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Abstract

We study some linear and nonlinear shot noise models where the jumps
are drawn from a compound Poisson process with jump sizes following
an Erlang-m distribution. We show that the associated Master equa-
tion can be written as a spatial mth order partial differential equa-
tion without integral term. This differential form is valid for state-
dependent Poisson rates and we use it to characterize, via a mean-field
approach, the collective dynamics of a large population of pure jump
processes interacting via their Poisson rates. We explicitly show that
for an appropriate class of interactions, the speed of a tight collective
traveling wave behavior can be triggered by the jump size parameter
m. As a second application we consider an exceptional class of stochas-
tic differential equations with nonlinear drift, Poisson shot noise and
an additional White Gaussian Noise term, for which explicit solutions
to the associated Master equation are derived.

Keywords. Markovian jump-diffusive process. Compound Poisson
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1 Introduction

On the real line R, we shall consider scalar time-dependent Markovian
stochastic processes Xt, (t ∈ R

+ is the time parameter) characterized
by stochastic differential equations (SDE) of the form:







dXt = −f(Xt)dt+ σ(Xt, t)dWt + qXt,t,

X0 = x0,
(1)

whereWt is a standard Wiener process with diffusion coefficient σ(x, t),
qXt,t stands for a compound Poisson process (CPP) with Poisson rate
λ(Xt, t) and jump sizes drawn from a given probability density ϕ(x)
and where the drift −f(x) reflects the deterministic behavior of the
system. If necessary (i.e., if σ is space dependent), we will inter-
pret (1) in the Itô sense. Accordingly, the Master equation govern-
ing the evolution of the conditional probability density function (pdf)
P (x, t|x0, 0) = Prob {X(t) ∈ [x, x+ dx] |x0, 0} reads [1]:

∂tP (x, t|x0, 0) = ∂x [f(x)P (x, t|x0, 0)] + 1
2∂xx

[

σ2(x, t)P (x, t|x0, 0)
]

−λ(x, t)P (x, t|x0, 0) +
∫∞
−∞ ϕ(x− z)λ(z, t)P (z, t|x0 , 0)dz.

(2)
Note that for λ(x, t) ≡ 0, the solution to Eq.(1) is a diffusion process
with continuous trajectories. In the generic case where the Poisson
rates are strictly positif, these trajectories show jumps and hence are
discontinuous.
Due to its extremely wide range of potential applications, Eq.(1) to-
gether with Eq.(2) deserved a long and still growing list of research
records. In the last decade, quite a few new contributions became avail-
able (a non exhaustive list is [2, 3, 4, 5, 6, 7, 8]). The goals were either
to write classes of explicit expressions for means, variances, Laplace
transforms or even for P (x, t|x0, 0) or to express conditions ensuring
the existence of finite time-invariant (i.e. stationary) probability mea-
sures. Our goal here is to add some new information to this general
effort by:

a) Deriving a new higher order partial differential equation – equiv-
alent to (2) – valid when the jumps of the CPP are drawn from
an Erlang-m probability law:

ϕ(x) = E(m,γ;x) := γmxm−1e−γx

Γ(m)
χx≥0, m = 1, 2, · · · , (3)

with rate parameter γ > 0 and where χx≥0 is the indicator func-
tion of the event {x ≥ 0}.
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b) Constructing a new soluble class of multi-agents dynamics in
which agents with pure jumps (i.e. σ(x, t) ≡ 0) interact via
their inhomogeneous Poisson rates λ(x, t) and where the jumps
are drawn from ϕ(x) taken as an Erlang-2 distribution.

c) Solving explicitly Eq.(2) when f(x) = β tanh(βx), σ = 1, and
the jump sizes are symmetric: ϕ(x) = ϕ(−x).

Pure jump processes with Erlangian jump

sizes

Consider the dynamics in (1) with inhomogeneous Poisson rates λ(x, t)
and Erlangian jumps distribution with parameter m as defined in
Eq.(3). In this case, the governing Master equation for Pm(x, t) =
Pm(x, t|x0, 0) reads:

∂t(Pm(x, t))− ∂x
[

f(x)Pm(x, t)
]

− 1

2
∂xx

[

σ2(x, t)Pm(x, t)
]

=

−λ(x, t)Pm(x, t) +
∫ x

−∞

γm(x− z)m−1e−γ(x−z)

Γ(m)
λ(z, t)Pm(z, t)dz.(4)

Proposition 1

For sufficiently smooth deterministic drift f(x), Poisson rates λ(x, t)
and diffusion coefficient σ2(x, t) (all at least m times differentiable
with respect to x), the integral form of the Master equation (4) can
be rewritten as the mth-order spatial differential equation1:

[∂x + γ]m
(

∂tPm−∂x [f · Pm]−
1

2
∂xx

[

σ2Pm
]

)

=
[

γm−[∂x + γ]m
](

λ·Pm
)

(5)
Moreover for λ(x, t) = λ(x) and σ2(x, t) = σ2(x) a stationary distri-
bution to (4) necessarily verifies:

− [∂x + γ]m
(

∂x [f · Pm]+
1

2
∂xx

[

σ2Pm
]

)

=
[

γm− [∂x + γ]m
](

λ ·Pm
)

.

(6)

The proof of Proposition 1 is given in Appendix A. For arbitrary drift
terms and Poisson rates, explicit solutions to Eq.(5) or Eq.(6) are
obviously difficult to derive. For convenience and later use, let us
briefly list a few situations with σ2 = 0 yielding tractable solutions.

1We suppress the arguments x and t in f(x), λ(x, t), σ(x, t) and Pm(x, t|x0, 0).
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Stationary solutions

Here we suppose that the large t limit of Pm exists and we write
Ps,m(x) = limt→∞ Pm(x, t) for normalizable solutions to (6).
• For m = 1, λ = λ(x), σ(x, t) = 0 and drift force f(x), we have by
(6):

[∂x + γ]
(

∂x[f(x)Ps,1]
)

= ∂x(λ(x)Ps,1) (7)

with the well known solution

Ps,1(x) =
N
f(x)

e
−γx+

∫ x λ(ξ)
f(ξ)

dξ
, (8)

and where N is the normalization factor. Clearly, the stationary
regime P1,s(x) will actually be reached only when N <∞.

• For m = 2 we have

[

∂x + γ
]2{

∂x(f(x)Ps,2)
}

=
[

∂2x + 2γ∂x
]

(λ(x)Ps,2) (9)

Introducing the notation Ps,2(x) = e−γxQ(x)
not.
= e−γxQ, Eq.(9) takes,

after elementary manipulations, the form:

f(x)[Q]xx + 2[f(x)]x[Q]x + [f(x)]xxQ =
[

λ(x)Q
]

x
+ λ(x)γQ. (10)

Eq.(10) cannot be solved for general drift f(x) and Poisson rate λ(x).
However, in the linear (Ornstein-Uhlenbeck) case with f(x) = αx and
for constant rate λ(x) = λ, Eq.(10) reduces to:

αx[Q(x)]xx +
(

2α− λ
)

[Q(x)]x − λγQ(x) = 0. (11)

Invoking [9]2, the normalized stationary density reads:

Ps,2(x) = γe
λ
α
−γx

[αγx

λ

]

λ
α−1

2
I λ
α
−1

(

2

√

γλ

α
x

)

(12)

where Iν(x) stands for the modified Bessel function of the first kind.
Let us emphasize that Eq.(12) was also obtained in [5] by using Laplace
transformations.

• For general m, arbitrary drift f(x) and constant Poisson rate λ, the
resulting dynamics is known as the nonlinear shot noise process and has
been discussed e.g. in [4]. In most cases, only the Laplace transform of

2See the entry 9.1.53 with q = 1/2, p = (λ/α− 1), p2 − ν2q2 = 0 and imaginary λ and
simplify once by z.
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Ps,m(x) (resp. Pm(x, t)) can be given explicitly and, provided Ps,m(x)

exists, the jth-order cumulant κ(j)s,m of Ps,m can be calculated using the
relations:











κ
(j)
s,m =

∫∞
0 xjλΓ(m,γ;x)

f(x) dx, j = 1, 2, · · ·

Γ(m,γ;x) :=
∫∞
x E(m,γ; ξ)dξ,

(13)

where Γ(m,γ;x) is the incomplete gamma function [4].

Time dependent solutions

Time dependent solutions to (5) are available only for a restricted
choice of drift terms f and Poisson rates λ. Explicit transient dynamics
can be derived for constant drift f(x) = k, linear drift f(x) = αx
and – rather remarkably – a non-linear interpolation between the two
situations (discussed in section 3). The case of constant drift has been
discussed in detail in [10]. The case for linear drift f(x) = αx and
constant λ is presented in [5]. Let us recall that in this latter case, the
Laplace transform P̂m(u, t) :=

∫

R+ e
−uxPm(x, t|x0, 0)dx read as:

P̂m(u, t) = exp

{

x0ue
−αt − λ

∫ t

0

(

1−
[

γ

γ + θe−α(t−x)

]m)

dx

}

.

(14)
which can be inverted for m = 1 yielding [5, 8]:

P1(x, t) = χze
−λt
{

δ(z) + λγ
α

(

eαt − 1
)

e−γz 1F1

(

1− λ
α , 2γ

[

1− eαtz
])

}

,

(15)
with z = x − x0e

−αt, and where χz is the indicator function. Note
that when (1 − λ/α) = n is integer valued, P1(x, t) is an elementary
function. Indeed, in this case 1F1(−n; b; z) reduces to the nth-order

generalized Laguerre polynomial L(1)
n (z).

2 Multi-agents systems and flocking

As stated in the introduction, jump-diffusive noise sources do have
a wide range of applications. The number of potential applications
is naturally multiplied if we consider λ and/or σ as space dependent.
Space correlations in the noise sources typically occur in the mean-field
description of interacting particle systems and multi-agents modeling.
We have in mind applications, where simple mutual interactions be-
tween agents (resp. particles) give rise to mean-field dynamics for
the barycenter of the spatially distributed agents. Recent contribu-
tions relevant for our context here are the results derived by M. Balázs
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et al. [7] and the applications in [11] and [12]. These papers show
that, under adequate conditions, the stationary barycentric dynamics
of multi-agents systems develop traveling wave solutions. Generalizing
on these results, we consider the case f(x) = 0, and σ = 0 for m = 1
and m = 2. According to Eq.(5), one immediately has:

[∂x + γ]
(

∂tP1

)

= −∂x
(

λ · P1

)

, (m = 1) (16)

[∂x + γ]2
(

∂tP2

)

= −∂x
[

∂x + 2γ
](

λ · P2

)

, (m = 2) (17)

In the sequel, we shall assume that the shot noise rate λ(x, t) is a
strictly positive and monotone decreasing function in x, thereby poten-
tially giving rise to traveling wave-type stationary distributions. For
such a stationary propagating regime we will have limt→∞ Em {X(t)} =
Cmt, where Cm is a constant velocity and where Em {X(t)} :=

∫

R
xPmdx.

We therefore introduce the change of variable ξ = x−Cmt and suppose
the for large t, the jump rate is of the form:

λ(x, t) = λ(x− Em {X(t)}) = λ(ξ) ≥ 0. (18)

Under these assumptions, the equations in (16) can be rewritten as
ODE’s in ξ ∈ R.

• For m = 1, we have:

− C1(γ + ∂ξ)∂ξP1(ξ) = −∂ξ {[λ(ξ)P1(ξ)]} , (m = 1) (19)

admitting the traveling wave solution P1(ξ) = N e
−γξ+

∫ ξ λ(z)dz
C1 with

N being the normalization constant which must be self-consistently
determined under the constraint

∫

R
ξ · P1(ξ)dξ = 0.

• For m = 2, we have after one immediate integration with respect to
ξ:

−C2(γ + ∂ξ)
2P2(ξ) = −{2γ + ∂ξ} [λ(ξ)P2(ξ)] , (m = 2) (20)

which, if we introduce the auxiliary function Ψ(ξ) defined through:

P2(ξ) = exp

{

−γξ +
∫ ξ λ(z)

2C2
dz

}

Ψ(ξ), (21)

reduces to

∂ξξΨ(ξ) +

[

−∂ξλ(ξ)
2C2

− λ2(ξ)

4C2
2

− γλ(ξ)

C2

]

Ψ(ξ) = 0. (22)

We observe that for arbitrary λ(ξ), Eq.(22) exhibits the form of a
stationary Schrödinger equation which, in general, cannot be solved in
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compact form. Looking for compact solutions to Eq.(22), the term in
brackets can be related to analytically tractable potentials in quantum
mechanics. To carry on the discussion for m = 1 and m = 2, we focus
on the special case which results, when the jump rates are of the form
λ(ξ) = e−βξ, with β > 0.

Jump rate governed by λ(ξ) = e−βξ.

• For m = 1, this case has been worked out in the mean-field context
of an interacting particle systems by Balazs et al. in [7], (see the
Corollary 3.2), we find that P1(ξ) is a Gumbel-type distribution:

P1(ξ) = N (β, γ,C1)e
−γξ− 1

βC1
e−βξ

, (23)

with N (β, γ,C1) being the normalization factor. The normalization
N and the resulting stationary velocity C1 are explicitly found to be:

N (β, γ,C1) =
β

(βC1)
γ
βΓ(γ/β)

(24)

C1 =
1

β
e−ψ(γ/β),with ψ(x) :=

d

dx
ln [Γ(x)] (25)

ensuring
∫

R
P1(ξ)dξ = 1 and

∫

R
ξP1(ξ)dξ = 0.

• For m = 2, Eq.(22) now reads:

∂ξξΨ(ξ) +

[

(β − 2γ)

2C2
e−βξ − 1

4C2
2

e−2βξ

]

Ψ(ξ) = 0. (26)

Observe that Eq.(26) corresponds to the stationary Schrödinger Eq.
describing a quantum particle submitted to a Morse type potential
for which explicit solutions are known. Using these results in the
expression for P2(ξ) and imposing vanishing boundary conditions for
large |ξ| (see Appendix B for details), we find:

P2(ξ) = N (β, γ,C2)e
[ β2−γ]ξ−

e−βξ

2βC2Wβ−2γ
2β

,0

(

e−βξ

βC2

)

(27)

whereWλ,µ(z) is the WhittakerW function (see [13] 9.22) and N (β, γ,C2)
is the normalization factor. The normalization N and the resulting
stationary velocity C2 are explicitly found to be:

N (β, γ,C2) =
β

(βC2)
γ
β
− 1

2

Γ(2γ/β)

Γ(γ/β)2
(28)

C2 =
1

β
eψ(2γ/β)−2ψ(γ/β) , (29)
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ensuring
∫

R
P2(ξ)dξ = 1 and

∫

R
ξP2(ξ)dξ = 0. It is worthwhile not-

ing that C2/C1 = exp(eψ(2γ/β)−ψ(γ/β)) > 2 showing explicitly how
the jump size parameter m influences the speed of the traveling wave
solution Pm(ξ).
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Figure 1: Exact normalized traveling probability waves P1(ξ) and P2(ξ) as
given by Eqs.(23) respectively (27) for different values of β.

3 Exactly soluble nonlinear mixed jump-

diffusive processes

The mixed jump-diffusive processes defined by (1) do have the Markov
property and are, under the assumption of sufficient symmetries, lumpable
to simpler processes [14]. In the realm of lumbaple Markov diffusions,
an outstanding role is played by Brownian motions with drift of the
form f(x) = β tanh(βx) as they are, together with the class of Brown-
ian motions with constant drift, the only ones having Brownian bridges
as conditional laws [15]. This non linear and lumpable drift offers in-
deed the exceptional possibility to escape in a controlled and still ana-
lytical way from the Gaussian law (see e.g., [16, 17, 18]). We therefore
consider the 1 dimensional dynamics given by:







dXt = β tanh[βXt]dt+ dWt + qt,

X0 = x0,
(30)

where in this section qt is a Poisson process with constant rate λ and
jump sizes drawn from a symmetric probability law φ(x) (i.e., respect-
ing φ(x) = φ(−x) and

∫∞
−∞ φ(x)dx = 1). We therefore can have pos-

itive and negative jumps. The Master equation related to Eq.(30)
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reads:
∂
∂tQ(x, t|x0) = −β ∂

∂x {tanh(βx)Q(x, t|x0)}+ 1
2∂xxQ(x, t|x0)

−λQ(x, t|x0) + λ
∫ x
−∞Q(x− y, t|x0)φ(y)dy. (31)

By introducing the transformation Q(x, t|x0) = e−
1
2
β2t cosh(βx)R(x, t|x0),

it is immediate to verify that Eq.(31) takes the form:

∂
∂tR(x, t|x0) = 1

2∂xxR(x, t|x0)− λR(x, t|x0)

+ λ
cosh(βx)

∫ x
−∞ cosh [β(x− y)]R(x− y, t|x0)φ(y)dy.

(32)

The identity cosh(a+ b) = cosh(a) cosh(b)+sinh(a) sinh(b), enables to
rewrite Eq.(32) as:

∂
∂tR(x, t|x0) = 1

2∂xxR(x, t|x0) + λ
∫ x
−∞R(x− y, t|x0)φ(y) cosh(βy)dy

−λR(x, t|x0)− 1
2λ tanh(βx)

∫ x
−∞ sinh(βy)R(x− y, t|x0)φ(y)dy.

(33)
When the initial condition is taken x0 = 0, symmetry of φ implies
Q(x, t|0) = Q(−x, t|0) and therefore also R(x, t|0) = R(−x, t|0). Ac-
cordingly, when x0 = 0, the second integral in Eq.(33) vanishes and
hence Eq.(33) describes the evolution of the TPD R(x, t|0) which char-
acterizes a drift-free jump diffusion process X̃(t), solution of

d

dt
X̃(t) = dWt + qβ,t (34)

where now the Poisson noise qβ,t is characterized by jumps drawn from
the probability law φβ(x) := φ(x) cosh(βx). Let us write Qβ(x, t|0) for
the TPD associated with the jump part in Eq.(34). Then we can write:

R(x, t|0) = N (x, t|0) ∗Qβ(x, t|0) (35)

where ∗ stands for the convolution and where N (x, t) := (
√
2πt)−1e−

x2

2t .
Finally, for x0 = 0, the TPD Q(x, t|0) solving Eq.(31) reads:







Q(x, t|0) = e−
1
2
β2t cosh(βx)N (x, t|0) ∗Qβ(x, t|0)

= 1
2

[

N (+β)(x, t|0) +N (−β)(x, t|0)
]

∗Qβ(x, t|0),
(36)

with N (±β)(x, t) := (
√
2πt)−1e−

(x−βt)2

2t .

Ilustration. The superposition of probability measures given by Eq.(36)
can be used to derive explicitly new probability measures. For exam-
ple, let us consider the case where in Eq.(31) we take:
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φ(x) =
γ

2
e−γ|x|. (37)

and for this choice, we consider the generalized Ornstein-Uhlenbeck
dynamics Yt characterized by:

dYt = −αYtdt+ dXt, (38)

where in Eq.(38) the noise source dXt is given by Eq.(30). The super-
position given in Eq.(36) enables to write the TPD P (y, t|y0) charac-
terizing the process Yt as:

P (y, t|y0) =
1

2

[

P (+β)(y, t|y0) + P (−β)(y, t|y0)
]

, (39)

where P (±β)(y, t|y0) are the TPD of the respective processes:






dY
(β)
t = −αYtdt+ dXβ,t

dXβ,t = ±βdt+ dWt + qt

(40)

where qt is the pure jump process with Poisson rate λ and jump size
distribution 1

2γe
−γ|x|. Using the results derived in [6, 2], we have 3:











limt→∞ P (±β)(y, t|y0) := P
(±β)
s (y) =

2νγ1−ν |y± β
α
|−ν

√
π Γ[ 12−ν]

Kν(γ|y ± β
α |),

ν := 1
2

[

1− λ
α

]

,
(41)

where Kν is the modified Bessel function of the second kind. Con-
sequently, the invariant measure Ps(y) for the process Eq.(40) reads
as:

lim
t→∞

P (y, t|y0) = Ps(y) =
1

2

[

P (−β)
s (y) + P (+β)

s (y)
]

. (42)

Conclusion

Jump diffusions offer a rich class of noise sources and are widely used as
modeling tools in various fields. As such, special interest lies in the ex-
plicit understanding of the effect of different jump distributions on the
model dynamics. It is remarkable that in cases of space inhomogeneous
shot noise with jump sizes following a gamma distribution with param-
eter (m,γ), and space inhomogeneous jump frequency, λ(ξ) = e−βξ,
a differential form of the Master-equation allows to quantitatively un-
veil the influence of the shape parameter m on the speed of stationary
traveling wave solutions.

3See for instance Eq. (13) in [6].
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Appendix A

To the readers convenience, we give a detailed proof of proposition
1. We proceed by induction over m ∈ N (the Erlang parameter).
We indeed show that (5) follows from (4) by applying the operator
Om := e−γx∂mx e

γx(·) to (4), where ∂mx is the m-fold derivative with
respect to x.
We start with the basic case by direct calculation and apply Om to (4)
for m = 1 and use, for notational ease, f(·) = f , λ(·, ·) = λ, σ(·, ·) = σ
and likewise ∂x(·) or (·)x for derivatives wrt x. We find:

e−γx∂xe
γx

(

∂tP1 − (fP1)x − (
σ2

2
P1)x,x

)

= e−γx∂xe
γx

(

− λP1 + γ

∫ x

0
e−γ(x−z)λP1(z)dz

)

[γ + ∂x]
(

∂tP1 − (fP1)x − (
σ2

2
P1)x,x

)

= e−γx
(

−
(

γeγxλP1 + eγx(λP1)x
)

+ γeγxλP1

)

[γ + ∂x]
(

∂tP1 − (fP1)x − (
σ2

2
P1)x,x

)

= −(λP1)x

which matches the proposition for m = 1.
For the induction step, we note Im for the integral part of (4), i.e.:

Im =

∫ x

0

γm(x− z)m−1e−γ(x−z)

Γ(m)
λ(z, t)Pm(z, t|x0, 0)dz

and remark that ∂γIm = m
γ Im − m

γ Im+1. Hence,

Im+1 = Im − γ

m
∂γIm (43)

Let us apply Om+1 = e−γx∂m+1
x eγx(·) to (4) for the case m+1. Using

the Leibnitz formula for higher order derivatives of productes4, the left
hand side is immediately seen to be

[γ + ∂x]
m+1 (∂tPm+1 − (fPm+1)x − (

σ2

2
P1)x,x

)

.

Apply the operator Om+1 to the right hand side of (4) and use (43)
to establish:

e−γx∂m+1
x eγx

(

− λPm+1(x, t) + Im+1

)

=

e−γx∂xe
γx
{

e−γx∂mx e
γx
}(

− λPm+1(x, t) + Im − γ

m
∂γIm

)

4The Leibnitz formula ∂mx (f(x)g(x)) =
∑m

k=0

(

m
k

)

f (k)g(m−k), with f(x) = eγx takes

the form ∂mx (eγxg(x)) = eγx
∑m

k=0

(

m
k

)

γkg(m−k) and with the binomial formula we get
∂mx (eγxg(x)) = eγx(∂x + γ)mg(x)
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Within the brackets we recognize Om which acts upon the left hand
side of (4) for m and also on the extra term (− γ

mIm). Using the
induction hypothesis, the right hand side reads:

e−γx∂xe
γx
(

[

γm − [∂x + γ]m
](

λ · Pm+1

)

− e−γx∂mx e
γx γ

m
∂γIm

)

A direct computation of the last term in the above parenthesis gives:

e−γx∂mx e
γx γ

m
∂γIm = γmλPm+1 −

∫ x

0
γm+1e−γ(x−z)λPm+1dz.

We therefore are left to show hat

e−γx∂xe
γx

(

[

γm − [∂x + γ]m
](

λ · Pm+1
)

− γmλPm+1 +

∫ x

0
γm+1e−γ(x−z)λPm+1dz.

)

!
=

[

γm+1 − [∂x + γ]m+1 ](λ · Pm+1
)

(44)

For the first term we get:

e−γx∂xe
γx

[

γm − [∂x + γ]m
](

λ · Pm+1

)

= γm [∂x + γ]
(

λ · Pm+1

)

− [∂x + γ]m+1
(

λ · Pm+1

)

=
[

γm+1 − [∂x + γ]m+1 ](λ · Pm+1

)

+ ∂x
(

γmλPm+1

)

For the middle term we find:

e−γx∂xe
γx
(

− γmλPm+1

)

= −γm+1λPm+1 − ∂x
(

γmλPm+1

)

(45)

finally the last term is:

e−γx∂xe
γx
(

∫ x

0
γm+1e−γ(x−z)λPm+1dz

)

= γm+1λPm+1 (46)

Hence, adding (45)-(46) together, we have established (44) and there-
fore also proposition 1.

Appendix B

Our starting point is Eq.(26), (issued from Eq.(22) when λ(ξ) = e−βξ).
First we introduce the change of variable























Z = e−βξ ⇒ dZ = −βZdξ,

∂ξ(·) 7→ −βZ∂Z(·),

∂ξξ(·) 7→ β2Z2∂ZZ(·) + β2∂Z(·).

(47)

12



In terms of the Z-variable, Eq.(26) takes the form:











β2Z2∂ZZΨ(Z) + β2∂ZΨ(Z) +
[

qZ − pZ2
]

Ψ(Z) = 0,

q := (β−2γ)
2C2

and p := 1
4C2

2
.

(48)

Or equivalently:

∂ZZΨ(Z) +
1

Z
∂ZΨ(Z) +

[

q

β2Z
− p

β2

]

Ψ(Z) = 0. (49)

Let us now write:

Ψ(Z) = Z− 1
2ϕ(Z). (50)

Accordingly ϕ(Z) obeys to the equation:

∂ZZϕ(Z) +

[

1

4Z2
+

q

β2Z
− p

β2

]

ϕ(Z) = 0. (51)

Now, let us introduce the rescaling:







U = ωZ,

∂Z(·) 7→ ω∂U (·) and ∂ZZ(·) 7→ ω2∂UU (·)
(52)

Using Eq.(52) in Eq.(51), we obtain:

∂UUϕ(U) +

[

1

4U2
+

q

ωβ2U
− p

ω2β2

]

ϕ(U) = 0 (53)

Now, to match the standard Whittaker equation, (see entry 13.1.13 of
[9]), we have to select:

p

ω2β2
=

1

4
⇒ ω =

1

βC2
. (54)

So the general solution of Eq.(48) reads:

Ψ(ξ) =
√

βC2 e
βξ
2

{

AMβ−2γ
2β

,0

(

e−βξ

βC2

)

+BWβ−2γ
2β

,0

(

e−βξ

βC2

)}

,

(55)
where A and B are yet undetermined constants. By using Eq.(21), the
probability density P2(ξ) reads:
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P2(ξ) = N e
−γξ− e−βξ

2βC2 Ψ(ξ) =

N e[
β
2
−γ]ξ− e−βξ

2βC2

{

AMβ−2γ
2β

,0

(

e−βξ

βC2

)

+BWβ−2γ
2β

,0

(

e−βξ

βC2

)

}

.

(56)
where N is the normalization factor. Let us now calculate the average
of the positive definite function G(u) defined as:

G(u) :=
∫ +∞

−∞
e−uξP2(ξ)dξ > 0. (57)

and the normalization imposes that G(0) = 1. Now, we introduce the
new variable Z defined as:

Z :=
e−βξ

β
, (58)

In terms of this new variable, Eq.(56) now reads:

G(u) = N
∫∞
0 e

Z

2C2 Z
γ+u
β

− 3
2

{

AM 1
2
− γ

β
,0

(

Z
C2

)

+BW 1
2
− γ

β
,0

(

Z
C2

)}

dZ.
(59)

Now we use, the entries 7.622.8 and 7.622.11 from I. S. Gradshteyn
to calculate I1 and Ie with the choice of parameters b = 1

C2
, µ = 0,

ν = γ+u
β − 1

2 and κ = 1
2 −

γ
β leading to :

G(u) = A

[

Γ
(

1− 2γ+u
β

)

Γ
(

γ+u
β

)

Γ
(

1− γ
β

)

Γ
(

1− 2γ
β

)

Γ
(

γ
β

)

Γ
(

1− γ+u
β

)

]

(C2)
−u

β+

B

[

Γ
(

2γ
β

)

Γ
(

γ+u
β

)2

Γ
(

γ
β

)2
Γ
(

2γ+u
β

)

]

(C2)
u
β .

(60)

As G(u) > 0, the arguments of the Gamma functions have to be strictly
positive for all values of γ and β. Hence, we are forced to impose A = 0
and hence B = 1. Let us now calculate the velocity C2, we end with

C2 = 0 = − d
duG(u) |u=0= − d

du

[

e
u
β
ln(C2)ϕ(u)

]

|u=0 ⇒

C2 =
1
β e

1
β

[

Ψ
(

2γ
β

)

−2Ψ
(

γ
β

)]

,

(61)

where Ψ(x) := d
dx ln[Γ(x)] is the digamma function
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