their support
relationships from a single RGB image. To the best of our
knowledge, our work constitutes the first attempt at consid-
ering all three subtasks together.

3. Our Approach

Our goal is to jointly solve three sub-problems of indoor
scene understanding, i.e., instance segmentation, semantic
labeling and support relationship prediction, so as to ac-
count for their dependencies. To this end, we make use of a
segmentation hierarchy, obtained by the method of [7]. Our
problem then translates to that of selecting the regions that
best match ground-truth instances in this hierarchy, predict-
ing their semantic label and their pairwise support relation-
ships. We express this as inference in an MRF with three
types of nodes: region selection ones, semantic label ones
and support relationships ones. The edges in the model en-
code the dependencies between these variables.

More specifically, let us assume to be given a hierar-
chy of R regions forming a tree. To select the active
regions in this tree, we define a set of binary variables
A = {ai}Ri=1 , ai ∈ {0, 1}. Furthermore, let M =
{Mi}Ri=1 , Mi ∈ {1, . . . ,K} be the set of semantic label-
ing variables defining the class to which a region belongs,
for K semantic classes. We then define an additional set
of variables to model the support relationships between any
two regions. To this end, let Sij denote the type of sup-
port that region j provides to region i. Following [19], we
consider three different cases: No support (Sij = 0); j sup-
ports i from below (Sij = 1); j supports i from behind
(Sij = 2). Note that we will often refer jointly to the latter
two types as positive support, as opposed to the first type
that corresponds to negative support. Furthermore, we in-
troduce a hidden region to model the fact that some regions
may be supported by a region that is not visible in the im-
age. Altogether, the support variables can be expressed as
S = {Sij}Ri=1,j=0 , Sij ∈ {0, 1, 2}, where j = 0 corre-
sponds to support by the hidden region.

We then formulate the problem of jointly inferring these



three types of variables as that of maximizing the function

E(A,M,S) =

R∑
i=1

φa(ai) +

R∑
i=1

φma(Mi, ai) + φtree(A)

+

R∑
i=1

R∑
j=0

φs(Sij) +

R∑
i=1

R∑
j=0

φsa(Sij , ai, aj)

(1)

with respect toA, M and S, which can equivalently be con-
verted to minimizing an MRF energy. The function relies
on several potentials, which we discuss below.

The first term φr(ai) is a unary potential encoding the
probability that region i is active. We define this potential as
φr(ai) = wTa f

a
i [ai = 1], where [·] is the indicator function,

thus setting this potential to zero when ai = 0. The vector
fai is a feature vector defined in Section 3.3, and wa is the
corresponding parameter vector to be learned from data.

The potential φma(Mi, ai) encodes the probability of
predicting a particular semantic label for region i if the re-
gion is active. Simultaneously, it assigns a fixed cost to in-
active regions. This can be expressed as

φma(Mi, ai) =

{
0 ai = 0

wTma:Mi
fmai ai = 1

(2)

where fmai is a feature vector, which, as described in Sec-
tion 3.3, links semantics and support relationships. The vec-
tor wma:Mi

contains the parameters corresponding to each
class Mi and will be learned from data.

The potential φtree(A) enforces constraints on the set of
active regions. For the segmentation to be valid, every pixel
in the image should be covered by a single region. This is
achieved by making sure that only one region is selected
in every path from the root of the segmentation hierarchy
to a leaf node. To this end, we thus define φtree(A) =∑
γ∈Γ −∞[1 6=

∑
i∈γ [ai = 1]], where Γ is the set of all

root-to-leaf paths in the tree.
The unary potential φs(Sij) encodes the probability of a

support variable to belong to either of the three classes. We
write this potential as

φs(Sij) = wTs:Sij
fsij , (3)

where fsij is a feature vector, which, as described in Sec-
tion 3.3, links support types and semantics. The parameter
vector ws:Sij

for each class Sij will also be learned.
Finally, φsa(Sij , ai, aj) is a higher-order potential en-

coding the dependencies between the support variables and
the region selection ones. We define this potential as

φsa(Sij , ai, aj) = wsa
wTb f

sa
ij , Sij 6= 0 ∧ (ai = 0 ∨ aj = 0)]

wTc f
sa
ij , Sij 6= 0, ai = 1, aj = 1

0, otherwise ,

(4)

where fsaij is a feature vector on a pair of regions, as de-
scribed in Section 3.3. The vector wb contains the parame-
ters corresponding to the scenario where we predict a posi-
tive relationships even though either region is inactive, and
wc is the parameter vector for the case where both regions
are active and we predict a positive relationship. Typically,
we would like to penalize the first case and favor the second
one. Other cases are assigned a fixed cost of zero.

3.1. Inference

To perform exact inference in our model, we propose to
re-write it as an integer linear program (ILP). To this end,
let a ∈ B2R+1 be a vector of binary variables representing
the states of A, where ai,1 = 1 encodes the fact that region
i is active, while ai,0 = 1 corresponds to an inactive region
i. Here, we add an extra variable a0,1 = 1 corresponding
to the hidden region and forcing it to always be active. Fur-
thermore, m = {mi,k} , 1 ≤ i ≤ R , 0 ≤ k ≤ K, denotes
binary variables encoding the pairwise state space ofM and
A, where mi,0 represents the case where ai = 0 for an ar-
bitrary Mi, and mi,k 6=0 corresponds to the pairwise state
ai = 1 and Mi = k. Additionally, let s = {si,j,t∈{0,1,2}}
encode the state of the support relationship variables, and
z the triplet states corresponding to the higher-order term
φsa(Sij , ai, aj), where zi,j,l, l ∈ {1, 2, 3}, corresponds to
the three cases in Eq. 4.

Inference in our model can then be re-written as the bi-
nary linear program

argmax
a,m,s,z

R∑
i=1

θai ai,1 +

R∑
i=1

K∑
k=0

θmi,kmi,k+

R∑
i=1

R∑
j=0

2∑
t=0

θsi,j,tsi,j,t +

R∑
i=1

R∑
j=0

3∑
l=1

θsai,j,kzi,j,l

(5)

subject to

ai,l, mi,u, si,j,t zi,j,l ∈ {0, 1} ∀i, l, j, t, u, v
a0,1 = 1 ,

(6)

ai,0 + ai,1 = 1, ∀i (7)∑K
k=0mi,k = 1, ∀i (8)

mi,0 = ai,0, ∀i (9)∑2
t=0 si,j,t = 1, ∀i, j (10)∑3
l=1 zi,j,l = 1, ∀i, j (11)∑
i∈γ ai,1 = 1, ∀γ ∈ Γ (12)∑
t∈{1,2}

∑R
j=0 si,j,t ≥ ai,1, ∀i (13)∑

t∈{1,2}(si,0,t + si,j,t) ≤ ai,1, ∀i, j 6= 0 (14)

si,0,1 ≥ mi,1, ∀i (15)

zi,j,2 = si,j,0, ∀i, j (16)



zi,j,3 ≤
∑2
t=1 si,j,t, ∀i, j (17)

zi,j,3 ≤ ai,1, ∀i, j (18)

zi,j,3 ≤ aj,1, ∀i, j (19)

zi,j,3 ≥
∑2
t=1 si,j,t + ai,1 + aj,1 − 2, ∀i, j, (20)

where the θ··s encode the different potentials described
above. The constraints can be interpreted as follows: Eqs. 7
– 11 enforce the binary variables to correspond to valid pre-
dictions. Eq. 12 enforces the tree constraints on the region
selection variables. Eq. 13 forces a region to be supported
by at least one region when it is active. This constraint
encodes the fact that there is no floating region in the real
world. Eq. 14 prevents a region to be supported by the hid-
den region if there is a region in the scene that can support
it. Eq. 15 forces a region to be supported by the hidden re-
gion if its semantic label is ground (semantic class 1 in our
case). Eq. 16 – 20 enforce the binary variables z to corre-
spond to one of the three cases in Eq. 4. To solve this ILP,
we make use of Gurobi.

Speeding up inference. While Gurobi is very efficient, it
remains too slow for us to handle our typical hierarchies,
which contain roughly 200 regions. To address this issue,
we therefore propose to first prune the regions. This proce-
dure follows two steps. First, we remove the regions that
contain less than 625 pixels, which, based on our statis-
tics, are unlikely to correspond to object instances. Sec-
ond, we exploit a regressor trained to predict the Intersec-
tion over Union (IoU) between a region in the hierarchy and
a ground-truth instance. To this end, we make use of a neu-
ral network with three fully-connected layers, intertwined
with ReLU activation, batch normalization, and dropout.
This network is depicted by Fig. 1. We use deep features
in conjunction with hand-crafted geometric ones as input to
this shallow IoU regression network. See Section 3.3 for
more detail about these features. We train this network us-
ing the square loss between the true IoU and the predicted
one. To this end, we use batches of size 256, a learning rate
of 10−3 and a momentum of 0.95. The dropout rate was set
to 0.5. We also subsample the data so as to have a roughly
balanced training set. To this end, we discretize the IoU in-
terval [0, 1] into 10 bins, and subsample the data such that
each bin contains roughly the same number of samples. At
test time, we keep the 80 regions with highest predicted IoU
that satisfy the constraint that each root-to-leaf path in the
segmentation tree contains at least one region. In practice,
this pruning yields less than 1% decrease in oracle weighted
coverage, while greatly reducing the number of regions.

After pruning, we then train a two-class support classifier
on the remaining regions to predict positive or negative sup-
port. We make use of this classifier to prune support pairs.
To this end, we threshold the classifier score so as to obtain
a high recall of positive support. In practice, we achieve

Figure 1. Architecture of our IoU regressor. We make use of a
network with three fully-connected layers to predict the IoU be-
tween a candidate region and a ground-truth instance. We perform
ReLU activation, batch normalization and dropout after the first
and second layers.

94% recall, while reducing from 5600 to 1100 pairs.
Given the features, the pruning process for pairs takes 3s

per image on average and that for regions 0.2s on average.
Inference then takes 0.2s per image on average.

3.2. Learning
Given training data, we aim to learn the parameters of

our model. One of the challenges of learning comes from
the fact that, typically, the ground-truth instances that we
seek to predict do not appear in our hierarchical segmen-
tation. To reflect what will happen at test time, however,
we would like to learn our model using the noisy segments
from the hierarchies obtained from the training images. To
this end, following [20], we rely on an oracle segmentation.
Below, we first explain how these oracle segmentations are
obtained, and then discuss our learning algorithm.

3.2.1 Oracle Segmentation
The goal of oracle segmentation is to find among the re-
gions in a noisy hierarchical segmentation those that best
match ground-truth instances and correspond to a valid tree
cut, i.e., cover the image without redundancy. To this
end, we make use of the ILP formulation of [20]. This
formulation relies on two kinds of binary variables. The
first ones are equivalent to our region selection variables
a = {ai,l} , 1 ≤ i ≤ R , l ∈ {0, 1}, discussed above.
The second kind of variables encode the mapping between
ground-truth instances and segments in the hierarchy. Let
us denote these variables as o ∈ BG×R, with G the number
of ground-truth instances.

An oracle segmentation can then be obtained by solving
the optimization problem

argmin
a,o

G∑
g=1

R∑
i=1

θog,iog,i (21)

subject to
ai,l, og,k ∈ {0, 1}, ∀i, l, g, k, (22)

ai,0 + ai,1 = 1, ∀i, (23)∑
i∈γ

ai,1 = 1, ∀γ ∈ Γ (24)



og,i ≤ ai,1, ∀g, i, (25)
R∑
i=1

og,i = 1, ∀g, (26)

og,i + aj,1 ≤ 1, ∀g, i, j,
if IoU(rg, rj) > IoU(rg, ri)

(27)

where IoU(·, ·) denotes the intersection over union between
two regions, and θg,i =

|Lrg |
L (IoU(rg, rs) − IoU(rg, ri))

encodes the amount of weighted coverage lost by selecting
region i instead of s, which corresponds to the best possible
match for ground-truth region g. Most constraints simply
force the solution to be valid, with the Eq. 27 guarantee-
ing that, among the regions that are active, the best one is
assigned to a ground-truth region.

3.2.2 Learning via Structural SVM

We now turn to the learning problem per say. To this
end, let D = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}
be a set of pairs of images and labels, where y(n) =
{A(n),M (n), S(n)} comprises the best selection of seg-
ments from the segmentation tree, obtained using the oracle
segmentation described above, the corresponding semantic
labels, taken as the dominant label in each region, and sup-
port relationships, described in Section 4, for image i.

Our goal is to learn the weights in our MRF. The en-
ergy in this MRF can be equivalently written as wTφ(x, y),
where w concatenates all the weights we seek to learn, and,
with a slight abuse of notation, φ(x, y) = [φa, φma, φs, φsa]
concatenates the corresponding features, so as to compute
the different potentials. Following a margin re-scaling
structural SVM formulation, learning the weights can be ex-
pressed as the optimization problem

min
w,ε≤0

1

2
wTw +

λ

N

N∑
n

εn

s.t. wT [φ(x(n), y(n))− φ(x(n), y)] ≥ 4(y, y(n))− εn, ∀y

where4(y, y(n)) returns the loss of an arbitrary prediction
y compared to the best configuration.

Here, to reflect the nature of our problem, where we aim
to predict different types of variables jointly, we design the
multi-task loss

4 (y, y(n)) =
wlssup
Q

R∑
i=1

R∑
j=0

1[Sij 6= S∗ij ]

+ wlsr
1

L

∑
g∈G

Lrg

(
max
i∈A(n)

IoU(rg, r
(n)
i )

)

− wlsr
1

L

∑
g∈G

Lrg

(
max
i∈Â

IoU(rg, ri)

)
,

(28)

where Â is the active set ofA, that is, the set of regions such
that ai = 1, and similarly for Â(n) w.r.t. A(n). Lrg is the
number of pixels in region g, L is the number of pixels in all
the ground-truth regions in an image, and Q is the number
of active pairs in Â. Here, we use wlsr = 1, wlssup = 0.5.

Loss-augmented Inference. An important step in struc-
tural SVM learning consists of performing loss-augmented
inference to find predictions that have a high loss, but cor-
respond to a low energy (or rather a high score in our max-
imization formulation). This can be expressed as solving

y∗ = argmax
ŷ∈y

4(ŷ, y(n)) + wTφ(x, ŷ) . (29)

Translating this into an ILP then yields the problem

argmax
a,m,s,o

R∑
i=1

θai ai,1 +

R∑
i=1

K∑
k=0

θmi,kmi,k

+

R∑
i=1

R∑
j=0

2∑
t=0

θsi,j,tsi,j,t

+

R∑
i=1

R∑
j=0

3∑
l=1

θsai,j,kzi,j,l

+

G∑
g=1

R∑
i=1

θog,iog,i

+

R∑
i=1

R∑
j=0

2∑
t=0

θsli,j,tsi,j,t

(30)

subject to the constraints of (5) and (21). Here, θog,i en-
codes the loss on the regions and is defined as in (21), θsli,j,t
encodes the hamming loss on support relationships. It can
thus be written as

θsli,j,t =
1

Q
, s.t t 6= S∗ij ∀t ∈ {1, 2, 3} . (31)

To learn our model, we use the BCFW solver of [13]. Loss-
augmented inference takes 1s per image on average.

3.3. Features
As discussed above, the IoU regressor, the support clas-

sifier and the potentials of Eq. 1 rely on different types of
features. Here, we describe these feature vectors.

The IoU regressor relies on four types of features as in-
put, which we refer to as Conv5-SP, Pb-SP, Ext-Pb-SP and
RGeo. Conv5-SP is obtained from spatially pooled [8] fea-
tures coming from the conv5 layer of the FCN-32s model
of [16] fine-tuned on NYUv2 to predict semantics using
RGB and HHA as input. HHAs were obtained from depth
prediction using the method of [5]. Pb-SP and Ext-Pb-SP
are derived from the semantic probability maps of the FCN-
32s model mentioned above, using spatial pooling on each



region and on a bounding box of 1.25 the region’s extent
around it, respectively. RGeo corresponds to the geometry
features used in [19].

The support classifier relies on two types of features. The
first concatenates Pb-SP, Ext-Pb-SP and RGeo for both re-
gions. The second, denoted as PGeo, includes the contain-
ment, geometry and horizontal features of [19] computed
on pairs of regions.

The feature vector fai is obtained by concatenating two
types of features, which we refer to as RF and RGeo. RF
corresponds to the feature map after the second batch nor-
malization module in the 3-layer neural network described
in Section 3.1. It encodes the connection between the IoU
regressor and the selection of the region.

The feature vector fmai contains five types of features,
denoted by RGeo, Pb-SP, Ext-Pb-SP, Pb and Hm. The
first three have been described above. Pb is defined as the
average over the region pixels of theK-dimensional seman-
tic probability vectors obtained by the same FCN-32s as
above. Hm aims to incorporate dependencies between se-
mantics and support relationships. To this end, for region
i, this feature is obtained by averaging over all the other re-
gions j the probability of each support class between i and
j, obtained by our SVM support classifier.

The feature vector fsij is formed by two feature types, Ps
and Pm. Ps is directly taken as the probabilities predicted
by our support classifier. Pm aims at modeling dependen-
cies between support and semantics. It concatenates the se-
mantic features Pb discussed above for both regions.

The feature vector fsaij concatenates RGeo and RF fea-
tures for both regions, as well as the corresponding IoUs
predicted by our 3-layer neural network. It further includes
the feature PGeo described above.

The running time for feature extraction on regions and
pairs are 14s and 2.7s per image on average, respectively.

4. Experimental Evaluation
We evaluate our model on the NYUv2 dataset, which

provides RGB images and their corresponding depth maps.
Note that, here, we do not use these depth maps. The dataset
contains 749 images for training and 654 for testing.

The ground-truth regions, i.e., object or surface in-
stances, and corresponding semantics are provided by [19].
The semantics include four classes: ground, structure, props
and objects. Ground-truth support relationships were de-
fined by [20] on the ground-truth regions. Based on the
strategy of [20], we map these ground-truth support rela-
tionships to our segmentation hierarchy as follows: Any
pair in which both regions have an IoU with ground-truth
regions greater than 0.25 is assigned the corresponding
ground-truth type. The other regions are assigned the no
support label. If, at the end of this procedure, a region is
not supported by any other region, we define it as being
supported by the hidden one.

4.1. Evaluation Metrics
Since we predict three different types of variables, we

need different metrics to evaluate them. Here, we use:

Instance segmentation accuracy. To evaluate our seg-
mentation results, we make use of the maximum weighted
coverage, defined over ground-truth regions G and predicted
regionsR as

Coveragew(G,R) =
1

|I|

|G|∑
j=1

|rGj | max
1,...,|R|

IoU(rGj , r
R
i )

where |I| is the number of pixels in the whole set of ground-
truth regions, which may be less than the total number of
pixels in the image, and |rGj | is number of pixels in ground-
truth region j.

Semantic labeling accuracy. To evaluate the predicted
semantics, we make use of the standard average accuracy
computed over all the pixels and per-class accuracy, where
averaging is done over the classes.

Support relationship accuracy. For the support relation-
ships, we evaluate the precision and recall of the positive
support types on pairs not containing the hidden region.
These values are defined as

precision =
# true positive predictions

# positive predictions
, (32)

recall =
# true positive predictions

# of positive samples
. (33)

4.2. Experimental Results
We now present our results on NYUv2. Since our model

addresses multiple tasks, as a first experiment, we evaluate
the influence of several of its components via an ablation
study. To this end, we compare our complete model (Ours)
with the following baselines:
Basic: This baseline only performs instance segmentation
and includes the region unary and tree constraints of Eq. 1.
Ours-NS: This model jointly predicts the region selection
variables and the semantics. However, it does not account
for the support relationships. This model consists of the first
three terms in Eq. 1.
Ours-ND: This model also infers the three kinds of vari-
ables. It contains all the terms in Eq. 1, but does not lever-
age the features that link support and semantics, i.e., Hm
and Ps in Section 3.3. In essence, while predicting all vari-
ables, this baseline only models limited dependencies be-
tween them. In addition to these baselines, we also report
the support predictions obtained with the linear SVM sup-
port classifier (SC) discussed in Section 3.3, which, among
others, makes use of features encoding information about
the region IoU with ground-truth and the semantics.



Model W. Cov Sem Avg Acc Sem Per-Cls Acc Support Precision Support Recall
Basic 58.9 - - - -
SC - - - 44.8 39.0

Ours-NS 59.3 73.0 72.0 - -
Ours-ND 59.3 73.3 72.2 47.0 41.9

Ours 59.4 73.2 72.1 47.6 43.1
Ours(GtSem) 60.1 - - 48.2 45.0

Table 1. Evaluation on NYUv2. We compare our approach to several baselines, mostly corresponding to different components of our
complete model. Note that some of these baselines do not predict all variable types, and can thus only be evaluated on some metrics. These
results demonstrate the importance of jointly inferring multiple variable types, in particular on the quality of the support relationships.

Image Ground-truth Ours Semantic Instance&Support
Figure 2. Qualitative evaluation of our results. We show the input image, the ground-truth semantics, the semantics predicted by our
approach, and our regions and support predictions. We show the correct relationships in white and the incorrect ones in black. Support
from below is indicated by an arrow head and from behind by a diamond one. Note that our semantics match the ground-truth ones quite
closely. Furthermore, our regions typically correspond to semantically-meaningful portions of the scene, that is, complete object or surface
instances, and our support corresponds to correct relationships. (Best viewed in color.)

The results of our method and of these baselines are pro-
vided in Table 1. Note that some baselines do not predict
all the variables, and can thus not be evaluated according to
all the metrics. These results show that (i) jointly predicting
regions and semantics improves the quality of the segments;

(ii) predicting all three types of variables yields a significant
boost to the support quality compared to our support classi-
fier; (iii) modeling the dependencies between the different
variable types further improves the support predictions, par-
ticularly in terms of recall. Altogether, we believe that these



Model Oracle W.Cov W. Cov Sem Avg Acc Sem Per-Cls Acc Support Precision Support Recall
Basic 68.8 61.1 - - - -
SC - - - - 48.3 37.9

Ours-NS 68.8 62.8 74.8 73.7 - -
Ours 68.8 62.7 75.3 74.3 49.5 38.6
[20] 70.6 62.5 - - - -
[19] - - - - 54.5 -

Table 2. Evaluation on NYUv2 RGBD. We compare our approach to several baselines corresponding to different components of our
complete model and to the state-of-the-art methods [20, 19]. Note that, while our oracle weighted coverage is lower than that of [20], we
achieve higher weighted coverage, thus showing the impact of accounting for the dependencies between multiple tasks.

Image Ground-truth Ours Semantic Instance&Support
Figure 3. Failure case. Here, our support relationships are affected by a wrong semantic labeling.

results demonstrate the benefits of jointly inferring regions,
semantics and support relationships.

To further evidence the impact of semantics, we per-
formed an experiment where we used the ground-truth ones
in our model. This model is denoted as Ours(GtSem).
This resulted in a 3.1% relative improvement on recall, thus
showing that better semantics yield better support.

In Fig. 2, we provide some qualitative results obtained
with our approach. Note that the semantic labels we pre-
dict closely match the ground-truth ones. Note also that,
while they contain some degree of over-segmentation, the
regions we produce typically still remain reasonably large,
with a clear semantic meaning. Our method is also able to
predict accurate support relationships, even in the presence
of many different objects, as in the last row of the figure.
In Fig. 3, we show a typical failure case of our approach.
We have observed that such failures mostly occur when a
region is over-segmented, or assigned to the wrong seman-
tic category. Note that this again indicates the dependencies
between these different subtasks of indoor scene parsing.

Comparison with RGBD-based methods. As men-
tioned in Section 2, existing methods that predict support
relationships all work with RGBD images as input. To
compare against these methods, we slightly modified our
approach to exploit RGBD.In particular, we generated the
hierarchy using ground-truth depth, and employed ground-
truth depth to extract our features, except for the seman-
tic probability ones. The results in Table 2 show again
that our model benefits from solving multiple tasks. Note
that, despite the fact that the oracle performance obtained
from our segmentation hierarchy is lower than that of [20],

the segmentation obtained by our method has a higher
weighted coverage. In other words, since the gap between
our weighted coverage and the oracle one is significantly
smaller than for [20], i.e., 5.5% vs 8.1%, our model es-
sentially selects better regions than [20]. The comparison
to [19] for support prediction should be taken with caution,
since the regions are different. We believe that this com-
parison shows that both method perform similarly, with our
approach providing additional information about the scene.
Note that we expect that exploiting depth more thoroughly
than done here could give our approach a bigger boost.

5. Conclusion
We have introduced an approach to jointly segmenting

the instances in an image and predicting their semantic la-
bels and support relationships. To the best of our knowl-
edge, this constitutes the first attempt at jointly tackling
these three subtasks of indoor scene understanding. Our
experiments have demonstrated that jointly reasoning about
these three tasks is in general beneficial, and particularly
so for support relationships. Indoor scene understanding,
however, is not limited to these three tasks. One can, for ex-
ample, also aim to predict depth, surface normals and object
affordances. Ultimately, we believe that all these problems
should be tackled jointly to better leverage their dependen-
cies. This will be the focus of our future research.
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