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Abstract

Understanding the route choice of individuals is a key question in travel behavior
research and fundamental to transportation demand management. Modeling route
choice involves several challenges, pertaining to both data availability and accuracy,
and model structure and computational efficiency. The main challenge related to
the route choice problem, namely the generation of the choice set, has been circum-
vented by Fosgerau et al. (2013) through a Markovian link choice problem that is
equivalent to a path-based logit model. It is called the recursive logit (RL) model
and it is directly applicable for analysis at a disaggregate level. Recent method-
ologies are designed to simplify the structure of the model and reduce the data
requirements. Kazagli et al. (2016) propose a representation of routes that is based
on aggregate elements, inspired by the environmental images of the physical world
formed by the individuals (Lynch, 1960), instead of links. It is called the mental
representation items (MRI) model and is useful for analysis at an aggregate level.
From an application point of view, both disaggregate and aggregate route choice
indicators are useful. In this paper, we describe how the RL and the MRI models
can be used in practice to derive link and route flows, that are the most relevant
indicators for route choice applications. Our analysis identifies the advantages and
the limitations of each model and allows to draw insights into the use of a specific
model, depending on the needs of the application and the data availability. Finally,
we investigate the performance of the two models on real data and discuss specific
features of the MRI model. The results demonstrate the validity of the MRI model
for the purposes of an aggregate analysis.
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1 Introduction

Route choice is one of the key travel demand problems. Given an origin (o), a
destination (d) and a transportation mode, the objective is to develop a model
that describes how travelers select their itineraries between o and d . Route choice
models are used to predict the distribution of travelers on the network, allowing
for the identification of congestion and supporting a variety of transportation anal-
yses for planning and management, as well as real-time operations, such as route
guidance. In this paper we focus on car trips, although the methodology can be
extended to other models of transportation.

Classical route choice models assume a mathematical representation of the net-
work G = (A,V), defined in terms of nodes (vertices) V and links (oriented arcs)
A, and a number of link additive attributes associated with each link. Following
this network representation, a route is defined as a sequence of links connecting
the o and the d of the trip. It is commonly referred to as a path.

The need to go beyond the initial shortest and fastest path models (Dijkstra,
1959) has triggered a great deal of research. Route choice analysis is commonly
performed within the framework of discrete choice modeling. The primary element
for the development of an operational random utility model consists in the defini-
tion of the choice set Cn of each individual n in the data sample. Identifying the
path alternatives that form the Cn of a route choice model in a real network is a
difficult task. Different heuristics have been proposed to generate subsets of paths,
commonly referred to as consideration sets (e.g. Ben-Akiva et al., 1984; Azevedo
et al., 1993; de la Barra et al., 1993; van der Zijpp and Fiorenzo Catalano, 2005;
Friedrich et al., 2001; Hoogendoorn-Lanser, 2005; Prato and Bekhor, 2006), to
which the observed path is subsequently added (Bekhor et al., 2006). The val-
ues of the parameter estimates are dependent on the definition of the choice sets
(Frejinger et al., 2009) and may vary significantly for different instances of sampled
sets. Assuming all feasible paths in the choice set is hence important to avoid
biases in the model (Frejinger et al., 2009). Sampling approaches considering all
feasible paths between each od pair and correction of paths utilities for sampling
are proposed for this reason (Frejinger et al., 2009; Flötteröd and Bierlaire, 2013;
Lai and Bierlaire, 2015).

Triggered by previous works developed in the context of traffic assignment (e.g.
Akamatsu, 1996; Baillon and Cominetti, 2008), Fosgerau et al. (2013) present the
recursive logit (RL) model, where the path choice problem is formulated as a se-
quential link choice problem in a dynamic framework. The proposed technique
avoids the full enumeration of paths and does not require sampling of alternatives.
It is further extended by Mai et al. (2015), Mai (2016) and Mai et al. (2016) to
account for correlation of alternatives by means of a nested, cross-nested and mixed
logit formulation, respectively.

Investigating in a different direction, Kazagli et al. (2016) propose an approach
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that simplifies the structure of the model. The authors develop an aggregate route
choice model that describes the strategic decisions of people, represented by the
mental representations of their itineraries, instead of the physical ones, repre-
sented by links or paths. The concept of the Mental Representation Item (MRI)
is introduced as a modeling element and the methodology for the definition and
operationalization of route choice models based on MRIs is presented. The advan-
tage of this approach is that it provides a behaviorally realistic representation of
the routes with a lower structural model complexity, as the use of the MRI as a
modeling element allows to obviate the need for sampling of alternatives for the
generation of the choice set.

The second challenge pertaining to route choice analysis concerns the structural
correlation among the path alternatives that overlap. Tackling the correlation of
alternatives in the stochastic part of the utility function entails higher model com-
plexity and estimation times. For route choice analysis in particular, the estimation
of the nested or mixed logit models is cumbersome. Vovsha and Bekhor (1998) are
the first to use a cross-nested logit (CNL) model, also known as the link-nested

model, in the context of route choice analysis. According to their formulation, each
link of the network corresponds to a nest ℓ and each alternative p, i.e. each path, is
allocated to nests according to αpℓ. The αpℓ parameters are fixed and assumed to
be equal to lengthlink

lengthpath
. This nesting structure entails a very big number of nests and

renders the estimation of the model a challenging task. Nest specific coefficients
cannot be estimated.

Lai and Bierlaire (2015) tackle sampling of alternatives within a Multivariate
Extreme Value (MEV) model. They present a cross-nested logit model and adopt
the Metropolis-Hastings algorithm proposed by Flötteröd and Bierlaire (2013) with
an expansion factor inspired by Guevara and Ben-Akiva (2013) allowing to avoid
the enumeration of paths. The estimation of this model in large networks remains
a challenging task. Recently, Mai et al. (2017) have presented a dynamic program-
ming approach allowing to estimate large network-based MEV models in reasonable
computational times.

Finally, a major challenge related to route choice modeling with revealed pref-
erence concerns the high requirements in data. The primary data elements for
the specification and estimation of a route choice model are (i) a network model,
(ii) information about its attributes at the link level, and (iii) route choice obser-
vations. Network models are often incomplete though, and detailed information
about their attributes, e.g. link travel times, is missing. Obtaining the resolution
of information required for disaggregate route choice analyses, that treat the route
alternatives as link-by-link sequences, is a challenging task.

Disaggregate route choice analysis1 entailing higher data availability and resolu-
tion –and more generally greater model complexity– may not always be necessary.

1We refer the reader to Section 2 for a detailed definition of disaggregate and aggregate route
choice.
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From an application point of view in particular, both disaggregate and aggregate
indicators are of interest. Macroscopic traffic assignment and route guidance are
typical examples of route choice applications that do not require detailed data.
Aggregate approaches, which are not hinged upon detailed data and allow for a
lower model complexity, are useful in such cases.

The route choice behavior of individuals manifests itself as flow in the trans-
portation network. Therefore, the link and route flows are the most important
route choice indicators. In this paper, we focus on these two indicators and con-
sider their representation both at the disaggregate and the aggregate level. For a
given demand and network configuration, the only ingredient for the computation
of the link and route flows are the choice probabilities. These are proportionate
to the flows and can be obtained from the route choice model on hand. In what
follows, we identify the most appropriate disaggregate and aggregate models to
derive these indicators.

Based on the literature review, tractability is achieved at the disaggregate level
by the RL model (Fosgerau et al., 2013), and at the aggregate level by the MRI
model (Kazagli et al., 2016). They are selected in this paper as the representa-
tive ones of each level of aggregation. The recursive logit (RL) model is used as a
benchmark representing the disaggregate models, given its advantage over the clas-
sical route choice models, i.e. (i) it can be consistently and efficiently estimated on
the universal set of paths without sampling of alternatives and (ii) it is equivalent
to a logit model. The objective of the MRI approach is to give to modelers the
flexibility to decide between modeling on the disaggregate or the aggregate level of
analysis, depending on the needs of the application and the data availability.

This paper investigates these tractable models and evaluates how they perform
in deriving disaggregate and aggregate route choice indicators. The objectives of
the paper are: (i) the identification of the advantages and disadvantages of the two
available methods in the literature, namely the link/ path and the MRI approach,
and (ii) the elaboration on specific features of the MRI model. Both models can
be extended to account for correlation among the alternatives. This has been done
for the RL model (Mai et al., 2015; Mai, 2016 and Mai et al., 2016). We describe
how this generalization applies to the MRI model.

Section 2 recapitulates the RL model and outlines the MRI modeling approach
and its extension, that is the definition of a graph of MRI elements. Section 3
delineates the derivation of the indicators using the link -/ path- and the MRI-based
choice models. Section 4 presents (i) an evaluation process for the performance of
the models at the aggregate level of analysis and (ii) the incorporation of the
correlation of alternatives in their specification. Section 5 applies the models and
methods presented in the previous Sections and presents estimation and prediction
results using real data. The last section summarizes the findings of the present
study and identifies directions for further research.
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2 Disaggregate and aggregate route choice models

We start by presenting the RL and the MRI models. We proceed with the definition
MRI graph that serves as the basis for the specification and application of the MRI-
based models in the remainder of the paper.

2.1 The recursive logit model

The recursive logit model decomposes the route choice problem into a sequential
link choice problem that is equivalent to a logit model. The model has the Markov
property and is solved in a dynamic discrete choice framework, given a directed
connected graph G = (A,V), where A denotes the set of links and V the set of
nodes. At each state (link) k the individual n chooses the next state (next link)
a that maximizes the sum of the instantaneous utility un(a | k) and the expected
downstream utility Vd ′

(a) to the destination2 d ′, where

un(a | k) = vn(a | k) + µεn(a), (1)

and εn is independently and identically distributed (i.i.d.) extreme value type I
with zero mean. µ is the scale parameter of the model. vn(a | k) = v(xn,a | k;β),
where xn,a | k is the vector of attributes associated with the link pair (k, a) and β

the vector of parameters to be estimated. v(d ′ | k) = 0, ∀ k that are connected to
d ′. The next link choice probability is given by the logit model

Pd ′

n (a | k) =
e

1
µ
(vn(a | k)+Vd′ (a))

∑
a ′∈A(k) e

1
µ
(vn(a ′ | k)+Vd′ (a ′))

, (2)

where A(k) is the set of outgoing links from link k. Vd ′

(a) are value functions
computed using the Bellman equation (Bellman, 1957)

Vd ′

(k) = µln
∑

a∈A

δ(a | k)e
1
µ
(vn(a | k)+Vd′ (a)) ∀ k ∈ A. (3)

As A(d ′) = ∅, the value function at the destination is 0. The link choice proba-
bilities are organized in Pd ′

destination specific matrices. The model is estimated
under the assumption of the universal set of paths U . A path p is defined as a se-
quence of links and its probability is given by the product of the link probabilities
in the sequence:

Pn(p | U) =

d∏

k=o

Pd ′

n (a | k). (4)

2d ′ refers to the destination dummy link, that is an absorbing state with no successors.
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2.2 The mental representation items model

The definition of a MRI model is based on the identification and definition of the
MRI elements for the case study of interest. They are the building blocks of the
alternatives, in the same way that the links are for the paths. A route is defined
as a sequence of MRIs that connects the origin to the destination of the trip. The
choice set Cn of an individual n consists of MRI sequences.

A MRI is associated with the strategic decisions of travelers. It captures per-
ceived items associated with a route. It may correspond to an area (e.g. the center
of a city), a road segment (e.g. a major arterial) or any other prominent element
in the transportation network that can be traversed, such as a bridge or a cordon.
The definition of the items is context and application dependent (see Section 5 for
specific examples). Each MRI is characterized by (Fig. 1):

1. a name,

2. a description,

3. a geographical span, and

4. a list of representative points.

The first two components capture the conceptual aspects of the items, while the
last two are necessary for the model to be operational, by enabling the association
of the MRIs with objective representations, such as a map or a network model
(Kazagli et al., 2016).

Paris

Name

Description

Representative points

Geographical span

Bd Périphérique

“City center” —

Go through the center

“Peripheral” —

Avoid the center

N

“D”

Figure 1: Example of two MRIs and their components.
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The role of the geographical span is to relate the observations to MRI elements.
Each observation is associated with a MRI if it traverses its geographical span. The
geographical span can be defined as (i) a list of links –if a detailed network model
is available, or (ii) a geomarked element on a map, otherwise. The representative
points signify characteristic locations, such as important junctions or landmarks for
each MRI. As described in Kazagli et al. (2016), they are useful for the specification
of the utility functions of the MRI model, by associating each MRI alternative with
a representative path, e.g. the shortest or fastest path, connecting, the o, the MRIs
in the sequence and the d of the trip. This specification assumes that a detailed
network model is available. A discussion about the operationalization of the model
in lack of a detailed network can be found in Kazagli et al. (2016).

As for any random utility model, the utility of a MRI alternative r is specified
on the basis of its attributes xrn. If available, the characteristics zn of the individual
can be considered in the specification. Subsequently, the probability P(r|Cn, xrn, zn)

of MRI sequence r can be estimated from the data –considering any choice model–
using maximum likelihood estimation. The development of a measurement equa-
tion is necessary if the available data is not reported in terms of MRI sequences.
Let y be an observation, e.g. a trajectory reconstructed by GPS traces. Then

∑

r∈Cn

P(y | r) · P(r | Cn, xrn, zn), (5)

where P(y |r) is the measurement equation that specifies the probability to observe
y given that the MRI sequence r is actually chosen by n.

2.2.1 The MRI graph

In Kazagli et al. (2016), the alternatives of the MRI model involve one MRI in
the sequence. The choice set consists of four labeled alternatives, common for all
travelers. This paper extends the framework by defining a network of MRI elements
that, same as for any route choice model specified on a detailed graph G = (A,V),
serves as the basis for (i) the generation of the MRI sequences comprising the choice
set of the aggregate model and (ii) the application of the model.

The MRI network is a directed connected graph. It is defined in terms of
aggregate nodes m, that represent the MRIs and the origin and destination zones
of the case study, and virtual links ℓ, that represent the possible transfers among
the nodes m. A link in the MRI graph does not correspond to a single piece of
infrastructure, as in the path-based approach defined on G. This is why we refer
to it as a virtual link. Its main function in the model concerns the generation
of the possible sequences of MRIs that define the choice set, by determining the
connectivity of the graph. For the specification of the model though, e.g for the
identification of the attributes and for the structure of the correlation among the
alternatives, and unlike the path-based approach, the most important elements are
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the nodes of the graph that represent MRIs. We further discuss the implications
of these features of the MRI model in Sections 4 and 5.

We denote the MRI graph as GM = (L,M), where L is the set of links and M

is the set of nodes. Its definition observes the following steps:

1. Identify and define the MRIs and the origin O and destination D zones for
the case study of interest.

2. For each MRI element add a node in the MRI graph.

3. For each O and D zone add a node in the MRI graph.

The number of nodes of the MRI graph is the sum of the number of MRIs
and zone centroids.

4. For each pair of nodes in the MRI graph create a link if the transfer from one
node to another is possible.

We use capital letters to differentiate between the aggregate OD pair on the
MRI graph (zone level) and the od pair on the detailed network model (node level).

3 Deriving indicators

The focus of this Section is on the application of route choice models to derive
useful indicators. Both disaggregate and aggregate indicators are considered. We
assume that a RL and/ or a MRI model are available, and present a set of tools
aiming at bringing together and analyzing the results from the various levels of
aggregation.

The derivation of disaggregate indicators from a disaggregate model, and of
aggregate indicators from an aggregate model, is straightforward. On the other
hand, the derivation of indicators from a model that does not correspond to the
intended level of analysis is not. Applications of the aggregate MRI model to cal-
culate disaggregate indicators (top-down approach) are described in Kazagli et al.
(2016). We summarize them here and, in order to complete the toolbox, we present
methods to assimilate the output of the disaggregate models to calculate aggregate
indicators (bottom-up approach). Although the RL model is link-based, we also
present the derivation for a path-based formulation.

We begin by delineating the disaggregate and aggregate route choice indicators
of interest. We then describe their derivation. Table 1 summarizes some important
notations for the remainder of this Section.

3.1 Disaggregate and aggregate route choice indicators

The flow is the most important route choice indicator, as its distribution reflects
the route choice behavior of travelers. At the disaggregate level, the links and the
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Table 1: Notations

notation element | quantity
p disaggregate route representation, i.e. path in G

r aggregate route representation, i.e. MRI sequence in GM

k, a disaggregate element, i.e. link of G

m aggregate element, i.e. MRI node of GM

paths, defined on a detailed network model represented by G, are the reference
elements for which the flows shall computed. At the aggregate level, it may not
always be relevant to talk about link flows. It rather makes sense to refer to element
flows, where elements fall under the MRI definition. The scale of the application
determines the relevant reference elements for which flows shall be computed. For
instance, route flows may be distributed among highways between two cities or,
among combinations of major arterials between two areas in one city. For high level
of aggregation in the analysis, the route flows may actually degenerate to element
flows, i.e. flows across single elements. As an example, an aggregate analysis of the
route flows between the cities of Geneva and Lausanne, in Switzerland, may only
consider the split of flow between (i) the highway and (ii) the lake road. In this
case, route flows are self-same to single element flows.

Table 2 presents the relevant indicators at the disaggregate and aggregate level.
For a given origin-destination demand G and network configuration, the only in-
gredient for the computation of the element and route flows are the choice proba-

bilities. These are proportionate to the flows and the outcome of the route choice
model on hand.

3.2 Deriving disaggregate indicators

3.2.1 Application of the RL model

The application of the RL model allows to derive disaggregate link flows in a
straightforward way. The output of the model consists of destination specific link
transition probability matrices: Pd ′

(see Section 2.1). The expected link flow F(a)

on link a is the summation of the flow originating at link a and the expected
incoming flow. It is given by

F(a) = G(a) +
∑

k∈A

Pd ′

(a | k) · Fd
′

(k). (6)

where G(a) is the demand originating at link a and ending at destination d ′.
Link flows can be computed for a specific destination and multiple origins

using the link transition probabilities by solving the following system of linear
equations (Fosgerau et al., 2013)

(I− PT )F = G, (7)

9



Table 2: Route choice indicators

route flows link flows

disaggregate level F(p) = God · P(p) F(a) =
∑

p δap · P(a | p) · F(p)

aggregate level F(r) = GOD · P(r) F(m) =
∑

r δmr · P(m | r) · F(r)

δ = {0, 1} element-route incidence

where I is the A × A identity matrix, P is the d ′ specific A × A link transition
probability matrix, F is a A × 1 vector representing the expected link flow given
by (6) and G is a A × 1 vector representing the demand G(a). Link flows for
multiple destinations can be computed by summation over the elemental link flows
for specific destinations. The route flows F(p) for a specific od pair are the product
of the demand God and the route probabilities

F(p) = God · P(p | U), (8)

where P(p | U) is given by (4).

3.2.2 Application of the MRI model

Given the choice probabilities P(r | Cn) of the MRI model, the probability that
traveler n traverses link a can be computed using the following equation (Kazagli
et al., 2016)

Prob(a) =
∑

r∈Cn

P(a | r) · P(r | Cn), (9)

where P(a | r) is the probability of using link a given MRI sequence r. An example
of model specification for P(a | r) is proposed in Kazagli et al. (2016). It relies on
a path-based representation, given an od pair, and is specified as

P(a | r) =
∑

p

δap · P(p | r), (10)

where δap is the zero/ one link-path incidence and P(p |r) is the probability of trav-
eling along path p given MRI sequence r. The specification of P(p | r) incorporates
two factors: (i) a consistency score of each path p for every MRI sequence r and
(ii) a cost-dependency term favoring faster paths. As the number of paths with
nonzero probability given a MRI r is too high to be enumerated, this specification
requires sampling. The Metropolis-Hastings algorithm proposed by Flötteröd and
Bierlaire (2013) is used for this purpose. We refer the reader to Kazagli et al. (2016)
for the technical details regarding the specification of the assignment model.

The same specification of P(p |r) applies to the computation of the disaggregate
route choice probabilities:

Prob(p) =
∑

r∈Cn

P(p | r) · P(r | Cn). (11)
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3.3 Deriving aggregate indicators

3.3.1 Application of the MRI model

The application of the MRI model allows to directly compute aggregate flows. The
aggregate route flow is given by

F(r) = GOD · P(r | Cn), (12)

and the aggregate element flow by:

F(m) =
∑

r

P(m | r) · F(r), (13)

where P(m | r) is a zero/ one MRI element-sequence incidence.

3.3.2 Application of the RL model

Consider the probability P(r | Cn) of the MRI sequence r as obtained from the MRI
model. We are interested in reconstructing this probability using the output of a
disaggregate model and use it to compute aggregate flows. This can be formulated
as

Prob(r) =
∑

p

P(r | p) · P(p | U), (14)

where P(r | p) is the probability of going through r given a path p, and P(p | U) is
the probability of p given by (4). The sum span over all paths for a given od pair.
In the case when the MRIs are associated with a well identified geographical span,
it is convenient to specify P(r | p) as a deterministic zero/ one mapping of p to r:
P(r |p) = 1, if p traverses the geographical span of the MRIs in the sequence r, and
zero otherwise.

We propose two ways to derive Prob(r), given (i) the link- (2) and (ii) the
path-based (4) output of the RL model.

From link to MRI sequence probabilities The link transition probability ma-
trices obtained from the RL model can be exploited to directly compute MRI
sequence probabilities. The method to derive the MRI sequence probabilities from
the destination specific link transition probability matrices builds upon the routine
for the computation of link flows given by (7) and does not require sampling of
paths.

The toy network presented in Figure 2 is used to illustrate the derivation of
the MRI sequence probabilities. The derivation is done under the assumption of
a demand of one vehicle at the origin link, G(o) = 1, and zero at any other link
of the network, G(k) = 0 for all k 6= o. Under this scenario, the flow F(d) at the
destination link of this observation is proportionate to a probability. The numbers
above the edges denote link transition probabilities given by the RL model. The
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numbers below the edges denote link flows. Dashed arrows signify links that are
connected to the destination.
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(a) The unit flow reaches d .
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(b) Setting P(a | k) = 0, ∀ a ∈ {city center} results in F(d) < 1.

Figure 2: Illustrative example.
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Assume now that the toy network is demarcated in two MRIs, namely the city

center and the avoid the city center. Each link is assigned to the geographical
span of one of the two MRIs. We are interested in the probability of each MRI to
be traversed. In this example, not passing through the city center entails using
links belonging to the avoid alternative3.

The probabilities of the two MRIs can be computed as follows:

1. Set the transition probabilities of the links belonging to the geographical span
of the city center to 0:

P(a | k) = 0, ∀ a ∈ {city center}.

2. Calculate F(d) using (7):

It corresponds to Favoid(d).

3. Set Prob(avoid) = Favoid(d).

4. Compute Prob(city center):

Prob(city center) = 1− Prob(avoid).

This process does not affect the link transition probabilities that have been
previously estimated from the model. It only results in a loss of flow entering the
city center area (Fig. 2b). This flow does not reach the destination and therefore
F(d) is lower than 1. The flow that reaches d , corresponds to the probability of
avoid the city center. In this example Prob(avoid) = 0.775. Then, the probability
of the city center is simply Prob(city center) = 1− 0.775 = 0.225. This process is
readily extendable to more MRIs and it is context dependent. A simple instance
of it is summarized in Algorithm 1. The geographical spans of the MRIs should be
disjoint for this method to be operational.

The proposed method gives direct access the Prob(r). They can be used for
the computation of aggregate route and element flows for a given demand between
each OD pair.

Algorithm 1 Derive the probability of each r ∈ Cn, for individual n with destina-
tion d , given the universal set of paths U and the RL Pd

1: Identify the MRIs to be handled in succession: handle = {h1, h2, ..., hH}.
2: for ∀ h ∈ {handle} do:
3: Set P(a | k) = 0, ∀ a ∈ {h}∗

4: Calculate Fh(d) using (7)
5: Set Prob(h) = 1− Fh(d)

*h is used to denote the MRI and {h} to denote the geographical span of h.

3From an operational perspective, in this specific example, the links constituting the span of
avoid must be used to reach the city center, or any additional MRI that may be added to the
configuration.
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From path to MRI sequence probabilities The method that we propose in this
paragraph applies to any path-based model. It relies on the fact that several paths
in the road network may be associated with the same MRI sequence4. The path
choice probabilities are aggregated to MRI sequence probabilities using (14). The
P(r | p) = 0 or 1 mapping of paths to MRI sequences is assumed to hold.

For a given od , the number of MRI sequences in the MRI choice set Cn can be
enumerated, while the number of paths in U cannot. Hence, sampling of paths is
required to calculate the sum in (14). The procedure observes the following steps:

1. For each observation, a large number of paths is sampled.

� Simulation of a random walk on the network is used to draw from the
RL link transition probabilities a large number of paths for each od pair
(Section 5).

2. The probability P(p | U) of each sampled path p is computed and corrected
for sampling.

� P(p | U) are computed using (4).

� The expansion factor wLai
p proposed by Lai and Bierlaire (2015) is used

to correct for sampling (see Section 5): wLai
p =

kp
ks

b(s)

b(p)
, where k(p) is the

number of times a path p is sampled and b(p) is the sampling probability.
s denotes the most sampled path, and each p is deterministically assigned
to a MRI alternative.

3. The P(r | p) = 0 or 1 incidences are computed.

4. The Prob(r) are computed using (14).

Remarks The flow-at-the-destination approach is significantly faster than the
sampling approach. The latter requires sampling of a large number of paths and
further processing to assign them to MRI sequences. Both tasks are computation-
ally expensive. For the former, matrix multiplications suffice. Both methods are
applied to the RL model in Section 5. We show that, for a large number of sampled
paths, the two methods provide equivalent results and we establish the former for
the remaining steps of the analysis.

4 Additional considerations

This Section identifies issues towards the consolidation of the aggregate route choice
approach and proposes ways to address them.

4An equivalent statement would be that the choice of an MRI sequence may be implemented
using various paths in the road network.
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4.1 Evaluation at the aggregate level

The aim of the process presented in this paragraph is to evaluate the adequacy of
the MRI model that is intended for aggregate analyses. Along these lines, we are
interested in whether or not the proposed aggregate model gives a better result than
the one of the disaggregate model that is subjected to aggregation. The objective
is to justify that, for an aggregate analysis, an aggregate model should be preferred
against a disaggregate one.

An important performance indicator for any choice model is the probability of
the chosen alternative. It may reveal limitations in the specification of the model
and is used to compute the likelihood of the sample in order to evaluate the model
fit. Note that both models that we investigate in this paper are estimated using
maximum likelihood estimation. In Section 5, we discuss the issue of small prob-
abilities and test the performance of the models at the aggregate level of analysis.
We perform the following steps:

1. The output of the RL model is aggregated to compute the probabilities
Prob(r). They are used to calculate an aggregate log likelihood value for
the RL model. We denote this likelihood as LLRL.

The aggregate route choice probabilities Prob(r) are computed using the
flow-at-the-destination approach (see Section 3.3.2).

2. The log likelihood LLMRI of the MRI model is directly calculated from the
choice probabilities P(r | Cn).

3. LLRL and LLMRI are compared and the effect of small probabilities on the log
likelihood values is identified and analyzed.

4. A cross-validation approach is elaborated on the basis of the LLRL and the
LLMRI.

4.2 Addressing the correlation of alternatives

The choice models presented in Fosgerau et al. (2013) and Kazagli et al. (2016)
are logit. Both the RL and the MRI models can be extended to account for the
correlation among the alternatives. We refer the reader to Mai et al. (2015), Mai
(2016) and Mai et al. (2016) for the extensions of the RL model accounting for
correlation using nested, cross-nested and mixed logit formulations, respectively. In
the following paragraphs, we describe how the MRI model addresses the correlation
of alternatives.

4.2.1 The nested and cross-nested logit with MRIs

Consider a MRI graph as defined in Section 2.2.1. The choice set consists in MRI
sequences. The correlation can be captured at the MRI level by a nested logit
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Figure 3: The underlying MRI nesting structure.

(NL) or a cross-nested logit (CNL) after noting that each MRI may correspond to
a nest. An alternative r belongs to a nest h if the MRI h appears in the sequence r

(Fig. 3). This specification is similar to the link nested model proposed by Vovsha
and Bekhor (1998). The difference is that the nests correspond to MRIs instead
of links, allowing for a much lower level of model complexity. The estimation of
nest specific scales is not precluded by the MRI nesting structure, as the number
of nests is low and under the control of the modeler. In addition, it is possible to
estimate the inclusion coefficients αrh using, for instance, a parametrization as the
one presented below:

αrh =
δrh · e

wh

∑
m δjh · ewh

, (15)

where δrh is 1 if alternative r uses MRI h, and zero otherwise, and wh is a nest-
specific parameter to be estimated. As only h − 1 nest-specific parameters can be
estimated, one has to be normalized to zero.

4.2.2 Error component model with MRIs

The error component (EC) model is a mixture of logit models incorporating ele-
ments that cause correlations among the utilities of the alternatives. Frejinger and
Bierlaire (2007) introduced the concept of subnetworks within a factor analytic
specification of an error component model. The subnetwork components capture
the perceptual correlation of alternatives passing through the same part of the
network.

This framework applies particularly well to the MRI model, where the correla-
tion can be captured on the basis of aggregate elements. Each MRI is associated
with an error component, and an alternative r is correlated with alternative j if they
have at least one MRI in common. This is modeled by introducing MRI specific
constants with which the random coefficients ζh are associated. The underlying
assumption is that alternatives using the same MRI m share the random terms ζh.
The random terms are assumed to be normally distributed ∼ N (0, σ2

h) and the σh

of each component is estimated from the data (see Section 5.5).
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5 Case study

In this case study, we discuss specific features of, and compare, the RL and MRI
models on the basis of the indicators presented in Section 3. We evaluate the
performance of the models at the aggregate level and test for correlation of the
MRI alternatives, following the process described in Section 4. We conclude with
some remarks regarding critical aspects of the MRI approach. The MRI-based
models presented in this Section are estimated using Biogeme (Bierlaire, 2003).

5.1 Dataset and MRI graph

This case study exploits a GPS dataset from the city of Borlänge in Sweden. It is
used as a proof of concept in Kazagli et al. (2016)5. It is extended by including two
additional MRIs in the choice context and defining the MRI graph. The detailed
network model consists of 3077 nodes and 7459 unidirectional links (Fig. A1, Ap-
pendix A). A sample of 239 observations, with a minimum length of 2 km, is used
for the estimation and validation of the model.

The MRI graph depicted in Figure 4 is defined as follows:

1. The city is divided into seven OD zones.

The natural barriers of the city are used to divide the zones. These
are (i) the river, which splits the city in two parts and entails a bridge
choice, and (ii) the main national roads (trunk highways R70, R50)
passing through the city and granting its connection with the rest of the
country (see Fig. A2, of Appendix A).

2. Six MRIs are identified. These are:

1: the city center (CC), 2: the clockwise movement around the center

(CL), 3: the counter-clockwise movement around the center (CO), 4:
the possibility to avoid the center (AV), 5: the secondary bridge (B1),
6: the main bridge (B2). The CC serves as an OD zone (zone 7), and
a MRI.

3. For each of the six MRIs a node is added in the graph.

4. For each of the five aggregate O and D zones a node is added in the graph.

5. Links are defined according to the possible transfers between the MRIs them-
selves and the MRIs and the zones.

(a) A map of the city associating the OD zones and the MRIs is provided
in Fig. A3, of Appendix A.

5The same dataset is used for the application of the RL model and its extension in Fosgerau
et al. (2013), Mai et al. (2015) and Mai (2016).
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Figure 4: The MRI graph.

(b) MRIs 1 to 4 that are associated with the city center are mutually exclu-
sive, i.e. there are no links among them. The same counts for the two
bridges.

(c) A decision among the four MRIs associated with the city center occurs
for all trips originating or ending in zones 1 to 4.

(d) A bridge choice occurs for all trips originating or ending in zones 5 and
6.

In summary, the MRI graph consists of 12 nodes and 56 links, allowing for the
enumeration of all the routes on the graph for each OD pair. An indicative example
of a MRI sequence, describing the route of a trip originating at zone 5 and ending
at zone 3, is the main bridge (B2) followed by the counter-clockwise movement

around the center (CO). The detailed list of alternatives is presented in Table B1,
of Appendix B.

5.1.1 Operationalization of the MRI graph

The geographical span of the MRIs in Borlänge is depicted in Figure A3, of Ap-
pendix A. Given that in this case study a detailed network model is available, the
span is defined, for each MRI, as a list of links of the detailed network model. Each
observation y is deterministically associated with a MRI alternative r: P(y | r) = 1,
if y traverses the geographical span of r, and 0 otherwise.
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The representative points of the MRIs are used to connect each pair of MRI
nodes through the shortest path on the detailed graph. This approach adapts the
methodology proposed in Kazagli et al. (2016). An example of representative paths
associated with MRI sequences is presented in Fig. A4, of Appendix A.

5.2 Model specifications and estimation results

We first present the specifications and the estimation results for the two models.
We further elaborate on them in the remainder of the Section.

5.2.1 RL model

The specification of the RL model is similar to the one proposed by Fosgerau et al.
(2013), including link travel times TT(a), a constant LC(a) which is equal to 1

for all links in order to penalize paths with many crossings, a left turn dummy
LT(a |k) that is equal to one if the turning angle from link k to link a is larger than
40 degrees and less than 177 degrees, and zero otherwise, and a u-turn dummy
UT(a | k) if the turning angle is larger than 177 degrees. We let the parameter
associated with the u-turn to be estimated, instead of fixing it to −20 (assumption
in Fosgerau et al. (2013) to strongly penalize u-turns).

The instantaneous utility v(a |k) of a link pair is given by the following expres-
sion

v(a | k) = βTravelTimeTT(a) + βPenaltyLC(a)

+βLeftTurnLT(a | k) + βUTurnUT(a | k).
(16)

The estimation results are presented in Table 3. The estimated parameters are
significant, the signs are as expected and magnitudes are reasonable.

5.2.2 MRI-based logit model

The utility functions of the MRI model are specified as follows:

Vrn = βTravelTimeTTr + dummyAVδrAV + dummyAroundδrAround, (17)

Vcross
rn = βTravelTimeTTr + dummyAVδiAV + dummyAroundCL

δrAroundCL
+

+dummyAroundCO
δrAroundCO

+ dummyB2δrB2,
(18)

where δrm is 1 if alternative i includes MRI m, and 0 otherwise. Vcross
rn is specified

for alternatives entailing a bridge choice. Apart from the necessary normalizations,
dummy variables are associated with each MRI. dummyCC and dummyB1 are nor-
malized to zero. Parameters related to the number of left turns and number of
intersections were not found to be significant. The estimation results are presented
in Table 4 and further discussed in Section 5.5.2.
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Table 3: Estimation results for the RL model

Parameter value (rob. t-test)
βTravelTime −2.91 (−13.15)

βPenalty −0.32 (−12.60)

βLeftTurn −1.00 (−16.10)

βUTurn −7.46 (−7.48)

Number of observations 239

Number of parameters 4

LL(β̂) −1255.538

Table 4: Estimation results of the MRI logit model

Parameter value (rob. t-test)
βTravelTime −0.991 (−7.47)

dummyAV 3.93 (5.81)

dummyAround 1.80 (3.37)

dummyAroundCL
2.50 (3.16)

dummyAroundCO
3.27 (4.48)

dummyB2 −1.43 (−1.94)

Number of observations 239

Number of parameters 6

LLMRI(β̂) −112.440

5.2.3 Main remarks

Before proceeding with the detailed analysis, we highlight some important features
of the two models, regarding how they behave when deriving indicators of their
intended level of aggregation. These are related to the nature and the specification
of the models. It is useful to keep them in mind for the remainder of the analysis.

The RL model is specified and estimated on the detailed network model. Its
specification allows to capture the influence of local features, such as left turns, and
minor differences among the alternatives. In general, the RL is characterized by
very high probabilities for specific itineraries and links, resulting in low probabilities
for the remaining alternatives.

The specification of the MRI model is a product of aggregation. It cannot cap-
ture minor differences among alternatives. Therefore, in contrast with the RL, the
MRI model tends to distribute the probabilities among the aggregate alternatives.
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5.3 Route choice indicators

In the following paragraphs, we elaborate on the results of the models with respect
to the derivation of the route choice indicators of interest. We particularly focus
on the bottom-up approaches, proposed in Section 3 to derive aggregate indicators.
In lack of detailed demand information, we either omit it or make the assumption
of a unit demand.

5.3.1 Disaggregate link flows

The RL model is directly applicable to obtain link flows (Section 3.2.1), while the
application of the MRI model is subjected to the model presented in Section 3.2.2.
Indicative links flows, assuming a demand of one vehicle for a given od pair, are
presented in Fig. 5 for (a) the RL and (b) the MRI model. The example concerns
a trip from the south to the north of the city. Both models indicate that the bulk
part of the choice probability (dark shade) is concentrated in the west perimeter of
the center. It corresponds to the clockwise movement around the center MRI.

Although the two models agree on which part of the network is the most prob-
able to be traversed, the RL model appears to be more conservative on the distri-
bution of the link flows in comparison with the MRI model. The high probabilities
of the RL model restrict the flows on specific links, while the aggregate MRI prob-
abilities, that are translated to disaggregate probabilities based on the proposed
mapping, allow for the flow to distribute among the possible itineraries.

More extensive analysis, which is out of the scope of this paper, incorporating a
detailed demand input –i.e. an origin-destination matrix for the city– is necessary
to draw a clearer picture of the disaggregate flows.

(a) Application of the RL model using (6) - (7). (b) Application of the MRI model using (9).

Figure 5: Link flows of a single traveler.
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5.3.2 Aggregate route flows

We now focus on the probabilities of the MRI sequences that are proportionate to
aggregate route flows. Their computation is straightforward for the MRI model.
For the RL model, the two methods presented in Section 3.3.2 are employed to
compute Prob(r). These are (i) the flow-at-the-destination and (ii) the sampling
of paths approaches6.

Figure 6 illustrates the probabilities Prob(r) of the chosen MRI alternatives for
each observation in our data, as obtained from the two methods that handle the
RL output. A deviation in the result as derived from the two methods is noted for
three observations. Regressing the probabilities of the first approach against the
ones of the second, and including an intercept, gives a coefficient estimate of 1.004
and an intercept ∼ 0. That is, the two methods give an equivalent result.

The sampling approach provides an approximation of the result. The bigger
the sample size is, the better this approximation is; the

∑
r Prob(r) over all MRI

sequences should then be close to 1 and Prob(r) ∼ P(r | Cn). A remark with respect
to this, concerns a few observations for which the

∑
r Prob(r), before correcting for

sampling, is in the order of 0 .5 -0 .7 , indicating that more paths must have been
sampled. Finally, not all MRI alternatives are represented by sampled paths for
every observation. That is, there are paths with very low probability, close to zero,
that equivalently correspond to MRI alternatives with very low probability. Even
with a huge sample it is not possible to sample these instances7.

Derived MRI choice probabilities
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Figure 6: MRI choice probabilities as derived from the two methods.

6500000 paths are sampled for each od pair, by simulating a random walk on the network to
draw from the RL link transition probabilities.

7This would justify the use of importance sampling. Nevertheless, this problem does not preclude
our analysis, hence we only keep this as a remark.
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Figure 7: MRI choice probabilities.

To conclude, the flow-at-the-destination approach is not subject to the limita-
tions of the sampling approach. It is used for the remainder of the analysis as, in
contrast with the sampling approach, it is very fast to compute and it provides an
exact result.

The probability of the chosen alternative is used as a reference to investigate
the behavior of the two models in details. Figure 7 depicts the probabilities of the
chosen MRI alternatives P(r|Cn) against Prob(r), as derived from the RL. The high-
lighted lines represent the 25% and the 75% percentiles. The RL model forecasts,
on average, marginally higher probability for the chosen alternatives. Both mod-
els are faced with low probabilities for the chosen alternative (bottom-left of the
chart). Examining the instances for which low probabilities occur reveals that, in
comparison with the MRI model, the RL model is faced with much lower probabili-
ties, that for some observations are ∼ 0. In summary, the RL model is characterized
by more extreme instances –concerning either high or low probabilities– while the
MRI model appears to be generally moderate. This is in accordance with the
expectations based on the features of the models discussed in Section 5.2.3.

For a few instances the RL model is dominated by the MRI model (bottom-right
of the chart). Figure 8 shows an indicative example. The dashed line denotes the
observed path. The pale-color is an indicator of a low probability. The highlighted,
dark line denotes the most probable path. Evidently, the RL model assigns a low
probability to the chosen alternative at the disaggregate level.

Let’s now examine what happens at the aggregate level. The observed path
corresponds to choosing the AV MRI alternative. Its probability according to the
RL model is 0.117, against 0.454 for the CC, 0.429 for the CO, and ∼ 0 for the CL.
This is consistent with the output at the disaggregate level. The MRI model assigns
a probability of 0.899 to the chosen alternative. The reason why the RL model is

23



Figure 8: Indicative example of an observation for which the RL is faced with low
probability for the chosen alternative.

faced with low probabilities for the chosen alternative, both at a disaggregate and
an aggregate level, is the low transition probability to the link (encircled on Fig.
8) that grants access to (i) the observed path and (ii) to paths realizing the chosen
MRI alternative, respectively for the disaggregate and aggregate levels. The low
transition probability of specific links explains all of the instances for which the RL
model is faced with low choice probabilities, even at an aggregate level when it is
expected to perform better. The reason why these low link transition probabilities
occur is not clear. One explanation is the small sample of data that is used for the
estimation of the models. It is possible that the RL model needs more observations
to ensure coverage of the physical network and avoid

Let’s now focus on the instances for which the MRI model is dominated by
the RL, or faced with low probability for the chosen alternative. The source of
the problem in this case is the limited specification of the model. Travel time
is the only attribute included in the utility function. Consequently, the dummy
variables associated with the MRIs play an important role in the specification (see
Table 4). If the travel times of two or more alternatives do not differ considerably,
the dummy variables take over their choice probabilities. One such instance is
depicted in Figure 9. The chosen MRI alternative is the CC (dashed line). Its
travel time does not differ considerably from the ones of the clockwise and CO.
As dummyAround = 1.80, CL and CO are favored in expense of the CC alternative,
for which the dummy variable is normalized to zero. The MRI model assigns a
probability of 0.045 to CC, against 0.421, 0.533 and 0.001, accordingly for the CL,
the CO and the AV alternatives. The RL model that is able to capture minor
differences dominates the MRI model in this case. It assigns 0.766, 0.133, 0.101,
∼ 0, for the CC, the CL, the CO and the AV alternatives.
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Figure 9: Indicative example of an observation for which the MRI model is faced
with low probability for the chosen alternative.

We further elaborate on the effect of the small probabilities on the performance
of the models in Section 5.4.

5.3.3 Aggregate element flows

Table 5 reports aggregate probabilities for the MRI elements. They are obtained
from the two models by aggregating the probabilities of the alternatives that tra-
verse the corresponding MRI element. These are relevant for the derivation of
aggregate element flows. The first column of the table reports the number of times
each MRI is actually observed in the data sample.

Obviously, the MRI model reproduces the MRI probabilities as its result is the
output of maximum likelihood on the basis of MRI alternatives. The result of
the RL model, which is estimated of the universal set of paths, is a product of
aggregation and gives an approximation of the shares.

Table 5: MRI element shares (independent of OD).

MRI Observed RL model MRI model
CC 4 22.8 4.0

CL 54 47.2 53.3

CO 60 57.6 60.7

AV 63 53.4 63.0

B1 26 21.7 26.0

B2 74 78.2 74.0
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5.4 Performance at the aggregate level

The evaluation process outlined in Section 4.1 is conducted here. We start by
commenting on the final aggregate log likelihood values of the two models, and
identifying the impact of small probabilities on them. We complete the analysis
with a cross-validation. The objective is to show that for analysis at the strategic
level, an aggregate model should be preferred.

5.4.1 Final aggregate log likelihood

The final log likelihood of the MRI model is LLMRI = −112.440 (Table 4). The
corresponding final log likelihood given by the RL model, computed based on
Prob(r), is LLRL = −271.118. We elaborate on this result and explain why one
cannot claim that the MRI model has a better fit or predictive performance based
on it.

Following up on the analysis of Section 5.3.3 and the discussions about Figure 7,
the instances for which low probabilities occur in the case of the RL model are, in
comparison with the MRI, more extreme, that is ∼ 0 for some observations. This,
results in a significant decrease of the log likelihood. Several instances of the RL
model are characterized by decreases of more than 10, with the worst one being ∼ 26

degrees. On the other hand, the worst instance of the MRI model is characterized
by a decrease of ∼ 7.5. The extreme instances concern 9 observations. Summing
the logarithms of the probabilities of these 9 observations gives a downgrade of
∼ 165 in the LLRL.

Excluding these 9 observations from the computation of the log likelihood values
results in LLMRI = −91.222 and LLRL = −94.446. This is an important result as
it demonstrates two things: (i) the two models give compatible results and (ii) the
efficacy of the MRI model to produce meaningful results intended for an aggregate
analysis.

5.4.2 Forecasted and predicted aggregate likelihood

A cross-validation approach is used to evaluate the performance of the MRI and
RL models with respect to the predicted MRI choice probabilities. 80% of the
observations are randomly drawn and used to estimate the models, while the re-
maining 20% is used to apply them. 100 training and test samples are generated
for this purpose. The same samples are used across all models. The resulting log
likelihood values are conditional on the samples. The average of the log likelihood
values over the samples is computed in order to obtain unconditional values as

LLt =
1

t

t∑

s=1

LLs , ∀t = 1, · · · , 100 (19)
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where s is a sample. The values of LLt are plotted in Figures 10-138. Figures 10
and 11 depict the final and the predicted log likelihood values of each replication
for the training and the test samples, respectively. The MRI LL0 line shows the
log likelihood of the null model corresponding to the MRI choice set9 and serves
as a reference for the performance of the models. The box plots in Figures 12 and
13 summarize the output of the 100 samples for each model.
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Figure 10: Log likelihood of the training samples.
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Figure 11: Predicted log likelihood of the test samples.

8The log likelihood converges to the unconditional value as long as t → ∞. 100 samples are
used so that the analysis can be conducted in a reasonable computational time. The corresponding
figures with the conditional values are presented in Figures A5-A8 of Appendix A.

9The null model predicts equal probabilities for all alternatives, as all its parameters are fixed
to zero.
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Figure 12: Box plot of the log likelihood for the training samples.
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Figure 13: Box plot of the predicted log likelihood for the test samples.

Due to the small sample size, it is not certain that the estimated coefficients
have converged to their true values, hence the log likelihood value. The main
remark with respect to Figures 10 and 11 is that the log likelihood values of the
RL model appear to be worse than the ones of the MRI model. This is attributed
to the issues discussed in the previous paragraph –note that inside the validation
framework we do not exclude the extreme instances. The output of the RL model
is also characterised by more variance. This can be explained by the fact that the
RL model is estimated on the detailed network, and due to the small data sample,
it is more sensitive to network attributes than the MRI model.
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5.5 Capturing correlation with the MRI model

5.5.1 Model specifications

The logit model presented in Section 5.2.2 serves as a benchmark for testing for
correlation within the MRI framework. We make the reasonable assumption that
MRI sequences using the same MRI are correlated. It is tested using a NL and
an EC specification. One nest, or component, is assumed accordingly for the NL
and the EC models. It corresponds to the option of going around the city center,
either using the clockwise or the counter-clockwise movement. Regarding the
EC model, the underlying assumption is that alternatives using the same MRI m
share the random terms ζh. ζh are normally distributed ∼ N (0, σ2

h) and the σm of
each component is estimated from the data. The utility functions are specified as
follows

Vrn = βTravelTimeTTr + dummyAVδrAV+

+dummyAroundδrAround + ζAroundδrAround,
(20)

Vcross
rn = βTravelTimeTTr + dummyAVδrAV+

+dummyAroundCL
δrAroundCL

+ dummyAroundCO
δrAroundCO

+

+dummyB2δrB2 + ζAroundδrAround.

(21)

This specification is the same as the one of the logit model (see Section 5.2.2)
with the inclusion of the error components. Various CNL specifications were es-
timated as well. It was not possible to find a specification for which none of the
parameters corresponding to the scales µh of the nests was not hitting the bounds.
This can be related to the small sample that is used for the estimation.

5.5.2 Estimation results

Table 6 presents the parameter estimates for the three models. The parameters for
travel time are significant and have the expected signs.

The parameters µAround and σAround are significant, indicating that the alterna-
tives using the MRIs of clockwise movement around the center and the counter-

clockwise movement around the center are correlated. Consistent with this re-
sult, there is an improvement in the final log likelihood of the NL and EC models,
as compared to the logit model.

5.5.3 Forecasting results and validation

The cross-validation approach (see Section 5.4.2) is also performed for the NL
model. Figures 14 and 15 demonstrate the improvement in the final and the pre-
dicted log likelihoods due to the NL specification, as opposed to the logit model.
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Table 6: Estimation results

Logit NL EC

Parameter value (rob. t-test)∗ value (rob. t-test)∗ value (rob. t-test)∗

dummyAV 3.93 (5.81) 3.77 (6.45) 6.70 (3.10)

dummyAround 1.80 (3.37) 2.24 (4.08) 3.99 (2.26)

dummyAroundCL
2.50 (3.16) 2.72 (4.26) 4.77 (2.40)

dummyAroundCO
3.27 (4.48) 3.09 (4.97) 5.40 (2.77)

dummyB2 −1.43 (−1.94) −0.824 (−1.33) −1.16 (−1.21)

βTravelTime −0.991 (−7.47) −0.790 (−7.52) −1.43 (−4.88)

µAround × 2.36 (2.75) ×

σAround × × 3.13 (2.71)

# draws × × 1000

# observations 239 239 239

# parameters 6 7 9

LL(0) −392.742 −392.742 −392.742

LL(β̂) −112.440 −105.053 −106.867

∗t-test against 0 for all the parameters except for µm, for which the reported t-test is against 1.
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Figure 15: Predicted log likelihood of the test samples.

5.6 Discussion

We conclude this Section with a discussion about specific features of the MRI model.
Despite its limited specification, the results indicate that it can adequately capture
the high level route choice behavior of individuals, and be used for a meaningful
aggregate analysis. In comparison with the RL model, its performance at the
aggregate level is found to be at the same level of sufficiency, and slightly better.
In that sense, the MRI approach may prove to be a useful tool for the design and
assessment of congestion charging schemes. In addition, it is especially relevant
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Figure 14: Log likelihood of the training samples.

with the needs of traffic assignment at a macroscopic level and the development
of route guidance systems. These are typical applications that do not require a
detailed model.

Although we refer to the potential of the MRI model under limited data avail-
ability and towards a network-free approach, in this paper we make use of the
detailed network model to make the choice model operational. This is the main
drawback of the current specification with respect to complexity and sensitivity.
That is, it relies on the definition of representative paths on the detailed graph,
for the computation of the attributes of the MRI alternatives. The identification
of the representative points that are necessary for the generation of these paths is
straightforward for the small case study presented in this paper. For a bigger and
more complex network though, this feature brings back the complexity of the path-
based approach. The sensitivity of the model to the selection of these points needs
to be tested in that case, e.g. through Monte Carlo simulations to sample various
instances of representative points and re-estimation of the model parameters.

This limitation can be circumvented by eliminating the role of the representative
paths in the operationalisation of the model. Along these lines, the representative
points can be removed from the definition of the MRIs and the geographical span
shall be the only important component for the specification of the model. The
definition of the geographical span is not hinged upon a detailed network model
and allows to incorporate aggregate attributes that are consistent with the level
of aggregation of the model. Aggregate attributes may be (i) congestion indices
for specific areas or segments –represented in the model by the MRIs and their
span, (ii) the distances of the first and last MRIs in the sequence accordingly from
the origin and destination of the trip, or (iii) measures of entropy of a route as an
indicator of complexity of the navigation task (see e.g. Gallotti et al., 2016).
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6 Conclusion

The paper presents a practical scheme for the application and assessment of tractable
route choice models. It builds upon the current state-of-the-art and identifies a
modeling paradigm, where different levels of aggregation, in the representation of
the routes, are targeted for different purposes of analysis. The elaboration on the
results elicited from this paradigm is intended to give insights into the use of specific
models, depending on the needs of the application and the data availability.

The RL and the MRI models are investigated. We demonstrate the derivation
of relevant disaggregate and aggregate indicators for the application of these two
models. The derivation of indicators from a model corresponding to a different level
of aggregation than the one required by the application is not straightforward. We
fill this gap by presenting methods to derive aggregate indicators from a disaggre-
gate model and vice versa. We further investigate and compare the performance of
the models on real data. According to the foundings of the case study, an aggre-
gate model should be preferred, versus a disaggregate one, at the strategic level of
analysis. The validity of the MRI approach, as demonstrated by the results, is an
important step towards the simplification of route choice models intended for an
aggregate analysis, and can facilitate various applications in practice.

Various extensions of the RL have been proposed (Mai et al., 2015; Mai, 2016;
Mai et al., 2016). Currently, we are working on extending and generalizing the
MRI model. The objective is to apply it in big and complex networks, in order
to investigate its advantage in dealing with the extra complexity. Furthermore, as
network models are often incomplete, we are working on a definition that is less
dependent on detailed network data for the operationalization of the model.
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A Additional figures

Figure A1: The network of Borlänge.
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Figure A3: The geographical span of the MRIs in Borlänge.
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Figure A5: Log likelihood of the training samples.
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Figure A6: Predicted log likelihood of the test samples.
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Figure A7: Boxplot of the log likelihood for the training samples.
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Figure A8: Boxplot of the predicted log likelihood for the test samples.
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B Additional tables

Table B1: List of alternatives of the MRI model

a/a MRI choice set OD pairs
1 {CC, CL, CO, AV} [12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43]

2 {CC, CL, CO, AV}1 → {B1, B2}2 [15, 25, 35, 45, 16, 26, 36, 46]
3 {B1, B2}1 → {CC, CL, CO, AV}2 [51, 52, 53, 54, 61, 62, 63, 64]
4 {B1, B2} [57, 67, 75, 76]

{MRI1, MRI2}1: first step decision, {MRI3, MRI4}2: second step decision
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