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Once you have tasted flight,

you will forever walk the earth

with your eyes turned skyward,

for there you have been,

and there you will always long to return.
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Abstract
With current overuse of the road transportation system and planned increase in traffic, inno-

vative solutions that overcome environmental and financial cost of the current system should

be assessed. A promising idea is the use of the third dimension for personal transportation.

Therefore, the European project myCopter, funded under the 7th framework, aimed at en-

abling the technologies for Personal Aerial Transportation Systems as breakthrough in 21st

century transportation systems. This project was the starting point of this thesis.

When multiple vehicles share a common part of the sky, the biggest challenge is the man-

agement of the risk of collision. While optimal collision-free navigation strategies have been

proposed for autonomous robots, trajectories and accelerations for Personal Aerial Vehicles

(PAVs) should also take into account human comfort for their passengers, which has rarely

been the focus of these studies. Comfort of the trajectories is a key factor in order for this new

transportation mean to be accepted and adopted by everyday users.

Existing strategies used to maximize human-comfort of trajectories are based on path planning

strategies, which compute beforehand the whole trajectory, implementing comfort as an

optimization criteria. Personal Aerial Transportation Systems will have a high density of

vehicles, where the time to react to potential threats might decrease to a few seconds only.

This might be insufficient to compute a new trajectory each time using these path planning

strategies. Therefore, in this thesis, a reactive decentralized strategy is proposed, maximizing

the comfort of the trajectories for humans traveling in a Personal Aerial Vehicle.

To prove the feasibility of collision avoidance strategies, it is not sufficient anymore to validate

them only in simulation, but, in addition, real-time tests in a realistic outdoor environment

should be performed. Nowadays, single drones can be effectively controlled by a single

operator on the ground. The challenge relies instead on an efficient management of a whole

swarm of drone. In this thesis, a framework to perform outdoor drone experiment was

developed in order to validate the proposed collision avoidance strategy. On the one hand, an

autopilot framework was developed, tailored for multi-drone experiments, allowing fast and

easy deployment and maintenance of a swarm of drones. On the other hand, a ground control

interface is proposed in order to monitor, control and maintain safety in a flight with a swarm

of drones.

Using the autopilot framework together with the ground control interface, the proposed

collision avoidance strategy was validated using 10 quadrotors flying autonomously outdoor

in a challenging scenario.
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Résumé
Avec la sur-utilisation du réseau routier ainsi que l’augmentation prévue du trafic, de nouvelles

solutions doivent être évaluées afin de surmonter le coût environnemental et financier du sys-

tème actuel. Une idée prometteuse est l’utilisation de la troisième dimension pour le transport

personnel. Le projet myCopter financé par l’Union Européenne tend ainsi à développer les

technologies pour un système de transport personnel aérien comme percée dans les systèmes

de transport du 21ème siècle.

Lorsque de multiples véhicules aériens se partagent une portion de l’espace aérien, le défi

le plus grand est la gestion du risque de collision. Bien qu’il existe de nombreuses stratégies

d’évitement de collisions pour des robots autonomes, les trajectoires et accélérations de

véhicules personnels aériens doivent aussi prendre en compte le confort des passagers, ce

qui a rarement été le cas des précédentes études. Le confort des trajectoires est un élément

décisif quant à l’acceptation et à l’utilisation par une vaste majorité de ce nouveau moyen de

transport.

Les stratégies existantes utilisées pour maximiser le confort de trajectoires pour les Hommes

sont basées sur des stratégies de planification de trajectoire, calculant à l’avance l’entier de la

trajectoire et utilisant le confort comme un objectif d’optimisation. Un système de transport

aérien personnel aura une densité de véhicules élevée, dans lequel le temps de réaction envers

de potentielles menaces de collision peut diminuer jusqu’à quelques secondes seulement.

Cela peut être insuffisant pour recalculer à chaque fois une nouvelle trajectoire par le biais de

ces stratégies de planification. Par conséquent, dans cette thèse, une approche décentralisée et

réactive est proposée à la place, afin de maximiser le confort des trajectoires pour les Hommes

voyageant à bord de véhicules personnels aériens.

Afin de prouver la faisabilité de ces stratégies, il n’est plus suffisant de les valider uniquement

en simulation mais en plus, des tests en temps réel doivent être effectués dans un environ-

nement réaliste et extérieur. De nos jours, le management d’un drone volant seul peut être

effectué de manière efficiente par un seul opérateur depuis le sol. Le challenge réside doréna-

vant dans le management efficace d’un essaim de drones volant simultanément. Dans cette

thèse, le cadre permettant d’effectuer des expériences avec plusieurs drones à l’extérieur a

été développé afin de pouvoir valider la stratégie d’évitement de collision. D’une part, un

système d’autopilote a été développé permettant un déploiement et une maintenance rapide

et aisée d’un essaim de drones. D’autre part, une interface pour le contrôle au sol des drones

est proposée afin de surveiller, contrôler et maintenir la sécurité d’un vol avec un essaim de

drones. Grâce à cet autopilote ainsi que cette interface, la stratégie d’évitement de collision
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proposée a pu être validée sur 10 quadrotors volant de manière autonome à l’extérieur dans

un scénario ardu.

Mots clefs : Confort, navigation sans collision, Interface homme-essaim de drones, drones,

sécurité aérienne, régulations
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1 Introduction

WITH current overuse of the road transportation system and planned increase in traffic,

innovative solutions that overcome environmental and financial cost of the current

system should be assessed. A promising idea is the use of the third dimension for personal

transportation. This statement was the basis of this thesis performed within the European

funded project myCopter [1] that aimed to enable the technologies for Personal Aerial Trans-

port Systems (PATS) as breakthrough in 21st century transportation systems. The details of

the myCopter project are presented in Section 1.1.1.

The more vehicles you have in the air, the higher the risk of collision between some of them is.

To convince the general public to use Personal Aerial Vehicles (PAVs), it must be shown that it

is safe enough to travel. In addition, with humans onboard, it adds a new dimension with the

notion of comfort. The comfort of the trajectory should receive a particular attention in order

for the passengers to experience a quiet journey. However, comfort has rarely been the focus

of studies in collision avoidance with dynamic obstacles.

In addition, drones are leaving the controlled environments of laboratories with complex

tracking systems and start to fly outdoor, relying only on GPS. Therefore, in order to be widely

accepted, newly developed strategies should also now be tested and validated through realistic

multi-drone outdoor flight tests.

In this thesis, a reactive decentralized collision-free strategy is proposed, maximizing the

comfort for passengers of PAVs. This strategy is then validated through extensive simulations

as well as outdoor flights using a framework developed to enable multi-drones experiments.

In this introductory chapter, the motivation and challenges to perform human-comfortable

collision-free navigation validated not only by extensive simulations but also by realistic

tests with drones are presented in details in Section 1.1. Then, the relevant state of the art is

presented in Section 1.2 and gives potential solution to perform human-comfortable collision-

free navigation. Finally, the main contribution of the thesis and its organization are presented

in Section 1.3.
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Chapter 1. Introduction

1.1 Motivation and challenges

1.1.1 Scope of the thesis

In many cities, the saturation of the road transportation system and predicted traffic incre-

ment [2] demand for innovative alternative solutions. A promising idea for congested cities

is the use of the third dimension for personal transportation in a environmental neutral way

(Fig. 1.1). Recently, several projects [3], [4] have investigated the technologies for Personal

Aerial Transport Systems (PATS) as breakthrough in 21st century transportation systems. Ac-

cordingly, semi- or fully-autonomous Personal Aerial Vehicles (PAVs) are currently studied

and developed by public [1], [5] and private1 organizations (Fig. 1.2), which confirms a trend

towards Personal Aerial Transportation Systems.

This thesis was part of the myCopter project. This project was funded by the European Union

under the 7th Framework program.

The myCopter project focused on the system as a whole and not on the design of a particular

platform and tended to enable the technologies for Personal Aerial Transportation Systems

(PATS). We believe that the only approach leading to a popular acceptance of PAVs is to not

only consider platform specifications but also more general aspects such as socio-economic

impact and safe navigation of many entities.

In the myCopter project, we imagined a PATS confined below controlled airspace which

extends down to 500-600 meters above ground and will not interact with airliners flying above.

One possible application scenario for a PATS would be in a commuting scenario, where PAVs

will leave the suburbs of large cities and fly towards downtown in the morning and fly back in

the evening.

The research was split between six different partners. Novel human-machine interfaces were

studied at the Max-Plack-Institut für biologische Kybernetik. Modeling of PAV concepts and

1The interested reader can find a large comparison of PAV at http://en.wikipedia.org/wiki/Comparison_of_per
sonal_air_vehicles

Figure 1.1 – Concept for Personal Aerial Vehicles flying over a city [6].

2



1.1. Motivation and challenges

(a) Transition by Terrafugia [7]. (b) M400 by Moller [8]. (c) Aerocar by Taylor [9].

Figure 1.2 – Selected examples of PAVs.

defining flying qualities were studied at the University of Liverpool. Automation algorithms

for determining landing spots, automatic take-off and landing was studied at EPFL-CvLab.

Definition and development of control strategies for automating flight of a single Personal

Aerial Vehicle for automatic takeoff, navigation and landing were studied at ETHZ. Investi-

gation of the socio-economico-technological contexts was studied at the Karlsruher Institut

für Technologie. Evaluation of newly developed technologies using the Flying Helicotper

Simulator was studied at the Deutsches Zentrum für Luft- und Raumfahrt in Braunschweig

and finally development of collision avoidance strategies and formation flying were studied at

EPFL-LIS. This last point is the starting point of this thesis.

1.1.2 Aerial collision-free navigation with human onboard

The planned high density of PAVs rises the issue of the risk of mid-air collisions between

PAVs. There is thus a need for a collision avoidance strategy that provides safe navigation. To

convince the general public to use PAVs, it must be shown that it is safe enough to travel.

To evaluate how bad the situation can be, i.e. the worst case scenario, where no collision

avoidance strategy is applied, large scale simulations were performed. In these simulations,

vehicles were autonomously flying between two waypoints with no collision avoidance strategy.

The number of collision per hour was computed. Results are presented in Appendix A.1 and

validate the need for a collision avoidance strategy for PAVs.

With passengers on board, the question of comfort during the flight has to receive a particular

attention. For every day use, the collision avoidance strategy should be able to deal not only

with passengers that don’t want to be shaken in all directions during their commuting journey

but also with short reaction time due to the high number of vehicles sharing the airspace.

Numerous collision avoidance strategies exists (see Section 1.2.3 for a detailed analysis) but

comfort has rarely been the focus of these study.
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1.1.3 Experiments with multiple drones

Multi-drones experiments are not limited anymore to simulation only [10] or to outdoor ex-

periments including 3-4 robots flying together with almost no direct interaction [11]. Both [12]

and [13] demonstrates the feasibility of outdoor swarming experiments with 10 flying robots.

In order to be widely accepted, collision avoidance strategies should therefore be validated

not only in simulation but also in a realistic environments, where flying vehicles really detect

potential threats and perform the avoidance maneuvers.

There is thus a will to have a proof of feasibility in realistic environments for newly developed

strategies.

The technical challenge of swarm applications does not rely anymore on the control of a

single robot but on the efficient management of the whole swarm of robots. In [14] and [15],

the authors showed that a single operator could handle at most five robots. In [16], the

authors proposed metrics to predict the maximal number of robots that can be controlled by

a single operator in a military scenario and deduced a similar number of 5 robots. In order to

achieve swarming missions with more than five robots, the operator should either have tools

to decrease the workload or the swarm should be controlled by multiple operators.

The decrease of workload can be done using two axis. First, interactions between the swarm

and the human operator should be made such that we give the operator a view of the swarm

as close as the reality as possible, in a shorter time as possible and show only the currently

useful information. Second, the robot should have a level of autonomy such that the actions

required to drive the mission are minimal.

1.2 State-of-the-art

In this section, first relevant publications in Air Traffic Management are first presented in

Section 1.2.1 and motivate the use of decentralized collision avoidance strategies. Then,

researches on human comfort are presented in Section 1.2.2 and show the limitations of

existing approaches. In Section 1.2.4, bio-inspired strategies modeling systems with multiple

entities navigating safely in dense environments are presented and give potential solution.

Finally, in Section 1.2.5, relevant publications in human-swarm interactions are presented,

driving the need for an framework that is tailored for multi-drone experiments.

1.2.1 Air Traffic Management

Current Air Traffic Management (ATM) relying on a centralized human controller using voice

to control its sector of the airspace has reached its limits. Delays due to ATM and inefficient

routing count as more than 50% of the whole cost of delays [17]. Air Traffic growth has

been and planed to be exponential with a planed increase of about 3% in the incoming
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Figure 1.3 – Density considered in ATM.

years [18]. The aeronautical community is developing new strategies to overcome these

issues. The most widespread idea is the Free Flight concept [19]. Free Flight wants the shift of

collision avoidance responsibility from a central entity to the user of the Air space i.e. to use

decentralized control strategies for collision avoidance. Decentralized control strategies will

allow more direct flight routes from departing to destination airport as the controller will not

be required to ensure separation between aircraft by forcing flights in airways, over defined

waypoints. This approach has the appreciable side effect of suppressing the single point of

failure when communication with ground based Air Traffic Controller is cut. Furthermore,

[20] showed that the distance of flight could be reduced by 25% if Free Flight concept would

be applied.

In a PATS, there could be up to 40 vehicles per cubic kilometer [2] while the densities usually

assumed in Air Traffic systems are up to 4 orders of magnitude below (Fig. 1.3) [21], [22]. Thus,

proposed strategies for air traffic systems (decentralized [23], [24] or centralized [25], [26])

may not be suited for high densities.

In ATM, vertical separation is ensured by flying on fixed flight levels. Most of conflicts occurs in

the horizontal plane. Collision avoidance strategies therefore limit their avoidance maneuver

to the horizontal plane in order not to violate the vertical separation and thus do not take ad-

vantage of full 3D liberty. Vertical avoidance is used only as last resort option. With increasing

densities, the use of the whole 3D avoidance maneuver scope might become necessary.

NASA acknowledges that the current Air Traffic system reaches saturation and would not scale

much further. As NASA is expecting that 10 millions vehicles per day will share the US airspace

system, they recently launched a Sky for All challenge [30] to find “creative, clean-slate design

constructs, or enabling component technologies and concepts, that will inform the design of

real-world future air transportation“ [31].

Therefore, it is worth considering decentralized collision avoidance strategy in PATS with such

high densities.
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1.2.2 Comfort

While optimal collision-free navigation strategies have been proposed for autonomous robots

(see Section 1.2.3 for a detailed analysis), trajectories and accelerations for Personal Aerial

Vehicles (PAVs) should also take into account human comfort. Indeed, PAVs will become

widely used not only if it is safe enough to travel but also if it is comfortable enough to travel

on a regular basis. Regular use of this new transportation system will be achieved only if a

certain level of comfort can be guaranteed [32].

It is not yet fully understood how and what influences human comfort as it is largely influenced

by subjective perception, which varies a lot between individuals [33]. What is considered as

comfortable for someone might already be uncomfortable for someone else.

Comfort studies in the aeronautical world highlight some of the conditions that lead to dis-

comfort. Hinninghofen highlight the in-cabin factors that influence the comfort of passengers

such as noise, seat size, mobility, cabin pressure and humidity [34]. Other studies measured

the effects on comfort of the roll oscillation frequency [35], combinations of roll and pitch

motion, or combination of roll and vertical oscillations [36], [33]. However, none of these

studies propose a solution to minimize discomfort.

Factors that influence comfort can still be separated in two categories [37]: physical motion

quantities (acceleration and angular motion) and human interaction variables (human factors

such as age, gender, posture, past experience and environmental factors such as temperature,

noise, seat shape, leg room). In this thesis, we focus only on physical motion quantities, also

named the physiological component of comfort [38].

Looking at an automatic pilot flight manual [39] gives us an insight of what is considered as

comfortable in Commercial aviation. An comfortable acceleration is defined as an acceleration

of maximum 0.3g or 3m/s2. With large aircraft traveling at high speeds but in low density

(Fig. 1.3), avoidance maneuvers are performed 8 to 15 minutes ahead and usually require

only a few degree of heading change [21], implying only small and brief accelerations. In

opposite, in dense environments, the time to react to a new threat decreases significantly

from a few minutes to only a few seconds. At 100km/h, the planned cruising velocity [40], in

order to keep a separation distance of 50m and an acceleration below 0.3g , one should see

other threats at least 8 seconds before collision. Therefore, there is not much time to compute

the solution and thus approaches needing expensive computation of the optimal solution in

real-time will produce more collisions than strategies with little computation.

Many studies showed that the level of physiological discomfort was correlated with the magni-

tude of jerk [37], [38], [41], which is the time derivative of acceleration.

Existing studies for ground vehicles minimize the time integral of the square of the jerk in path

planning strategies in order to improve the physiological comfort [42], [43]. The ISO norm

2631-4 used for fixed-guidway systems (e.g. trains) also recommends the use of the jerk as
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mean to measure and optimize comfort [44]. In addition, aircraft manufacturer companies

have submitted patents where jerk is used as design criteria in path planning strategies in

order to minimize the discomfort for aircraft in airborne [45], [46] and ground phases [47].

Solving path planning strategies has an exponential complexity in terms of number of vehi-

cles [48]. In addition, using only local sensing, vehicles can only have knowledge of nearby

vehicles. Path planning strategies might fail to provide safe and comfortable trajectories as the

current situation might change faster than the time required to obtain the new trajectory.

In this thesis, we propose to use instead a reactive decentralized collision avoidance strategy

to maximize the comfort of the trajectories for PAVs, flying in dense environments.

1.2.3 State-of-the-art in collaborative collision avoidance

In this section, the detailed state-of-the-art in collaborative collision avoidance is presented.

Research in collision avoidance is a widespread subject: numerous works have been done in

this field. For complete surveys, the interested reader should refer to [49], [50] and [51].

The collision avoidance procedure can be divided in two steps: collision detection and

avoidance maneuvers: each agent should acquire information about its neighbors, com-

pute whether they are a threat or not and perform an avoidance maneuver when the threat is

effective.

Collision detection should predict the future of the trajectory of detected agents. In [49],

four types of prediction are presented: nominal prediction, probabilistic prediction, worst-

case approach and flight plan sharing. With the small look-ahead time present in dense

environments and by using only local non-cooperative sensing, prediction can be performed

assuming a nominal (or probabilistic approach) where the agent is assumed to continue or

slightly alter his intent during the few next time steps.

Centralized collision avoidance (e.g. [52]) suffer from single point of failure (i.e. when the

central planner fails, the whole system fails). In addition, in dense and dynamic environments,

the time required by a central planner to compute collision-free trajectories and to transmit

them might be prohibitively high.

With local sensing and finite communication range, only an incomplete view of the environ-

ment is available to the agents. At any moment, they are only aware of actual or near-future

threats. Therefore, the use of decentralized global path planning approaches alone that com-

pute the whole path beforehand will eventually fail to provide a collision free path. Indeed,

they can not deal with future threats out of sensing range. In addition, they scale poorly as they

have an exponential complexity in terms of number of vehicles [48]. The approach should

therefore be able to react to the actual situation and optimize the trajectory only on a finite

time horizon related to the sensor capabilities and adapt to newly detected threats.
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This is why it is worth considering the use of decentralized reactive collision avoidance strate-

gies. A decentralized strategy is here defined as a strategy where each agent decides its trajec-

tory solely based on locally available information. The focus is made on such decentralized

strategies for the rest of this section.

In this section, decentralized collision avoidance strategies are classified by two parame-

ters: collaboration and cooperation. Strategies can by collaborative, i.e. agents agree on an

avoidance maneuver or non-collaborative where each agent performs avoidance maneuver

in an egoistic optimal way. Strategies can also be cooperative, i.e. agents actively exchange

information via a communication link or non-cooperative where only local sensing (e.g. radar,

cameras, LIDAR) is used.

Non-collaborative approaches require both agents to perform a full collision avoidance ma-

neuver assuming other agents to continue on their actual track and not reacting to the threat.

Therefore they overreact and escape from their optimal navigation route more than necessary.

On the contrary, collaborative approaches split responsibility between the two agents, each of

them performing half of the maneuver. Such approaches are appealing in order to minimize

the deviation and thus minimize the energy cost. Nevertheless, they are affected by failures

and agents not respecting the rules. As only half of the avoidance maneuver is performed, if

an agent does not react to the threat because of failure, a collision could occur.

Some collaborative approaches need to communicate in order to negotiate a common solu-

tion. The main drawback of such approaches is the scalability with respect to computation and

negotiation time. In general, the poor scalability of communication bandwidth can be stated

as major drawback for any method that needs to actively cooperate to find collision free trajec-

tories. The capacity of a communication network is defined in terms of maximal throughput,

which is the time average of the number of bits per second that can be transmitted by every

node to its destination [53]. The maximum throughput in a multicast scenario (i.e. where

nodes want to transmit to their m neighbors in a n nodes network) scales as 1�
m
�

n logn
[54] i.e.

the capacity decreases when the size of the population and/or its density increases. The total

communication flow scales quadratically with the number of agents [55] as well as the number

of iterations needed to find a solution [56]. Therefore, strategies that need to cooperate in

real time might fail to provide collision-free trajectories in dense environments before non

real-time cooperative strategies.

Collision avoidance strategies can compute avoidance maneuvers in a sequential way or con-

sidering all threats together. In [57], the authors show that in dense environments, sequential

conflict resolution leads to a domino effect. The domino effect occurs when the solution to

each new threat creates multiple new threats. This reaction continues like a domino chain in

the whole system. Therefore, in dense environments, avoidance maneuvers should take the

whole local situation into account.

In [50], a taxonomy for collision avoidance is proposed. Collision avoidance strategies are

classified in six different main categories. Here, the multi-agent approach has been included
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in the Game theory approach. Furthermore, only collaborative collision avoidance strategies

will be presented below. The categories are

• Rule-based strategies,

• Game theory strategies,

• Fields strategies,

• Geometric models,

• Numerical optimization.

1.2.3.1 Rule-based strategies

Rule-based strategies define common set of rules to be performed in case of agents on colliding

tracks. In [58], the authors propose an extension to Visual Flight Rules (VFR), which are applied

in General Aviation. Examples of such rules are: head-on approaching aircraft should both

turn right, right of way priority is applied when two aircraft are on colliding tracks and priority

is given to the aircraft which is the less maneuverable (e.g. gliders, balloons). These rules are

easy to implement, fast in operation, reliable in simple situations and no communication

between aircraft is required. However, in dense environments, collisions may occur not only

between two aircraft but also between any higher number of aircraft. Therefore rules should

be defined for all possible encountered scenarios which is prohibitively complicated.

1.2.3.2 Game theory strategies

Game theory strategies are based on negotiation between aircraft. Negotiation can be either

egoistic [59] or altruistic [23], [60], [61]. In the egoistic approach, each agent negotiate in

order to maximize its own benefit. In [59], deconfliction is performed by reserving some

space ahead of the trajectory. However, for agents that are willing to cooperate, the egoistic

solution consisting in maximizing their utility function leads to pessimistic solutions. Altruistic

approaches are based on satisficing game theory [62]. Agents open the negotiation set by

considering not only their optimal solution but also all "good enough" solutions. In addition,

the decision making process is implemented as a situational altruism. Agents are willing to

sacrifice their own interest to the other’s desire if it can benefit to the whole group (altruism)

and if and only if the other is taking advantage of it (situational altruism). Aircraft in a given

range are ranked by priority, aircraft close to their goal, having higher delays and flying since a

longer time, have a higher priority. Conflicts are solved by ranking: lower ranked aircraft will

perform more maneuver than higher ranked ones. In [63], the authors extend this work to deal

with severe weather conditions, obstacles and no-flying zones.

In [55], a Multi-Party collision avoidance strategy (MPCA) is presented. When two aircraft are

on colliding track, they first try to solve the conflict together. If the solutions are either to alter
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dramatically their flight plan or only slightly but collide with other aircraft, they can ask to

those aircraft to join a group which tend to search for a solution together. New aircraft can join

the group as soon as they see a potential collision with the group or that they are needed to

seek for new solutions. In [56], efficiency is defined as the ratio of nominal flight plan length

to the sum of flight trajectory length after application of conflict resolution. The authors

show that their approach leads to better efficiency than the satisficing approach previously

explained. However, the group size during the conflict resolution phase is not limited and

could potentially lead to communication bandwidth saturation in very dense environments.

The main drawback of such approaches is the scalability with respect to computation and

negotiation time. The total communication flow scales quadratically with the number of

agents [55] as well as the number of iteration needed to find a solution [56]. Therefore,

strategies that need to cooperate in real time will break down sooner than non real time

cooperative strategies for increasing densities.

1.2.3.3 Fields strategies

Fields strategies are inspired by particle physics. Agents are modeled as positive charges

which are "attracted" by their goal modeled as negative charge. Agents are "repulsed" by

other agents. Each agent builds a local artificial potential field induced by other agents and

its goal. The controller tends to move the agent towards the minimum of potential. In [64],

the authors use an ellipsoid centered in front of the aircraft to generate a higher force in front

of the aircraft to better protect the front of the aircraft. Rules are added to solve special cases

such as head-on encounters. To overcome the limited sensing capability of each agent and

the resulting incomplete view of the environment, [65] designed a control strategy based on

magnetic fields. Instead of using artificial potential fields, the author consider each agent as a

magnet. Agents measure the total magnetic field locally and use the gradient of the magnetic

field to steer towards its goal while avoiding collisions. Agents will sense the global field and

thus have a global view of the environment. As a magnetic field decay with the distance, only

near neighbors have a significant influence and can be used to perform collision avoidance.

Such strategies need to know the environmental magnetic field in order to consider only the

influence of neighbors and goal and therefore is not suitable for real-world application as the

cost of mapping 3D real-time magnetic field all around the world is prohibitively high.

In general, Fields strategies are non-collaborative strategies where each agent computes full

avoidance maneuver. In addition, the two main drawbacks of Fields strategies are the difficulty

to take into account acceleration constraints of the agents and the incompleteness of the

method i.e. reaching the goal can not be guaranteed. Indeed, the potential field could require

to perform infinite acceleration in order to follow the minimum and avoid a collision.
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1.2.3.4 Geometric models

Geometric models compute the solution based on the geometric relationship between two

agents or more. In this section, the focus will be given to velocity based approaches. In velocity

based approaches, the problem is solved in the 3D velocity space instead of considering the

3D space. In [66], Fox introduces the Dynamic Window approach. The space of velocity is

constraint to the set of all velocities that can be reached under the dynamics of the agent in a

given time window. This set is later constrained to the velocities that are safe with respect to

obstacles. A velocity is considered as safe if the agent can stop before the obstacle. In [67], the

authors extend this work to dynamic obstacles.

In [68], Fiorini introduced the concept of Velocity Obstacle. The velocity obstacle defines the

set of all velocities of the agent that would lead to a collision with another moving obstacle. To

avoid collision, the agent should choose a velocity outside this set. The set of non colliding

velocity is reduced to all dynamically reachable velocities. By ignoring the decision capability

of the other agent, velocity obstacle collision avoidance lead to oscillations. In [69], the authors

propose a Reciprocal Velocity Obstacle approach to overcome this issue. They assume that all

agents have the same collision avoidance strategy where each of the possibly colliding agents

are responsible for half of the avoidance maneuver. In [70], they show a sufficient condition

to ensure collision free navigation between multi-agents and called their approach Optimal

Reciprocal Collision Avoidance (ORCA). They later improve their approach by considering

acceleration constraints [71] and uncertainties in agent’s dynamics and sensing [72]. They

showed collision avoidance in simulation for 128 quadrotors in 3D [72]. This strategy has

since been extended to deal with accelerations limits [71], arbitrary linear dynamics [72],

non-holonomic robots [73] or enforcing C n continuous control sequences [74].

Such approaches are appealing even if these strategies assume collaboration of other vehicles

and could fail to provide a collision-free trajectory if a vehicle do not collaborate following a

sensor failure for instance. This particular case could be handled separately.

1.2.3.5 Numerical optimization

In [75], a neural network is used to perform collision avoidance with dynamic environment

without learning. Their approach is purely reactive and is therefore computationally efficient.

This approach seems appealing at first sight but the hidden mechanism of the controller

where it is difficult to understand exactly what is happening, makes it indefensible in front

of eventual passengers. In addition, if the problem becomes more complicated such as in

the myCopter scenario, the convergence of the optimization process of the neural network is

not guaranteed. If no solution is found, there is no way to understand why and choose a new

direction of search. Therefore, neural network approaches have too many drawbacks to be

used in the myCopter scenario.

In [76], the authors compare three optimization algorithms: a genetic algorithm (GA), a
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differential evolution algorithm (DE) and a particle swarm optimization algorithm (PSO). Each

algorithm is performed as online planner, minimizing the deviations from the initial path and

avoiding loss of separation. They test the three approaches on two different scenarios. The

algorithms were stopped after 120′000 evaluations of the cost function. In these scenarios, the

PSO performances are below the two others especially when the number of agents increases.

The main drawback of these strategies is the need to perform a large number of evaluation of

the cost function. In a dynamic environment, the constant situation changes force to restart

very often the computation. In addition, the time to react is small and does not give the time to

the strategy to converge and give a result. Therefore, such strategies will fail to give a solution

before reactive strategies.

1.2.4 Collective behavior

To alleviate the challenge of reactive decentralized collision avoidance strategy, we take in-

spiration from Nature. Evolution came up with a simple solution to navigate safely in dense

environments. In Nature, flocks of birds [77], school of fishes [78], swarms of insects [79],

human crowds [80] and bacteria [81] are examples of collective behaviors emerging from

local control and local sensing. As stated in [82], it can be observed that large-scale behaviors

coming from self-organization process emerge spontaneously from only local interaction and

local sensing.

In this section, flying collective behaviors is first presented, then human collective behavior,

i.e. crowds.

1.2.4.1 Flying collective behaviors

In flocks of birds, emerging global behaviors can be observed from local rules and local

knowledge of the environment without any central entity deciding for the whole.

Flying in groups by decentralized control strategies can be divided in three main formation

structures: the Leader-Follower (or Leader-Wingman) approach [83], [84], the Virtual leader

approach [85] and the Behavior approach [86]–[88].

In the Leader-Wingman approach, one agent is defined as being the leader of the formation

and all other agents are followers and are required to maintain a given distance and position

with respect to the leader and neighbor agents. In such approach, each agent should be able

to track precisely their own position as well as leader position and intent in order to maintain

a rigid formation. This pseudo-rigidity makes collision avoidance a hard task especially in very

dense environments as the formation has to react as a whole and error propagation makes

rear agents react poorly to new dynamic threats.

In the Virtual leader approach, each agent tracks the same virtual leader that can either
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be a real agent or a virtual point. Agents are not required to maintain a relative distance to

neighbor agents and thus overcome the drawback of error propagation of the Leader-Wingman

approach. Nevertheless, as agents do not track neighbors, they might not be able to avoid

collisions. Furthermore, a central entity should designate the leader as well as provide the

trajectory of the Virtual Leader leading to communication issues as well as decision processes.

The needs of central entity and communication are major drawbacks of such approaches.

Behavior approaches are inspired from Nature where flocks of birds tend to position them-

selves only by "sensing" local neighbors. Agents tend to position themselves with respect to

local neighbors and recreate a given formation geometry. This approach doesn’t suffer from

single point of failure and is able to cope with dynamic changes of the environment.

Swarm intelligence has been widely used in Robotics. Thanks to scalability and redundancy,

low cost platforms can be used together to perform higher level tasks such as establishing com-

munication network [89], [90], formation flying (leader-follower approach) [91], migration [92]

or sensor network [93].

However, all approaches tend to fulfill common higher level tasks for the whole swarm and do

not tackle the problem of agents with individual goal as this is the case with PAVs flying each

to its own defined destination.

1.2.4.2 Crowds

Humans moving in a crowd is a good example of navigation in very dense environments with

individual goals.

Crowd simulation models are separated in two categories: macroscopic and microscopic point

of view. In the macroscopic point of view, the agents are aggregated and controlled by a higher

central entity. Such approaches are designed for simulation purposes only and are therefore

not suitable for our problem. Microscopic point of view computes trajectories and collision

avoidance in a decentralized manner. State-of-the-art in microscopic crowd simulation is

presented in this section.

In [94], a concept of social force is introduced for crowd simulation. Agents are modeled as

Newtonian particles navigating towards their own goal. Each agent is under the influence of

two kinds of virtual forces named social forces: an attractive force tends to move the agent

toward its goal and a repulsive force from other agents located below a maximal influence

distance. Experimental psychological studies proved that potential based approaches can

modeled human collision avoidance with good fidelity [95], [96]. Upgraded versions of this

work exist [80], [97], [98]. However, this approach suffer from the same drawback as the Fields

strategies presented in Section 1.2.3.3 i.e. it is an incomplete approach that deals poorly with

dynamic constraints of the agents.

In [99], the Principle of Least Effort is used to compute movement of agents in large crowds.
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The Principle of Least Effort states that individuals tend to move towards their goal choosing

the mean that lead to the least amount of perceived effort. This Principle is modeled as an

optimization method to compute a biomechanically energy-efficient path. Each agent tries to

minimize its total biomechanical energy which is related to the agent’s velocity i.e. each agent

tries to keep the velocity that has the least cost.

In [100], navigation of agents in a crowd is divided in two steps: first each agent computes

their path to their goal by using a global planner building a roadmap of the environment, then

at each time step, agents compute their preferred velocity in order to move towards their goal

and Reciprocal Velocity Obstacle (RVO) [69] strategy is used to avoid collisions with neighbor

agents.

RVO is a geometric based model, which computes the solution based on the geometric rela-

tionship between the agents. The interested reader can find a detailed analysis of geometric

based models in Section 1.2.3.4. RVO solves the problem in the 3D velocity space instead of

considering the 3D space. It first computes the velocity obstacle set, defined by all velocities

of the agent that would lead to a collision with another moving obstacle. To avoid collision,

the vehicle should choose a velocity outside this set. By ignoring the decision capability of

other agents, velocity obstacle collision avoidance would lead to oscillations. Therefore, RVO

assumes that each of the agents uses the same strategy and split the avoidance maneuver

equally between the agents. Later, in [70], they show a sufficient condition to ensure collision

free navigation between multi-agents and called their approach Optimal Reciprocal Collision

Avoidance (ORCA).

Such approaches can be adapted to our scenario where agents want to optimize their comfort

i.e. minimize the amplitude and the number of accelerations.

1.2.5 Human-swarm interaction

Studies in Human-Swarm interaction aimed to decrease the workload of the operator, focuses

on the accomplishment of a particular task (e.g. radiation source localization [101] or foraging).

However, they offer little discussion of more general requirements (e.g. monitor, control and

safety) that are not task specific. Furthermore, these promising schemes were always tested in

controlled environments such as indoor experiment rooms or in simulation [102], [103].

This drives the need for an analysis of the requirements for a Ground Control Interface (GCI)

in order to be used to monitor, control and guarantee safety in experiments with multiple

drones in an uncontrolled environment.

Building and exploiting a swarm of drones is a challenging task. One require a drone that was

specially designed such that it require a minimal time to mount, (re-)program it and repair it.

The design should encompass not only the mechanical parts but also the software part. In this

thesis, we focus on the software development side and propose an autopilot framework that is

tailored for multi-drone research experiments.
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1.3 Main contribution and thesis organization

The main novelty of this thesis is the use of a reactive decentralized collision avoidance strategy

to incorporate the physiological comfort for passengers traveling in Personal Aerial Vehicles

instead of a path planning strategy. Our approach is inspired by crowd modeling, where

multiple decision-making entities travel in dense environments, having each its individual

goal. In addition, a framework was developed to enable outdoor experiments with multiple

small drones. This framework is composed of an autopilot and a ground control interface,

both tailored for easy multi-robot operations. The collision-free strategy was validated through

extensive simulations as well as realistic outdoor multi-drone flight tests using the proposed

framework.

The thesis is organized as follows:

• Chapter 2 presents the design of an autopilot framework that was developed around

the robot used to perform mid-air collision avoidance in outdoor environments. The

framework tends to speed up the theory to experiment iterations by using an architecture

that can be rapidly and easily customized to the user/developer needs. Design choices

are validated using different application scenarios. Several projects using the framework

are finally presented.

• Chapter 3 presents first the set of features that a Ground Control Interface (GCI) must

incorporate to allow monitoring, control and safety of outdoor missions with a swarm

of Small Drones (drones of less than 1kg ). Then, the extension of a widely used GCI is

presented, incorporating those features and its usage is demonstrated on a swarm of

10 Small Drones flying outdoor. We compare the influence of deployment and landing

strategies on the maximal size of a swarm of Small Drones, given their battery endurance

and the expected mission duration. Similarly, we compare the maximal mission time,

given a fixed number of robots and their battery endurance. In both cases, we show that

a better performance can be achieved using our GCI.

• Chapter 4 presents a reactive decentralized collision avoidance strategy that incor-

porates passenger physiological comfort based on the Optimal Reciprocal Collision

Avoidance strategy [70]. We study in simulation the effects of increasing PAV densities

on the level of comfort, on the relative flight time and on the number of collisions per

flight hour and demonstrate that our strategy reduces collision risk for platforms with

limited dynamic range. Finally, we validate our strategy with a swarm of 10 quadcopters

flying outdoors using the autopilot and the ground control interface described in the

previous chapters.
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1.4 Publications

Part of the work presented in this thesis was published in the following publications:

• N. Dousse, G. Heitz and D. Floreano, "Extension of a Ground Control Interface for

Swarms of Small Drones", in Artificial Life and Robotics, vol. 21, pp. 308–316, 2016.

• N. Dousse, G. Heitz, F. Schill and D. Floreano, "Human-Comfortable Collision Free

Navigation for Personal Aerial Vehicles", in IEEE Robotics and Automation Letters. vol. 2,

no. 1, pp. 358–365, 2017.

Following paper is under submission for possible publication:

• N. Dousse, J. Lecoeur, B. Huber ,G. Heitz, F. Schill and D. Floreano, "MAV’RIC, a modular

framework for research on drones", in International Journal of Micro Air Vehicles. Under

submission.
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2 MAV’RIC, a modular framework for
research on drones

WE present MAV’RIC, an open-software and open-hardware framework aimed at fast

prototyping for research application on Small Drones. We present the software ar-

chitecture, which allows fast theory to experiment iterations. The framework uses a modular

approach that allows easy and fast configurability. We provide multiple validation examples of

our design choices. We explain how the framework was used successfully in several research

projects. This framework will be then used in Chapter 4 to validate the proposed collision

avoidance strategy.



This chapter is based on the following publication:

N. Dousse, J. Lecoeur, B. Huber, G. Heitz, F. Schill and D. Floreano. "MAV’RIC, a modular

framework for research on drones". Under submission.



2.1. Introduction

2.1 Introduction

Small drones are becoming more and more widespread in commercial applications such as

aerial mapping, cinematography, inspection of buildings, search and rescue, package delivery

or leisure flight.[104]

With an increasing ease of use, small size, smaller prize, and high flight speed, drones are

often preferred in situations that previously required manned aircraft. For aerial mapping and

filming, they can be deployed over remote places for a fraction of the cost of a piloted aircraft.

In the context of search and rescue, drones extend the field of view of rescuers, and quickly

provide them with situational awareness in emergency scenarios. This allows to detect victims

to rescue in avenues where it would be dangerous to send people. Researchers provide drones

with new capabilities on a regular basis. These new capabilities are on the one hand enhanced

autonomy [105] and on the other hand clever mechanical design. [106], [107] This leads to

increasing commercial applications for these small drones. For instance, industrial inspection

of pipes and chimney is now done by drones, whose mechanical design was specially adapted

to flight in clutter environments.

The enhanced autonomy allows now a single operator to monitor, control and operate a swam

of robots, leading to a more efficient and a faster completion of tasks [108] such as mapping,

establishment of ad-hoc communication network [109] or following ground user for filming.

However important challenges are still to be tackled. As drones become more autonomous and

perform actions without explicit manual commands from the operator, more autonomous

features need to be developed in order to increase the safety of drones. Drones should

be capable of navigating in unknown environments and detecting and avoiding static and

dynamic obstacles autonomously.

In order to operate any type of drone, a minimal set of features is required. In addition to the

mechanical and electronic parts, this set is composed of an autopilot, a ground control station

and a communication protocol to monitor and control the drone. In this work, we understand

the autopilot as being solely the software running on an electronic board. In contrary to the

ground control station and the communication protocol, the autopilot is highly dependent on

the type of drone and on its application and is the main focus of this work. If the user wants to

adapt the code, going for instance from a quadrotor to a fixed wing or to a multi-modal drone

capable of performing multiple different locomotion modes, he will have to change entirely

the flight controller. Therefore, having an autopilot where the flight controller can be easily

replaced by changing a single block of code is an advantage that shorten the time to adapt the

autopilot to its new drone.

Different operational requirements imply different software features. It can be challenging

to accommodate every potential requirement in a single, ready-to-use, monolithic autopilot

even if most of the code will be reused For instance, the requirements for a vision based

collision avoidance strategy differ much from the ones for a autonomous outdoor navigation
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strategy. In the first case, the autopilot will require a large computing power as in the second

case, data fusion between different sensors will be the main focus of the code. Therefore,

having an autopilot software that can run both on a lightweight micro-controller or a more

powerful Linux-based computer is an advantage that shorten the time required to prepare

an experiment and collect data. The autopilot should allow fast and easily customization

depending on the user/developer needs.

Code sharing between users and developers is one of the tools that allows faster theory to

experiment iterations. By sharing code, researchers avoid multiple implementations of the

same feature, and multiple corrections of the same bugs.

In conclusion, there is a strong need for reliable and ad-hoc autopilots that allow fast proto-

typing and reliable experimentation.

In this work, we present the MAV’RIC framework, an open-source software library to build

autopilots for small drones. MAV’RIC framework is designed with a focus on modularity,

configurability and explicitness of the code. It is aimed for researchers requiring a large

freedom to meet their specific requirements. Even if MAV’RIC is primarily a software library, it

provides ready-to-use sample drone projects. It guaranties a clear separation between library

code and project code. Library code is shared between research projects, and project code is

specific to a particular application. As a consequence, the researcher can write his or her own

application by importing parts of the library in the project code without interfering with other

researchers. In addition, he or she can develop new features and incorporate them into the

library such that the whole group benefits from the development.

This chapter is organized as follows. In Section 2.2, the potential design choices are presented.

Section 2.3 presents the design principles of the MAV’RIC framework. In Section 2.4, selected

modules of the MAV’RIC framework are presented, which follow the design principles. In

Section 2.5, we show multiple validation examples of our design choices. User guidance to use

the framework are given in Section 2.6. In Section 2.7, a quadrotor designed for multi-drone

experiments is presented. Finally, concluding remarks are given in Section 2.8.

2.2 State-of-the-art

Many autopilot softwares are now available both in form of open source projects and com-

mercial software. Here, we will focus on open source software, since access to the code is an

important feature for research platforms as well as education projects. Being able to view

and modify the code allows the user to adapt the project to unconventional platforms and

to fully control the vehicle beyond basic functionalities. In this section, we first present the

history behind this project. As the aim of this work is to propose a different new autopilot

framework, we deliberately avoid the comparison with existing frameworks as choices in

comparison criteria would be subjective. We will list requirements of an autopilot for research

and education platforms and present the solutions implemented by existing projects.
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2.2.1 History of the project

This project was started at the beginning of the myCopter project, which was presented in

Section 1.1.1. At that time, open-source autopilot frameworks for Small Drones were not as

popular and reliable as today. Therefore, it was decided at that time to go for our own solution.

After some time, there were some strong needs in the lab for an autopilot that everyone could

use. The framework was therefore extended and refined to meet all the different requirements

of the lab members. This lead to the development of the framework presented here. Some of

the projects that used this framework are presented here below, in Section 2.5.5.

2.2.2 Supported Vehicle Types and Configurations

Many different conventional and unconventional autonomous mobile robots are developed

in academia. To facilitate the reuse and exchange of source code between different robots and

scenarios, an autopilot should be easily adaptable to different configurations. This includes

different ways of locomotion, different methods of control and different electronic hardware,

including sensors, actuators as well as the computational unit. Many existing platforms

focus on fixed-wing and multicopter platforms, while others keep their software as generic as

possible.

The Paparazzi UAV autopilot software [110] allows the user to configure the autopilot to his

platform through a XML file describing the robot. This files contains information about the

electronic components as well as their configuration, allowing the user to adapt to a specific

platform without modifying code.

The ArduPilot framework has four different projects for different: ArduCopter for multicopter

and helicopters, ArduPlane for fixed wing aircrafts, APMrover2 for ground vehicles and boats

and AntennaTracker for antenna trackers. While there is an effort to share elements between

the project, there are considerable differences between vehicle types. Dividing the framework

in different projects has the advantage of the code being separated for different vehicles and

hence being less complex.

The PX4 autopilot framework has a unified code base allowing to seamlessly port code between

platforms. A new airframe can easily be adding a new configuration file which can contain

changes such as using different modules, parameter values or sensors.

2.2.3 Supported Computational Hardware

Autopilot boards with different levels of complexity are available. Boards range from powerful

multi-core computers capable of performing complex high level tasks such as image pro-

cessing to simple micro controller boards. Many autopilot software were originally designed

for specific boards. However, many of them were ported to autopilot boards and even to off

the shelf end products such as Parrot’s Bebop quadrocopter. While most boards share the
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same functionalities and similar components, a main difference is the size of the board as

well as the number of connectors and types of communication channels. In addition to the

board running the stabilization, many autopilots offer the possibility to connect companion

computers where high-level code is executed. Running high-level and low-level software on

separate chips increases the safety since in case of a problem in the high-level software, the

low-level software can continue to run.

2.2.4 Operating Systems

On one hand there are autopilots that run on a real-time operating system (RTOS) while

others run on a bare metal, i.e., without an operating system. An RTOS can handle multiple

concurrent threads, allowing different tasks to be executed concurrently. Other typical features

of RTOSes include advanced file management and convenient means of remote interaction

during runtime and separation of tasks into standalone applications. RTOS features typically

come at the cost of increased code size and complexity. The PX4 [111] autopilot runs on a

NuttX RTOS, giving it convenient features, such as readily available drivers, scheduling and

resource sharing.

2.2.5 Scheduler

Many tasks need to be executed on a autopilot, such as stabilizing the vehicle, communicating

with a ground control station or a remote control, and handling a mission. While some tasks

need to be executed occasionally, many tasks need to be run periodically. A scheduler is

managing when to run which tasks. Schedulers are either cooperative or preemptive. In

cooperative scheduling, a task is run until itself decides to stop. In preemptive scheduling, the

execution of a task can be interrupted either by an external signal, such as a sensor reading or

by the scheduler. Hence, preemptive scheduling allows for longer tasks to be run without the

risk of delaying time critical tasks such as the stabilization loop. However, this adds complexity

to the system and requires careful implementation of resource sharing to avoid problems

due to concurrent access to data from different tasks. RTOS based autopilots typically take

advantage of the systems underlying preemptive scheduler.

2.2.6 Abstraction and Modularity

When modifying an autopilot software, it is important for developers to contain the scope of

the modifications. Modular software design approaches allow to exchange or rewrite only the

necessary modules and leave the rest of the code with as little changes as possible. In addition

to allowing faster modifications, this also means that the customized code and the original

code will remain similar. Hence, porting new features or bug fixes from the original code to the

customized code is simpler. A modular design allows for easier porting of the code to different

platforms.
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An important abstraction principle is the separation between hardware dependent and inde-

pendent code. The hardware dependent code containing drivers for different components

such as sensors, actuators and buses is commonly referred to as Hardware Abstraction Layer

(HAL). Having a common interface for drivers allows to keep most of the code hardware

independent. Autopilots that rely on OS or RTOS may use an HAL that is provided by the

operating system, it is the case for PX4 which uses the HAL of NuttX. Other projects provide

their own HAL implementations, for example Paparazzi.

In addition to separate hardware dependent and independent code, separation of the software

into different modules such as attitude control, mission planning and communication. Having

predefined interfaces for such modules allows to replace them with custom modules. A

standard way to exchange modules is by directly modifying the code that uses the module.

The Paparazzi autopilot allows exchanging modules by modifying a configuration XML file.

The chosen modules are then incorporated into the source code. The PX4 autopilot runs

modules as separate applications. This allows to start, stop and exchange modules even in

flight. The different modules use an asynchronous publish and subscribe communication

protocol called uORB to exchange information such as sensor measurements.

Using software paradigms such as inheritance and templates allow to reuse a maximum of

code for different modules.

2.2.7 Communication

Communication with a user or a software on the ground is an important feature for almost

all UAV projects. It may be used to send commands such as waypoints from the ground to

the drone or for the drone to send information about its state to the ground. A commonly

used protocol is the MAVLINK protocol, a lightweight marshaling library for micro aerial

vehicles, developed in relation with PX4.[112] This communication protocol offers a large

number of commands and messages. It is supported by many autopilots and ground control

stations. Using a widely used protocol allows autopilots to use various existing tools, such

as ground control stations and message relaying tools. While many autopilots are based on

MAVLINK to benefit of various tools developed for this protocol, some autopilots have defined

their own protocol. This allows them to have communication tailored to their needs. Many

autopilots can be connected to an onboard computer that is used for high-level tasks such as

image-processing or mapping of the environment. Such companion computers typically use

the same protocol to communicate with the autopilot. In a multi drone scenario, additional

communication might be required between drones. Interdrone communication might use the

same channel and protocol as the communication to the ground.
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2.2.8 Simulation

Simulations allow features or settings to be tested without the risk of damage. Furthermore,

preliminary tests can be executed for many settings and under many environmental condi-

tions. Different simulation setups have been proposed and implemented. Most autopilots

provide a software simulation where both the autopilot code as well as the physics simulation

are run on a desktop computer.

To test the code directly on the target hardware, many available autopilots offer a Hardware In

the Loop (HIL) simulation. In this configuration, the physics simulation is run on a computer

while the autopilot code is run on the target hardware. Measurements of simulated sensors are

sent from the simulation to the autopilot and motor commands are sent in the other direction.

2.2.9 Support & Collaboration

Many autopilot frameworks have an active community of researchers, companies, and hob-

byists that contribute improvements, bug fixes and new features. To fully benefit from their

communities, large projects require a good organizational structure as well as suitable collab-

oration tools. A common collaboration platform is Github. It allows to exchange source code,

discuss problem and features and to track changes. Having many supporters and developers

allows for fast feature development as well as fast debugging. ArduPilot, for instance, has over

250 registered contributors on Github.

2.3 Design principles

In this section, we describe the architecture of the MAV’RIC software framework. This frame-

work is a library which provides the user with modules that can be linked together and

configured in the project specific user code. This allows to quickly create an autopilot tailored

to the user’s needs without modifying the library. In addition, any further development and

improvement can be directly inserted in the code by every developer via e.g. a version control

software such as git.

2.3.1 Modules

The software is organized in different modules. Every part of the code is a module implemented

as a class, from low level drivers (e.g. UART, I 2C ) to high level logics (e.g. state estimation, PID

controller). The code of each module is consistent and is composed of four standard elements:

• A class constructor with explicit dependencies and a configuration structure given with

a default configuration.

• An initialization function, initializing all variables values of the module.
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• A configuration structure, encapsulating all the configuration values of the module.

• An update function: being the core of the module and performing the aim of the module

(e.g. reading sensor value, estimating the position of the robot).

In order to use a specific module, the user follows three steps.

1. First, the constructor is called in the constructor of the user specific code with the

default or a user defined configuration structure and with the explicit dependencies of

the module.

2. Then, the initialization function is called.

3. Finally, the update function is added as task in the scheduler.

The modularity provides easiness of use. It is indeed fast to modify and/or to replace any mod-

ule. One just has to repeat the three steps previously explained in order to replace any module

by another one. The configuration of any module can be modified in the user specific code

and does not interfere with other users configurations. Furthermore, explicit dependencies

between modules and predefined module code structure facilitate the understanding, the

cleanness and the safety of the code.

2.3.2 Abstraction Layers

The architecture of the MAV’RIC framework is presented here below. It is composed of five

layers (Fig. 2.1), which are presented from top to bottom.

The autopilot layer is responsible for all the high level logical components such as state

estimation or navigation.

The sensor and actuator interface layer is an abstract interface for sensors and actuators. This

layer is therefore not specific to the sensor or the hardware used.

The driver layer implements different sensors from its abstract interface. This layer is sensor

specific but the drivers could be used on different hardware architectures.

The Hardware Abstraction Layer (HAL) layer is an abstract interface for low-level drivers

linking the drivers with the peripheral layer. It is hardware specific.

The peripheral driver layer implements the low level protocols (e.g. I 2C , PWM) to communi-

cate with sensors and actuators. For each peripheral driver, there is a dummy version of it that

can be used during an earlier development phase to test different parts with the whole code

compiling.
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Figure 2.1 – MAV’RIC five layer architecture, example for the gyroscope driver. The autopilot
has a gyroscope interface through its Inertial Measurement Unit (IMU) structure. Depending
on the board, this interface is linked to one of the implementation of a gyroscope sensor
(simulated, LSM330DLC or MPC6050). The real sensors require the I 2C communication
protocol to communicate with the microprocessor. This I 2C protocol is implemented as
an interface. Each microcontroller type has its own I 2C implementation. We provide an
implementation for the AVR32 and STM32 architecture as well as a dummy implementation
for earlier development phases.

This layered architecture ensures a high code reusability as the high level code is invariant of

the hardware used. In addition, development for new architecture is eased with the use of

dummy versions for peripheral drivers.

2.3.3 Architecture of MAV’RIC based projects

As the framework is mainly a library, the user needs to link the desired modules together to

create a project. A project is composed of two main components, namely a board and a vehicle

(Fig. 2.2).

First, a board is created with all its hardware components (peripherals & sensors) that expose

high level interfaces for sensors and actuators. Second, the vehicle is created by assembling

modules for high level functionality (state estimation, communication & telemetry, navigation

& control, task scheduler). Modules are created by the constructor of the board/vehicle. Then,

the initialization function of the board and of the vehicle initialize every module with their
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Figure 2.2 – Link between library code and user code. The module “MegaFly_32” is the board
component and the module “LEQuad” is the vehicle component of this project. The board
module is using the LSM330DLC gyroscope and the I 2C driver for the AVR32 architecture. The
vehicle module is using a PID controller and is linked to the board module via its interfaces.

desired configuration. Then, they add the downlink telemetry callback functions as well as the

variables that will be recorded by the onboard logger. Finally, the module’s task is added to the

scheduler.

After the initialization, the main loop is only composed of the update function of the scheduler.

The scheduler is then solely responsible to call every module at the correct frequency.
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Figure 2.3 – The two timing modes. a) absolute timing mode, the next execution of the task is
due starting from the previous scheduled time. b) relative timing mode, the next execution of
the task is due from the effective starting execution time.

2.4 MAV’RIC Software Framework

We present here a list of selected modules that are available in the library and describe our

design choices as well as configuration options for the user.

2.4.1 Scheduler

Instead of relying on a complex real-time operating system, the MAV’RIC framework uses a

simple task scheduler with two possible scheduling schemes: a priority-based and a round

Robin scheme. The priority-based scheme will execute first the tasks with a higher priority.

The round Robin scheme will simply execute one task after the other regardless of the priority.

The scheduler loop runs as fast as possible and executes each task at a specific time interval.

If multiple tasks should be executed at the same time, the order depends on the selected

scheduling scheme.

In addition to the priority scheme, the user can choose between two different task timing

modes. It can have an absolute period or a relative period timing mode (Fig. 2.3).

The absolute period timing mode computes the next time at which the task should be executed

from the previous requested execution time. The delay in the execution of the task has no

influence on the next execution time. However, if two tasks are due at the same time but one

has higher priority or is scheduled before in the tasks list, it will always be executed first and

the second one will always be delayed from at least the execution time of the first task.

The relative period timing mode computes the next execution time by taking the actual time

at which the task started to be executed the last time. With this timing mode, the execution

time of these tasks tend to scatter in time to minimize the overlap between two tasks. Indeed,

if two tasks are scheduled at the same time, one will be delayed from at least the execution

time of the other and the next execution time will be shifted accordingly. The main drawback

of this timing mode is that it cannot be guaranteed that a task with low priority will not be
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Figure 2.4 – The periodic telemetry task is called at constant time interval. It polls in its
registered messages the ones that are due at that time and sends the specified message. The
execution time of this task can vary a lot depending on the different update frequencies of the
messages.

delayed often and that its actual frequency will not be lower than the expected one.

We present the performance of this scheduler in the Validation section. Choosing the right

scheduler depends on the objectives of the user and is always a trade-off between complexity

and performance. We show that this simple scheduling system can reach satisfying results

while keeping the complexity quite low.

2.4.2 Communication

The open-source protocol MAVLink is used to exchange messages with the ground control

station, other drones, or with an embedded companion computer. Using MAVLink as com-

munication protocol offers compatibility of the MAV’RIC platform with widely used ground

control station software such as QGroundControl and Mission Planner, as well as with script-

ing tools like DroneKit. MAVLink protocol also allows the creation of new message types to

address custom needs, which fits perfectly our design objectives.

The MAV’RIC software framework provides users with a set of tools built on top the MAVLink

protocol to handle communication. The communication subsystem is divided into three main

modules: Periodic Telemetry, Message Callbacks, and Onboard Parameters.

The Periodic Telemetry module deals with messages sent periodically by the drone. Every mod-

ule of the autopilot can use the Periodic Telemetry module to register a message. This is mostly

used to inform an operator on the ground about the state of the UAV. For instance, as shown on

Fig. 2.4, a module implementing an attitude estimation filter provides the Periodic Telemetry

module with a function that fills a MAVLink message of type ATTITUDE_QUATERNION, along

with the period at which the message will be sent. After this initialization step, the message is

registered and configured to send telemetry messages with specific periodicity.

Nevertheless, the telemetry & communication part of each module is separated from the base

module such that MAV’RIC framework could be interfaced with any communication protocol
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or even without any communication at all.

We use callbacks features to send and receive messages from other entities of the system (e.g.

the ground control station or other robots). The autopilot can register a callback to read as well

as to send any MAVLink message. These callback can also be configured in order to filter out

message that are for other robots or to read every incoming messages. Registered messages

can be activated or deactivated on the go such that they could be either activated in a later

phase of the flight or in case of problems or deactivated to reduce the throughput on the

communication bandwidth. The update frequency of each message can also be adapted in

flight. It is therefore not required to reprogram the autopilot each time the telemetry settings

needs to be modified.

Onboard parameters are parameters which value can be modified in real-time. These parame-

ters are registered for each module in the user code. Their current value can be gathered or

changed by the operator by sending a MAVLink message.

To conclude, this module is a generic tool for communication used throughout the library and

configured through user code.

2.4.3 State Estimation

The state estimation module estimates the 6 degrees of freedom of the robot, namely the

attitude (i.e. orientation around the center of mass) and the position (i.e. location of the center

of mass in space). The state estimation is separated into two different estimators, one for the

attitude estimation and one for the position estimation. Different mathematical filters can be

used to estimate the state of the robot, some of which are already available in the library code

and briefly described here below.

The attitude of the robot is represented as a quaternion.[113] To estimate the attitude, the filter

can fuse sensor values from the gyroscope, the accelerometer and the magnetometer. Two

filters are currently available in the library, namely a complementary filter and an extended

Kalman filter. As for all modules, these two modules can be replaced by any other attitude

filter (e.g. Madgwick attitude filter [114] also available in the library code but not extensively

tested).

In the complementary filter, gyroscope values are integrated over time and corrected by

accelerometer and magnetometer measurements using a constant gain. In addition, the drift

of the gyroscope is compensated by estimating the gyroscope’s bias using the accelerometer

and magnetometer measurements. The complementary filter is computationally inexpensive.

It provides a good attitude estimation for static applications as well as for slowly moving robots.

Indeed, it assumes that the acceleration vector is always equal to gravity. Therefore, a drawback

for this filter is that if the measure of the acceleration is too far from gravity, a bad correction

could be applied and the filter can drift away from the real value as it uses a constant gain in

the correction step. In addition, in the case of a constant lasting centrifugal acceleration, the
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acceleration vector will not be aligned with gravity anymore and the orientation estimation

will diverge accordingly.

An extended Kalman filter (EKF) is a non-linear version of the standard Kalman filter.[115]

Instead of using matrices for state transition, it uses non-linear functions. A 7 dimensional

state vector is used in this EKF (i.e. the four-dimensional attitude quaternion and the three-

dimensional gyroscope bias). An EKF is computationally more expensive as matrices have to

be inverted. In order to avoid a 7x7 matrix inversion, the corrective step is applied sequen-

tially for the accelerometer and the magnetometer such that only a 3x3 matrix inversion is

performed at a time. It also allows for different update time for the two sensors. As the Kalman

gain is computed for each iteration depending on the measurements, outliers have less impact

on the estimation than with the complementary filter.

The module responsible for position estimation estimates both the 3D position and the

translational 3D velocity of the robot. Measurements from the accelerometer are interpolated

and are then corrected by the measurements of a GPS, a barometer, a down-facing sonar or a

motion capture system. An optic-flow based sensor can also be fused to estimate the velocity.

In this module, a complementary filter as well a Kalman filter are available in the library code

for position and velocity estimation.

2.4.4 Stabilisation

The stabilisation module is responsible for the control of the 6 degrees of freedom of the

platform, namely the orientation and the position. We provide a cascade of controllers

composed of multiple layers. All the controllers use the same data structure such that the

input and output to every controller are compatible. Therefore, in the cascade controller, the

output of one controller is the input of the lower level controller. Depending on the control

mode, the cascade can be entered at a different control level (e.g. velocity control, attitude

control). Once the cascade is entered, all the lower level controllers are run one after the other.

The cascade controllers provided in the library are both composed of three layers: a velocity

controller, an attitude controller and a angular rate controller. One can control a multi-rotor

type of drone and the other a fixed wing type of drone.

A working example of the cascade controller can be seen on Fig. 2.5. If the robot is operating in

attitude control mode, the input to the cascade will be an attitude command encompassed in

a more global common data structure. Then, the attitude closed loop control will output a rate

command that will be fed into the angular rate controller. Finally, the angular rate controller

will output torque and thrust commands.

Depending on the type of robot, the thrust and torque commands are mapped into motor

commands by a matrix. It is therefore rather straightforward to adapt the code to any kind of

control scheme (e.g. multi-rotor, fixed wing). The user has only to change the matrix mapping
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Figure 2.5 – A three layer cascade controller. The current input is an attitude command,
coming from a remote controller for instance. The output of the attitude controller is then
the input of the rate controller. The output of the rate controller is sent to the servos mix
module that takes thrust and torque command and transform it to servos (motors) command
depending on the mechanical design of the platform.

the torque and thrust commands to motor commands.

Each controller was implemented using a PID controller. The gain values are defined in the

configuration structure of the controller module and can be modified for each type of robot.

Users can add, modify or replace any layer of the cascade controller, the type of controller

used or even the whole cascade controller.

2.4.5 Mission Planner

The mission planner module is responsible for high level navigation logics. In this work, we

understand navigation as being the strategy that drives a robot from its current 3D location

to its 3D goal position. Two navigation strategies are available in the library code. First, a

“direct to” navigation strategy that drives the robot directly from its current location to its goal

location. This strategy is suited for a multi-rotor configuration as it sets a zero velocity when

the waypoint is reached. The second strategy is suited for a fixed-wing. It creates 2D Dubin’s

path to navigate between waypoints while ensuring a maximal turning rate at all time.[116] A

Dubin curve is characterized by a starting and an ending position with given directions. Under

certain conditions, these two points can be linked by intersecting at most 3 parts that can be

either a straight line segment or an arc of circle of given curvature.[117] As for other modules,

these two strategies can be replaced by any other navigation or path planning strategies.

In addition, different collision avoidance strategies are available in the library code. All

strategies were tested on 10 quadrotors flying autonomously in an outdoor environment.

The first strategy is a geometry based method, solving potential collision treats in velocity

space.[71] The second strategy is a human-friendly collision avoidance strategy suited for

dynamic environments where robots and human share a common airspace.[118] It is based
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on a heuristic model originally proposed to model pedestrian behavior. The third strategy is

based on modified Reynolds flocking rules, which is a model to perform flocking of a group

of robots.[119] The focus here was made in the collision avoidance part as well as robot with

individual goals. Finally, the last strategy is a potential-based approach where the shape of the

repulsive field is an ellipsoid centered in front of the vehicle in order to better anticipate the

future position of the vehicle.[64] The three last strategies were implemented during a Master

project.[120]

The framework is compatible with MAVLink waypoint protocol. The user can send, receive

and modify any waypoint in a flight plan.

The high level logic encompasses different modules enhancing safety to operate drones.

• Geographical fences: two level of geographical fences can be set such that a safety

behavior is triggered if the fence is violated. When the robot violates the first fence, it

will fly back to its takeoff location and wait for further orders from the drone operator.

When it violates the second fence, it will land at its current location.

• Low voltage: a threshold on the battery can be set such that below a given voltage, the

robot will land at its current location before running out of battery.

• Loss of connectivity with the base station: In case of loss of connectivity with the base

station during a predefined time interval, the robot will fly back to its takeoff location.

• Loss of connectivity with the remote: the robot will fly back to its takeoff location and

land there.

• GPS loss: if the connection breach is too long, the robot will land at its current location

while keeping a leveled attitude as without GPS, the horizontal position estimation will

drift apart relatively fast and thus cannot be used to control the robot anymore.

Behaviors when safety is endangered can be specific to the application, the environment and

the drone itself. The aim of this section was only to present our design choices based on our

experience and needs. They were successfully tested in a multi-rotor configuration as well as

in a fixed-wing configuration. These behaviors can be adapted to the user’s specific needs.

2.4.6 Sensors

Drivers for multiple sensors are available in the library folder. Each of this driver is imple-

mented using the corresponding abstract interface such that other drivers can be implemented

and rapidly integrated in the code. We present here below a list of chips and boards currently

supported by MAV’RIC framework.

Inertial Measurement Unit (IMU) is composed of an accelerometer, a gyroscope and a magne-

tometer. Drivers for the following chips are available: LSM330DLC (accelerometer and gyro-
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scope), HMC58831 (magnetometer), MPU6050 (accelerometer and gyroscope) and MPU9250

(accelerometer, gyroscope and magnetometer), The pitot tube driver for the MPXV7002 chip

is also available. The GPS driver for U-blox GPS are provided. It is compatible with the UBX

communication protocol. The motion capture system OptiTrack can also be used as mean

of absolute positioning system. Two barometer chips are supported, the BMP085 and the

MS5611. Optic-flow measurements can be gathered from the PX4Flow board. Distance from

ground can be measured by a MB1242 I2CXL sonar. Command from the ground can be re-

ceived via a Spektrum satellite receiver in 10 or 11 bits DSM2 configuration mode. Simulated

sensors are also available for the following sensors: accelerometer, gyroscope, magnetometer,

GPS, barometer and optic flow. Details of the implementation of the simulation is described

in a further section.

2.4.7 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is an interface linking drivers (e.g. accelerometer) with

a specific implementation of a hardware feature (e.g. I2C communication). This interface

allows to use the same sensors driver on multiple hardware architectures.

Two physical boards are currently fully supported by the MAV’RIC framework: A first autopilot

board called MegaFly_32 (Fig. 2.6) based on an Atmel AVR 32bit processor with 512KB of

flash memory and 64kb RAM, floating point unit and DSP instructions, and the commercially

available board Sparky2 based on a STM32 processor. The files required to produce the

MegaFly_32 board are available on the GitHub repository. Therefore, low-level interfaces are

available for AVR32 and STM32 architectures (serial communication (UART and USB), I2C, SPI

as well as PWM, etc.).

In a future version of the autopilot or if distance between chips increases, UAVCAN will

be used as reliability of I 2C communication becomes insufficient at distance over 25cm.

Implementation of UAVCAN exists but is not yet open-source available.

2.4.8 Simulated dynamics and sensors

Development and testing of new code is a challenging task. One can insert bugs in the new

code, in the interaction between different parts of the code or by neglecting involuntary

some combination of factors leading to a unspecified behavior. Simulation can speed up

the validation process as it can remove environmental factors such as wind, meteorological

conditions or hardware failures. It allows therefore faster and more convenient testing.

In a simulation, simulated sensors can replace physical components, allowing to control

environmental factors through a dynamic model. A dynamic model allows to simulate the

behavior of a vehicle by applying a set of dynamic equations. The state of the vehicle is

2https://github.com/TauLabs/TauLabs/wiki/Sparky2
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(a) Top view of the MegaFly_32 board. (b) Bottom view of the MegaFly_32 board.

Figure 2.6 – The MegaFly_32 autopilot board.

incrementally updated based on the actuator commands given by the autopilot. Simulated

sensors convert the simulation state to simulated measurements that are then fed into the

autopilot’s logic.

The user can conveniently replace one or multiple sensors with its simulated version in the

low level user code. Before feeding the autopilot with their measurements, these simulated

sensors make sure that the last simulation update step was performed and therefore, that the

simulation state is up to date. As a consequence the user does not need to specifically add a

task to update the simulation. Therefore, the high level user code as well as the library code

will not be affected by a transition from physical to simulated components.

The simulated sensors access the dynamic model through an interface, allowing the user to

choose between different dynamic models. The user can select one of the existing models (cur-

rently fixed wing or quadrotor vehicles), or implement a new model tailored to the dynamics

of his vehicle.

Having an interface for the dynamic model also allows to choose whether the computation

of the model is performed within the autopilot application binary, or the performed by an

external simulator. In the first case, starting a simulation requires only running a single

application, hence not requiring any additional communication between applications or

devices. Furthermore, it allows for the simulation to be run directly onboard of the vehicle,

as explained in the following section. In the latter case, the implementation of the dynamic

model interface only performs communication with an external simulator. This allows to run

more complex models at the cost of additional communication.

2.4.9 Simulation on Hardware and on Emulation

The Autopilot can be run either onboard or be emulated on a computer. On Fig. 2.7, we

represent the three ways of running the MAV’RIC autopilot. First, the autopilot runs on the

robot itself, drives the real motors/servos and reads the measurements of the real sensors.
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Second, the Simulation on Hardware (SOH) is represented, where the autopilot runs also on the

robot itself, but drives simulated motors/servos and reads the measurements from simulated

sensors. SOH is presented in details here below. Finally, the Simulation on Emulation (SOE) is

represented, where the autopilot runs on a desktop computer where it drives again simulated

motors/servos and reads the measurements from simulated sensors. SOE is presented in

details here below as well.

2.4.9.1 Simulation on Hardware

Typically, autopilots implement a hardware in the loop simulation (HIL), where the high

level code is run on the board itself and the dynamic simulator is run on a separate desktop

computer (e.g. on Gazebo simulator). We propose instead to use Simulation on Hardware

(SOH), where the dynamic engine is running directly on the hardware. As opposed to standard

HIL, no additional data are required to be sent between the ground control station and

the robot. The telemetry module sends the same amount of information from the robot

to the ground control station as when it is operating in reality. Hence, no overload of the

communication channel occurs and no communication delay are added for the simulation

of the dynamics. Only the sensors are replaced by simulated sensors (e.g. accelerometer,

gyroscope, GPS) and the motors’ effects are simulated in the dynamic engine. It is better to

run the code on the hardware itself to ensure equivalence between the simulated and the real

behavior in terms of communication.

2.4.9.2 Simulation on Emulation

In the Simulation on Emulation (SOE), the whole code runs on a computer. The commu-

nication between the ground control station and the robot is done internally (e.g. via UDP

protocol). On computers, a lot of debugging features are available that can speed up the

testing of high level modules. The simulation on emulation allows to test these modules faster

(no need to go to a test field) and with more debugging features. This simulation mode is

merely thought to test high level code such as navigation strategies.

2.5 Validation

2.5.1 Evaluation of real-time scheduler

We measure on the real hardware the performance of the two scheduling schemes as well as

the two timing modes on one of the tasks, namely the stabilization task. In a flying robot, the

stabilization task is the most important task. If the stabilization loop has too much delay, it

cannot be guaranteed that the robot will be stable in the air.

This task is therefore inserted first in the tasks list with the priority set to the highest value.

It is thus the first task to be executed in both scheduling schemes. In addition, the mission
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Figure 2.7 – Representation of three different boards. On the top, the robots reads the sensors
values and sends command to the motors following some logics. The robot communicates
with the Ground Control Station by wireless communication. In the middle, the Simulation
on Hardware (SOH) is represented. the simulation modules simulates onboard the dynamic
model of the robot and the sensors of the robots. The robot reads these simulated sensors
values and sends command to the simulated motors. The robots still communicates with
the Ground Control Station by wireless communication. On the bottom, the Simulation on
Emulation (SOE) is represented. The whole software runs on the computer. The simulation
is still part of the code and simulates the dynamic model as well as the sensors inputs. The
simulated robot communicates with the Ground Control Station by UDP packets.

planner task, the state machine update task and the communication task were simultaneously

running.

On Fig. 2.8, the median and standard deviation of the execution time for the stabilization task

is shown for the two scheduling schemes and the two timing modes. The execution time is

not affected by the scheduling scheme. As no concurrent task are running as it would be the

case with a RTOS system, tasks are executed until the end. No interruption occurs that would

lengthen the execution time of the task.

On Fig. 2.9, the median and standard deviation of the execution delay for the stabilization task

is shown for the two scheduling schemes and the two timing modes. The execution delay is

small compared to the period of the task, which was set to 4000μs (i.e. 250 Hz). The task is

therefore executed at a rather constant frequency, which is better for the stabilization of the

robot.

In all schemes, the performance of the stabilization task are sufficient to have a stable behavior
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Figure 2.8 – Mean and standard deviation of the execution time of the stabilization task in μs.
RR stands for Round robin scheme, FP for fixed priority, PA for periodic absolute and PR for
periodic relative.

for the robot, This holds obviously only if the controller gains are tuned properly.

2.5.2 Callback-based Inter-vehicle Communication

To demonstrate the ease of use of the callback-based communication module, we describe in

this section the procedure to implement mid-air collision avoidance between multiple drones

using the MAV’RIC framework and using wireless data exchange. The procedure of avoiding

collisions can be split into two tasks, namely collision detection and collision avoidance. First,

the robot should gather information from its neighbors in order to detect whether there is a

(or multiple) collision threat(s) or not. Then, if required, the robot should compute a change

of trajectory to avoid the potential collision(s).

Using the callback-based communication module previously described, the procedure to

enable wireless data exchange is fast. One should register two callbacks: one callback to

broadcast the required information (e.g. position, velocity) in a specific message and one

callback to listen to the incoming messages from neighbors with the same information, in

order to determine whether the neighbor is a threat or not. Then, if required, the strategy can

modify the goal velocity accordingly.

In this project, the goal was to implement the Optimal Reciprocal Collision avoidance (ORCA)

strategy [71] and perform experiments with 10 quadrotors flying outdoors. ORCA is a velocity

based collision avoidance strategy for multiple robots, that requires for the robot to sense peri-

odically the position and the velocity of each neighbor. The trajectory traces of 10 quadrotors

perfoming ORCA can be seen in Fig. 2.10.
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Figure 2.9 – Mean and standard deviation of the execution delay of the stabilization task in μs.
RR stands for Round robin scheme, FP for fixed priority, PA for periodic absolute and PR for
periodic relative.

2.5.3 Abstraction

We demonstrate here one of the advantages of our modularity by presenting the simple

procedure to go from an outdoor flying drone to a drone flying in an indoor environment with

a motion capture system (MOCAP). A motion capture system is a set of infra-red cameras that

provide fast and precise 3D positioning in a given indoor space.

Using the MAV’RIC framework, the procedure to go from a drone flying outdoor with a GPS

to a drone flying indoor with a Motion Capture system has only one step. One should only

replace in the user code the real GPS by a GPS_mocap. The GPS module is an abstract class for

any kind of GPS. A GPS_mocap module is simply one implementation of this abstract module.

The Motion capture systems sends MAVLink messages that are then decoded and used as if it

received a real GPS message to estimate its position. The position estimation filter correction

gained are adapted accordingly as the precision of a MOCAP is in the order of magnitude of at

most the centimeter, opposed to a few meters for a standard GPS.

2.5.4 Safety

Research on drone is currently leaving the unrealistic controlled environment of laboratories

and move towards realistic scenarios in outdoor environments. Outdoor multi-drone experi-

ments is a reality.[12], [13], [121] To operate multiple robots in an uncontrolled environment,

one should be able to monitor, control and operate the swarm safely.

In [122] and in Chapter 3, we present an extension to an existing Ground Control Interface

that allow monitoring, control and safety of outdoor missions with a swarm of Small Drones.
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Figure 2.10 – Trajectories of 10 real quadrotors flying outdoor with GPS, crossing a circle while
avoiding each other following the ORCA strategy.

Using this interface together with the MAV’RIC framework, we were able to obtain a flight

authorization from the Federal Office for Civil Aviation of Germany (LBA) to fly a swarm

of robots for a demonstration on a controlled airport in Braunschweig, Germany, with the

collaboration, and under the supervision of the Air Traffic Controller. This authorization shows

that our approach meets the expectation of the rule makers and that it could be applied in real

missions with Small Drones.

2.5.5 Research & Educational Projects

In this Section, we present different research projects using the MAV’RIC framework.

MAV’RIC framework was originally developed for the myCopter project. This European

project aimed to enable the technologies for Personal Aerial Transportation Systems. One

of the challenges is to ensure safe and comfortable navigation of flying vehicles in dense

environments. In order to validate collision avoidance strategies in real world conditions

and under real-time constraints, a quadrotor was developed aimed at multi drone outdoor

experiments (Fig. 2.11a). We were able to achieve collision avoidance for 10 quadrotors flying

outdoors and presented our results in [121]. As presented previously, the callback-based

inter-vehicle communication proved to be an easy tool to enable data exchange between

drones during the collision detection phase of the collision avoidance.

MAV’RIC framework is also currently used for education. The practicals for the Mobile Robots

class at EPFL are using the quadrotor platform. Students learn the steps needed to develop

an autopilot, going from sensors calibration, to an attitude controller and finally performing

a month long mini-project where they have to design an altitude controller or implement

new kind of controllers such as a fuzzy controller. The modularity of the code permitted to
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separate the required information for the student during each of the practical from the rest of

the code, allowing them to dig into the interesting code more easily and therefore easing the

teaching support.

Unconventional flying robots need an easy adaptable autopilot to meet the requirements of

their specific platform. The DALER project [106] aimed at developing a multi-modal flying

robot capable of flying like a plane, hovering like an multi-rotor and crawling on the ground,

using a minimal number of actuators (Fig. 2.11b). The robot used successfully the MAV’RIC

framework to performed closed-loop attitude control in hover mode, forward flying mode

as well as crawling mode. The major modification of the framework was the mapping of

rate control command to actuators command, going from a multi-rotor mapping to a servo

mapping.

The framework was then extended to a flying wing performing autonomous flight (Fig. 2.11c).

Therefore, the framework can now be used in a multi-rotor configuration as well as in a

fixed-wing configuration.

More and more companies are investigating drone carrying goods (e.g. Amazon, Google) as

delivery systems. One challenge of such application is to guarantee the safety of the persons

interacting with the drone as well as the good itself. The flying pumpkin (Fig. 2.11d) propose

an innovative design to alleviate this challenge. It uses a foldable cage that protect on the one

hand humans from the propeller and on the other hand, the good by bending and absorbing

the energy of the shock. This design leaded to a patent.[123] Once folded, the volume of the

drone is reduced by 92% such that it could be carried in a backpack.

Collision avoidance in cluttered and unknown environments is still a challenging task. One

can take inspiration from insects, which use optic-flow to avoid collisions, regulate speed and

center along corridors. There exist many ways on how optic flow is computed and linked with

directional commands. Such methods can be implemented and eventually validated on flying

robots. A Master thesis [124] implemented one of this model [125] using the MAV’RIC frame-

work. Two 180 degrees PX4-flow cameras were installed one on each side of the robot. Using

optic-flow measurements from these cameras, the robot was able to navigate autonomously

in a cluttered and unknown environment, while avoiding collisions with static obstacles3. This

project raised some interesting issues regarding the use of quadrotors combined with optic

flow approaches. As a quadrotor has to tilt in order to move in the horizontal plane, additional

optic-flow is measured corresponding to this maneuver. This decreases the interesting optic-

flow from nearby obstacles. Therefore, the Hexhog, a hexacopter with inclined motors, was

developed to overcome this issue. The inclination of the motors gives the robot the possibility

to move along its 3 translational degrees of freedom without modifying the attitude of the

robot. Since this platform can navigate without rotational movement, the perceived optic-flow

is only due to translational movements. Using this platform, the optic-flow induced by nearby

obstacles can be more easily extracted from the measured optic-flow.

3http://actu.epfl.ch/news/a-drone-that-gets-around-obstacles-like-an-insect/
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(a) A swarm of 10 quadrotors
using the MAV’RIC frame-
work in an outdoor environ-
ment.

(b) The multi-modal DALER
platform, a robot capable of
flying, hovering and crawl-
ing using a minimal set of ac-
tuators.

(c) A wing using the
MAV’RIC framework.

(d) The flying pumpkin. The
volume of the folded robot is
reduced by 92%.

(e) The quadrotor for optic-
flow collision avoidance. It
uses two PX4 flow cameras,
one facing each side of the
robot.

Figure 2.11 – Some of the projects using the MAV’RIC framework.

2.6 User guidance

In this section, we give some guidance for the interested user to start with MAV’RIC framework.

The framework is available to the community on GitHub4. Developers can clone the repository

and can merge their code to the main repository by creating pull requests. Information on

how and what to install are available on the project webpage5. Steps to set up the framework

(e.g. bind your remote controller, connect XBee modules together) are also available at that

location. Compiling, flashing and running the software were successfully tested on Linux,

Windows and Mac OS X. On Windows, the user can compile and flash the code via Cygwin6 or

Atmel Studio for the MegaFly32 board. On Linux, the user can directly compile and flash the

code by the command line and a Makefile specific to his project. On Mac OS X, the user can

similarly compile and flash the code by the command line.

2.7 LEQuad

LEQuad is the name of the quadrotor developed at the Laboratory of Intelligent Systems (LIS)

of EPFL. It uses the MegaFly_32 autopilot board previously described (Fig. 2.6) and is based on

4https://github.com/lis-epfl/MAVRIC
5http://lis-epfl.github.io/MAVRIC_Library/
6https://www.cygwin.com/
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the MAV’RIC framework.

The robot estimates its attitude by fusing data from an Inertial Measurement unit (IMU)

composed of a three axis gyroscope, three axis accelerometer and three axis magnetic compass.

The 3D position is estimated by fusing data from a barometric pressure sensor, an external

GPS receiver as well as a down-facing ultrasonic sensor. The main control loop operates at 250

Hz. Higher-level tasks are executed at lower frequencies depending on requirements.

A small RC receiver is plugged in to allow manual control and safety override (arming and

disarming the motors, switching control modes).

The airframe was specifically designed to be simple to build and easy to repair – this was

deemed important to be able to construct and maintain a fleet of 10 robots. The design uses

standard extruded carbon rods, connected by custom-designed parts that were 3D-printed

(selective laser sintering). Two carbon beams are composing the main structure of the robot.

They are linked to the autopilot’s support via a central piece of compressed open-cell foam to

dampen vibrations. Four additional carbon beams link the four motors giving a lateral rigidity

to the whole structure. Most parts connect by tight push-fit, except the battery cage and main

baseplate which are held together by 8 self-tapping screws. As there are no glued or permanent

connections, any part can be replaced quickly if damaged. The ease of construction allowed

us to build 10 airframes in 1 day with 2 people, after all parts had arrived.

The quadrotor can be operated under different modes, ranging from little to full autonomy.

The first mode is an attitude control mode where the pilot controls the attitude of the quadrotor

via a remote controller. When GPS is available, it can be switched to a velocity mode, where the

pilot controls the 3D velocity of the quadrotor (translational rate command mode). The pilot

can then activate a position hold mode, in which the autopilot will maintain its current 3D

position. The last mode is a fully autonomous mode, where the autopilot performs waypoint

navigation.

The MAV has a thrust-to-weight ratio exceeding 2:1 and is capable of fast multi-g accelerations

and high cruise velocities, which makes it suitable for outdoor operation. For autonomous

navigation in our experiments, we limited the horizontal cruise velocity to 3 meters/second

and the vertical rate to 1.5 meters/second. Note that the MAV will maintain the direction of

the commanded 3D velocity vector but adjust the magnitude to stay within these limits.

2.8 Conclusion

We presented the MAV’RIC framework, an open-source framework designed for fast theory to

experiments iterations.

We presented and motivated our architecture choices. MAV’RIC is based on a modular ap-

proach, where standard modules are linked together in project specific files. This modular

approach allows easy configurability as well as high percentage of code sharing between
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different users/developers. It rely on a simple scheduler scheme that proved to be sufficient to

obtain performances allowing high frequency attitude control.

Several projects currently using this framework were presented, each of which has its own set

of specific constraints. The design choices allowed all these projects to be based on the same

code with only minimal code that are specific to each of the projects.

2.8.1 Contribution

Contributions for this work come from different persons. This sections aims at describing the

contribution of each of them.

The electronic design of the MegaFly_32 board, the mechanical design of the LEQuad platform,

the HIL simulator, the scheduler was performed by Felix Schill. The simulation on emulation

was developed by Julien Lecoeur.

Development of low level drivers, the establishment of the design principles, flight testing and

the development of educational material were a common work between all developers.

I developed the safety features (e.g. geofences, GPS failure procedure, low battery procedure),

the extended Kalman filter used for attitude estimation, the tuning of the stabilization module

parameters the inter-vehicle communication, the navigation strategies and the automation

process (e.g. automatic takeoff and landing).
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3 Extension of a Ground Control Inter-
face for Swarms of Small Drones

ALTHOUGH the technology for fully autonomous swarms of robots is rapidly progressing,

the human operator will continue to play an important role during any swarming

mission due to safety, monitoring and control constraints.

In this chapter, we present the set of features that a Ground Control Interface (GCI) must

incorporate to allow monitoring, control and guarantee safety of outdoor missions with a

swarm of Small Drones (drones of less than 1kg ). A GCI is a wireless connected human-robot

interface aimed for the supervision and the control of Small Drones. In addition, we present

an extension of a widely used GCI for multi-robot handling, incorporating those features and

we demonstrate its usage on a swarm of 10 Small Drones flying outdoor. This extension aims

at decreasing the workload of the operator.

The chapter is organized as follows: in Section 3.1, motivations for this work are given. In

Section 3.2, we describe the important features of a GCI for simple and safe operation of

swarms. In Section 3.3, we present the most popular existing open-source GCIs for Small

Drones. In Section 3.4, we discuss their limitations and present an extension to one of the

GCIs aimed for multi-robot handling. Finally, in Section 3.5, we demonstrate its benefits and

usage on a swarm of 10 Small Drones flying outdoor (Fig. 3.1). Finally, we conclude our work

in Section 3.6.



This chapter is based on the following publication:
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3.1. Introduction

3.1 Introduction

For realistic swarming missions, safety management is a key factor in the success and accep-

tance of Small Drones by the general public and authorities. The regulations ruling Unmanned

Aerial Vehicle have gained much attention lately. The United States Federation Aviation Author-

ities (FAA) have published a Notice of Proposed Rulemaking [126]. The current proposition of

rules states that:

• Autonomous flights should be allowed,

• The Small Drones should remain at any time in visual line-of-sight with the pilot (i.e. to

confine the area of operation),

• The pilot should be able to regain control over the Small Drone at any time,

• There should be as many pilots as Small Drones.

This last point would be the major limitation for wide use of swarms of Small Drones. The

constraint of having as many pilots as Small Drones would cancel all the benefits of having a

swarm of autonomous flying vehicles. We believe that in a later phase, the regulations will

shift towards an operator together with a safety pilot being allowed to operate many Small

Drones, if it can be proven that all the other safety requirements are still met. A possible task

repartition between the operator and the safety pilot could be as follow. The operator would

be responsible to monitor and control the whole swarm, while the safety pilot could remotely

pilot endangered robot(s) to ensure safety (e.g. if they behave in an uncontrolled way, after a

sensor failure, for instance). For this to happen, the Ground Control Interface (GCI) should be

tailored to meet these other requirements.

While operating outdoors, robots are faced with uncontrolled environmental factors (e.g.

wind) and human presence (e.g. buildings, isolated walkers, injured persons in a disaster

Figure 3.1 – In flight view of 5 out of the 10 Small Drones used for the experiments.
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scene). They may also suffer from sudden sensor failures. Small Drones generally fly fast (e.g.

a flying wing can fly up to 20m/s) and therefore, the time to react to any unexpected event is

relatively short. This calls for a fast and easy tool to regain control by the human operator to

ensure the safety of the operations. However, existing swarm interfaces of GCI do not consider

safety at a swarm level.

The battery endurance of flying robots is still a limiting factor for real applications. Maximiza-

tion of the operational time of the swarm should be a main criteria in the design of a swarm

interface.

In [127], Bashyal showed how the performance of the swarm can be improved if the human

operator can insert knowledge (e.g. à priori information known by the operator about the

mission) in the system by taking control of an avatar (i.e. an operator-controlled robot) and

driving it towards the completion of a task. In addition, in [128], Lewis analyzed the Human-

Robot interaction using the command complexity. He defines the control of a swarm of n

robots, by sending a task to one robot after another, as a task of complexity O(n), which scales

poorly with the number of robots. In opposite, the simultaneous control of a group of robots

is defined as a task of complexity of O(1), which is of constant time, independent from the

number of robots. The author states that a mix between O(n) and O(1) tasks is necessary to

supervise multi-robot performing realistic tasks. Depending on the situation (i.e. monitoring,

control and managing safety of the mission), the operator should be able to give commands to

the whole group, to a sub-part of it or to a single robot.

In [129], Drury proposes different schemes for situation awareness in Unmanned Aerial Vehi-

cles (UAV) operations. They present four kinds of awareness: namely, human-UAV awareness,

UAV-human awareness, human-human awareness and UAV-UAV awareness. Developing the

three last kinds of awareness strongly depends on the mission and on the type of Small Drone

used. In opposite, human-UAV awareness (i.e. the awareness of the operator about the state of

the UAVs) concerns Drone swarm operations independently of the type of Drones and of the

mission. In this thesis, we focus only on this awareness.

3.2 GCI features for safe and easy swarm operations

In this section, we identify and motivate the minimal set of features to be included in a GCI

to monitor, control and maintain safety during a mission with multiple Small Drones. We

consider not only safety for humans but also the one for onboard goods and for the drones

themselves. “Within the context of aviation, safety is the state in which the possibility of harm

to persons or of property damage is reduced to, and maintained at or below, an acceptable

level” [130].

In Section 3.2.1, we present the features that are common to monitoring, control and safety.

We then split these features into more specific features: the monitoring and control specific

features in Section 3.2.2 and the safety specific features in Section 3.2.3.
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3.2.1 GCI features to monitor, control and maintain safety in swarm missions

• Identify each robot:

For both control and safety, the operator should be able to associate efficiently the robot

in the sky with its virtual representation on the interface. Small Drones fly relatively fast

and therefore require an immediate and reliable way to identify uniquely each robot of

the swarm. Indeed, the time to recover from a dangerous situation or to take influence

on the swarm, is inversely proportional to the speed of the robot.

• Recover/gain manual control of one, few or all robots:

The performance of a swarm can be improved if the operator can take manual control

of a robot to influence the swarm towards the completion of the task [127].

In addition, if one or many robots suffer from a sensor failure (e.g. GPS failure), are

subjected to strong wind gusts, approach obstacles (e.g. trees, buildings) or run low on

battery, the operator should be able to take manual control back and resolve the issue

(e.g. land the robot(s) or move it away from obstacles).

• Automatic takeoff/landing of one, few or all robots:

The operator should be able to trigger the autonomous takeoff and landing of one, few

or all robots in the shortest amount of time possible. If possible, performing these

maneuvers simultaneously for all robots would increase the operational time and allow

fast landing of robots when safety cannot be guaranteed anymore.

3.2.2 GCI features specific for swarm monitoring and control

• Data logging:

When running experiments, the operator usually aims to record numerous flight data.

To avoid loss of data packets due to high use of the wireless communication channel,

the data logging should be performed on-board. The operator should be able to control

the start/stop time of the logging for synchronization purposes between the robots.

• Switch between different behaviors/modes:

Depending on the evolution of the mission, the operator should be able to change and

to adapt the current behavior of the swarm (e.g. switch from an exploration phase to a

maintenance phase).

• Setting mission, setting parameters:

To decrease the deployment time, pre-programmed missions are usually loaded on

the firmware of the robot. The operator should be able to set these missions and to

adapt their parameters simultaneously on all robots rather than reprogram every robot

individually each time. He should even be able to start and adapt these missions while

flying.
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• Acknowledgment message to the operator:

When the operator sends a command, he should receive a feedback from every robot to

inform him that it has received the command and whether it will perform it or not.

3.2.3 GCI features specific for safe swarm missions

• Stop & Restart autonomous high-level tasks:

If anything may endanger a safe operation or be endangered by the swarm, the operator

should be able to stop the global behavior of the swarm. All robots should then adopt a

safe behavior (e.g. hover, loiter). In addition, when the operator decides that it is safe to

go on with the mission, he should be able to restart the high-level task.

• Emergency Procedure:

In extreme and as last resort cases, the operator should be able to rapidly command

an emergency procedure (e.g. switch off the motors) on one, few or all robots. The aim

of this feature is to terminate the flight of a dangerously behaving robot as quick as

possible, when trying to adopt a safe behavior was not sufficient. In this case and in

opposite to the previous case, the integrity of the robots may not be guaranteed.

3.3 Existing GCIs

Many open-source GCIs for Small Drones are available. We present here the most popular

open-source ground control software for Small Drones:

• OpenPilot GCI7:

This GCI was developed for the OpenPilot autopilot. This cross-platform GCI is written

in C++ and uses the Qt framework8 for the user interface. It uses its own UAVTalk

communication protocol specially developed for the OpenPilot autopilot.

• QGroundControl9:

This GCI was originally developed for the PIXHAWK autopilot10. It is now actively

developed by a large community. This cross-platform GCI is written in C++ and uses the

Qt framework for the user interface. It uses the MAVLink communication protocol11.

The standard control interface is displayed on the left in Fig. 3.2.

• APM Planner 2.012:

7https://wiki.openpilot.org/display/WIKI/OpenPilot+User+Manual
8http://www.qt.io/developers/
9http://qgroundcontrol.org/

10https://pixhawk.ethz.ch/
11http://qgroundcontrol.org/mavlink/start
12http://planner2.ardupilot.com/
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Figure 3.2 – On the left: QGroundControl standard interface. If a fifth robot is connected, it
will appear below the control toolbox, with no possibility to scroll down in the list. Thus, the
operator would not be able to interact with it. On the right: The proposed Swarm extension.
Note up to 15 robots can be simultaneously visualized on the interface. If more robots are
connected, the operator can scroll down the list to see them. This interface is presented in
details in Fig. 3.6.

This GCI is based on QGroundControl and is optimized for the ArduPilot autopilot. It

has replaced Mission Planner, the previously used GCI available for Windows platforms

only.

• Paparazzi GCI13:

This GCI was originally developed at ENAC, a French aerospace university. This cross-

platform GCI is written in C and OCaml. It uses its own communication protocol

(Ivy/PPRZ).

OpenPilot is able to control only one robot and therefore is not suited for multi-robot handling.

The three others GCIs can control multiple robots. However, as the number of flying robots

increases, their interface rapidly show some limitations on how the operator can control a

swarm, a sub-part of it or a single robot. We discuss in detail the limitations in the following

section.

3.4 Extension of a GCI for Swarms of Small Drones

In this section, we propose an open-source extension to QGroundContol GCI for allowing

multi-robot handling. QGroundControl uses the MAVLink communication protocol, which is

already used in more than 12 different autopilots. “MAVLink is a very lightweight, header-only

message marshaling library for micro air vehicles”14. QGroundControl and MAVLink follow

13https://wiki.paparazziuav.org/wiki/GCS
14http://qgroundcontrol.org/mavlink/start
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open standards charter, which means they are not limited to the particular hardware/software

they were originally designed for. Therefore, any Small Drone using MAVLink as communi-

cation protocol could easily benefit from our extension of QGroundControl for swarming

missions.

For each of the features presented in Section 3.2, we discuss here below the limitations of

existing GCIs and present our solution implemented in our extension (see Table 3.1 for a

summarized comparison).

In Section 3.4.5, we compare the influence of deployment and landing strategies on the

maximal size of a swarm of Small Drones, given their battery endurance and the expected

mission duration. Similarly, we compare the maximal mission time, given a fixed number of

robots and their battery endurance.

3.4.1 Maximum number of controllable Small Drones

Existing GCIs are thought for one to few robots. Each time a new robot is connected, it appears

on the interface. To control a robot, the operator has to click on it. When the number of robots

increases, the lastly connected robots are not displayed on the interface anymore. Therefore,

the operator is unable to select and control some of these robots.

We propose a minimalist solution that separates the selection and the control of the robots.

In Fig. 3.4b, the list of connected robots is displayed. The operator can click on any of these

robots in order to select it. The control of the robot is then performed in a standard separate

toolbox common to all robots (e.g. MAV009 is currently the selected robot).

The first row of Table 3.1 compares the maximal number of controllable robots for each GCI.

This number comes from development or a graphical limitations. These maximal numbers

were obtained by tests done on a standard laptop. Note that this number may slightly vary,

depending on the screen resolution.

3.4.2 Monitoring, Control & Safety features

In existing GCIs, the operator can only interact and control one robot at a time. There is no

way to send commands to the whole swarm simultaneously. For every task the operator wants

the swarm to accomplish, he has to select the robot he wants to control, emits the command

and repeat this process for each of the robots. Thus, the tasks complexity is O(n). This issue

slows down the swarm operation and affects the scalability of the missions in terms of the

maximum number of robots that the operator can monitor and control.

Our extension improves the task complexity to O(1) time by emitting commands simultane-

ously to all robots. The insertion in QGroundControl is shown on the right in Fig. 3.2. The

detailed graphical implementation of these features is furthermore shown in long dash in
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Table 3.1 – Comparison of different existing GCIs for swarm control. Numbers were measured
from direct tests.
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Max # of controllable Small Drones 1 4-5 4-5 4-11 >15
Monitoring, Control & Safety features
- Identify each robot None At start-up At start-up At start-up ID-based
- Recover/gain manual control No O(n) O(n) O(n) O(n) ∼ O(1)
- Auto takeoff/landing No O(n) O(n) O(n) O(1)
Monitoring & Control specific features
- Start/Stop data logging No O(n) O(n) O(n) O(1)
- Switch between behaviors/modes No O(n) O(n) O(n) O(1)
- Settings Mission/parameters No O(n) O(n) O(n) O(1)
- Acknowledgment message to operator No O(n) O(n) O(1) O(1)
Safety specific features
- Stop & Restart autonomous high-level tasks No O(n) O(n) O(n) O(1)
- Emergency procedure No O(n) O(n) O(n) O(1)

Fig. 3.6. Our extension is focused on multi robots interactions. Nevertheless, note that every

operation (e.g. setting parameters, issuing commands to a particular robot) that was done

with the standard GCI can still be executed with the same performance by our extension.

The second row of Table 3.1 compares the features that are common for monitoring, control

and safety purposes for multi-robot handling.

3.4.2.1 Identify each robot

In existing GCIs that support multi-robot handling, there is a list of colors to distinguish the

robots on the interface. It is attributed depending on the connection order (Fig. 3.3). Thus,

if you don’t connect the robots always in the same order, they will be displayed in different

colors. Therefore, the operator cannot consistently link a color to a robot and it may take too

much time to interact with it.

We present our solution in Fig. 3.4: the real robots are painted in the same colors as in the

GCI. These colors depend on the robots ID. The list of robots in the GCI is sorted by these IDs.

Interaction only requires to detect the color of the robot and click on the corresponding virtual

representation. The speed of the interaction is increased and the risk of misidentification is

decreased. However, the limitation of this method appears when the number of robots is so

large that it becomes hard to distinguish between the different colors.
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Figure 3.3 – Two different startup orders. As the color is based on the startup order, MAV 009 is
once represented in red, once in blue, as for MAV 003, it is the opposite.

(a) Swarm of 10 hovering platforms used in the experi-
ments

(b) Virtual representation
of the Small Drones on
the interface

Figure 3.4 – Painted robots with their associated colored virtual representation on the interface.

3.4.2.2 Recover/gain manual control of one, few or all robots

On the existing GCIs, in order to recover manual control of one or several robots, the oper-

ator has to go sequentially through every concerned robot to set manual control or restore

autonomous flight.

With our solution presented in Fig. 3.5, the swarm is represented by a two lists of selectable

robots. On the list on the right, the selected robots are manually controlled and the unselected

ones are autonomous. Even if the selection requires as many clicks as robots, there is only one

command to send to the robot. The list on the left allows to select one particular robot and

interact with it with standard toolbox, as explained in Section 3.4.1.
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Figure 3.5 – List on the left: Temporarily shown visual feedback of acknowledgment messages
(i.e. MAV 001, 003, 004, 007 and 009 received and accepted the command (in green), while
MAV 005 received but rejected it (in red), and MAV 002, 006, 008 and 010 didn’t received the
command at all). In addition, this list allows the operator to select a single robot to interact
with, using the standard control toolbox (e.g. MAV 003 is the currently selected robot). List on
the right: ID-sorted list of robots for manual control (i.e. MAV 003 and MAV 009 are manually
controlled and the others are autonomous).

3.4.2.3 Automatic takeoff and landing

Our extension improves the task complexity to O(1) time by emitting commands simultane-

ously to all robots. The advantage of performing automatic takeoff and landing is twofold. On

the one hand, it allows to maximize the operational time and, on the other hand, it allows to

minimize the remaining time in the air in presence of an endangering situation. Indeed, it

takes as much time to takeoff or land a single robot as for the whole swarm.

3.4.3 Monitoring and control specific features

The monitoring and control specific features are

• Start/Stop data logging,

• Switch between different behaviors/modes,

• Setting mission/parameters,

• Acknowledgment message to the operator.
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The detailed graphical implementation of these features is shown in short dash in Fig. 3.6.

Going to a task complexity of O(1) allows to maximize the operational time. Furthermore, by

setting the mission simultaneously on every robot, they will start the demanded high-level

behavior simultaneously and issues due to asynchronous start are avoided.

On existing GCIs, when a command is emitted, the robot generally sends an acknowledgment

back to the GCI, which is then shown on the control panel individually for each robot. In order

to assert that every robot has received the command, the operator needs to select each robot

one after the other and check whether the command was received or not.

Our solution is shown in Fig. 3.5. The acknowledgment is directly and temporarily shown in

green (if accepted) or in red (if rejected) on the list of connected Small Drones. The operator

can see directly which robot has received the command. The third row of Table 3.1 compare

the monitoring and control specific features for multi-robot.

3.4.4 Safety specific features

Existing GCIs do not consider safety at a swarm level. These safety features are

• Stop & Restart autonomous high-level tasks,

• Emergency procedure.

The detailed graphical implementation of these features is shown in plain in Fig. 3.6. Going

from a task complexity of O(n) to O(1) allows to minimize the time needed to perform safety

related tasks. This improvement increases the overall safety. The fourth row of Table 3.1

compare the safety features for multi-robot.

3.4.5 Maximal size of a swarm of Small Drones

In this section, we compare the influence of deployment and landing strategies on the maximal

size of a swarm of Small Drones, given their battery endurance and the expected mission

duration. Similarly, we compare the maximal mission time, given a fixed number of robots

and their battery endurance.

The deployment and landing procedure is composed of the launching command of the robots

and the actual takeoff procedure of every robot. For n robots, the takeoff strategy can be

performed in three different manners. First, the safety pilot can remotely takeoff one robot

after the other (manual), second, the operator can send the takeoff command sequentially

to the autonomous robots via the GCI (sequential) or third, the operator can send the takeoff

command simultaneously to all the autonomous robots (simultaneous).

Let’s consider a swarm of n hovering Small Drones that has to perform a mission of duration

of tmi ssi on with a battery endurance of tendur for each robot. Let tdepl oy and tl d respectively
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Figure 3.6 – Swarm interface of the GCI: in long dash, the features that are useful for monitoring,
control and safety, in short dash, the monitoring and control specific features, in plain, the
safety specific features.

be the time to deploy and the time to land all the robots at the beginning and at the end of

that mission. In order to be able to accomplish the mission, we should have

tendur ≥ tdepl oy + tmi ssi on + tld (3.1)

Let tcmdto and tto respectively be the time required to emit the takeoff command to one robot

and the time required by this robot to perform the take-off. Then, for n robots, the deployment
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time is equal to

tdepl oy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n · (tcmdto + tto), for the manual procedure.

n · tcmdto + tto , for the sequential procedure.

tcmdto + tto , for the simultaneous procedure.

(3.2)

Similarly for the landing procedure, let tcmdl and tl and be respectively the time required to

emit the landing command and the time required by one robot to perform the landing. The

landing time is equal to

tl d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n · (tcmdl + tl and ), for the manual procedure.

n · tcmdl + tl and , for the sequential procedure.

tcmdl + tl and , for the simultaneous procedure.

(3.3)

From Eqs. (3.1), (3.2) and (3.3), we can get the maximal size of the swarm for both the manual

and sequential strategies.

nmax =

⎧⎪⎨
⎪⎩

tendur −tmi ssi on
tcmdto +tto+tcmdl

+tl and
, for the manual procedure.

tendur −tmi ssi on−tto−tl and
tcmdto +tcmdl

, for the sequential procedure.
(3.4)

Similarly, from Eqs. (3.1), (3.2) and (3.3), we get the maximal mission duration for the three

different strategies

tmi ssi onmax = tendur −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n · (tcmdto + tto + tcmdl + tl and ), for the manual procedure.

n · (tcmdto + tcmdl )+ tto + tl and , for the sequential procedure.

tcmdto + tto + tcmdl + tl and , for the simultaneous procedure.

(3.5)

In the manual and sequential strategies, the deployment and landing time depend on the

number of robots n. Then, from Eq. (3.4), we can see that the maximal size of the swarm

is bounded by the battery endurance. Therefore, it exists a n f ai l from which the size of the

swarm is too large to ensure that the required mission time is reached. Then, the maximal size

of the swarm is less than this n f ai l . Similarly, from Eq. (3.1), given a fixed number of robots,

the total mission time is bounded by the deployment and landing time as well as by the battery

endurance. Therefore, it exists a t f ai l from which the mission time is too long to be fulfilled by

this number of robots. Then, the maximal mission time is smaller than this t f ai l .

In opposite, in the simultaneous strategy, the deployment and landing time does not depend

on the number of robots. Therefore the size of the swarm is not bounded. In addition, the

total mission time depends only on the battery endurance, thus this strategy is easily scalable.
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Although standard GCIs could be used for small number of robots (i.e. less than 5), only

our interface can be used for larger swarms and/or for using the simultaneous strategy, as

presented in Section 3.4.2.

3.5 Outdoor flying experiments and results

We demonstrate the results of Section 3.4.5 on the deployment sequence of a swarm of

10 quadrotors flying outdoors using our swarm interface compared to the basic version

of QGroundControl.

The Small Drones used in our experiments have a battery endurance tendur of 15 minutes. We

aimed for a mission duration tmi ssi on of 12 minutes. While flying outdoor with our 10 Small

Drones, we measured the following mean values:

• Time to send the takeoff command: tcmdto = 5 seconds,

• Time to perform the takeoff: tto = 7 seconds,

• Time to send the landing command: tcmdl = 4 seconds,

• Time to perform the landing: tl and = 21 seconds.

From Eq. (3.4), we obtain the maximal size of the swarm able to accomplish the mission

nmax

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 5, for the manual procedure.

= 17, for the sequential procedure.

> 17, for the simultaneous procedure.

(3.6)

In the manual and sequential strategies, the swam size is bounded, while in the simultaneous

strategy, it can be arbitrarily large.

Now, we want to address the maximal mission time for a swarm of 10 Small Drones. For that,

we release the condition on the duration of the mission. From Eq. (3.5), we get the following

maximal mission time:

tmi ssi onmax =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9mi n, for the manual procedure.

13mi n, for the sequential procedure.

14mi n, for the simultaneous procedure.

(3.7)

In Fig. 3.7, we represent the mission time as function of the number of Small Drones for the

three different strategies. We see that given the size of the swarm, the maximal mission time

is smaller in the manual and sequential strategies than in the simultaneous strategy. The

maximal mission time for the simultaneous strategy does not dependent on the size of the

swarm and therefore is bounded only by the battery endurance.
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Figure 3.7 – The maximum mission time as function of the number of Small Drones for the
three strategies. The intersection with the black line gives the maximal size of the swarm for a
mission time of 12 minutes. The intersection with the magenta line gives the maximal mission
time for a swarm of 10 Small Drones.

From Eq. 3.2 and from the measured values, we get as deployment time for 10 robots

tdepl oy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

120sec, for the manual procedure.

57sec, for the sequential procedure.

12sec, for the simultaneous procedure.

(3.8)

An illustrating video of the three different deployment strategies applied to a swarm of 10

flying robots can be seen at http:/ / youtu.be/ AE0KQHYT2MI. Note that all deployment

strategies were performed with our interface. As not only the standard QGroundControl can

only perform the manual and the sequential strategies but also it is limited to a maximum

number of 5-6 robots.

The time of deployment for the manual strategy is even longer than what was expected (35

seconds more). This delay can be explained by the displacement of the pilot from robot

to robot in order to ease the piloting of the robots as well as the coordination between the

operator and the pilot that increase the total deployment time. Indeed, the operator has to

give and remove the control to and from the safety pilot after each takeoff. Coordination is

required only in this strategy as the safety pilot has to know when he has control on a given

robot.

In conclusion, we showed that using our interface for simultaneous and automatic deploy-

ment, the mission time of the swarm as well as the size of the swarm can be increased

compared with the two other strategies.
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Figure 3.8 – Freeze-frame shot of the GPS tracks during the manual deployment strategy, MAV
001 to 004 are airborne, MAV 005 is currently taking off, while the other MAVs are still on the
ground

3.6 Conclusion

In this chapter, we listed the features that should be available in a swarm interface of a

Ground Control Software in order to monitor, control and guarantee the safety of a swarm

experiment with Small Drones. We proposed an extension for multi-robot experiments to

QGroundControl, an existing, widely-used (in more than 12 autopilots), open-source GCI for

Small Drones and showed how it includes the required features.

A second video demonstrating the usage of our extension on a swarm of 10 Small Drones

flying outdoor is available at https://youtu.be/wsiyYRFHrSg.

We showed that using our GCI extension to fulfill a mission allows to use a larger swarm size

than using standard GCIs. Indeed, our GCI extension allows to use quicker deployment and

landing strategies than standard GCIs. Similarly, we show that, given a fixed number of robots,

the maximal mission time is higher using our GCI extension compared with using standard

GCIs. Our GCI extension provides thus scalability to the system.

We showed the time of deployment for three deployment strategies. The simultaneous strategy

that is only possible using our GCI extension decrease the deployment time compared to the

two other strategies that can be used with standard GCIs. Thus, the maximal mission time can

be closer to the battery endurance, which remains a major challenge in Aerial Robotics.

After a successful demonstration of our swarm interface, we received from the Federal Office

for Civil Aviation of Germany (LBA) the authorization to fly a swarm of robots for a demonstra-

tion on a controlled airport in Braunschweig, Germany, with the collaboration, and under the

supervision of the Air Traffic Controller. This authorization shows that our approach meets the

expectation of the rule makers and that it could be applied in real missions with Small Drones.
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The extension is freely available on GitHub15. The features presented here are mission inde-

pendent and the interface could be easily adapted to any type of mission or platform.

3.6.1 Contribution

Contributions for this work come from different persons. This sections aims at describing the

contribution of each of them.

I performed the development of the Ground Control Interface, as the flight tests were per-

formed with the help Grégoire Heitz.

15https://github.com/ndousse/qgroundcontrol.git
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4 Human-Comfortable Collision Free
Navigation

IN this chapter, we propose a reactive decentralized collision avoidance strategy that in-

corporates passenger physiological comfort based on the Optimal Reciprocal Collision

Avoidance strategy [70]. We study in simulation the effects of increasing PAV densities on the

level of comfort, on the relative flight time and on the number of collisions per flight hour and

demonstrate that our strategy reduces collision risk for platforms with limited dynamic range.

Finally, we validate our strategy with a swarm of 10 quadcopters flying outdoors.

The chapter is organized as follows: in Section 4.1, motivations to perform this work are given.

In Section 4.2.1, we summarize the Optimal Reciprocal Collision Avoidance (ORCA) strategy

from the literature, then in Section 4.2.2, we present our extension of the ORCA strategy to

include passenger comfort. In Section 4.3, we apply our strategy in a real-time dynamics

simulation on two challenging scenarios and discuss the effects of the main parameter and

the scalability of our approach. The real-world implementation is presented in Section 4.4.

Finally, in Section 4.5, we give concluding remarks.



This chapter is based on the following publication:

N. Dousse, G. Heitz, F. Schill and D. Floreano, “Human-Comfortable Collision Free Navigation

for Personal Aerial Vehicles”, IEEE Robotics and Automation Letters, 2017, vol. 2, num. 1, pp.

358-365.



4.1. Introduction

4.1 Introduction

In highly decentralized, dense, and dynamic environments, future PAVs could benefit from

autonomous navigation capabilities. Autonomous navigation has received a lot of attention

for many years. With state-of-the-art techniques, robots can now autonomously navigate

safely in known and partially unknown environments [131], in the presence of other dynamic

obstacles or vehicles [132], and even in the presence of humans [118]. However, the comfort

of the trajectories has rarely been the focus of these studies. Indeed, in order to be widely

accepted as a new mean of transportation, PAVs automation capabilities should not only

ensure safety but also tackle the problem of the passengers comfort. Even if some people do

appreciate the adrenaline rushes coming from roller coaster rides, the vast majority would

prefer a quiet ride. If the automation in PAVs cannot guarantee a certain level of comfort, the

general public will not adopt this new transportation system [32].

Having comfortable collision-free trajectories is not only important with humans on board

but also for package delivery [133] (the payload can be far from the center of mass and every

acceleration provokes additional lever arm to counteract) and fire fighting [134] (water moves

back and forth in the tank provoking oscillatory movements that can destabilize the robot. )

Some studies about comfort in commercial aviation focus on environmental factors such as

in-cabin factors, such as noise, seat size, mobility, cabin pressure and humidity [34]. Other

aviation studies measure the effect of roll oscillation frequency [35], combinations of roll

and pitch motion, or combination of roll and vertical oscillations [36], [33] on physiological

discomfort. Although these studies have highlighted some of the conditions that lead to

discomfort, they do not offer a solution to minimize discomfort. In this thesis, we focus only

on the motion quantity component, also named the physiological component of comfort [38].

It has been shown that the level of physiological discomfort for passengers rises with the

magnitude of jerk [37], [38], [41] which is the time derivative of acceleration. Previous work on

ground vehicles suggested to improve physiological comfort by minimizing the time integral

of the square of the jerk in path planning strategies [42], [43]. In addition, the ISO norm 2631-4

recommends the use of the jerk as mean to measure comfort in fixed-guideway system (e.g.

trains) [44].

Patents held by aircraft manufacturer companies have been published where jerk is used as

design criteria to tackle passenger comfort in a path planning strategy for aircraft taxiing on

the ground [47], in order to have a trajectory with constant ground gradient segments [45] or a

trajectory following lateral and vertical constraints [46]. However, path planning strategies

are only effective as long as vehicles have a global knowledge of their environment or at low

density, as they have an exponential complexity in terms of number of vehicles [48]. In a

dynamic environment with local and possibly incomplete knowledge, such as in a dense PATS,

these approaches could fail to provide safe and comfortable trajectories for each personal

aerial vehicle because the situation might change faster than the time needed to obtain global

information and to compute a new path. Therefore, it is worth considering the use of reactive
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collision avoidance strategies.

Here, we propose a method to include physiological comfort in the previously-published

Optimal Reciprocal Collision Avoidance (ORCA) strategy [70]. We use simulations of a PATS

to show the effects of increasing PAV densities on the level of comfort, on the relative flight

time and on the number of collisions and we validate the main results with a group of ten real

quadcopters in an outdoor environment.

ORCA has been extended to deal with accelerations limits [71], arbitrary linear dynamics [72],

non-holonomic robots [73] or enforcing C n continuous control sequences [74]. However,

none of these approaches consider the variation of acceleration between consecutive time

steps and therefore do not limit the jerk. Alone, these methods would not suffice to maximize

passengers comfort and would require some modifications in order to minimize the jerk of

the flown trajectories. In this work, we take the original strategy and show how the jerk can be

minimized.

4.2 Comfortable extension of ORCA

ORCA is a reactive decentralized collision avoidance strategy that provides sufficient condi-

tions to ensure collision-free navigation of multiple robots [70]. It is based on the Velocity

Obstacles paradigm [68]: ORCA is a geometrically based strategy that solves trajectory conflicts

in the velocity space.

4.2.1 Standard ORCA

It is assumed that all vehicles follow a 3D single-integrator kinematic model (i.e. the control

input is directly equal to the velocity of the vehicle [135]) with a maximum speed of vmax , that

they are using the same strategy and that they can sense the relative position and the relative

velocity of their neighbors. At each time step, each vehicle performs a cycle of sensing and

acting, ensuring that their trajectory will remain collision free for at least a given amount of

time τ.

For a situation with two vehicles A and B, vehicle A computes the Velocity Obstacle set, which

is the set of all relative velocities that will lead to a collision between vehicles A and B within a

time window τ, noted V Oτ
A|B . τ is also called look-ahead time, which is the amount of time

during which we consider potential collisions. If the relative velocity is outside V Oτ
A|B , the two

vehicles are guaranteed to be collision free for at least τ amount of time (i.e. vvv A −vvvB ∉V Oτ
A|B ).

If the relative velocity is in V Oτ
A|B , we define uuu as the vector from the relative velocity to the

closest point outside V Oτ
A|B . If vehicles A and B alter their relative velocity by at least uuu, they

will be collision free for at least a time duration of τ. The way this alteration is done is arbitrary.

As vehicles A and B use the same strategy, both vehicles share equally the responsibility to

alter their velocity by at least 1
2uuu. Therefore, the set of non-colliding velocities for vehicle A

66



4.2. Comfortable extension of ORCA

with respect to B following this fair shared responsibility is the half-volume pointing in the

direction of uuu at location vvvopt
A + 1

2uuu and is called ORC Aτ
A|B .

With more vehicles, this procedure is repeated for each neighboring vehicle. At the end, the

set of non-colliding velocities is created by the intersection of all induced half planes.

In a free space without neighboring vehicles, vehicle A would choose vvv pr e f
A , its preferred

velocity. This velocity would typically be given by a higher order planner (e.g. navigation,

dynamic path planner). However, in presence of neighbors, choosing vvv pr e f
A might lead to a

collision. Therefore, once the intersection of planes is created, the new desired velocity, vvvnew
A ,

is the velocity inside this intersection of half planes minimizing the Euclidean distance with

vvv pr e f
A and is obtained by

vvvnew
A = argmin‖vvv −vvv pr e f

A ‖ with vvv ∈ORC Aτ
A (4.1)

where vvv are all the velocities that can be selected in ORC Aτ
A .

4.2.2 Comfortable ORCA

We present here below our main contribution in Proposition 1: an extension to ORCA in order

to adjust the level of comfort of the passengers.

We work with the following hypothesis. By definition, for the velocity vvv(t) ∈ IR3 and the

acceleration aaa(t) ∈ IR3, minimizing the variation of velocity, Δvvv(t),∀t implies minimizing

the acceleration, aaa(t),∀t . In addition, for the jerk JJJ(t) ∈ IR3, minimizing the variation of

acceleration, Δaaa(t),∀t implies minimizing the Jerk JJJ(t ),∀t . Thus, a strategy that minimizes

the 3D variation of velocity, Δvvv(t ) at every time interval will also minimize the jerk, JJJ (t ).

If we take the current velocity of the vehicle as preferred velocity, vvv pr e f
A in (4.1), vvvnew

A will

therefore be the minimal change of velocity ensuring a safe trajectory and will thus minimize

the jerk of the trajectory. However, even if the vehicle is pointing towards its goal at the

beginning, it is not guaranteed that it will reach its goal after an avoidance maneuver, as it will

continue in this new direction. Therefore, we formulate the Proposition 1 to overcome this

issue. The strategy was developed for 3D environments but can as well be applied in 2D. For

ease of visualization, Fig. 4.1 gives only a 2D graphical interpretation of Proposition 1. In 3D,

the intersection of lines defining the collision-free zones becomes an intersection of planes.

Proposition 1. Let vvvcur r ent
A and vvv pr e f

A respectively be the current velocity and the preferred

navigation velocity of a vehicle. Let further ORC Aτ
A be the set obtained from the intersection of

half planes following the procedure explained in Section 4.2.1. From (4.1), we can then obtain

v ′v ′v ′cur r ent
A , the new velocity minimizing the change of velocity while ensuring a safe trajectory

and v ′v ′v ′pr e f
A , the new velocity minimizing the change of preferred navigation velocity while

ensuring a safe trajectory.
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Figure 4.1 – Visual 2D representation of the Comfortable ORCA strategy. The lines become
planes in 3D. vvvcur r ent is the current velocity of the vehicle, vvv pr e f is the velocity the vehicle
would choose if there were no other vehicles. v ′v ′v ′cur r ent and v ′v ′v ′pr e f are the velocity obtained
by applying (4.1) on vvvcur r ent and vvv pr e f respectively. The new velocity vvvnew is obtained by a
linear combination of these two velocities and always lies within ORC Aτ

A .

We define vvvnew
A as the linear combination of v ′v ′v ′pr e f

A and v ′v ′v ′cur r ent
A :

vvvnew
A = (1−λ) ·v ′v ′v ′pr e f

A +λ ·v ′v ′v ′cur r ent
A with λ ∈ [0,1). (4.2)

then vvvnew is in ORC Aτ and therefore is safe.

Proof. From (4.1), we know that v ′v ′v ′cur r ent
A and v ′v ′v ′pr e f

A are within ORC Aτ
A and therefore are

collision avoiding velocities. Further, ORC Aτ
A is convex by construction and (4.2) holds by

definition of a convex set. Therefore, all velocities obtained by (4.2) are within ORC Aτ
A and

thus are safe.

The pseudo-code algorithm 1 explain how vvvnew
A is computed for every time step following the

procedure of proposition 1.

λ is a parameter allowing to balance between the current velocity and the preferred velocity. On

the one hand, the closer λ is to one, the smaller will be the modification of the current velocity

and therefore, accordingly the smaller will be the jerk and the trajectory more comfortable.

However, the price to pay is a longer trajectory. On the other hand, a λ value close to zero

means maximizing the modification of the current velocity in order to move towards the

vehicle’s goal and therefore the larger will be the jerk but the flight will be quicker and the

trajectory more direct. Depending on the user’s preferences, there is a trade-off to find between

comfort and flight time.

Additionally, each vehicle can define its own λ, the strategy do not require the λ to be equal
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for every vehicles. Some user may want a faster and more aggressive trajectories as other may

prefer to privilege comfort. In addition, λ is not required to be constant during the whole

flight. One user can decide to modify its λ value on the go, during a flight.

The interval of definition of λ is open at 1 to ensure a convergence toward the goal. Indeed,

if λ is equal to one, once the vehicle has performed an avoidance maneuver, it cannot be

guaranteed that the vehicle will reach its goal.

Algorithm 1 Computation of a new 3D comfortable collision-free velocity

1: for i = 1..Nnei g hbor s do

2: Sense the relative position and relative velocity of neighbor i .

3: Compute the half-volume for neighbor i at location vvvopt
A + 1

2uuui , where uuui ∈ IR3 is defined

as in 4.2.1

4: Append the half-volume to the ORC Aτ
A set.

5: end for

6: v ′v ′v ′pr e f
A = argmin‖vvv −vvv pr e f

A ‖ with vvv ∈ORC Aτ
A .

7: v ′v ′v ′cur r ent
A = argmin‖vvv −vvvcur r ent

A ‖ with vvv ∈ORC Aτ
A .

8: vvvnew
A = (1−λ) ·v ′v ′v ′pr e f

A +λ ·v ′v ′v ′cur r ent
A .

9: Send vvvnew
A to the velocity controller.

4.3 Simulation

The extension of ORCA presented in the previous section was implemented in a real-time flight

dynamics simulator (Fig. 4.2) developed in our laboratory. Details of the simulator are given in

Appendix A.2. This simulator, written in ADA, is capable of simulating the dynamics of dynam-

ically constrained flying vehicles in 6 degrees of freedom and runs in discrete time steps. The

vehicle dynamics are implemented as a hovering, helicopter-like or multi-rotor-like aircraft,

with a body-fixed thrust vector and 3-axis rotational rate control, where accelerations and

rates are bounded. Aircraft-specific effects such as rotor dynamics and precise aerodynamics

were omitted for simplicity and are not required for this study.

A closed-loop velocity controller allows the vehicles to follow any 3D velocity vector, using a

simple yaw coordination controller to align the vehicle with the flight direction. The current

vehicle velocity may however deviate from the commanded vector due to the vehicle dynamics

constraints. The ORCA implementation was adapted from the C++ RVO2-3D library16.

The vehicles are represented as a sphere. When two spheres intersect (i.e. the distance between

two vehicles is smaller than two times the size of one vehicle), we count this as a collision.

Implementing a strategy that is planned for single-integrator dynamics on dynamically con-

strained robots leads to safety violations as ORCA may ask for collision-free velocities that are

16The original ORCA C++ code is available at http://gamma.cs.unc.edu/RVO2/.
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Figure 4.2 – Screenshot of our simulator.

dynamically not reachable in a single time step. In [136], the authors propose to extend the

radius representing the vehicle used in the ORCA strategy to treat a non-holonomic vehicle as

holonomic. Similarly, in our work, we extend the radius of the sphere representing the vehicle

to encapsulate partially the dynamic constraints of the vehicles. When the distance between

two vehicles is smaller than twice this extended radius and larger than twice the size of the

vehicle, it is counted as a near miss.

Sensors noise can be simulated as well. Each sensor can be modeled independently following

a particular noise model.

4.3.1 Experimental setup

We tested our strategy against the circle scenario (Fig. 4.3) in which vehicles travel between two

waypoints located on the same altitude at opposite position around the circle. In the scenario’s

original formulation, the vehicles are starting around the circle, all at the same time. In this

situation, all vehicles are perfectly synchronized. This leads to an enormous density at the

center of the circle. Even if our strategy can be used in this scenario, as shown with the outdoor

experiments in Section 4.4, in a realistic PATS, the perfect synchronization is highly unlikely

and conclusions drawn from this situation would not have practical meaning. To prevent this

synchronization, the vehicles start at a uniformly distributed random position inside the circle

and then travel back and forth between two waypoints located at opposite side of the circle.

This adaptation can model more realistic scenarios than the original formulation.

During one experiment, each vehicle is asked to perform 60 crossings of the circle. This

corresponds to approximately 1 hour of simulated flight. Each set of parameters is repeated
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Figure 4.3 – Example of the original circle scenario for 8 vehicles: each vehicle travels back
and forth between two waypoints located at opposite side of a circle. The size of the circle is
parametrizable and is defined in Table 4.1.

Table 4.1 – Numerical values used in the simulations

Mass 100kg
Distance near miss 5m
Distance collision 3m

Look-ahead time, τ 11s
Circle radius 798m

Acceleration limit (on every axis) 3g

5 times, each time with different random starting positions and averaged. We compare our

results relative to one vehicle flying alone with the same set of parameters and for the same

number of crossings. The simulation was fully deterministic and sensors noise was not used

in this section.

The set of parameters used in the simulations is defined in Table 4.1. The radius of the cicle

was defined such that the density of a particular simulation is equal to the number of vehicles

used in the simulation.

We then tested our strategy against more complex variations of the circle scenario. First, we

added fixed obstacles that can represent for instance tall buildings located at the center of

a large city or non-flying zones. Second, we addressed the effects of communication delays

by slowing down the update rate of the neighbors position and velocity messages. For this

second scenario, deterministic communication delays were used.

Fixed obstacles avoidance was implemented as proposed by [70]. The vehicle uses the same

strategy as with neighboring vehicles, except that it takes full responsibility in the avoiding
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Figure 4.4 – Number of near misses as function of the density for varying cruise speed.

maneuver instead of sharing it. The vehicle therefore adds a new collision avoiding constraint

for each static obstacles to the ORC Aτ
A set and solves (4.1) as in the case with only moving

obstacles.

4.3.2 Results

We first address the influence of the cruise speed on the number of near misses for different

densities of vehicles. In Fig. 4.4, the quadratic relationship between the density and the

number of near misses can be observed for all cruise speeds, as expected from [137]. This is

true regardless of the collision avoidance strategy. Therefore, even if changing the strategy

could possibly lower the number of near misses, the effect of density should still receive a

particular attention.

In addition, at a given density, the number of near misses increases with increasing cruise

speed. As the platform is dynamically constrained, at higher cruise speed, the ORCA strategy

may require to reach a collision-free velocity that is not feasible by the platform.

The cruise was then set to 26m/s which is about the expected 100km/h for future PAVs [40].

To address the comfort of the parameter sets, we compute the relative mean total jerk per time

unit, Ĵ . It is obtained as follow. The time integral of the square of the jerk, JJJ i (t ) is first divided

by the travel time, Ttr avel , summed for all n vehicles and for every crossing of the circle R and

then averaged per vehicle and per crossing. The same ratio is computed for one vehicle flying

alone the same number of crossings. We then divide the mean total jerk per time unit for n

vehicles by the mean total jerk per time unit for one vehicle and obtain the relative mean total
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Figure 4.5 – Relative time integral of the square of the jerk per time unit as function of the
comfort parameter λ.

jerk per time unit. Mathematically, the relative mean total jerk per time unit, Ĵ is obtained by

Ĵ =

1

R

R∑
r=1

1

n

n∑
i=1

Tend∑
t=0

(‖JJJ ir (t )‖Δt )2

Ttr avelir

1

R

R∑
r=1

Tend∑
t=0

(‖JJJ r (t )‖Δt )2

Ttr avelr

. (4.3)

where R is the number of repetition of the experiments and Tend , the final time of the simula-

tion.

4.3.2.1 Results for the circle scenario

In Fig. 4.5, Ĵ is represented as function of the comfort parameter for different densities. Ĵ is

decreasing with increasing comfort parameter value: the higher the comfort parameter is, the

less jerk per time unit the trajectory will have. This result shows that the comfort parameter is

capable of decreasing the total jerk and thus increasing the comfort of the trajectory compared

to the standard ORCA strategy.

In Fig. 4.6, the relative mean travel time is represented as function of the comfort parameter

for different densities. The relative travel time is increasing quadratically with the comfort

parameter. At high value, once the vehicle has diverged from the path to its goal due to an

avoidance maneuver, it takes more time to steer it back on track.
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Figure 4.6 – Relative travel time as function of the comfort parameter.

In Fig. 4.7, the number of near misses per hour is represented as function of the comfort

parameter for different densities. The number of near misses decreases with increasing

comfort parameter values. At first, we would expect the opposite as adding this comfort

parameter is slowing down the dynamics of the vehicle and thus making it less reactive for

avoidance maneuvers. The vehicle could also take too much time to stop and would not avoid

a collision requiring to break intensively. However, according to Proposition 1, the output

velocity vector of the Comfortable ORCA strategy is always in the safe set, and limiting the

variation in commanded velocity reduces the dynamic requirements from the vehicle. In

Fig. 4.8, the variation of the velocity vector is represented for different comfort parameter

values. The smaller the comfort parameter value, the larger the variation of velocity is during

one time step. For a dynamically constrained vehicle, this variation may be unfeasible and the

actually achieved velocity may lie in the unsafe zone leading to collisions or near-misses. A

small velocity variation is more likely to stay in the set of dynamically feasible velocities, and

therefore the vehicle’s velocity is more likely to remain in the safe set.

4.3.2.2 Results for the circle scenario with fixed obstacles

Results for static obstacles show a similar trend as for the original case. The relative mean total

jerk, Ĵ is decreased (Fig. 4.9a) and the relative flight time is increased (Fig. 4.9b) for λ values

getting closer to 1.

Fewer near misses were observed for λ values closer to one (Fig. 4.9c). Trajectories traces for

10 vehicles and 4 fixed obstacles can be seen in Fig. 4.10. The alteration of the trajectories in

order to avoid the fixed obstacles can be clearly seen.
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4.3.2.3 Results for the circle scenario with degraded communication

To model degraded communications, the communication update rate is varied from 0.01s

up to 0.25s for a scenario with 20 vehicles. Again, the results show a similar trend as for the

simpler case. Ĵ is not influenced by the update rate but still decreases with λ getting closer to

one (Fig. 4.11a), thus even in presence of communication delays, our strategy do improve the

comfort of the trajectories.

In addition, the relative flight time is increased with λ values getting closer to one (Fig. 4.11b).

The flight time is not influenced by the communication delay.

As it could be expected, increasing the communication latency leads to a higher number of
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Figure 4.9 – Results for static obstacles.

near misses per flight hour (Fig. 4.11c). The vehicles go closer one to each other as they are

not aware rapidly enough of the potential threat from a neighbor. However, the number of

near misses per flight hour still decreases for λ values closer to one.

4.4 Real-world implementation

In order to demonstrate the feasibility of this approach under real-time constraints and in

real-world conditions, we tested our approach on 10 quadrotors flying outdoors.

76



4.4. Real-world implementation

-1000 -500 0 500 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

x (m)

Trajectories for 10 vehicles with λ of 0.4

y 
(m

)

Figure 4.10 – Trajectories traces for 10 vehicles and a λ value of 0.4 with 4 fixed obstacles.

4.4.1 Flying platform

We designed and built 10 quadrotors to demonstrate our approach in real-world conditions

(Fig. 4.12). For experiments with up to ten robots it is important to have a flying robot that is

safe to use in large numbers, as well as easy to replicate and repair to be able to maintain a

large fleet. All technical details about the design of the robot can be found in Section 2.7 and

on our wiki17. We present here only the important details to understand the experiment.

All computation is done locally on the quadrotor autopilot. Communication between the

robot and the ground, is for initiating and monitoring the experiments only, and is not required

for the on-board collision avoidance strategy. Robots use the same communication channel

to broadcast their current state (position and velocity) to their neighbors. The robots use a

time-limited nominal state prediction model [49], [51] to estimate the state of their neighbor

between two messages: it is assumed that neighbors continue at the same velocity during a

given time window.

The software is written in C18. ORCA implementation was also adapted from the C++ RVO2-3D

library19.

4.4.2 Experimental setup

The quadrotors take off simultaneously. On action of the operator, all the quadrotors start

to cross the circle and move towards their destination located at the opposite point of the

circle on the same altitude. The ten quadrotors are fully autonomous: an onboard navigation

17http://lis-epfl.github.io/MAVRIC_Library/
18The code is available at https://github.com/lis-epfl/myCopter.git
19The original ORCA C++ code is available at http://gamma.cs.unc.edu/RVO2/.
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Figure 4.11 – Results for degraded communication.

planner sends 3D velocity commands to drive the robot directly towards its goal. Every robots

are connected on the same communication channel and each robot broadcast periodically its

position and velocity while listening to messages incoming from its neighbors. No guarantee

is given that every robot is aware of all its neighbor at all time. Then, ORCA uses the 3D velocity

and position extracted from the messages from the neighbors to compute a safe velocity.

The strategy is tested on the original circle scenario previously described, where all vehicles

starts to cross the circle at the same time. We used this extreme case of the scenario in order to

ensure the safety of the experiments, as it is harder to recognize a failure in 10 Small Drones

randomly flying between two waypoints than having them doing one crossing at a time. Each

experiment is composed of 5 crossings of the circle. The robots had a cruise speed of 3 m/s.

We compare the experimental results with the same scenario (e.g. same circle size, number of

vehicles, look-ahead time λ and mass) performed in simulation. For the simulation part of

this experiment, we modeled the robots by a 6 degrees of freedom multi rotor-like platform,
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Figure 4.12 – The quadrotors used in the experiments.

controlled in rate, attitude and velocity. Furthermore, we modeled the noise of the sensors

of the robots. The model of the noise for the position and velocity is similar to the one used

by [138]. The accelerometer and velocity measurement errors are modeled by a white Gaussian

noise of zero mean. The position measurement error is modeled as a Brownian motion in a

parabolic potential centered on the real position of the robot.

4.4.3 Results

In this section, we address the effects of the comfort parameter on the relative mean total jerk,

Ĵ on the relative mean travel time and on the number of near misses per flight hour for the

circle scenario with 10 quadrotors flying outdoors and compare with the results of the same

scenario in simulation.

To address the comfort of the parameter sets, we compute Ĵ from (4.3). In Fig. 4.13, Ĵ is repre-

sented as function of the comfort parameter. The expected decrease of Ĵ for increasing comfort

parameter value can be observed neither with the outdoor experiment nor in simulation.

Our hypothesis is that the lack of decrease of Ĵ in Fig. 4.13 is not coming from real accelerations

of the vehicle but rather from measurement noise. To investigate further, we followed two

approaches: First, we removed the simulated accelerometer noise from the simulation to

compare the results. Second, as post-processing step, we computed the fast Fourier transform

(FFT) of the jerk from the real robots to separate flight dynamics from other noise sources

such as motor vibrations and sensor noise. Note that the FFT is used only as justification of
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Figure 4.13 – Comparison of relative mean total jerk between simulation and outdoor flights
for 10 robots.
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Figure 4.14 – Relative mean total jerk, Ĵ in simulation for the circle scenario with 10 vehicles
with jerk computed with accelerometers without noise.

our method and is not used in the method itself.

We repeated the simulations by computing the jerk with the accelerations without noise. Ĵ

decreases with increasing comfort parameter values (Fig. 4.14) ) as expected from the simula-

tion results (Fig. 4.5). This confirms that the lack of decrease of Ĵ in Fig. 4.13 is not coming

from real accelerations of the vehicle but rather from measurement noise. The decrease of jerk

shown in Fig. 4.14 is consistent with the previous simulation scenario and validates the use of

the comfort parameter in the original circle scenario chosen for the outdoor experiments.

To extract the jerk signal from the noise, we computed the fast Fourier transform (FFT) of the

jerk of the recorded data of the outdoor experiments. In Fig. 4.15, we represent this FFT for the

two extreme comfort parameter values of 0 and 0.7 for the Y-axis. Similar results are obtained

for the two others axes and for the other comfort parameter values. First, above 1.7 Hz, the

amplitudes of the signals are in the same order of magnitude for all comfort parameter values
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Figure 4.15 – Jerk FFT for Y-axis for comfort parameter values of 0 and 0.7.

and are likely caused by vibrations and other noise sources. Below 1.7 Hz, the amplitudes of

the signal are smaller for the lower comfort parameter than for the higher comfort parameter.

We consider the frequency interval of 0.15 Hz to 1.7 Hz. Below 0.15 Hz, the time span of the

signal is in the order of magnitude of the time of the experiments (i.e. a crossing of a circle)

and it makes no sense to associate these frequencies with a real maneuver. This frequency

interval represents the frequency bandwidth in which we are expecting the dynamics of a

quadrotor to take place. Additionally, it is also similar to the frequencies at which motion

sickness generally happens (below 1 Hz [139]). Therefore a decrease of amplitude in this band

can be expected to improve passenger comfort.

In Fig. 4.16, we represent the sum of the amplitudes of the jerk FFT divided by the sum of the

amplitudes of the jerk for one vehicle flying alone, between 0.15 Hz and 1.7 Hz for different

comfort parameter values. The relative sum of jerk amplitudes decreases with increasing

comfort parameters for every axis. Thus, the comfort is increased for higher comfort parameter

values.

The decrease of the amplitude of the signal at low frequencies as well as the decrease in the

relative sum of the amplitudes for increasing comfort parameter values validate again the use

of the comfort parameter as tool to increase comfort of the trajectory both in simulation and

in outdoor experiments.

In Fig. 4.17, the relative mean travel time between two waypoints is represented for the

simulation and the real quadrotors. In both cases, the relative flight time increases with

the comfort parameter value. This trend was already observed in Fig. 4.6. Once the robots

performed an avoidance maneuver, it takes more time to steer it back on its path.

In Fig. 4.18, the number of near miss per hour is represented as function of the comfort

parameter. The number of near misses decreases with increasing comfort parameter similarly
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Figure 4.16 – Relative sum of the FFT amplitude for the jerk for all three axis as function of the
comfort parameter value.
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Figure 4.17 – Comparison of relative travel time between the flights with the 10 quadrotors
and the simulation.

to the results obtained in Fig. 4.7. The density of this scenario is somehow extreme and even

with these near-misses, collisions were never observed during the numerous outdoor flights.

ORCA can vary not only the direction but also the norm of the velocity. During all our tests,

the robots velocity varied between 0 m/s (i.e. at some point they had to stop in order to avoid

a collision) and 5.5 m/s.

4.5 Conclusions

We demonstrated a Reactive Comfortable Collision Avoidance strategy that is able to deal with

very dense environments. An illustrating video of our simulations and experiments can be

seen at https://youtu.be/ukWTK_etVzo.

Our approach to increase the comfort could also be applied to other version of ORCA. Indeed,
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Figure 4.18 – Comparison of near misses per flight hour between the flights with the 10
quadrotors and the simulation.

our approach remains valid as long as the set of collision-free velocities created by ORCA is

convex, which is the case for [71], [73], and [74]. However, the reduction in the number of near

misses will probably not be observed anymore as the dynamic limitations of the platform are

already explicitly taken into account in these works. In addition, in order to take into account

uncertainties (e.g. noise, inaccurate sensors), the approach of [140] could be used, where the

radius of the robots is increased or decreased depending on the sensing uncertainty.

We showed that using the convexity of the collision-free velocities set created following stan-

dard ORCA, defining a single parameter was sufficient to increase the comfort of the trajectory

as the time integral of the jerk was decreased. We explained the effects of this comfort pa-

rameter λ on the relative mean travel time and on the relative mean total jerk per time unit.

We also explained why a larger comfort parameter leads to a lower number of near misses.

We also applied our strategy to more complex scenario with static obstacles or degraded

communication and showed that our approach was also capable of improving passengers

comfort in these more realistic situations.

With dynamics limitations, a different splitting than the one proposed (i.e. 1/2 of the velocity

variation of each of the two robots) could avoid potential safety threats. However, as only local

information are available, the modification of the splitting would require a negotiation phase

between two or even more robots. ORCA would become a cooperative strategy and would

probably loose its scalability sooner than with the standard splitting. It could therefore be a

potential solution but only at low densities.

With collaborative neighbors, the vehicles share equally the responsibility to modify their

relative velocity in order to become collision-free. In contrary, in order to deal with non-

collaborative neighbors (e.g. vehicles with sensor or actuators failures), the vehicle could

perform the full required modification of its velocity in order to avoid the other vehicle,

similarly to the case with static obstacles. Therefore, this strategy could be applied not only
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with collaborative vehicles but also in a scenario with non-collaborative vehicles.

ORCA formulation assumes a synchronous cycle of sensing and acting. We showed that

Collision Avoidance is achieved in real-time condition even without enforcing synchronization

of sensing and acting cycles. Even in an extremely dense environment and under real-time

constraints, collisions never occurred between the real robots.

Our strategy can also fit with user-defined levels of comfort: the comfort parameter λ is not

required to be identical for all vehicles and could also change in time. In a realistic scenario,

the values for the comfort parameter λ will probably not be equal for every vehicle. Users may

prefer shorter and more aggressive trajectories while others may rather fly smoothly at the

cost of a longer flight time.

4.5.1 Contribution

Contributions for this work come from different persons. This sections aims at describing the

contribution of each of them.

The implementation of the Comfortable ORCA strategy was performed by myself, as the flight

tests were performed with the help of by Grégoire Heitz.
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5 Concluding remarks

THIS chapter summarizes the main accomplishments of the thesis in the topic of human-

comfortable collision-free navigation for Personal Aerial Vehicles. A new approach to

tackle the comfort of the trajectories for passengers of Personal Aerial Vehicles is proposed and

validated through extensive simulations and real-world tests using a framework developed to

enable safe outdoor multi-drone operations.

This chapter is organized as follows. The main accomplishments of the thesis are summarized

in Section 5.1. Potential direction for future work are given in Section 5.2.
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5.1 Main Accomplishments

This section summarizes the main contributions of this thesis, three main contributions

can be extracted from this work. The first contribution is an autopilot framework that allow

fast and easy deployment and maintenance of swarms of drones. The second contribution

is the set of features that must incorporate a Ground Control Interface (GCI) to monitor,

control and maintain safety in outdoor experiments with a swarm of drones as well as their

implementation in a GCI. Finally, the last contribution is a reactive decentralized collision-free

navigation strategy that incorporates passengers comfort.

Personal Aerial Transportation Systems are a promising solution to overcome environmental

and financial cost of the current road transportation system. In order to be accepted and

used by a vast majority of everyday user, it must be shown that it is safe and comfortable to

fly. In this thesis, a reactive decentralized collision-free navigation strategy that incorporates

passengers comfort is proposed in order to ensure that Person Aerial Vehicles (PAVs) will travel

safely and guaranteeing a certain level of comfort. This strategy is inspired by crowd modeling

as being an example of navigation through dense environments with each agent having its

own individual goal.

The strategy was tested in simulations on a challenging scenario, where PAVs travel back and

forth between two points located at the opposite point of a circle. Comfort was implemented

as the time integral of the square of the jerk of the trajectory. The strategy was able to maximize

the comfort of the vehicles at a cost of a longer trajectory. Each user can select its own level

of comfort. The level of comfort can even be adapted on-the-go during the flight. The

strategy was also able to maximize the comfort with static obstacles and with degraded

communication.

The strategy was then implemented and validated on a swarm of 10 quadrotors flying au-

tonomously outdoor. In these realistic experiments, the strategy was able to maximize the

comfort as well.

In order to be able to perform these experiments, a GCI was developed tailored for the needs

of multi-drone experiments. This GCI was based on the analysis of the requirements needed

to perform multi-drone experiments, i.e. to monitor, control and guarantee safety. Using our

GCI, not only longer mission time could be achieved but also the size of the swarm that can be

handled was larger compared to using existing GCIs. The scalability of our system was thus

proven.

These experiments were performed using a drone that was specially designed for the ease

of building, programming and maintaining a swarm of drones. This development lead to an

autopilot framework that allow easy theory to experiment iterations and easy customization.

It is now used already in more than six different research projects.
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5.2 Future Work

Potential directions for future work are given in this section.

5.2.1 Comfort tests with passengers

On of the next step would be to validate the proposed human-comfortable collision-free

strategy on real passengers. In order to control precisely the trajectory, one could use a motion

simulator. Motion simulators are moving simulators that use a method known as acceleration

onset cueing [141] to simulate the dynamics of a given vehicle (e.g. cars, planes, helicopters

or PAVs). This method is able to reproduce the linear and angular accelerations in a way that

compensates for the mechanical constraints limiting the range of motion of the simulator.

Examples of motion simulator are the CableRobot simulator [142], where eight cables drive

a 80kg platform up to 1.5g accelerations, and the CyberMotion simulator [143], where the

simulator is based on a commercially available manipulator that can move an enclosed cabin

around eight degrees of freedom. Perception cues can be projected on the walls of the cabin

to simulate the environment.

As they can reproduce accelerations and therefore jerk, PAVs trajectories could be replayed

and passengers could evaluate their perceived comfort for different set of parameters.

5.2.2 Realistic data acquisition

Most collision avoidance strategies do not tackle the problem of data acquisition. It is generally

assumed that some information (e.g. position, velocity) is available to the control strategy to

perform safely the avoidance maneuver. In low densities and when assuming broadcast of data

via a communication link, it is not such an issue. However, with overuse of the communication

channel or the use of other sensors, this task is not straightforward.

In the real world, sensors are noisy and give imperfect measurements. From cameras to

radar or laser based sensors, measurements do not have infinite precision. Furthermore, the

precision of sensors decreases with the distance and give less reliable results. The measures

are also not immediate, for instance a radar works with waves traveling at a finite speed such

that it takes time for the echo to come back to the emitter. Therefore, the current measurement

is available with some delay compared to the real corresponding value. Finally, if an agent is

blocking the field of view of a sensor, another agent located in the line of sight of the first one

can be missed. All this together leads to a higher risk of collision that would be underestimated

when we assume perfect sensing capabilities.

In Section 4.3.2.3, communication bandwidth limitations were introduced and the decrease in

performance was measured. Future work could assess the influence on performance of other

realistic sensors. Simulations could be performed with sensors with noise, less reliability with

increasing distance and having a non zero probability of missing some targets.

87



Chapter 5. Concluding remarks

Figure 5.1 – In [144], an occurrence probability density map is obtained in simulation. The
sensor suite (i.e. number, position, orientation, etc of the onboard sensors) is then optimized
using weightings of the occurence probability map for each detection zone.

In [144], the methodology to optimize the number of sensors, their position, orientation, cone

of view and range taking into account the developer or customer preferences is presented. The

authors used a Genetic Algorithm to minimize the cost of the sensor suite while maximizing

the coverage. They demonstrate their approach on a intelligent vehicle that has to monitor

the surroundings traffic. The importance of the detection zone is weighted by the occurrence

probability density function obtained previously in simulation (Fig. 5.1). Different ways of

selecting the importance of each criteria are presented.

Inspired by this work, the number, the position and the characteristics of the sensors around

the vehicle could be optimized in order to minimize the cost while maximizing the coverage

for a 3D agent. A large number of encounter geometries can be collected by simulations and a

occurrence probability map can be constructed to be used in the optimization process.

Another research axis could assess the influence of sensor failure(s) on the performance

starting from the sensor suite found previously. Conclusion on the need of redundancy on

exteroceptive sensors in order to guarantee a certain level of safety could be drawn.
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A.1 Worst case scenario

In order to address the question of how bad the situation can be when no collision avoidance

strategy is implemented, an event-based simulator was developed. The aim of this simulator

was to compute what is the number of collision per flight hour that we would get if no collision

avoidance strategy was implemented.

Instead of real-time simulators where simulation is performed each user-defined time steps

of the order of magnitude of a few milliseconds, an event-based simulator uses a discrete

event as time steps. Events can be an arbitrary long flight phase such as acceleration, cruise

or deceleration. They are defined by a starting and an ending 4D point. In a regular flight,

cruise is usually a long and steady phase. Instead of looping the simulation each tenths of

millisecond, one single loop is sufficient to simulate the whole cruise phase. Simulation time

is therefore decreased such that statistical analysis on a large number of flight hours can be

performed.

Optimal control theory [145] states that the optimal trajectory between two points starting

and ending with a zero velocity should have a bang-bang acceleration i.e. the acceleration

should be performed at maximal value until reaching cruise velocity, then acceleration should

be zero until the beginning of deceleration phase where the deceleration should be maximal.

The acceleration and deceleration phases are thus parabolas and can be approximated by

piecewise linear continuous functions. Discretization of these phases leads to a trade-off

between precision and number of segments.

Simulations were performed for 200 to 2000 agents flying from and to uniformly distributed

3D points in a 4km radius and in a 500m flight band in order to stay below controlled airspace

above the downtown of a city. The density varies from 8 to 80 vehicles per cubic kilometers.

Agents are modeled as spheres and collisions occur when two agents are closer than twice

the maximal distance of the vehicle. Two types of simulations were performed, first, where
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both agents were taken away from the simulation when a collision occurs, and second, where

agents could continue their flights after a collision as if they hadn’t have any collision. As

soon as an agent landed, it was reactivated with new departing position and destination. The

simulation was stopped when the sum of time of flight was equal to 106 hours. Each simulation

was repeated 5 times.

Simulation results were compared against two analytical models, a gas model and a binomial

random variable model.

The number of collisions per time unit of agents uniformly distributed can be analytically

described by a gas model. In [146], the author presented an extension to the classical gas

model. The agents are represented as cylinders. In [147], the authors introduce a new way

to model the deterministic motion of agents opposed to the random motion of gas particles

by using a proportional scaling factor k to model the deterministic behavior. This factor is

obtained by fitting empirical data. Putting the two models together and adapting for spherical

agents, the number of collisions per time unit is obtained by

C = k · N 2

2B
(πg 2E(Vr v )+πh2E(Vr h)), (A.1)

where k is the scaling factor, N is the number of agents, B is the volume of the airspace, g is

the horizontal dimension of the agent, h is the vertical dimension of the agent, E(Vr h) is the

expected horizontal relative velocity and E(Vr v ) is the expected vertical relative velocity.

In [57], the author proposed to represent the number of collisions by a binomial random

variable model for agents flying in a 2D space. This work can be extended to deal with 3D

agents and the number of collision is obtained by

C = pt
Ssep ·V ·T · A

2
ρ(ρ−1/A), (A.2)

where pt is the scaling factor, Ssep is the minimum surface around an agent, V is the average

aircraft velocity, T is the time interval over which conflict are counted, A is the volume of the

airspace and ρ is the density.

The two parameters k and pt were optimized by minimizing a least squared sum of the

difference between the simulation and the analytical results. The results can be seen in Fig.A.1.

The simulation results follow only the trend of the analytical curves. This can be explained

by two main reasons. First, in both analytical approaches, it is assumed that the agents are

moving at a constant velocity, which is not true in our scenario, where agents start with a zero

velocity, accelerate until reaching the cruise velocity and finally decelerate to stop at their final

position. Second, it is assumed that the agents are uniformly distributed. Even if their starting

and ending positions are indeed uniformly distributed, the outer shell do not have uniformly

distributed agents as no agents are leaving or entering the sector.

It can also be seen that there are no significant differences between the simulation that
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Figure A.1 – Number of collisions as function of the number of vehicles

suppress colliding agents and the one that keeps them. This similarity is explained by the total

time of flight. Indeed, the agents are not flying long enough to have a sufficient probability to

encounter two agents during the same flight.

These results show the importance of the implementation of a collision avoidance strategy.
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A.2 Real-time simulator

A flight dynamics simulator was developed at EPFL-LIS able to simulate large number of

flying agents in real-time or faster than real-time20. The simulator was written in Ada21, a

language designed for concurrent real-time systems and high-reliability applications. The

simulator is capable of simulating the dynamics of dynamically constrained flying vehicles

in 6 degrees of freedom and runs in discrete time steps. Aircraft-specific effects such as rotor

dynamics and precise aerodynamics were omitted for simplicity and are not required for this

study. The source code of the simulator is easily extensible and any type of collision avoidance

strategy can be implemented as well as any sensor input can be simulated. Hundreds of PAVs

can be simulated in real-time on a current multi-core CPU. In real-time mode, the Graphical

User Interface (GUI) permits to either follow the trajectory of a particular flying agent (see

Fig.4.2) or to freely navigate in the environment to see the simulation run under different

perspectives. At any time, the simulation can be paused and the user can freely navigate

around to change his perspective. The ability to go faster than real-time allows running a large

number of simulations in order to explore the parameter space of the process and to have

statistical meaningful results.

A.2.1 Simulator data flow

A simulation step is split into five different stages (see Fig. A.3) for each vehicle: three stages in

the simulated real world (i.e. these stage could be implemented on a real platform) and two in

the simulator layer (i.e. a layer that exists only in simulation). The output of each stage is the

input of the following one. First, the neighbor selection stage selects the agents that are close

enough to be in the sensor range of each other. With this set, the simulated sensors feed the

autopilot with various data (e.g. position, velocity, bearing) depending on the set of simulated

sensors. With this information, the autopilot computes the command to the actuators, which

20The swarm simulator code is available at https://github.com/lis-epfl/SwarmSimulator.git
21http://www.adaic.org/

Figure A.2 – Screenshot of our simulator.
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Figure A.3 – Simulator data flow chart.

then creates a command to the control surfaces. The dynamics of the agent are simulated in a

last stage, updating the state of the agent.

Parallelization of the architecture of the different tasks allows taking advantage of multi-core

computers to increase processing power. However computation for each agent should be

synchronized at every step after the computation of the physics dynamics leading to complex

synchronization events. Therefore, the simulator parallelizes each step one after the other,

ensuring synchronization and efficient use of the computational power available.

A.2.2 Autopilot layer

The autopilot is implemented via a cascade of controllers: High-level orders (e.g. waypoint

navigation) drives lower level controllers (e.g. attitude controller). A 3D velocity controller is

used for waypoint navigation: a velocity command is given depending on the actual position

and on the waypoint position of the agent. This velocity command is then used as the optimal

velocity of the collision avoidance strategy. A safe velocity is then sent to an attitude controller,

giving finally the corresponding angular rates and thrust. These rates and thrust are finally

sent to the simulated actuators.
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