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Abstract: In this paper, we consider the problem of overvoltage arising in PV residential
microgrids due to excessive power injection into the grid by the PV generators. We propose
a decentralized optimal integral controller to curtail excess active power in order to avoid
overvoltage. Considering the voltage and active power constraints, we show that the proposed
controller leads to maximum power injection into the grid. We discuss the objective of fair power
curtailment and show that it is in contrast with our objective of maximum power transfer.
Finally, we present the performance of the controller through simulation studies.
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1. INTRODUCTION

Since the past two decades, significant progress has been
made in small-scale power generation and energy storage
resulting in a reinvigorated interest in the idea of dis-
tributed generation. Apart from many advantages such
as improved supply security, reduced power transmission
losses, and increased standby capacity, the most important
advantage lies in its compatibility with renewable sources
of energy (Ackermann et al., 2001). With an increasing
emphasis on sustainable energy, the recent series of legis-
lations strongly favor the concept of distributed renewable
based generation (Taylor et al., 2015).

Solar photovoltaic (PV) based generation is a commonly
observed form of distributed generation in low voltage
(LV) networks. However, a high PV penetration presents
significant technical challenges in distribution networks. A
typical household PV system generates more power than
required by the load on a clear day and injects most of the
generated power into grid. In some LV grids, the installed
PV capacity can exceed the peak load by a factor of ten
(Appen et al., 2013). The resulting reverse power flow
causes a voltage rise in the distribution line. In case of
intensive grid connection, this voltage rise may exceed the
upper tolerance limit causing an overvoltage. In such a
situation, the generating units need to be disconnected to
avoid damage to the connected loads. An overvoltage is
undesirable and needs to be addressed to ensure power
quality.

To address these overvoltage issues, a few engineering
approaches are used. A comprehensive overview of these
approaches can be found in Tonkoski et al. (2010). One
such approach is the curtailment of active power output
of PV inverters in case of an overvoltage. We consider
LV feeders where resistance/reactance (R/X) ratios are

? This research was supported by ABB Corporate Research, Switzer-
land and ETH Zürich.

greater than one and can go up to twenty (Eur, 2015).
Because of this resistive characteristic, the voltages are
more sensitive to active power than reactive power (Yang
et al., 2015). This makes the control of PV active power
output a more suitable and effective method to mitigate
the voltage-rise problem in LV networks.

The existing methods based on active power curtailment
(APC) rely on either centralized or decentralized schemes.
Centralized schemes (Pantziris, 2014) aim for control of the
complete system from a centralized entity, for example, a
distribution system control center. These schemes require
global information which is often not possible in residen-
tial PV networks. Decentralized static droop control laws,
based upon local measurements linearly trade off active
power with respect to voltage, do not require communica-
tion between various PV generators (Tonkoski et al., 2011;
Yang et al., 2015; Wang et al., 2012). The generators react
to specific grid configuration according to predefined gains
and local measurements at the inverter terminals. These
are on-off control laws: they supply maximum power if the
voltages are less than the critical voltage, and curtail power
in case of an overvoltage. The power injection switches
back to maximum as soon as the voltage goes below a cer-
tain critical voltage leading to chattering (voltage flicker).

The objective of the present work is to define a dynamic
control solution that: 1) prevents overvoltage while avoid-
ing chattering, 2) maximizes the power transfer, 3) has a
decentralized control structure, and 4) guarantees stabil-
ity of the closed loop system. The paper is organized as
follows: Section 2 defines the network model and the over-
voltage problem. The core result is presented in Section
3 where the decentralized optimal projected controller is
presented. Section 4 presents a comparison of fair curtail-
ment and maximum power injection objectives. Section 5
presents a case study and finally, Section 6 summarizes the
conluding remarks and future work.



Preliminaries and notation: Let j =
√
−1 be the imaginary

unit. Given x ∈ Rn, let [x] ∈ Rn×n be the associated
diagonal matrix and x̄ be its conjugate. 1n and 0n are n-
dimensional vectors of all ones and zeros. A ∈ Rn×n is a
Metzler or M-matrix if Aij ≤ 0 ∀ i 6= j and all eigenvalues
of A have positive real parts. In this case A−1 ≥ 0, with
strict inequality if A is irreducible (Berman and Plemmons,
1994). Given u, v, w ∈ Rn with vi ≤ wi, i = 1, · · · , n, we
define the operator [u]wv as the component-wise projection
of u in the set {x ∈ Rn : vi ≤ xi ≤ wi, i = 1, · · · , n}, i.e.,

[u]wv =


ui if vi ≤ ui ≤ wi
vi if ui < vi
wi if ui > wi

. (1)

2. NETWORK MODELING AND PROBLEM SETUP

2.1 Network Modeling

Standard assumptions enabling positive sequence analysis
are made. The residential grid consists of several houses
connected to the utility grid via point of common coupling
(PCC). We call these individual houses as nodes.
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Fig. 1. A typical residential feeder. and represent
generating and load nodes respectively.

Fig. 1 shows a typical radial feeder in which a few houses
are installed with PV generators while the others are pure
loads. The sensing is available at the generating nodes
and only these nodes are controlled. The grid is modeled
as a linear circuit represented by a connected weighted
graph O(V, E ,W) where V = {0, · · · ,m + n} is the set
of vertices (nodes) and E ⊆ V × V is the set of edges
(branches). The node 0 denotes the PCC. The remaining
nodes are classified as : G = {1, · · · , n}, n ≥ 1 are the nodes
with local generation to feed their loads, and L = {n +
1, · · · ,m+ n},m ≥ 1 are the nodes which are pure loads,
such that V = G ∪ L ∪ {0}. Additionally, we define set
F = G ∪ L.

Let zij = rij + jxij ∈ C be the impedance between
node i and j, where rij ∈ R>0 is the resistance and
xij ∈ R>0 is the inductive reactance. The edge weights of
the associated graph are the associated admittances yij =
gij + jbij ∈ C, where gij = rij/(r

2
ij + x2

ij) ∈ R>0 is the

associated conductance and bij = −xij/(r2
ij + x2

ij) ∈ R<0

the susceptance. Owing to high resistances in LV networks,
we neglect the shunt reactances in our model. The network
is represented by symmetric admittance matrix Y ∈
Cm+n+1×m+n+1, where the off-diagonal elements are given

by Yij = Yij = −yij for each branch {i, j} ∈ E (0
if {i, j} /∈ E), and the diagonal elements are given by

Yii =
∑m+n
i=0,i6=j yij . We represent Y =G + jB, where G

and B respectively are the conductance and susceptance
matrices. It should be noted that Gii =

∑m+n
i=0,i6=j gij > 0

and Gij = −gij < 0.

To each node i ∈ V, we associate a phasor voltage Ei =
Vie

jθi and complex power Si = Pi+ jQi. The active power
Pi further depends upon the type of node:

Pi =

{
PGi + PLi if i ∈ G
PLi if i ∈ L ,

where PGi ≥ 0 and PLi ≤ 0 respectively are the active
powers generated and consumed at a node. Since the
conductors are made of the same material, the R/X
exhibits a small variation and is assumed to be constant
(Kersting, 2001). We define R/X to be constant, 1/γ,
where 0 < γ � 1. This implies that gij/bij = −1/γ and
hence, B = −γG. The power flow equations are obtained
from Kirchhoffs and Ohms laws:

S = [E]GĒ − j[E]BĒ = [E]GĒ + jγ[E]GĒ. (2)

These power flow equations are highly non-linear. Since
the distribution networks are predominantly resistive in
nature, the voltage profile is nearly flat. It is shown in
(Bolognani and Dörfler, 2015) that by linearizing the
power flow equations around a flat voltage profile (corre-
sponding to a no-load condition of the grid), one obtains
the relation: [

G γG
γG −G

] [
V
θ

]
=

[
P
Q

]
, (3)

where V and θ are vectors of voltage magnitudes and phase
angles. G ∈ Rm+n+1×m+n+1 is a Laplacian matrix and is
positive semidefinite. The node 0 is modeled as a slack bus
and its voltage and phase are assumed to be known and
constant, E0 = V0e

j0. Since V0 and θ0 are already known,
node 0 can be eliminated from (3). On partitioning (3)
into sets {0} and F , it can be rewritten as:

G00 G0F γG00 γG0F
GF0 GFF γGF0 γGFF
γG00 γG0F −G00 −G0F
γGF0 γGFF −GF0 −GFF



V0

VF
θ0

θF

 =


P0

PF
Q0

QF

 .
G1m+n+1 = 0m+n+1 and therefore, GF0 = −GFF1m+n.
On substituting θ0 = 0, PF and QF are obtained as:

−GFF1m+nV0 +GFFVF + γGFFθF = PF (4a)

−γGFF1m+nV0 + γGFFVF −GFFθF = QF . (4b)

The above equations represent the power flow without the
PCC.

Lemma 1. The matrix GFF is an irreducible, positive
definite, and M-matrix. Its inverse G−1

FF is well defined,
positive, and positive definite.

Lemma 2. Let A be the inverse of an irreducible M-matrix
such that

A =

[
A1 A2

A3 A4

]
.

The following hold true:
(1) The Schur complements of A, A/A4 = A1 −A2A

−1
4 A3

and A/A1 = A4 −A3A
−1
1 A2 are positive.

(2) The matrices A3A
−1
1 and A2A

−1
4 are non-negative.
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Fig. 2. A representative diagram of network reduction performed on feeder in Fig. 1 with unit conductances.

Proof. The proof of above Lemmas are omitted in this
paper due to space constraints (Nahata, 2016). �

The invertibility of GFF enables us to substitute θF =
G−1
FF (−γGFF1m+nV0 + γGFFVF − QF ) in (4a). The ex-

plicit relationship between VF and PF can be written as:

GFFVF = βPF +D, (5)

where β =
1

1 + γ2
, D = γβQF + GFF1m+nV0. QF ∈

Rm+n×1 represents net reactive power at various nodes
and is assumed to be constant. The PV inverters are
assumed to operate close to unity power factor and pre-
dominantly generate active power.

2.2 Network Reduction

Each generating unit can sense nodal voltage and active
power generated. We use network reduction to find an
explicit relationship between the sensed parameters and
to eliminate the rest. Since F = G ∪ L, on partitioning
GFF into G and L, (5) can be written as:[

GGG GGL
GLG GLL

] [
VG
VL

]
= β

[
PGG + PLG

PLL

]
+

[
DG
DL

]
.

On the above matrix, we perform Kron reduction (Dörfler
and Bullo, 2013) and eliminate VL. On substituting VL =
−G−1
LLGLGVG+βG−1

LLP
L
L +G−1

LLDL in the upper block, we
obtain:

VG = βG̃−1
GGP

G
G +D′G , (6)

where D′G = βPLG +DG−βGGLG−1
LLP

L
L −GGLG

−1
LLDL and

G̃GG = GGG−GGLG−1
LLGLG . G̃GG = GFF/GLL is the Schur

Complement of GFF with respect to GLL. The matrix
G̃GG is irreducible, positive definite, and M-matrix as
these properties are closed under Schur complementation
(Dörfler and Bullo, 2013). Its inverse G̃−1

GG is well defined,
positive and positive definite. A representative diagram of
network reduction is shown in Fig. 2.

2.3 The Overvoltage Problem

Definition 3. A node is said to be experiencing overvoltage
if its voltage rises beyond a critical voltage V ∗i defined by
grid standards.

Remark 4. In (6), the relation between voltage and power
is defined by a positive matrix. An increase in active power
of a generating node results in rise in voltages at all the
nodes in the network.

Lemma 5. (Overvoltage in radial feeders). For all net
generating nodes in a purely radial feeder, the farthest
node from the PCC suffers from maximum overvoltage.

Proof. If all nodes are equipped with generation, m =
0. The nodes are numbered from {1 · · ·n} such that 1

represents the node closest to PCC and n the farthest.
For a radial feeder, the matrix GFF is a diagonally
dominant tridiagonal M-matrix with zero row sums except
for the first row. The inverse of such a matrix is not
only positive but its elements decay along each row and
column (Nabben, 1999, Corollary 3.4). Let g′ij represent

the elements of G−1
FF . The elements of G−1

FF satisfy:

g′ii < g′jj if i < j, g′ij < g′ii if j > i, g′ij = g′ii if i > j.
(7)

For low voltage networks 0 < γ � 1, and γβQF can be
neglected. (5) can be written as:

VF = G−1
FFPF + 1nV0. (8)

On combining (7) and (8), the voltages satisfy:

Vi = Vi−1 +

j=n∑
j=i

ϑijPj ,

where ϑij = g′ij − g′i−1,j =

{
= 0 if i > j, i > 1

> 0 if i ≤ j, i > 1
. Hence,

if all the nodes are net generating, Pi > 0. Thus, Vn >
Vn−1 > · · · > V1. �

Definition 6. The critical power P ∗G ∈ Rn is the power
corresponding to the critical voltage vector V ∗. Using (6),
the relationship between P ∗G and the critical voltage V ∗

can be expressed as:

P ∗G = (1/β)(G̃GGV
∗ −D′G). (9)

3. PROJECTED INTEGRAL CONTROLLER

The main aim of an APC based decentralized overvoltage
control for PV generators is to inject power until the
critical voltage is attained. Any further injection would
increase the voltage beyond the critical value. However,
tracking of critical voltage may not be feasible during
periods of low generation. A projection operation takes
into account the power constraints. We define a discrete-
time projected integral controller as:

PGG (t+ 1) = [PGG (t) + ε(V ∗ − VG(t))]+P , (10)

where ε is the droop coefficient, V ∗ ∈ Rn×1 is the critical
voltage, and the set P ⊂ Rn is time-varying, convex, and
defines the maximum power generation capacity of the PV
generator.

Remark 7. (The set P and projection operation) The
maximum power output of a PV generator is defined by
P̄i(t), and is varying in time due to changing irradiation.
At a given time instant t, the inverter can inject any power
between 0 and P̄i(t). Thus, for a PV inverter, the power
constraint set is P = {PGG : 0 ≤ (PGG )i ≤ P̄i, i ∈ G}.
Since the set P is defined by linear inequalities, the
projection operation, [PGG (t) + ε(V ∗ − VG(t))]+P , is the



component-wise projection (as defined in (1)) of PGG (t) +
ε(V ∗ − VG(t)) on set P and is defined as:

[PGG (t) + ε(V ∗ − VG(t))]+P = [PGG (t) + ε(V ∗ − VG(t))]P̄G0 .

Projected Integral

Controller

PG
i (t)PG
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Vi(t)Vi(t)

P̄i(t)P̄i(t)

PG
i (t+ 1)PG
i (t+ 1)

Feedback at instant t+1

Fig. 3. Projected Integral Controller at ith node.

Remark 8. At time t, each voltage controller needs only
local measurements of voltage Vi(t) and injected power
PGi (t) along with an estimate of its maximum power
output P̄i(t) required to perform the projection operation.

On combining (6), (9), and (10), we obtain the projected
closed-loop dynamics (Hauswirth et al., 2016) as:

PGG (t+ 1) = [PGG (t) + εβG̃′′GG(P ∗G − PG(t))]+P , (11)

where G̃′′GG = G̃−1
GG and P ∗G is defined in (9). The

continuous-time version of (10) leads to hybrid closed-loop
dynamics and is analyzed in Nahata et al. (2017).

Remark 9. (Optimization problem for maximum
power injection (MPI)) If there were no power con-
straints, the critical power is the maximum power that
can be injected to the grid. We consider the optimization
problem which imposes quadratic penalty on the difference
between critical power and generated power and is subject
to the power constraints defined by set P:

min
x

f(PGG ) =
1

2
(P ∗G − PGG )T G̃′′GG(P ∗G − PGG )

s.t. PGG ∈ P,
(12)

where P = {PGG : 0 ≤ (PGG )i ≤ P̄i, i ∈ G} is a convex set,

G̃′′GG is positive definite and (12) is strictly convex.

We will first consider the case of time-invariant P (con-
stant maximum power output) and show how the closed-
loop system converges to the optimal solution of (12), and
later comment on the case of time varying P.

Theorem 10. (Decentralized projected integral con-
troller under time-invariant P) Consider the closed-
loop decentralized projected integral controller defined by
the equation (11) and P = {PGG : 0 ≤ (PGG )i ≤ P̄i, i ∈ G}.
For 0 < ε < 2/βσ̄(G̃′′GG), where σ̄(G̃′′GG) is the maximum

singular value of G̃′′GG , the following statements hold true:

1. The sequence {PGG (t + 1)} generated by the controller
converges to the optimum point of (12).
2. In equilibrium, all generator voltages are always less
than or equal to the critical voltage.

Proof. To prove statement 1, we first write (11) as a
projected gradient flow:

PGG (t+ 1) = [PGG (t)− εβ∇f(PGG )]+P ,

where ∇f(PGG ) = −G̃′′GG(P ∗G − PGG ) is the gradient of the

function f(PGG ) in (12). Since PGG (t+1) is the projection of

PGG (t)− ε∇f(PGG ) on set P, using the projection theorem

(Bertsekas, 1999), we obtain (PGG (t)−εβ∇f(PGG )−PGG (t+

1))T (PGG (t)− PGG (t+ 1)) ≤ 0. On simplifying further,

(∇f(PGG ))T (PGG (t+ 1)− PGG (t))

≤ − 1

εβ

∥∥∥PGG (t+ 1)− PGG (t)
∥∥∥2

.
(13)

Also, for all PGG and P̃GG ∈ Rn,
∥∥∥∇f(PGG )−∇f(P̃GG )

∥∥∥ ≤
σ̄(G̃′′GG)

∥∥∥PGG − P̃GG ∥∥∥ . The function ∇f(PGG ) is globally

Lipschitz continuous in PGG which enables us to use
the gradient descent Lemma (Bertsekas, 1999, Proposi-
tion A.24): f(PGG (t+ 1))−f(PGG (t)) ≤ (∇f(PGG ))T (PGG (t+

1) − PGG (t)) +
σ̄(G̃′′GG)

2

∥∥PGG (t+ 1)− PGG (t)
∥∥2
. On sub-

stituting (13), we obtain f(PGG (t+ 1)) − f(PGG (t)) ≤(
− 1

εβ
+
σ̄(G̃′′GG)

2

)∥∥PGG (t+ 1)− PGG (t)
∥∥2

. We can state

that as long as 0 < ε < 2/βσ̄(G̃′′GG), f(PGG (t+ 1)) −
f(PGG (t)) ≤ 0, and the equality holds if and only if PGG (t+

1) = PGG (t). If the algorithm converges to P̂GG ∈ P, then

[P̂GG − εβ∇f(P̂GG )]+P = P̂GG . (14)

From the projection theorem (Bertsekas, 1999), equiva-
lently:

(P̂GG − εβ∇f(P̂GG )− P̂GG )T (PGG − P̂GG ) ≤ 0 ∀PGG ∈ P

(∇f(P̂GG ))T (PGG − P̂GG ) ≥ 0 ∀PGG ∈ P.
The above equation is the first order optimality condition.
Since f(PGG ) is the strictly convex, i is necessary and

sufficient for P̂GG to minimize f(PGG ) over P. This concludes
the proof of the first statement.

Statement (2) can proved directly by further simplifying
the steady state condition. We rewrite equation (3) as:

[P̂GG − εβ∇f(P̂GG )]+P = [P̂GG + ε(V ∗ − V̂G)]P̄G0 = P̂GG .

On writing the above equation element-wise, we obtain:

[P̂Gi + ε(V ∗i − V̂i)]
P̄i
0 = P̂Gi i ∈ G. (15)

The above equation defines the condition that must hold
true when (11) converges. We now consider the possible
cases of nodal voltages and the corresponding powers:

(1) If V̂i = V ∗i , then [P̂Gi ]P̄0 = P̂Gi . This can only hold

true if 0 ≤ P̂i ≤ P̄i. The node i is unsaturated.
(2) If V̂i < V ∗i , then ε(V ∗i − V̂i) > 0. (15) holds true if

and only if P̂i = P̄i. Thus, the nodes i is saturated.
(3) If V̂i > V ∗i , then ε(V ∗i − V̂i) < 0. (15) holds true if

and only if P̂i = 0.

We will now consider the third case of P̂i = 0. Let the set
X and Y represent the sets with zero and non-zero power
generation respectively. It can be shown that VX = V ∗X −
β(G̃′′XX − G̃′′XYG̃

′′−1
YY G̃

′′
YX )P ∗X − G̃′′XYG̃

′′−1
YY (V ∗Y −VY). From

Lemma 2, (G̃′′XX − G̃′′XYG̃
′′−1
YY G̃

′′
YX ) and G̃′′XYG̃

′′−1
YY are

respectively positive and non-negative. As P ∗X ≥ 0 and
VY ≤ V ∗Y , it follows that VX ≤ V ∗X . It can be stated that
(11) always converges to voltages less than or equal to the
critical voltage for all the nodes. �



Remark 11. (Case of time varying P) The controller

(11) converges to P̂GG such that it is the projection of

P̂GG − ε∇f(P̂GG ) on P. When P changes overtime to P̄,

P̂GG remains the optimal point if and only if

P̂GG = [P̂GG − ε∇f(P̂GG )]+P = [P̂GG − ε∇f(P̂GG )]+P̄ .

This can happen in a few cases, for example, if the new
power constraint set P̄ is defined by an increase in P̄i(t)
of only the unsaturated nodes. In such a scenario, the
projection of P̂GG − ε∇f(P̂GG ) on P̄ will be same as on
P, and the optimal injections with respect to P are also
optimal with respect to P̄. Otherwise, the controller will
increase or decrease power injections at different nodes and
converges to a new optimum.

4. FAIR CURTAILMENT OF ACTIVE POWER

The proposed controller (10) curtails power with respect
to the difference of nodal voltage with critical voltage.
The nodes farther away from PCC experience a higher
voltage rise as compared to nodes which are closer, and
therefore suffer from more curtailment (see Section 5 for
a case study). such a curtailment unfair in the sense that
despite available generation capacity, a generating node
has to curtail more than the others based upon its location
within the residential network. To address this issue, the
concept of fair curtailment is introduced which aims at
curtailment in proportion to maximum power generation
capacity P̄i of the node (Ali et al., 2015).

Definition 12. The curtailment is said to be fair if in case
the voltage of any of the generating nodes in the network
exceeds the critical voltage, all the nodes curtail power
proportional to its capacity,

P̄i − PGi
P̄i

=
P̄j − PGj

P̄j
∀i, j ∈ G, (16)

to achieve VG ≤ V ∗.
Lemma 13. Power injections based on fair curtailment are
not optimal with respect to the goal of MPI defined by
(12).

Proof. We know that closed-loop system defined in (11)
converges to the optimum point of (12). Assume the
equilibria of closed-loop system under fair curtailment and
MPI coincide with each other. This is only true when
both (15) and (16) simultaneously hold true. In case of
an overvoltage, let the equilibrium curtailment be ∆PGi =
P̄i−PGi > 0 per node. Consider a partition of the nodes S∪
N = G of G such that VS < V ∗S and VN = V ∗N . Under our
assumption, the equilibria of both the controllers coincide
and also holds true for i ∈ S. Therefore,

[P̄i −∆PGi + ε(V ∗i − Vi)]
P̄i
0 = P̄i −∆PGi i ∈ S.

Recall from (1) that the left hand side can be: P̄i−∆PGi +
ε(V ∗i − Vi), P̄i, or 0. The above equation has a solution if
and only if ∆PGi = 0 and has no solution for non-zero
curtailment for all nodes. This is a contradiction to our
assumption as the equilibrium condition does not hold for
all i ∈ G. As equations (15) and (16) do not simultaneously
hold true, the fair curtailment based controller does not
converge to the optimum point of (12). �

The fair curtailment problems have been approached in
literature through sensitivity based analysis which requires

prior knowledge about the grid topology and parameters
(Ali et al., 2015; Tonkoski et al., 2010). In case of networks
with decentralized generators of different capacities, the
instantaneous maximum power generation needs to be
updated requiring communication. Fair curtailment puts
an additional burden of communication on the generating
nodes, requires an accurate knowledge of grid parameters,
grid topology, and pre-computed load flow solutions. It
also does not maximize power injected into the grid.

5. CASE STUDY

In this Section, we show the performance of the proposed
controller using the nonlinear AC power flow equations de-
fined in (2) and its effectiveness in mitigating overvoltage
problem in LV networks. The system comprises of a radial
distribution feeder and three houses (see Fig. 4) inspired
from the Canadian residential feeder presented in Tonkoski
et al. (2011). The critical voltage is chosen as 1.06 p.u. with
1 p.u. as the base voltage.

1 2 3

PCC

0

Z1Z1 Z2Z2 Z3Z3

Fig. 4. A radial distribution feeder with three houses.

Fig. 5 shows the approximate load and PV profiles which
are assumed to be identical for all the houses. Fig. 6 shows
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Fig. 5. PV generation and approximate load at each house.

comparison between MPI and fair curtailment objectives.
Both the control schemes are able to mitigate overvoltage
(Fig. 6a). The MPI objective can be attained in a decen-
tralized fashion where as fair curtailment requires input
from sensitivity analysis and pre-computed load flow solu-
tions presented in Ali et al. (2015); Tonkoski et al. (2010).
Since P̄i of all PV generators is same, they experience
the same curtailment under the fair curtailment objective
as shown in Fig. 6b. The MPI objective results in more
curtailment for farther away nodes (see also Lemma 5).
It should be noted that fair curtailment results in active
power curtailment as soon as the third node experiences
overvoltage where as this is not true in case of MPI
objective. Fig. 6c shows that fair curtailment results in
less power export to the utility grid as compared to the
MPI objective attained by discrete-time projected integral
controller.

Fair curtailment results in further reduction in power
injection for long line lengths which is typically the case in
rural LV networks. This is because the voltage of a node
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(a) Voltage profiles of various generating
nodes.
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(b) Active power output of PV Generators.
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(c) Power flowing through PCC.

Fig. 6. Voltage profiles, nodal generation, and power transfer through PCC.

is more sensitive to its power generation/consumption
than the other nodes in the network (see (7)). Since the
curtailment is distributed over all the nodes in the fair
curtailment objective, it generally leads to more power
curtailment (see Nahata (2016) for a case study).

6. CONCLUSION

We studied the problem of overvoltage prevention in PV
residential microgrids. A decentralized optimal integral
projected controller was proposed to prevent overvoltage
while maximizing the power transfer. Each PV generator
controls the voltage using only local voltage and power
measurements. This control strategy is especially valuable
as it does not require a central coordinator nor commu-
nication between the generators. We also showed how the
problem of maximum power injection conflicts with the fair
curtailment of power by the generators, hence demonstrat-
ing that the fair curtailment problem requires different
means to be addressed such as economical redistribution or
use of local energy storage during periods of overvoltage.
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