Optimistic Causal Consistency for Geo-Replicated
Key-Value Stores

Kristina Spirovska, Diego Didona, Willy Zwaenepoel
EPFL
Email: first.last@epfl.ch

Abstract—In this paper we present a new approach to imple-
menting causal consistency in geo-replicated data stores, which
we call Optimistic Causal Consistency (OCC). The optimism
in our approach lies in that updates from a remote data
center are immediately made visible in the local data center,
without checking if their causal dependencies have been received.
Servers perform the dependency check needed to enforce causal
consistency only upon serving a client operation, rather than on
the receipt of a replicated data item as in existing systems.

OCC explores a novel trade-off in the landscape of causal
consistency protocols. The potentially blocking behavior of OCC
makes it vulnerable to network partitions. Because network
partitions are rare in practice, however, OCC chooses to trade
availability to maximize data freshness and reduce the communi-
cation overhead. We further propose a recovery mechanism that
allows an OCC system to fall back on a pessimistic protocol to
continue operating even during network partitions.

POCC is an implementation of OCC based on physical clocks.
We show that OCC improves data freshness, while offering com-
parable or better performance than its pessimistic counterpart.

I. INTRODUCTION

Causal consistency is an attractive model for large-scale
geo-replicated data platforms, because it hits a sweet spot
in the trade-off between ease of programming and perfor-
mance [1].

Existing causally consistent systems implement causal con-
sistency by different techniques, but they all share the follow-
ing key mechanism. When serving a read operation, a server
returns the most recent version that is stable in its data center
(DO) [11, [21], [3], [4], [5]. We define a version of an item as
stable in a DC, if all its dependencies have been replicated in
that DC. More recent versions may exist, but these cannot be
returned to the client, because they are not stable, and may
lead to causality violations later.

This approach allows these systems to tolerate network
partitions and DC failures. It has, however, two drawbacks.
First, it delays the visibility of new versions of data items,
increasing the staleness of the data returned to clients. Second,
it requires the implementation of dependency checking [1], [2]
or stabilization protocols [3], [4] that result in computational
and communication overhead.

Optimistic Causal Consistency. In this paper we argue that
existing protocols are too pessimistic for modern data center
deployments and we propose Optimistic Causal Consistency
(0CO).

According to OCC a server always returns the most recent
available version of an item. Unresolved dependencies are

detected by the server upon serving an operation, without the
need for synchronization with other servers. This is accom-
plished by means of cheap dependency meta-data supplied
by the client. When an unresolved dependency is detected, a
server blocks the read while it receives the dependency.

The effectiveness of our optimistic approach stems from
two main insights. First, recent works have revealed that
update replication in data stores exhibits a naturally consistent
order. In other words, a data item is typically replicated (and
accessed) after its dependencies have already been propa-
gated [6], [7]. Hence, the most recent version of a data item
can be returned without violating consistency. OCC leverages
this insight by having servers waiting to receive missing
dependencies when serving a client’s request, rather than
relying on expensive dependency checking and stabilization
protocols. Servers rarely incur such waiting overhead, because
of the naturally consistent order of updates.

Second, network partitions are relatively rare events, and
complete DC failures even more rare [6], [8]. OCC leverages
this insight by avoiding (most of) the overhead associated
with network partition tolerance during normal operation, and
by incurring this overhead only when a network partition is
actually occurring. To this end, OCC entails the infrequent
—hence cheap— execution of a recovery protocol to allow a
system to fall back on a pessimistic protocol in the presence of
a network partition. This design contrasts with existing ones,
which incur dependency checking overhead and expose stale
data items to clients even under normal operational conditions.

II. OPTIMISTIC CAUSAL CONSISTENCY

A. Causal Consistency

Causal consistency requires that servers of a system return
values that are consistent with the order defined by the causal-
ity relationship. Causality is a happens-before relationship
between two events [9]. For two operations a, b, we say that a
causally depends on b, and write a ~~ b, if and only if at least
one of the following conditions holds: i) a and b are operations
in a single thread of execution, and a happens before b; ii)
a is a write operation, b is a read operation, and b reads the
value written by a; iii) There is some other operation ¢ such
that a ~» ¢ and ¢ ~~ b.

B. System Model

We assume a distributed, large scale, multiversion key-value
store. The keyspace is split into N disjoint partitions according
to a hash function. Each partition is replicated at M different
sites, each corresponding to a different DC. Hence, a full copy
of the data is stored at each DC. We define m as the local
replica to which a client connects. We further assume nodes
in the system can communicate through point to point lossless
FIFO channels.

We use lower case letters, e.g., x, to refer to a key and the
corresponding capital letter, e.g., X, for a version of the key.

The system provides the following operations:

o PUT(key, val): A PUT operation assigns value val to an
item identified by key.

e val < GET(key): A GET operation returns the value of
the item identified by key. The return value must not break
causal consistency. Assume that X ~» Y. Suppose that a
client ¢ issues a GET(y) operation, receiving Y as result.
Then, any subsequent GET(x) operation issued by ¢ must
return either X or a version X’ such that X'~+X.

o (vals) <« RO-TX(keys): This operation provides a
causally consistent read-only transaction [1], [2]. If a
read-only transaction returns X and Y, and X ~~ Y, then
there does not exist another version of x, X’, such that
X~ X' Y.

We assume the last-writer-wins rule to arbitrate conflicting
updates [2]. OCC can, nevertheless, be implemented with other
techniques to achieve convergence [1], [4].

C. The Design of OCC

The overall goal of OCC is to maximize the freshness of
data returned to clients without the need to rely on dependency
checking messages or stabilization protocols to enforce causal
consistency. To achieve this goal, OCC implements a client-
assisted lazy dependency resolution protocol.

Data freshness maximization. Maximizing the freshness of
data returned to the client takes a different meaning depending
on whether the client performs a GET operation or a RO-
TX. On a GET(x) from client ¢, OCC always returns to ¢
the most recent available version of an item that respects
causal consistency, even if this version is not stable yet. If
¢ does not have any dependencies on versions of x later
than the most recent version currently available on the server,
then this version is returned immediately. Otherwise, the GET
operation is blocked until a newer version arrives that satisfies
¢’s dependency on x. The difference with existing, pessimistic
designs lies in that OCC allows p to return a version of x even
if such version is not stable yet.

In case ¢ reads x from p in the context of a RO-TX
operation, p cannot safely return the freshest available version
of x. Assume that X is the freshest version of x and that
there exist Z, Z' such that Z ~ Z' ~ X. If ¢ reads Z within a
transaction, returning X in the same transaction would violate
the semantics of the RO-TX operation. To explain how OCC
maximizes the freshness of data returned within the scope of

a transaction, we introduce the concept of a snapshot visible
to a transaction. We define it as the set of data items that
can be returned to ¢ as a result of a transaction without
violating the semantics of the RO-TX operation. The optimism
of OCC lies in how the boundaries of a transaction’s snapshot
are determined. In OCC, the boundaries of a transactional
snapshot are defined on the basis of the items received by
nodes in the local data center at the time the transaction
was issued. In existing systems, instead, such boundaries are
determined by the set of items that are stable at the time the
transaction is issued [3], [4].

Client-assisted lazy dependency resolution. Because OCC
exposes unstable items, a client ¢ could establish a dependency
towards an item Z that has not been received yet by its
corresponding local partition pz. If then ¢ wants to read such
item, OCC must prevent pz from returning a version of z
that is not causally consistent with ¢’s history. To this end,
OCC implements a client-assisted lazy dependency resolution
protocol.

Clients store information about the causal dependencies
established when performing operations. For example, if ¢
reads Y and there exists X such that X ~ Y, ¢ needs to record
it has established a dependency towards X and Y. The current
client-side dependency meta-data is supplied by ¢ when it
performs an operation.

For a read operation (GET or RO-TX), such information is
needed to allow a server p to determine whether its own state is
consistent with ¢’s history. Referring to the previous example,
if ¢ wants to read X after it has read Y, the dependency meta-
data provided by c, together with some state information that
p locally stores, allows p to check whether it has already
received X or not. If p has already received X, then the freshest
local version of x that p stores is compatible with ¢’s history,
and it is returned to c¢. If p has not received X yet, p must
receive it before serving c¢’s request. In this case, p simply
stalls ¢’s request until it receives X.

This lazy dependency resolution scheme is cheap to im-
plement, as it does not require any synchronization among
servers.

For a PUT operation, the client provides dependency infor-
mation to set the dependencies of the newly created item.

D. Data Freshness vs Availability

OCC aims to maximize the freshness of data exposed to
clients. Its potentially blocking behavior, however, makes it
vulnerable to network partitions. Suppose, for example, there
are two items X, Y such that X ~» Y. Assume Y gets replicated
to DC', but X is prevented from doing so by a network
partition. If a client ¢ in DC’ establishes a dependency on
Y and then tries to read X from node p, p must block the read
operation until the network partition heals to receive X and,
thus, to preserve causal consistency. If the partition does not
heal, however, the client’s read request is blocked indefinitely.
In other words, OCC is not always available, because it cannot
guarantee that any client’s operation is always completed in a
finite amount of time.

Highly available OCC. To circumvent this limitation, we
propose to augment OCC with a recovery procedure aimed at
regaining availability during network partitions. We explain
our recovery mechanism starting from the blocking condition
example. If p blocks while serving a request from ¢, as soon
as p realizes there is a network partition occurring, it closes
the session with ¢. A network partition can be identified by
p if it blocks for more than a configurable amount of time.
At this point, ¢ re-initializes its session. This new session is
managed according to a pessimistic protocol and, therefore,
it is ensured not to block even during the ongoing network
partition. The cost for this session re-initialization is that the
client might not be able to see the same version of some data
items read or written in the optimistic session.

Equipped with this recovery mechanism, OCC can be imple-
mented in a highly available fashion, representing a novel and
unexplored trade-off between data freshness and availability.

OCC trades the ability to seamlessly tolerate network par-
titions —only minimally impacting the availability property—
with a higher freshness of the data returned to clients.

We believe that, for many applications, e.g., social networks,
this is a reasonable, if not favorable, trade-off. As already
stated, in fact, careful engineering and redundant links make
modern geo-distributed DCs reliable enough to regard network
partitions as infrequent events [8]. Further, we argue that the
cost of re-initializing a client session is affordable both from
a time and data visibility perspective.

In case of network partitions, our recovery mechanism
does not expose the application to any behavior or anomaly
that is not encompassed by a pessimistic implementation of
causal consistency. In fact, an application that relies on the
causal semantics must be coded to tolerate the unexpected re-
initialization of a session. This stems by the stickiness property
of causal consistency, which means clients always contact the
same server for each of their requests.

When a network partition heals, a client can be promoted
again to the optimistic version. If a partition never heals,
e.g., in the case of full DC failure, the client keeps operating
according to the pessimistic design. We further discuss the
unlikely case of full DC failure in the extended technical
report [10]. In the report we also describe how to arrange for
the safe co-existence of clients operating optimistically and
pessimistically.

III. POCC: A SCALABLE IMPLEMENTATION OF OCC

We implement OCC in a new system called POCC. The key
challenge in POCC is to succinctly encode the dependencies of
clients. OCC can in fact be implemented with any dependency
tracking mechanism that has been proposed in the literature,
e.g., dependency lists/matrices or physical scalar/vector clocks.

POCC efficiently tracks dependency by means of physical
clocks and dependency vectors. In POCC each update u is
assigned a physical clock timestamp that represents the time
at which the corresponding item has been created and a
dependency vector with one entry per DC.

POCC ensures that if X ~» Y then the update time of Y
is greater then the update time of X. This invariant is used
to track dependencies on the client side and enforce causal
consistency on the server side as we explain in the following.

The main difference between the optimistic and the pes-
simistic approaches lies in how POCC enforces causal consis-
tency despite exposing possibly unstable items to client. For
space constraint we only show how POCC achieves this goal
by describing how it serves a GET operation. Further details
can be found in [10].

During a session, a client ¢ maintains a read dependency
vector RDV,, with one entry per DC. RDV,[i] is the update
time of the item d with the highest timestamp such that i) d
has been originated at the i—th DC and ii) ¢ has read an item
that depends on d.

A server p maintains a version vector VV, consisting of
M physical timestamps corresponding to the latest updates
received by p from each DC.

As stated in Section II-C, in the optimistic protocols, the
GET operation might block. When a client ¢ sends a GET
request, besides the key k that needs to be read, it also sends
RDV,.. Then the server checks whether its version vector is
entry-wise greater than or equal to RDV,. This check is not
done for the m-th entry because dependencies towards local
items are trivially always satisfied. If the check succeeds, it
means that p has received all the items of its partition on
which ¢ depends. In this case, p returns the freshest version
of k. If at least one remote entry of VV is smaller than RDV,,
it means that ¢ might depend on a version of k that has not
been replicated at p. Then, p has to wait for its receipt, or else
it might return a version of the k that is not causally consistent
with ¢’s history. Then, p blocks until RDV,[i]| < VV[i],i # m.

IV. EVALUATION

We show that POCC maximizes data freshness while de-
livering comparable or better performance than its pessimistic
counterpart.

To evaluate the effectiveness of OCC, we compare the
performance achieved by POCC with the one achieved by
Cure*, a reimplementation of the Cure protocol [4] that follows
our system model.

We focus on workloads composed of GET and PUT oper-
ations. A more extensive evaluation can be found in [10].

A. Experimental Testbed

We use an Amazon AWS deployment consisting of 3 DCs
(located in Oregon, Virginia and Ireland) and 32 partitions
per DC. We use c4.large instances, corresponding to 2 virtual
CPUs and 3.75 GB of RAM. Each data partition is composed
of one million 8 byte key-value pairs, and clients choose
which key to access within each partition according to a zipf
distribution with parameter 0.99. We introduce a think time
of 25 milliseconds between client operations to simulate a
more realistic workload. We run NTP to keep physical clocks
synchronized. We run a workload with a 32:1 GET:PUT ratio
over 2 to 32 partitions per DC.

—
% Stale B
30 # Fresher vers. &

Cure* B
POCC ©

Versions in chain®

o w o ©

Thrgu(@pgt gM%Pséseg)
— N W A O ~

=)

0.45

Ny
N

)0.65 32

0.5 0.55 0.6 16, 24
Throughput (Mops/sec # Partitions

(a) Data staleness on Cure*.
number of partitions from 2 to 32.

(b) Throughput while varying the

w
o

e

& Cure* B POCC © 5 g
2 30 S ., 150 -
E =10° £
) 2 ~
£ 20 e 4 o
= S10 £
g 15 = =
3 10 Zyg 252
5 5 o locking probability @ S
g [Blocking time © K]
< 4 0.7 10 o

q"ﬁrou& Hsp%t (l\;[)()?)s/seoésss

(c) Avg. resp. time.

0 #Cllggts/paltsl?lon 200
(d) Blocking behavior in POCC with
different # clients per partition.

Fig. 1. Experimental results for POCC and Cure* for workloads with a 32:1 GET:PUT ratio

B. Experimental Results

The benefits of the optimistic over the pessimistic design
in terms of data freshness are shown on Figure la. The plot
shows the percentage of stale data items returned in Cure*
and the number of fresher versions available in the version
chain of a stale returned data item. The plot shows that
the probability to return stale data increases with the load
(and it grows as high as 20%). This is not only because of
the higher remote update rate, but also because the higher
contention on physical resources slows down the execution of
the stabilization protocol needed to identify stable versions. In
contrast, these values are always zero in POCC L

Figure 1b shows that the two systems achieve basically the
same throughput, showing that the optimistic approach can
be implemented with no throughput loss with respect to the
corresponding pessimistic implementation.

Figure 1c shows that POCC achieves a slightly lower av-
erage operation response time than Cure* before reaching the
saturation point at about 0.65 Mops/sec. POCC rarely blocks
upon serving an operation and it is more resource efficient
than Cure*. Under very high load, POCC performs slightly
worse, because the better resource efficiency is outweighed
by the increasing cost of blocking, which we discuss next.

Figure 1d reports the probability that an operation blocks
and the average blocking time for a blocked operation. The
plot shows that the blocking probability is negligible under
moderate to high load and that becomes noticeable only as the
system approaches the saturation point. Similarly, the blocking
time is in the order of a few microseconds as long as the
system does not become overloaded.

V. RELATED WORK

Our proposal is primarily related to the vast literature on
causally consistent systems [1], [2], [3], [4], [5]. The common
trait of these systems is that they are pessimistic. That implies
they proactively check the dependency of remote updates
before making them visible, by means of dependency checking
messages or stabilization protocol. OCC, instead, implements
a lazy dependency checking scheme, only when needed upon

'In bigger deployments the execution of the stabilization protocol would
progress at a lower pace, with a commensurate increase in the perceived
staleness. In addition, the presented results correspond to running the stabi-
lization protocol every 5 milliseconds. Higher values would allow the system
to reach only a slightly higher throughput [3], but would come at the cost of
an increased data staleness. By contrast, POCC is immune to this trade-off.

a client’s operation. As discussed, this design choice increases
data freshness and improves resource efficiency at the cost of
a slight penalty availability-wise.

VI. CONCLUSION

We have presented OCC, an optimistic approach to achieve
causal consistency in geo-replicated key-value stores. OCC re-
gards network partitions and data center failures as rare events
in modern deployments. Therefore, OCC partially trades some
of the availability properties achievable by causal consistency
for a higher freshness in the data returned to clients and a
higher resource efficiency. We have implemented OCC in a
system named POCC. We have shown that POCC can achieve
performance that is comparable or better than its “pessimistic”
counterpart while maximizing data freshness.

ACKNOWLEDGMENT

This research has been supported by The Swiss National
Science Foundation through Grant No. 166306. The authors
are also grateful to Amazon for providing a research grant
through AWS Cloud Credits.

REFERENCES

[1] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops,” in Proc. of SOSP, 2011.

[2] ——, “Stronger semantics for low-latency geo-replicated storage,” in
Proc. of NSDI, 2013.

[3] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in Proc. of SoCC,
2014.

[4] D. D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguica, and M. Shapiro, “Cure: Strong semantics meets high
availability and low latency,” in Proc. of ICDCS, 2016.

[5] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable causal
consistency using dependency matrices and physical clocks,” in Proc.
of SoCC, 2013.

[6] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Sto-
ica, “Probabilistically bounded staleness for practical partial quorums,”
Proc. VLDB Endow., vol. 5, no. 8, pp. 776-787, Apr. 2012.

[71 H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd, “Existential consistency: Measuring and
understanding consistency at facebook,” in Proc. of SOSP, 2015.

[8] E. Brewer, “Cap twelve years later: How the “rules” have changed,”
Computer, vol. 45, no. 2, pp. 23-29, 2012.

[91 M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal

memory: Definitions, implementation, and programming,” Distributed

Computing, vol. 9, no. 1, pp. 37-49, 1995.

K. Spirovska, D. Didona, and W. Zwaenepoel, “Optimistic causal con-

sistency for geo-replicated key-value stores,” EPFL-REPORT-225991,

Tech. Rep., 2017.

[10]

