Extreme nonlinear terahertz electro-optics
in diamond for ultrafast pulse switching

Cite as: APL Photonics 2, 036106 (2017); https://doi.org/10.1063/1.4978051
Submitted: 07 December 2016 « Accepted: 22 February 2017 - Published Online: 24 March 2017
Mostafa Shalaby, Carlo Vicario and Christoph P. Hauri

G ()

open View Online Export Citation CrossMark

RN

ARTICLES YOU MAY BE INTERESTED IN

Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical
rectification in LiNbO4

Applied Physics Letters 98, 091106 (2011); https://doi.org/10.1063/1.3560062

Terahertz Kerr effect
Applied Physics Letters 95, 231105 (2009); https://doi.org/10.1063/1.3271520

Efficient broadband terahertz generation from organic crystal BNA using near infrared

pump
Applied Physics Letters 114, 241101 (2019); https://doi.org/10.1063/1.5098855

Learn more and submit

APL Photonics

Applications now open for the
Early Career Editorial Advisory Board

APL Photonics 2, 036106 (2017); https://doi.org/10.1063/1.4978051 2, 036106

© 2017 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1977811&setID=376415&channelID=0&CID=725201&banID=520884984&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f26455b5feeaae3c4bb0814e2ee97355d12a74db&location=
https://doi.org/10.1063/1.4978051
https://doi.org/10.1063/1.4978051
https://aip.scitation.org/author/Shalaby%2C+Mostafa
https://aip.scitation.org/author/Vicario%2C+Carlo
https://aip.scitation.org/author/Hauri%2C+Christoph+P
https://doi.org/10.1063/1.4978051
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4978051
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4978051&domain=aip.scitation.org&date_stamp=2017-03-24
https://aip.scitation.org/doi/10.1063/1.3560062
https://aip.scitation.org/doi/10.1063/1.3560062
https://doi.org/10.1063/1.3560062
https://aip.scitation.org/doi/10.1063/1.3271520
https://doi.org/10.1063/1.3271520
https://aip.scitation.org/doi/10.1063/1.5098855
https://aip.scitation.org/doi/10.1063/1.5098855
https://doi.org/10.1063/1.5098855

@ CrossMark
€

APL PHOTONICS 2, 036106 (2017)

Extreme nonlinear terahertz electro-optics in diamond
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Polarization switching of picosecond laser pulses is a fundamental concept in sig-
nal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R.
Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3,
1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect
and work at radio frequencies. The ensuing gating time of several nanoseconds is
a bottleneck for faster switches which is set by the performance of state-of-the-art
high-voltage electronics. Here we show that by substituting the electric field of sev-
eral kV/cm provided by modern electronics by the MV/cm field of a single-cycle
THz laser pulse, the electro-optical gating process can be driven orders of magnitude
faster, at THz frequencies. In this context, we introduce diamond as an exceptional
electro-optical material and demonstrate a pulse gating time as fast as 100 fs using
sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in
the insulator diamond is fully governed by the THz pulse shape. The presented THz-
based electro-optical approach overcomes the bandwidth and switching speed limits
of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gat-
ing technology for the first time in the THz frequency range. We finally show that the
presented THz polarization gating technique is applicable for advanced beam diag-
nostics. As a first example, we demonstrate tomographic reconstruction of a THz
pulse in three dimensions. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978051]

INTRODUCTION

Controlling and switching light pulses at ever shorter gating time are essential for the realization
of next generation signal processing and optical communication systems.!~> One of the key concepts
for signal processing is the ultrafast polarization flip of an optical pulse by an electro-optical (EO)
modulator. State-of-the-art modulators are driven by an electric gating pulse of several kilovolts
per cm which induces a strong phase shift on the optical pulse due to the electric-field dependent
Pockels effect. These devices operate at best at GHz frequencies, i.e., on the nanosecond time scale.
The limitation in the modulation speed of the gate is primarily given by the modern electronics
high-voltage drivers which are presently not able to switch at with the THz frequencies. Therefore
THz electronics operating on the femtosecond time scale has remained an unexplored region in the
past. Ongoing efforts towards shorter switching gates are challenged by the limited bandwidth of the
multi-kilovolt electronics required for driving the EO effect.

The source of the high intensity electric field in EO modulators can also come from propagating
electromagnetic waves. However, it comes with several limitations. For example, in the THz range,
the most common THz Pockels materials are semiconductors with a relative small bandgap. In such
materials, intense THz excitation leads to other unwanted nonlinear effects such as absorption and
spectral distortions.* An alternative way to achieve EO modulation is to use the nonlinear Kerr effect
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which exists in all the materials. Many insulators are good Kerr materials with large bandgap and
negligible dispersion. In addition, the Kerr effect scales with the electric field square. Thus, it can
provide a shorter gate than the electric field-dependent Pockels effect. Yet, the Kerr effect is hard
to establish in conventional EO materials as the third-order nonlinearity is substantially weaker and
requires higher electric field pulses. In order to understand the challenges of the Kerr gate, it is helpful
to write the Kerr-induced phase change A@X®™ as a function of the EO medium length L, the nonlinear
coefficient ¢ and the laser pulse intensity E%Hz(t),

AGE™ = An(ho)x27L /N, where An(hy) = csonKmE%Hz(t) , (D

where c and g are the vacuum speed of light and permittivity and Ao the laser wavelength, respectively.
Switching could be achieved in a long optical medium, such as an optical fiber, but this approach
is challenged by the need of polarization-maintaining fibers and the occurrence of nonlinear effects
due to the intense pulses. This could lead to a significant degradation of the switching contrast due to
self-phase modulation or the excitations of (hot) carriers>® as the process of thermalization takes up
to nanoseconds. In the past, conventional ultrafast lasers like Ti:sapphire systems have been explored
for Kerr-based polarization switching but the main hurdle has been the required high laser intensity
which complicates the polarization rotation with nonlinear absorption and spectral pulse distortions.”
The small bandgap of most solid semiconductor Kerr media (AEx1-1.5 eV) enables linear and multi-
photon laser absorption with a high probability due to the large photon energy (hvggp nm ~1.55 eV).
Some other media, such as the liquid CS,, offer large nker™ but their use as ultrafast modulators is
limited by the slow recovery time (~ ps), their toxicity, and the liquid nature.

In principle, the use of a thin modulator medium is favorable for minimizing nonlinear pulse
distortions, for reducing the linear attenuation of the signal and for down-sizing the EO device technol-
ogy. However, according to the scaling law, the necessary phase shift of A = /2 (i.e., a polarization
rotation of 90°) requires a stronger electric field. Typical EO modulators have an interaction length
of several cm in order to match the power level available from conventional power electronics.

In this letter we present a threefold advances in order to overcome the present challenges of the
Kerr-based EO modulators. First, we propose the use of an intense single THz electric field cycle to
induce an ultrafast Kerr gate on the femtosecond time scale. Second, we propose a thin, transparent
insulator diamond window of only 0.5 mm thickness as EO material to avoid multi-photon absorption,
delayed electron effects and gate distortions due to hot carriers. Third, we show that the proposed
scheme finds application beyond signal processing and introduce the THz-based polarization gating
technique as a tool for powerful 3-dimensional laser beam diagnostics for an ultrashort THz pulse.

RESULTS AND DISCUSSION

Our THz-induced pulse gating setup is shown in Figure 1. As a gating field, we use the recently
developed A° THz bullets’ source at the SwissFEL facility (Paul Scherrer Institute). We used a special
scheme of wavefront control and improved THz focusing to reach extremely intense THz electric
field of 83 MV/cm with spectral peak ~ 3.5 THz.!° The source employs optical rectification of a
mid-infrared pulse from an optical parametric amplifier pumped by a TW-scale Ti:sapphire laser
system.!! The temporal THz field shape of the resulting 50 xJ THz pulse is measured by electro-
optical means in a 50 um thin GaP <110> crystal with a balanced photodiode detection scheme.!%1%:13
The maximum field strength was calculated from the THz focus size, temporal trace, and pulse energy
from a calibrated THz energy meter (Gentec THz12D-3S).10

To induce the Kerr modulation, the intense terahertz pulse co-propagates through a diamond
window collinearly with the 50 fs pulse centered at 800 nm to be switched. The diamond window
serving as an EO modulator has a diameter of 4.5 mm and a thickness of 0.5 mm. It was purchased
from e6 (UK) as a single crystal. However, after performing the analysis, we found out that it was
poly-crystalline. In order to provide an almost equal electric field strength transverse to the switched
pulse, the diameter of the THz radiation has been chosen about 5 times larger than the optical probe.
The THz pump was vertically polarized and the near IR was polarized at 45° before the sample.
We followed two experimental schemes. In the first, we measured the THz induced birefringence
on the probe using a combination of a quarter-wave plate and a Wollaston prism in a balanced
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FIG. 1. Ultrafast polarization switching based on the prompt terahertz-induced Kerr effect in diamond. The intensity spot
size for the vertically polarized THz gating pulse (blue) and 45°-polarized near IR pulse (red) undergoing Kerr rotation are
indicated. A polarizer is used to filter out the polarization switched pulse.

photon-detection scheme. In the second, we detected the polarization switching by placing a polar-
izer after the diamond window. The polarizer is set to block the near IR pulse in the absence of THz
radiation (Fig. 1). Our measurements show that the x® Kerr nonlinearity and the induced phase retar-
dation Aq@X®’", though weak in diamond, go along with an intrinsically fast response proportional to
E%Hz(t). The few oscillations of the THz electric field (Fig. 2(a)) induce the ultrafast Kerr polarization
gate shown in Fig. 2(b). With a measured gating time of 125 fs (full width at half maximum), we
demonstrate the fastest polarization switching and largest EO switching contrast ever reported in this
frequency range. The THz electric field squared defines entirely the overall shape and the opening
time of the Kerr gate as the switching occurs only during the presence of the THz field and vanishes as
soon as the THz field has gone (Fig. 2(b)). We observed no signature of delayed response in diamond,
which is a big advantage over the commonly used semiconductor modulators. The observed gating
time is orders of magnitude shorter than the electronic modulators while nearly full (90%) polariza-
tion extinction is achieved. The results show that the THz electric gating field is able to establish
a significantly faster electro-optical modulation than what is achieved by the fastest conventional
electronics. The main advantage of using a THz gating pulse is that while the THz field is high the
THz photon quantum energies of several meV are significantly smaller than the optical ones and
consequently do not induce single or multi-photon absorption in the diamond Kerr medium, thanks
to the large bandgap of 5.5 eV. Using THz as gate thus overcomes the carrier excitation problem of
conventional lasers while a femtosecond gating time is achieved.

The measured phase retardation induced by the ¥® nonlinearity shows the expected linear
dependence on the THz peak intensity (Fig. 2(c)). For fluence scans, the THz radiation is attenuated
using two wire grid polarizers with nearly no spectral dependence in the used spectral range. The
maximum phase retardation induced on the 800 nm probe beam was 2.7 rad. In Ref. 14, k" was
measured to be 3 x 107 cm?/W for 1 THz pump and 800 nm probe. This implies a THz peak field of
55 MV/cm (5.7 TW/cm?) in our experiment. This value agrees reasonably with the estimated peak
field (51 MV/cm) from our independent calibration'? using the spot size, THz energy, and time trace
as well as a corresponding measurement of air nonlinearity."

The polarization switching scheme presented here thus offers three orders of magnitude larger
phase retardation than what has been provided by the state-of-the-art THz sources in the past.'# In this
configuration, the transmitted energy of the nIR pulse behind the crossed polarizer is measured to be
as high as 90%, demonstrating the efficiency of this pulse picking system. We mention that the THz
pulses produced by OR carry an absolute phase which is stable from shot to shot. A gate pulse with
a stable absolute phase is essential for the realization of the THz-optical phase modulator to provide
the same phase-shift for consecutive shots. Different spectral filters (bandpass, high pass) have been
used for the THz pump beam to study the Kerr response on the 800 nm probe beam. In comparison
to absorption-based modulation,'®!” polarization modulation gives an advantage of on/off contrast
because it is easy to achieve extremely high extinction ratio through polarization control.

Tens of MV/cm field strength is required to induce the observed Kerr switching. Even though the
Kerr coefficient is weaker than in many other media such as liquid,18 air,! and solids,!®?° diamond
has three main advantages for the realization of an ultrafast THz Kerr gate. First, diamond is an
insulator with a wide bandgap (Eg.p = 5.5 €V) which reduces the probability of electron-hole pair
generation across the bandgap upon nonlinear excitation. Second, there is a good velocity matching

between the triggering THz gate pulse and optical pulse (n’/ = 2.38, nﬁggs”em =2.4,n8%mm =2 44) 2!
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FIG. 2. (a) Temporal trace of the THz electric field oscillation recorded by electro-optical sampling. (b) The THz-induced
polarization rotation on the near IR pulse bears the temporal characteristics of the THz pulse in (a). The ultrafast Kerr gate
exhibits a 125 fs (FWHM) gating time. (c) THz intensity scan. Dependence of the measured phase retardation induced on the
near IR pulse at the THz peak intensity. We measured it in the case where the full THz spectrum is used and when 3 and 6 THz
LPF (low pass filters) are placed before the diamond window.

Third, diamond offers both negligible dispersion and high transmission over the THz bandwidth and
beyond. The combination of diamond with the intense single-cycle THz pulse is thus excellently
suited to serve as a high-field EO gate. Although we used an extremely intense THz source, much
weaker sources (such as tilted LINbO3 or plasma source) may be used with longer windows benefiting
from the good velocity matching and transparency whether in a single or multi-stages. We expect
any diamond window to behave in a similar way. Other materials may be used too. However, the
commonly used materials such as sapphire or quartz do not fill the above mentioned requirements of
velocity matching and broadband response.

We have done further characterization of the diamond-based THz polarization gate. To perform
measurement on the spatial homogeneity, we replaced the single-point detector behind the polarizer
(Fig. 1) by a 2-dimensional CCD (Dataray, UCT, 1400x1600 pixels, 4.65 um pixel size) to record the
intensity profile of the transmitted near IR beam after the polarizer. As before, the near IR pulse focus
was kept smaller than the THz spot size to ensure a homogeneous illumination by THz radiation
across the probe spot. A series of ultrafast snapshots of the switched near IR beam profile at different
delays have been recorded with the CCD (Fig. 3(a)). This gives access to the space-time evolution of
the nIR intensity profile. Figure 3 shows the absolute (Fig. 3(b)) and normalized (Fig. 3(c)) intensity
profile projected into the x-t plane as a function of the delay. The small tail extending out towards
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FIG. 3. Characterization of the transverse homogeneity of the THz switch. (a) A series of measurements at different delays
between the THz field and probe beam have been performed using a CCD located behind the polarizer. This gives access to the
space-time evolution of the nIR intensity profile. In the experiment, the laser pulse is focused tighter than the THz (see Fig. 1)
and experiences uniform phase shift, as clearly observed in the measurements. The plot illustrates the gate time convoluted
with the near IR pulse duration resulting in approximately 150 fs (FWHM). In (b) and (c) the laser absolute (b) and normalized
(c) intensity is projected in the x-t plane as a function of the delay. The constant beam size of the normalized projection for
each delay testifies that the THz homogeneously illuminates the nIR probe beam intensity profile at any time.

longer delays in Fig. 3(b) arises from the asymmetry of the THz window (Fig. 2(b)). The normalized
nlR intensity plot shows that the FWHM probe beam diameter is constant for all delays. This testifies
that the THz pulse homogeneously illuminates the near IR probe beam intensity profile at any time.
The near IR pulse experiences uniform phase shift, as clearly observed in the measurements.

Next we show that the technique of THz polarization gating can be used for high resolution
spatio-temporal profiling of the THz beam itself. The THz source used here is an example for an
advanced, multi-octave-spanning THz source where the beam quality is generally challenged by
spatial inhomogeneities.'*?>?3 Assuming a maximum frequency of 10 THz, the scale of inhomo-
geneity is expected to be more than 30 um (due to diffraction limits) which is not smaller than
the probe spot size. However, in terms of resolution, the THz imaging technology presently avail-
able hardly satisfies the experimental needs for characterizing a tightly focused THz beam'® and
does not give any information about the spatio-temporal evolution of the THz intensity profile.
In the following, we show that THz Kerr gating is a powerful tool for space-time resolved map-
ping of the THz intensity profile along the THz bullet. The experimental configuration (Fig. 4)
consists of a single-cycle THz tightly focused to its diffraction-limited spot size in the diamond
plate.

For the 3-dimensional imaging of this THz bullet, the near IR beam is transversely expanded
in order to overfill the THz focus by almost a factor of 20 (Fig. 4(a)). The polarization gating
technique allows for imaging the 3-dimensional THz bullet in time by recording the THz-induced
polarization rotation of the ultrashort probe beam on the 2-dimensional CCD sensor. Indeed, the max-
imum polarizer transmission coincides with near IR probe which underwent polarization rotation of
Ag =n/2 induced by the corresponding THz sub-cycle part overlapping with the probe. A sequence
of different beam slices recorded along the THz bullet at different times is shown in Figure 3. The
reconstructed 3-dimensional bullet unravels a cigar-like shape with a smooth intensity profile in the
waist. The tomography shows the bullet to exhibit slight asymmetry at the head and the tail (at 190
fs and 80 fs, respectively). For the reconstruction, the linear dependence of the phase modulation
with intensity is modulated with the sine squared transfer function of the polarizer. We note that
3-dimensional reconstruction using a CCD has been previously shown through nonlinear wave
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FIG. 4. Three dimensional imaging of the THz light bullet in the focus using the polarization gating technique. The tightly
focused THz beam is probed by a collimated nIR beam much larger than the bullet focus. THz intensity slices along the THz
bullet are recorded and imaged by the 50 fs probe beam onto a CCD sensor. The series show the 2-dimensional intensity
profiles measured at different positions (times) along the longitudinal THz envelope. This allows the reconstruction of the
THz bullet in time and space.

mixing.?* However, the striking advantage of our polarization rotation-based technique is its linear
response in comparison with nonlinear wave mixing in Ref. 24.

CONCLUSIONS

We have demonstrated an ultrafast THz-driven optical modulator for pulse switching in a thin
diamond window. The EO phase modulation originates from the weak Kerr nonlinearity and is
driven by the interaction with an ultra-intense 55 MV/cm THz single-cycle pulse. The THz-based
Kerr switch exhibits ultrafast gating time of 125 fs and a rise/fall time of ~120 fs. The gate driven at
THz frequencies overcomes current electronics bandwidth limitations and undesired nonlinearities
typically observed in semiconductor Kerr shutters at high laser intensities. While the presented proof-
of-principle experiment has been performed at 800 nm, the exceptional broadband transmission
properties of diamond suggest a broadband THz-driven Kerr switch across the spectral range from the
deep-UV to the far infrared. In addition to the large optical damage threshold, diamond has exceptional
heat conductivity ideal for high power all-optical modulators. We have finally shown a 3-dimensional
tomographic imaging of the THz intensity bullet and probe pulse as a first application of THz-induced
gating. The presented ultrafast THz-based all-optical switch opens new scientific pathways in signal
processing and pulse gating at THz frequencies and opens a route towards advanced spatio-temporal
beam metrology in the THz range.
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