FULL PAPER

WILEY-VCH

Heterotetracenes: Flexible Synthesis and *in Silico* Assessment of the Hole Transport Properties

Yifan Li,^[a] Ganna Gryn'ova,^[b] Felipe Saenz,^[a] Xavier Jeanbourquin,^[c] Kevin Sivula,^[c] Clémence Corminboeuf^{*[b]}, Jérôme Waser^{*[a]}

Abstract: Thienoacenes and furoacenes are among the most frequent molecular units found in organic materials. The efficient synthesis of morphologically different heteroacenes and the rapid determination of their solid-state and electronic properties are still challenging tasks, which slow down progress in the development of new materials. Herein, we report a flexible and efficient synthesis of unprecedented heterotetracenes based on a platinum- and goldcatalyzed cyclization-alkynylation domino process using EthynylBenziodoXole (EBX) hypervalent iodine reagents as key step. The proof-of-principle in silico estimation of the synthesized tetracenes' charge transport properties reveals their strong dependence on both the position and nature of the heteroatoms in the ring system. A broad range of mobilities is predicted, with some compounds displaying performance potentially comparable to that of state-of-the art electronic organic materials.

Introduction

Acenes and heteroacenes are important compounds in material science.^[1] Among them, thienoacenes and furoacenes were intensively studied due to their easily tuned electronic properties depending on their conjugation topology.^[2] Especially successful examples dibenzo[b,b'] thieno[2,3-f55,4are (DBTBT, **1**),^[2b] f']bis[1]benzothiophene benzo[1,2-b:4,5-(BBBT, 2),^[2c] [1]benzothieno[3,2b]bis[b]benzothiophene 3),^[2e-f] dinaphtho[2,3-b:2',3'b][1]benzothiophene (BTBT, f]thieno[3,2-b]thiophene (DNTT, 4),^[2g-h] benzodifuran (BDF, 5),^[2] and naphtho[2,1-b:6,5-b]difuran (NDF, 6)^[2k] (Figure 1). Systematic studies of the influence of the sulfur and oxygen heteroatoms on the electronic properties in dependence on their position in the ring systems are limited.^[1h,3] This is surprising, when considering that a broad diversity of building blocks and a good understanding of their electronic properties will be essential for the development of new organic materials.

One possible reason for this lack of diversity is that a rapid and flexible synthesis of novel and morphologically diverse building blocks remains difficult. To address this challenge, we envisioned a new synthesis of heterotetracenes derived from either dibenzofuran or dibenzothiophene starting from broadly

[c] Mr. Xavier Jeanbourquin, Prof. Kevin Sivula, Laboratory of Molecular Engineering of Optoelectronic Nanomaterials, Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland Supporting information for this article is given via a link at the end of

Supporting information for this article is given via a link at the end of the document.

available iodo- and alkynyl arenes in four steps only (Scheme 1, goal 1). This approach allows varying systematically the central and the last ring of the conjugated system to study their effect on the hole transport properties and to introduce selectively either an oxygen or a sulfur heteroatom at the desired position. It is interesting to note that despite their relative simplicity, most of the targeted compounds have not yet been reported.

Figure 1. Thieno- and furo- acenes building blocks for organic materials

Improved synthesis methods are necessary but alone not sufficient for the development of new materials. Indeed, analyzing the relationship between structure and electronic properties is also required to guide the synthetic effort. Since measuring the hole transport properties under conditions relevant for the material applications can be highly resource and time-consuming, rapid computational pre-screening is valuable for identifying the most promising structures for subsequent experimental testing. Admittedly, highly accurate estimates of charge mobility require rigorous multiscale simulations, based on experimental crystal structures.^[4] In the absence of the latter in this study we retreat to a much more limited and computationally inexpensive approach of applying the Marcus hopping model of the charge transport to the model dimers.^[5] This approach ignores the crucial effects of disorder and specificity of crystal packing, but allows isolating the role of the nature and position of the heteroatoms in the π -conjugated cores (via the reorganization energy) and the extent of orbital overlap between them (via the transfer integral, see Scheme 1, goal 2), providing a hypothetical estimate of the core's charge transport capacity.

Overall, herein we present a method for the synthesis and assessment of heterotetracene building blocks with potential for applications in organic materials. A highly efficient synthetic approach based on a platinum-catalyzed domino cyclizationalkynylation process is first presented. Computational evaluation of the charge transport properties of the synthesized tetracenes

[[]a] Dr. Yifan Li, Mr. Felipe Saenz, Prof. Jerome Waser, Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

[[]b] Dr. Ganna Gryn'ova, Prof. Clemence Corminboeuf, Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

indicates that several of them can potentially compete with the current state-of-the art organic semiconducting materials.

Targeted tetracenes

Goal 1: Flexible synthesis

Goal 2: Estimation of the hole mobility properties by computation

Scheme 1. Targeted tetracenes: flexible synthesis and hole mobility prediction.

Results and Discussion

Synthesis of Heterotetracenes

Most of the past efforts in the synthesis of heterotetracenes have focused on the synthesis of thioacenes bearing an external thiophene ring. ^[6] Only a few reports dealt with the installation of an internal thiophene ring. One of the most efficient approaches was introduced by Müllen and co-workers based on the intermolecular cross coupling with an aryl sulfoxide followed by a Friedel-Crafts annulation (Scheme 2, **A**).^[2b] This convenient transformation has been limited so far to the introduction of only one heteroaryl ring into the π -conjugation system and cannot be used for the synthesis of benzofuran derivatives. Only a few methods were reported for furoacene synthesis.^[2]-k] An improved approach to construct heteroaryl fused thienoacenes and furoacenes in a rapid way is consequently required to reach our goal of systematic structure modification.

In view of developing a more general synthesis, we envisaged to form the benzene ring of heterotetracenes using a platinumcatalyzed cyclization as the last step instead of forming the C-X bond (Scheme 2, B).^[7] This disconnection leads to 2,3disubstituted 3-alkynyl benzothiophenes and benzofurans as starting materials, which needed to be efficiently synthesized. Usually, a multi-step synthesis is employed to access these substrates, such as halogenation at C3 position starting from C2 substituted precursors, followed by functional aroup transformations.^[8] In the last two decades, C-H functionalization has been developed as a more efficient method to introduce substituents to heterocycle rings, but it takes place at the C2 position for benzothiophenes and benzofurans or requires the introduction of directing groups.^[9] To improve synthetic efficiency and allow functionalization at less reactive positions, domino reactions constitute an attractive strategy.^[10] For example, the formation of the heterocycle and another C-C bond at C3 position was employed to synthesize alkenyl-, aryl- or alkyl- C3-substituted benzofurans via Pd,^[11] or Rh^[12] catalysis, and C3 alkyl or aryl benzothiophenes and benzofurans via Au/Pt,^[13] or Pd^[14] catalysis. To our surprise, a cyclization-alkynylation domino process was unprecedented.^[15,16]

A Current synthesis of thioacenes

Scheme 2. Current synthesis of thioacenes (A) and our new strategy for the synthesis of heterotetracenes (B).

Recently, we developed cyclization-alkynylation domino reactions to access functionalized furans^[17] and indoles^[18] based on the use of ethynylbenziodoxole (EBX) hypervalent iodine reagents. We therefore envisaged that these reagents could be used to develop the unprecedented domino cyclization alkynylation process. Herein, we report the first intermolecular domino reactions to synthesize 2,3-disubstituted 3-alkynyl benzothiophenes and benzofurans, easily obtained via Sonogashira coupling of the corresponding iodo- and alkynyl-aryls, via gold- or platinum- catalyzed domino reactions using EBX reagent **7a** (Scheme 2, **B**).

We started our investigations on the cyclization-alkynylation domino reaction with 2-alkynyl phenol 8a^[11d] as substrate (Table 1). The conditions reported for Lautens's domino reaction^[12] or Hashmi's benzofuran formation^[19] didn't give any desired product, independently of the hypervalent iodine reagent used (Table 1, entries 1-6). PtCl₂^[18] was not efficient for this domino process (Table 1, entry 7). When we turned our attention to Au(III) catalysts, we were pleased to observe the formation of the desired product with benziodoxole 7a (Table 1, entries 8-10). Other hypervalent iodine reagents were not successful in this transformation (results not shown). AuCl₃ gave a better yield (83%)when compared to dichloro(pyridine-2carboxylato)gold(III) (PicAuCl₂) and pyridine gold(III) trichloride (PyAuCl₃). The influence of the solvents was then examined, demonstrating that THF was optimal (Table 1, entries 11-12).

We continued our investigation with 2-ethynyl thioanisole **10a** (Table 2).^[20] An iodide salt was added to the reaction, as it has been reported to promote demethylation.^[16c] The conditions optimized for the cyclization-alkynylation of **8a** were not successful: neither AuCl₃ nor AuBr₃ could be used as catalyst (Table 2, entries 1-2). On the other hand, AuCl could promote

the desired transformation in 41% yield (Table 2, entry 3). The yield was improved to 61% when PtCl₂ was used (Table 2, entry 4). The effect of solvents was then examined. 41%, 28% and 19% of benzothiophene 11a were obtained in toluene, ether and respectively (Table 2, entries 5-7). 2-Phenyl DCM benzothiophene was isolated as by-product in toluene and DCM. Initially, we used basic conditions to prevent proto-demetalation. However, as no proton is generated during the reaction, we wondered if the use of a base was really required. Indeed, in the absence of the base the yield could even be increased to 77% (Table 2, entry 8). This result is consistent with our previous observation with a platinum catalyst.^[18] The reaction did not occur without Nal (Table 2, entry 9). The use of 2.0 equiv. of 7a did not improve the yield (Table 2, entry 10). Under the optimized reaction conditions, it was therefore possible to obtain the desired 3-alkynyl benzo- furan and thiophene 9a and 11a at room temperature using open flasks, resulting in a highly practical procedure.

 Table 1. Optimization of the Domino Cyclization- Alkynylation Reaction of 2-Alkynyl Phenol 8a.

[a] Reaction conditions: **8a** (0.10 mmol), catalyst (10 mol%), **7** (0.12 mmol), Na_2CO_3 (0.12 mmol), 0.1 M, overnight. Isolated yields after column chromatography.

We then explored the scope of the domino reaction for the synthesis of benzofurans (Scheme 3, A). The reaction was easily scaled up to 0.3 mmol. Phenyl and tolyl substituted

alkynes gave the domino products **9a** and **9b** in 85% and 66% yield respectively. A cyclopropyl group was well tolerated (product **9c**). Benzofurans **9d** and **9e** bearing a C2- and C3-substituted thiophene substituent respectively could also be obtained in good yields.

 $\label{eq:table_$

					Si <i>i</i> Pr ₃
	SMe 10a	Ph 7a , Cat Additiv	alyst, Base ve, Solvent	Ila	-Ph
entry	catalyst	additive	base	solvent	yield ^[a]
1	AuCl ₃	Nal	Na ₂ CO ₃	THF	<5%
2	AuBr ₃	Nal	Na ₂ CO ₃	THF	<5%
3	AuCl	Nal	Na ₂ CO ₃	THF	41%
4	PtCl ₂	Nal	Na ₂ CO ₃	THF	61%
5	PtCl ₂	Nal	Na ₂ CO ₃	toluene	41% ^[b]
6	PtCl ₂	Nal	Na ₂ CO ₃	Et ₂ O	28%
7	PtCl ₂	Nal	Na ₂ CO ₃	DCM	19% ^[c]
8	PtCl ₂	Nal	-	THF	77%
9	PtCl ₂	-	Na ₂ CO ₃	THF	<5%
10 ^[d]	PtCl ₂	Nal	-	THF	54%

[a] Reaction conditions: 10a (0.10 mmol), catalyst (10 mol%), 7a (0.12 mmol), Na_2CO_3 (0.12 mmol), Nal (0.10 mmol), 0.1 M, overnight. Isolated yields after column chromatography. [b] 19% of 2-phenyl benzothiophene was isolated. [c] 11% of 2-phenyl benzothiophene was isolated [d] 0.20 mmol 7a was used.

The synthesis of benzothiophene derivatives is then proposed in Scheme 3, B. A methyl, a bromide and a fluoride substituent were well tolerated on the phenyl ring linked to the alkyne (products 11b-11d). C2 alkylated benzothiophenes 11e-g could also be accessed using our method, as well as cyclohexene substituted product 11h. The reaction conditions were also applicable to substrates bearing furan or thiophene heterocycles (11i-k). Disubstituted thienothiophene 11I was obtained in 45% yield. Even though the yield is moderate, it is usually challenging to synthesize C3-substituted thienothiophenes as the C2 position is more reactive.^[1i] Gratifyingly, double and triple domino reactions also took place (Scheme 3, C). Symmetric 2,3,5,6-tetrasubstituted benzodithiophene 5m was synthesized in 56% yield. The multi domino reaction could also be performed when the thioanisoles units were linked by a benzene or a thiophene ring (products 5n-p). The overall yields were moderate, but the yield for each domino reaction remains between 56% and 75%. Both thienothiophenes and benzodithiophenes are important building blocks in organic material science. They are used as donor fragments for small gap organic solar cell.^[21] Moreover, benzodithiophenes showed remarkable properties for applications as field-effect transistors, such as high hole mobility and excellent on/off ratio.[2e]

Scheme 3. Scope of 3-alkynylated benzofurans and 3-alkynylated benzothiophenes.

With a series of 3-alkynylated benzofurans and benzothiophenes in hand, we then performed the envisaged sequence of transformations involving desilylation promoted by TBAF followed by $PtCl_2$ catalyzed cyclization to obtain the desired heterotetracenes **12** (Scheme 4).

Naphtho[1,2-b]benzofuran naphtho[1,2-(12a) and b]benzothiophene (12b) were obtained in excellent yields -96% and 85% respectively. When a halogen was introduced on the phenyl group, the cyclization step still occurred but with a decrease in yield (products 12c and 12d). Heteroacene 12c can be further functionalized via conventional cross coupling Notably, methods. 3-halogenated naphtho[1,2b]benzothiophenes such as 12c are highly challenging to synthesize via Friedel-Crafts halogenation, as it usually takes place on the more nucleophilic para-position to the sulfur atom.[22] Two heteroatom-containing heteroacenes 12e-j, which could not be yet synthesized using conventional approaches, [2b] were smoothly accessed with diverse and unprecedented morphologies. Heteroacenes 12e and 12f containing S,S and S,O heteroatoms ortho to each other and 12g and 12h containing S,S and S,O heteroatoms *meta* to each other were obtained in 59-83% yield.

Scheme 4. Synthesis of heterotetracenes; The yields of the PtCl₂-catalysed cyclization are given.

The structure of **12h** was further confirmed by X-ray analysis.^[23] Heteroacene **12i** with an *ortho* O,S substitution was formed in 54% yield. Finally, the synthesis of naphtho[2,1b]thienothiophene **12j** was also possible.^[24]

Assessment of the hole mobility properties

In order to assess the potential of the novel heterotetracenes in molecular electronics applications, we have estimated their hole transport properties. Details of the computations^[25] can be found in the Supporting Information. The following substrates were investigated: 12a, 12b, 12e and 12f (a C_6H_{13} group was replaced with a hydrogen atom in the calculations to facilitate the computational effort), 12g, 12h, 12i and 12j (Figure 2). In order to have a more complete analysis of the influence of introducing thiophene rings in the tetracene, we also examined compounds 13a and 13b (3 S atoms), as well as tetrabenzene (TB) and tetrathiophene (TT) (0 and 4 S atoms respectively). As a further reference point we have chosen a π-conjugated heteroaromatic core, namely the [1]benzothieno[3,2-b][1]benzothiophene (BTBT, 3, also computed without substituent). This substrate has been shown to yield superior organic field effect transistor (OFET) characteristics, with experimentally measured mobilities in the range of 1.0-3.0 cm²V⁻¹s⁻¹.^[1h]

Figure 2. Tetracenes selected for in silico pre-screening.

To estimate the hole transport rates we utilise the Marcus-Hush theory for the hopping charge mechanism,^[26] which affords an excellent agreement with the experimental results for various acene- and thiophene-based systems.^[27] It relies upon two main parameters: the reorganization energy λ_+ of the monomer and the electronic coupling t_+ (hole transfer integral) in the dimer. Our results indicate the dependence of the reorganization energies λ_+ (evaluated as the energy difference between the charged and the neutral counterparts) on the type, number and mutual arrangement of the heteroatoms. Substitution of sulfur with oxygen in either the central or terminal ring (compare

compounds 12a with 12b, 12f with 12e, 12h with 12g and 12i with 12e) generally impedes the ionization and thus leads to higher λ_+ since smaller, less polarizable and more electronegative O atoms are less effective in stabilizing the positive charge (Figure 3, A). Adding more sulfur atoms tends to increase the reorganization energy. A clear correlation is also observed between λ_+ and the structural pattern of the heterocycles (Figure 3, B): species with the benzothiophene motif have the lowest reorganization energies, while molecules, which also comprise the thienothiophene moiety, have higher λ_{+} . Compounds with lower reorganization energies are expected to afford better charge transport properties. In this case, simple tetrabenzene (TB) should have a significant charge transfer rate. However, reorganization energies alone are insufficient to predict material properties - charge transport rates depend greatly on the crystallinity of the material, the extent of structural and energetic disorder, the type of crystal packing, etc.^[4,5,28]

Reliable computational prediction of the charge transport properties is challenging^[29] and necessitates (*i*) more sophisticated computational techniques, e.g. involving molecular dynamics and kinetic Monte-Carlo simulations,^[30] and (*ii*) the pre-existing knowledge of the crystal structure. Since the determination of the crystal structure for each compound studied here is experimentally challenging and very time-consuming, we retreat to simplistic models based on π -stacked dimers. Such approach admittedly ignores the disorder and packing effects and the influence of substituents,^[31] however it provides an insight into the range of transfer integrals that can potentially be expected in the materials comprising the investigated heterotetracene cores.^[32] Furthermore, while in general the latter tend to favour the herringbone crystal packing,^[33] π -stacking can be enforced *via* side-chain modification.^[34]

Initially, we consider coplanar cofacial dimers in what we call a 'frozen' geometry, i.e. the geometry with fixed zero longitudinal and transversal shifts (as well as any rotations) and energetically optimal interplanar separation (at SAPT0/jun-cc-pVDZ level of theory)^[35]. Their computed transfer integrals (red line in Figure 4) are fairly similar, in the range of 0.22-0.30 eV. However, once allowed to fully relax, such dimers tend to contract (interplanar distance decreasing from 3.7-3.8Å to ~3.3Å) and undergo lateral and/or transversal shifting and even minor rotations disturbing the cores' coplanarity (See Table S2 in the Supporting Information), leading to a much broader range of t_+ values. This range expands even further when non-cofacial mutual core orientations (antifacial, *i.e.* various disordermers,^[36,37] Figure 4 top panel) are accounted for, and many more transfer integral values can be achievable for herringbone and other types of dimer assemblies. This complex behaviour of the electronic coupling is caused by an interplay of several factors, including the frontier orbital symmetries, proximity of the heteroatoms, mutual orientation of the monomers within a given crystal packing, contribution of exchange and charge penetration effects to their interaction energies, etc.^[38] On average for the optimized π -stacked dimers (black line in Figure 4), we observe somewhat higher t_{+} for sulfur-containing cores (vs. oxygen) and for systems with more heteroatoms (3- and 4- S atom cores vs. 0-2 S atoms).

Figure 3. Reorganization energies depending of the type (A), number and mutual arrangement (B) of the heteroatoms in the core.

Figure 4. Various dimer geometries depending on the mutual orientation of two monomer cores (disordermer, illustrated here for 12a) and the computed transfer integrals for the model 'frozen' and optimized dimers ('average' corresponds to the average value for the optimized disordermers).

The resulting hole mobilities, computed for the studied dimers, are shown in Figure 5. Generally, higher mobilities are expected for systems with lower monomer reorganization energies and higher transfer integrals. Since the *t*₊ values in the 'frozen' model dimers are fairly similar, their mobilities are largely defined by their λ_{+} . Regarding the optimized dimers, the two "extreme" (from the reorganization energy perspective) compounds **TB** and **TT** give moderate mobilities: **TB** because of its average transfer integral, and **TT** because of its high λ_{+} . The chosen reference core, BTBT **3**, with its average *t*₊ and λ_{+} displays a moderate computed mobility of 3.3 cm²V⁻¹s⁻¹.^[39] Several heterotetracenes bearing 1-3 sulfur atoms – **12b**, **12e**, **12g**, **12j** and **13b** – display comparable ($\mu_{+} > 3.0 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$) hole transport characteristics. Considering various disordermers, the

antifacial dimers afford the highest mobilities (See Table S3 in the Supporting Information), consistent with experimental observations.^[36,40] Our results, based on a crude dimer model, illustrate the potential of the new heterotetracenes to achieve mobilities, comparable to or better than those already reported, and reveal that these properties depend on the type and arrangement of the heteroatoms within the monomer frame. As noted above, more sophisticated modelling based on the experimental crystal structures and, ultimately, experimental testing of these compounds in real life devices is necessary to exhaustively evaluate their performance in the molecular electronics applications.

Figure 5. Computed hole mobilities (bubble sizes) for 'frozen' dimers and average between the optimized disordermers, plotted against the corresponding reorganization energies and transfer integrals. For each core, the average mobility bubble is labelled.

Conclusions

In conclusion, we have developed efficient gold- and platinumcatalyzed domino reactions to synthesize 3-alkynylated benzofurans and benzothiophenes based on the use of EBX hypervalent iodine reagents. Heterotetracenes containing two O, two S, or one O and one S heteroatoms were accessed in only four steps. Subsequent proof-of-principle computations suggest that some of the synthesized compounds and other heterotetracenes can potentially afford hole mobilities, comparable or superior to current state-of-the-art organic materials, provided they are not hampered by the crystal packing and disorder effects. The results confirmed that both the identity and position of the heteroatom in the conjugated system strongly affect the hole mobility. Our study combining improved synthetic methodologies and in silico analysis of the electronic structure leads to a better understanding of the relationships between the structure and charge transport properties of the heteroacenes. Further effort can now be focused on other factors (e.g. crystallization techniques, substitution patterns) that influence both the solid-state structure and the material performances of the most promising cores.^[41]

Acknowledgements

EPFL is acknowledged for financial support. J.W. thanks the European Research Council (ERC Grant 334840, iTools4MC) for financial support. C.C. acknowledges funding from the European Research Council (ERC Grant 306528, COMPOREL). K.S. and X.A.J. thank the European Research Commission (Project No. 336506, CEMOS) for financial support, and Dr. M. Johnson is acknowledged for assistance with thin film XRD results.

Keywords: Acenes • Domino Reactions • Hole Mobility Computation • Organic Materials • Hypervalent Iodine

- For selected reviews, see: a) J. E. Anthony, Chem. Rev. 2006, 106, [1] 5028; b) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452; c) Handbook of Thiophene-Based Materials, I. F. Perepichka, D. F. Perepichka, ed., Wiley-VCH, Weinheim, Germany, **2009**; d) W. Wu, Y. Liu, D. Zhu, *Chem. Soc. Rev.* **2010**, *39*,1489; e) H. Dong, C. Wang, W. Hu, *Chem. Commun.* **2010**, *46*, 5211; f) W. Jiang, Y. Li, Z. Wang, *Chem. Soc. Rev.* **2013**, *42*, 6113; g) M. Watanabe, K.-Y. Chen, Y. J. Chang, T. J. Chow, *Acc. Chem. Res.* **2013**, *46*, 1606; h) K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 2014, 47, 1493; i) M. E. Cinar, T Ozturk, Chem. Rev. 2015, 115, 3036.
- Selected examples: a) J. G. Laquindanum, H. E. Katz, A. J. Lovinger, J. Am. Chem. Soc. 1998, 120, 664; b) H. Sirringhaus, R. H. Friend, C. Wang, J. Leuninger, K. Müllen, J. Mater. Chem. 1999, 9, 2095; c) P. Gao, D. Beckmann, H. N. Tsao, X. Feng, V. Enkelmann, W. Pisula, K. Mullen, Chem. Commun. 2008, 1548; d) P. Gao, D. Beckmann, H. N. [2] Tsao, X. Feng, V. Enkelmann, M. Baumgarten, W. Pisula, K. Müllen, Isao, X. Feng, V. Enkeimann, M. Baumgarten, W. Pisula, K. Mullen,
 Adv. Mat. 2009, 21, 213; e) K. Takimiya, H. Ebata, K. Sakamoto, T.
 Izawa, T. Otsubo, Y. Kunugi, J. Am. Chem. Soc. 2006, 128, 12604; f) H.
 Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T.
 Yui, J. Am. Chem. Soc. 2007, 129, 15732; g) T. Yamamoto, K. Takimiya,
 J. Am. Chem. Soc. 2007, 129, 2224; h) S. Shinamura, I. Osaka, E.
 Miyazaki, A. Nakao, M. Yamagishi, J. Takeya, K. Takimiya, J. Am.
 Chem. Soc. 2011, 133, 5024; i) T. Mori, T. Nishimura, T. Yamamoto, I.
 Dei E. Miyazaki, Casha, K. Takimiya, J. Am. Doi, E. Miyazaki, I. Osaka, K. Takimiya, J. Am. Chem. Soc. 2013, 135, 13900; j) H. Tsuji, C. Mitsui, Y. Sato, E. Nakamura, Adv. Mat. 2009, 21,

3776; k) C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya, E. Nakamura, J. Am. Chem. Soc. 2012, 134, 5448.

- a) B. Wex, B. R. Kaafarani, R. Schroeder, L. A. Majewski, P. Burckel, M. [3] Grellc, D. C. Neckers, J. Mater. Chem. 2006, 16, 1121; b) M. Nakano, H. Mori, S. Shinamura, K. Takimiya, Chem. Mater. 2012, 24, 190.
- a) L. Wang, Q. Li, Z. Shuai, L. Chen, Q. Shi, *Phys. Chem. Chem. Phys.* **2010**, *12*, 3309; b) M. Schrader, R. Fitzner, M. Hein, C. Elschner, B. Baumeier, K. Leo, M. Riede, P. Bäuerle, D. Andrienko, *J. Am. Chem.* [4] Soc. 2012, 134, 6052.
- a) K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, L. D. A. Siebbels, [5] J. Chem. Phys. 2003, 119, 9809; b) J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971
- [6] K. Takimiya, M. Nakano, M. J. Kang, E. Miyazaki, I. Osaka, Eur. J. Org. Chem. 2013, 2013, 217.
- a) A. Furstner, V. Mamane, J. Org. Chem. 2002, 67, 6264; b) V. [7]
- Mamane, P. Hannen, A. Fürstner, *Chem. Eur. J.* **2004**, *10*, 4556. Selected examples: a) T. Yamaguchi, M. Irie, *J. Org. Chem.* **2005**, *70*, [8] 10323; b) J. Mamiya. A. Kuriyama, N. Yokota, M. Yamada, T. Ikeda. Chem. Eur. J. 2015, 21, 3174.
- a) J. Yu, Z Shi, Topics in Current Chemistry: C-H Activation Springer: [9] **2010**; Vol. 292. b) X. Wu. *Chem. Eur. J.* **2015**, *21*, 12252. c) J. P. Brand, J. Waser, *Angew. Chem., Int. Ed.* **2010**, *49*, 7304; d) Y. Li, J. Waser, Beilstein J. Org. Chem. **2013**, 9, 1763. e) M. Shang, H. Wang, S. Sun, H. Dai, J. Yu, *J. Am. Chem. Soc.* **2014**, *136*, 11590.
- L. F. Tietze, Chem. Rev 1996, 96, 115. [10] Selected examples: a) Y. Hu, K. Nawoschin, Y. Liao, J. Ma, R. Fathi, Z. Yang, J. Org. Chem. 2004, 69, 2235; b) M. Nakamura, L. Ilies, S. Otsubo, E. Nakamura, Angew. Chem., Int. Ed. 2006, 45, 944; c) C. Martinez, R. Alvarez, J. Aurrecoechea, *Org. Lett.* **2009**, *11*, 1083; d) R. Álvarez, C. Martínez, Y. Madich, J. G. Denis, J. M. Aurrecoechea, A. R. de Lera, *Chem. Eur. J.* **2010**, *16*, 12746; e) N. Markina, Y. Chen, R. Larock, Tetrahedron 2013, 69, 2701; f) Z. Han, L. Zhang, Z. Li, R. Fan, Angew. Chem., Int. Ed. 2014, 53, 6805.
- [12] a) N. Isono, M. Lautens, Org. Lett., 2009, 11, 1329; b) A. Boyer, N. Isono, S. Lackner, M, Lautens. Tetrahedron, 2010, 66, 6468.
- [13] a) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024; b) I. Akamura, Y. Mizushima, Y. Yamamoto, J. Am. Chem. Soc. 2005, 127, 13024, 011.
 Nakamura, Y. Mizushima, Y. Yamamoto, J. Am. Chem. Soc. 2005, 127, 15022; c) I. Nakamura, T. Sato, Y. Yamamoto, Angew. Chem., Int. Ed.
 2006, 45, 4473; d) I. Nakamura, Y. Mizushima, U. Yamagishi, Y.
 Yamamoto, Tetrahedron 2007, 63, 8670; e) M. C. Jaimes, V. Weingand, F. Rominger, A. S. K. Hashmi, Chem. Eur. J. 2013, 19, 12504; f) Z. Xia, O. Khaled, V. Mouriès-Mansuy, C. Ollivier, L. Fensterbank, J. Org. Chem 2016, 81, 7182; g) T. Obata, S. Suzuki, A. Nakagawa, R. Kajihara, K. Noguchi, A. Saito, Org. Lett. 2016, 18, 4136.
- [14] T. Yamauchi, F. Shibahara, T. Murai, Tetrahedron Lett. 2016, 57, 2945. 3-Alkynylated benzofurans and benzothiophenes are usually [15] synthesized via multi-step processes, including cyclization-iodination to 3-iodo benzofurans and benzothiophenes, followed by Sonogashira reaction. For cyclization-iodination see: a) A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, L. Moro, Synlett 1999, 1999, 1432; b) D. Yue, R. C. Larock, J. Org. Chem. 2002, 67, 1905; c) D. Yue, T. Yao, R. C. Larock, J. Org. Chem. 2005, 70, 10292; d) S. Mehta, R. C. Larock, J. Org. Chem. 2010, 75, 1652; For cyclization-iodination then Sonogashira reaction see: e) C. Wang, R. Hu, S. Liang, J. Chen, Z. Yang, J, Pei, *Tetrahedron Lett.* 2005, *46*, 8153; f) H. Ebata, E. Miyazaki, T. Yamamoto, K. Takimiya, Org. Lett., 2007, 9, 4499; g) N. Danailkina, S. Braese, I. Balova, Synlett, 2011, 4, 517; h) N. Danailkina, A. E. Kulyashova, A. F. Khlebnikov, S. Brase, I. Balova, J. Org. Chem. 2014, 79, 9018; i) L. Aurelio, R. Volpe, R. Halim, P. J. Scammells, B. L. Flynn, *Adv. Synth. Catal.* **2014**, *356*, 1974.
- Domino and one pot reactions to access 3-alkynylated indoles have been reported :a) A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, L. M. [16] Parisi, J. Org. Chem. 2005, 70, 6213; b) J. P. Brand, C. Chevalley, J. Waser, Beilstein J. Org. Chem. 2011, 7, 565; c) B. Yao, Q. Wang, J. P. Zhu, Angew. Chem., Int. Ed. **2012**, 51, 12311. Y. Li, J. P. Brand, J. Waser, Angew. Chem., Int. Ed. **2013**, *52*, 6743.
- [17]
- [18]
- Y. Li, J. Waser, Angew. Chem. Int. Ed. 2015, 54, 5438. A. S. Hashmi, T. D. Ramamurthi, F. Rominger, F. Adv. Synth. Catal. [19] 2010, 352, 971.
- [20] 2-Ethynyl thiophenols cannot be used, as they spontaneously cyclize to form benzothiophenes.
- J. Wu, S. Cheng, Y. Cheng, C. Hsu. Chem. Soc. Rev. 2015, 44, 1113. [21]
- D. Stanislaw, Polish. J. Chem, 1983, 57, 1345. [23] Crystal data of 12h has been deposited at the Cambridge
- Crystallographic Data Centre (CCDC 1420341). [24]
- Unfortunately, the deprotection-cyclization of multi-domino reaction products was unsuccessful due to the poor solubility and/or instability of the deprotected alkynes.

- [25] a) S. N. Steinmann, C. Corminboeuf, J. Chem. Theory Comput. 2012, 8, 4305; b) H. Liu, É. Brémond, A. Prlj, J. F. Gonthier, C. Corminboeuf, J. Phys. Chem. Lett. 2014, 5, 2320.
- a) R. A. Marcus, Rev. Mod. Phys. 1993, 65, 599; b) P. F. Barbara, T. J. [26] Meyer, M. A. Ratner, J. Phys. Chem. 1996, 100, 13148. See Supporting Information for detailed mathematical equations.
- I. Yavuz, B. N. Martin, J. Park, K. N. Houk, J. Am. Chem. Soc. 2015, [27] 137. 2856.
- a) J. L. Bredas, D. Beljonne, J. Cornil, J. P. Calbert, Z. Shuai, R. Silbey, [28] Synth. Met. 2001, 125, 107; b) G. R. Hutchison, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 16866.
- B. Baumeier, F. May, C. Lennartz, D. Andrienko, J. Mater. Chem. 2012, [29] 22, 10971.
- [30] V. Ruhle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, D. Andrienko, J. Chem. Theory Comput. 2011, 7, 3335.
 [31] V. Coropceanu, J. Cornil, D. A. da Silva, Y. Olivier, R. Silbey, J.-L. Bredas, Chem. Rev. 2007, 107, 926.
 [32] G. Gryn'ova, A. Nicolaï, A. Prlj, P. Ollitrault, D. Andrienko, C. Corrichertic I. Meter Chem. Control. 50207, 5020

- Corminboeuf, J. Mater. Chem. C 2017, 5, 350. [33] R. Bishop, CrystEngComm 2015, 17, 7448.
- a) T. K. An, S. H. Jang, S.-O. Kim, J. Jang, J. Hwang, H. Cha, Y. R. Noh, S. B. Yoon, Y. J. Yoon, L. H. Kim, D. S. Chung, S.-K. Kwon, Y.-H. [34]

Kim, S.-G. Lee, C. E. Park, Chem. Eur. J. 2013, 19, 14052; b) P. He, Z. Tu, G. Zhao, Y. Zhen, H. Geng, Y. Yi, Z. Wang, H. Zhang, C. Xu, J. Liu, X. Lu, X. Fu, Q. Zhao, X. Zhang, D. Ji, L. Jiang, H. Dong, W. Hu, *Adv.* Mater. 2015, 27, 825.

- B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887. [35]
- K. J. Thorley, C. Risko, *J. Mater. Chem. C* **2016**, *4*, 4040. Due to the higher symmetry of BTBT **3**, **TB** and **TT**, certain [36]
- [37] disordermers do not exist.
- G. Gryn'ova, C. Corminboeuf, J. Phys. Chem. Lett. 2016, 7, 5198. [38]
- Computed and experimental mobilitites should not be directly compared [39] with each other since the disorder and packing effects are ignored in the computational model.
- a) M. Mamada, H. Katagiri, M. Mizukami, K. Honda, T. Minamiki, R. [40] Group and State and Sta
- [41] compounds 12e and 12f led to lower value when compared with the computation results, probably due to the difficulty in controlling the disordermers population. See Supporting information for more details.

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

Thienoacenes and furoacenes are among the most frequent molecular units found in organic materials. Herein, we report a flexible and efficient synthesis of heterotetracenes based on a platinum- and gold- catalyzed cyclization-alkynylation domino process using EthynylBenziodoXole (EBX) hypervalent iodine reagents as key step, as well the *in silico* estimation of the synthesized tetracenes' charge transport

Yifan Li, Ganna Gryn'ova, Felipe Saenz, Xavier Jeanbourquin, Kevin Sivula, Clémence Corminboeuf*, Jérôme Waser*

Page No. – Page No.

Heterotetracenes: Flexible Synthesis and *in Silico* Assessment of the Hole Transport Properties

Heterotetracenes: Flexible Synthesis and Hole Transport Assessment Based on Computations

Assessment Based on Computations Yifan Li,^a Ganna Gryn'ova,^b Felipe Saenz,^a Xavier Jeanbourquin,^c Kevin Sivula,^c Clémence Corminboeuf^b* and Jérôme Waser^a*

(160 pages)

Table of Contents

1. Computational Details	S2
2. Properties Measurements	S 9
3. General Synthetic Methods	S 11
4. Preparation of Reagents	S12
5. Synthesis of Starting Materials	S 16
6. Domino Cyclization Alkynylation	S29
7. Tetracene Synthesis	S40
8. Spectra for New Compounds	S47
9. Thin film X-ray diffraction of selected compounds	S131
APPENDIX 1: Optimized geometries of all species	S132

1. Computational Details

Geometries of all heterotetracene and thienothiophene monomers were optimized at the PBE0/def2SVP level using Gaussian 09 software package.¹ Electronic energies of the monomers and the respective cation radicals in optimized and vertical geometries were computed at the same level of theory. Geometries of their parallel π -stacked dimers were optimized at the PBE0-dDsC²/def2SVP level using the development version of Q-Chem.³ For systems with C_{2h} symmetry two dimer geometries were considered – co- and antifacial, whilst for monomers with lower symmetry four different monomer orientations in the dimer geometry were studied. For all species, vibrational frequencies analysis was performed to confirm they were the minima on the potential energy surfaces.

¹ Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

² Steinmann, S. N.; Corminboeuf, C. Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. J. Chem. Theory Comput. **2011**, *7*, 3567-3577.

³ QChem 4.0, Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kuś, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; DiStasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O'Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y.-C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X;. A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Voorhis, T. V.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Advances in Molecular Quantum Chemistry Contained in The Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184-215.

The 'frozen' dimer geometry for a given core was obtained as follows: a coplanar cofacial dimer was generated from the optimized monomer geometry with zero longitudinal and transversal shifts, zero rotations and interplanar distances (*d*) in the range of 3.0-4.0Å with a step size of 0.1Å. The energy for each *d* was evaluated using the zeroth order symmetry adapted perturbation theory (SAPTO) with a jun-cc-pVDZ basis set⁴ using the Psi4-Beta5 code.⁵ For the lowest energy dimer, the energy decomposition analysis of the total interaction energy E_{tot} into the exchange E_{exch} , electrostatic E_{elst} , dispersion E_{disp} and induction E_{ind} components at the SAPTO/jun-cc-pVDZ level was complimented by distributed multipole analysis (DMA)⁶ at the HF/6-311G** level using MOLPRO⁷ and evaluation of the charge penetration, E_{CPen} , ⁸ as the difference between E_{elst} and E_{DMA} . These analyses werfe also performed for the optimized cofacial disordermers.

The hole transport rates were estimated using the Marcus-Hush theory for the hopping charge transfer mechanism:⁹

$$k_{+} = \frac{4\pi^2}{h} \frac{1}{\sqrt{4\pi\lambda_+ k_B T}} t_+^2 \exp(-\frac{\lambda_+}{4k_B T}),$$
 Eq. 1

where λ_+ is the reorganization energy, t_+ is the electronic coupling (hole transfer integral), *h* is the Planck's constant, k_B is the Boltzmann constant and *T* is the absolute temperature. The reorganization energies were evaluated as

$$\lambda_{+} = \left(E_{cation geom.}^{charge=0} - E_{neutral geom.}^{charge=0} \right) + \left(E_{neutral geom.}^{charge=+1} - E_{cation geom.}^{charge=+1} \right), \qquad \text{Eq. 2}$$

⁴ Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. *Chem. Rev.* **1994**, *94*, 1887-1930.

⁵ Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.; Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.; Leininger, M. L.; Janssen, C. L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F.; King, R. A.; Valeev, E. F.; Sherrill, C. D.; Crawford, T. D. PSI4: An Open-Source Ab Initio Electronic Structure Program. *WIREs Comput. Mol. Sci.* **2012**, *2*, 556-565.

⁶ (a) Stone, A. J. Distributed Multipole Analysis, Or How to Describe a Molecular Charge Distribution. *Chem. Phys. Lett.* **1981**, *83*, 233-239. (b) We thank Mr T. Parker and Prof C. D. Sherrill for their in-house code for DMA computations.

⁷ **Molpro 2012.1**, Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O'Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.

⁸ Hohenstein, E. G.; Duan, J.; Sherrill, C. D. Origin of the Surprising Enhancement of Electrostatic Energies by Electron- Donating Substituents in Substituted Sandwich Benzene Dimers. *J. Am. Chem. Soc.* **2011**, *133*, 13244–13247.

⁹ (a) Marcus, R. A. Electron Transfer Reactions In Chemistry. Theory And Experiment. *Rev. Mod. Phys.* **1993**, *65*, 599-610. (b) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. Contemporary Issues in Electron Transfer Research. J. Phys. Chem. **1996**, *100*, 13148-13168.

where the electronic energies, *E*, of the charged and neutral counterparts in the optimized (adiabatic) and single-point (vertical) geometries were computed using the PBE0-D3BJ/def2SVP method. The corresponding effective transfer integrals, t_+ , were computed for each dimer as

$$\boldsymbol{t}_{+} = \frac{J - S^{\frac{\varepsilon_{1} + \varepsilon_{2}}{2}}}{1 - S^{2}},$$
 Eq. 3

where *J* is the charge transfer integral, *S* is the overlap integral, ε_1 and ε_2 are the cite energies for the hole transport.¹⁰ These quantities were obtained at the PBE0-dDsC/DZP level of theory using the direct quantum-mechanical approach, implemented in ADF2014,¹¹ which utilizes the orthogonalized orbitals of each monomer fragment as the basis for the dimer's Hamiltonian. The drift hole mobility, μ_+ , were evaluated using the Einstein relation¹²

$$\boldsymbol{\mu}_{+} = \frac{D}{k_{B}T},$$
 Eq. 4

in which the diffusion coefficient of the charge carriers D is equal to

$$\boldsymbol{D} = \frac{d^2 k_+}{2},$$
 Eq. 5

where d is the length of the hole transfer. This length was estimated as an average interplanar distance between the monomers in the optimized dimer geometry.

¹⁰ Wen, S.-H.; Li, A.; Song, J.; Deng, W.-Q.; Han, K.-L.; Goddard, W. A. First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors. *J. Phys. Chem. B* **2009**, *113*, 8813-8819.

¹¹ **ADF2014**, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; Franchini, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S. J. A.; Götz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Kaminski, J. W.; van Kessel, G.; Kootstra, F.; Kovalenko, A.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Mitoraj, M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodríguez, J. I.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L.

¹² (a) Cornil, J.; Beljonne, D.; Calbert, J.-P.; Brédas, J.-L. Interchain Interactions in Organic p-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport. *Adv. Mater.* **2001**, *13*, 1053-1067. (b) Atkins, P. W. Physical Chemistry, 5th ed.; Oxford University Press: Oxford, U.K.; **1994**.

Table S1. Vertical and adiabatic ionization potentials and electron affinities, as well as the reorganization energies (all in eV), corresponding to the hole and electron transfer, computed from the PBE0/def2SVP electronic energies.

Cora	IF)	1	E	1	
Core	vertical	adiabatic	λ_+ —	vertical	adiabatic	λ_{-}
			E_e			
12a	7.49	7.38	0.21	0.13	0.01	0.26
12b	7.43	7.34	0.17	-0.01	-0.13	0.24
12e	7.52	7.44	0.17	0.09	-0.05	0.28
12f	7.60	7.50	0.23	0.30	0.17	0.28
12g	7.49	7.41	0.17	0.29	0.18	0.24
12h	7.60	7.50	0.19	0.31	0.20	0.22
12i	7.55	7.44	0.23	0.17	0.04	0.26
12j	7.45	7.34	0.22	0.02	-0.09	0.24
13a	7.47	7.33	0.29	0.12	-0.02	0.28
13b	7.54	7.42	0.27	0.30	0.18	0.24
BTBT	7.43	7.32	0.22	-0.02	-0.17	0.29
ТВ	7.38	7.29	0.17	-0.12	-0.23	0.22
TT	7.33	7.17	0.32	0.06	-0.09	0.29

Table S2. Computed classical electrostatic interaction energies (E_{DMA} @ HF/6-311G**, eV), SAPT0/jun-cc-pVDZ total interaction energies and their components (eV), charge penetration energies (E_{CPen} , eV), geometrical parameters (interplanar distances *d*, longitudinal shifts r_1 and transversal shifts r_v , Å) in the PBE0-dDsC/def2SVP optimized cofacial and 'frozen' cofacial dimer geometries.

Core	$E_{\rm DMA}$	$E_{\rm elst}$	$E_{\rm exch}$	E_{ind}	$E_{ m disp}$	$E_{ m tot}$	$E_{\rm CPen}$	d	r_1	$r_{\rm v}$	
Core		optimized cofacial									
12a	0.11	-0.56	1.47	-0.12	-1.53	-0.75	-0.68	3.27	1.51	0.12	
12b	0.09	-0.63	1.60	-0.14	-1.69	-0.86	-0.72	3.29	1.62	0.30	
12e	0.08	-0.64	1.59	-0.13	-1.64	-0.81	-0.71	3.30	1.62	0.20	
12f	0.09	-0.57	1.43	-0.12	-1.48	-0.74	-0.66	3.29	1.59	0.30	
12g	0.09	-0.62	1.55	-0.13	-1.61	-0.81	-0.71	3.32	1.59	0.18	
12h	0.11	-0.55	1.42	-0.12	-1.44	-0.70	-0.66	3.26	1.36	0.66	
12i	0.10	-0.55	1.43	-0.12	-1.46	-0.70	-0.65	3.28	1.45	0.33	
12j	0.06	-0.64	1.55	-0.13	-1.63	-0.85	-0.70	3.29	1.74	0.27	
13a	0.10	-0.58	1.44	-0.12	-1.46	-0.72	-0.68	3.32	1.68	0.27	
13b	0.05	-0.66	1.55	-0.12	-1.58	-0.81	-0.71	3.32	1.67	0.25	
BTBT	0.06	-0.65	1.57	-0.13	-1.63	-0.84	-0.71	3.29	1.63	0.48	
TB	0.13	-0.66	1.73	-0.16	-1.81	-0.89	-0.79	3.27	1.72	0.11	
TT	0.00	-0.68	1.50	-0.11	-1.52	-0.81	-0.68	3.30	1.86	0.09	
					'froz	zen'					
12a	0.14	-0.11	0.61	-0.02	-0.96	-0.48	-0.25	3.70	0.00	0.00	
12b	0.17	-0.14	0.76	-0.03	-1.10	-0.52	-0.31	3.70	0.00	0.00	
12e	0.15	-0.09	0.59	-0.03	-0.95	-0.48	-0.24	3.80	0.00	0.00	
12f	0.16	-0.12	0.66	-0.03	-0.95	-0.44	-0.27	3.70	0.00	0.00	

-

12g	0.15	-0.10	0.59	-0.03	-0.94	-0.48	-0.24	3.80	0.00	0.00
12h	0.14	-0.13	0.66	-0.03	-0.93	-0.43	-0.27	3.70	0.00	0.00
12i	0.14	-0.12	0.66	-0.03	-0.94	-0.43	-0.27	3.70	0.00	0.00
12j	0.16	-0.18	0.80	-0.03	-1.08	-0.49	-0.33	3.70	0.00	0.00
13a	0.14	-0.12	0.63	-0.03	-0.93	-0.46	-0.26	3.80	0.00	0.00
13b	0.14	-0.12	0.63	-0.03	-0.93	-0.46	-0.26	3.80	0.00	0.00
BTBT	0.14	-0.10	0.59	-0.03	-0.95	-0.49	-0.24	3.80	0.00	0.00
ТВ	0.18	-0.11	0.71	-0.03	-1.12	-0.55	-0.29	3.70	0.00	0.00
TT	0.13	-0.15	0.66	-0.03	-0.91	-0.44	-0.27	3.80	0.00	0.00

Table S3. Computed effective hole transfer integrals t_+ (PBE0-dDsC/DZP, in eV), hopping rates k_+ (in s⁻¹), hole mobilities μ_+ (in cm²V⁻¹s⁻¹) and interplanar distances *d* (in Å) in the PBE0-dDsC/def2SVP optimized cofacial and various antifacial dimer geometries (disordermers), and in 'frozen' cofacial dimers.

Coro	t_+	k_+	$\mu_{\scriptscriptstyle +}$	d	t_+	k_+	$\mu_{\scriptscriptstyle +}$	d		
Cole		cofa	cial		antifacial_y					
12a	0.029	3.84×10^{12}	0.080	3.273	0.179	1.47×10^{14}	3.030	3.254		
12b	0.153	1.73×10^{14}	3.644	3.294	0.114	9.62×10^{13}	2.000	3.269		
12e	0.142	1.66×10^{14}	3.529	3.303	0.152	1.90×10^{14}	3.960	3.270		
12f	0.091	3.02×10^{13}	0.635	3.285	0.139	7.01×10^{13}	1.467	3.279		
12g	0.213	3.38×10^{14}	7.268	3.323	0.162	1.98×10^{14}	4.266	3.332		
12h	0.157	1.47×10^{14}	3.032	3.258	0.128	9.84×10^{13}	2.049	3.272		
12i	0.067	1.61×10^{13}	0.339	3.282	0.204	1.50×10^{14}	3.131	3.273		
12j	0.053	1.19×10^{13}	0.250	3.286	0.382	6.27×10^{14}	13.773	3.360		
13a	0.193	6.93×10 ¹³	1.485	3.317	0.154	4.43×10^{13}	0.955	3.330		
13b	0.079	1.52×10^{13}	0.326	3.323	0.392	3.76×10^{14}	8.518	3.412		
BTBT	0.070	2.04×10^{13}	0.431	3.293	0.264	2.89×10^{14}	6.182	3.316		
TB	0.208	3.24×10^{14}	6.719	3.266	0.093	6.50×10^{13}	1.363	3.283		
TT	0.265	8.83×10^{13}	1.869	3.298	0.343	1.48×10^{14}	3.195	3.329		
		antifac	cial_z		antifacial_yz					
12a	0.153	1.07×10^{14}	2.201	3.253	0.033	5.03×10^{12}	0.102	3.226		
12b	0.288	6.14×10^{14}	12.984	3.297	0.031	7.07×10^{12}	0.149	3.292		
12e	0.222	4.08×10^{14}	8.609	3.293	0.147	1.79×10^{14}	3.899	3.346		
12f	0.338	4.17×10^{14}	8.932	3.319	0.075	2.05×10^{13}	0.431	3.286		
12g	0.144	1.54×10^{14}	3.259	3.294	0.171	2.19×10^{14}	4.803	3.358		
12h	0.128	9.84×10^{13}	2.051	3.273	0.065	2.52×10^{13}	0.519	3.255		
12i	0.140	6.99×10^{13}	1.456	3.271	0.014	7.47×10^{11}	0.015	3.238		
12j	0.354	5.39×10^{14}	11.858	3.362	0.094	3.76×10^{13}	0.797	3.299		
13a	0.305	1.73×10^{14}	3.715	3.320	0.279	1.46×10^{14}	3.035	3.271		
13b	0.276	1.86×10^{14}	4.053	3.344	0.147	5.30×10^{13}	1.118	3.293		
		'frozen' o	cofacial							
12a	0.252	2.91×10^{14}	7.747	3.700						
12b	0.296	6.45×10^{14}	17.183	3.700						
12e	0.264	5.75×10^{14}	16.171	3.800						

12f	0.285	2.96×10^{14}	7.876	3.700
12g	0.267	5.36×10^{14}	15.050	3.800
12h	0.276	4.53×10^{14}	12.081	3.700
12i	0.268	2.58×10^{14}	6.885	3.700
12j	0.272	3.18×10^{14}	8.462	3.700
13a	0.221	9.08×10^{13}	2.553	3.800
13b	0.241	1.42×10^{14}	3.989	3.800
BTBT	0.262	2.85×10^{14}	8.016	3.800
TB	0.274	5.62×10^{14}	14.976	3.700
TT	0.215	5.84×10 ¹³	1.641	3.800

Table S4. Computed electronic energies and zero point vibrational energies (at the PBE0-D3BJ/def2SVP level, all in Hartrees) for the neutral, cation radical and anion radical cores in the optimized and single point neutral geometries.

geom.	0,1	0,1	+1,2	+1,2	0,1	-1,2	-1,2
c,m ^a	0,1	+1,2	+1,2	0,1	-1,2	-1,2	0,1
Core				E_e			
12a	-689.73391	-689.45881	-689.46268	-689.72996	-689.72896	-689.73370	-689.72909
12b	-1012.59053	-1012.31750	-1012.32064	-1012.58726	-1012.59085	-1012.59526	-1012.58600
12e	-1333.23795	-1332.96172	-1332.96464	-1333.23480	-1333.23455	-1333.23961	-1333.23287
12f	-1010.37952	-1010.10007	-1010.10404	-1010.37496	-1010.36835	-1010.37345	-1010.37440
12g	-1333.23865	-1332.96322	-1332.96629	-1333.23536	-1333.22789	-1333.23218	-1333.23426
12h	-1010.38146	-1010.10230	-1010.10573	-1010.37786	-1010.37012	-1010.37417	-1010.37736
12i	-1010.38045	-1010.10293	-1010.10716	-1010.37611	-1010.37408	-1010.37881	-1010.37565
12j	-1333.22718	-1332.95330	-1332.95731	-1333.22317	-1333.22638	-1333.23063	-1333.22265
13a	-1653.87435	-1653.59978	-1653.60507	-1653.86901	-1653.87005	-1653.87513	-1653.86922
13b	-1653.87506	-1653.59780	-1653.60243	-1653.86990	-1653.86418	-1653.86857	-1653.87058
BTBT	-1333.23387	-1332.96082	-1332.96484	-1333.22975	-1333.23477	-1333.24005	-1333.22855
TB	-691.87823	-691.60705	-691.61018	-691.87501	-691.88259	-691.88651	-691.87401
TT	-1974.46287	-1974.19332	-1974.19931	-1974.45696	-1974.46070	-1974.46601	-1974.45747

^a charge, spin multiplicity

Figure S1. Results of the energy decomposition analysis and computed hole transfer integrals and geometric parameters for the optimized and 'frozen' cofacial dimers.

2. Hole Mobility Measurements.

To provide preliminary experimental verification of the ability of the synthesized heterotetracenes to transport holes, an estimation of the charge carrier mobility of selected molecules was performed on thin films using the space-charge limited current technique, which has been previously employed for acenes.¹³ Molecules **12e** and **12f** were chosen due to the presence of the alkyl functionalization, which facilitated thin film formation. Hole-only devices were prepared on SiO₂ substrates with Au contacts in a lateral architecture.¹⁴ Both molecules gave reproducible current-voltage behaviour, confirming the ability to conduct charges though the film (Figure S2, **A**). Correcting the current-voltage (I-V) data for contact resistance gave curves that showed the typical ohmic behaviour up to ca. 10 V,¹³ and at higher voltages the data fit well to the space-charge limited currents model using the Mott-Gurney relation (Figure S2, **B**).¹⁵

The estimated mobility was 27.5 x 10^{-3} and 6.02 x 10^{-3} cm²V⁻¹s⁻¹ for **12e** and **12f**, respectively. We note that the relative trend between the molecules corresponds well to mobility estimated by computation (Table S3). On the other hand, the measured values are nearly three orders of magnitude lower than estimated by the computational method. This is not surprising, when considering that computations were performed on well-ordered π -stacked dimers – an ideal case usually not occurring in real melt-processed thin films. Furthermore, extrinsic factors (e.g. defects and traps in the film, environment, etc.) also influence the transport efficiency.¹⁶ When compared to BTBT (3), X-ray diffraction of thin films of **12e** and **12f** (See Section 9 of this supporting information) showed a smaller packing distance of the π -stacked lamella, which is probably also due to the different alkyl chain substitution. Indeed, the optimization of alkyl-side chain length and position is known to be important for thin-film charge carrier mobility, as it has a profound influence on solid-state structure.¹⁷

Experimental details:

Hole-only devices were fabricated using a lateral architecture with Au as hole-selective electrodes on a silicon oxide substrate. The space between the two electrodes was set to 20 μ m and the contact thickness was 30 nm over a length of 1 cm. The active material was deposited by melting the materials at 140 °C before placing an OTS-treated SiO₂ substrate on top as a confining layer. Once cooled down to RT the confining layer was removed prior to measurements. Electronic testing of the device was carried out using a custom-built probe station and a Keithley 2612A unit. Device fabrication and testing was performed under inert atmosphere, respectively, in an argon and a nitrogen filled glovebox.

¹³ J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452; c) Handbook of Thiophene-Based Materials, I.

F. Perepichka, D. F. Perepichka, ed., Wiley-VCH, Weinheim, Germany, 2009.

¹⁴ O. D. Jurchescu, T. T. M. Palstra, Appl. Phys. Lett. **2006**, 88, 122101.

¹⁵ K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 2014, 47, 1493.

¹⁶ H. Sirringhaus, *Adv. Mater.* **2009**, *21*, 3859.

¹⁷ J. E. Anthony, *Chem. Rev.* **2006**, *106*, 5028.

Effective voltage (V) Figure S2. IV curves of hole-only diodes with 12e and 12f as the active layer. (a) Raw data and (b) data corrected for contact resistance. Red lines indicate the fitting.

3. General Synthetic Method.

All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless stated otherwise. For quantitative flash chromatography technical grade solvents were used. For flash chromatography for analysis, HPLC grade solvents from Sigma-Aldrich were used. THF, Et₂O, CH₃CN, toluene, hexane and CH₂Cl₂ were dried by passage over activated alumina under nitrogen atmosphere (H₂O content < 10 ppm, Karl-Fischer titration). The solvents were degassed by Freeze-Pump-Thaw method when mentioned. All chemicals were purchased from Acros, Aldrich, Fluka, VWR, Aplichem or Merck and used as such unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure.TLC was performed on Merck silica gel 60 F₂₅₄ TLC glass plates or aluminium plates and visualized with UV light, permanganate stain, CAN stain or Anisaldehyde stain. Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries, the data is uncorrected. ¹H-NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in chloroform-d, DMSO-d₆ or CD₃OD, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm, the internal DMSO signal at 2.50 ppm or the internal methanol signal at 3.30 ppm as standard. The data is being reported as (s = singlet, d = doublet, t = triplet, q = quadruplet, q = quintet, m = multiplet or unresolved, br = quadrupletbroad signal, app = apparent, coupling constant(s) in Hz, integration, interpretation).¹³C-NMR spectra were recorded with ¹H-decoupling on a Brucker DPX-400 100 MHz spectrometer in chloroform-d, DMSO-d₆ or CD₃OD, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm, the internal DMSO signal at 39.5 ppm or the internal methanol signal at 49.0 ppm as standard. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm 1 (w = weak, m = medium, s = strong, br = broad). Gas chromatographic and low resolution mass spectrometric measurements were performed on a Perkin-Elmer Clarus 600 gas chromatographer and mass spectrometer using a Perkin-Elemer Elite fused silica column (length: 30 m, diameter: 0.32 mm) and Helium as carrier gas. High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) O-TOF Ultima API. HPLC measurement were done on a JASCO HPLC system with an AS2055 Autosampler, a PU 2089 Pump, a UV 2075 detector and a SEDEX 85 (SEDERE) detector using a CHIRALPAK IC column from DAICEL Chemical Industries Ltd. HPLC grade solvents from Sigma-Aldrich were used.

4. Preparation of Reagents.

Triisopropylsilyl trimethylsilylacetylene (15)

$$= TMS \xrightarrow{\ ^{n}\text{BuLi, TIPSCI}} TMS \xrightarrow{\ THF} TMS \xrightarrow{\ THF} 14 \xrightarrow{\ -78^{\circ}\text{C} -> 0^{\circ}\text{C}} 15$$
overnight

Following a reported procedure,¹⁸ *n*-butyllithium (2.5 M in hexanes, 12.0 mL, 29.9 mmol, 0.98 equiv) was added dropwise to a stirred solution of ethynyltrimethylsilane (**14**) (3.0 g, 30 mmol, 1.0 equiv) in THF (48 mL) at -78 °C. The mixture was then warmed to 0 °C and stirred for 5 min. The mixture was then cooled back to -78 °C and chlorotri*iso*propylsilane (6.4 mL, 30 mmol, 1.0 equiv) was added dropwise. The mixture was then allowed to warm to room temperature and stirred overnight. A saturated solution of ammonium chloride (40 mL) was added, and the reaction mixture was extracted with diethyl ether (2 x 60 mL). The organic layer was washed with water and brine, then dried over MgSO₄, filtered and concentrated under reduced pressure to obtain a colorless liquid which was further purified by Kugelrohr distillation (56-57°C/0.25 mmHg) to yield **15** (7.16 g, 28.0 mmol, 92% yield) as colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 1.08 (m, 21 H, TIPS), 0.18 (s, 9 H, TMS). IR v 2959 (m), 2944 (m), 2896 (w), 2867 (m), 1464 (w), 1385 (w), 1250 (m), 996 (w), 842 (s), 764 (s), 675 (m), 660 (m). Characterization data of **15** corresponded to the literature values.¹⁸

1-Chloro-1,3-dihydro-3,3-bis(trifluoromethyl)-1,2-benziodoxole (18)

Following a reported procedure,¹⁹ TMEDA (distilled over KOH) (1.26 mL, 8.20 mmol, 0.2 equiv) was added to a solution of ^{*n*}BuLi (2.5 M in hexanes, 36.6 mL, 91.6 mmol, 2.2 equiv). After 15 min, the cloudy solution was cooled to 0 °C and **16** (7.0 mL, 42 mmol, 1 equiv) in THF (6 mL) was added dropwise. The reaction was stirred 30 min at 0 °C and then at RT overnight. I₂ (11.2 g, 44.0 mmol, 1.06 equiv) was then added portion wise at 0 °C and the mixture stirred at 0 °C for 30 min and 4 h at RT. The reaction was quenched with saturated NH₄Cl. Et₂O (100 mL) was added and the layers were separated. The aqueous layer was then extracted twice with Et₂O (3 x 50 mL). The organic layers were combined, washed twice with saturated NaS₂O₃ (2 x 50 mL), dried over MgSO₄, filtered and reduced to afford 15.6 g of **17** as brown oil which was used without further purification.

The crude oil was dissolved in wet CH_2Cl_2 (40 mL) in the dark under air. ^{*t*}BuOCl (5.2 mL, 44 mmol, 1.05 equiv) was then added dropwise at 0 °C. After 30 min, the resulting suspension was filtered to afford **18** (7.30 g, 18.1 mmol, 43%) as a yellow solid. The mother liquors were carefully reduced to one third and filtered to afford **18** (3.51 g, 8.71 mmol, 21%) as a yellow

¹⁸ C. J. Helal, P. A. Magriotis, E. J. Corey, *J. Am. Chem. Soc.***1996**, *118*, 10938.

¹⁹ E. F. Perozzi, R. S Michalak, G. D. Figuly, W. H. Stevenson, D. Dess, M. Rose, J. C. Martin, *J. Org. Chem.* **1981**, *46*, 1049.

solid. Combined yield: 64%. Mp 167 – 169°C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, 1 H, *J* = 8.4 Hz, ArH), 7.85 (m, 1 H, ArH), 7.73 (m, 2 H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 133.8, 132.1, 131.6, 129.7, 128.5, 122.8 (q, 289 Hz), 113.4, 84.8. Characterization data of **18** corresponded to the literature values.¹⁹

1-Hydroxy-3,3-bis(trifluoromethyl)-3-(1H)-1,2-benziodoxole (19)

Following a preported procedure,²⁰ Et₃BnNCl (83 mg, 0.36 mmol, 0.05 equiv) was added to a stirring solution of **18** (10.7 g, 26.5 mmol, 1 equiv) in CH₂Cl₂ (150 mL) and KOH (1.48 g, 26.5 mmol, 1 equiv) in water (28 mL). The reaction was kept under air until TLC indicated that all starting material was consumed. The organic layer was separated and dried over MgSO₄. The resulting solid was purified over a silica plug eluting with EtOAc, then recristallized in EtOAC and washed with pentane to afford **19** (7.42 g, 19.2 mmol, 73%) as white solid. ¹H NMR (400 MHz, DMSO) δ 7.96 (m, 2 H, ArH), 7.73 (m, 2 H, ArH). ¹³C NMR (101 MHz, DMSO) δ 133.3, 131.0, 130.8, 128.9, 127.9, 123.4 (q, *J* = 290 Hz), 117.2, 83.7 (m). IR 1464 (w), 1435 (w), 1290 (w), 1263 (m), 1185 (s), 1139 (s), 1103 (m), 1041 (w), 1021 (w), 952 (s), 760 (m), 730 (m), 692 (m).

1-[(Triisopropylsilyl)ethynyl]-3,3-bis(trifluoromethyl)-3(1H)-1,2-benziodoxole (7a)

TMSOTf (3.80 g, 17.1 mmol, 1.1 equiv) was added to **19** (6.00 g, 15.5 mmol, 1.0 equiv) in CH₂Cl₂ (200 mL) at RT. After 20 min, the solution was concentrated at 0 °C under reduced pressure. After evaporation of the solvent, the reaction flask was directly filled with Ar, to prevent decomposition of the hygroscopic triflate intermediate. Then the resulting yellow solid was dissolved in CH₃CN (200 mL). (Trimethylsilyl)(tri*iso*-propylsilyl)acetylene (**15**) (5.14 g, 20.2 mmol, 1.3 equiv) was added and after 20 min several drops of pyridine was added. The reaction was then concentrated under vacuum, dissolved in Et₂O and filtered over a silica plug (eluant Et₂O). The resulting solid was recrystallized from pentane to afford **7a** (5.43 g, 9.87 mmol, 64%) as white crystals.

Rf (PET/Et₂O 95/5): 0.4. Mp 131 – 132°C. ¹H NMR (400 MHz, CDCl₃) (*ca* 0.10 mmol/mL) δ 8.36 (dd, 1 H, *J* = 7.9, 1.7 Hz, ArH), 7.84 (d, 1 H, *J* = 6.7 Hz, ArH), 7.68 (m, 2H, ArH), 1.15 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 132.7, 131.1, 129.9, 129.9 (m), 128.2, 123.6 (q, 288 Hz), 112.1, 110.8, 81.4 (m), 69.7, 18.5, 11.2. IR 2947 (m), 2868 (m), 2249 (w), 1566 (w), 1465 (m), 1438 (w), 1387 (w), 1264 (s), 1218 (m), 1184 (s), 1149 (s), 1071 (w), 994 (w), 951 (s), 910 (m), 873 (w), 732 (s), 696 (s), 655 (s), 655 (s). HRMS(ESI) calcd for C₂₀H₂₆OF₆ISi⁺ (M+H) 551.0702, found 551.0723.

²⁰ A. J. Blake, A. Novak, M. Davies, R. I. Robinson, S. Woodward, Synth. Commun. 2009, 39, 1065.

1-Hydroxy-1,2-benziodoxol-3-(1H)-one (21)

Following the reported procedure,²¹ NaIO₄ (7.24 g, 33.8 mmol, 1.05 equiv) and 2-iodobenzoic acid (**20**) (8.00 g, 32.2 mmol, 1.00 equiv) were suspended in 30% (v:v) aq. AcOH (48 mL). The mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted with cold water (180 mL) and allowed to cool to rt, protecting it from light. After 1 h, the crude product was collected by filtration, washed on the filter with ice water (3 x 20 mL) and acetone (3 x 20 mL), and air-dried in the dark to give the pure product **21** (8.3 g, 31 mmol, 98%) as colorless solid.

¹H NMR (400 MHz, (CD₃)₂SO) δ 8.02 (dd, 1 H, *J* = 7.7, 1.4 Hz, ArH), 7.97 (m, 1 H, ArH), 7.85 (dd, 1 H, *J* = 8.2, 0.7 Hz, ArH), 7.71 (td, 1 H, *J* = 7.6, 1.2 Hz, ArH); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 167.7, 134.5, 131.5, 131.1, 130.4, 126.3, 120.4; IR v 3083 (w), 3060 (w), 2867 (w), 2402 (w), 1601 (m), 1585 (m), 1564 (m), 1440 (m), 1338 (s), 1302 (m), 1148 (m), 1018 (w), 834 (m), 798 (w), 740 (s), 694 (s), 674 (m), 649 (m); Characterization data of **16** corresponded to the literature values.²¹

1-[(Triiso-propylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (TIPS-EBX, 7b)

Following a reported procedure,²² 2-iodosylbenzoic acid (**21**) (21.7 g, 82.0 mmol, 1.0 equiv) was charged in oven-dried three-neck 1L flask equipped with a magnetic stirrer. After 3 vacuum/nitrogen cycles, anhydrous acetonitrile (500 mL) was added via canula and cooled to 0 °C. Trimethylsilyltriflate (16.4 mL, 90.0 mmol, 1.1 equiv) was added dropwise via a dropping funnel over 30 min (no temperature increase was observed). After 15 min, (trimethylsilyl)(tri*iso*propylsilyl)acetylene (**15**) (23.0 g, 90.0 mmol, 1.1 equiv) was added via canula over 15 min (no temperature increase was observed). After 30 min, the suspension became an orange solution. After 10 min, pyridine (7.0 mL, 90 mmol, 1.1 equiv) was added via syringe. After 15 min, the reaction mixture was transferred in a one-neck 1L flask and reduced under vacuum until a solid was obtained. The solid was dissolved in DCM (200 mL) and transferred in a 1L separatory funnel. The organic layer was added and washed with 1 M HCl (200 mL) and the aqueous layer was extracted with CH₂Cl₂ (200 mL). The organic layers were combined, washed with a saturated solution of NaHCO₃ (2 x 200 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. Recrystallization from acetonitrile (*ca* 120 mL) afforded **7b** (30.1 g, 70.2 mmol, 86%) as colorless crystals.

Melting point (Dec.) 170-176°C

²¹ L. Kraszkiewicz, L. Skulski, Arkivoc, **2003**, *6*, 120.

²² J. P. Brand. J. Waser, Angew. Chem., Int. Ed. 2009, 49, 7304.

¹H NMR (400 MHz, CDCl3) δ 8.44 (m, 1 H, ArH), 8.29 (m, 1 H, ArH), 7.77 (m, 2 H, ArH), 1.16 (m, 21 H, TIPS). ¹³C NMR (100 MHz, CDCl3) δ 166.4, 134.6, 132.3, 131.4, 131.4, 126.1, 115.6, 114.1, 64.6, 18.4, 11.1. IR v 2943 (m), 2865 (m), 1716 (m), 1618 (m), 1604 (s), 1584 (m), 1557 (m), 1465 (m), 1439 (w), 1349 (m), 1291 (m), 1270 (w), 1244 (m), 1140 (m), 1016 (m), 999 (m), 883 (m), 833 (m), 742 (m), 702 (s), 636 (m); Melting point (Dec.) 170-176°C; Characterization data of **7b** corresponded to the literature values.²²

Phenyl(triisopropylsilyl)iodonium triflate (7c)

Following a slight modification of the reported procedure,²³ phenyliodonium diacetate (**22**) (2.53 g, 7.85 mmol, 1.00 equiv) was diluted with DCM (7 mL) and the mixture was stirred for 5 minutes. Tf₂O (0.60 mL, 3.9 mmol, 0.50 equiv.) was added dropwise at 0 °C and the resulting yellow mixture was stirred 30 min. (Trimethylsilyl)(tri*iso*propylsilyl)acetylene (**15**) (2.00 g, 7.86 mmol, 1.00 equiv) was added and the mixture was then stirred 2 h. Water was then added (30 mL) followed by extraction of the aqueous layer with DCM (2 x 30 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. The resulting solid was triturated in hexane (10 mL). Filtration and removal of solvent *in vacuo* afforded phenyl(tri*iso*propylsilyl)iodonium triflate (**7c**) (2.90 g, 11.2 mmol, 70% yield) as colorless solid.

Melting point: 109 – 114°C.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (m, 2 H, ArH), 7.65 (m, 1 H, ArH), 7.52 (m, 2 H, ArH), 1.15-1.01 (m, 21 H, TIPS); ¹³C NMR (100 MHz, CDCl₃) δ 133.7, 132.5, 132.4, 119.7, 117.6, 117.6, 44.9, 18.3, 11.1; IR v 3288 (w), 3088 (m), 2949 (m), 2894 (m), 2869 (w), 1563 (m), 1467 (w), 1451 (w), 1388 (w), 1281 (s), 1236 (s), 1221 (s), 1174 (s), 1068 (w), 1028 (s), 988 (m), 916 (m), 884 (m), 736 (s), 679 (m), 639 (s); HRMS (ESI) calcd for $C_{17}H_{26}ISi^+$ (M-OTf) 385.0843; found 385.0812; Characterization data of **7c** corresponded to the literature values.²²

²³ T. Kitamura, M. Kotani, Y. Fujiwara, Y, Synthesis, **1998**, 10, 1416.

5. Synthesis of starting materials

((5-Hexylthiophen-2-yl)ethynyl)triisopropylsilane (24)

According to our previous report,²⁴ 2-hexylthiophene (**23**) (72 μ L, 0.40 mmol, 1 equiv) was added to a stirring solution of AuCl (4.6 mg, 0.020 mmol, 0.05 equiv) in CH₃CN (2 mL) under air. After 2 min, TFA (36 μ L, 0.48 mmol, 1.2 equiv) and **7b** (206 mg, 0.480 mmol, 1.2 equiv) were added. The reaction was sealed and stirred at RT for 14 h. Et₂O (10 mL) was added, the organic layer was washed twice with 0.1 M NaOH (15 mL). The aqueous layers were combined and extracted with Et₂O (20 mL). The organic layers were combined, washed with saturated NaHCO₃ (20 mL), brine (20 mL), dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (pentane) to afford **24** (116 mg, 0.333 mmol, 83%) as slightly yellow oil.

¹H NMR δ 7.08 (d, *J* = 3.5 Hz, 1 H, ArH), 6.65 (d, *J* = 3.5 Hz, 1 H, ArH), 2.80 (t, *J* = 7.5 Hz, 2 H, hexylH), 1.68 (m, 2 H, hexylH), 1.44-1.30 (m, 6 H, hexylH), 1.15 (m, 21 H, TIPS), 0.93 (t, *J* = 6.1 Hz, 3 H, hexylH). ¹³C NMR δ 148.1, 132.4, 123.9, 121.0, 99.8, 94.3, 31.7, 31.6, 30.2, 28.7, 22.6, 18.7, 14.1, 11.4. Characterization data of **24** corresponded to the literature values.²⁴

((5-Hexylthiophen-2-yl)ethynyl)triisopropylsilane (25)

TBAF (1 M in THF, 0.98 mL, 0.98 mmol, 1.1 equiv) was added to a stirring solution of ((5-hexylthiophen-2-yl)ethynyl)tri*iso*propylsilane (**24**) (311 mg, 0.890 mmol, 1 equiv) in THF (10 mL) at 0 °C. After 1 h, a saturated solution of NH₄Cl (20 mL) was added. The mixture was extracted three times with Et₂O (3 x 20 mL). The organic layers were then combined, washed twice with saturated NH₄Cl, brine, dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (pentane) to afford **25** (157 mg, 0.816 mmol, 92 %) as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 3.6 Hz, 1 H, ArH), 6.64 (td, J = 3.6 Hz, 0.8 Hz, 1 H, ArH), 3.30 (s, 1 H, CH), 2.78 (t, J = 7.6 Hz, 2 H, CH₂), 1.66 (m, 2 H, CH₂), 1.33 (m, 6 H, CH₂), 0.90 (m, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 133.1, 124.0, 119.2, 80.4, 77.5, 31.5, 31.5, 30.2, 28.7, 22.6, 14.1. Characterization data of **25** corresponded to the literature values.²⁴

((5-Hexylfuran-2-yl)ethynyl)triisopropylsilane (27)

²⁴ J. P. Brand, J. Waser, Angew. Chem., Int. Ed. **2010**, 49, 7304.

According to our previous report.²⁵ **7b** (206 mg, 0.480 mmol, 1.20 equiv), AuCl (4.6 mg, 0.020 mmol, 0.050 equiv) and **26** (0.40 mmol, 1.0 equiv) were added into CH₃CN (1.0 mL) under air. The mixture was stirred for 26 hours at room temperature. The organic layer was washed with 1 M HCl (20 mL), the aqueous layer was extracted with CH₂Cl₂ (20 mL). The combined organic layers were washed with saturated Na₂CO₃ aqueous solution (20 mL), brine (20 mL), dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂; Pentane) to afford **27** as yellow oil (119 mg, 0.360 mmol, 90%).

¹H NMR (400MHz, CDCl₃) δ 6.50 (d, 1 H, *J* = 3.3 Hz, furanH), 5.95 (d, 1 H, *J* = 3.2 Hz, furanH), 2.60 (t, 2 H, *J* = 7.6 Hz, hexylH), 1.63 (t, 2 H, *J* = 6.9 Hz, hexylH), 1.32 (m, 6 H, hexylH), 1.12 (m, 21 H, TIPS), 0.89 (m, 3 H, hexylH); ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 135.4, 116.7, 105.9, 96.7, 95.3, 31.5, 28.8, 28.3, 27.8, 22.5, 18.6, 14.0, 11.3. Characterization data of **27** corresponded to the literature values.²⁵

2-Ethynyl-5-hexylfuran (28)

TBAF (1 M in THF, 0.48 mL, 0.48 mmol, 1.2 equiv) was added into a solution of **27** (133 mg, 0.400 mmol, 1.0 equiv) and dry THF (5 mL) at 0 °C. A saturated solution of NH₄Cl (20 mL) was added into the solution after 1 h. The aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic layers were dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (pentane) to afford **28** (55 mg, 0.31 mmol, 78%) as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 6.55 (d, 1 H, *J* = 3.3, furanH), 5.96 (dt, 1 H, *J* = 3.3, 0.8 Hz, furanH), 3.39 (s, 1 H, CH), 2.60 (t, 2 H, *J* = 7.6 Hz, hexylH), 1.64 (m, 2 H, hexylH), 1.31 (m, 6 H, hexylH), 0.89 (m, 3 H, hexylH). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 134.3, 117.1, 106.0, 81.3, 74.5, 31.5, 28.8, 28.2, 27.8, 22.5, 14.0. Characterization data of **28** corresponded to the literature values. ²⁵

(2-Ethynylphenyl)(methyl)sulfane (27)

Following a modified procedure,²⁶ **14** (0.68 mL, 4.8 mmol, 1.2 equiv.) was added into a solution of Pd(PPh₃)₄ (0.23 g, 0.20 mmol, 0.05 equiv.), butan-1-amine (0.47 mL, 4.8 mmol,

²⁵ Y. Li, J. P. Brand. J. Waser, Angew. Chem., Int. Ed. **2013**, 52, 6743.

²⁶ C. Chen, C. Chen, M. Wu, J. Org. Chem. 2014, 79, 4704.

1.2 equiv.), CuI (0.076 g, 0.40 mmol, 0.1 equiv.) and **29** (1.0 g, 4.0 mmol, 1.0 equiv.) in degased Et_2O (9 mL) and the mixture was stirred overnight. The reaction was quenched with sat. NH₄Cl (20 mL) and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to afford **30** as yellow oil (0.61 g, 2.7 mmol, 69%).

¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, 1 H, *J* = 7.6, 1.2 Hz, ArH), 7.05 (m, 1 H, ArH), 6.90 (d, 1 H, *J* = 8.0 Hz, ArH), 6.84 (td, 1 H, *J* = 7.6, 1.2 Hz, ArH), 2.24 (s, 3 H, CH₃), 0.12 (s, 9 H, TMS). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 132.5, 128.9, 124.0, 123.8, 121.0, 102.2, 101.2, 14.8, 0.01.

TBAF (1 M in THF, 5.1 mL, 5.1 mmol, 1.2 equiv) was added into a solution of **30** (994 mg, 0.426 mmol, 1.0 equiv) and dry THF (4 mL) at 0 °C. A saturated solution of NH₄Cl (20 mL) was added into the solution after 1 h. The aqueous layer was extracted with Et_2O (3 x 10 mL). The combined organic layers were dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (Pentane/DCM= 15:1) to afford **31** (505 mg, 3.41 mmol, 80%) as brown oil.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, 1 H, *J* = 7.6, 1.4 Hz, ArH), 7.29 (td, 1 H, *J* = 7.9, 1.5 Hz, ArH), 7.15-7.13 (m, 1 H, ArH), 7.07 (td, 1 H, *J* = 7.6, 1.4 Hz), 3.49 (s, 1 H, CH), 2.47 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 132.9, 129.1, 124.0, 124.0, 120.0, 83.4, 80.9, 14.9. Characterization data of **31** corresponded to the literature values.²⁶

2-(Phenylethynyl)phenol (8a)

Following a modified procedure,²⁷ **33** (0.76 g, 7.5 mmol, 1.5 equiv) was added into a solution of $Pd(PPh_3)_2Cl_2$ (0.11 g, 0.15 mmol, 0.03 equiv.), CuI (0.09 g, 0.5 mmol, 0.1 equiv), **32** (1.10 g, 5.00 mmol, 1.0 equiv) and diisopropylamine (0.71 mL, 5.0 mmol, 1.0 equiv) in degased benzene (25 mL) and the mixture was stirred for 2 h. Then, the reaction mixture was filtered on a celite pad and the solvent was removed under vacuum. The residue was dissolved in EtOAc and the resulting solution was washed with water (3 x 30 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to give **8a** as yellow oil (0.91 g, 4.7 mmol, 93%).

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.50 (m, 2 H, ArH), 7.46-7.42 (m, 1 H, ArH), 7.39-7.35 (m, 3 H, ArH), 7.32-7.28 (m, 1 H, ArH), 7.03-6.98 (m, 1 H, ArH), 6.92 (t, 1 H, *J* = 7.6 Hz, ArH), 5.84 (s, 1 H, OH).¹³C NMR (101 MHz, CDCl₃) δ 156.6, 131.8, 131.8, 130.6, 129.0, 128.7, 122.5, 120.6, 114.9, 109.7, 96.5, 83.2. Characterization data of **8a** corresponded to the literature values except one carbon at 131.8 ppm was missing in the literature.²⁸

2-(p-Tolylethynyl)phenol (8b)

Following a reported procedure,²⁹ **34** (0.23 g, 2.0 mmol, 2.0 equiv.) was added into a solution of Pd(PPh₃)₂Cl₂ (15 mg, 20 μ mol, 0.05 equiv.), CuI (8 mg, 0.04 mmol, 0.01 equiv.) and **32** (0.22 g, 1.0 mmol, 1.0 equiv.) in degased THF (10 mL) and Et₃N (2.5 mL). The reaction mixture was stirred for 18 h. The reaction was quenched with sat. NH₄Cl (20 mL) and the aqueous layer was extracted with DCM (2 x 10 mL). The combined organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to afford **8b** as yellow solid (0.14 g, 0.69 mmol, 69%).

¹H NMR (400 MHz, CDCl₃) δ 7.44 (m, 3 H, ArH), 7.25 (m, 1 H, ArH), 7.15 (d, 2 H, *J* = 8.0 Hz, ArH), 7.03 (d, 1 H, *J* = 8.2 Hz, ArH), 6.91 (m, 1 H, ArH), 6.12 (s, 1 H, OH), 2.35 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 139.2, 132.0, 131.8, 130.6, 129.5, 120.7, 119.6, 115.1, 110.2, 96.8, 82.9, 21.8. Characterization data of **8b** corresponded to the literature values except one carbon at 110.2 ppm was missing in the literature.³⁰

2-(Cyclopropylethynyl)phenol (8c).

Following a reported procedure,²⁹ **32** (0.35 mL, 4.0 mmol, 2.0 equiv.) was added into a solution of Pd(PPh₃)₂Cl₂ (30 mg, 40 µmol, 0.02 equiv.), CuI (15 mg, 80 µmol, 0.04 equiv.) and **35** (0.44 g, 2.0 mmol, 1.0 equiv.) in degased THF (16 mL) and $(iPr)_2NH$ (4 mL). The reaction mixture was stirred for 18 h. The reaction was quenched with sat. NH₄Cl (20 mL) and the aqueous layer was extracted with DCM (2 x 10 mL). The combined organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to afford **8c** as yellow oil (0.11 g, 0.72 mmol, 36%).

¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, 1 H, *J* = 7.7, 1.6 Hz, ArH), 7.21 (m, 1 H, ArH), 6.96 (dd, 1 H, *J* = 8.2 Hz, ArH), 6.85 (m, 1 H, ArH), 5.95 (s, 1 H, OH), 1.55-1.48 (m, 1 H, CH), 0.95-0.84 (m, 4 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 131.7, 129.6, 120.2, 114.4, 110.2, 101.0, 69.7, 9.0, 0.3. Characterization data of **8c** corresponded to the literature values.³¹

2-(Thiophen-3-ylethynyl)phenol (8d)

Following a modified procedure, ²⁹ **36** (0.16 g, 1.5 mmol, 1.5 equiv.) was added into a solution of $Pd(PPh_3)_2Cl_2$ (0.35 g, 0.10 mmol, 0.05 equiv.), CuI (0.019 g, 0.10 mmol, 0.1 equiv.), **32** (0.22 g, 1.0 mmol, 1.0 equiv.) and diisopropylamine (0.14 mL, 1.0 mmol, 1.0 equiv.) in degased benzene (5 mL) and the mixture was stirred for 2 h. Then, the reaction mixture was

²⁹ R. Alvarez, C. Martinez, Y. Madich, J. G. Denis, J. M. Aurrecoechea, A. R. De Lera, *Chem. Eur. J.* **2010**, *16*, 12746.

³⁰ C. Martinez, R. Alvarez, J. M. Aurrecoechea, Org. Lett, 2009, 11, 1083.

³¹ A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024.

filtered on a celite pad and the solvent was removed under vacuum. The residue was dissolved in EtOAc and the resulting solution was washed with water (3 x 30 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to give **8d** as brown solid (90 mg, 0.45 mmol, 45%).

Rf (Pentane / EtOAc= 10 / 1): 0.5. Melting point 113-115 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, 1 H, J = 2.9, 1.1 Hz, thiopheneH), 7.31 (dd, 1 H, J = 7.7, 1.5 Hz, ArH), δ 7.20 (dd, 1 H, J = 5.0, 3.0 Hz, thiopheneH). δ 7.15 (m, 1 H, ArH), δ 7.10 (dd, 1 H, J = 5.0, 1.1 Hz, thiopheneH), 6.88 (d, 1 H, J = 8.3 Hz, ArH), 6.80 (td, 1 H, J = 7.7, 1.0 Hz, ArH), 5.77 (s, 1 H, OH). ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 131.6, 130.4, 129.7, 129.2, 125.7, 121.3, 120.4, 114.7, 109.5, 91.3, 82.6. IR 3509 (w), 1578 (w), 1487 (m), 1456 (w), 1351 (w), 1029 (w), 853 (w), 784 (s), 755 (s). HRMS (ESI) calcd for C₁₂H₉OS⁺ [M+H]⁺ 201.0369; found 201.0371.

2-(Thiophen-2-ylethynyl)phenol (8e)

Following a modified procedure, ²⁹ **37** (0.26 g, 2.4 mmol, 1.2 equiv.) was added into a solution of Pd(PPh₃)₂Cl₂ (0.07 g, 0.1 mmol, 0.05 equiv.), CuI (0.038 g, 0.20 mmol, 0.1 equiv.), **32** (0.44 g, 2.0 mmol, 1.0 equiv.) and diisopropylamine (0.34 mL, 2.4 mmol, 1.2 equiv.) in degased toluene (6 mL) and the mixture was stirred for 18 h. Then, the reaction mixture was filtered on a celite pad and the solvent was removed under vacuum. The residue was dissolved in EtOAc and the resulting solution was washed with water (3 x 30 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to **8e** as yellow oil (90 mg, 0.45 mmol, 45%).

¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, 1 H, *J* = 7.7, 1.4 Hz, ArH), 7.37 (dd, 1 H, *J* = 5.2, 1.1 Hz, thiopheneH), 7.35 (dd, 1 H, *J* = 3.7. 1.1 Hz, thiopheneH), 7.30-7.27 (m, 1 H, ArH), 7.04 (dd, 1 H, *J* = 5.1, 3.7 Hz, thiopheneH), 6.98 (dd, 1 H, *J* = 8.3, 0.7 Hz, ArH), 6.91 (dd, 1 H, *J* = 7.6, 1.1 Hz, ArH), 5.80 (s, 1 H, OH). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 132.5, 131.7, 130.7, 128.0, 127.2, 122.2, 120.5, 114.9, 109.3, 89.3, 86.7. Characterization data of **8e** corresponded to the literature values.³²

The procedure for the synthesis of 10a represents the general procedure for 10b-10k

Methyl(2-(phenylethynyl)phenyl)sulfane (10a)

29 (0.70 mL, 5.0 mmol, 1.0 equiv.) was added into a solution of $Pd(PPh_3)_4$ (0.29 g, 0.25 mmol, 0.05 equiv.), butan-1-amine (0.59 mL, 6.0 mmol, 1.2 equiv.), CuI (0.10 g, 0.50 mmol, 0.1

³² M. Nakamura, L. Ilies, S. Otsubo, E. Nakamura, Angew. Chem., Int. Ed. 2006, 45, 944.

equiv.) and **33** (0.66 g, 6.0 mmol, 1.2 equiv.) in degased Et_2O (15 mL) and the mixture was stirred overnight. The reaction was quenched with sat. NH₄Cl (20 mL) and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 95:5) to afford **10a** as yellow oil (1.07 g, 4.80 mmol, 95%).

¹H NMR (400 MHz, CDCl₃) δ 7.68-7.66 (m, 2 H, ArH), 7.56 (dd, 1 H, *J* = 7.6, 1.1 Hz, ArH), 7.46-7.32 (m, 4 H, ArH), 7.21 (d, 1 H, *J* = 7.8 Hz, ArH), 7.17-7.11 (m, 1 H, ArH), 2.56 (s, 3 H, Me).¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.3, 131.7, 128.9, 128.5, 128.4, 124.3, 124.2, 123.3, 121.4, 96.0, 87.0, 15.2. Characterization data of **10a** corresponded to the literature values.³³

Methyl(2-(p-tolylethynyl)phenyl)sulfane (10b)

Following the conditions described for **10a**. Starting from **29** (0.28 mL, 2.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to afford **10b** as yellow oil (0.28 g, 1.2 mmol, 60%).

¹H NMR (400 MHz, CDCl₃) δ 7.48 (m, 3 H, ArH), 7.29 (td, *J* = 7.5, 1.5 Hz, 1 H, ArH), 7.17 (m, 3 H, ArH), 7.11 (td, *J* = 7.5, 1.0 Hz, 1 H, ArH), 2.51 (s, 3 H, Me), 2.37 (s, 3 H, Me). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 138.7, 132.2, 131.6, 129.2, 128.7, 124.3, 124.2, 121.7, 120.2, 96.2, 86.4, 21.7, 15.2. Characterization data of **10b** corresponded to the literature values.³³

(2-((4-Bromophenyl)ethynyl)phenyl)(methyl)sulfane (10c)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to afford **10c** as yellow oil (0.26 g, 0.84 mmol, 84%).

¹H NMR (400 MHz, CDCl₃) δ 7.44-7.37 (m, 5 H, ArH), 7.24 (td, *J* = 8.0, 1.5 Hz, 1 H, ArH), 7.10 (d, *J* = 8.0, 1 H, ArH), 7.05 (m, 1 H, ArH), 2.44 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 132.8, 132.0, 131.4, 128.8, 124.0, 123.8, 122.4, 121.9, 120.6, 94.6, 87.9, 14.8. Characterization data of **4c** corresponded to the literature values.³³

³³ C. Lin, C. Chen, M. Wu, Chem. Eur. J. 2013, 19, 2578.

(2-((4-Fluorophenyl)ethynyl)phenyl)(methyl)sulfane (10d)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc 20:1) to afford **10d** as yellow oil (0.096 g, 0.40 mmol, 40%).

Rf (Pentane / EtOAc= 50 / 1): 0.1. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (m, 2 H, ArH), 7.49 (dd, *J* = 7.6, 1.2 Hz, 1 H, ArH), 7.31 (m, 1 H, ArH), 7.18 (d, *J* = 7.9 Hz, 1 H, ArH), 7.12 (dd, *J* = 7.6, 0.9 Hz, 1 H, ArH), 7.06 (m, 2 H, ArH), 2.51 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, *J* = 249.6), 141.6, 133.4 (d, *J* = 8.4), 132.0, 128.7, 124.3, 124.1, 121.0, 119.2, 115.5 (d, *J* = 22.1), 94.7, 86.5, 14.9. IR 3056 (w), 2922 (w), 1598 (w), 1506 (m), 1464 (w), 1264 (w), 1228 (m), 1156 (w), 1068 (w), 836 (s), 803 (w), 741 (s). HRMS (ESI) calcd for C₁₅H₁₂FS⁺ [M+H]⁺ 243.0638; found 243.0638.

(2-(Cyclopropylethynyl)phenyl)(methyl)sulfane (10e)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc/Toluene 20:1:1) to afford **10e** as yellow oil (0.10 g, 0.53 mmol, 53%).

Rf (Pentane / EtOAc/Toluene= 20 / 1/1): 0.2. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.33 (m, 1 H, ArH), 7.22 (td, 1 H, *J* = 7.9, 1.4 Hz, ArH), 7.10 (d, 1 H, *J* = 7.8 Hz, ArH), 7.04 (td, 1 H, *J* = 7.5, 1.1 Hz, ArH), 2.45 (s, 3 H, CH₃), 1.57-1.50 (m, 1 H, CH), 0.92-0.87 (m, 4 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 132.0, 127.8, 123.9, 123.5, 121.7, 100.3, 73.0, 14.7, 8.8, 0.3. IR 3012 (w), 2958 (w), 2921 (m), 2853 (w), 2226 (w), 1464 (w), 1434 (w), 1263 (m), 1093 (w), 1064 (w), 1030 (m), 1029 (m), 954 (w), 803 (m), 745 (s). HRMS (ESI) calcd for C₁₂H₁₃S⁺ [M+H]⁺ 189.0732; found 189.0737.

(2-(Hex-1-yn-1-yl)phenyl)(methyl)sulfane (10f)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc/Toluene 20:1:1) to afford **10f** as yellow oil (0.096 g, 0.47 mmol, 47%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, 1 H, *J* = 7.6, 1.3 Hz, ArH), 7.13 (m, 1 H, ArH) 7.00 (d, 1 H, *J* = 7.9 Hz, ArH), 6.94 (td, 1 H, *J* = 7.6, 1.3 Hz, ArH), 2.40 (t, 2 H, *J* = 6.9 Hz, C=C*CH*₂), 2.35 (s, 3 H, SCH₃), 1.56-1.40 (m, 4 H, *CH*₂-*CH*₂-CH₃), 0.86 (t, 3 H, *J* = 7.3 Hz, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 132.1, 127.9, 123.9, 123.6, 121.9, 97.2, 78.0, 30.7, 21.9, 19.3, 14.8, 13.6. Characterization data of **10f** corresponded to the literature values.³⁴

Methyl(2-(3-phenylprop-1-yn-1-yl)phenyl)sulfane (10g)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/DCM= 10:1) to afford **10g** as yellow oil (0.12 g, 0.49 mmol, 49%).

Rf(Pentane/DCM= 10:1):0.3. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (m, 2 H, ArH), 7.41 (dd, 1 H, J = 7.5, 1.1 Hz, ArH) 7.35 (t, 2 H, J = 7.4 Hz, ArH), 7.30-7.23 (m, 2 H, ArH), 7.15 (d, 1 H, J = 7.9 Hz, ArH), 7.08 (td, 1 H, J = 7.5, 1.1 Hz, ArH), 3.94 (s, 2 H, CH₂), 2.49 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 136.5, 132.4, 128.5, 128.3, 128.0, 126.6, 124.1, 123.9, 121.7, 94.2, 80.2, 26.0, 15.1. IR 3059 (w), 3033 (w), 2918 (w), 1593 (w), 1491 (w), 1460 (m), 1432 (m), 1329 (w), 1186 (w), 1077 (w), 1037 (w), 960 (w), 949 (w), 746 (s). HRMS (ESI) calcd for C₁₆H₁₅S⁺ [M+H]⁺ 239.0889; found 239.0896.

(2-(Cyclohex-1-en-1-ylethynyl)phenyl)(methyl)sulfane (10h)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc= 10:1) to afford **10h** as yellow oil (0.11 g, 0.50 mmol, 50%).

Rf(Pentane/EtOAc= 10:1):0.3. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, 1 H, *J* = 7.6, 1.3 Hz, ArH), 7.21-7.16 (m, 1 H, ArH), 7.07 (m, 1 H, ArH), 7.00 (dd, 1 H, *J* = 7.6, 1.3 Hz, ArH), 6.21 (m, 1 H, CH), 2.41 (s, 3 H, CH₃), 2.25-2.21 (m, 2 H, CH₂), 2.12-2.08 (m, 2 H, CH₂), 1.65-1.55 (m, 4 H, CH₂-CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 135.0, 131.5, 127.8, 123.7, 123.5, 121.4, 120.3, 97.5, 83.9, 28.7, 25.4, 21.9, 21.1, 14.6. IR 3055 (w), 2927 (s), 2862 (m), 2361 (w), 2353 (w), 2336 (w), 2200 (w), 1581 (w), 1456 (s), 1434 (s), 1349 (w), 1272 (w), 1070 (m), 1042 (w), 791 (w). HRMS (ESI) calcd for C₁₅H₁₇S⁺ [M+H]⁺ 229.1045; found 229.1045.

2-Hexyl-5-((2-(methylthio)phenyl)ethynyl)thiophene (10i)

³⁴ S. Kim, N. Dahal, T. Kasharwani, *Tetrahedron Lett.* **2013**, *54*, 4373.

Following the conditions described for **10a**. Starting from **29** (0.15 g, 0.79 mmol, 1.0 equiv.) The crude product was purified by column chromatography (eluent: Pentane/EtOAc/Toluene= 23:2:1) to afford **10i** as green oil (0.10 g, 0.32 mmol, 41%).

Rf(Pentane/EtOAc/Toluene= 23:2:1):0.3. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, 1 H, J = 7.6, 1.2 Hz, ArH), 7.23-7.17 (m, 1 H, ArH), 7.10-7.07 (m, 2 H, ArH + ThiopheneH), 7.03 (m, 1 H, ArH), 6.62 (d, 1 H, J = 3.6 Hz, ThiopheneH), 2.73 (t, 2 H, J = 7.5 Hz, HexylH), 2.42 (s, 3 H, SCH₃), 1.61 (m, 2 H, HexylH), 1.31-1.22 (m, 6 H, HexylH), 0.84 (t, 3 H, J = 6.7 Hz, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 141.4, 132.1, 132.0, 128.6, 124.2, 124.2, 124.2, 121.4, 120.2, 89.8, 89.6, 31.5 (Two carbons overlap), 30.2, 28.7, 22.6, 15.1, 14.1. IR 3062 (w), 2926 (s), 2858 (m), 2201 (w), 1444 (m), 1277 (w), 1215 (w), 1071 (w), 1033 (w), 803 (m), 752 (s). HRMS (ESI) calcd for C₁₉H₂₃S₂⁺ [M+H]⁺ 315.1236; found 315.1236.

2-Hexyl-5-((2-(methylthio)phenyl)ethynyl)furan (10j)

Following the conditions described for **10a**. Starting from **27** (0.25 g, 1.4 mmol, 1.0 equiv.) the crude product was purified by column chromatography (eluent: Pentane/DCM= 20:1) to afford **10j** as yellow oil (0.10 g, 0.34 mmol, 24%).

Rf(Pentane/DCM= 20:1):0.2. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, 1 H, J = 7.7, 1.3 Hz, ArH), 7.29 (td, 1 H, J = 7.5, 1.1 Hz, ArH), 7.18 (d, 1 H, J = 7.7 Hz, ArH), 7.10 (td, 1 H, J = 7.5, 1.1 Hz, ArH), 6.61 (d, 1 H, J = 3.3 Hz, FuranH), 6.02 (d, 1 H, J = 3.3 Hz, Furan H), 2.64 (t, 2 H, J = 7.5 Hz, HexylH), 2.51 (s, 3 H, SCH₃), 1.65 (m, 2 H, HexylH), 1.37-1.26 (m, 6 H, HexylH), 0.89 (t, 3 H, J = 6.7 Hz CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 141.4, 135.0, 132.2, 128.9, 124.3, 120.9, 116.8, 106.4, 90.3, 86.2, 31.5, 28.8, 28.3, 27.8, 22.5, 15.2, 14.1. IR 2954 (s), 2929 (s), 2861 (m), 1698 (w), 1558 (w), 1539 (m), 1508 (w), 1461 (s), 1436 (m), 1384 (w), 1306 (w), 1305 (w), 1250 (w), 1196 (w), 1162 (w), 1070 (w), 1039 (w), 1017 (m), 960 (w), 911 (w), 883 (w). HRMS (ESI) calcd for C₁₉H₂₃OS⁺ [M+H]⁺ 299.1464; found 299.1467.

3-((2-(Methylthio)phenyl)ethynyl)thiophene (10k)

Following the conditions described for **10a**. Starting from **29** (0.14 mL, 1.0 mmol, 1.0 equiv.), the crude product was purified by column chromatography (eluent: Pentane/EtOAc= 10:1) to afford **10k** as yellow oil (0.12 g, 0.53 mmol, 53%).

Rf(Pentane/EtOAc= 10:1):0.4. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, 1 H, J = 3.0, 1.2 Hz, ThiopheneH), 7.34 (dd, 1 H, J = 7.6, 1.4 Hz, ArH), 7.16-7.13 (m, 2 H, ArH+ThiopheneH), 7.11 (td, 1 H, J = 5.1, 1.5 Hz, ThiopheneH), 7.01 (d, 1 H, J = 7.3 Hz, ArH), 6.96 (td, 1 H, J = 7.6, 1.4 Hz, ArH), 2.34 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 132.0, 129.7, 128.6, 128.6, 125.3, 124.1, 123.9, 122.0, 121.0, 90.9, 86.3, 14.8. IR 3109 (w), 3061 (w), 2988 (w), 1731 (w), 1464 (w), 1433 (w), 1073 (w), 907 (s), 784 (m). HRMS (ESI) calcd for C₁₃H₁₁S₂⁺ [M+H]⁺ 231.0297; found 231.0300.

3-(Methylthio)-2-(phenylethynyl)thiophene (10l)

33 (0.56 g, 5.5 mmol, 1.2 equiv) was added into a solution of **44** (1.1 g, 4.6 mmol, 1.0 equiv), $Pd(PPh_3)Cl_2$ (105 mg, 0.150 mmol, 0.03 equiv) and CuI (57 mg, 0.30 mmol, 0.06 equiv) in degased Et₃N (6 mL). The mixture was kept overnight at 60 °C. The reaction was filtered through a plug of celite and the crude was purified by column chromatography (Pentane/DCM= 20:1,) to afford **45** as brown oil (0.79 g, 3.0 mmol, 65%).

¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 2 H, ArH), 7.38-7.36 (m, 3 H, ArH), 7.23 (d, 1 H, J = 5.4 Hz, ThiopheneH), 7.00 (d, 1 H, J = 5.4 Hz, ThiopheneH). ¹³C NMR (101 MHz, CDCl₃) δ 132.5, 131.5, 130.1, 128.8, 128.4, 127.0, 122.5, 116.1, 97.0, 81.0.

BuLi (0.48 mL, 1.2 mmol, 1.2 equiv) was added dropwise into a solution of **45** (0.26 g, 1.0 mmol, 1.0 equiv) in dry ether (100 mL) at -78 °C. The mixture was kept at -78 °C for 10 minutes and 0 °C for 1 hour. Then dimethyl sulfide (0.1 mL, 1.7 mmol, 1.7 equiv) was added dropwise to the mixture at 0 °C. The reaction was stirred at room temperature for 1 h and quenched with sat NH₄Cl (30 mL). The aqueous layer was extracted with Et₂O (3 x 20 mL). The organic layers were combined, washed with saturated NaHCO₃ (20 mL), brine (20 mL), dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (pentane/DCM=20:1) to afford **101** (125 mg, 0.543 mmol, 54%) as yellow oil.

Rf(pentane/DCM=20:1): 0.3. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.53 (m, 2 H, ArH), 7.36-7.34 (m, 3 H, ArH), 7.26 (d, 1 H, J = 5.3 Hz), 6.95 (d, 1 H, J = 5.3 Hz), 2.57 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 131.4, 128.5, 128.3, 127.8, 126.5, 122.9, 118.6, 97.8, 81.4, 17.3. IR 3104 (w), 3082 (w), 2922 (w), 2877 (w), 2849 (w), 2199 (w), 1687 (s), 1645 (w), 1597 (w), 1503 (m), 1482 (m), 1440 (m), 1424 (m), 1403 (w), 1350 (w), 1319 (w), 1299 (w), 1266 (w), 1172 (w), 1115 (w), 1069 (w), 1027 (w), 974 (w), 916 (w), 883 (s). HRMS (ESI) calcd for C₁₃H₁₁S₂⁺ [M+H]⁺ 231.0297; found 231.0298.

(2,5-Bis(phenylethynyl)-1,4-phenylene)bis(methylsulfane) (10m)

33 (0.21 g, 2.1 mmol, 2.1 equiv) was added into a solution of **46** (0.49 g, 1.0 mmol, 1.0 equiv), $Pd(PPh_3)Cl_2$ (140 mg, 0.200 mmol, 0.2 equiv) and CuI (19 mg, 0.10 mmol, 0.1 equiv) in degased Et_3N (2 mL) and THF (2 mL). The mixture was kept overnight at 60 °C. The reaction was filtered through a plug of celite and the crude was purified by column chromatography (Pentane) to afford **47** as white solid (0.20 g, 0.45 mmol, 45%).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 2 H, ArH), 7.60-7.58 (m, 4 H, ArH), 7.40-7.37 (m, 6 H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 136.1, 131.9, 129.2, 128.5, 126.5, 123.8, 122.4, 96.7, 86.9.

BuLi (0.45 mL, 1.1 mmol, 2.5 equiv) was added dropwise into a solution of **47** (0.20 g, 0.45 mmol, 1.0 equiv) in dry ether (100 mL) at -78 °C. The mixture was kept at -78 °C for 10 minutes and 0 °C for 1 hour. Then dimethyl sulfide (0.12 mL, 1.3 mmol, 3.0 equiv) was added dropwise to the mixture at 0 °C. The reaction was stirred at room temperature for 1 h and quenched with sat NH₄Cl (30 mL). The aqueous layer was extracted with Et₂O (3 x 20 mL). The organic layers were combined, washed with saturated NaHCO₃ (20 mL), brine (20 mL), dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography (pentane/DCM=5:1) to afford **10m** (139 mg, 0.375 mmol, 84%) as yellow solid.

Rf(pentane/DCM=5:1): 0.4. Melting point : 162-164 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 4 H, ArH), 7.28-7.26 (m, 6 H, ArH), 7.20 (s, 2 H, ArH), 2.42 (s, 6 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 131.5, 128.6, 128.3, 127.8, 122.7, 121.9, 97.4, 86.7, 15.3. IR 2953 (w), 2922 (w), 2363 (m), 2343 (w), 2331 (m), 1597 (w), 1508 (w), 1494 (s), 1462 (w), 1437 (m), 1364 (w), 1265 (w), 1105 (w), 874 (w). HRMS (ESI) calcd for $C_{24}H_{19}S_2^+$ [M+H]⁺ 371.0923; found 371.0916.

1,4-Bis((2-(methylthio)phenyl)ethynyl)benzene (10n)

48 (0.13 g, 1.0 mmol, 1.0 equiv.) was added into a solution of $Pd(PPh_3)_4$ (0.12 g, 0.10 mmol, 0.1 equiv.), butan-1-amine (0.24 mL, 2.4 mmol, 2.4 equiv.), CuI (0.04 g, 0.2 mmol, 0.2 equiv.) and **29** (0.34 mL, 2.4 mmol, 2.4 equiv.) in degased Et_2O (5 mL) and the mixture was stirred overnight. The reaction was quenched with sat. NH_4CI (20 mL) and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 5:1) to afford **10n** as green solid (0.083 g, 0.22 mmol, 22%).

Rf(pentane/DCM=5:1): 0.6. Melting point: 158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 4 H, ArH), 7.49 (dd, 2 H, J = 7.6, 1.3 Hz, ArH), 7.34-7.30 (m, 2 H, ArH), 7.19 (d, 2 H, J = 7.8 Hz, ArH), 7.13 (td, 2 H, J = 7.6, 1.3 Hz, ArH), 2.50 (s, 6 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.2, 131.4, 128.9, 124.2, 124.1, 123.1, 121.0, 95.5, 88.7, 15.0. IR 2923 (m), 2858 (w), 1510 (m), 1460 (w), 1435 (m), 1164 (w), 1125 (w), 1068 (w), 1041 (w), 839 (m), 752 (s), 722 (w). HRMS (ESI) calcd for C₂₄H₁₉S₂⁺ [M+H]⁺ 371.0923; found 371.0925.

2,5-Bis((2-(methylthio)phenyl)ethynyl)thiophene (10o)

31 (0.13 g, 1.0 mmol, 1.0 equiv.) was added into a solution of $Pd(PPh_3)_4$ (0.085 g, 0.074 mmol, 0.1 equiv.), butan-1-amine (0.17 mL, 1.7 mmol, 2.4 equiv.), CuI (0.028 g, 0.15 mmol, 0.2 equiv.) and **49** (0.14 g, 0.40 mmol, 0.55 equiv.) in degased Et_2O (5 mL) and the mixture was stirred overnight. The reaction was quenched with sat. NH_4Cl (20 mL) and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/DCM/Toluene=10:1:1) to afford **100** as brown solid (0.065 g, 0.17 mmol, 23%).

Rf(Pentane/DCM/Toluene=10:1:1):0.2. Melting point: 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, 2 H, J = 7.6, 1.2 Hz, ArH), 7.31 (td, 2 H, J = 7.9, 1.4 Hz, ArH), 7.19 (m, 4 H, ArH+ThiopheneH), 7.12 (td, 2 H, J = 7.5, 0.9 Hz, ArH), 2.42 (s, 6 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.2, 131.9, 129.1, 124.7, 124.3, 124.3, 120.7, 91.7, 88.5, 15.1. IR 3059 (w), 2921 (w), 2199 (w), 1587 (w), 1521 (w), 1435 (m), 1315 (w), 1274 (w), 1126 (w), 1068 (w), 1032 (w), 962 (w), 806 (m), 752 (s). HRMS (ESI) calcd for C₂₂H₁₇S₃⁺ [M+H]⁺ 377.0487; found 377.0488.

1,3,5-Tris((2-(methylthio)phenyl)ethynyl)benzene (10p)

50 (0.15 g, 1.0 mmol, 1.0 equiv.) was added into a solution of Pd(PPh₃)₄ (0.17 g, 0.15 mmol, 0.15 equiv.), butan-1-amine (0.26 mL, 3.6 mmol, 3.6 equiv.), CuI (0.06 g, 0.3 mmol, 0.3 equiv.) and **31** (0.45 mL, 3.2 mmol, 3.2 equiv.) in degased Et_2O (6 mL) and the mixture was stirred overnight. The reaction was quenched with sat. NH₄Cl (20 mL) and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic layers were dried with MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: Pentane/EtOAc 5:1) to afford **10p** as green solid (0.11 g, 0.22 mmol, 21%).

Rf(pentane/EtOAc=5:1): 0.5. Melting point: 176-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 3 H, ArH), 7.50 (dd, 3 H, J = 7.6, 1.4 Hz, ArH), 7.33 (td, 3 H, J = 7.8, 1.4 Hz, ArH), 7.20 (d, 3 H, J = 8.1 Hz, ArH), 7.13 (td, 3 H, J = 7.5, 1.0 Hz, ArH), 2.53 (s, 9 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 134.1, 132.4, 129.1, 124.2, 124.1, 123.9, 120.8, 94.2, 88.0, 15.1. IR 3054 (w), 2963 (w), 2925 (s), 2858 (w), 1581 (w), 1465 (w), 1185 (w), 1154 (w), 1117 (m), 1097 (s), 1074 (w), 1025 (w), 878 (w), (w), 749 (s). HRMS (ESI) calcd for C₃₃H₂₅S₃⁺ [M+H]⁺ 517.1113; found 517.1125.

6. Domino Cyclization Alkynylation

General procedure 1 for the domino reaction to 3-alkynylated benzofurans-(GP1).

7a (198 mg, 0.320 mmol, 1.2 equiv), Na_2CO_3 (38 mg, 0.36 mmol, 1.2 equiv) and $AuCl_3$ (9 mg, 0.03 mmol, 0.1 equiv) were added into a solution of **8** (0.3 mmol, 1 equiv) and THF (3 mL). The reaction was stopped after stirring during 12 h, the solvent was removed under vacuum, and the crude product was purified by column chromatography directly (SiO₂, Pentane) without any further work-up.

Triisopropyl((2-phenylbenzofuran-3-yl)ethynyl)silane (9a)

Following the general procedure **GP1**, starting from **8a** (58 mg, 0.30 mmol), **9a** was obtained as yellow oil (96 mg, 0.26 mmol, 85%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 8.40-8.33 (m, 2 H, ArH), 7.69-7.63 (m, 1 H, ArH), 7.56-7.28 (m, 6 H, ArH), 1.31 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 153.5, 130.4, 130.3, 129.3, 128.7, 126.2, 125.4, 123.5, 120.5, 111.3, 99.8, 99.7, 98.5, 18.9, 11.5. IR 2942 (s), 2865 (s), 2361 (m), 2337 (m), 2157 (w), 2063 (w), 1949 (w), 1746 (w), 1462 (m), 1373 (w), 1258 (w), 1204 (w), 1138 (m), 1071 (w), 1002 (w), 916 (w), 885 (m), 825 (w), 748 (s). HRMS (ESI) calcd for $C_{25}H_{31}OSi^+$ [M+H]⁺ 375.2139; found 375.2139.

Triisopropyl((2-(p-tolyl)benzofuran-3-yl)ethynyl)silane (9b)

Following the general procedure **GP1**, starting from **8b** (62 mg, 0.30 mmol), **9b** was obtained as yellow oil (77 mg, 0.20 mmol, 66%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, 2 H, *J* = 8.3 Hz, ArH), 7.58-7.51 (m, 1 H, ArH), 7.41-7.36 (m, 1 H, ArH), 7.23-7.15 (m, 4 H, ArH), 2.31 (s, 3 H, CH₃), 1.13 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 153.4, 139.5, 130.5, 129.4, 127.6, 126.1, 125.2, 123.4, 120.3, 111.2, 99.4, 98.9, 98.7, 21.7, 18.9, 11.5. IR 3669 (w), 2974 (m), 2966 (s),

2949 (s), 2866 (m), 2252 (w), 2155 (w), 1907 (w), 1738 (w), 1507 (w), 1456 (m), 1376 (w), 1292 (w), 1254 (m), 1205 (w), 1111 (m), 1070 (m), 1016 (m), 906 (m), 822 (m), 742 (s). HRMS (ESI) calcd for $C_{26}H_{33}OSi^+$ [M+H]⁺ 389.2295; found 389.2301.

((2-Cyclopropylbenzofuran-3-yl)ethynyl)triisopropylsilane (9c)

Following the general procedure **GP1**, starting from **8c** (47 mg, 0.30 mmol), **9c** was obtained as yellow oil (44 mg, 0.13 mmol, 56%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.47 (m, 1 H, ArH), 7.34-7.30 (m, 1 H, ArH), 7.23-7.18 (m, 2 H, ArH), 2.31-2.21 (m, 1 H, CH), 1.27-1.07 (m, 25 H, TIPS/CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 153.0, 129.7, 124.0, 123.2, 119.5, 110.8, 99.2, 97.4, 96.5, 18.9, 11.5, 9.7, 8.1. IR 2945 (m), 2866 (m), 2254 (w), 2150 (w), 1741 (w), 1594 (w), 1461 (m), 1384 (w), 1262 (w), 1186 (w), 1134 (w), 1062 (w), 999 (w), 945 (w), 910 (m), 888 (w), 833 (w), 773 (w), 741 (s). HRMS (ESI) calcd for $C_{22}H_{31}OSi^+$ [M+H]⁺ 339.2139; found 339.2145.

Triisopropyl((2-(thiophen-3-yl)benzofuran-3-yl)ethynyl)silane (9d)

Following the general procedure **GP1**, starting from **8d** (60 mg, 0.30 mmol), **9d** was obtained as yellow oil (88 mg, 0.23 mmol, 77%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, 1 H, J = 3.0, 1.2 Hz, ThiopheneH), 8.03 (dd, 1 H, J = 5.1, 1.2 Hz, ThiopheneH), 7.69-7.66 (m, 1 H), 7.51-7.49 (m, 1 H), 7.43 (dd, 1 H, J = 5.1, 3.0 Hz, ThiopheneH), 7.37-7.31 (m, 2 H), 1.25 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 154.3, 153.2, 131.7, 129.9, 125.9, 125.6, 125.1, 123.7, 123.4, 120.2, 111.0, 99.3, 98.6, 98.2, 18.8, 11.4. IR 2949 (s), 2865 (m), 2350 (w), 2337 (w), 2152 (m), 2151 (m), 1460 (m), 1341 (w), 1203 (w), 1189 (w), 1136 (w), 1067 (w), 1005 (w), 876 (s), 784 (s), 750 (s). HRMS (ESI) calcd for C₂₃H₂₉OSSi⁺ [M+H]⁺ 381.1703; found 381.1704.

Triisopropyl((2-(thiophen-2-yl)benzofuran-3-yl)ethynyl)silane (9e)

Following the general procedure **GP1**, starting from **8e** (60 mg, 0.30 mmol), **9e** was obtained as yellow oil (71 mg, 0.19 mmol, 62%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, 1 H, J = 3.8, 1.1 Hz, ThiopheneH), 7.63-7.61 (m, 1 H, ArH), 7.48-7.43 (m, 2 H, ArH+ThiopheneH), 7.34-7.28 (m, 2 H, ArH), 7.15 (dd, 1 H, J = 5.1, 3.9 Hz, ThiopheneH), 1.25 (m, 21H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 153.3, 132.4, 130.0, 127.6, 127.1, 126.6, 125.2, 123.6, 120.2, 111.1, 101.1, 98.5, 97.6, 18.8, 11.1. IR 2943 (s), 2942 (s), 2892 (m), 2865 (s), 2149 (m), 1455 (s), 1382 (w), 1368 (w), 1260 (w), 1220 (w), 1198 (m), 1181 (w), 1149 (w), 1134 (s), 1102 (w), 1073 (w), 1058 (w), 1019 (w), 998 (w), 920 (w), 909 (w), 884 (m), 854 (m), 831 (w), 830 (w). HRMS (ESI) calcd for C₂₃H₂₉OSSi [M+] 381.1708; found 381.1701.

<u>General procedure 2 for the domino reaction to 3-alkynylated</u> <u>benzothiophenes (GP2).</u>

7a (198 mg, 0.360 mmol, 1.2 equiv), NaI (54 mg, 0.36 mmol, 1.2 equiv) and $PtCl_2$ (8 mg, 0.03 mmol, 0.1 equiv) were added into a solution of **10** (0.30 mmol, 1 equiv) and THF (3 mL). The reaction was stopped after stirring during 12 h, the solvent was removed under vacuum, and the crude product was purified by column chromatography directly (SiO₂, Pentane) without any further work-up.

Triisopropyl((2-phenylbenzo[b]thiophen-3-yl)ethynyl)silane (11a)

10a

11a

Following the general procedure **GP2**, starting from **10a** (67 mg, 0.30 mmol), **11a** was obtained as yellow oil (87 mg, 0.22 mmol, 74%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.10 (m, 2 H, ArH), 7.96 (d, 1 H, J = 7.9 Hz, ArH), 7.80 (d, 1 H, J = 8.0 Hz, ArH), 7.48-7.36 (m, 5 H, ArH), 1.05 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 141.7, 137.5, 133.9, 128.9, 128.7, 128.5, 125.3, 125.1, 123.4, 122.1, 114.2, 101.2, 97.3, 18.9, 11.6. IR 3062 (w), 2940 (s), 2864 (s), 2723 (w), 2146 (m), 1748 (w), 1600 (w), 1464 (m), 1381 (w), 1285 (w), 1247 (w), 1074 (w), 997 (w), 956 (w), 885 (m), 758 (s). HRMS (APCI) calcd for C₂₅H₃₁SSi⁺ [M+H]⁺ 391.1910; found 391.1916.

Triisopropyl((2-(p-tolyl)benzo[b]thiophen-3-yl)ethynyl)silane (11b)

Following the general procedure **GP2**, starting from **10b** (72 mg, 0.30 mmol), **11b** was obtained as yellow oil (80 mg, 0.20 mmol, 66%). Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, 2 H, *J* = 8.2 Hz, ArH), 7.95 (d, 1 H, *J* = 7.9 Hz, ArH), 7.79 (d, 1 H, *J* = 8.0 Hz, ArH), 7.45 (m, 1 H, ArH), 7.37 (m, 1 H, ArH), 7.24 (d, 2 H, *J* = 8.2 Hz, ArH), 2.42 (s, 3H, CH₃), 1.20 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 141.6, 138.9, 137.2, 130.9, 129.2, 128.2, 125.0, 124.9, 123.1, 121.9, 113.4, 101.2, 97.1, 21.4, 18.8, 11.4. IR 3669 (w), 2961 (s), 2946 (s), 2867 (s), 2145 (w), 1463 (m), 1439 (w), 1400 (w), 1387 (w), 1236 (w), 1071 (s), 1054 (s), 1023 (m), 955 (w), 908 (w), 885 (m), 816 (w), 759 (w), 734 (m). HRMS (ESI) calcd for C₂₆H₃₃SSi⁺ [M+H]⁺ 405.2067; found 405.2068.

((2-(4-Bromophenyl)benzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11c)

10c

11c

Following the general procedure **GP2**, starting from **10c** (91 mg, 0.30 mmol), **11c** was obtained as yellow oil (85 mg, 0.18 mmol, 60%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.85 (m, 3 H, ArH), 7.79 (d, 1 H, J = 7.9 Hz, ArH), 7.56 (m, 2 H, ArH), 7.47 (m, 1 H, ArH), 7.40 (m, 1 H, ArH), 1.21 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 141.4, 137.2, 132.6, 131.6, 129.7, 125.4, 125.1, 123.3, 122.8, 122.0, 114.4, 100.6, 98.0, 18.7, 11.4. IR 2944 (s), 2893 (m), 2866 (s), 2362 (w), 2338 (w), 2148 (w), 1604 (w), 1527 (m), 1497 (m), 1464 (m), 1237 (s), 1164 (w), 1053 (w), 1016 (w), 997 (w), 961 (w), 884 (w), 833 (s), 808 (w), 761 (m), 732 (m). HRMS (ESI) calcd for C₂₅H₃₀⁷⁹BrSSi⁺ [M+H]⁺ 469.1015; found 469.1029.

((2-(4-Fluorophenyl)benzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11d)

10d

11d

Following the general procedure **GP2**, starting from **10d** (73 mg, 0.30 mmol), **11d** was obtained as yellow oil (62 mg, 0.15 mmol, 51%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (m, 2 H, ArH), 7.96 (d, 1 H, J = 7.9 Hz, ArH), 7.79 (d, 1 H, J = 7.9 Hz, ArH), 7.47 (m, 1 H, ArH), 7.39 (m, 1 H, ArH), 7.13 (t, 2 H, J = 8.7 Hz, ArH), 1.21 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, J = 249.5 Hz), 145.6, 141.3, 137.2, 130.2 (d, J = 8.1 Hz), 130.0, 125.3, 125.2, 123.3, 122.0, 115.6 (d, J = 21.7 Hz), 114.0, 100.7, 97.2, 18.7, 11.4. IR 2940 (s), 2889 (m), 2862 (s), 2361 (w), 2338 (w), 2143 (w), 1514 (w), 1463 (m), 1436 (w), 1233 (w), 1075 (m), 1050 (w), 1013 (m), 956 (m), 883 (m), 821 (m), 756 (m), 732 (m), 705 (m). HRMS (ESI) calcd for C₂₅H₃₀FSSi⁺ [M+H]⁺ 409.1816; found 409.1822.

((2-Cyclopropylbenzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11e)

10e

11e

Following the general procedure **GP2**, starting from **10e** (56 mg, 0.30 mmol), **11e** was obtained as yellow oil (64 mg, 0.18 mmol, 60%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, 1 H, J = 7.9 Hz, ArH), 7.68 (d, 1 H, J = 7.9 Hz, ArH), 7.39 (m, 1 H, ArH), 7.28 (m, 1 H, ArH), 2.43 (m, 1 H, CH), 1.19 (m, 21 H, TIPS), 0.99 (m, 4 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 140.5, 135.9, 124.7, 124.2, 122.0, 115.4, 100.1, 95.9, 18.8, 12.3, 11.4, 10.8 (One aromatic carbon was not resolved). IR 2947 (s), 2895 (m), 2866 (s), 2349 (w), 2145 (m), 1693 (w), 1464 (m), 1441 (w), 1335 (w), 1308 (m), 1263 (m), 1250 (m), 1249 (m), 1225 (m), 1090 (m), 1056 (s), 1002 (m), 916 (w), 905 (w), 886 (w), 759 (m), 736 (m). HRMS (ESI) calcd for C₂₂H₃₁SSi⁺ [M+H]⁺ 355.1910; found 355.1905.

((2-Butylbenzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11f)

10f

11f

Following the general procedure **GP2**, starting from **10f** (62 mg, 0.30 mmol), **11f** was obtained as yellow oil (58 mg, 0.16 mmol, 52%).

Rf(pentane): 0.7. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, 1 H, J = 7.9 Hz, ArH), 7.75 (d, 1 H, J = 7.9 Hz, ArH), 7.42 (m, 1 H, ArH), 7.32(m, 1 H, ArH), 2.98 (t, 2 H, J = 7.6 Hz, Butyl), 1.67 (m, 2 H, Butyl), 1.35 (m, 2 H, Butyl), 1.10 (m, 21 H, TIPS), 0.86 (t, 3 H, J = 7.4 Hz, Butyl) ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 140.1, 137.3, 124.6, 124.3, 122.5, 122.0, 115.7, 99.9, 95.7, 33.1, 29.7, 22.3, 18.7, 13.8, 11.3. IR 3061 (w), 2938 (s), 2864 (s), 2362 (w), 1463 (s), 1439 (m), 1260 (w), 1216 (w), 1070 (m), 1015 (m), 883 (m), 848 (w), 804 (w), 756 (m), 732 (m). HRMS (ESI) calcd for C₂₃H₃₅SSi⁺ [M+H]⁺ 371.2223; found 371.2227.

((2-Benzylbenzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11g)

Following the general procedure **GP2**, starting from **10g** (72 mg, 0.30 mmol), **11g** was obtained as yellow oil (63 mg, 0.16 mmol, 52%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, 1 H, J = 8.0 Hz, ArH), 7.57 (d, 1 H, J = 8.0 Hz, ArH), 7.32-7.25 (m, 3 H, ArH), 7.22-7.16 (m, 3 H, ArH), 7.14-7.10 (m, 1 H, ArH), 4.29 (s, 2 H, CH₂), 1.09 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 140.0, 139.5, 137.9, 128.9, 128.8, 126.8, 124.9, 124.7, 122.9, 122.2, 116.3, 100.0, 96.3, 36.2, 18.9, 11.4. IR 3061 (w), 3030 (w), 2944 (s), 2864 (s), 2146 (m), 1487 (w), 1461 (m), 1253 (w), 1241 (w), 1073 (w), 1024 (m), 1008 (w), 915 (w), 886 (m), 818 (w), 756 (m), 733 (m). HRMS (ESI) calcd for C₂₆H₃₃SSi⁺ [M+H]⁺ 405.2067; found 405.2066.

((2-(Cyclohex-1-en-1-yl)benzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11h)

Following the general procedure **GP2**, starting from **10h** (69 mg, 0.30 mmol), **11h** was obtained as yellow oil (50 mg, 0.13 mmol, 42%).

Rf(pentane/DCM= 10:1): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, 1 H, J = 7.9 Hz, ArH), 7.72 (d, 1 H, J = 7.9 Hz, ArH), 7.42-7.39 (m, 1 H, ArH), 7.34-7.30 (m, 1 H, ArH), 6.77 (t, 1 H, J = 3.8 Hz, CH), 2.71 (m, 2 H, Cyclohexene), 2.29-2.28 (m, 2 H, Cyclohexene), 1.82-1.69 (m, 4 H, Cyclohexene), 1.20 (m, 2 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 141.4, 136.4, 131.6, 130.5, 124.7, 124.7, 122.8, 121.8, 112.1, 101.7, 97.1, 29.1, 26.0, 22.9, 21.8, 18.8, 11.5. IR 2936 (s), 2866 (s), 2376 (w), 2349 (m), 2143 (m), 1459 (m), 1330 (w), 1044 (m), 887 (w), 742 (w). HRMS (ESI) calcd for C₂₅H₃₅SSi⁺ [M+H]⁺ 395.2223; found 395.2229.

((2-(5-Hexylthiophen-2-yl)benzo[b]thiophen-3-yl)ethynyl)triisopropylsilane (11i)

Following the general procedure **GP2**, starting from **10i** (94 mg, 0.30 mmol), **11i** was obtained as yellow oil (99 mg, 0.21 mmol, 69%).

Rf(pentane): 0.6. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, 1 H, J = 7.9 Hz, ArH), 7.70 (d, 1 H, J = 7.9 Hz, ArH), 7.50 (d, 1 H, J = 3.7 Hz, ThiopheneH), 7.43 (m, 1 H, ArH), 7.32 (m, 1 H, ArH), 6.75 (d, 1 H, J = 3.7 Hz, ThiopheneH), 2.84 (t, 2 H, J = 7.6 Hz, Hexyl), 1.71 (m, 2 H, Hexyl), 1.66-1.34 (m, 27 H, Hexyl+TIPS), 0.90 (t, 3 H, J = 7.4 Hz, Hexyl). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 141.3, 141.0, 136.5, 133.6, 126.9, 125.1, 125.0, 124.3, 122.9, 121.8, 112.1, 100.8, 100.2, 31.6, 31.5, 30.3, 28.8, 22.5, 18.8, 14.1, 11.5. IR 2933 (s), 2863 (s), 2349 (w), 2142 (w), 1463 (m), 1462 (m), 1007 (w), 894 (w), 799 (w), 752 (w). HRMS (ESI) calcd for C₂₉H₄₁S₂Si⁺ [M+H]⁺ 481.2413; found 481.2422.

Triisopropyl((2-(5-hexylfuran-2-yl)benzo[b]thiophen-3-yl)ethynyl)silane (11j)

Following the general procedure **GP2**, starting from **10j** (90 mg, 0.30 mmol), **11j** was obtained as yellow oil (110 mg, 0.237 mmol, 79%).

Rf(pentane): 0.7. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, 1 H, J = 7.7 Hz, ArH), 7.77 (d, 1 H, J = 7.7 Hz, ArH), 7.43 (m, 1 H, ArH), 7.36-7.32 (m, 2 H, FuranH+ArH), 6.19 (d, 1 H, J = 3.4

Hz, FuranH), 2.72 (t, 2 H, J = 7.6 Hz, Hexyl), 1.72 (m, 2 H, Hexyl), 1.44-1.19 (m, 27 H, Hexyl+TIPS), 0.93 (t, 3 H, J = 7.4 Hz, Hexyl). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 147.2, 141.0, 136.7, 136.7, 124.9, 124.8, 122.7, 122.0, 110.8, 110.4, 107.6, 100.9, 98.9, 31.6, 28.9, 28.1, 27.9, 22.6, 18.8, 14.1, 11.4. IR 2936 (w), 2864 (w), 2140 (w), 1545 (w), 1462 (w), 1006 (w), 1005 (w), 917 (w), 727 (s), 690 (s), 655 (s), 648 (s), 647 (s), 621 (s), 559 (s). HRMS (ESI) calcd for C₂₉H₄₁OSSi⁺ [M+H]⁺ 465.2642; found 465.2638.

Triisopropyl((2-(thiophen-3-yl)benzo[b]thiophen-3-yl)ethynyl)silane (11k)

Following the general procedure **GP2**, starting from **10k** (69 mg, 0.30 mmol), **11k** was obtained as yellow oil (74 mg, 0.19 mmol, 62%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, 1 H, J = 2.9, 1.3 Hz, ThiopheneH), 7.92 (d, 1 H, J = 8.0 Hz, ArH), 7.81 (d, 1 H, J = 5.0 Hz, ThiopheneH), 7.76 (d, 1 H, J = 7.9 Hz, ArH), 7.44 (t, 1 H, J = 7.7 Hz, ArH), 7.39-7.34 (m, 2 H, ArH+ThiopheneH), 1.21 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 141.3, 136.8, 134.6, 127.3, 125.6, 125.1, 125.0, 123.9, 123.1, 122.0, 113.3, 101.3, 98.0, 18.8, 11.4. IR 3062 (w), 2944 (s), 2866 (s), 2143 (m), 1460 (m), 1280 (w), 1232 (m), 1198 (m), 1116 (w), 1067 (w), 998 (m), 939 (w), 879 (m), 770 (s). HRMS (ESI) calcd for C₂₃H₂₉S₂Si⁺ [M+H]⁺ 397.1474; found 397.1477.

Triisopropyl((2-phenylthieno[3,2-b]thiophen-3-yl)ethynyl)silane (111)

Following the general procedure **GP2**, starting from **10e** (69 mg, 0.30 mmol), **11l** was obtained as brown oil (53 mg, 0.13 mmol, 45%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.99 (m, 2 H, ArH+ThiopheneH), 7.42-7.34 (m, 4 H, ArH), 7.23 (d, 1 H, J = 5.2 Hz, ThiopheneH), 1.16 (m, 21 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 143.6, 135.3, 134.2, 128.6, 128.3, 127.5, 127.2, 119.7, 111.1, 100.4, 97.2, 18.7, 11.3. IR 2925 (s), 2863 (s), 2360 (w), 2340 (w), 2151 (w), 1464 (m), 1382 (w), 1359 (w), 1244 (w), 1222 (w), 1191 (w), 1190 (w), 1066 (w), 1016 (w), 997 (w), 955 (w), 913 (w), 884 (m). HRMS (ESI) calcd for $C_{23}H_{29}S_2Si^+$ [M+H]⁺ 397.1474; found 397.1467.

((2,6-Diphenylbenzo[1,2-b:4,5-b']dithiophene-3,7-diyl)bis(ethyne-2,1-diyl))bis(triisopropylsilane) (11m)

7a (132 mg, 0.240 mmol, 2.4 equiv), NaI (36 mg, 0.24 mmol, 2.4 equiv) and PtCl₂ (5 mg, 0.02 mmol, 0.2 equiv) were added into a solution of **10m** (37 mg, 0.10 mmol, 1 equiv) and THF (1 mL). The reaction was stopped after stirring during 12 h, the solvent was removed under vacuum, and the crude product was purified by column chromatography directly (SiO₂, Pentane) without any further work-up. **11m** was obtained as brown oil (39 mg, 0.055 mmol, 56%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 2 H, ArH), 8.15 (d, 4 H, J = 7.3 Hz, ArH), 7.44 (m, 6 H, ArH), 1.22 (m, 42 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 139.9, 135.2, 133.7, 128.9, 128.6, 128.4, 116.2, 113.0, 100.8, 97.7, 18.8, 11.5. IR 2942 (s), 2925 (m), 2890 (w), 2864 (s), 2343 (m), 2140 (w), 1519 (w), 1491 (w), 1462 (m), 1444 (w), 1389 (w), 1214 (w), 1073 (w), 1062 (w), 1018 (w), 997 (w), 953 (w), 910 (w), 883 (m), 864 (w), 857 (w). HRMS (ESI) calcd for $C_{44}H_{55}S_2Si_2^+$ [M+H]⁺ 703.3278; found 703.3277.

1,4-Bis(3-((triisopropylsilyl)ethynyl)benzo[b]thiophen-2-yl)benzene (11n)

7a (132 mg, 0.240 mmol, 2.4 equiv), NaI (36 mg, 0.24 mmol, 2.4 equiv) and PtCl₂ (5 mg, 0.02 mmol, 0.2 equiv) were added into a solution of **10n** (37 mg, 0.10 mmol, 1 equiv) and THF (1 mL). The reaction was stopped after stirring during 12 h, the solvent was removed under vacuum, and the crude product was purified by column chromatography directly (SiO₂, Pentane) without any further work-up. **11n** was obtained as yellow solid (22 mg, 0.031 mmol, 31%).

Rf(pentane): 0.4. Melting point: 142-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 4 H, ArH), 7.96 (d, 2 H, J = 7.9 Hz, ArH), 7.81 (d, 2 H, J = 7.9 Hz, ArH), 7.46 (td, 2 H, J = 7.9, 0.8 Hz, ArH), 7.40 (td, 2 H, J = 7.9, 0.8 Hz, ArH), 1.19 (m, 42 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 141.5, 137.4, 134.0, 128.4, 125.4, 125.1, 123.4, 122.0, 114.4, 100.8, 98.0, 18.8, 11.5. IR 2942 (s), 2925 (m), 2890 (w), 2864 (s), 2361 (s), 2343 (m), 2330 (m), 2140 (w), 1519 (w), 1518 (w), 1509 (w), 1491 (w), 1462 (m), 1444 (w), 1389 (w), 1214 (w), 1073 (w), 1062 (w), 1018 (w), 997 (w), 953 (w), 910 (w), 883 (m), 864 (w), 857 (w). HRMS (ESI) calcd for C₄₄H₅₅S₂Si₂⁺ [M+H]⁺ 703.3278; found 703.3271.

2,5-Bis(3-((triisopropylsilyl)ethynyl)benzo[b]thiophen-2-yl)thiophene (110)

7a (132 mg, 0.240 mmol, 2.4 equiv), NaI (36 mg, 0.24 mmol, 2.4 equiv) and $PtCl_2$ (5 mg, 0.02 mmol, 0.2 equiv) were added into a solution of **10o** (38 mg, 0.10 mmol, 1 equiv) and THF (1 mL). The reaction was stopped after stirring during 12 h, the solvent was removed under vacuum, and the crude product was purified by column chromatography directly (SiO₂, Pentane) without any further work-up. **11o** was obtained as green oil (26 mg, 0.037 mmol, 37%).

Rf(pentane): 0.5. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 2 H, Thiophene), 7.90 (d, 2 H, J = 8.1 Hz, ArH), 7.75 (d, 2 H, J = 8.1 Hz, ArH), 7.44 (td, 2 H, J = 7.2, 1.0 Hz, ArH), 7.37 (td, 2 H, J = 7.2, 1.0 Hz, ArH), 1.25 (m, 42 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 139.4, 136.9, 127.3, 125.5, 125.3, 123.2, 121.9, 113.7, 101.2, 100.7, 18.9, 11.4 (One carbon was not resolved). IR 3062 (w), 2947 (s), 2866 (s), 2141 (m), 1732 (w), 1502 (w), 1463 (m), 1265 (w), 1239 (w), 1238 (w), 1081 (w), 1021 (m), 959 (w), 909 (m), 887 (m), 803 (m), 733 (s). HRMS (ESI) calcd for C₄₂H₅₃S₃Si₂⁺ [M+H]⁺ 709.2842; found 709.2831.

1,3,5-Tris(3-((triisopropylsilyl)ethynyl)benzo[b]thiophen-2-yl)benzene (11p)

7a (198 mg, 0.360 mmol, 3.6 equiv), NaI (54 mg, 0.36 mmol, 3.6 equiv) and PtCl₂ (9 mg, 0.03 mmol, 0.3 equiv) were added into a solution of **10p** (52 mg, 0.10 mmol, 1 equiv) and THF (1 mL). The reaction was stopped after stirring during 12 h, the solvent was removed under vacuum, and the crude product was purified by column chromatography directly (SiO₂, Pentane) without any further work-up. **11p** was obtained as yellow solid (18 mg, 0.018 mmol, 18%).

Rf(pentane): 0.3. Melting point: 123-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 3 H, ArH), 7.97-7.95 (d, 3 H, J = 7.9 Hz, ArH), 7.83 (d, 3 H, J = 7.9 Hz, ArH), 7.47 (td, 3 H, J = 7.3, 1.0 Hz, ArH), 7.41 (td, 3 H, J = 7.3, 1.0 Hz, ArH), 0.91 (m, 62 H, TIPS). ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 141.2, 137.8, 134.6, 129.4, 125.3, 125.0, 123.4, 122.0, 115.5, 100.1,

97.1, 18.5, 11.2. IR 2930 (s), 2861 (m), 2349 (w), 1463 (w), 1462 (w), 1016 (w), 1015 (w), 1014 (w), 884 (w), 753 (w), 740 (w). HRMS (ESI) calcd for $C_{63}H_{79}S_3Si_3^+$ [M+H]⁺ 1015.4646; found 1015.4639.

7. Tetracene Synthesis

<u>The protocol for the synthesis of 12a represents the general procedure 3 for</u> <u>the synthesis of 12b-6j</u>

Naphtho[1,2-b]benzofuran (12a)

TBAF (1 M in THF, 0.45 mL, 0.45 mmol, 1.2 equiv) was added slowly into a solution of **9a** (0.14 g, 0.37 mmol, 1.0 equiv) in THF (4 mL) at 0 °C. The reaction was quenched with sat NH₄Cl solution (20 mL) after 30 min. The aqueous and organic layers were separated and the aqueous layer was extracted with ether (3 x 10 mL). After drying over MgSO₄ and concentrating under vacuum, the crude product was purified by column chromatography (Pentane) to afford **51** as yellow oil (53 mg, 0.24 mmol, 65%).

¹H NMR (400 MHz, CDCl₃) δ 8.20-8.14 (m, 2 H, ArH), 7.60-7.55 (m, 1 H, ArH), 7.42-7.33 (m, 3 H, ArH), 7.32-7.28 (m, 1 H, ArH), 7.26-7.17 (m, 2 H, ArH), 3.48 (s, 1 H, CH, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 153.4, 130.1, 130.0, 129.5, 128.8, 126.2, 125.5, 123.6, 120.3, 111.3, 98.2, 85.2, 75.8.

 $PtCl_2$ (3 mg, 0.01 mmol, 0.1 equiv) was added into a solution of **51** (23 mg, 0.11 mmol, 1.0 equiv) in toluene (1 mL). The mixture was kept at 100 °C during 12 h. The crude product was purified by column chromatography (Pentane/DCM= 10:1) directly to afford **12a** as white solid (22 mg, 0.10 mmol, 96%).

¹H NMR (400 MHz, CDCl₃) δ 8.52-8.42 (m, 1 H, ArH), 8.09-7.97 (m, 3 H, ArH), 7.79 (d, 1 H, *J* = 8.5 Hz, ArH), 7.73 (d, 1 H, *J* = 8.2 Hz, ArH), 7.68-7.39 (m, 4 H, ArH).¹³C NMR (101 MHz, CDCl₃) δ 156.1, 152.2, 133.2, 128.6, 126.6, 126.3, 126.2, 125.2, 123.4, 123.1, 121.6, 121.0, 120.4, 119.3, 118.6, 112.0. Characterization data of **12a** corresponded to the literature values.³⁵

Benzo[b]naphtho[2,1-d]thiophene (12b)

³⁵ S. Maetani, T. Fukuyama, I. Ryu, Org. Lett. **2013**, 15, 2754.

Following the general procedure **GP3**, starting from **11a** (0.14 g, 0.36 mmol), **52** was obtained as colorless oil (57 mg, 0.24 mmol, 68%).

¹H NMR (400 MHz, CDCl₃) δ 8.01-7.96 (m, 3 H), 7.81 (d, 1 H, J = 7.9 Hz), 7.50-7.37 (m, 5 H), 3.47 (s, 1 H, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 141.4, 137.6, 133.6, 129.1, 128.8, 128.6, 125.4, 125.2, 123.4, 122.2, 112.6, 82.8, 78.3.

Starting from 52 (23 mg, 0.10 mmol), 12b was obtained as white solid (20 mg, 0.085 mmol, 85%).

¹H NMR (400 MHz, CDCl₃) δ 8.26-8.14 (m, 3 H, ArH), 8.02-7.95 (m, 2 H, ArH), 7.87 (d, 1 H, *J* = 8.6 Hz, ArH), 7.68-7.47 (m, 4 H, ArH).¹³C NMR (101 MHz, CDCl₃) δ 139.2, 137.4, 136.7, 132.8, 132.5, 129.1, 129.0, 126.9, 126.4, 126.3, 125.6, 124.7, 124.6, 123.1, 121.7, 119.8. Characterization data of **12b** corresponded to the literature values.³⁶

3-Bromobenzo[b]naphtho[2,1-d]thiophene (12c)

Following the general procedure **GP3**, starting from **11c** (40 mg, 0.085 mmol), **53** was obtained as white solid (22 mg, 0.070 mmol, 82%).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, 1 H, J = 7.9 Hz, ArH), 7.86 (d, 2 H, J = 8.5 Hz, ArH), 7.80 (d, 1 H, J = 7.9 Hz), 7.59 (d, 2 H, J = 8.5 Hz, ArH)), 7.46 (td, 1 H, J = 8.0 Hz, 1.0 ArH), 7.40 (td, 1 H, J = 8.0 Hz, 1.0 ArH), 3.49 (s, 1 H, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 141.2, 137.4, 132.4, 131.9, 129.9, 125.6, 125.2, 123.3, 123.2, 122.1, 113.0, 83.2, 77.9.

Starting from 53 (22 mg, 0.070 mmol), 12c was obtained as white solid (16 mg, 0.051 mmol, 73%).

Rf(pentane): 0.7. Melting point: 201-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21-8.12 (m, 3 H, ArH), 8.00-7.95 (m, 2 H, ArH), 7.76 (d, 1 H, J = 8.6 Hz, ArH), 7.68 (dd, 1 H, J = 8.7, 1.9 Hz, ArH), 7.51 (m, 2 H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.3, 136.3, 133.5, 133.0, 131.0, 130.0, 127.5, 126.5, 126.1, 124.8, 124.5, 123.0, 121.7, 120.8, 120.1. IR 2966 (w), 2368 (w), 2349 (s), 2335 (m), 2318 (w), 2305 (w), 2052 (m), 1727 (w), 1257 (w), 1203 (w), 1202 (w), 1077 (w), 912 (w), 886 (w), 883 (w). HRMS (ESI) calcd for C₁₆H₉Ag⁷⁹BrS⁺ [M+Ag]⁺ 418.8654; found 418.8657.

3-Fluorobenzo[b]naphtho[2,1-d]thiophene (12d)

³⁶ R. Che, Z. Wu, Z. Li, H, Xiang, X. Zhou *Chem. Eur. J.* **2014**, *20*, 7258.

Following the general procedure **GP3**, starting from **11d** (40 mg, 0.098 mmol), **54** was obtained as white solid (21 mg, 0.079 mmol, 85%).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (m, 3 H, ArH), 7.80 (d, 1 H, *J* = 7.9 Hz, ArH), 7.46 (td, 1 H, *J* = 8.0 Hz, 1.0 ArH), 7.40 (td, 1 H, *J* = 8.0 Hz, 1.0 ArH), 7.16 (t, 2 H, *J* = 7.6 Hz, ArH), 3.47 (s, 1 H, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (d, *J* = 243.6 Hz), 146.7, 141.1, 137.3, 130.3 (d, *J* = 8.2 Hz) 129.6, 125.4, 125.1, 123.2, 122.0, 115.6 (d, *J* = 21.7 Hz), 112.5, 82.7, 77.9.

Starting from **54** (21 mg, 0.079 mmol), **12d** was obtained as white solid (10 mg, 0.040 mmol, 50%).

Rf(pentane) =0.7. Melting point: 204-205 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 2 H, ArH), 8.13 (dd, 1 H, J = 9.0, 5.4 Hz, ArH), 7.96 (m, 1 H, ArH), 7.81 (d, 1 H, J = 8.6 Hz, ArH), 7.61 (dd, 1 H, J = 9.7, 2.5 Hz, ArH), 7.57-7.54 (m, 2 H, ArH), 7.39 (td, 1 H, J = 8.6, 2.6 Hz, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J = 246.5 Hz), 138.8, 137.4, 136.4, 133.4 (d, J = 9.2 Hz), 132.1, 126.7 (d, J = 9.2 Hz), 126.2, 125.8, 124.8, 124.7, 122.9, 121.6, 120.8, 116.7 (d, J = 25.2 Hz), 112.5 (d, J = 20.6 Hz). IR 2931 (m), 2354 (m), 2345 (m), 2052 (s), 1457 (w), 1255 (m), 1206 (m), 961 (w), 817 (w). HRMS (ESI) calcd for C₁₆H₁₀FS⁺ [M+H]⁺ 253.0482; found 253.0481.

2-Hexylbenzo[4,5]thieno[3,2-g]benzothiophene (12e)

Following the general procedure **GP3**, starting from **11i** (83 mg, 0.17 mmol), **55** was obtained as brown oil (45 mg, 0.14 mmol, 80%).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, 1 H, *J* = 7.9 Hz, ArH), 7.72 (d, 1 H, *J* = 7.9 Hz, ArH), 7.53 (d, 1 H, *J* = 3.6 Hz, ThiopheneH), 7.42 (t, 1 H, *J* = 7.2 Hz, ArH), 7.35 (dd, 1 H, *J* = 8.1, 1.0 Hz, ArH), 6.79 (d, 1 H, *J* = 3.6 Hz, ThiopheneH), 3.69 (s, 1 H, Alkyne H), 2.86 (t, 2 H, *J* = 7.6 Hz, Hexyl), 1.73 (m, 2 H, Hexyl), 1.36-1.28 (m, 6 H, Hexyl), 0.92 (t, 3 H, *J* = 7.4 Hz, Hexyl). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 141.9, 141.0, 136.5, 133.2, 127.1, 125.2, 125.0, 124.5, 122.8, 121.8, 110.5, 85.2, 78.2, 31.5, 30.2, 29.7, 28.8, 22.6, 14.1.

Starting from **55** (45 mg, 0.14 mmol), **12e** was obtained as brown solid (29 mg, 0.089 mmol, 64%).

Rf(pentane) =0.5. Melting point: 105-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (m, 1 H, ArH), 8.06 (d, 1 H, J = 8.4 Hz, ArH), 7.88 (m, 1 H, ArH), 7.73 (d, 1 H, J = 8.4 Hz, ArH), 7.46 (m, 2 H, ArH), 7.14 (s, 1 H, ArH), 2.96 (t, 2 H, J = 7.3 Hz, Hexyl), 1.80 (m, 2 H, Hexyl), 1.44 (m, 2 H, Hexyl), 1.34 (m, 4 H, Hexyl), 0.92 (t, 3 H, J = 7.4 Hz, Hexyl). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 139.4, 138.5, 136.4, 132.8, 132.8, 131.7, 126.1, 124.6, 122.9, 121.5, 121.4, 119.7, 117.9, 31.6, 31.2, 30.8, 28.8, 22.6, 14.1. IR 3056 (w), 2922 (m), 2349 (m), 2335 (w), 2318 (w), 1416 (w), 1390 (m), 909 (w), 838 (m), 767 (m), 735 (s). HRMS (ESI) calcd for C₂₀H₂₁S₂⁺ [M+H]⁺ 325.1079; found 325.1082.

2-Hexylbenzo[4,5]thieno[3,2-g]benzofuran (12f)

Following the general procedure **GP3**, starting from **11j** (0.11 g, 0.24 mmol), **56** was obtained as brown oil (51 mg, 0.17 mmol, 70%).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, 1 H, J = 7.9 Hz, ArH), 7.77 (d, 1 H, J = 7.9 Hz, ArH), 7.42 (td, 1 H, J = 7.4, 1.1 Hz, ArH), 7.34 (td, 1 H, J = 8.2, 1.2 Hz, ArH), 7.27 (d, 1 H, J = 3.4 Hz, FuranH), 6.18 (d, 1 H, J = 3.4 Hz, FuranH), 3.68 (s, 1 H, Alkyne H), 2.72 (t, 2 H, J = 7.5 Hz, Hexyl), 1.72 (m, 2 H, Hexyl), 1.43-1.32 (m, 6 H, Hexyl), 0.92 (t, 3 H, J = 7.4 Hz, Hexyl). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 146.8, 140.6, 137.7, 136.7, 125.0, 124.9, 122.6, 122.0, 110.8, 108.8, 107.7, 84.5, 78.2, 31.5, 28.8, 28.1, 27.9, 22.6, 14.1.

Starting from 56 (51 mg, 0.17 mmol), 12f was obtained as white solid (30 mg, 0.097 mmol, 59%).

Rf(pentane) =0.7. Melting point: 72 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (m, 1 H, ArH), 7.98 (d, 1 H, J = 8.2 Hz, ArH), 7.90 (m, 1 H, ArH), 7.56 (d, 1 H, J = 8.2 Hz, ArH), 7.46 (m, 2 H, ArH), 6.53 (s, 1 H, ArH), 2.86 (t, 2 H, J = 7.3 Hz, Hexyl), 1.81 (m, 2 H, Hexyl), 1.47 (m, 2 H, Hexyl), 1.33 (m, 4 H, Hexyl), 0.92 (t, 3 H, J = 7.4 Hz, Hexyl). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 149.2, 138.7, 136.3, 132.8, 127.3, 125.9, 124.5, 123.0, 121.7, 121.4, 117.2, 116.2, 102.7, 31.6, 28.9, 28.5, 27.8, 22.6, 14.1. IR 3061 (w), 3017 (w), 2954 (s), 2927 (s), 2856 (s), 1777 (w), 1735 (w), 1672 (w), 1657 (w), 1599 (m), 1465 (m), 1459 (m), 1430 (s), 1417 (s), 1378 (w), 1322 (w), 1316 (w), 1303 (m), 1251 (w), 1184 (w), 1127 (w), 1053 (m), 1021 (w937 (s), 911 (m), 890 (w), 859 (w), 853 (w), 817 (s). HRMS (ESI) calcd for C₂₀H₂₁OS⁺ [M+H]⁺ 309.1308; found 309.1309.

Benzo[4,5]thieno[2,3-e]benzothiophene (12g)

Following the general procedure **GP3**, starting from **11k** (74 mg, 0.18 mmol), **57** was obtained as brown oil (38 mg, 0.16 mmol, 85%).

¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, 1 H, *J* =3.0, 1.3 Hz, ThiopheneH), 7.94 (d, 1 H, *J* = 8.0 Hz, ArH), 7.78 (d, 1 H, *J* = 8.0 Hz, ArH), 7.76 (dd, 1 H, *J* = 5.3, 1.4 Hz, ThiopheneH), 7.47-7.36 (m, 3 H, ArH+ThiopheneH), 3.60 (s, 1 H, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 141.0, 136.8, 134.3, 127.1, 125.9, 125.2, 125.0, 124.0, 123.0, 121.9, 111.6, 83.6, 78.5.

Starting from **57** (38 mg, 0.16 mmol), **12g** was obtained as white solid (30 mg, 0.13 mmol, 79%).

Rf(pentane): 0.5. Melting point: 222-223 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 1 H, ArH), 8.11 (d, 1 H, J = 8.5 Hz, ArH), 7.93 (m, 2 H, ArH), 7.62 (d, 1 H, J = 5.4 Hz, ArH), 7.58 (d, 1 H, J = 5.4 Hz, ArH), 7.52-7.46 (m, 2 H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 138.4, 136.2, 134.1, 133.8, 132.2, 127.5, 126.1, 124.6, 123.0, 121.9, 121.5, 119.1, 117.9. IR 2360 (m), 2336 (m), 1448 (w), 1395 (w), 1201 (w), 1025 (w), 777 (w), 749 (s). HRMS (ESI) calcd for C₁₄H₉S₂⁺ [M+H]⁺ 241.0140; found 241.0138.

Benzo[b]thieno[2,3-g]benzofuran (12h)

Following the general procedure **GP3**, starting from **9d** (88 mg, 0.23 mmol), **58** was obtained as brown oil (40 mg, 0.18 mmol, 77%).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, 1 H, J =3.0, 1.2 Hz, ThiopheneH), 7.95 (dd, 1 H, J = 5.1. 1.2 Hz, ThiopheneH), 7.67 (m, 1H, ArH), 7.50 (m, 1H, ArH), 7.43 (dd, 1 H, J = 5.1. 3.0 Hz, ThiopheneH), 7.39-7.26 (m, 2 H, ArH), 3.61 (s, 1 H, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 153.1, 131.3, 129.5, 126.1, 125.6, 125.2, 124.1, 123.5, 120.1, 111.1, 97.0, 84.8, 75.6.

Starting from **58** (40 mg, 0.18 mmol), **12h** was obtained as white solid (33 mg, 0.15 mmol, 83%).

Rf(pentane): 0.5. Melting point: 129-130 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, 1 H, *J* = 7.6 Hz, ArH), 7.92 (d, 1 H, *J* = 8.2 Hz, ArH), 7.84 (d, 1 H, *J* = 8.4 Hz, ArH), 7.78 (d, 1 H, *J* = 5.5 Hz, ArH), 7.67 (d, 1 H, *J* = 8.2 Hz, ArH), 7.59 (d, 1 H, *J* = 5.5 Hz, ArH), 7.47 (td, 1 H, *J* = 7.4, 1.3 Hz, ArH), 7.39 (td, 1 H, *J* = 7.4, 1.3 Hz, ArH). ¹³C NMR (126 MHz, CDCl₃) δ 155.6, 150.9, 139.9, 127.1, 126.3, 125.6, 124.8, 122.9, 120.3, 119.5, 119.2, 117.2, 116.8, 111.7. IR 1191 (w), 926 (w), 745 (w), 641 (m), 631 (m), 621 (m), 612 (m), 604 (m), 508 (s), 474 (s), 468 (s), 433 (s), 425 (s). HRMS (ESI) calcd for C₁₄H₉OS⁺ [M+H]⁺ 225.0369; found 225.0367.

Crystal data of **12h** has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1420341).

Benzo[b]thieno[3,2-g]benzofuran (12i)

Following the general procedure **GP3**, starting from **9e** (72 mg, 0.19 mmol), **59** was obtained as brown oil (30 mg, 0.13 mmol, 71%).

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, 1 H, J = 3.7 Hz, thiopheneH), 7.65 (m, 1 H, ArH), 7.48 (d, 1 H, J = 7.2 Hz, ArH), 7.45 (d, 1 H, J = 4.5 Hz, thiopheneH), 7.35-7.28 (m, 2 H, ArH), 7.95 (dd, 1 H, J = 4.5, 3.7 Hz, thiopheneH), 3.67 (s, 1 H, Alkyne H). ¹³C NMR (101

MHz, CDCl₃) δ 154.2, 153.2, 132.0, 129.5, 127.8, 127.2, 126.8, 125.3, 123.6, 120.1, 111.1, 96.9, 86.1, 75.2.

Starting from **59** (30 mg, 0.13 mmol), **12i** was obtained as white solid (14 mg, 0.062 mmol, 54%).

Rf(pentane): 0.7. Melting point: 108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, 1 H, J = 7.5 Hz, ArH), 7.93 (d, 1 H, J = 8.2 Hz, ArH), 7.81 (d, 1 H, J = 8.2 Hz, ArH), 7.66 (d, 1 H, J = 8.2 Hz, ArH), 7.51 (s, 2 H, ArH), 7.47(m, 1 H, ArH), 7.39 (t, 1 H, J = 7.5 Hz, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 151.0, 140.8, 126.4, 126.0, 124.9, 124.9, 123.1, 123.0, 120.5, 119.6, 118.7, 117.1, 111.8. IR 2922 (w), 2388 (m), 2301 (s), 1781 (w), 1706 (m), 1688 (s), 1677 (s), 1658 (s), 1646 (s), 1565 (s), 1550 (s), 1532 (s), 1516 (m), 1448 (s), 1414 (m), 1408 (m), 1321 (m), 1244 (m), 1231 (m), 1207 (m), 1189 (s), 1176 (m), 1046 (w), 880 (m). HRMS (ESI) calcd for C₁₄H₈OS [M+] 224.0290; found 224.0289.

Naphtho[1,2-b]thieno[2,3-d]thiophene (12j)

Following the general procedure **GP3**, starting from **111** (43 mg, 0.11 mmol), **60** was obtained as brown oil (15 mg, 0.062 mmol, 58%).

¹H NMR (400 MHz, CDCl₃) δ 7.80 (t, 2 H, *J* = 7.5 Hz, ArH), 7.35 (t, 2 H, *J* = 7.2 Hz, ArH), 7.31 (d, 1 H, *J* = 5.1 Hz, ThiopheneH), 7.28 (d, 1 H, *J* = 7.4 Hz, ArH), 7.15 (t, 1 H, *J* = 4.3 Hz, ThiopheneH), 3.32 (s, 1 H, Alkyne H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 143.0, 135.8, 133.9, 128.8, 128.6, 127.8, 127.3, 119.7, 109.6, 82.4, 77.7.

Starting from **60** (15 mg, 0.062 mmol), **12j** was obtained as white solid (9 mg, 0.04 mmol, 60%).

Rf(pentane): 0.5. Melting point: 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, 1 H, *J* = 8.1 Hz, ArH), 7.95 (d, 1 H, *J* = 8.1 Hz, ArH), 7.88 (d, 1 H, *J* = 8.6 Hz, ArH), 7.82 (d, 1 H, *J* = 8.6 Hz, ArH), 7.59 (t, 1 H, *J* = 7.0 Hz, ArH), 7.52 (m, 2 H, ArH), 7.41 (d, 1 H, *J* = 5.2 Hz, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 137.3, 136.3, 130.9, 130.1, 129.9, 129.0, 127.5, 126.9, 125.8, 125.7, 123.2, 120.3, 119.7. IR 3095 (w), 3055 (w), 3008 (w), 2927 (s), 2860 (m), 2394 (w), 2352 (w), 2338 (w), 2292 (w), 2273 (w), 2051 (w), 1803 (w), 1726 (w), 1707 (w), 1689 (w), 1658 (w), 1628 (w), 1549 (w), 1532 (w), 1517 (w), 1464 (w), 1380 (w), 1330 (m), 1259 (m), 1083 (w), 981 (w), 910 (w). HRMS (ESI) calcd for C₁₄H₉S₂⁺ [M+H]⁺ 241.0140; found 241.0144.

8. Spectra for new compounds

solvent:<CDCl3> Frequency:400.13MHz

solvent:<CDCl3> Frequency:400.13MHz

solvent:<CDCI3> Frequency:400.08MHz

solvent:<CDCI3> Frequency:400.13MHz

solvent:<CDCI3>

Frequency:400.13MHz

solvent:<CDCl3> Frequency:400.13MHz

solvent:<CDCl3> Frequency:400.13MHz

solvent:<CDCl3> Frequency:400.13MHz

3000 2000 1000

solvent:<CDCI3> Frequency:400.13MHz

solvent:<CDCl3> Frequency:400.13MHz

12c

80 170 .

solvent:<CDCI3> Frequency:400.08MHz

170 160 150. 120 110 100 ó

solvent:<CDCI3> Frequency:400.13MHz

solvent:<CDCl3> Frequency:400.13MHz

12g

solvent <CDCl3> Frequency 400.13MHz

9. Thin film X-ray diffraction of selected compounds

*Out-of-plane GIXRD pattern of melt-processed films of BTBT, 12e and 12f on SiO*₂ *substrate.* The two first peaks of the BTBT (control) diffractogram exhibit a scattering vector of 0.43 and 0.64 Å⁻¹, which correspond to Bragg spacing of 14.6 and 9.8 Å respectively, and can be attributed to packing of the BTBT molecules without interdigitating of the side chains as proposed by Collela et al. (ChemPlusChem **2014**, *79*, 371-374.). The smaller distances observed in this work with molecules 12e and 12f is likely caused by the shorter alkyl side-chains of the molecule (C8 vs. C12) and the presence of only one alkyl chain instead of two.

Optimised geometries of all monomers (PBE0-D3BJ/def2SVP) and dimers (PBE0-

dDsC/def2SVP) in the form of Cartesian coordinates.

12a

C $0.0000000009 - 0.5773046315 - 1.9048150124$ C $0.0000000009 - 0.9301122491 - 0.5023339578$ C $-0.000000001 0.2815147715 0.1809681993$ O $0.0000000015 1.3429268282 - 0.6673066595$ C $0.0000000015 - 1.2786697495 - 3.1148212885$ C $0.0000000014 - 2.1426467812 0.2278807229$ C $-0.000000005 0.3892747029 1.5872885666$ C $0.0000000015 1.5709026467 - 3.1025108423$ C $-0.0000000015 1.5709026467 - 3.1025108423$ C $-0.0000000013 0.8506342209 - 4.2953718542$ C $00.8484225527 2.3058760646$ C $-0.0000000006 - 2.0894829422 1.6000597056$ H $0.000000006 - 2.0894829422 1.6000597056$ H $0.0000000007 - 2.3706656583 - 3.1269587795$ H $0.0000000002 1.6189011334 2.2852668989$ H $0.0000000014 2.6614758306 - 3.0811666462$ H $-0.000000002 1.3909449019 - 5.2445827115$ C $-0.0000000002 - 3.0128023486 2.1839836627$ C $0.0000000002 - 3.0128023486 2.1839836627$ C $0.0000000003 1.6293355367 3.66187519$ C $-0.0000000003 2.5486215171 1.713322667$ H $-0.000000001 - 1.7293739924 4.2826474674$ H $0.000000002 2.579610249 4.2004443537$ H $-0.000000001 0.4369122819 5.4760072366$	
1 2 C 0.00000009 -0.5822040555 -1.9019580232 C 0.0000000102 -0.9417750903 -0.5187007768 C 0.000000018 0.3085814766 0.1872403801 O 0.000000017 1.3393960574 -0.6452271529 C 0.000000005 0.8274451317 -1.9296895784 C 0.0000000091 -1.2937330417 -3.1146215102 C 0.0000000091 -2.143741186 0.2026879332 C 0.000000008 0.4065811125 1.5916862611 C 0.0000000064 -0.566123306 -4.2983234598 C -0.0000000064 -0.566123306 -4.2983234598 C -0.0000000077 -0.8355600796 2.2992573276 C -0.000000076 -2.0798907557 1.5838445028 H 0.0000000168 -2.3852092615 -3.1250497694 H 0.000000067 1.6309676143 2.288403435 H 0.000000035 2.6607818163 -3.073200664 H -0 000000013 -1 0895055023 -5 2558177398	-1 2 C -0.000000017 -0.5946486139 -1.9055432685 C 0.0000000132 -0.9400714057 -0.5238789656 C -0.000000003 0.2840996562 0.1978100964 O 0.000000052 1.3492848598 -0.6824732683 C 0.0000000153 -1.2877502506 -3.1369991438 C 0.0000000298 -2.141359157 0.2243761693 C 0.0000000298 -2.141359157 0.2243761693 C 0.0000000015 0.3998336859 1.5803653441 C 0.0000000234 1.5626538301 -3.1092075812 C -0.0000000257 -0.5512490111 -4.3267473783 C -0.0000000244 -0.8440678039 2.3267929102 C 0.0000000244 -0.8440678039 2.3267929102 C 0.0000000244 -2.3803974318 -3.1584408589 H 0.000000293 -3.1079236675 -0.2889306229 C -0.00000008 1.6355026973 2.3086873663 H 0.000000435 2.6540146588 -3.0786301845 H -0 0000000517 -1 0853985111 -5 2824801067

H -(C -(H -(C (H (H (H (H -(0.0000000219 0.00000000112 0.0000000102 0.0000000123 0.0000000048 0.0000000045 0.0000000045 0.0000000235	1.37917675 -0.79693203 -3.00406748 1.63316488 0.42511700 2.56730492 -1.73274760 2.58015855 0.43087509	57 -5.232191133372 3.6997529028398 2.1665877184388 3.6797492265383 4.3803686693204 1.7269286432325 4.263363856538 4.2225787919325 5.472414896	H -0 C 0. H 0. C 0. C -0 H -0 H -0 H -0 H -0	.0000000012 .0000000058 .0000000053 .0000000136 .0000000137 .0000000141 .0000000075 .000000033	1.39032646 0.793516122 -3.01543297 1.62867729 0.42959880 2.57306479 -1.73863082 2.58379084 0.443598819	588-5.2769769175273.7244878047322.17848094733353.69423222370134.42189885673261.74928529792094.27777293894164.23122808053965.5148175289
cofa	acial			antif	acial_y		
	0 700726	1 007507	0.206166		2 176912	1 116460	0 705010
ĉ	-0.682507	-1.337507	0.290100	Č	-2.470012	-1.053105	-0.795919
č	-0.002537	-1.276724	-0 576518	C	-0.371667	-1.659208	-0.210530
õ	-0.312212	-1.270724	-0.570510	Ő	-0.371007	-2.068003	0.219559
ĉ	-0.312212	1 507/99	1.004270	Č	-1.100079	-2.000903	0.005097
ĉ	1 818180	-1.397400	-1.041102	Č	-2.434032	-1.740213	-1 317638
ĉ	-1 504457	-2.477570	1 720758	Č	-0.432510	-0.723104	-7.361860
ĉ	2 502222	-1.900000	0.724407	Č	1 022246	1 920027	-2.301000
č	-2.090002	-0.949336	1 7124407	Č	2 562552	-1.039927	1 219026
ĉ	2.07.5209	-7.549343	0 337002	Č	-4.855303	-0.074562	-0.571852
ĉ	2 166596	2 1 2 2 4 1	0.007/10	Č	4.000000	1 602422	-0.57 1652
č	2 100300	-2.132410	-0.997419	Č	1 690/10	-1.002422	1 /15571
ĉ	-3.400313	1 6259/1	1 620002	Č	0.020507	-1.322194	2 /27206
	-2.030703	-1.030641	1.030902		0.930397	-0.070710	-2.437290
	1.723130	-2.792041	2.037525		-3.770393	-0.224043	-2.200412
	-1.001931	-2.3355000	2.000001		-0.992100	-0.030600	-3.133137
	-3.100003	-0.470243	-1.920110		1.702229	-2.494903	0.747000
	2.109300	-1.313900	-2.747007		-3.490217	-2.490000	2.100000
	3.921302	-2.903930	1 470252		-5.629509	-0.073937	-0.902000
	4.144003	-2.174102	-1.479202		-0.701709	-1.700000	1.240000
	-4.701900	1 762092	0.330300		3.002070	-1.474941	-1.000020
	-3.491303	-1.702902	2.000010		1.474210	-0.272040	-3.290344
ĉ	-4.501090	-0.177030	-1.904030	Č	3.124000	-2.034937	0.019014
ц	-0.010740	-0.337831	-0.040045	с ц	3.788095	-2.115515	1 618887
	-2.510129	-0.337831	-2.192241		2 600125	-2.002371	2 275020
Ц	-1 030378	0.103283	-2 013867	Ц	3.607275	-3 1/3357	1 307284
Ц	-6 381205	-0.112656	-2.913007	Ц	3.097273 1 871811	-2 21800/	-0 505452
C	2 984530	0.012000	0.504221	C	-1 374339	1 552806	0.000402
č	1 639579	1 067294	1 133417	C C	-0.030147	1.002000	1 253970
č	0 903144	1 532361	0 054374	C C	0.763335	1 615442	0 204328
õ	1 665743	1.683786	-1 057040	õ	0.035531	2 227238	-0 761041
č	2 924476	1 314093	-0 708209	Č	-1 257026	2 188901	-0.346652
C C	4 204684	0 496460	1 168783	C C	-2 636361	1 424856	1 484035
č	0 995703	0.400400	2 371367	C C	0.565868	0.511790	2 350053
C C	-0 474841	1 815572	0 108648	C C	2 162804	1 469388	0 167153
C C	4 024079	1 310458	-1 551002	C C	-2 339885	2 705097	-1 040283
č	5 318759	0 481478	0.339155	Č	-3 733440	1 938572	0.805899
č	5 229228	0 882448	-1 002453	č	-3 586859	2 569739	-0 437920
č	-1 105933	1 585021	1 367335	Č	2 747657	0.811913	1 289616
č	-0.348165	1.096194	2 471504	Č	1 926337	0.338446	2 353619
н	4 277521	0 177297	2 210085	й	-2 758311	0 924415	2 445951
н	1 561431	0 469341	3 227098	H	-0 049386	0 143243	3 172462
C	-1 220865	2 299573	-0.986082	Ċ	2 975238	1 936095	-0 887891
н	3 936370	1 625759	-2 591327	й	-2 208899	3 194452	-2 006102
н	6 282245	0 152931	0 734251	H	-4 729662	1 837938	1 239579
н	6 123801	0 861417	-1 628635	н	-4 470783	2 959600	-0.947149
С	-2 489429	1 851321	1 471668	Ċ	4 152672	0.657118	1 307782
н	-0.872326	0.921423	3.413166	н	2.412386	-0.172819	3.187001

С	-2.564932	2.554103	-0.839970	С	,	4.339867	1.770013	-0.830423
С	-3.203126	2.329162	0.396182	С		4.932884	1.130268	0.277874
Н	-0.712791	2.461116	-1.937883	Н		2.499029	2.427131	-1.738030
н	-2.987022	1.663225	2.425675	н		4.610793	0.151086	2.160712
Н	-3 147269	2 921090	-1 687247	Н		4 969104	2 136497	-1 644539
н	-4 273311	2 520009	0 493153	H		6 017203	1 004269	0.312770
••	4.270011	2.020000	0.400100			0.017200	1.004200	0.012770
antif	acial z			an	ntifa	cial vz		
0 1				0 -	1	olal_y2		
Ċ	2 430356	1 330779	-0 770968	Č		-2 737077	-0 930731	-0 859949
č	1 013220	1 /00678	-0.073128	C		-1 3/0806	-1 015002	-1 2/0062
ĉ	0.466073	1.453070	0.3011/2	0		-0.700065	-1.602887	-0.1500/2
õ	1 410261	1.333297	1 265000	0	,	1 570606	1 002007	-0.159042
Č	2 500524	1.430400	1.200909	0		-1.570090	-1.000000	0.000072
Č	2.399324	1.303232	1 5025155	C		-2.794077	-1.473909	0.434227
C	3.551711	1.204634	-1.593565			-3.909567	-0.460280	-1.452910
C	0.167899	1.621360	-2.098453	C C	,	-0.595999	-0.629687	-2.370615
C	-0.905680	1.736142	0.558928	C		0.669260	-1.877468	-0.120266
C	3.833837	1.1/1/49	1.236803	C		-3.965313	-1.559596	1.170596
C	4.798980	1.065354	-0.996321	C		-5.094547	-0.539197	-0.731668
С	4.938282	1.053999	0.399149	C	,	-5.121316	-1.078244	0.562955
С	-1.739997	1.864568	-0.590428	C		1.411866	-1.491737	-1.275362
С	-1.176923	1.799220	-1.898581	C	,	0.755323	-0.864315	-2.373891
Н	3.449324	1.216876	-2.680537	Н		-3.892025	-0.030050	-2.455793
Н	0.583098	1.569744	-3.106407	Н		-1.083484	-0.145912	-3.218676
С	-1.460491	1.799218	1.855048	С	;	1.318801	-2.488251	0.973861
Н	3.921050	1.155998	2.323279	Н		-3.968826	-1.985395	2.174652
Н	5.688713	0.967722	-1.621915	Н		-6.022320	-0.172664	-1.175806
Н	5.932588	0.945881	0.837589	Н		-6.068591	-1.125012	1.104467
С	-3.125458	2.055221	-0.385373	С		2.802457	-1.751766	-1.286901
Ĥ	-1.853078	1.892288	-2.751145	H		1.362477	-0.567702	-3.231603
С	-2.812881	1,994005	2.012673	С		2.672369	-2.725021	0.922880
Č	-3 649637	2 122656	0 884345	Ċ		3 418472	-2 356218	-0 216764
н	-0 798417	1 692570	2 715500	н		0 726265	-2 764279	1 847370
н	-3 777613	2 139876	-1 256962	н		3 384155	-1 454437	-2 161833
н	-3 244450	2.100070	3 014677			3 176187	-3 198617	1 768392
н	-4 723777	2 261768	1 021526	н		4 494290	-2 538614	-0 240680
\hat{c}	-9.120111	-1 330755	-0 771101			2 737010	-2.000014	0.240000
ĉ	1 012227	1 400641	0.072260	0		1 2/0902	1.014966	1 240051
Č	-1.013227	-1.499041	-0.973209	0		1.349003	1.014000	1.240051
	-0.467000	-1.000010	0.301000	C		0.709960	1.002723	0.100901
0	-1.410269	-1.430739	1.200773	0		1.5/0//9	1.000000	-0.650567
C C	-2.599534	-1.303355	0.623003			2.794708	1.473692	-0.434166
C	-3.551676	-1.204340	-1.593697	C		3.909504	0.460325	1.453192
C	-0.167909	-1.621170	-2.098618	C		0.595788	0.629492	2.370507
C	0.905654	-1.736383	0.558763	C		-0.669244	1.877425	0.120103
С	-3.833836	-1.171796	1.236671	C		3.965452	1.559586	-1.170334
С	-4.798932	-1.064945	-0.996453	C		5.094564	0.539368	0.732092
С	-4.938249	-1.053731	0.399015	C		5.121437	1.078398	-0.562536
С	1.739970	-1.864576	-0.590617	C	,	-1.411947	1.491748	1.275154
С	1.176913	-1.799044	-1.898767	C		-0.755535	0.864123	2.373652
Н	-3.449278	-1.216448	-2.680669	Н		3.891895	0.030089	2.456073
Н	-0.583120	-1.569326	-3.106556	Н		1.083193	0.145791	3.218656
С	1.460475	-1.799618	1.854871	С	;	-1.318695	2.488260	-0.974053
Н	-3.921060	-1.156143	2.323147	Н		3.969028	1.985361	-2.174399
Н	-5.688636	-0.967072	-1.622050	Н		6.022321	0.172939	1.176352
Н	-5.932536	-0.945464	0.837463	Н		6.068783	1.125305	-1.103912
С	3.125450	-2.055120	-0.385597	C		-2.802490	1,752031	1.286702
Ĥ	1.853105	-1.891884	-2.751324	н		-1.362743	0.567628	3.231369
C	2.812887	-1.994281	2.012459	C		-2.672230	2,725240	-0.923085
Ċ.	3 649648	-2 122674	0 884105	0 C		-3 418407	2 356555	0 216550
й	0 798303	-1 693177	2 715242	с ц		-0 726117	2 764214	-1 847557
	0.1000000	1.000177	2.7 10040			0.120111	2.107214	1.577.557

H 3.777611 -2.139530 -1.257204 H 3.244470 -2.044353 3.014452 H 4.723810 -2.261646 1.021247	H -3.384245 1.454713 2.161600 H -3.175950 3.198966 -1.768582 H -4.494175 2.539243 0.240509
12b 0 1 C 0.000000065 -0.5993318447 -1.8447099726 C 0.000000021 -0.8630695814 -0.4222387056 C 0.0000000158 0.313203316 0.3304457737 S -0.000000019 1.749058383 -0.6628800666 C -0.0000000055 0.787083504 -2.1195315335 C 0.0000000111 -1.5017702616 -2.9175424488 C 0.000000023 -2.1150011658 0.2443920839 C 0.0000000162 1.2728980701 -3.4283413065 C -0.000000019 -1.0224637502 -4.2197404411 C -0.000000035 0.3574224367 -4.473397126 C 0.0000000012 -2.1626552644 1.6134553857 H 0.000000012 -2.1626552644 1.6134553857 H 0.000000012 -2.1626552644 1.6134553857 H 0.000000012 -2.1626552644 1.6134553857 H 0.000000012 -3.0375421446 -0.3401264897 C 0.0000000172 1.4777734076 2.5392161747 H -0.000000025 2.3468627845 -3.6252598951 H 0.0000000048 -1.7247571642 -5.0560080191 H -0.000000091 0.7186262289 -5.5042079058 C -0.000000014 -1.0123983958 3.8127814703 H -0.000000093 1.4021969222 3.9140137512 C -0.0000000158 0.146185736 4.5571795958 H 0.0000000143 -1.9868997469 4.3077738458 H 0.000000021 2.4515332994 2.0424912827 H -0.0000000143 -1.9868997469 4.3077738458 H 0.000000026 2.3175977188 4.5098282158 H 0.0000000286 0.0954834321 5.6482811668	
1 2 C 0.000000018 -0.6156414761 -1.8553870678 C 0.0000000225 -0.8821694474 -0.4364431367 C 0.000000031 0.3307860811 0.331833243 S 0.000000103 1.7248777853 -0.6506612633 C 0.000000036 0.7678179143 -2.1260929147 C -0.000000017 -1.5153932813 -2.9274379039 C 0.0000000194 -2.1119912713 0.227319432 C -0.000000002 0.3205573893 1.7588902174 C 0.000000003 1.2710666767 -3.4171395142 C -0.0000000172 -1.0228054503 -4.2333175895 C -0.0000000076 0.3504909729 -4.4751697415 C -0.0000000022 -0.9549602054 2.3996060804 C 0.0000000156 -2.1435695346 1.6139948339 H -0.0000000156 -2.1435695346 1.6139948339 H -0.0000000137 -2.5923848566 -2.7473828285 H 0.0000000197 -3.0435198615 -0.3410212377 C -0.000000059 1.4859865726 2.5440863376 H 0.000000096 2.3449754722 -3.6128128682 H -0.000000096 2.3449754722 -3.6128128682 H -0.000000009 0.7207917681 -5.5023428286 C -0.000000009 0.7207917681 -5.5023428286 C -0.0000000186 -1.0128603726 3.8062658591 H 0.000000005 -3.1065153286 2.1303927921 C -0.000000012 1.4005892922 3.9330787514 C -0.00000002 2.01535185772 4.5646038475 H 0.000000029 2.4678753385 2.0638418291 H -0.0000000134 -1.9878373588 4.2989891636	-1 2 C 0.000000013 -0.6161905968 -1.844008628 C -0.000000054 -0.8770890641 -0.4441109774 C 0.000000057 1.7539204187 -0.6690763531 C -0.0000000057 1.7539204187 -0.6690763531 C -0.0000000097 -1.5091054557 -2.9439011587 C 0.0000000016 -2.1154300453 0.2409551531 C 0.0000000132 0.3113439208 1.7500070776 C -0.0000000175 1.2654390439 -3.4354426605 C 0.0000000128 -1.0200462811 -4.2460899716 C -0.0000000191 -0.9704232505 2.4203011979 C -0.0000000056 -2.1625180031 1.6130667265 H 0.0000000056 -2.1625180031 1.6130667265 H 0.0000000039 -3.0463609162 -0.3351070116 C 0.0000000176 1.4902546565 2.5596929043 H -0.0000000171 -1.7270860908 -5.081839001 H 0.000000023 -2.5873171809 -2.7626954749 H -0.0000000171 -1.7270860908 -5.081839001 H 0.000000027 -1.0109568186 3.8195252834 H -0.0000000023 -3.128482915 2.127291239 C 0.0000000133 1.402718578 3.9462643431 C -0.0000000175 2.467172326 2.0683838236 H -0.000000114 -1.9901090351 4.309848574
H 0.000000034 2.314427894 4.530398407 H 0.000000031 0.0943892603 5.6547108719 H-0.000000017 2.3239582319 4.5387603714 H-0.000000183 0.1063267902 5.6855690439

antifacial_	y

cofa	cial			antif	acial_y		
01				01			
C	0.611859	-1.997635	0.077343	C	-2.267952	-0.370520	-1.433754
C	-0.784504	-1.779681	0.366078	C	-0.863317	-0.697209	-1.429130
С	-1.457576	-1.195912	-0.704844	C	-0.570381	-1.737701	-0.550464
S	-0.417345	-0.896139	-2.068408	S	-1.984741	-2.347085	0.264123
С	0.952387	-1.557653	-1.217180	С	-3.000301	-1.192416	-0.553693
С	1.608007	-2.555001	0.886624	С	-2.943359	0.615315	-2.161424
С	-1.493805	-2.075697	1.554243	С	0.179967	-0.102836	-2.178642
С	-2.841413	-0.890671	-0.650370	С	0.750659	-2.216004	-0.361498
С	2.254070	-1.660474	-1.704992	С	-4.378080	-1.049434	-0.398067
С	2.902367	-2.664465	0.402798	С	-4.313507	0.762010	-2.008995
С	3.224121	-2.220476	-0.886255	С	-5.027521	-0.068390	-1.134284
С	-3.533173	-1.198753	0.557006	С	1.783842	-1.595585	-1.121841
С	-2.829471	-1.790391	1.643390	С	1.466108	-0.543434	-2.025173
Н	1.363023	-2.895602	1.894762	Н	-2.388152	1.266181	-2.839871
Н	-0.967275	-2.528028	2.396716	Н	-0.047530	0.713561	-2.865675
С	-3.548913	-0.305041	-1.722931	С	1.082551	-3.245940	0.546218
Н	2.504564	-1.302391	-2.704890	Н	-4.931411	-1.691455	0.289568
Н	3.683779	-3.089421	1.035579	Н	-4.843182	1.529597	-2.577141
Н	4.252088	-2.296905	-1.244584	Н	-6.106743	0.059160	-1.025964
С	-4.911189	-0.896456	0.642029	С	3.113953	-2.036416	-0.940814
Н	-3.381904	-2.014624	2.558644	Н	2.280556	-0.077395	-2.583035
С	-4.890958	-0.024997	-1.609800	С	2.388595	-3.650524	0.701400
С	-5.577996	-0.319319	-0.414508	С	3.414110	-3.040983	-0.049718
Н	-3.013801	-0.071689	-2.646318	Н	0.287662	-3.718037	1.129044
Н	-5.440826	-1.129729	1.569022	Н	3.905081	-1.549156	-1.514881
Н	-5.426176	0.428282	-2.446875	Н	2.632174	-4.447242	1.407632
Н	-6.643307	-0.093006	-0.331519	Н	4.448392	-3.367363	0.079455
С	2.974884	0.809283	0.785234	С	-0.910203	0.895322	1.662370
С	1.592989	0.989266	1.155338	С	0.514948	0.770380	1.469948
С	0.849156	1.582404	0.138691	С	0.995717	1.659511	0.512560
S	1.807500	1.935858	-1.273753	S	-0.263322	2.651498	-0.172152
С	3.232809	1.280053	-0.517810	С	-1.465274	1.889923	0.833499
С	4.021789	0.243474	1.521138	С	-1.752811	0.186275	2.526338
С	0.955554	0.633102	2.368072	С	1.416055	-0.111540	2.114255
С	-0.537597	1.847875	0.273610	С	2.364235	1.707336	0.146665
С	4.501335	1.187801	-1.089341	С	-2.827223	2.184919	0.853257
С	5.284647	0.148901	0.958253	С	-3.107577	0.476988	2.552346
С	5.522105	0.615932	-0.342176	С	-3.641167	1.468568	1.718474
С	-1.156574	1.479384	1.503247	С	3.250592	0.810979	0.811064
С	-0.381499	0.872783	2.531331	С	2.746013	-0.083737	1.795389
Н	3.837266	-0.130048	2.530287	Н	-1.340925	-0.592237	3.170743
Н	1.536374	0.162913	3.163843	Н	1.040474	-0.818538	2.855888
С	-1.317380	2.442252	-0.742389	С	2.872768	2.574858	-0.846196
Н	4.686095	1.553535	-2.101219	Н	-3.244411	2.950160	0.197490
Н	6.102297	-0.294693	1.530079	Н	-3.767909	-0.076596	3.222892
Н	6.522672	0.534852	-0.772539	Н	-4.712356	1.677456	1.741973
С	-2.539023	1.722872	1.663624	С	4.616688	0.818157	0.447132
Н	-0.882877	0.593340	3.460095	Н	3.442404	-0.772520	2.276827
С	-2.660903	2.669216	-0.551089	С	4.206845	2.552952	-1.181677
С	-3.278433	2.307887	0.662130	С	5.088268	1.665278	-0.529479
Н	-0.841211	2.714651	-1.687132	Н	2.189454	3.261117	-1.352547
Н	-3.015235	1.426789	2.600954	Н	5.293171	0.125669	0.953855
Н	-3.255564	3.123062	-1.346315	Н	4.586590	3.225687	-1.953665
Н	-4.348505	2.474052	0.797030	Н	6.146214	1.654714	-0.800485

antif	acial_z			а	Intif	acial_yz		
01				C) 1			
С	1.335019	-1.764976	0.881030	(С	1.249754	-2.050216	0.470051
С	-0.102350	-1.644727	0.904203	(С	-0.180969	-1.901095	0.359662
С	-0.646776	-1.590160	-0.377047	(С	-0.559448	-1.393013	-0.880790
S	0.567468	-1.690944	-1.624100	:	S	0.796067	-1.124459	-1.940414
С	1.834844	-1.799452	-0.435785	(С	1.907990	-1.671160	-0.718082
С	2.234380	-1.847604	1.949726	(С	2.014531	-2.490845	1.556308
С	-0.959169	-1.582982	2.028122	(С	-1.175598	-2.202324	1.321017
С	-2.042158	-1.473501	-0.598929	(С	-1.915496	-1.140921	-1.210249
С	3.199978	-1.903443	-0.697347	(С	3.294340	-1.742118	-0.841124
С	3.592245	-1.959083	1.695837	(С	3.394616	-2.560880	1.439920
С	4.071222	-1.983004	0.378993	(С	4.029422	-2.192358	0.245900
С	-2.885304	-1.424119	0.549362	(С	-2.898713	-1.465618	-0.231243
С	-2.312056	-1.476744	1.850054	(С	-2.495735	-1.996173	1.026574
Н	1.864077	-1.820782	2.976449		Н	1.522217	-2.776434	2.488127
Н	-0.532962	-1.621894	3.032452		Н	-0.879853	-2.597014	2.294828
С	-2.621647	-1.404362	-1.885374	(С	-2.322624	-0.581274	-2.441207
Н	3.573792	-1.910157	-1.722023		Н	3.789648	-1.432388	-1.762649
Н	4.296569	-2.023732	2.527789		Н	3.993289	-2.905601	2.285583
Н	5.144794	-2.057027	0.194589		Н	5.117544	-2.246481	0.171910
С	-4.282562	-1.328079	0.359296	(С	-4.258957	-1.240780	-0.539765
H	-2.980163	-1.427438	2.712234		H	-3.268353	-2.225460	1.762943
С	-3.986078	-1.306933	-2.035067	(С	-3.656539	-0.365888	-2.706787
Č	-4.825800	-1.276526	-0.903119	(Ĉ	-4.634607	-0.706413	-1.751224
Ĥ	-1.970895	-1.429094	-2.762548		Ĥ	-1.563647	-0.321992	-3.183485
H	-4.926259	-1.290980	1.241131		Н	-5.011279	-1.493568	0.210927
н	-4 421625	-1 257958	-3 035539		Н	-3 958983	0.064934	-3 663829
н	-5 907793	-1 203087	-1 031806		н	-5 690882	-0 538360	-1 972073
С	-1 334979	1 766488	0 878707		C	-1 584956	1 687526	0.535858
č	0 102383	1 646227	0.902019	(č	-0.306731	1 832179	-0 116240
č	0.646751	1 589431	-0.379158	,	c.	0 748810	1 441930	0 704752
s	-0 567545	1 688110	-1 626326		s	0.215706	0.906709	2 274177
C C	-1 834868	1 798689	-0 438145		c.	-1 448717	1 196283	1 849368
č	-2 234279	1 851014	1 947304		c C	-2 864423	1 961184	0.040784
č	0 959242	1 586376	2 026006		č	-0 036967	2 303361	-1 423133
ĉ	2 0/2120	1.000070	-0 600892		r r	2 0088/17	1 /067/8	0 275201
č	-3.200014	1.472423	-0.600822		c c	-2 55700/	0.080601	2 665574
ĉ	2 502154	1.902247	1 602295		c c	2.057.994	1 747440	2.005574
ĉ	-3.392134	1.902079	0.376426			-3.909509	1.747449	2 153006
ĉ	2 995222	1.3037.04	0.570420		c c	2 245210	1.201300	2.100990
ĉ	2.000020	1.425016	1 8/8070			2.345210	2 368774	-1.040914
Ц	1 962029	1.479031	2 0740070	, i	С Ц	2 099200	2.300774	-1.070713
	-1.003920	1.020977	2.974004			-2.900209	2.324970	-0.900431
	0.000004	1.020977	3.030270			-0.004733	2.000704	-2.000910
	2.021074	1.401100	-1.00/242		С Ц	3.100173	1.100133	1.000200
	-3.373003	1.907 103	-1.724407			-2.430033	0.097374	3.000034
п	-4.296434	2.028200	2.525160		П	-4.969412	1.949987	0.460109
П	-5.144779	2.057421	0.191956	I		-4.699321	1.099010	2.777539
	4.282581	1.328695	0.357490			3.081448	2.025068	-1.505188
Н	2.980253	1.431966	2.710315		H	1.4/1/6/	2.726142	-2.8/9/46
C	3.986002	1.303562	-2.036823	(4.4/4861	1.178691	0.612175
C	4.825770	1.275074	-0.904861	(4.726160	1.640529	-0.695207
н	1.970796	1.424403	-2.764437		H	2.990892	0.726869	2.091664
н	4.926315	1.293054	1.239362		Н	3.871293	2.385181	-2.519382
Н	4.421515	1.252959	-3.037228		H	5.305689	0.863655	1.246579
Н	5.907760	1.201456	-1.033471		Н	5.752615	1.691952	-1.064844

12e

0 1 C 0.000000014 -0.589582501 -1.8756792281

C 0.000000018 -0.9086161237 -0.4624644723 C 0.000000009 0.2560765248 0.3271591817 S 0.000000022 1.7244322544 -0.614118422 C 0.000000014 0.8050499336 -2.1027043591 0.000000014 -1.4528143207 -2.9796362922 С С 0.000000023 -2.1767432483 0.1568390514 С 0.000000007 0.1497966272 1.7217355066 С 0.000000017 1.336455157 -3.3928274956 C -0.00000002 -0.9285832595 -4.2649680901 C -0.000000019 0.4584790338 -4.4703270799 C 0.000000003 -1.1237440389 2.336519483 C 0. -2.2855136155 1.5324270787 H 0.000000004 -2.5342258163 -2.825557968 H 0.00000002 -3.076115401 -0.4623880709 H 0.000000012 2.4166962239 -3.5518090367 H -0.000000037 -1.6018189663 -5.1247828495 H -0.000000035 0.8562200784 -5.487555226 C -0.000000002 -1.0094414337 3.7673729194 H -0.000000005 -3.2679527211 2.0090837849 C -0.000000025 0.2836053606 4.1917214428 H -0.000000009 -1.8652393946 4.4433047237 H -0.000000045 0.6457218267 5.2191848224 S 0.000000019 1.4294678203 2.8921105959 1 2 C -0.00000001 -0.5968206462 -1.8744705956 C 0.000000275 -0.9193146736 -0.4736177634 С 0.000000052 0.2835344165 0.3358030567 S 0.000000532 1.7183311383 -0.5958935919 C 0.000000138 0.7966877216 -2.1003369206 C -0.000000155 -1.4638527265 -2.9785357203 C 0.000000341 -2.178275619 0.1411147504 C 0.000000255 0.1681050765 1.727786563 C 0.000000043 1.3364576128 -3.3733056462 C -0.000000332 -0.9328179277 -4.2670565247 C -0.000000198 0.4480819089 -4.4623752941 C 0.000000295 -1.1084633176 2.3338550782 C 0.000000316 -2.2775767389 1.5226832087 H -0.0000000195 -2.5457434724 -2.8308359289 H 0.00000023 -3.0821093515 -0.4697571286 H 0.000000035 2.4155648855 -3.5378967584 H -0.000000333 -1.6026935968 -5.1284890084 H -0.000000343 0.8531579532 -5.4764848684 C -0.000000025 -1.0146682696 3.7494432636 H 0.000000269 -3.2590868384 2.0015672488 C -0.000000655 0.2948020541 4.1845737946 H -0.000000329 -1.8704314708 4.4254813024 H -0.0000001358 0.6468684435 5.2169019181 S 0.0000001151 1.4318734383 2.912485565 cofacial 01 ∩ 1 С 0.620626 -2.011870 0.041297 С -0.761809 -1.803369 0.404679 С -1.482334 -1.198645 -0.636920 S -0.507800 -0.868627 -2.039675 С 0.898892 -1.551026 -1.260442Ċ 1.654016 -2.581809 0.792267 С -1.406608 -2.119238 1.615783

С

-2.841878 -0.925963

-1 2 C -0.000000043 -0.6008827286 -1.8665850805 0.000000025 -0.9106633144 -0.4828185927 С С 0.000000022 0.2587756153 0.3480099412 S 0.000000019 1.7309888807 -0.6164618779 C 0.0000000109 0.8079241036 -2.1196945764 C -0.000000088 -1.4592151157 -3.0018615193 C 0.000000064 -2.1826139117 0.1660750458 C 0.000000068 0.1565976004 1.7219857844 C 0.000000178 1.3362966759 -3.3975771926 C -0.000000187 -0.923284937 -4.2844700928 C -0.000000064 0.4600999611 -4.5055486162 C 0.000000146 -1.1278024166 2.3657192871 C 0.000000196 -2.2877240525 1.536700008 H -0.000000201 -2.5429775175 -2.8586056959 H 0.000000077 -3.0882516857 -0.4473462253 H 0.000000287 2.4197536472 -3.5458772609 H -0.000000297 -1.6024860403 -5.1436228454 H -0.000000098 0.8613633792 -5.5218239425 C 0.000000124 -1.0084827269 3.7764021046 H 0.000000242 -3.275236011 2.0087122877 C-0.00000029 0.2918020202 4.2329009379 H 0.000000109 -1.8713482534 4.4473318067 H-0.000000595 0.6490463391 5.2608800363 S 0.000000025 1.4499304885 2.9102162786

antifacial_y

5 1			
С	-0.983707	0.894977	1.681436
С	0.446226	0.770585	1.512116
С	0.927093	1.663041	0.542996
S	-0.325002	2.645559	-0.163122
С	-1.532854	1.880692	0.838987
С	-1.834417	0.188873	2.539178
С	1.336327	-0.102850	2.167246
С	2.286154	1.676811	0.227513

-0.469795

С	2.175892	-1.641569	-1.809705	С	-2.895307	2.171973	0.841268
С	2.925706	-2.678179	0.248115	С	-3.190904	0.473396	2.546581
С	3.185683	-2.209718	-1.045312	С	-3.717478	1.458667	1.701439
С	-3.482366	-1.240964	0.746879	С	3.172417	0.800058	0.884773
Č	-2.745115	-1.841210	1.789323	Č	2.679941	-0.087956	1.862955
Ĥ	1.456099	-2.940828	1.804372	Ĥ	-1.426968	-0.584517	3.192389
н	-0.833250	-2 581873	2 420980	н	0.950540	-0.805295	2 907627
н	2 379162	-1 265981	-2 813023	н	-3 306041	2 934828	0 178513
Ц	3 736565	-3 113160	0.835101	ц	-3 856838	-0.077000	3 213456
	4 106227	2 274904	1 452072		4 700174	1 666259	1 712225
	4.190237	-2.274094	-1.452075		-4.709174	1.000200	1.713333
	-4.866303	-0.872970	0.717513		4.508786	0.941958	0.387047
Н	-3.244809	-2.083618	2.729339	Н	3.368041	-0.774317	2.358746
C	-5.236773	-0.318156	-0.467947	С	4.609405	1.878651	-0.593427
Н	-5.550539	-1.026531	1.552449	н	5.353180	0.357538	0.753231
Н	-6.225561	0.037709	-0.754647	Н	5.505005	2.185234	-1.132244
S	-3.937171	-0.212443	-1.604544	S	3.097800	2.644083	-0.958366
С	2.944025	0.759472	0.828420	С	-2.136086	-0.380436	-1.468486
С	1.564310	0.953747	1.208385	С	-0.724751	-0.686919	-1.454330
С	0.829008	1.562690	0.180591	С	-0.436143	-1.729611	-0.561232
S	1.786607	1.906525	-1.233124	S	-1.846532	-2.346173	0.251170
С	3.204882	1.229808	-0.473739	С	-2.865833	-1.204122	-0.588394
Ċ	3 986603	0 182072	1 560509	Ĉ	-2 820049	0 584400	-2 215337
Ĉ	0.930883	0.609612	2 418504	Č	0 312035	-0.090976	-2 199743
č	-0 530052	1 825326	0.363627	č	0.881623	-2 163374	-0 406057
ĉ	4 470518	1 125364	-1 047636	č	-4 247286	-1 085310	-0.452225
ĉ	4.470310 5.247074	0.074671	-1.047030	č	4.247200	-1.0000010	-0.432223
Č	5.24/9/4	0.074071	0.995510	Č	-4.194000	0.700203	-2.001729
	5.467567	0.541162	-0.303966		-4.905769	-0.126102	-1.209605
C	-1.160425	1.4/9///	1.576859	C	1.915255	-1.563533	-1.152964
C	-0.410403	0.867225	2.601934	C	1.612545	-0.520010	-2.052465
Н	3.799838	-0.188612	2.570317	Н	-2.267941	1.238343	-2.893224
Н	1.511985	0.131799	3.209335	Н	0.078494	0.724813	-2.885305
Н	4.657325	1.491254	-2.059102	Н	-4.797444	-1.730950	0.234516
Н	6.061756	-0.378315	1.565269	Н	-4.729697	1.462025	-2.663365
Н	6.486050	0.450460	-0.737243	Н	-5.988672	-0.018592	-1.118110
С	-2.550279	1.827516	1.558050	С	3.186503	-2.146814	-0.844034
Н	-0.904743	0.596001	3.536280	Н	2.419566	-0.045493	-2.612963
С	-2.930806	2.407032	0.389569	С	3.100045	-3.131206	0.089845
Н	-3.232672	1.636305	2.385762	н	4.121937	-1.827476	-1.303445
Н	-3.924987	2.753474	0.113007	н	3.910063	-3.735157	0.496634
S	-1.635210	2.552792	-0.750041	S	1.481397	-3.406483	0.639075
Ū	1000210	21002102		Ū			0.000010
antifa	acial_z			antif	acial_yz		
	2 206724	1 205510	0 720220		2 402466	1 710042	0 224600
	2.300734	1.303349	-0.730229		2.402100	1.710942	-0.334099
Č	0.884603	1.540253	-0.929971		0.981144	1.969777	-0.346436
C	0.201058	1.632003	0.292654	C	0.360772	1.470833	0.810065
S	1.251448	1.512207	1.673707	S	1.472426	0.719992	1.915797
С	2.647901	1.360401	0.636605	С	2.805630	1.035605	0.835181
С	3.326131	1.279941	-1.682371	С	3.362763	2.012320	-1.306213
С	0.168562	1.615444	-2.140106	С	0.210579	2.612752	-1.334902
С	-1.184169	1.806278	0.303330	С	-1.019827	1.600754	0.967081
С	3.970205	1.233106	1.057458	С	4.132056	0.665584	1.044917
С	4.644548	1.159021	-1.269514	С	4.683440	1.640464	-1.105741
С	4.965293	1.137338	0.093776	С	5.066436	0.971280	0.064525
Ĉ	-1.895837	1.875571	-0.911775	Č	-1.788537	2.233362	-0.031215
Ĉ	-1 199969	1 776140	-2 134324	Ċ.	-1 152721	2 744314	-1 182167
й	3 070182	1 207516	-2 745802	й	3 067258	2 520170	-2 221520
н	0.707857	1 530761	-3 082830	н	0.701574	2.023173	-2 230/05
ц	1 216517	1.000204	2 1206020		A ADADIA	2.331011 0 125151	1 050490
п U	4.21004/	1.2120/2	2.120003	П U	4.424914	0.100104	1.902433
п	5.440600	1.083104	-2.013191	н	5.432815	1.87 1663	-1.805563

Н	6.007886	1.042426	0.404725	Н	6.111021	0.686971	0.209279
С	-3.298570	2.051546	-0.684396	С	-3.178997	2.245024	0.313214
Н	-1.755605	1.830059	-3.072506	Н	-1.751810	3.235317	-1.951483
С	-3.609377	2.124631	0.636417	С	-3.426680	1.658848	1.513493
Н	-4.038413	2.109569	-1.482085	Н	-3.956337	2.666241	-0.323612
Н	-4.596757	2.245063	1.079290	Н	-4.391882	1.523724	1.998503
S	-2.231372	1.979681	1.671647	S	-1.999079	1.060371	2.287714
С	-2.306736	-1.385826	-0.729614	С	-2.564841	-1.376337	-0.176838
С	-0.884610	-1.540661	-0.929308	С	-1.255451	-1.806472	0.257206
С	-0.201033	-1.631661	0.293356	С	-0.272426	-1.499089	-0.696148
S	-1.251383	-1.511053	1.674366	S	-0.909682	-0.687970	-2.096932
С	-2.647870	-1.359904	0.637215	С	-2.523302	-0.747378	-1.437213
С	-3.326167	-1.280806	-1.681789	С	-3.799726	-1.515450	0.466289
С	-0.168601	-1.616670	-2.139414	С	-0.894594	-2.463965	1.450387
С	1.184180	-1.806065	0.304106	С	1.058037	-1.853909	-0.461593
С	-3.970177	-1.232491	1.058030	С	-3.676445	-0.259190	-2.049743
С	-4.644581	-1.159738	-1.268966	С	-4.951442	-1.038800	-0.141229
С	-4.965300	-1.137353	0.094319	С	-4.889729	-0.410912	-1.392006
С	1.895807	-1.876255	-0.910972	С	1.411425	-2.521701	0.729593
С	1.199910	-1.777551	-2.133567	С	0.415787	-2.820978	1.683265
Н	-3.079244	-1.298943	-2.745307	Н	-3.850757	-2.000769	1.443030
Н	-0.707919	-1.541112	-3.085166	Н	-1.664138	-2.690638	2.190448
Н	-4.216492	-1.211504	2.121170	Н	-3.625424	0.226751	-3.025924
Н	-5.440654	-1.084273	-2.012667	Н	-5.915280	-1.152353	0.359370
Н	-6.007896	-1.042384	0.405238	Н	-5.804658	-0.038983	-1.858275
С	3.298519	-2.052309	-0.683516	С	2.817898	-2.787476	0.777706
Н	1.755501	-1.832213	-3.071732	Н	0.694664	-3.329338	2.608183
С	3.609355	-2.124541	0.637338	С	3.474133	-2.340553	-0.327110
Н	4.038320	-2.111056	-1.481192	Н	3.309768	-3.292116	1.609599
Н	4.596721	-2.244897	1.080259	Н	4.539983	-2.403324	-0.540251
S	2.231401	-1.978688	1.672509	S	2.433397	-1.576346	-1.474812

12f

0 1

C 0.000000065 -0.583114528 -1.6003683931
C 0.000000051 -0.8220688663 -0.170780528
C 0.000000036 0.3944648578 0.5424474088
S 0.000000061 1.8060213108 -0.476824178
C -0.000000024 0.7964214094 -1.9071395474
C 0.000000038 -1.5084216765 -2.6529263207
C 0.000000018 -2.0546991509 0.5185398671
C 0.000000036 0.3336071705 1.9319787314
C -0 000000041 1 2516193217 -3 2264096359
C 0 00000001 -1 0596279223 -3 9664184846
C -0 000000002 0 3132544079 -4 2515905166
C -0 0000000043 -0 8885151584 2 6219932468
C -0.000000001 -2.0996302586 1.9010178523
H 0 000000007 -2 5791061396 -2 4365897002
H -0 0000000011 -2 9839687211 -0 054925748
H _0 0000000011 2.3003007211 0.034323740
\square 0 0000000000000000000000000000000000
H = 0.000000022 - 1.7813041041 - 4.7837840333
H -0.0000000059 0.6517898405 -5.2900274391
0.000000012-0.5223608198 4.0146086604
H -0.000000094 -3.0565706707 2.4259994476
C 0.000000057 0.8357596425 4.0440050794
H -0.000000021 -1.186252399 4.8757720319
H 0.000000071 1.5528796589 4.8608979435
O -0.000000098 1.3713481147 2.7950070631

-1 2

C 0. C 0. C 0. C 0. C 0. C 0. C 0. C 0.	0000002158 0000003254 00000008 1 000000251 0000003241 0000005642 0000002725 0000004521 0000000785 0000000785 00000002908 0000000005417 0000005845 0000005845 0000006235 0000002072	-0.57833322 -0.81515690 0.437191442 8335282802 0.809490644 -1.52207694 -2.06186585 0.35799327 1.25651708 -1.07750969 0.29696336 -0.87483949 -2.10570589 -2.59107803 -2.98727617 2.32157895 -1.79617226	295 -1.5833057009 201 -0.181834222 25 0.5456491883 2 -0.4613578253 47 -1.8937829318 483 -2.6367699411 52 0.5057839104 779 1.9199099086 306 -3.2013306284 381 -3.9477487081 591 -4.2269966648 392 2.6065327208 351 1.8755698663 37 -2.4153021748 794 -0.0716589925 581 -3.4404078241 562 -4.7686672857	C 0 0 C 0 0 S -0 C -0 C 0 C -0 C -0 C -0 C -0 C -0 C	.000000083 .000000086 .000000087 .0000000104 .0000000012 .0000000012 .0000000018 .00000000000000000000000000	-0.59342789 -0.82082267 0.40534542 1.81651722 0.79867738 -1.51912512 -2.05550134 0.34537294 1.25122594 -1.05778622 0.30897093 0.888055086 -2.09959357 -2.59281906 2.989823117 2.32426851 -1.7870464	002 -1.588938 062 -0.190387 225 0.567268 218 -0.481278 329 -1.926645 249 -2.674842 497 0.526815 486 1.941121 441 -3.232524 232 -3.986599 329 -4.290702 355 2.6492162 164 1.904281 351 -2.469206 16 -0.0422071 01 -3.443905 193 -4.804248	3135 8205 1547 9466 2522 4873 1458 6968 26 7804 2029 75 9861 4372 223 8993 9668
H -0.	.0000003989	0.63493583	373 -5.2657989826	H -0	.0000000004	0.64950026	643 -5.328961	1894
C -0.	.0000014229	-0.53976615	539 3.9775707707	C -0	.000000008	-0.52522839	926 4.026967	4769
Η 0.	0000001274	-3.05835662	264 2.4076265968	Η 0	.0000000009	-3.06232389	974 2.423854	3816
C 0.	0000013199	0.84390402	95 4.0235629121	C -0	.0000000014	0.84453840	053 4.082613	5415
H -0.	.0000025478	-1.20947259	944 4.835183095	H -0	.0000000131	-1.19779890	068 4.884104	6402
Η 0.	0000018196	1.54195949	27 4.8595471529	H -0	.0000000072	1.55735285	596 4.902157	2517
0-0	.0000001381	1.385/3/46	5/1 2.8029057602	0-0	.0000000061	1.3897717	123 2.816928	1281
cofo	cial			ontif				
0.1				0.1	aciai_y			
Ċ	0 332404	-1 962279	0 067223	Ċ	1 074201	-1 365677	1 319343	
Č	-1.058282	-1.706355	0.366795	Č	-0.364939	-1.275551	1.215981	
Č	-1.701241	-1.090650	-0.721582	Č	-0.808269	-1.741951	-0.033426	
S	-0.665753	-0.826143	-2.089653	S	0.473848	-2.281978	-1.074641	
Ċ	0.681097	-1.533995	-1.229221	C	1.657917	-1.888683	0.149010	
C	1.316558	-2.541804	0.874972	C	1.903482	-1.005346	2.386848	
С	-1.767523	-1.985132	1.552363	С	-1.284524	-0.789959	2.167507	
С	-3.043277	-0.764859	-0.580548	С	-2.170487	-1.702297	-0.292922	
С	1.978846	-1.669244	-1.718042	С	3.036626	-2.054115	0.030837	
С	2.608713	-2.679408	0.391781	С	3.275256	-1.171277	2.276520	
С	2.938597	-2.245680	-0.897918	С	3.837769	-1.691756	1.103835	
С	-3.753727	-1.036332	0.594521	С	-3.090805	-1.228808	0.649215	
С	-3.104442	-1.659935	1.676630	С	-2.639435	-0.765749	1.898346	
Н	1.064852	-2.874388	1.884092	Н	1.467256	-0.592298	3.298055	
Н	-1.243338	-2.461806	2.382621	Н	-0.911853	-0.419335	3.123852	
Н	2.236697	-1.317477	-2.718328	Н	3.475871	-2.446924	-0.887159	
Н	3.381325	-3.119933	1.024590	Н	3.924283	-0.890101	3.108423	
Н	3.964430	-2.343986	-1.257011	Н	4.920984	-1.804496	1.026085	
С	-5.077413	-0.537523	0.344200	С	-4.365411	-1.326730	-0.005198	
Н	-3.647551	-1.877922	2.597811	Н	-3.347033	-0.381371	2.634286	
С	-5.050036	-0.024036	-0.912076	С	-4.112757	-1.830309	-1.239942	
Н	-5.934503	-0.560513	1.012570	Н	-5.338630	-1.053085	0.393846	
Н	-5.810892	0.450322	-1.526253	Н	-4.760011	-2.079557	-2.076629	
0	-3.829987	-0.155838	-1.489557	0	-2.790550	-2.068557	-1.432069	
C	2.681838	0.807825	0.837389	C	1.737041	1.115678	-1.256767	
C	1.288413	1.057206	1.129374	C	0.298884	1.250659	-1.205425	
C	0.639048	1.634181	0.024439	C	-0.109520	1.801891	0.021060	
5	1.680720	1.892060	-1.3428/3	S	1.203516	2.163809	1.099241	
C	3.030185	1.211301	-0.467240	C	2.355110	1.5/2/10	-0.075322	
C	3.663193	0.233666	1.051909	C	2.536621	0.608966	-2.286451	
	0.579053	0.790300	2.31/9/1			0.905580	-2.100034	
C	-U.1 14004 1 200550	1.921400	0.144920 -0.061502	C C	-1.409009 3 729710	1.3001/1	0.221042	
U	7.022008	1.044310	0.001002	C	0.100118	1.000000	0.004403	

С	4.950628	0.065294	1.165735	С	3.914606	0.573239
С	5.277824	0.466187	-0.136208	С	4.512463	1.039634
С	-1.423670	1.665505	1.324191	С	-2.418095	1.657964
С	-0.765041	1.089751	2.425923	С	-2.001132	1.105730
Н	3.408933	-0.085964	2.664376	Н	2.072278	0.243569
Н	1.106314	0.335113	3.158390	Н	-0.308208	0.467554
Н	4.576880	1.359040	-1.975725	Н	4.201783	1.891423
Н	5.716265	-0.384951	1.800874	Н	4.540131	0.180496
Н	6.295715	0.327156	-0.506918	Н	5.598594	1.003957
С	-2.764886	2.096913	1.044723	С	-3.681469	2.000760
Н	-1.312264	0.875195	3.344821	Н	-2.733519	0.831478
С	-2.749670	2.554574	-0.232022	С	-3.396531	2.483798
Н	-3.627676	2.054711	1.703334	Н	-4.668819	1.890185
Н	-3.524836	2.966437	-0.871638	Н	-4.024893	2.863569
0	-1.518002	2.454940	-0.794120	0	-2.063182	2.487607
antif	acial_z			antif	acial_yz	
01				0 1		
С	1.450943	-1.652183	0.814158	С	0.621165	-1.764750
С	0.005742	-1.641867	0.823210	С	-0.776210	-1.466942
С	-0.504996	-1.623773	-0.486348	С	-1.474727	-1.407682
S	0.722871	-1.628487	-1.716671	S	-0.483842	-1.722234
С	1.971606	-1.647302	-0.496479	С	0.918801	-1.932054
С	2.339303	-1.674377	1.893404	С	1.652018	-1.885892
С	-0.864964	-1.658450	1.931656	С	-1.445351	-1.247169
С	-1.884841	-1.621818	-0.643632	С	-2.831927	-1.119489
С	3.343827	-1.662815	-0.736644	С	2.209230	-2.223468
С	3.706393	-1.692707	1.660007	С	2.938878	-2.175139
С	4.205151	-1.686722	0.351709	С	3.215289	-2.345882
С	-2.755521	-1.657769	0.452078	С	-3.505291	-0.909065
С	-2.235126	-1.670341	1.758970	С	-2.798945	-0.973961
Н	1.953365	-1.673911	2.914616	Н	1.441126	-1.745049
Н	-0.441512	-1.665068	2.937682	Н	-0.877179	-1.294136
Н	3.731577	-1.652430	-1.756720	Н	2.426207	-2.341899
Н	4.400244	-1.711468	2.502979	Н	3.745637	-2.264574
Н	5.283900	-1.695964	0.182328	Н	4.234969	-2.564562
С	-4.069961	-1.677769	-0.125619	С	-4.863630	-0.642140
Н	-2.905211	-1.683535	2.619782	Н	-3.312514	-0.807387
С	-3.886467	-1.645972	-1.468932	С	-4.890267	-0.710811
н	-5.022977	-1.699327	0.396000	н	-5.706428	-0.426222
Н	-4.580669	-1.640816	-2.304851	Н	-5.690195	-0.583245
0	-2.570386	-1.60/163	-1.802487	0	-3.672685	-1.002896
C	-1.450949	1.651691	0.814661	C	-0.621181	1.764862
C	-0.005746	1.641194	0.823711		0.776171	1.467047
C S	0.504998	1.623650			1.474801	1.407910
3	-0.722875	1.629085	-1./101/4	5	0.484076	1.722722
C	-1.97 1010	1.047360	-0.490976	C	-0.910004	1.932311
ĉ	-2.339302	1.073000	1.093920	C	-1.002130	1.000704
Ĉ	1 88/8/0	1.621856	-0.6/3132	C	2 821058	1 1 1 9 5 1 0
Ĉ	-3 3/3838	1.621000	-0.736130	C	-2.001900	2 222662
Ĉ	-3 706388	1.003002	1 660537	C	-2.209091	2.223003
Ċ	-4 205152	1 687216	0 352237		-3 215278	2.174037
c.	2 755524	1 657435	0 452504	C	3 505171	0 908848
c C	2 235121	1 669357	1 759488	C C	2 798728	0.973694
й	-1.953361	1,672501	2,915129	й	-1.441351	1.744794
н	0.441509	1.663470	2.938195	н	0.876901	1.293920
н	-3.731597	1,653870	-1,756209	 Н	-2.425960	2.342237
H	-4.400232	1.710922	2.503520	H	-3.745886	2.263920
Н	-5.283901	1.696896	0.182866	Н	-4.234957	2.564316

-2.131769

-0.954365

-0.747112

-1.972919

-3.204428

-3.126410

-2.936162

-0.846514

-0.157687

-2.733486

1.077982

-0.597470

1.879130

1.329058

0.667173

0.886349

-0.331496

-1.723274

-0.700146

1.604284

2.107468

-0.287359

-1.135048

1.175867

-0.185478

0.921340

2.137126

2.665922

3.037902

-2.197822

1.905722

-0.507486

0.540706

3.085543

-0.814819

1.192354

-1.539247

-1.334068

-0.667065

-0.886345

0.331441

1.723275

0.700265

-1.604089

-2.107503 0.287216

1.135271

-1.175555

0.185796

-0.921519

-2.137251

-2.665727

-3.037881

2.198051

-1.905310

0.507883

1.007573

С	4.069962	1.677972	-0.125091	С	4.863486	0.641685	-0.540974
Н	2.905204	1.682224	2.620307	Н	3.312181	0.806870	-3.085686
С	3.886478	1.646749	-1.468418	С	4.890264	0.710536	0.814537
Н	5.022971	1.699545	0.396542	Н	5.706157	0.425415	-1.192669
Н	4.580682	1.642139	-2.304340	Н	5.690209	0.582815	1.538917
0	2.570402	1.607824	-1.801992	0	3.672793	1.002946	1.333861

12g

0 1 C 0.000000103 0.5913851963 1.9368011918 C -0.000000034 0.7880219964 0.5009972369 C 0.00000004 -0.4360160409 -0.1894959336 S 0.000000148 -1.8180465758 0.8744811355 C -0.000000064 -0.7789211847 2.2809807262 C 0.000000218 1.545030477 2.9635810918 C -0.000000158 2.0004840933 -0.2208087226 C -0.000000037 -0.475055583 -1.5963444979 C -0.000000125 -1.1989849375 3.6119309459 C 0.0000000124 1.1317876091 4.2887481056 C 0.000000021 -0.2329617269 4.6110208075 C -0.0000000147 0.7637540827 -2.2776311131 C -0.000000296 1.996362649 -1.6024092866 H 0.000000261 2.6096076674 2.7187594914 H -0.000000136 2.9497050447 0.3189000763 H -0.000000171 -2.2618675855 3.861906312 H 0.000000207 1.8755023711 5.0884123101 H 0.000000003 -0.5429424236 5.6583649314 S 0.000000207 0.5237144842 -3.9974724787 H -0.000000318 2.933754499 -2.1613385932 0.000000115 -1.1957674524 -3.8029293849 С H 0.00000029 -1.8337346799 -4.6860224027 C -0.000000103 -1.5884682309 -2.4991825177 H -0.000000148 -2.6317237491 -2.1813994312 1 2 C 0.000000285 0.6116509472 1.9495237632 C 0.000000189 0.8090918996 0.5102312541 C 0.000000313 -0.4453556138 -0.1860377623 S 0.000000556 -1.7839792628 0.8673592839 C 0.0000000126 -0.7557869142 2.2894019216 C 0.000000023 1.5565143187 2.9757390758 C -0.00000006 1.9954442707 -0.2124499446 C 0.000000173 -0.4935685485 -1.6042665511 C -0.000000005 -1.1999071328 3.6058212604 C -0.00000014 1.1251799947 4.3064389029 C -0.000000144 -0.2332440262 4.6181439267 C -0.0000000102 0.747911417 -2.2857744309 C -0.000000152 1.9724828963 -1.6169837795 H -0.0000000107 2.6245167652 2.7481143458 H -0.000000081 2.9558294825 0.3058635621 H 0.000000187 -2.2640690893 3.8492937815 H -0.000000158 1.8641754144 5.1097486927 H -0.000000232 -0.5527212782 5.6620076581 S 0.000000644 0.5113415356 -4.004439484 H -0.000000068 2.9114103296 -2.17489306 C -0.000000444 -1.1828501163 -3.8158487291 H -0.000000793 -1.8236526244 -4.6985506843 C 0.000000092 -1.593129452 -2.4978591091 H -0.000000102 -2.6426652131 -2.2007338935

C	4.863486	0.041085	-0.540974
Н	3.312181	0.806870	-3.085686
С	4.890264	0.710536	0.814537
Н	5.706157	0.425415	-1.192669
Н	5.690209	0.582815	1.538917
0	3.672793	1.002946	1.333861

-1 2 C 0.000000244 0.5921686716 1.9240396199 C 0.0000000196 0.7939434018 0.5153936259 C 0.0000000149 -0.4263467014 -0.2021184676 S 0.0000000272 -1.8158588621 0.8705422169 C 0.000000008 -0.7866330514 2.2946078345 C 0.000000249 1.5488595301 2.9807606819 C -0.000000005 2.0268887421 -0.2246333216 C 0.000000007 -0.4734678732 -1.5993872359 C -0.000000251 -1.2102255328 3.6119664753 C 0.000000067 1.1214937785 4.3022265013 C -0.000000028 -0.2403137934 4.6399642307 C -0.0000000146 0.7874483983 -2.2997713558 C -0.0000000178 2.0011770821 -1.6203704702 H 0.000000269 2.6155431338 2.7433511177 H-0.000000063 2.9789756072 0.3092459375 H -0.000000319 -2.2772175575 3.8508616705 H -0.000000055 1.8690078046 5.1028347026 H -0.000000019 -0.5522661453 5.6871771306 S-0.000000338 0.5204615463 -4.0455643281 H -0.000000318 2.9411629517 -2.1805805897 C 0.000000069 -1.2190214966 -3.8138518576 H 0.000000119 -1.8753601554 -4.6833320511 C -0.000000066 -1.582485393 -2.4975941137 H 0.000000136 -2.623314086 -2.1659179537

cofac	cial			an	tifa	cial_y		
01				0 1	1			
S	-0.56204	-0.86816	-2.00685	C		1.239738	-1.806982	0.758057
С	-1.52311	-1.20827	-0.59709	C		-0.188909	-1.620635	0.852344
С	-0.78804	-1.81114	0.43210	C		-0.795308	-1.599041	-0.410956
С	0.59389	-2.00737	0.05830	S		0.344033	-1.822232	-1.709207
С	0.85842	-1.54023	-1.24389	С		1.668268	-1.924167	-0.577438
С	-2.89265	-0.93585	-0.44297	С		2.189226	-1.876172	1.784114
С	-3.48880	-1.29656	0.78272	С		-0.972911	-1.472036	2.012526
С	-2.76591	-1.89291	1.82725	С		-2.184697	-1.433591	-0.541148
С	-1.42096	-2.14353	1.64490	С		3.014830	-2.092784	-0.899744
С	-3.82711	-0.33010	-1.34096	С		3.526515	-2.052270	1.469727
С	-5.07424	-0.23993	-0.80574	С		3.937259	-2.154262	0.133514
S	-5.17059	-0.87848	0.79872	Ċ		-2.935132	-1.313783	0.646987
Ĉ	1.63600	-2.57561	0.79792	Č		-2.341249	-1.324194	1.917867
č	2 90273	-2 66700	0 24158	н		1 872396	-1 786318	2 824789
č	3 1/0/6	-2 10324	-1 05246	н		-0 /00550	-1 / 8077/	2.0247.00
č	2 12101	-1 62470	-1 80/00	н Н		3 336613	-7.162385	_1 030053
С Ц	0 0 0 0 0 1	-1.02470	2 4 4 7 4 5			4 260009	2 102000	-1.959955
	-0.03094	-2.00045	2.44715			4.209900	-2.104040	2.207740
	-3.20692	-2.14975	2.70014			4.990697	-2.2/415/	-0.099573
п	-5.96760	0.17181	-1.27352	5		-4.627609	-1.169242	0.298196
н	-3.56906	0.02051	-2.34029	Н		-2.952739	-1.211940	2.814341
н	2.32438	-1.24515	-2.80961	C		-4.328508	-1.235351	-1.401660
н	4.15603	-2.25536	-1.46938	Н		-5.164816	-1.168626	-2.096191
Н	3.72006	-3.10125	0.82020	С		-3.009911	-1.374790	-1.708102
Н	1.44883	-2.93768	1.81104	Н		-2.627002	-1.436894	-2.726849
С	2.92155	0.76777	0.81161	С		2.400299	1.348178	-0.747953
С	1.55143	0.94929	1.23224	С		0.968542	1.509682	-0.850228
С	0.77876	1.55344	0.23241	С		0.368088	1.635693	0.408883
S	1.69144	1.91030	-1.20716	S		1.515262	1.556033	1.715789
С	3.13903	1.24669	-0.49545	С		2.836148	1.355626	0.592000
С	3.99114	0.19828	1.50984	С		3.347375	1.206732	-1.767540
С	0.95913	0.59801	2,46119	С		0.177278	1.561125	-2.015282
Ċ	-0.58579	1.81972	0.43375	Ċ		-1.019091	1.827728	0.533077
Ċ	4.38859	1,15827	-1.10658	Ċ		4,184063	1.226716	0.920136
č	5 23657	0 10700	0 90760	Č		4 690844	1 083779	-1 446087
Ĉ	5 43314	0 58208	-0 39583	C C		5 106741	1 094784	-0 108901
C C	-1 13624	1 46135	1 68129	C C		-1 769584	1 883448	-0.658711
ĉ	-0.37746	0.85136	2 60202	0 C		-1 185001	1 745367	-1 028210
ц	3 83838	-0.17080	2.09202	С Ц		3 025282	1 107200	-2.810040
	3.03030	-0.17900	2.02201			0.6512202	1.197299	-2.010949
	1.00000	0.12040	3.23330			0.001320	1.400412	-2.991037
	4.54167	1.53099	-2.12123			4.506923	1.220000	1.902000
п	6.07143	-0.33966	1.45146	н		5.431588	0.978094	-2.241423
Н	6.41959	0.50463	-0.85824	Н		6.167640	0.994938	0.130133
S	-2.81936	1.86917	1.75159	S		-3.445857	2.14/432	-0.322204
Н	-0.83989	0.57776	3.64138	Н		-1.803764	1.781618	-2.826613
С	-2.78162	2.49574	0.14349	С		-3.147363	2.182972	1.378885
Н	-3.69533	2.89380	-0.29450	Н		-3.979413	2.333199	2.065228
С	-1.55353	2.41071	-0.43639	С		-1.836544	1.999531	1.694063
Н	-1.33555	2.74658	-1.45014	Н		-1.454202	1.981040	2.714499
antifa	acial_z			an	tifa	cial_yz		
01				0 1	1			
С	2.314085	1.426122	-0.660049	С		2.427089	1.709678	-0.420058
С	0.881387	1.548892	-0.803432	С		1.001105	1.915765	-0.311720
С	0.239607	1.607902	0.440573	С		0.496972	1.409768	0.894230
S	1.343946	1.489288	1.779563	S		1.731368	0.732118	1.915212
С	2.705667	1.385718	0.692926	С		2.956222	1.080935	0.725050
С	3.300411	1.367827	-1.650339	С		3.287814	2.021861	-1.478316
С	0.121766	1.628310	-1.986607	С		0.130383	2.528834	-1.234340

С	-1.152843	1.764486	0.533514	С	-0.874847	1.471472	1.187380
С	4.046085	1.292240	1.063289	С	4.311395	0.773815	0.830046
С	4.635795	1.278207	-1.287343	С	4.635508	1.708871	-1.383947
С	5.007227	1.243425	0.062727	С	5.145116	1.090687	-0.233660
С	-1.872338	1.849838	-0.675765	С	-1.711709	2.084114	0.232242
С	-1.248898	1.777398	-1.930966	С	-1.219667	2.622180	-0.967437
Н	3.015060	1.397025	-2.704053	Н	2.894896	2.505605	-2.375202
Н	0.625107	1.570473	-2.953251	Н	0.528777	2.926999	-2.169310
Н	4.332096	1.261031	2.116216	Н	4.703365	0.281498	1.721546
Н	5.405764	1.234516	-2.060227	Н	5.307572	1.950081	-2.210156
Н	6.062886	1.172593	0.333082	Н	6.209694	0.854495	-0.171620
S	-3.564475	2.058695	-0.373762	S	-3.362714	2.062517	0.755621
Н	-1.840590	1.838511	-2.845648	Н	-1.897991	3.090652	-1.682079
С	-3.309180	2.032267	1.334857	С	-2.936754	1.247416	2.216788
Н	-4.162263	2.132306	2.004263	Н	-3.718163	0.984294	2.928178
С	-2.003120	1.871482	1.678851	С	-1.603868	0.995383	2.321581
Н	-1.647023	1.822895	2.707539	Н	-1.146435	0.478448	3.164961
С	-2.314087	-1.426386	-0.659528	С	-2.610186	-1.397792	-0.163621
С	-0.881391	-1.549212	-0.802869	С	-1.261616	-1.764801	0.202207
С	-0.239581	-1.607517	0.441154	С	-0.344464	-1.434760	-0.804917
S	-1.343906	-1.488191	1.780099	S	-1.094750	-0.693813	-2.188348
С	-2.705657	-1.385294	0.693429	С	-2.665924	-0.802234	-1.439934
С	-3.300428	-1.368655	-1.649837	С	-3.798436	-1.563478	0.556011
С	-0.121809	-1.629297	-1.986024	С	-0.810682	-2.388446	1.382292
С	1.152870	-1.764112	0.534140	С	1.024699	-1.713039	-0.659541
С	-4.046079	-1.291730	1.063760	С	-3.871373	-0.374375	-1.994919
С	-4.635813	-1.278938	-1.286870	С	-5.000646	-1.143217	0.007843
С	-5.007237	-1.243511	0.063185	С	-5.036373	-0.549858	-1.260841
С	1.872318	-1.850211	-0.675117	С	1.428922	-2.353740	0.529073
С	1.248848	-1.778435	-1.930342	С	0.525662	-2.691864	1.548428
Н	-3.015091	-1.398375	-2.703540	Н	-3.773208	-2.021130	1.547009
Н	-0.625182	-1.571973	-2.952682	Н	-1.527787	-2.639246	2.166192
Н	-4.332082	-1.259987	2.116673	Н	-3.897841	0.085865	-2.984485
Н	-5.405792	-1.235692	-2.059769	Н	-5.928180	-1.274037	0.568986
Н	-6.062899	-1.172629	0.333515	Н	-5.990042	-0.220835	-1.678905
S	3.564439	-2.059108	-0.373057	S	3.143457	-2.608370	0.536603
Н	1.840510	-1.840100	-2.845007	Н	0.876950	-3.177659	2.460033
С	3.309210	-2.031708	1.335552	С	3.308492	-1.872012	-1.019007
Н	4.162300	-2.131532	2.004981	Н	4.297151	-1.769531	-1.462925
С	2.003184	-1.870547	1.679504	С	2.125598	-1.443991	-1.533241
Н	1.647131	-1.821371	2.708179	Н	2.032861	-0.937743	-2.493675

12h

0 1

C -0.000000013 0.5831916029 1.9943120886 C -0.00000002 0.8617072483 0.5731028147 C -0.000000002 -0.3963082431 -0.0412503552 O 0.000000032 -1.406598706 0.8655202368 C -0.000000066 -0.821099185 2.09710359 C -0.000000044 1.3500361188 3.1631355735 C -0.000000036 2.0312576472 -0.2107896679 C 0.000000002 -0.5541840885 -1.4312768972 C -0.000000059 -1.494305377 3.3093667941 C -0.000000002 0.692159208 4.3894815871 C 0.000000057 -0.7092046245 4.4611023781 C -0.000000032 0.64670837 -2.1829317053 C 0.000000007 1.9233680159 -1.591060895 H-0.000000017 2.4410525809 3.114557366 H-0.000000044 3.0142659368 0.2640321067 H-0.000000041-2.5843944151 3.3481922109 H 0.000000055 1.2741089824 5.3135691071 H 0.00000009 -1.1964079495 5.4386305264 S 0.000000139 0.294852621 -3.8842448345 H 0.000000044 2.8177621021 -2.2165262262 C -0.000000061 -1.4102606781 -3.5825415527 H -0.000000016 -2.0999735582 -4.4259447157 C 0.000000011 -1.724035074 -2.2578252348 H 0.000000018 -2.7421485353 -1.8697242956 1 2 C 0.000000023 0.5858248599 1.9922422328 C -0.000000034 0.8711185159 0.5903140911 C 0.000000205 -0.42810677 -0.04209638 O 0.000000199 -1.4076983207 0.8469865563 C -0.00000006 -0.8192599884 2.1010630475 C -0.0000000109 1.3644095603 3.1629104013 C -0.000000266 2.0322012468 -0.187310754 C 0.000000295 -0.5779458924 -1.432795553 C -0.0000000102 -1.4945590857 3.2968996454 C 0.000000017 0.7060886473 4.387869661 C -0.000000033 -0.6936852131 4.4537799336 C 0.000000085 0.6280315183 -2.1708735481 C -0.000000187 1.9107222977 -1.5734907701 H-0.000000123 2.4547518956 3.1110090346 H-0.000000181 3.0183015729 0.2787952442 H-0.000000017-2.5839379979 3.3459699662 H 0.000000009 1.284187599 5.3133409407 H 0.000000191 -1.1823958577 5.4305122144 S 0.0000001121 0.2951458584 -3.8561278006 H 0. 2.8040814661 -2.2017146129 C -0.000000331 -1.3996845307 -3.5954697489 H -0.00000088 -2.0748917592 -4.4515793579 C 0.000000208 -1.737534764 -2.2651238573 H -0.000000029 -2.7636148583 -1.8971205863

-1 2 C 0.000000038 0.59078631 1.9836123455 C -0.000000134 0.8737797271 0.5858000524 C 0.000000001 -0.3835277141 -0.0470912877 O -0.000000032 -1.403020525 0.8615554014 C -0.000000178 -0.8245166158 2.1007492241 C 0.000000202 1.3527907483 3.1816712789 C -0.0000000195 2.062124538 -0.2139442316 C 0.000000169 -0.5515528279 -1.4311393376 C -0.000000224 -1.5030418446 3.2998224194 C 0.000000163 0.6778221632 4.4020048492 C -0.000000154 -0.7215560781 4.4828677938 C -0.00000002 0.6709393335 -2.2028467258 C -0.000000155 1.9285189418 -1.6104042349 H 0.000000351 2.4447506651 3.1451835664 H -0.000000217 3.0482374123 0.2533914417 H -0.000000312 -2.594679791 3.3237980137 H 0.000000355 1.2597499393 5.3299263805 H -0.000000201 -1.2140666463 5.4584166743 S 0.000000102 0.2868881866 -3.9289371357 H -0.000000149 2.8234056003 -2.2401860744 C -0.00000002 -1.4380708549 -3.5877074777 H -0.000000331 -2.1469805646 -4.4147562393 C 0.00000004 -1.7166352274 -2.2487865129 H 0.000000543 -2.7305948755 -1.8450101839

cofacial

01

0	1.70898	0.90556	1.47556
С	2.92555	0.80805	0.87638
С	2.87537	1.24205	-0.45789
С	1.50531	1.63881	-0.67725
С	0.86416	1.40136	0.53942
С	4.08198	0.34301	1.47874
С	5.22732	0.30562	0.68887
С	5.20451	0.72300	-0.64946
С	4.03484	1.19621	-1.23323
С	0.78323	2.15217	-1.76843
С	-0.56552	2.41909	-1.62162
С	-1.18594	2.16943	-0.38635
С	-0.49552	1.65088	0.73190
S	-2.85295	2.43648	0.00635
С	-2.61898	1.85381	1.61499
С	-1.33823	1.47395	1.87193
Н	4.08175	0.01364	2.51801
Н	6.16204	-0.05816	1.12096
Н	6.12316	0.67993	-1.23818
Н	4.02262	1.52545	-2.27423
Н	1.28009	2.33395	-2.72307
Н	-1.14729	2.81370	-2.45577
Н	-3.46961	1.81630	2.29336

antifacial_y

01			
С	-2.534048	-1.197464	-0.634444
С	-1.155526	-1.197869	-1.064237
С	-0.439909	-1.703343	0.022155
0	-1.242637	-1.985383	1.076972
С	-2.510652	-1.686633	0.681646
С	-3.756543	-0.848552	-1.207711
С	-0.481724	-0.820190	-2.238480
С	0.942314	-1.894426	-0.010861
С	-3.648961	-1.841981	1.454397
С	-4.912428	-1.001122	-0.450096
С	-4.859305	-1.488136	0.862256
С	1.579987	-1.517997	-1.212965
С	0.889974	-0.977569	-2.311605
Н	-3.801555	-0.457989	-2.225618
Н	-1.035266	-0.401056	-3.080208
Н	-3.589978	-2.227091	2.473082
Н	-5.878845	-0.731946	-0.881065
Н	-5.784419	-1.596330	1.432546
S	3.282595	-1.824064	-1.112725
Н	1.435016	-0.684916	-3.210205
С	3.129939	-2.437540	0.496382
Н	4.020423	-2.777585	1.023074
С	1.851099	-2.418766	0.959481

Н	-0.99470	1.06876	2.82236	Н	1.551138	-2.758067	1.949708
С	0.78930	-1.68800	-0.78727	С	-1.419010	1.650079	0.709267
С	-0.50671	-1.24797	-1.24835	С	-0.062925	1.322854	1.079602
С	-1.34022	-1.35363	-0.13327	С	0.706577	1.667811	-0.032710
0	-0.67649	-1.79759	0.96084	0	-0.047142	2.164577	-1.041921
С	0.60934	-2.01107	0.56660	С	-1.332628	2.153713	-0.597929
С	2.05221	-1.84635	-1.36118	С	-2.667258	1.572388	1.329226
С	-1.02718	-0.80948	-2.47706	С	0.549665	0.788178	2.226150
С	-2.70223	-1.05216	-0.18179	С	2.096445	1.531676	-0.054469
С	1.62585	-2.49401	1.37376	С	-2.434613	2.584450	-1.318810
С	3.08492	-2.33336	-0.57025	С	-3.783928	2.003665	0.625123
С	2.87346	-2.65283	0.77766	С	-3.668578	2.501547	-0.680358
С	-3.18736	-0.61952	-1.43581	С	2.676266	1.008855	1.121824
С	-2.37067	-0.49457	-2.57191	С	1.922802	0.629198	2.245630
Н	2.22546	-1.58693	-2.40713	Н	-2.763877	1.173304	2.340191
Н	-0.37827	-0.71868	-3.34958	Н	-0.053355	0.498904	3.088203
Н	1.44669	-2.72877	2.42337	Н	-2.328104	2.971896	-2.332725
Н	4.08236	-2.45085	-0.99669	Н	-4.770278	1.939117	1.087305
Н	3.70840	-3.02140	1.37673	Н	-4.566453	2.827136	-1.209923
S	-4.88981	-0.29809	-1.34648	S	4.401966	0.934121	0.961319
Н	-2.79493	-0.15457	-3.51796	Н	2.420880	0.213923	3.122856
С	-4.93548	-0.73621	0.32662	С	4.331762	1.576971	-0.641158
Н	-5.88133	-0.69105	0.86508	Н	5.255262	1.718752	-1.200929
С	-3.72385	-1.11343	0.81632	С	3.064691	1.847025	-1.057210
Н	-3.54827	-1.42831	1.84400	Н	2.813752	2.256528	-2.034779
					· · ·		
antita	acial_z			antif	aciai_yz		
	2 264205	1 404280	0 715262		2 644420	1 006067	0 774061
Ĉ	2.304293	1.404209	-0.715202	ĉ	2.044429	1 200128	-0.774901
ĉ	0.000411	1.550501	0.000012	C	0.652001	1.654805	0 100808
õ	1 374263	1.071044	1 341110	õ	1 5622001	1 819570	1 100685
C C	2 556892	1 383806	0.675564	C.	2 766826	1 480205	0 570395
Ċ	3 475725	1.327090	-1 555964	č	3 787356	0 719505	-1 481111
č	0.085632	1 629394	-2 012034	č	0 442775	0 969304	-2 209584
č	-0.953456	1 725506	0.643156	č	-0 716968	1 902136	0 223558
Č	3.805598	1.298725	1.268207	Č	3.975366	1.502351	1.246477
č	4 737790	1 237437	-0.980163	č	5 010471	0 735609	-0.820977
č	4 900484	1 227406	0 412043	č	5 101987	1 118747	0 524362
Č	-1.774127	1.839389	-0.500704	Č	-1.479767	1.665882	-0.941562
Č	-1.272920	1.787281	-1.812757	Č	-0.918867	1.197757	-2.142210
Ĥ	3.355352	1.340038	-2.641069	Ĥ	3.719503	0.416875	-2.527668
Н	0.493302	1.584917	-3.023268	Н	0.895662	0.600982	-3.131457
Н	3.912023	1.290107	2.353237	Н	4.030020	1.806006	2.292482
Н	5.619797	1.176099	-1.620840	Н	5.916910	0.444199	-1.355579
Н	5.905489	1.159432	0.833773	Н	6.076797	1.118972	1.016565
S	-3.429890	2.051458	-0.036655	S	-3.149833	2.035872	-0.656118
Н	-1.953899	1.868078	-2.661386	Н	-1.556002	1.013080	-3.008242
С	-3.021298	1.976377	1.640616	С	-2.822659	2.473745	0.981991
Н	-3.811552	2.060898	2.385229	Н	-3.644623	2.794131	1.620702
С	-1.690742	1.802205	1.864636	С	-1.509511	2.359605	1.320620
Н	-1.238973	1.723919	2.852285	Н	-1.106477	2.587608	2.306366
С	-2.364834	-1.415033	-0.702310	С	-2.644377	-1.096098	0.775181
С	-0.939144	-1.544538	-0.885307	С	-1.237750	-1.209253	1.075597
С	-0.411606	-1.566193	0.406189	С	-0.652047	-1.654822	-0.109891
0	-1.373190	-1.457522	1.354156	0	-1.562332	-1.819456	-1.100621
С	-2.556309	-1.373550	0.688222	С	-2.766909	-1.480137	-0.570189
С	-3.476939	-1.349646	-1.543113	С	-3.787213	-0.719481	1.481446
С	-0.087147	-1.660670	-1.997315	С	-0.442594	-0.969571	2.209636
С	0.953855	-1.716400	0.658302	С	0.716905	-1.902162	-0.223704

С	-3.804438	-1.278871	1.280549
С	-4.738484	-1.250477	-0.967679
С	-4.899980	-1.219580	0.424348
С	1.773824	-1.847128	-0.484241
С	1.271623	-1.815083	-1.796583
Н	-3.357543	-1.379117	-2.628006
Н	-0.495531	-1.632127	-3.008852
Н	-3.909895	-1.253757	2.365402
Н	-5.620977	-1.198144	-1.608481
Н	-5.904571	-1.144544	0.845863
S	3.429943	-2.051607	-0.017979
Н	1.951959	-1.908938	-2.644393
С	3.022275	-1.951850	1.658199
Н	3.813136	-2.024221	2.403432
С	1.691808	-1.774713	1.880370
Н	1.240630	-1.681373	2.866973

12i

0 1

C 0.000000025 -0.5900146372 -1.9149140118	
C -0.000000001 -0.9814517117 -0.5208411458	
C 0.000000013 0.2271042449 0.1886141823	
O -0.000000002 1.3057622677 -0.6334352292	
C -0.000000009 0.8181276768 -1.9075854647	
C 0.000000051 -1.2628426244 -3.1404447473	
C -0.000000013 -2.2085171096 0.1701361381	
C 0.000000012 0.2492570753 1.5792395144	
C -0.000000025 1.5844901868 -3.0628644155	
C 0.000000023 -0.5106636553 -4.3112930947	
C -0.000000019 0.8920132448 -4.2726668543	
C -0.00000002 -0.9875996112 2.2711200175	
C -0.000000042 -2.2062201361 1.5527072908	
H 0.000000064 -2.3542675535 -3.1772006707	
H -0.000000022 -3.1498926289 -0.3826521686	
H -0.000000005 2.6742213968 -3.0157504748	
H 0.000000003 -1.0181246737 -5.2782686412	
H -0.000000033 1.4544353717 -5.2089231532	
C -0.000000001 -0.7736572224 3.6909186047	
H -0.000000058 -3.1482028253 2.1050053923	
C 0.000000042 0.5456197321 4.0258146631	
H -0.000000022 -1.5807909116 4.4242507167	
H 0.000000007 0.9744469319 5.0273663451	
S -0.0000000005 1.6061871721 2.6549072066	
1 2	
C -0.000000038 -0.5858407203 -1.8983813218	
C -0.000000194 -0.9778398786 -0.5312228268	
$C = 0.0000000105 \ 0.2647613264 \ 0.2007462903$	
0 -0.000000184 1.3210223297 -0.611854453	
C -0.00000027 0.8298274343 -1.898235457	
C 0.000000181 -1.2774553971 -3.1274854713	
C -0.000000211 -2.2120156772 0.1507757078	
C -0.0000000108 0.2717297776 1.579171763	
C -0.000000216 1.5895827531 -3.0434731337	
0.0000000259 -0.5307910604 -4.2943973702	
0.000000042 0.8755910121 -4.2528595335	
C -0.000000023 -0.9759226352 2.2593463751	
H 0.00000000 - 2.3085522329 - 3.1552569633	
$\Pi - 0.00000018 - 3.150352864 - 0.4052198671$	

С	-3.975514	-1.502219	-1.246156
С	-5.010388	-0.735480	0.821418
С	-5.102049	-1.118588	-0.523921
С	1.479824	-1.666055	0.941370
С	0.919034	-1.198081	2.142126
Н	-3.719239	-0.416897	2.528008
Н	-0.895377	-0.601361	3.131606
Н	-4.030281	-1.805826	-2.292168
Н	-5.916762	-0.444024	1.356106
Н	-6.076906	-1.118752	-1.016032
S	3.149874	-2.035921	0.655683
Н	1.556242	-1.013534	3.008132
С	2.822533	-2.473543	-0.982462
Н	3.644456	-2.793687	-1.621345
С	1.509335	-2.359466	-1.320912
Н	1.106210	-2.587250	-2.306670

C 0.000000089 - 0.6038561079 - 1.907804442C -0.000000087 - 0.9839145283 - 0.5398643686C 0.000000029 0.2322858037 0.202901137O -0.000000191 1.312452808 - 0.6392638548C -0.0000000233 0.8200040072 - 1.9172653606C 0.0000000239 - 1.2702861699 - 3.160779306C -0.000000014 - 2.2148856641 0.1790243533C 0.000000091 0.2576235782 1.5746427746C -0.0000000233 1.5835795603 - 3.062766351C 0.000000026 - 0.5036842682 - 4.3296146094C 0.000000026 0.8935799109 - 4.3046224312C -0.000000005 - 0.9913405123 2.2974341489C -0.0000000235 - 2.2077213656 1.5576129737H 0.0000000337 - 2.3619268632 - 3.2090101916H -0.000000185 - 3.1624389431 - 0.366560733

-1 2

H -0 H 0 C 0 H -0 C 0 H 0 H 0 S -0	.000000031 .0000000486 .0000000202 .0000000055 .0000000266 .0000000446 .0000000153 .0000000839 .0000000406	2.679565086 -1.03456120 1.43426871 -0.78671030 -3.14823836 0.55699652 -1.59289277 0.96619544 1.61906383	66 -3.0129358446 032 -5.2623092441 76 -5.1915405775 015 3.656776169 67 2.0828338096 284 4.0056438286 759 4.3913390084 26 5.0173529478 87 2.676662146	H -0 H 0. C -0 H -0 C 0. H -0 H 0. S 0.	.0000000487 .0000000401 . 1.45986138 .0000000056 .0000000323 .0000000313 .0000000177 .0000000584 .000000061	2.67380248 -1.01575132 8 -5.239308 -0.77419058 -3.1545898 0.55356102 -1.58896662 0.97591017 1.63031203	349-3.0042798038225-5.297884141903188963.69702686981052.10697087392474.06366597672564.42565053367155.06692482493352.6704091592
cofa	cial			antif	acial_y		
C C	2 805530	1 23//05	-0 150552		-2 116162	-1 085357	-0.831777
ĉ	2.090000	1.234495	-0.439332	C	-2.410402	-0.0000007	-1 267401
ĉ	0.896295	1 396636	0.556634	C C	-0 317918	-1 700648	-0 301368
õ	1 747683	0 905874	1 487406	õ	-1 107913	-2 182470	0.687057
ĉ	2 958365	0.303074	0.875736	Ċ	-2 370800	-1 813760	0.368636
č	4 048369	1 183710	-1 244631	C	-2.57 5050	-0.640122	-1 318699
ĉ	0 789572	2 134985	-1 756836	C C	-0 381936	-0 394967	-2 351148
ĉ	-0 /56102	1 6/05/06	0 735204	Ċ	1 057692	-0.334307	-2.331140
ĉ	1 117003	0.338166	1 /60/26	Ċ	-3 508005	-7.111//3	1 111618
ĉ	5 221010	0.330100	-0 660750	Ċ	-3.300333	-0.03/768	-0 501351
ĉ	5 2561/0	0.709390	0.660286	Ċ	-4.725618	-0.354700	0.001001
č	-1 10//28	2 1/0620	-0.361069	Č	1 718611	-1.055024	-1 /0/366
č	-0.558580	2.143020	-0.501005	Č	0.088803	-0.516052	-7.454500
ц	4 027450	2.500700	2 297062	Ц	2 701/65	0.067001	2.455005
Ц	4.027430	2 218881	-2.207002	Ц	-0.048650	0.173324	-2.243419
	1.200030	2.310001	2.7 14035		-0.940059	2 690277	-3.090330
	4.124027	0.013002	2.009902		-3.439039	-2.000377	2.039434
	6 104071	0.001440	-1.207099		-0.700722	-0.393004	-0.900200
	0.194071	-0.000020	1.094079		-0.044020	-1.009043	1.107707
	-2.30/010	2.343034	0.000093		3.127044	-1.499070	-1.430937
	-1.100735	2.770516	-2.431000		1.525010	-0.044162	-3.279621
	-2.824012	2.015106	1.293127		3.483603	-2.261049	-0.308158
н	-3.328226	2.709977	-0.689560	н	3.837865	-1.114438	-2.167948
Н	-3.781481	2.055707	1.809311	н	4.485495	-2.587420	-0.093285
5	-1.429991	1.442709	2.146924	5	2.144853	-2.714716	0.630274
C	0.817895	-1.688938	-0.793419	C	-1.400263	1.541184	0.936536
C	-0.494520	-1.256197	-1.210553	C	-0.065670	1.12/213	1.294268
C	-1.295379	-1.402863	-0.073821	C	0.748357	1.631093	0.275769
0	-0.599633	-1.867985	0.988959	0	0.041910	2.301517	-0.663790
C	0.679038	-2.049536	0.555949	C	-1.259106	2.245897	-0.269291
C	2.066431	-1.813984	-1.405370	C	-2.670836	1.392844	1.495186
С	-1.049223	-0.784853	-2.411619	С	0.495662	0.405116	2.361557
С	-2.649986	-1.100652	-0.102803	С	2.125321	1.453351	0.300811
С	1.724080	-2.535996	1.323112	C	-2.326859	2.808663	-0.948319
С	3.127444	-2.304324	-0.655156	С	-3.754262	1.952983	0.831233
С	2.957435	-2.660384	0.689366	С	-3.584569	2.651291	-0.372284
С	-3.204207	-0.623632	-1.312219	С	2.689407	0.744204	1.384006
С	-2.392918	-0.470395	-2.457364	С	1.862363	0.217784	2.400768
Н	2.206001	-1.525972	-2.448844	Н	-2.810289	0.839701	2.425353
Н	-0.419609	-0.665274	-3.294569	Н	-0.144684	-0.001452	3.145740
Н	1.576562	-2.802037	2.370122	Н	-2.177173	3.351405	-1.882359
Н	4.114437	-2.395073	-1.111358	Н	-4.757378	1.837257	1.244907
Н	3.813217	-3.033372	1.255394	Н	-4.457200	3.077677	-0.871640
С	-4.606078	-0.364731	-1.161150	С	4.116892	0.684647	1.265093
Н	-2.841960	-0.100200	-3.381060	Н	2.319189	-0.340028	3.219852
С	-5.062669	-0.646617	0.088511	С	4.581300	1.318602	0.156257
Н	-5.240173	0.011391	-1.964456	Н	4.760715	0.185005	1.989118
Н	-6.081831	-0.546057	0.459817	Н	5.616666	1.419003	-0.166615
S	-3.830018	-1.233276	1.153314	S	3.323335	2.009407	-0.814187

antif	acial_z			а	ntif	acial_yz		
01				0	1			
С	2.394287	1.330353	-0.772111	()	-2.626595	-0.930957	-0.893430
С	0.983491	1.510185	-1.016544	()	-1.242073	-0.984401	-1.294503
С	0.409712	1.582171	0.255524	C)	-0.589397	-1.620811	-0.235437
0	1.327141	1.466372	1.242285	C)	-1.437786	-1.954017	0.766316
С	2.530616	1.318842	0.625220	()	-2.669289	-1.531570	0.374967
С	3.533817	1.187300	-1.566071	()	-3.807404	-0.445690	-1.456587
С	0.177891	1.621409	-2.163498	C)	-0.516787	-0.543911	-2.414956
С	-0.956778	1.768188	0.422665	()	0.778979	-1.853136	-0.267914
С	3.749045	1.184139	1.269185	C)	-3.833156	-1.660705	1.114502
С	4.766369	1.046092	-0.938810	0)	-4.987410	-0.568592	-0.732243
С	4.872679	1.048792	0.459103	0)	-4.999118	-1.164730	0.536553
С	-1.762168	1.882323	-0.731771	0)	1.504563	-1.418094	-1.399413
С	-1.181986	1.806378	-2.017616	()	0.845655	-0.758939	-2.460491
Н	3.456168	1.188169	-2.655132	F	ł	-3.799639	0.026814	-2.440503
Н	0.627265	1.556602	-3.155735	F	ł	-1.027207	-0.029139	-3.230239
Н	3.810263	1.181649	2.357723	ŀ	H	-3.825293	-2.131860	2.098040
Н	5.669481	0.935106	-1.542639	F	ł	-5.922178	-0.194403	-1.154946
Н	5.855526	0.939594	0.922575	ŀ	H	-5.941847	-1.246901	1.081833
С	-3.137465	2.068008	-0.376278	C)	2.895453	-1.739868	-1.268712
Н	-1.826509	1.891700	-2.894544	F	H	1.431076	-0.416820	-3.315745
С	-3.332754	2.094893	0.968371	C)	3.179978	-2.377046	-0.103783
Н	-3.942347	2.160093	-1.104689	F	ł	3.647179	-1.483722	-2.014482
Н	-4.278554	2.206440	1.496171	F	ł	4.155443	-2.711301	0.245517
S	-1.874786	1.897922	1.881195	5	3	1.790340	-2.625984	0.901466
С	-2.394305	-1.330783	-0.771596	(2	2.626629	0.931007	0.893320
С	-0.983521	-1.510781	-1.015963	C	2	1.242155	0.984527	1.294532
С	-0.409713	-1.582093	0.256129	(2	0.589415	1.620995	0.235544
0	-1.327099	-1.465626	1.242848	C)	1.437732	1.954213	-0.766268
С	-2.530585	-1.318364	0.625731	C	2	2.669242	1.531662	-0.375060
С	-3.533866	-1.188244	-1.565602	()	3.807432	0.445552	1.456318
С	-0.177953	-1.622541	-2.162884	C	2	0.516938	0.543963	2.415000
С	0.956776	-1.768059	0.423332	C)	-0.778958	1.853312	0.268105
С	-3.748984	-1.183224	1.269657	()	3.833039	1.660673	-1.114726
С	-4.766401	-1.046658	-0.938388	()	4.987361	0.568292	0.731822
С	-4.872650	-1.048398	0.459531	C)	4.998996	1.164492	-0.536944
С	1.762138	-1.882731	-0.731072	C)	-1.504482	1.418141	1.399592
С	1.181936	-1.807372	-2.016941	(2	-0.845510	0.758938	2.460601
Н	-3.456274	-1.189927	-2.654664	F	1	3.799703	-0.027007	2.440207
Н	-0.627350	-1.558175	-3.155140	F	ł	1.027420	0.029192	3.230245
Н	-3.810151	-1.180014	2.358195	F	ł	3.825134	2.131881	-2.098238
Н	-5.669544	-0.936161	-1.542261	F	ł	5.922121	0.193919	1.154374
н	-5.855476	-0.938887	0.922974	F	4	5.941669	1.246544	-1.082337
С	3.137456	-2.068163	-0.375527	C	2	-2.895410	1.739747	1.268901
Ĥ	1.826467	-1.893006	-2.893833	F	-	-1.430889	0.416731	3.315848
С	3.332778	-2.094430	0.969129	(2	-3.180015	2.376889	0.103971
Ĥ	3.942326	-2.160505	-1.103919	ŀ	-	-3.647111	1.483457	2.014649
Н	4.278589	-2.205709	1,496966	ŀ	ł	-4.155533	2,710933	-0.245375
S	1.874826	-1.897068	1.881897	S	3	-1.790402	2.626089	-0.901242
	-	-					-	

12j 0 1

C 0.000000003 0.3858558419 1.8047956298 C -0.000000007 -0.9875314222 2.0172493049 C -0.000000009 -1.3540496133 3.3904026681 C 0.000000002 -0.2420014337 4.1908132648 S 0.0000000045 1.2420932699 3.3016797106 C -0.0000000015 0.7617027854 0.4249387744

S	1	5	1
ν	T	\mathcal{I}	T

H -0.0000000047 -2.1496829672 -4.6824603817 H 0.0000000149 -2.4347536234 -2.2239433409				H 0.0000000158 -2.1482096347 -4.7000364576 H 0.000000006 -2.4291789413 -2.2409461362						
cofa	cial			antif	acial_y					
01				01	-					
С	-0.40723	0.19850	2.40772	С	-0.01096	0.76117	1.68729			
С	-0.47275	-1.17829	2.55078	С	-0.09066	-0.53227	2.17629			
С	-0.60606	-1.60849	3.89596	С	-0.12161	-0.60717	3.59299			
С	-0.64170	-0.53694	4.74776	С	-0.06914	0.64276	4.14643			
S	-0.51991	0.98347	3.93508	S	0.02758	1.90635	2.97101			
С	-0.23646	0.63634	1.06092	С	0.01056	0.84631	0.26425			
С	-0.18217	-0.46279	0.19606	С	-0.05550	-0.43214	-0.30092			
S	-0.33547	-1.99041	1.02591	S	-0.13372	-1.70086	0.89613			
Н	-0.67629	-2.64534	4.22313	Н	-0.17411	-1.52676	4.17389			
Н	-0.75079	-0.55736	5.83122	Н	-0.07309	0.89683	5.20522			
С	-0.10972	1.94748	0.53817	С	0.08099	1.98480	-0.57619			
С	0.06418	2.12426	-0.80647	С	0.07254	1.82381	-1.93351			

-1 2

• • • • • • • • • • • • • • • • • • • •	• • • • • • •
C -0.0000000427 -0.2219722017 4.1561174803	C 0.000
S 0.000000335 1.2591722204 3.2983504868	S 0.0000
C 0.000000277 0.7788598804 0.4410366696	C -0.000
C 0.000000049 -0.4001164631 -0.3952586742	C -0.000
S 0.000000436 -1.8845644592 0.5025028161	S -0.0000
H -0.000000093 -2.3734911323 3.7426911069	H -0.0000
H -0.000000844 -0.2049887081 5.2473853951	H 0.0000
C 0.0000000166 2.0653173301 -0.153599895	C 0.0000
C -0.000000035 2.170288653 -1.5165684675	C 0.0000
C 0.000000005 1.0134008031 -2.3702864866	C 0.0000
C 0.0000000113 -0.3001685426 -1.8034263955	C -0.0000
C -0.000000267 1.1412077862 -3.7632422923	C -0.0000
C -0.000000055 0.0123741667 -4.5860972038	C 0.0000
C 0.000000009 -1.2731408987 -4.0322980506	C 0.0000
C -0.000000034 -1.4307544646 -2.6561784222	C 0.0000
H 0.0000000175 2.9546894343 0.4787594384	H 0.0000
H 0.000000132 3.1558348547 -1.9873504942	H -0.0000
H -0.000000294 2.1387178483 -4.2084302031	H -0.000
H -0.000000033 0.1366373162 -5.6710826826	H 0.0000
H -0.000000047 -2.1496829672 -4.6824603817	H 0.0000
H 0 000000149 -2 4347536234 -2 2239433409	H 0 0000
	0.0000

C 0.000000246 0.4022236595 1.791924027	C -0.000000203 0.3960322457 1.8083822903
C 0.000000278 -0.9901434442 2.0021383507	C -0.000000089 -0.9902327657 2.0359242278
C 0.000000056 -1.3567970479 3.3504872192	C -0.000000009 -1.348227586 3.3979462782
C -0.0000000427 -0.2219722017 4.1561174803	C 0.0000000174 -0.243200313 4.2300970561
S 0.000000335 1.2591722204 3.2983504868	S 0.000000049 1.2529783668 3.3232488268
C 0.000000277 0.7788598804 0.4410366696	C -0.0000000112 0.7765633979 0.4496984516
C 0.000000049 -0.4001164631 -0.3952586742	C -0.000000083 -0.3750312429 -0.4069976588
S 0.000000436 -1.8845644592 0.5025028161	S -0.0000000167 -1.8871874771 0.5241160494
H -0.000000093 -2.3734911323 3.7426911069	H -0.0000000202 -2.3746261571 3.7693645541
H -0.000000844 -0.2049887081 5.2473853951	H 0.000000381 -0.217389943 5.3179375098
C 0.000000166 2.0653173301 -0.153599895	C 0.000000085 2.0515946022 -0.1635985771
C -0.000000035 2.170288653 -1.5165684675	C 0.000000027 2.168876904 -1.5314710313
C 0.000000005 1.0134008031 -2.3702864866	C 0.0000000133 1.0223881173 -2.4014442792
C 0.000000113 -0.3001685426 -1.8034263955	C -0.000000032 -0.2948476183 -1.8034230849
C -0.000000267 1.1412077862 -3.7632422923	C -0.00000002 1.1409577923 -3.7968412089
C -0.000000055 0.0123741667 -4.5860972038	C 0.000000004 0.0116893659 -4.6348427109
C 0.000000009 -1.2731408987 -4.0322980506	C 0.0000000102 -1.2613281053 -4.0572271251
C -0.000000034 -1.4307544646 -2.6561784222	C 0.00000002 -1.4266260118 -2.6773495837
H 0.0000000175 2.9546894343 0.4787594384	H 0.000000023 2.9469706992 0.4660696759
H 0.000000132 3.1558348547 -1.9873504942	H -0.0000000172 3.1603624498 -1.9944863356
H -0.000000294 2.1387178483 -4.2084302031	H -0.0000000112 2.1461438272 -4.2312746535
H -0.00000033 0.1366373162 -5.6710826826	H 0.000000032 0.1296780282 -5.7216760772

1 2

C -0.000000013 -0.38046997 -0.3913686356 S-0.000000035-1.8717316016 0.5220181053 H -0.000000027 -2.3750033099 3.7710827656 H 0.000000027 -0.210926362 5.2796045911 C -0.000000009 2.0496984211 -0.1716051324 C -0.000000014 2.1668834961 -1.5354679745 C -0.000000009 1.0197143342 -2.3833849229 C -0.000000005 -0.289340919 -1.8092373275 C -0.000000005 1.1399761338 -3.7936746401 C 0.000000009 0.0258747376 -4.6034293572 C 0.000000014 -1.2638836751 -4.0314705592 C 0.000000001 -1.4174846184 -2.663134159 H-0.000000003 2.9369245851 0.4654511865 H -0.00000001 3.1551114082 -2.0011468838 H -0.000000006 2.1412676556 -4.2319788132 H 0.000000018 0.1382833242 -5.6898289669 H 0.000000025 -2.1444960749 -4.6776726426 H 0.000000003 -2.418316993 -2.2234659864

С	0.11665	1.01966	-1.70372	С	-0.00788	0.53301	-2.52928
С	-0.00796	-0.30866	-1.20277	С	-0.06821	-0.62851	-1.70513
С	0.30163	1.20433	-3.09195	С	-0.03769	0.36966	-3.93180
С	0.35601	0.13179	-3.95151	С	-0.12228	-0.88030	-4.50034
С	0.23415	-1.17844	-3.44986	С	-0.17444	-2.02595	-3.68143
С	0.05581	-1.39483	-2.10281	С	-0.14772	-1.90149	-2.31140
Н	-0.14294	2.80146	1.21740	Н	0.14128	2.97873	-0.12900
Н	0.17175	3.12893	-1.22019	Н	0.12922	2.69228	-2.59245
Н	0.41046	2.22270	-3.47168	Н	0.01316	1.26118	-4.56064
н	0.51557	0.29197	-5.01904	н	-0.14525	-0.98772	-5.58683
н	0.29108	-2.02687	-4.13462	н	-0.23937	-3.01661	-4,13688
H	-0.03152	-2.41259	-1.71544	H	-0.18805	-2.78964	-1.67657
C	3 11266	0.62778	1 06009	C	3 26096	-0 76117	1 68729
č	3 03011	-0 73332	1 30390	Č	3 34066	0 53227	2 17629
Ĉ	2 84791	-1 05927	2 67303	Ċ	3 37161	0.60717	3 59299
č	2 80488	0.07165	3 44059	C	3 31914	-0 64276	4 14643
ŝ	2.00400	1 52606	2 52128	ŝ	3 222/2	-1 00635	2 07101
ĉ	2.37131	0.06318	-0 315/8	C C	3 23011	-0.84631	0.26425
č	3 33037	-0.10766	-1.00716	C	3 30550	0 /321/	-0 30002
e e	2 16626	-0.19700	-1.09710	C	2.20220	1 70096	-0.30092
о Ц	3.10020	-1.00721	-0.13710	о С	3.30312	1.70000	0.09013
	2.74293	-2.00010	3.07391		3.42411	1.52070	4.17309
П	2.00009	0.13363	4.51706	П	3.32309	-0.89683	5.20522
C	3.39487	2.23129	-0.93644	C	3.16901	-1.98480	-0.57619
C	3.54651	2.31113	-2.29324	C	3.17746	-1.82381	-1.93351
C	3.59751	1.14253	-3.10579	C	3.25788	-0.53301	-2.52927
C	3.49062	-0.14566	-2.50502	С	3.31821	0.62851	-1.70513
С	3.74271	1.22418	-4.50871	С	3.28769	-0.36966	-3.93179
С	3.78167	0.08957	-5.28716	С	3.37228	0.88030	-4.50033
С	3.68349	-1.18196	-4.68723	С	3.42444	2.02595	-3.68143
С	3.54067	-1.29523	-3.32359	С	3.39772	1.90149	-2.31140
Н	3.35447	3.13362	-0.32323	Н	3.10872	-2.97873	-0.12900
Н	3.63215	3.28466	-2.78113	Н	3.12078	-2.69228	-2.59244
Н	3.82180	2.21249	-4.96840	Н	3.23684	-1.26118	-4.56064
Н	3.89492	0.17180	-6.37032	Н	3.39526	0.98772	-5.58683
Н	3.71880	-2.07992	-5.30782	Н	3.48937	3.01661	-4.13688
Н	3.45678	-2.28078	-2.85975	Н	3.43805	2.78963	-1.67656
antif	acial z			antifa	acial yz		
01				0 1			
С	-0.06358	0.81412	1.73595	С	0.04909	0.48038	1.17806
С	-0.07232	-0.49486	2.19024	С	0.11955	-0.88655	1.39239
С	-0.10701	-0.61069	3.60334	С	0.28739	-1.24257	2.75502
Ċ	-0.13555	0.62422	4.19080	C	0.33557	-0.12781	3.54679
S	-0.11257	1.92336	3.05128	S	0.18685	1.34568	2.65777
Ĉ	-0.03442	0.93574	0.31543	Č	-0.10177	0.84849	-0.19132
č	-0.03293	-0.33031	-0.28195	č	-0.14738	-0.29289	-1.00063
ŝ	-0.04909	-1 63060	0.88171	ŝ	-0.00539	-1 77613	-0.09155
н	-0 10536	-1 54724	4 15865	й	0.37882	-2 25892	3 13466
н	-0 16145	0 84847	5 25596	н	0.48504	-0.08841	4 62435
Ċ	0.10145	2 09506	-0 /0775	C	-0 18951	2 13225	-0 78250
č	0.00200	2.03500	-1.85010	C	-0.32466	2.15225	-2 13000
č	0.01791	1.90003	2 49622	C	0.32400	2.24333	2.13909
ĉ	-0.00023		-2.40023		-0.30030	1.03/30	-2.31300
Č	-0.02403	-0.49409	2 00007		-0.23103	-0.20002	-2.40021
C	-0.01/1/	0.55700	-3.09201		-0.50659	1.213/9	-4.301/2
	-0.05250		-4.49132		-0.54288	0.09851	
	-0.06260	-1.84/10	-3.09999	U O	-0.46232	-1.18816	-4.01/05
	-0.04560	-1./54//	-2.32682	U U	-0.34015	-1.33553	-3.25526
П	0.01980	3.07987	-0.02684	н	-0.14467	3.01904	-0.14/59
н	0.05123	2.85293	-2.495/5	H	-0.39274	3.23130	-2.604/1
н	-0.00098	1.46541	-4.49942	н	-0.57395	2.21337	-4.81836

Н	-0.06374	-0.76394	-5.58019	Н	-0.64172	0.20779	-6.27028
Н	-0.08686	-2.82858	-4.17868	Н	-0.49676	-2.07071	-5.25999
Н	-0.05376	-2.65907	-1.71403	Н	-0.27348	-2.33281	-2.81459
С	3.31358	0.81412	-1.73595	С	3.20091	-0.48038	-1.17806
С	3.32232	-0.49486	-2.19024	С	3.13045	0.88655	-1.39239
С	3.35701	-0.61069	-3.60334	С	2.96261	1.24257	-2.75503
С	3.38555	0.62422	-4.19080	С	2.91443	0.12781	-3.54679
S	3.36257	1.92336	-3.05128	S	3.06315	-1.34569	-2.65777
С	3.28442	0.93574	-0.31543	С	3.35177	-0.84849	0.19133
С	3.28293	-0.33031	0.28195	С	3.39738	0.29289	1.00063
S	3.29909	-1.63060	-0.88171	S	3.25538	1.77613	0.09155
Н	3.35536	-1.54724	-4.15865	Н	2.87119	2.25892	-3.13466
Н	3.41145	0.84847	-5.25596	Н	2.76495	0.08841	-4.62435
С	3.24734	2.09506	0.49775	С	3.43951	-2.13225	0.78259
С	3.23209	1.96665	1.85910	С	3.57466	-2.24554	2.13909
С	3.25625	0.68803	2.48623	С	3.63056	-1.09730	2.97938
С	3.27483	-0.49409	1.69046	С	3.54169	0.20603	2.40827
С	3.26717	0.55700	3.89287	С	3.75660	-1.21379	4.38172
С	3.30250	-0.68146	4.49132	С	3.79288	-0.09851	5.18808
С	3.31260	-1.84710	3.69999	С	3.71232	1.18816	4.61765
С	3.29560	-1.75477	2.32682	С	3.59014	1.33553	3.25526
Н	3.23020	3.07987	0.02684	Н	3.39467	-3.01904	0.14759
Н	3.19877	2.85293	2.49575	Н	3.64274	-3.23130	2.60471
Н	3.25098	1.46541	4.49942	Н	3.82396	-2.21337	4.81836
Н	3.31374	-0.76394	5.58019	Н	3.89172	-0.20779	6.27028
Н	3.33686	-2.82858	4.17868	Н	3.74676	2.07071	5.25999
Н	3.30376	-2.65907	1.71403	Н	3.52348	2.33282	2.81459

13a 0 1

H -0.000000131 -2.9718345022 -0.5975797448 C -0.000000011 -2.1127038556 0.0765838485 C -0.0000000101 -0.8085578755 -0.4659205119 C -0.000000224 -0.3723868536 -1.8301798871 C 0.000000032 0.3165022689 0.3915147702 S -0.000000174 1.8419923119 -0.4611783849 C 0.000000128 0.125108534 1.7773088551 S 0.000000252 1.3305592025 3.0237635674 C 0.0000000113 -1.1834374884 2.3139369063 C 0.00000015 -1.1563632846 3.7491603034 C 0.000000131 -2.296921317 1.4430738609 H 0.000000057 -3.3049363691 1.8630033091 C -0.000000132 1.0072931871 -1.9894057899 C 0.000000008 1.4276518564 -3.3464889503 C 0.000000157 0.3478263375 -4.1903331263 S -0.000000403 -1.1688617647 -3.359006988 C -0.0000000111 0.1077308202 4.2523990477 H 0.000000135 -2.052193825 4.3711061097 H 0.000000048 2.4629171863 -3.6863496249 H 0.000000378 0.3591266998 -5.2794723403 H-0.000000304 0.4072087312 5.29975477 1 2 -1 2 H -0.000000115 -2.9857481027 -0.609561592 C -0.000000007 -2.1303310208 0.0682778 C 0.000000003 -0.8113312712 -0.4729919577 C -0.0000000115 -0.3867859372 -1.8053928519 C -0.000000047 0.3392990999 0.3966409312 S -0.000000427 1.871126779 -0.4526965125 C -0.000000074 0.1442119743 1.7626368487

 $\begin{array}{l} \mbox{H}\ -0.000000005\ -2.9842880769\ -0.5880534355\\ \mbox{C}\ -0.0000000007\ -2.1193901302\ \ 0.0813595292\\ \mbox{C}\ -0.000000008\ -0.8100914065\ -0.4889117512\\ \mbox{C}\ -0.0000000005\ -0.3782406563\ -1.8255948272\\ \mbox{C}\ -0.0000000013\ \ 0.3175019848\ \ 0.4074695948\\ \mbox{S}\ -0.0000000022\ \ 1.8569685218\ -0.4602073878\\ \mbox{C}\ \ 0.000000002\ \ 0.1282926934\ \ 1.7727159404 \end{array}$

S -0 C -0 C -0 C -0 C -0 C -0 C -0 C -0 C	0000000691 0000000123 0000000052 0000000067 00000000337 00000000173 00000000506 00000000506 0000000055 00000000	1.3499945891 - 1.1800928551 - 1.1603994046 - 2.3101221142 - 3.3139245548 1.0247795359 1.4312496163 0.3254436704 - 1.193584913 - 0.1268631178 - 2.0503670251 2.4600541312 0.3444398547 0.4109448298	3.0216964074 2.2980753738 3.7070348026 1.4228884968 1.8512986624 -1.9673001449 -3.3049837974 -4.1445940315 3.3371485063 4.2155833935 4.3371736747 -3.6641385961 -5.2361068783 5.2692984777	 S -0.000000003 1.3476430746 3.0364240563 C -0.0000000007 -1.1925212223 2.3379772378 C 0.000000006 -1.157353329 3.7547477594 C -0.0000000018 -2.3006292644 1.4443754931 H -0.0000000013 -3.3136958455 1.8586635149 C -0.0000000022 1.0208154756 -2.0106474347 C -0.0000000021 1.4285409454 -3.3520407977 C 0.0000000021 1.4285409454 -3.3520407977 C 0.000000001 -1.183411791 -3.3755902302 C 0.0000000022 0.1119798624 4.2871626254 H 0.000000008 -2.0586996027 4.3729915351 H -0.0000000025 2.4680385254 -3.6853640302 H 0.000000066 0.3660544611 -5.3171956109 H 0.000000034 0.4066725137 5.3347829963 					
cofa 0 1 S	acial 0.34097	-0.98160	-2.20688	antii 0 1 H	facial_y 1.049098	0.304205	-2.833133		
С	1.41327	-1.16910	-0.84579	С	0.450284	-0.338720	-2.186011		
С	0.78120	-1.70128	0.29767	С	1.081005	-1.051189	-1.147118		
С	-0.98091	-1.61734	-1.27486	С	2.457247	-1.094606	-0.765514		
С	-0.59576	-1.95058	0.01236	С	0.322480	-1.866065	-0.281305		
Ĉ	-2 35317	-1 85715	-1 54260	S	1 276146	-2 628149	0.966381		
č	-2 97976	-2 37573	-0 44289	C C	-1 054614	-1 979256	-0 477683		
ŝ	1 02512	2.57575	0.44200	e e	2 101720	2 027/16	0.410925		
3	-1.92010	-2.00000	0.91200	3	-2.191729	-2.92/410	0.419030		
C C	2.77183	-0.84820	-0.79122		-1.680533	-1.264098	-1.519808		
C	3.49745	-1.03950	0.40325	C	-3.091377	-1.508313	-1.546741		
С	2.84958	-1.56981	1.53986	С	-0.910861	-0.440054	-2.366573		
С	1.51355	-1.89882	1.48585	Н	-1.406820	0.124678	-3.157882		
S	3.76836	-0.20201	-2.04932	С	2.720405	-1.885391	0.340571		
С	5.13895	-0.16676	-0.99371	С	4.087958	-1.913552	0.712211		
Ċ	4 86212	-0 63075	0 25462	Ċ	4 836965	-1 139378	-0 134335		
й	-2 85717	-1 65116	-2 48560	ŝ	3 800765	-0 382424	-1 370614		
Ц	-1 03120	-2 63858	-0 34400	Ĉ	-3 /03/18	-2 3608/8	-0 576528		
и Ц	6.00254	-2.00000	1 27227	Ц	2 760960	1 044220	2 261066		
	0.09304	0.19030	-1.3/22/		-3.709000	-1.044336	-2.201900		
п	5.60105	-0.68916	1.05428		4.502943	-2.469834	1.551867		
н	3.41845	-1./1801	2.45995	н	5.912707	-0.973547	-0.100180		
Н	1.00687	-2.30641	2.36260	н	-4.505166	-2.717237	-0.373904		
S	-2.00577	1.81979	-1.57776	Н	0.173867	-0.150634	2.835303		
С	-0.97586	1.61486	-0.18468	С	-0.559347	0.280727	2.152188		
С	-1.64547	1.07980	0.93506	С	-0.126585	1.175583	1.152147		
С	-3.36007	1.19168	-0.68925	С	1.181347	1.676941	0.870987		
С	-3.01775	0.85150	0.60880	С	-1.052696	1.730573	0.245145		
Ĥ	-1 47460	0 42251	2 99009	S	-0.329803	2 836428	-0 894682		
Ĉ	-0 0/383	0.84664	2 13576	ĉ	-2 /01781	1 382264	0.345594		
ĉ	0.39/13	1 01766	-0.00218	ŝ	-3 721136	1.002204	-0 630333		
č	1 001 04	1.91700	-0.09210	5	-3.721130	0.400946	1 256649		
	1.00124	1.00330	1.11000		-2.631704	0.499616	1.330040		
C	2.46055	2.05297	0.99389	C	-4.249298	0.298246	1.304648		
C	0.39864	1.14236	2.22067	C	-1.891375	-0.049284	2.254705		
Н	0.94818	0.95665	3.14503	Н	-2.230970	-0.741864	3.026404		
С	-4.71634	0.93252	-1.01165	С	1.235657	2.570274	-0.186522		
С	-5.37833	0.40044	0.06281	С	2.534355	3.083621	-0.435818		
S	-4.37377	0.21616	1.45606	С	3.439538	2.560199	0.448447		
С	2,77085	2.54510	-0.23350	S	2.736447	1.454137	1.570725		
Ĥ	-5 18431	1 12807	-1 97589	Č.	-4 845442	0 994117	0 301428		
н	-6 42773	0 11427	0 11773	й	-4 7005/2	-0 347019	1 996788		
ц	2 7/220	2 88151	-0.58842	Ц	2 702116	3 70/560	_1 210397		
0	J.14JZY 1 11751	2.00101	1 21/72		2.1 30440 1 E00E60	0.1 9400Z	-1.213301		
3	1.41/51	2.3/34/	-1.314/3	-T	4.509568	2.100239	0.492234		
н	3 18619	1 94105	1 /989/	н	-5.902591	101/3/6	0.041036		

antifacial_z 0 1	2			antifa 0 1	acial_yz		
antifacial_z 0 1 H 0.6 C 0.1 C 0.8 C 2.2 C 0.2 S 1.2 C -1.1 S -2.2 C -1.9 C -3.3 C -1.2 H -1.7 C 2.6 C 4.0 C 4.7 S 3.6 C -3.6 H -4.0 H 4.5	2 62852 35406 67053 69820 01980 69380 82027 13130 06950 804794 229732 799854 38808 36037 701445 48860 501078 049308 625628	-1.560726 -1.630879 -1.542218 -1.379932 -1.631164 -1.504425 -1.816067 -1.984750 -1.904249 -2.096231 -1.807661 -1.875419 -1.347725 -1.216020 -1.155863 -1.245969 -2.160357 -2.176350 -1.171024	-3.021934 -2.069043 -0.867342 -0.647794 0.373707 1.744780 0.401368 1.782268 -0.804501 -0.560273 -2.038583 -2.966999 0.686251 0.893078 -0.300824 -1.668868 0.764336 -1.351897 1.864988	antifa 0 1 H C C C C S C S C C C H C C C S C H H	acial_yz 0.988321 1.612634 1.055734 -0.267478 1.840992 0.970440 3.173094 4.321531 3.724577 5.085752 2.927350 3.360489 -0.467709 -1.789566 -2.566734 -1.712918 5.526743 5.703080 -2.156113	-2.253831 -1.833268 -1.622689 -1.868160 -1.073832 -0.873972 -0.740862 -0.034390 -0.949147 -0.506336 -1.502390 -1.658393 -1.521481 -1.748117 -2.267421 -2.483997 0.000774 -0.568264 -1.524828	2.493953 1.703483 0.425810 -0.052769 -0.609541 -2.107791 -0.356587 -1.442248 0.924942 0.984005 1.949177 2.939271 -1.378216 -1.837386 -0.838034 0.647320 -0.198609 1.880734 -2.837831
H 5.7 H -4.5 H -0.6 C -0.1 C -0.8 C -2.2 C -0.2 S -1.2 C 1.1 S 2.2 C 1.9 C 3.3 C 1.2 H 1.7 C -2.6 C -4.0 C -4.0 C -4.7 S -3.6 H 4.0 H -4.5 H -5.7 H 4.5	73862 80954 62852 35406 667053 269820 201980 201980 201980 201980 201980 201980 201980 20277 13130 006950 004794 229732 299854 638808 036037 701445 648860 001078 649308 525628 73862 680954	-1.051750 -2.291181 1.560726 1.630879 1.542218 1.379932 1.631164 1.504425 1.816067 1.984750 1.904249 2.096231 1.807661 1.875419 1.347725 1.216020 1.155863 1.245969 2.160357 2.176350 1.171024 1.051750 2.291181	$\begin{array}{r} -0.457966\\ 1.220660\\ -3.021934\\ -2.069043\\ -0.867342\\ -0.647794\\ 0.373707\\ 1.744780\\ 0.401368\\ 1.782268\\ -0.804501\\ -0.560273\\ -2.038583\\ -2.966999\\ 0.686251\\ 0.893078\\ -0.300824\\ -1.668868\\ 0.764336\\ -1.351897\\ 1.864988\\ -0.457966\\ 1.220660\\ \end{array}$	Η Η Η Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	-3.626916 6.516529 -0.988321 -1.612634 -1.055734 0.267478 -1.840992 -0.970440 -3.173094 -4.321531 -3.724577 -5.085752 -2.927350 -3.360489 0.467709 1.789566 2.566734 1.712918 -5.526743 -5.703080 2.156113 3.626916 -6.516529	-2.511965 0.393364 2.253831 1.833268 1.622689 1.868160 1.073832 0.873972 0.740862 0.034390 0.949147 0.506336 1.502390 1.658393 1.521481 1.748117 2.267421 2.483997 -0.000774 0.568264 1.524828 2.511965 -0.393364	-0.882881 -0.427836 -2.493953 -1.703483 -0.425810 0.052769 0.609541 2.107791 0.356587 1.442248 -0.924942 -0.984005 -1.949177 -2.939271 1.378216 1.837386 0.838034 -0.647320 0.198609 -1.880734 2.837831 0.882881 0.427836
0 1 H -0.00000)00082 -2	2.859768175	2 -0.4141298303				

H -0.000000082 -2.8597681752 -0.4141298303
C -0.000000042 -1.9390312796 0.173069922
C -0.000000017 -0.6919006325 -0.4897120346
C -0.000000049 -0.3901419785 -1.8904237079
C 0.000000033 0.5068556547 0.2578604379
S -0.000000013 1.9420537903 -0.7388268295
C 0.000000055 0.4755945925 1.6650808659
C 0.00000004 -0.7949354931 2.2851499226
S 0.00000023 -0.6394493121 4.0151908013
C 0.000000028 -1.9951254394 1.5525732039
H 0.000000053 -2.9570947047 2.0681461736
C -0.000000079 0.9677776799 -2.1809694925
C -0.000000038 1.2558613302 -3.5725995262

C 0.000000095 0.100288941 -4.308900338 S -0.000000252 -1.3297557763 -3.3356713883 C -0.000000091 1.0865523456 3.9049247629 H 0.000000014 2.2537266117 -4.0103183236 H 0.000000207 0.0069114918 -5.3940758154 H-0.00000017 1.6809800607 4.8179078523 C 0.000000047 1.5430322838 2.6218170705 H 0.000000033 2.600818009 2.3563462733 1 2 -1 2 H -0.0000001231 -2.8778022638 -0.4278152532 C -0.000000896 -1.9590731508 0.1611607675 C -0.000000507 -0.6981362494 -0.5020496345 C -0.0000001107 -0.4037727779 -1.8681795898 C 0.000000136 0.5299420142 0.2553573444 S -0.000000971 1.9727866048 -0.734929614 C 0.000000795 0.4955578212 1.6449617561 C 0.00000084 -0.7887171185 2.2631097102 S 0.0000004262 -0.6453223554 3.9629845747 C 0.000000003 -2.0057439119 1.5289988651 H 0.000000821 -2.9621557527 2.0547426949 C -0.0000001385 0.9878611786 -2.1646938464 C -0.000000895 1.2629092592 -3.5328752568 C 0.000002363 0.0790465753 -4.2643433639 S -0.0000004394 -1.3552267765 -3.3161426955 C -0.0000001188 1.0917913766 3.8842224882 С H -0.000000046 2.252066541 -3.9903332303 H 0.0000004315 -0.0050901474 -5.3529650452 H -0.000002646 1.6653817212 4.8112070416 C 0.0000001086 1.5630317961 2.611387752 H 0.000000645 2.623915616 2.3586345348 cofacial antifacial y 01 Н 0.945864 -2.388357 2.384619 С 1.475418 -1.966622 1.528260 С 0.774153 -1.730739 0.328641 С -0.599173 -1.959653 0.007097 C S 1.440194 -1.181339 -0.783845 0.402186 -0.958163 -2.165959С 2.807563 -0.865759 -0.714920С 3.470890 -1.121294 0.502511 S -0.651850 0.408880 5.136933 С 2.818019 -1.664245 1.620697 Н 3.365322 -1.843651 2.547507 С -0.949976 -1.598596 -1.282154С -2.318151 -1.819561 -1.586180 С -2.975658 -2.353499 -0.512442 S -1.955151 -2.580895 0.863873 С 4.946171 -0.132843 -1.228316 Н -2.797905-1.590606 -2.536452 н -4.031994 -2.606405 -0.443675 н 5.802721 0.271194 -1.766442С 3.679714 -0.298973 -1.696840 Н 3.365221 -0.026615 -2.704240 Н 0.415578 -1.527935 3.018927 С 0.840449 -0.979434 2.176257 С 1.078285 -1.651865 0.959680 С -3.017720 0.852935 0.603216

С

-0.954184

1.612818

-0.139917

H 0.000000011 -2.8846797952 -0.4153931174 C 0.000000004 -1.9627694539 0.1688783648 C 0.000000004 -0.6963893916 -0.504594105 C 0.000000003 -0.3840114274 -1.8825557753 C-0.000000007 0.4981593959 0.2656806192 S 0.000000003 1.9435616922 -0.7344062934 C -0.000000008 0.4737564162 1.6675210329 C -0.000000003 -0.8220397932 2.3014946546 S -0.000000008 -0.6428583136 4.0593497005 C -0.000000009 -2.0006851245 1.5680200332 H -0.000000005 -2.9653475903 2.0842050267 C 0.000000011 0.9885180082 -2.1998623477 C 0.000000011 1.2683076289 -3.575103002 C -0.000000012 0.108703388 -4.3397320967 S 0.000000021 -1.3382276108 -3.3446510529 0.000000007 1.1068629068 3.9181220979 H 0.000000008 2.2702174879 -4.0080453044 H -0.000000028 0.0191242534 -5.4241756364 H 0.000000014 1.7183841333 4.8193859444 C -0.000000008 1.5343052693 2.6190342008 H-0.000000009 2.5903579207 2.3392670563

01			
н	2.891194	-1.629941	-0.006909
С	1.898304	-1.652516	-0.459464
С	0.758966	-1.659268	0.371002
С	0.665263	-1.669296	1.796410
С	-0.530317	-1.662317	-0.193760
S	-1.803025	-1.670956	0.999968
С	-0.700359	-1.680555	-1.588796
С	0.465782	-1.702301	-2.380877
S	0.069013	-1.779814	-4.065737
С	1.756940	-1.677125	-1.830111
Н	2.632980	-1.671223	-2.480031
С	-0.630635	-1.682989	2.281937
С	-0.711410	-1.711992	3.698187
С	0.537787	-1.726551	4.255684
S	1.806728	-1.693906	3.083003
С	-1.621172	-1.753587	-3.715033
Н	-1.634669	-1.718154	4.275644
Н	0.788778	-1.742912	5.315036
Н	-2.339058	-1.782134	-4.533628
С	-1.890539	-1.703392	-2.381597
Н	-2.898612	-1.683959	-1.967347
Н	-2.891194	1.629941	-0.006909
С	-1.898304	1.652516	-0.459464
С	-0.758966	1.659268	0.371002
С	-0.665263	1.669296	1.796410
С	0.530317	1.662317	-0.193760

осостосоостто;	-1.953110 0.412671 1.044255 2.719240 0.362200 0.889441 -3.330901 -4.681318 -5.367425 -4.393085 2.571674 -5.128325 -6.418577 3.447770 1.314001	1.823746 1.921819 1.675804 2.118529 1.136124 0.949138 1.200695 0.948522 0.411700 0.216262 2.613540 1.151384 0.128418 2.993698 2.459102	-1.554014 -0.041646 1.194514 1.130215 2.296533 3.233009 -0.700153 -1.052577 0.004072 1.417231 -0.515586 -2.025233 0.035070 -1.038224 -1.012661	800801000801110.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.803025 0.700359 -0.465782 -0.069013 -1.756940 -2.632980 0.630635 0.711410 -0.537787 -1.806728 1.621172 1.634669 -0.788778 2.339058 1.890539	1.670956 1.680555 1.702301 1.779814 1.677125 1.671223 1.682989 1.711992 1.726551 1.693906 1.753587 1.718154 1.742912 1.782134 1.703392	0.999968 -1.588796 -2.380877 -4.065737 -1.830111 -2.480031 2.281937 3.698187 4.255684 3.083003 -3.715033 4.275644 5.315036 -4.533628 -2.381597
⊓ ontif	1.029494	2.712120	-2.033931	F	1	2.898012	1.683959	-1.967347
0 1	aciai_z			ai 0	1 1	aciai_yz		
Η̈́	0.59271	-1.52854	-2.88742	ں ۲	ł	0.996735	-2.315286	2.399023
С	0.10554	-1.60163	-1.91355	C)	1.539772	-1.902671	1.546945
С	0.88596	-1.52689	-0.74192	C)	0.861978	-1.694817	0.329008
С	2.30043	-1.39276	-0.58450	C)	-0.504560	-1.933384	-0.013472
С	0.27114	-1.60918	0.52179	C)	1.545102	-1.155002	-0.777662
S	1.40124	-1.51503	1.84485	S	5	0.530403	-0.955299	-2.181741
C	-1.11928	-1.77616	0.63501	C)	2.907235	-0.823628	-0.686538
C	-1.85867	-1.85410	-0.56265	C	;	3.544919	-1.044015	0.550824
S	-3.54322	-2.08616	-0.23479	5	Ś	5.203656	-0.542242	0.488132
C	-1.26064	-1.76664	-1.82996) I	2.875795	-1.5/93/3	1.662772
П	-1.8/0/6	-1.82322	-2.73207		1	3.404634	-1./34/53	2.004038
	2.72890	-1.38227	0.73202		<u>,</u>	-0.835045	-1.58/911	-1.312/3/
C	4.13/00	-1.29021	0.07007		, ,	-2.190040	-1.00/9/0	-1.033795
c c	4.74004	-1.23000	-0.34090		,	-2.0/4204	-2.323701	-0.301793
C C	-3 26001	-2.07648	-1.00598		, ,	5 044972	-2.557020	-1 165600
н	-3.20001	-2.07040	1.40004		, 1	-2 665046	-0.002103	-2 502874
н	5 81506	-1.20004	-0 55087	۱ ا	1	-2.003040	-7.567342	-2.592074
н	-4 09843	-7.14041	2 15272	۱ ا	1	5 005051	0 3/7150	-0.504054
C	-4.03043	-1 90467	1 70272	I C		3 703111	-0 261955	-1 650070
н	-1 57783	-1 86513	2 81583	L L	, 1	3 498652	-0.016350	-2 680212
н	-0.59271	1 52854	-2 88742	-		-0.996735	2 315286	-2 399023
С	-0 10554	1 60163	-1 91355	Ċ	2	-1 539772	1 902671	-1 546945
č	-0.88596	1.52689	-0.74192	C	, ,	-0.861978	1.694817	-0.329008
Č	-2.30043	1.39276	-0.58450	C	}	0.504560	1.933384	0.013472
Č	-0.27114	1.60918	0.52179	C)	-1.545102	1.155002	0.777662
Š	-1.40124	1.51503	1.84485	S	5	-0.530403	0.955299	2.181741
Č	1.11928	1.77616	0.63501	C	, ,	-2.907235	0.823628	0.686538
Č	1.85867	1.85410	-0.56265	C)	-3.544919	1.044015	-0.550824
S	3.54322	2.08616	-0.23479	S	\$	-5.203656	0.542242	-0.488132
С	1.26064	1.76664	-1.82996	C	;	-2.875795	1.579373	-1.662772
Н	1.87076	1.82322	-2.73267	H	ł	-3.404634	1.734753	-2.604638
С	-2.72896	1.38227	0.73202	C	;	0.835045	1.587911	1.312737
С	-4.13788	1.29021	0.87567	C)	2.198840	1.807978	1.633795
С	-4.74884	1.23060	-0.34698	C)	2.874284	2.323761	0.561795
S	-3.63341	1.27869	-1.66598	S	5	1.874972	2.537626	-0.830988
С	3.26001	2.07648	1.46854	C)	-5.044194	0.062183	1.165699
Н	-4.67509	1.26684	1.82294	H	ł	2.665046	1.587942	2.592874
Н	-5.81506	1.14641	-0.55087	F	ł	3.933752	2.566781	0.504034
Н	4.09843	2.19917	2.15272	F	ł	-5.905954	-0.347159	1.691254
С	1.94963	1.90467	1.79221	C)	-3.793111	0.261955	1.659979

H 0.000000099 -0.3935912277 -5.4996635522					H 0.000000063 -0.3892380722 -5.5547104933					
cofad	cial			antif	acial					
01				01						
С	-0.498985	1.953275	-0.021217	С	-2.099278	-1.441848	0.747980			
С	-0.930063	1.565908	1.270482	С	-2.675599	-1.410477	-0.545602			
S	0.356587	0.881243	2.235348	S	-1.485782	-1.547083	-1.817717			

0. 0.1401812216 4.4539253624	
C -0.000000003 1.2068638234 -4.0582273069	
C -0.000000007 -0.1401812216 -4.4539253624	
H -0.000000005 -2.5988750893 2.4068010392	
H -0.000000004 2.207757505 3.8214978231	
H 0.000000008 2.5988750893 -2.4068010392	
H 0.000000002 -2.207757505 -3.8214978231	
H 01.9913679571 4.8178735035	
H 0.000000003 0.3914697472 5.5167691227	
H -0.00000001 1.9913679571 -4.8178735035	
H -0.0000000016 -0.3914697472 -5.5167691227	
1 2	-1 2
C 0.000000057 -0.5530739041 1.7420154561	C 0.000000007 -0.5512070645 1.736573834
C -0.000000057 0.8066142699 2.1497772762	C -0.000000005 0.8184335864 2.178701909
S-0.000000153 1.9324317873 0.7834331974	S-0.000000087 1.945204213 0.8177230329
C -0.0000000143 0.6385916289 -0.3221949289	C -0.000000072 0.6204185626 -0.336212457
C -0.000000004 -0.6385916289 0.3221949289	C -0.000000019 -0.6204185626 0.336212457
C -0.0000000192 0.5530739041 -1.7420154561	C -0.000000042 0.5512070645 -1.736573834
C -0.0000000152 -0.8066142699 -2.1497772762	C -0.000000042 -0.8184335864 -2.178701909
S -0.0000000153 -1.9324317873 -0.7834331974	S -0.00000001 -1.945204213 -0.8177230329
C 0.000000125 -1.5672263379 2.7151068076	C 0.000000048 -1.5627694427 2.739406266
C -0.000000006 1.1624820418 3.4853476404	C 0.000000042 1.1573074269 3.518934875
C -0.0000000105 1.5672263379 -2.7151068076	C 0.000000012 1.5627694427 -2.739406266
C -0.000000089 -1.1624820418 -3.4853476404	C -0.000000009 -1.1573074269 -3.518934875
C 0.000000028 -1.2129183792 4.0599352416	C 0.00000003 -1.2061426049 4.0822006156
C 0.000000035 0.1319095856 4.4393784647	C 0.000000005 0.1338788249 4.492451021
C 0.000000134 1.2129183792 -4.0599352416	C 0.000000043 1.2061426049 -4.082200615
C 0.000000104 -0.1319095856 -4.4393784647	C 0.000000038 -0.1338788249 -4.492451021
H 0.0000000117 -2.6173106278 2.4147201834	H 0.000000044 -2.6141752659 2.440902626
H -0.000000018 2.2082461565 3.7985226098	H 0.000000021 2.208925508 3.8193772972
H 0.000000024 2.6173106278 -2.4147201834	H -0.000000015 2.6141752659 -2.440902626
H -0.000000046 -2.2082461565 -3.7985226098	H -0.000000029 -2.208925508 -3.8193772972
H 0.000000033 -1.990754206 4.8252727882	H 0.000000024 -1.996230831 4.8405489055
H 0.000000092 0.3935912277 5.4996635522	H-0.000000015 0.3892380722 5.554710493
H 0.000000272 1.990754206 -4.8252727882	H 0.000000058 1.996230831 -4.8405489055
H 0.000000099 -0.3935912277 -5.4996635522	H 0.000000063 -0.3892380722 -5.554710493

BTBT

0 1 C -0.000000003 -0.5387413693 1.7434577448

1.57783

C -0.000000004 0.8195700531 2.1578925297

C 0.000000008 0.614816035 -0.3138082902 C 0.000000003 -0.614816035 0.3138082902 C 0.00000001 0.5387413693 -1.7434577448 C 0.000000009 -0.8195700531 -2.1578925297 S 0.00000001 -1.9388646326 -0.8120835837 C -0.000000006 -1.5509263169 2.7151491689 C -0.000000005 1.1607547618 3.5114113159 C 0.000000009 1.5509263169 -2.7151491689 C 0.000000004 -1.1607547618 -3.5114113159 C -0.000000002 -1.2068638234 4.0582273069

S 0. 1.9388646326 0.8120835837

С	1.477665	1.104973	0.932307	С	-0.214501	-1.646185	-0.644012
С	0.892163	1.668369	-0.178959	С	-0.681147	-1.578766	0.649634
С	2.866848	0.814838	0.773705	С	1.202791	-1.793950	-0.745775
С	3.296538	1.188006	-0.522618	С	1.779594	-1.834252	0.545478
S	2.012271	1.873622	-1.487580	S	0.594679	-1.695806	1.820404
С	-1.422052	2.516887	-0.911111	С	-2.931749	-1.342193	1.869886
С	-2.254983	1.732888	1.669047	С	-4.052729	-1.290807	-0.719774
С	3.786021	0.243278	1.662558	С	2.031548	-1.894821	-1.870674
С	4.614348	0.987619	-0.930681	С	3.156338	-1.967698	0.717791
С	-2.736676	2.685403	-0.508794	С	-4.300813	-1.224012	1.692580
С	-3.151057	2.297472	0.772666	С	-4.858623	-1.202619	0.406359
С	5.094151	0.044358	1.254611	С	3.398076	-2.034005	-1.696786
С	5.504948	0.410716	-0.035915	С	3.956134	-2.068049	-0.410366
Н	-1.099242	2.812751	-1.911368	Н	-2.495493	-1.358940	2.870709
Н	-2.580720	1.418568	2.661987	Н	-4.485742	-1.264015	-1.721152
Н	3.460951	-0.048464	2.663189	Н	1.594845	-1.859848	-2.870556
Н	4.937244	1.275671	-1.933064	Н	3.594218	-1.983967	1.716733
Н	-3.463870	3.115915	-1.199668	Н	-4.954346	-1.150916	2.564403
Н	-4.195421	2.422147	1.063517	Н	-5.939925	-1.108924	0.286713
Н	5.814274	-0.404020	1.942063	Н	4.049494	-2.113958	-2.569404
Н	6.540807	0.246656	-0.340475	Н	5.037099	-2.164897	-0.292299
С	-2.866628	-0.814674	-0.774343	С	-1.202788	1.793914	-0.745929
С	-3.296858	-1.187752	0.521825	С	-1.779589	1.834315	0.545322
S	-2.013041	-1.873542	1.487276	S	-0.594669	1.696032	1.820260
С	-0.892410	-1.668455	0.179073	С	0.681157	1.578917	0.649501
С	-1.477429	-1.104995	-0.932415	С	0.214507	1.646197	-0.644150
С	0.498764	-1.953500	0.021836	С	2.099284	1.441979	0.747858
С	0.930403	-1.566053	-1.269647	С	2.675594	1.410392	-0.545725
S	-0.355842	-0.881332	-2.235022	S	1.485778	1.546888	-1.817850
С	-3.785381	-0.243013	-1.663568	С	-2.031554	1.894674	-1.870830
С	-4.614803	-0.987186	0.929358	С	-3.156339	1.967684	0.717631
С	1.421397	-2.517315	0.912055	С	2.931760	1.342476	1.869772
С	2.255492	-1.733076	-1.667659	С	4.052715	1.290601	-0.719884
С	-5.093643	-0.043908	-1.256141	С	-3.398086	2.033822	-1.696947
С	-5.504983	-0.410189	0.034234	С	-3.956144	2.067918	-0.410529
С	2.736155	-2.685964	0.510247	С	4.300819	1.224219	1.692475
С	3.151118	-2.297896	-0.770985	С	4.858616	1.202570	0.406254
Н	-3.459867	0.048668	-2.664074	Н	-1.594857	1.859639	-2.870712
Н	-4.938126	-1.275153	1.931628	Н	-3.594222	1.983949	1.716571
Н	1.098112	-2.813330	1.912115	Н	2.495521	1.359401	2.870601
Н	2.581676	-1.418613	-2.660404	Н	4.485712	1.263573	-1.721263
Н	-5.813434	0.404560	-1.943881	Н	-4.049507	2.113703	-2.569569
Н	-6.540935	-0.245987	0.338401	Н	-5.037114	2.164691	-0.292466
Н	3.463011	-3.116702	1.201336	Н	4.954354	1.151254	2.564308
Н	4.195603	-2.422593	-1.061387	Н	5.939910	1.108780	0.286612

TB 0 1

C 0.000000005 0.5623681609 0.4288355793 C -0.0000000075 1.8683233519 -0.1508955939 H -0.000000009 2.7447311974 0.4971519654 C -0.0000000068 2.053319674 -1.5013158394 H -0.000000003 3.064165674 -1.9174411377 C -0.0000000049 0.9457905546 -2.39843792 C -0.0000000087 1.1411428864 -3.7994778152 C -0.0000000087 1.1411428864 -3.7994778152 C -0.0000000088 -0.3755864387 -1.8663773018 C 0. -1.4537342379 -2.7843370064 C 0.000000048 -0.5623681609 -0.4288355793 C -0.000000016 -1.8683233519 0.1508955939 C 0.0000000142 0.3755864387 1.8663773018

H -0.000000066 -2.0863201388 -4.8491953624			H 0.0000000117 -2.1021045362 -4.8671				
cofac	cial			anti	facial_y		
01				01			
С	-0.76409	-1.65995	0.08469	С	-0.052897	0.099270	-0.327592
С	-1.35441	-2.03502	1.32547	С	-0.169342	1.308647	-1.070448
С	-2.67646	-1.83123	1.57976	Н	-0.180289	2.260990	-0.542834
С	-3.52562	-1.23127	0.60990	С	-0.258502	1.307610	-2.428742
С	-2.97915	-0.84363	-0.64246	Н	-0.345932	2.247635	-2.977210
С	-1.57537	-1.06098	-0.90060	С	-0.215623	0.092749	-3.164980
С	-0.98226	-0.67398	-2.13716	С	-0.285808	0.096500	-4.574849

1 2	-1 2
C 0.000000052 0.5752238116 0.4366766234	C -0.000000277 0.5783227334 0.4381033236
C 0.000000047 1.853960776 -0.1406497152	C -0.0000000319 1.8554032154 -0.143691027
H 0.000000048 2.7412585276 0.4917985993	H-0.000000184 2.7370197806 0.5021083928
C 0.000000042 2.0306261886 -1.5151394987	C -0.000000067 2.0551343326 -1.5156578843
H 0.000000029 3.0446048341 -1.9238844551	H 0.000000183 3.0690787242 -1.9261374063
C 0.000000021 0.9334973551 -2.4102511592	C -0.000000129 0.9520481434 -2.4166062837
C -0.000000014 1.1434445706 -3.8072875698	C 0.000000138 1.1355878163 -3.8200136699
C 0.00000003 -0.3896553519 -1.8815570714	C -0.000000347 -0.3830073916 -1.8859036568
C 0.000000006 -1.4572325227 -2.7922480525	C -0.0000000101 -1.4476090953 -2.809449577
C 0.000000053 -0.5752238116 -0.4366766234	C -0.0000000185 -0.5783227334 -0.4381033236
C 0.000000046 -1.853960776 0.1406497152	C -0.0000000093 -1.8554032154 0.143691027
C 0.00000003 0.3896553519 1.8815570714	C -0.000000098 0.3830073916 1.8859036568
C 0.000000021 -0.9334973551 2.4102511592	C -0.000000201 -0.9520481434 2.4166062837
C 0.000000044 -2.0306261886 1.5151394987	C 0.000000021 -2.0551343326 1.5156578843
C -0.000000013 -1.1434445707 3.8072875698	C -0.000000012 -1.1355878163 3.8200136699
H -0.000000024 -2.1674456696 4.1888058994	H -0.000000005 -2.160107612 4.2061917325
C -0.000000005 -0.0679608935 4.6822720311	C 0.000000177 -0.0577216898 4.7002008392
H -0.000000085 -0.2342540423 5.7612467864	H 0.000000274 -0.2307006927 5.7810356976
C -0.000000042 1.2317918637 4.1688460508	C 0.000000011 1.2415329152 4.1913551866
H -0.000000067 2.0863201388 4.8491953624	H 0.000000185 2.1021045361 4.8671188637
C 0.000000006 1.4572325227 2.7922480525	C -0.000000024 1.4476090953 2.809449577
H 0.000000005 2.4896726457 2.4419171226	H 0.0000000007 2.4753304685 2.440611747
C -0.000000005 0.0679608935 -4.6822720311	C 0.0000000109 0.0577216898 -4.7002008392
C -0.000000041 -1.2317918637 -4.1688460508	C -0.000000026 -1.2415329152 -4.1913551866
H -0.000000025 2.1674456696 -4.1888058994	H 0.0000000249 2.160107612 -4.2061917326
H 0.000000005 -2.4896726457 -2.4419171226	H 0.0000000072 -2.4753304685 -2.440611747
H 0.000000047 -2.7412585276 -0.4917985993	H -0.000000061 -2.7370197806 -0.5021083928
H 0.000000028 -3.0446048341 1.9238844551	H 0.000000263 -3.0690787241 1.9261374063
H -0.000000083 0.2342540423 -5.7612467864	H 0.000000267 0.2307006927 -5.7810356976
H -0.000000066 -2.0863201388 -4.8491953624	H 0.0000000117 -2.1021045362 -4.8671188637
cofacial	antifacial_y
0 1	0 1

C -0.000000036 -0.9457905546 2.39843792 C -0.000000007 -2.053319674 1.5013158394 C -0.000000105 -1.1411428864 3.7994778152 H -0.000000083 -2.1646336994 4.1840501616 C -0.000000012 -0.0694556725 4.6649262081 H -0.00000004 -0.2318413957 5.7453294634 C 0.000000047 1.2396822054 4.14752337 H 0.000000184 2.093989529 4.8287604105 C 0.000000081 1.4537342379 2.7843370064 H 0.000000159 2.4810589916 2.4192483649 C -0.000000085 0.0694556725 -4.6649262081 C 0.00000007 -1.2396822054 -4.14752337 H -0.000000113 2.1646336994 -4.1840501616 H 0.000000196 -2.4810589916 -2.4192483649 H -0.000000011 -2.7447311974 -0.4971519654 H -0.000000128 -3.064165674 1.9174411377 H 0.000000046 0.2318413957 -5.7453294634 H 0.000000251 -2.093989529 -4.8287604105

С	0.34164	-0.87149	-2.38472	С	-0.076632	-1.135442	-2.465959
С	1.18955	-1.47937	-1.41804	С	0.014909	-2.320441	-3.230554
С	0.64007	-1.87964	-0.17206	С	-0.017093	-1.126556	-1.023541
Ċ	-4.89295	-1.00802	0.88029	C	0.081306	-2.337375	-0.278152
Č	-5.71232	-0.41984	-0.05603	Č	0.025149	0.112339	1.114901
č	-5.18106	-0.04253	-1.30209	Č	0.130462	-1.117157	1.817287
č	-3 84829	-0 25033	-1 58401	C	0 152692	-2 334665	1 081394
č	1 50776	-2 47607	0 76890	C C	0.213339	-1 117405	3 225790
č	2 84372	-2 66865	0.70000	й	0.203220	-2 075259	3 743287
ĉ	3 38100	-2 27048	-0 7//85	C II	0.000220	0.061055	3 035112
č	2 56151	1 60107	1 67021	U U	0.192033	0.001000	5.000442
ц	-0.73518	-2.40206	2 00564		0.271719	1 280300	3 247002
	2 10564	-2.49200	2.09304		0.004100	2 210510	2 004227
	-3.10304	-2.12401	2.34072		0.079103	2.219019	3.004227
	-0.20003	-1.31137	1.00272		0.003176	1.303/9/	1.07 1090
	-0.70911	-0.25155	0.16262		-0.066539	2.207009	1.309204
н	-5.82711	0.42000	-2.05147	C O	-0.200832	-1.074454	-5.291426
н	-3.46577	0.05974	-2.55547	C	-0.041014	-2.293635	-4.607798
н	-1.59743	-0.20450	-2.90325	н	-0.394465	1.055758	-5.086297
н	0.77804	-0.56038	-3.33628	н	0.134430	-3.281651	-2.731313
н	2.96348	-1.35116	-2.63960	Н	0.098046	-3.291051	-0.804123
Н	4.44409	-2.40678	-0.94998	Н	0.226085	-3.275547	1.632179
Н	3.49198	-3.12595	1.24117	Н	-0.250849	-1.060686	-6.382306
Н	1.12481	-2.79163	1.73870	Н	0.032278	-3.227185	-5.170138
С	1.57086	1.07778	0.91008	С	3.302064	0.010181	0.638454
С	0.97851	0.68597	2.14559	С	3.310032	-1.227029	-0.066458
С	-0.34500	0.88335	2.39533	Н	3.369292	-2.161228	0.488689
С	-1.19381	1.49432	1.43129	С	3.225007	-1.273912	-1.424013
С	-0.64501	1.89923	0.18645	Н	3.212395	-2.234178	-1.944151
С	0.75915	1.68128	-0.07200	С	3.141623	-0.084872	-2.198370
С	2.97458	0.86186	0.65034	С	3.060235	-0.141342	-3.605996
С	3.52016	1.25377	-0.60108	С	3.138824	1.171964	-1.537525
С	3.84507	0.26851	1.59063	С	3.068866	2.334900	-2.335888
С	4.88789	1.03354	-0.87204	С	3.203492	1.210830	-0.095582
Ċ	5.17865	0.06559	1.30902	Ċ	3.167356	2,446550	0.612864
Ċ	5.70889	0.44636	0.06356	C	3.394336	0.051500	2.079372
Ĥ	3.46269	-0.04457	2.56118	Č	3.373043	1.306604	2.743138
H	1 59398	0 21232	2 90883	Č	3 247742	2 494622	1 971707
C	-1 51338	2 49868	-0 75185	C	3 469289	1 359052	4 150011
й	5 28303	1 34006	-1 84377	й	3 444262	2 336420	4 638230
н	5 82604	-0 39544	2 05817	C	3 593288	0 208107	4 894778
н	6 76633	0.00044	-0 15503	U Ц	3 671301	0.260209	5 082880
\hat{c}	-2 56567	1 60558	1 60303		3 617081	-1 037586	1 21/1813
ц	-0.78055	0.56876	3 3/61/	С Ц	3 711027	-1.057.500	4.244013
\hat{c}	2 94025	2 69070	0 47014		3.711927	1 110602	4.029507
č	-2.04933	2.00979	-0.47240		3.313302	-1.110092	2.072003
	-3.30001	2.20/04	0.76212		3.520626	-2.091536	2.390739
	-1.13109	2.01010	-1.72005	C	2.991242	1.009451	-4.300000
н	-2.96718	1.36066	2.65295		2.998289	2.258652	-3.710261
н	-3.49741	3.15023	-1.22106	н	3.031543	-1.121196	-4.087550
Н	-4.44886	2.42396	0.96822	H	3.070938	3.318368	-1.866/35
C	1.34870	2.06152	-1.31159	H	3.075236	3.379504	0.058213
C	2.67035	1.85765	-1.56801	H	3.219716	3.454723	2.492369
Н	0.72936	2.52308	-2.07899	H	2.920796	0.953890	-5.443610
н	3.09907	2.15565	-2.52780	Н	2.949844	3.176376	-4.300756

ΤТ

0 1

S 0.000000019 -1.8589616741 0.9812356477

C 0.000000011 -0.6391290423 -0.2573111984

C 0.000000001 0.6574985478 0.2576748123 C 0.000000002 0.6615855663 1.6766398132

C -0.000000000 C 0.000000000 C -0.000000000 S 0.00000000 C -0.000000000 C 0.000000000 C 0.000000000 S -0.000000000 C 0.0000000000000 H 0.0000000000000000000	5 -0.6267358 4 -0.6438805 7 0.6443901 5 1.8771684 6 1.8491035 6 0.6182508 4 -0.6513392 1 -1.8311801 2 -0.6000612 9 0.6694765 6 -0.8910517 1 1.5698934 9 0.9092092 -1.55171666	8852 2.2118267372 933 -1.6765663653 16 -2.2114896623 085 -0.9812599057 31 2.9273749426 347 4.1447168792 4466 3.6322113756 703 -2.927607709 56 -4.14488474 288 -3.6321158856 294 -5.1946998428 676 -4.2463420809 64 5.1944844872 75 4.246552695		
1 2 S 0.000000001 C 0.000000002 C 0.00000007 C -0.00000007 C -0.00000007 C -0.00000007 S -0.000000002 S -0.000000000 C 0.000000000 S -0.000000000 S -0.000000007 C -0.000000007 C -0.000000007 H 0.000000000 H 0.000000007 H 0.000000007	4 -1.8849662 9 -0.6590237 2 0.6775618 2 0.6773774 1 -0.6382074 8 -0.6594297 8 0.6559807 2 1.9031971 5 1.8691977 1 0.6276168 3 -0.6639483 6 -1.8513743 4 -0.6094440 9 0.6820494 7 -0.8894397 6 1.5746273 6 0.9071371 3 -1.5563920	424 0.9683024522 473 -0.2623312393 464 0.2621487819 244 1.6498507117 051 2.1889840493 498 -1.6500852479 7-2.1886782127 094 -0.9685322172 317 2.9072534182 638 4.0943046868 642 3.5865006801 62 -2.9070886026 148 -4.0942077172 094 -3.5864487835 018 -5.1495548387 454 -4.2123237831 33 5.1497696752 118 4.2125761869	-1 :: S - (-() C - (2 0.00000001 0.00000000 0.000000000 0.00000000
cofacial 0 1 S 0.109920 C -0.104390 C -0.140316 C -0.000290 C 0.144484 C -0.235994 C -0.364113 S -0.328565 S 0.054076 C 0.261454 C 0.298577 S -0.244373 C -0.403239 C -0.403239 C -0.457817 H -0.563512 H 0.375955 H 0.439082 S 3.577823 C 3.391965 C 3.357328 C 3.487714	-1.792871 -0.599113 0.700422 0.728820 -0.545139 -0.625469 0.649530 1.896645 1.933157 0.726480 -0.546380 -1.827662 -0.618904 0.654465 -0.924048 1.543699 1.034240 -1.432822 -1.636184 -0.430094 0.865575 0.880800	0.447007 -0.792671 -0.294074 1.113819 1.656333 -2.201571 -2.746284 -1.535739 2.341374 3.563634 3.066138 -3.432258 -4.660478 -4.160880 -5.703847 -4.781550 4.601334 3.682655 2.021285 0.788949 1.297547 2.706708	anti 1 0 S C C C C C S S C C S C C H H H H S C C C	facial_y 0.086245 0.026167 -0.062573 -0.083418 -0.011790 0.029052 -0.060146 -0.135034 -0.135034 -0.132224 -0.035599 0.087718 -0.021994 -0.088992 -0.021628 -0.154897 -0.162593 0.024681 3.198203 3.248054 3.291310 3.289630

С

3.613546 -0.398651

7 -1.8755833331 0.9821460896 57 -0.6458015959 -0.2763296953 82 0.6645273964 0.2764035894 8 0.6652234267 1.6700879292 28 -0.6345001338 2.2352837876 74 -0.6471447942 -1.6701305192 12 0.6523549761 -2.2351323661 66 1.8940938215 -0.9827749603 72 1.8656282955 2.9374664675 46 0.6254101256 4.1829263207 42 -0.6501465818 3.6375896593 73 -1.8477390138 -2.9371089853 03 -0.6075139899 -4.1828671109 76 0.6682298964 -3.6374477655 9 -0.8959628639 -5.2319797546 96 1.5743805129 -4.2468901359 23 0.9133802709 5.2321548282 83 -1.5563164157 4.2470426216

-1.799530

-0.602868

0.695950

0.721928

-0.554074 -0.626145

0.649088

1.893602

1.921436

0.710219

-0.561800

-1.828154

-0.620587

0.652235

-0.926452

1.542860

1.013366

-1.451826

2.052484

0.851732

-0.448588

-0.469906

0.808655

1.023594

-0.232161

0.262220

1.677263 2.229583

-1.647358

-2.199719

-0.988589

2.906893

4.139630

3.646975

-2.877321

-4.113002

-3.617753

-5.157889

-4.241358

5.184795

4.271176

1.485717

0.236700

0.733308

2.148475

2.698798

С

3.248105

3.241521

С	3.251852	-0.447593	-0.619161	С	3.266345	0.877169	-1.178448
С	3.109993	0.830721	-1.152011	С	3.323889	-0.400539	-1.728378
S	3.144555	2.069071	0.066849	S	3.351586	-1.647490	-0.520337
S	3.495453	2.073036	3.947001	S	3.351783	-1.669869	3.380258
С	3.651489	0.854430	5.165788	С	3.337583	-0.455416	4.614049
С	3.705609	-0.414947	4.656184	С	3.275027	0.816844	4.116863
S	3.193043	-1.642686	-1.855467	S	3.250902	2.078953	-2.410344
С	2.985831	-0.426503	-3.068327	С	3.315969	0.865898	-3.640845
С	2.953646	0.842780	-2.561434	С	3.347929	-0.408492	-3.145757
Н	2.867686	-0.726138	-4.108015	Н	3.315847	1.168399	-4.686643
Н	2.814579	1.734312	-3.170930	Н	3.378417	-1.301296	-3.768143
Н	3.714382	1.151266	6.211625	Н	3.366399	-0.758213	5.659433
Н	3.809937	-1.309208	5.269828	Н	3.249577	1.710428	4.739198