From complex travel behavior to optimization: the methodological challenges

Michel Bierlaire Meritxell Pacheco

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
March 22, 2017

Outline

(1) Demand and supply

(2) Disaggregate demand models
(3) Optimization
(4) Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(1) Parking management
(8) Conclusion fedirale de lausanne

Demand models

- Supply = infrastructure
- Demand = behavior, choices
- Congestion $=$ mismatch

Demand models

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: $P=f(Q)$
- Inverse demand: $Q=f^{-1}(P)$

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
- Attributes: price, travel time, reliability, frequency, etc.
- Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Behavioral models

- Given the configuration of the system...
- predict the demand

```
Johnson City Enterprise.
    Published Every Satarday,
    \$1. per year-Advance Payment.
    Saterday, April 7, 1883.
            THME TABLE
    E. T., V. \& G. R. R.
```


Demand-supply interactions

Multi-objective optimization

Minimize costs

TRANSP-OR

Maximize satisfaction

Outline

(1) Demand and supply

(2) Disaggregate demand models (3) Optimization
(4) Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management
(8) Conclusion fedirale de lausanne

Choice models

Behavioral models

- Demand $=$ sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models

Choice models

Theoretical foundations

- Random utility theory
- Choice set: \mathcal{C}_{n}
- $y_{i n}=1$ if $i \in \mathcal{C}_{n}, 0$ if not

- Logit model:

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{y_{i n} e^{V_{i n}}}{\sum_{j \in \mathcal{C}} y_{j n} e^{V_{j n}}}
$$

2000

Logit model

Utility

$$
U_{i n}=V_{i n}+\varepsilon_{i n}
$$

Choice probability

$$
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{y_{i n} e^{V_{i n}}}{\sum_{j \in \mathcal{C}} y_{j n} e^{V_{j n}}}
$$

- Decision-maker n
- Alternative $i \in \mathcal{C}_{n}$

Variables: $x_{i n}=\left(z_{i n}, s_{n}\right)$

Attributes of alternative $i: z_{i n}$

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n :
S_{n}

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.

Demand curve

Disaggregate model

$$
P_{n}\left(i \mid c_{i n}, z_{i n}, s_{n}\right)
$$

Total demand

$$
D(i)=\sum_{n} P_{n}\left(i \mid c_{i n}, z_{i n}, s_{n}\right)
$$

Difficulty
Non linear and non convex in $c_{i n}$ and $z_{\text {in }}$

Outline

(1) Demand and supply
(2) Disaggregate demand models

(3) Optimization

4. Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management
(8) Conclusion

Models

Decision variables $x \in \mathbb{R}^{n}$

Objective function
$f(x) \in \mathbb{R}$

Constraints

$g(x) \leq 0, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x_{i} \in \mathbb{N}, x_{j} \in\{0,1\}$

Models

Models in transportation

Decision variables

$$
x \in \mathbb{R}^{n}: n \text { is large }
$$

Objective function
$f(x)=\sum_{i=1}^{n} c_{i} x_{i}$: linear

Constraints
g linear, and $x_{j} \in\{0,1\}$

Tractability
 TRANSP-OR

Importance of linear specification

Outline

(1) Demand and supply
(2) Disaggregate demand models
(3) Optimization
(4) Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management
(8) Conclusion fCOLE POLYTECHNIQUE
FEDIRALE DE LAUSANNE

Stochastic traffic assignment

Features

- Nash equilibrium
- Flow problem
- Demand: path choice
- Supply: capacity fedirale de lausanne

Selected literature

-
-
-
- [Bekhor and Prashker, 2001]: cross-nested logit
- and many others...

Revenue management

Features

- Stackelberg game
- Bi-level optimization
- Demand: purchase
- Supply: price and capacity

Selected literature

- [Labbé et al., 1998]: bi-level programming
- [Andersson, 1998]: choice-based RM
- [Talluri and Van Ryzin, 2004]: choice-based RM
-
- [Gilbert et al., 2014b]: mixed logit
- [Azadeh et al., 2015]: global optimization
- and many others...

Facility location problem

Features

- Competitive market
- Opening a facility impact the costs
- Opening a facility impact the demand
- Decision variables: availability of the alternatives

$$
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{y_{i n} e^{V_{i n}}}{\sum_{j \in \mathcal{C}} y_{j n} e^{V_{j n}}}
$$

Selected literature

- [Hakimi, 1990]: competitive location (heuristics)
- [Benati, 1999]: competitive location (B \& B, Lagrangian relaxation, submodularity)
- [Serra and Colomé, 2001]: competitive location (heuristics)
- [Marianov et al., 2008]: competitive location (heuristic)
- [Haase and Müller, 2013]: school location (simulation-based)

Outline

(1) Demand and supply
(2) Disaggregate demand models
(3) Optimization
(4) Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management

8 Conclusion ECOLE POLYTECHNIQUE fedirale de Lausanne

The main idea

```
Linearization
Hopeless to linearize the logit formula (we tried...)
```

First principles
Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$
U_{i n}=V_{i n}+\varepsilon_{i n}=\sum_{k} \beta_{k} x_{i n k}+f\left(z_{i n}\right)+\varepsilon_{i n} .
$$

Simulation

- Assume a distribution for $\varepsilon_{\text {in }}$
- E.g. logit: i.i.d. extreme value
- Draw R realizations $\xi_{i n r}$,

$$
r=1, \ldots, R
$$

- The choice problem becomes deterministic

fedirale de lausanne

Scenarios

Draws

- Draw R realizations $\xi_{\text {inr }}, r=1, \ldots, R$
- We obtain R scenarios

$$
U_{i n r}=\sum_{k} \beta_{k} x_{i n k}+f\left(z_{i n}\right)+\xi_{i n r} .
$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Variables

Availability

$$
y_{\text {in }}= \begin{cases}1 & \text { if alt. } i \text { available for } n, \\ 0 & \text { otherwise }\end{cases}
$$

Choice

$$
w_{i n r}= \begin{cases}1 & \text { if } y_{i n}=1 \text { and } U_{i n r}=\max _{j \mid y_{j n}=1} U_{j n r}, \\ 0 & \text { if } y_{i n}=0 \text { or } U_{i n r}<\max _{j \mid y_{j n}=1} U_{j n r}\end{cases}
$$

Capacities

- Demand may exceed supply
- Each alternative i can be chosen by maximum c_{i} individuals.
- An exogenous priority list is available.
- The numbering of individuals is consistent with their priority.

Priority list

Application dependent

- First in, first out
- Frequent travelers
- Subscribers
- ...

In this framework
The list of customers must be sorted

Optimization

Decision variables

Supply: assortment, capacity, price, level of service, etc.

Objective function
A combination of revenues, costs, users satisfaction, etc.

Constraints (for each customer)

- Capacity: availability of alternatives
- Choice: preferred alternative is chosen

References

- Technical report: [Bierlaire and Azadeh, 2016]
- Conference proceeding: [Pacheco et al., 2016]

Outline

(1) Demand and supply
(2) Disaggregate demand models
(3) Optimization

4 Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management
(8) Conclusion

A simple example

Data

- \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

$$
U_{i n}=\beta_{i n} p_{i n}+f\left(z_{i n}\right)+\varepsilon_{i n}
$$

Decision variables

- What movies to propose? y_{i}
- What price? $p_{\text {in }}$

Back to the example: pricing

Data

- Two alternatives: my theater (m) and
 the competition (c)
- We assume an homogeneous population of N individuals

$$
\begin{aligned}
U_{c} & =0+\varepsilon_{c} \\
U_{m} & =\beta_{c} p_{m}+\varepsilon_{m}
\end{aligned}
$$

- $\beta_{c}<0$
- Logit model: ε_{m} i.i.d. EV

Demand and revenues

Optimization (with GLPK)

Data

- $N=1$
- $R=100$
- $U_{m}=-10 p_{m}+3$
- Prices: $0.10,0.20,0.30,0.40$, 0.50

Results

- Optimum price: 0.3
- Demand: 56\%
- Revenues: 0.168

Heterogeneous population

Two groups in the population

$$
U_{i n}=-\beta_{n} p_{i}+c_{n}
$$

Young fans: $2 / 3$	Others: $1 / 3$
$\beta_{1}=-10, c_{1}=3$	

Demand and revenues

Optimization

$$
\begin{aligned}
& \text { - } N=3 \\
& \text { - } R=100 \\
& \text { - } U_{m 1}=-10 p_{m}+3 \\
& \text { - } U_{m 2}=-0.9 p_{m} \\
& \text { - Prices: } 0.3,0.7,1.1,1.5,1.9
\end{aligned}
$$

Results

- Optimum price: 0.3
- Customer 1 (fan): 60\% [theory: 50 \%]
- Customer 2 (fan): 49\% [theory: 50 \%]
- Customer 3 (other) : 45\% [theory: 43 \%]
- Demand: 1.54 (51\%)
- Revenues: 0.48

Two theaters, different types of films

Two theaters, different types of films

Theater m

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, different types of films

Data

- Theaters m and k
- $N=6$
- $R=10$
- $U_{m n}=-10 p_{m}+4, n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+0, n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.6
- 4 young customers: 0
- 2 old customers: 0.5
- Demand: 0.5 (8.3\%)
- Revenues: 0.8

Theater k

- Optimum price m: 0.5
- Young customers: 0.8
- Old customers: 1.5
- Demand: 2.3 (38\%)
- Revenues: 1.15

Two theaters, same type of films

Theater m

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, same type of films

Data

- Theaters m and k
- $N=6$
- $R=10$
- $U_{m n}=-10 p_{m}+4$, $n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+4$, $n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.8
- Young customers: 0
- Old customers: 1.9
- Demand: 1.9 (31.7\%)
- Revenues: 3.42

Theater k
Closed

Two theaters with capacity, different types of films

Data

- Theaters m and k
- Capacity: 2
- $N=6$
- $R=5$
- $U_{m n}=-10 p_{m}+4, n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+0, n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.8
- Demand: 0.2 (3.3\%)
- Revenues: 0.36

Theater k

- Optimum price m: 0.5
- Demand: 2 (33.3\%)
- Revenues: 1.15

Example of two scenarios

Customer	Choice	Capacity m	Capacity k
1	0	2	2
2	0	2	2
3	k	2	1
4	0	2	1
5	0	2	1
6	k	2	0
Customer	Choice	Capacity m	Capacity k
1	0	2	2
2	k	2	1
3	0	2	1
4	k	2	0
5	0	2	0
6	0	2	0

Outline

(1) Demand and supply
(2) Disaggregate demand models
(3) Optimization

44 Choice-based optimization
(5) A generic framework

6 A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management

Parking management

Alternatives

- paid on-street parking (PSP) [20]
- paid parking in an underground car park (PUP) [20]
- free on-street parking (FSP) [unlimited]

Demand model [lbeas et al., 2014]

Scenario
 - 50 customers
 - Optimize revenues

Impact of the number of draws

Impact of the number of draws

Heterogenous demand

Residents

- Residents pay less
- Operator is forces to apply reduced fees

Varying the amount of the reduction

Outline

(1) Demand and supply
(2) Disaggregate demand models
(3) Optimization

4 Choice-based optimization
(5) A generic framework
(6) A simple example

- Example: one theater
- Example: two theaters
- Example: two theaters with capa
(7) Parking management
(8) Conclusion ECOLE POLYTECHNIQUE FEDIRALE DE LAUSANNE

Summary

Demand and supply

- Supply: prices and capacity
- Demand: choice of customers
- Interaction between the two

Discrete choice models

- Rich family of behavioral models
- Strong theoretical foundations
- Great deal of concrete applications
- Capture the heterogeneity of behavior
- Probabilistic models

Optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- Linear in the decision variables
- Large scale
- Fairly general

Ongoing research

- Decomposition methods
- Scenarios are (almost) independent from each other (except objective function)
- Individuals are also loosely coupled (except for capacity constraints)

Thank you!

Bibliography I

固 Andersson, S.-E. (1998).
Passenger choice analysis for seat capacity control: A pilot project in scandinavian airlines.
International Transactions in Operational Research, 5(6):471-486.
R Azadeh, S. S., Marcotte, P., and Savard, G. (2015).
A non-parametric approach to demand forecasting in revenue management.
Computers \& Operations Research, 63:23-31.
Bekhor, S. and Prashker, J. (2001).
Stochastic user equilibrium formulation for generalized nested logit model.
Transportation Research Record: Journal of the Transportation

Bibliography II

目 Benati, S. (1999).
The maximum capture problem with heterogeneous customers.
Computers \& operations research, 26(14):1351-1367.
R Bierlaire, M. and Azadeh, S. S. (2016).
Demand-based discrete optimization.
Technical Report 160209, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.
(19 Daganzo, C. F. and Sheffi, Y. (1977).
On stochastic models of traffic assignment.
Transportation science, 11(3):253-274.

Bibliography III

(Dial, R. B. (1971).
A probabilistic multipath traffic assignment model which obviates path enumeration.
Transportation research, 5(2):83-111.
Fisk, C. (1980).
Some developments in equilibrium traffic assignment.
Transportation Research Part B: Methodological, 14(3):243-255.
圊 Gilbert, F., Marcotte, P., and Savard, G. (2014a).
Logit network pricing.
Computers \& Operations Research, 41:291-298.
E Gilbert, F., Marcotte, P., and Savard, G. (2014b).
Mixed-logit network pricing.
Contranesporal Optimization and Applications, 57(1):105-121.

Bibliography IV

R Haase, K. and Müller, S. (2013).
Management of school locations allowing for free school choice.
Omega, 41(5):847-855.
围 Hakimi, S. L. (1990).
Locations with spatial interactions: competitive locations and games.
Discrete location theory, pages 439-478.
(1beas, A., dell'Olio, L., Bordagaray, M., and de D. Ortúzar, J. (2014).
Modelling parking choices considering user heterogeneity.
Transportation Research Part A: Policy and Practice, 70:41-49.
Ein Labbé, M., Marcotte, P., and Savard, G. (1998).
A bilevel model of taxation and its application to optimal highway prieing.
NCMRequnsertirscience, 44(12-part-1):1608-1622.

Bibliography V

R Marianov, V., Ríos, M., and Icaza, M. J. (2008).
Facility location for market capture when users rank facilities by shorter travel and waiting times.
European Journal of Operational Research, 191(1):32-44.
囦 Pacheco, M., Azadeh, S. S., and Bierlaire, M. (2016).
A new mathematical representation of demand using choice-based optimization method.
In Proceedings of the 16th Swiss Transport Research Conference, Ascona, Switzerland.

Serra, D. and Colomé, R. (2001).
Consumer choice and optimal locations models: formulations and heuristics.

Bibliography VI

园 Talluri, K. and Van Ryzin, G. (2004).
Revenue management under a general discrete choice model of consumer behavior.
Management Science, 50(1):15-33.

