Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization

In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost. © 2014 Elsevier B.V.


Publié dans:
Computer Methods in Applied Mechanics and Engineering, 285, 817-828
Année
2015
ISSN:
0045-7825
Laboratoires:




 Notice créée le 2017-04-03, modifiée le 2018-12-03


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)