A new mathematical formulation to integrate supply and demand within a choice-based optimization framework

Meritxell Pacheco Paneque Shadi Sharif Azadeh and Michel Bierlaire

Transport and Mobility Laboratory (TRANSP-OR), School of Architecture, Civil and Environmental Engineering (ENAC) École Polytechnique Fédérale de Lausanne

October 13, 2016

Outline

Introduction

- Demand modeling
 A probabilistic formulation
 A linear formulation
- Supply side: demand-based revenues maximization
 - 4 Case study
- 5 Conclusions and future work

Outline

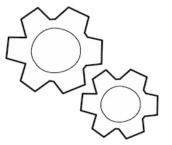
Introduction

- Demand modeling
 A probabilistic formulation
 A linear formulation
- 3 Supply side: demand-based revenues maximization
- 4 Case study
- 5 Conclusions and future work

Motivation

Supply and demand

Supply



- Decision variables to design and configurate the supply
- Maximize revenues
- Here: MILP

Demand

- Formalization of preferences for demand forecasting
- Maximize satisfaction
- Here: discrete choice models

State of the art: Integration paradigms

Linear choice-based optimization models

- Decision variables are not in the utility function
- Exogeneous utility

General observations

• The assumption of exogeneously given demand is in most of the cases unrealistic

Nonlinear choice-based

Endogeneous utility

Nonlinearity and nonconvexity

to the optimization model

optimization models

- **Motivation:** consider utility as endogeneous to the optimization model (better representation of the demand)
- Complexity increases
 - Mathematical model
 - Resolution approach

Integration of supply and demand

- Integration of discrete choice models in MILP
 - Probabilistic
 - Nonlinearity and nonconvexity
- Linear approach addressing
 - Nonconvex representation of probabilities
 - Wide class of discrete choice models

Outline

- Demand modeling
 A probabilistic formulation
 A linear formulation
- 3 Supply side: demand-based revenues maximization
- 4 Case study
- 5 Conclusions and future work

Demand modeling A probabilistic formulation A linear formulation

3 Supply side: demand-based revenues maximization

4 Case study

Utility

Supply and demand

- Population of N individuals
- Set of alternatives $\mathcal C$
 - artificial opt-out alternative
- C_n ⊆ C subset of available alternatives to individual n

Utility

 $U_{in} = V_{in} + \varepsilon_{in}$: associated score with alternative *i* by individual *n*

- V_{in}: deterministic part
- ε_{in}: error term

Behavioral assumption: *n* chooses *i* if U_{in} is the highest in C_n

Probabilistic model

Availability

$$y_{in} = \begin{cases} 1 & \text{if } i \in \mathcal{C}_n \\ 0 & \text{otherwise} \end{cases}$$

Choice

$$w_{in} = egin{cases} 1 & ext{if } n ext{ chooses } i \ 0 & ext{otherwise} \end{cases}$$

Probabilistic model

•
$$\mathsf{Pr}(w_{in}=1)=\mathsf{Pr}(U_{in}\geq U_{jn}, \forall j\in\mathcal{C}_n)$$
 and i available $(y_{in}=1)$

•
$$D_i = \sum_{n=1}^{N} \Pr(w_{in} = 1)$$
, in general non linear

Introduction

Demand modeling A probabilistic formulation A linear formulation

3 Supply side: demand-based revenues maximization

4 Case study

5 Conclusions and future work

Simulation

Behavioral scenarios

- Assume a distribution for ε_{in}
- Generate R draws $\xi_{in1} \dots \xi_{inR}$
- The choice problem becomes deterministic

Demand model

$$U_{inr} = V_{in} + \xi_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}$$

Endogeneous part of V_{in}

- Decision variables xink
- Assumption: linear

Exogeneous part of Vin

- Other variables zin
- f not necessarily linear

Meritxell Pacheco

EPFL

(1)

Availability of alternatives

Operator level

 y_{in} decision of the operator

$$y_{in} = 0 \ \forall i \notin C_n$$

Scenario level

yinr availability at scenario level (e.g. demand exceeding capacity)

$$y_{inr} \leq y_{in}$$
 (3)

(2

Choice of alternatives

Choice at scenario level

$$w_{inr} = egin{cases} 1 & ext{if } i = rg\max\{U_{jnr}\}\ & j|y_{jnr}=1\ 0 & ext{otherwise} \end{cases}$$

Choice and availability

$$w_{inr} \leq y_{inr}$$
 (4)

Linearization of the choice (I)

Auxiliary variables

$$\nu_{inr} = \begin{cases} U_{inr} & \text{if } y_{inr} = 1\\ I_{inr} & \text{if } y_{inr} = 0 \end{cases}$$

Linearizing constraints

$$l_{inr} \leq \nu_{inr}$$
(5)

$$\nu_{inr} \leq l_{inr} + M_{inr}y_{inr}$$
(6)

$$U_{inr} - M_{inr}(1 - y_{inr}) \leq \nu_{inr}$$
(7)

$$\nu_{inr} \leq U_{inr}$$
(8)

where $I_{inr} \leq U_{inr} \leq m_{inr}$, $M_{inr} = m_{inr} - I_{inr}$

14 / 28

Linearization of the choice (II)

Highest utility

$$U_{nr} = \max_{i \in \mathcal{C}_n} \nu_{inr}$$

Linearizing constraints

$$\nu_{inr} \leq U_{nr}$$

$$U_{nr} \leq \nu_{inr} + M'_{inr}(1 - w_{inr})$$

$$\sum_{i \in \mathcal{C}} w_{inr} = 1$$
(11)

where $M'_{inr} = \max_{j \in C} \{m_{jnr}\} - I_{inr}$

Outline

Demand modeling
 A probabilistic formulation
 A linear formulation

Supply side: demand-based revenues maximization

- 4 Case study
- 5 Conclusions and future work

Maximization of revenues

FLIGHT	DESTINATION	TIME STATUS	GATE								
PA 0030	SAN FRANCISCO	00:30 BOARDING	12 💿 💿								
LX 3456	LONDON	01:45 GO TO GAT	E 34 🖸 🖸								
BA 0300	SINGAPORE	02:15 ON TIME	15 00								
LA 0200	LOS ANGELES	02:00 CANCELLED	13 0 0								

Application

- Operator selling services to a market, each service:
 - Price
 - Capacity (number of individuals)
- i = 0 denotes the opt-out option
- Demand is price elastic and heterogenous
- Goal: best strategy in terms of capacity allocation and pricing

Pricing (I)

Revenues per alternative

- p_{in} price that individual n has to pay to access to alternative i
- Endogeneous variable in the utility function (1)

$$R_i = \frac{1}{R} \sum_{n=1}^{N} p_{in} \sum_{r=1}^{R} w_{inr}$$

Linearization (I)

- Discretization of the price: $p_{in}^1, \ldots, p_{in}^{L_{in}}$
- Binary variables λ_{inl} such that $p_{in} = \sum_{l=1}^{L_{in}} \lambda_{inl} p_{in}^{l}$ and

$$\sum_{\ell=1}^{L_{in}} \lambda_{in\ell} = 1, \forall i > 0$$
(12)

EPFL

Pricing (II)

Linearization (II)

• Revenues from alternative *i*:

$$R_{i} = \frac{1}{R} \sum_{n=1}^{N} \sum_{l=1}^{L_{in}} \lambda_{inl} p_{in}^{l} \sum_{r=1}^{R} w_{inr}$$

• Still non linear $\Rightarrow \alpha_{\mathit{inrl}} = \lambda_{\mathit{inl}} w_{\mathit{inr}}$ to linearize it

$$\lambda_{in\ell} + w_{inr} \le 1 + \alpha_{inr\ell} \,\forall i > 0 \tag{13}$$
$$\alpha_{inr\ell} \le \lambda_{in\ell} \,\forall i > 0 \tag{14}$$

$$\alpha_{inr\ell} \le w_{inr} \,\forall i > 0 \tag{15}$$

Capacity (I)

Overview

- c_i capacity of service i
- Who has access if the capacity is reached?
- The model favors customers bringing higher revenues
- ... but generally customers arrive in a random order

Priority list

- An individual is served only if all individuals before her in the list have been served
- Can account for fidelity programs, VIP customers, etc.
- We assume it given

$$y_{inr} \ge y_{i(n+1)r} \,\forall i > 0 \tag{16}$$

Capacity (II)

Capacity must not be exceeded

$$\sum_{m=1}^{n-1} w_{imr} \leq (c_i - 1) y_{inr} + (n-1)(1 - y_{inr}) \,\forall i > 0, n > c_i \qquad (17)$$

•
$$y_{inr} = 1 \Rightarrow 1 + \sum_{m=1}^{n-1} w_{imr} \le c_i$$

• $y_{inr} = 0 \Rightarrow \sum_{m=1}^{n-1} w_{imr} \le n-1$

Capacity has been reached

$$c_i(y_{in}-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr} \forall i > 0$$
(18)

•
$$y_{in} = 1, y_{inr} = 0 \Rightarrow \sum_{m=1}^{n-1} w_{imr} \le c_i$$

20 / 28

Full model

Objective function

$$\max \sum_{i>0} \frac{1}{R} \sum_{n=1}^{N} \sum_{\ell=1}^{L_{in}} p_{in}^{\ell} \sum_{r=1}^{R} \alpha_{inr\ell}$$
(19)

Constraints

- Utility: (1)
- Availability of alternatives: (2) and (3)
- Choice: (4), (5), (6), (7),(8), (9), (10) and (11)
- Pricing: (12), (13), (14) and (15)
- Capacity allocation: (16), (17) and (18)

Outline

- Demand modeling
 A probabilistic formulation
 A linear formulation
- 3 Supply side: demand-based revenues maximization

4 Case study

Conclusions and future work

Parking choices

Original experiment

- [Ibeas, 2014] Modelling parking choices considering user heterogeneity
- Stated preferences survey
- Analyze viability of an underground car park
- Mixed logit model (random taste parameters)

Free on-Street Parking (FSP)

Free (opt-out)

Paid on-Street Parking (PSP)

0.6 and 0.8

Paid Underground Parking (PUP) 0.8 and 1.5

Meritxell Pacheco

EPFL

22 / 28

Choice model

Survey

- 197 respondents
- 8 scenarios based on
 - AT (access time to parking area)
 - TD (time to reach the destination)
 - FEE (price)

Mixed Logit model

- Attributes: TD
- Random parameters: AT, FEE
- Socioeconomic characteristics: residence, age of the vehicle
- Interactions: price and low income, price and residence

Computational results: overview

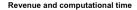
Assumptions

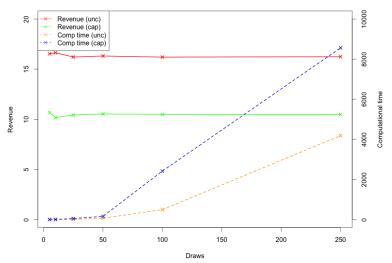
- Subset of 25 individuals
- Uncapacitated vs. capacitated case
- Capacity of 10 inviduals for both PSP and PUP
- 10 price levels from 0 to 3

	FSP			PSP			PUP		
Scenario	AT	ΤD	FEE	AT	ΤD	FEE	AT	ΤD	FEE
5	15	15	0	10	10	0.6	5	10	1.5

Case study

Computational results: revenue and computational time



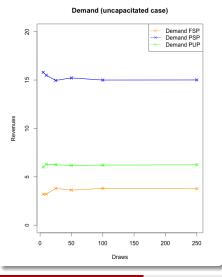


Meritxell Pacheco

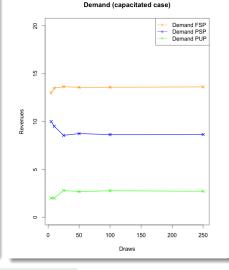
25 / 28

Computational results: demand

Uncapacitated case



Capacitated case



Meritxell Pacheco

26 / 28

Outline

- Demand modeling
 A probabilistic formulation
 A linear formulation
- 3 Supply side: demand-based revenues maximization
- 4 Case study
- **5** Conclusions and future work

Conclusions and future work

Conclusions

- General framework (any assumption can be made for ε_{in})
- Linear formulation integrating demand and supply
- High dimensionality of the problem (N and R)
- Need for speeding up the computational results

Future work

- Decomposition techniques
- Two interesting subproblems
 - Choice subproblem (user's side)
 - Pricing subproblem (operator's side)

Questions?

Modelling parking choices considering user heterogeneity. *Transportation Research Part A: Policy and Practice*, 70:41 – 49, 2014. ISSN 0965-8564.