
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Type Soundness for Dependent Object Types (DOT)

Tiark Rompf ∗ Nada Amin†

∗Purdue University, USA: {firstname}@purdue.edu
†EPFL, Switzerland: {first.last}@epfl.ch

Abstract

Scala’s type system unifies aspects of ML modules, object-

oriented, and functional programming. The Dependent Ob-

ject Types (DOT) family of calculi has been proposed as a

new theoretic foundation for Scala and similar expressive

languages. Unfortunately, type soundness has only been es-

tablished for restricted subsets of DOT. In fact, it has been

shown that important Scala features such as type refinement

or a subtyping relation with lattice structure break at least

one key metatheoretic property such as environment narrow-

ing or invertible subtyping transitivity, which are usually re-

quired for a type soundness proof.

The main contribution of this paper is to demonstrate

how, perhaps surprisingly, even though these properties are

lost in their full generality, a rich DOT calculus that includes

recursive type refinement and a subtyping lattice with in-

tersection types can still be proved sound. The key insight

is that subtyping transitivity only needs to be invertible in

code paths executed at runtime, with contexts consisting en-

tirely of valid runtime objects, whereas inconsistent subtyp-

ing contexts can be permitted for code that is never executed.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords dependent object types, DOT, Scala, soundness

1. Introduction

Modern expressive programming languages such as Scala

integrate and generalize concepts from functional program-

ming, object oriented programming and ML-style module

systems [32]. While most of these features are understood

on a theoretical level in isolation, their combination is not,

and the gap between formal type theoretic models and what

is implemented in realistic languages is large.

In the case of Scala, developing a sound formal model

that captures a relevant subset of its type system has been

an elusive quest for more than a decade. After many false

starts, the first mechanized soundness proof for a calculus of

the DOT (Dependent Object Types) [4] family was finally

presented in 2014 [5].

The calculus proved sound by Amin et al. [5] is µDOT, a

core calculus that distills the essence of Scala’s objects that

may contain type members in addition to methods and fields,

along with path-dependent types, which are used to access

such type members. µDOT models just these two features–

records with type members and type selections on variables–

and nothing else. This simple system already captures some

essential programming patterns, and it has a clean and in-

tuitive theory. In particular, it satisfies the intuitive and mu-

tually dependent properties of environment narrowing and

subtyping transitivity, which are usually key requirements

for a soundness proof.

Alas, Amin et al. also showed that adding other important

Scala features such as type refinement, mixin composition,

or just a bottom type breaks at least one of these properties,

which makes a soundness proof much harder to come by.

The main contribution of this paper is to demonstrate

how, perhaps surprisingly, even though these properties are

lost in their full generality, a richer DOT calculus that in-

cludes both recursive type refinement and a subtyping lat-

tice with full intersection and union types can still be proved

sound. The key insight is that proper subtyping transitivity

only needs to hold for types assigned to runtime objects, but

not for arbitrary code that is never executed.

The paper is structured around the main contributions as

follows:

• We present the first sound calculus of the DOT family

that includes recursive type refinement and a subtyping

lattice with intersection and union types: first informally

with examples (Section 2), then formally (Section 3).

• We discuss the key properties that make a soundness

proof difficult (Section 4).

• We present our soundness result. First, we give a small-

step operational semantics (Section 5). Then we explain

the proof strategy and key lemmas in details (Section 6).

• We offer some perspective on how foundational type-

theoretic work influences practice (Section 7).

We discuss related work in Section 8 and offer conclud-

ing remarks in Section 9. Our mechanized Coq proofs are

available from http://oopsla16.namin.net.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4444-9/16/11...
http://dx.doi.org/10.1145/2983990.2984008

624

http://oopsla16.namin.net

2. Types in Scala and DOT

Scala is a large language that combines features from func-

tional programming, object-oriented programming and mod-

ule systems. Scala unifies many of these features (e.g. ob-

jects, functions, and modules) [32] but still contains a large

set of distinct kinds of types. These can be broadly classified

[28] into modular types:

named type: scala.collection.BitSet

compound type: Channel with Logged

refined type: Channel { def close(): Unit }

And functional types :

parameterized type: List[String]

existential type: List[T] forSome { type T }

higher-kinded type: List

While this variety of types enables programming styles

appealing to programmers with different backgrounds (Java,

ML, Haskell, ...), not all of them are essential. Further uni-

fication and an economy of concepts can be achieved by re-

ducing functional to modular types as follows:

class List[Elem] {} ❀ class List { type Elem }

List[String] ❀ List { type Elem = String }

List[T] forSome { type T } ❀ List

List ❀ List

This unification is the main thrust of the calculi of the

DOT family. A further thrust is to replace Scala’s compound

types A with B with proper intersection types A & B. It is

worth noting that the correspondence between higher-kinded

types and existential types suggested above is not exact, in

particular with respect to well-kindedness constraints and

partial application to type arguments. Before presenting our

DOT variant in a formal setting in Section 3, we introduce

the main ideas with some high-level programming examples.

Objects and First Class Modules In Scala and in DOT, ev-

ery piece of data is conceptually an object and every opera-

tion a method call. This is in contrast to functional languages

in the ML family that are stratified into a core language and a

module system. Below is an implementation of a functional

list data structure:

val listModule = new { m =>

type List = { this =>

type Elem

def head(): this.Elem

def tail(): m.List & { type Elem <: this.Elem }

}

def nil() = new { this =>

type Elem = Bot

def head() = error()

def tail() = error()

}

def cons[T](hd: T)(tl: m.List & { type Elem <: T }) =

new { this =>

type Elem = T

def head() = hd

def tail() = tl

}}

The actual List type is defined inside a container listModule,

which we can think of as a first-class module. In an ex-

tended DOT calculus error may signify an ‘acceptable’ run-

time error or exception that aborts the current execution and

transfers control to an exception handler. In the case that we

study, without such facilities, we can model the abortive be-

havior of error as a non-terminating function, for example

def error(): Bot = error().

Nominality through Ascription In most other settings

(e.g. object-oriented subclassing, ML module sealing), nom-

inality is enforced when objects are declared or constructed.

Here we can just assign a more abstract type to our list mod-

ule:

type ListAPI = { m =>

type List <: { this =>

type Elem

def head(): this.Elem

def tail(): m.List & { type Elem <: this.Elem }

}

def nil(): List & { type Elem = Bot }

def cons[T]: T =>

m.List & { type Elem <: T } =>

m.List & { type Elem <: T }

}

Types List and Elem are abstract, and thus exhibit nominal

as opposed to structural behavior. Since modules are just ob-

jects, it is perfectly possible to pick different implementa-

tions of an abstract type based on runtime parameters.

val mapImpl = if (size < 100) ListMap else HashMap

Polymorphic Methods In the code above, we have still

used the functional notation cons[T](...) for parametric

methods. We can desugar the type parameter T into a proper

method parameter x with a modular type, and at the same

time desugar the multi-argument function into nested anony-

mous functions:

def cons(x: { type A }) = ((hd: x.A) => ...)

References to T are replaced by a path-dependent type x.A.

We can further desugar the anonymous functions into objects

with a single apply method:

def cons(x: { type A }) = new {

def apply(hd: x.A) = new {

def apply(tl: m.List & { type Elem <: x.A }) =

new { this =>

type Elem = x.A

def head() = hd

def tail() = tl

}}}

More generally, with these desugarings, we can encode

the polymorphic λ-calculus System F [20, 35] and its exten-

sion with subtyping, System F<: [9], by defining a pointwise

mapping over types and terms:

625

X ❀ x.A

∀(X <: S)T ❀ { def apply(x: { type A <: S }): T }

Λ(X <: S)t ❀ new { def apply(x: { type A <: S }) = t }

t[U] ❀ t.apply({ type A = U })

Apart from the translation of type variables into term

variables with type members, another difference is that F<:

supports only upper bounded type variables, while Scala and

DOT allow both lower and upper bounds. This gives rise

to very fine grained choices of translucency, i.e. how much

implementation details are revealed for a partially abstract

type, and also allows a precise modelling of covariance and

contravariance. We will see an example of a lower bounded

type member { type Config >: T} below.

It is easy to see that while path-dependent types can

encode System F, the reverse is not likely true. For example,

the following function is expressible in Scala and DOT but

does not have a System F equivalent: λ(x : { type A }).x

Path-Dependent Types Let us consider another example to

illustrate path-dependent types: a system of services, each

with a specific type of configuration object. Here is the

abstract interface:

type Service {

type Config

def default: Config

def init(data: Config): Unit

}

We now create a system consisting of a database and an

authentication service, each with their respective configura-

tion types:

type DBConfig { def getDB: String }

type AuthConfig { def getAuth: String }

val dbs = new Service {

type Config = DBConfig

def default = new DBConfig { ... }

def init(d:Config) = ... d.getDB ...

}

val auths = new Service {

type Config = AuthConfig

def default = new AuthConfig { ... }

def init(d:Config) = ... d.getAuth ...

}

We can initialize dbs with a new DBConfig, and auths with

a new AuthConfig, but not vice versa. This is because each

object has its own specific Config type member and thus,

dbs.Config and auths.Config are distinct path-dependent

types. Likewise, if we have a service lam: Service with-

out further refinement of its Config member, we can still call

lam.init(lam.default) but we cannot create a lam.Config

value directly, because Config is an abstract type in Service.

Intersection and Union Types At the end of the day, we

want only one centralized configuration for our system, and

we can create one by assigning an intersection type:

val globalConf: DBConfig & AuthConfig = new {

def getDB = "myDB"

def getAuth = "myAuth"

}

Since globalConf corresponds to both DBConfig and AuthConfig,

we can use it to initialize both services:

dbs.init(globalConf)

auths.init(globalConf)

But we would like to abstract even more.

With the List definition presented earlier, we can build a

list of services (using :: as syntactic sugar for cons):

val services = auths::dbs::nil()

We define an initialization function for a whole list of ser-

vices:

def initAll[T](xs:List[Service { type Config >: T }])(c: T) =

xs.foreach(_ init c)

Which we can then use as:

initAll(services)(globalConf)

How do the types play out here? The definition of List

and cons makes the type member Elem covariant. Thus, the

type of auths::dbs::nil() corresponds to

List & {

type Elem = Service & {

type Config: (DBConfig & AuthConfig) ..

(DBConfig | AuthConfig)

}

}

The notation type T: S..U denotes that type member T is

lower bounded by S and upper bounded by U. Here, Config is

lower bounded by the greatest lower bound (the intersection,

&) and upper bounded by the least upper bound (the union, |)

of the types DBConfig and AuthConfig. Since the Configmem-

ber is lower bounded by DBConfig & AuthConfig, passing an

object of that type to init is legal.

Records and Refinements as Intersections Subtyping al-

lows us to treat a type as a less precise one. Scala provides

a dual mechanism that enables us to create a more precise

type by refining an existing one.

type PersistentService = Service { a =>

def persist(config: a.Config)

}

To express the type PersistentService by desugaring the

refinement into an intersection type, we need a “self” vari-

able (here a) to close over the intersection type, in order to

refer to the abstract type member Config of Service:

type PersistentService = { a => Service & {

def persist(config: a.Config)

}}

Our variant of DOT uses intersection types also to model

the type of records with multiple type, value, or method

members:

626

{ def foo(x: S1): U1 ; def bar(y: S2): U2 } ❀

{ def foo(x: S1): U1 } & { def bar(y: S2): U2 }

With this encoding of records, we benefit again from an

economy of concepts.

Soundness? Our aim for DOT is a strong type soundness

result of the form “well-typed programs don’t go wrong”,

i.e. to show the total absence of runtime errors. Clearly we

cannot expect the same strong result to hold for Scala, as

Scala includes unsafe features like null values and unsafe

casts. Especially null values make a strong soundness result

impossible as they violate the key canonical forms property:

a value that has a given type might not actually be a proper

object of this type at runtime, but it might instead be null.

A more realistic notion of soundness needs to include the

possibility of benign runtime failures. A desirable guarantee

in this setting is that modules that do not introduce null val-

ues cannot be blamed for NullPointerExceptions, and mod-

ules that do not perform unsafe casts cannot be blamed for

ClassCastExceptions.

In this light, it is important to note that Scala has some

fundamental soundness bugs related to path-dependent types,

even with respect to these weaker notions of soundness.

Some manifestations of these bugs have been known for a

long time (the Scala issue tracker lists unfixed soundness

problems dating back at least to 2008 [40]), but they have

been properly understood only recently, during the course of

this work. We discuss the general issue next, with a particu-

lar example related to null values [6].

The key soundness challenge with path-dependent types

is to avoid “bad bounds”, i.e. type members like type T: S..U

where S is not a subtype of U, e.g. type T: String..Int. If an

object x were allowed to have such a type member, we could

use it to safely treat a String first as type x.T, and then as Int,

but of course this would be unsound: any attempt to treat a

String as an Int will lead to a cast exception at runtime!

The formalization effort behind DOT has shown that pre-

venting such “bad bounds” is harder than previously thought

(see Section 4.3), and that the mechanisms implemented in

the Scala compiler are not sufficient. More precisely, it is

necessary to enforce constraints on type members and their

bounds at object creation time (see Section 4.5). The canon-

ical forms property ensures that an object that is supposed

to have a type member T: S..U was indeed created with type

member T set to a type inbetween S and U – thus provid-

ing constructive evidence that S <: U. However, null is in-

compatible with canonical forms: null is assignable to any

other type, but it does not have any members on which con-

straints could be enforced. Thus it is clear that we can cre-

ate a problem with type selections x.T when x is null. The

potential danger of this has been realized early on in the his-

tory of Scala, and the Scala compiler has ad-hoc checks to

prevent direct uses of null. However, with the new observa-

tion that “good bounds” are not preserved by narrowing (see

Section 4.3), it becomes easy to thwart those checks via indi-

rection as shown in the following example, which fails with

a runtime cast exception:

trait A { type L >: Any}

def id1(a: A, x: Any): a.L = x

val p: A { type L <: Nothing } = null

def id2(x: Any): Nothing = id1(p, x)

id2("boom!")

The problem is that id2 is a “safe” cast from Any to Nothing,

which we cannot support in a sound language. The subtyping

lattice collapses through a null path with bad bounds. The

issue is described in more detail by Amin and Tate [6], who

show that – remarkably – the same problem also exists in

Java, even though Java does not have path-dependent types.

Since this example uses an explicit null, one might be

tempted to dismiss the issue by saying “null is unsound

anyways”. But what is disturbing is that the result is not a

NullPointerException but a ClassCastException, even though

no “unsafe” casts are used. Also, no pointer is dereferenced,

so while a NullPointerException could be more easily ratio-

nalized (e.g. as a “type-level” null deferencing), it would still

be unexpected, even for weak notions of soundness.

The use of null is also not crucial, as we show in Sec-

tion 7.1. The issue is deeper, and the take-away is that paths

always need to refer to proper objects, which are guaranteed

to have “good bounds” by construction, and thus serve as

constructive evidence, i.e. witnesses for the subtyping rela-

tions they introduce via transitivity. As we discuss in Sec-

tion 4, attempting to incorporate “good bounds” into well-

formedness of types is not sufficient, as “good bounds” are

not preserved under narrowing. Because they do not pro-

vide any actual witness ensuring that the subtyping relations

added are valid, null values, unevaluated lazy vals, mutable

variables, as well as arbitrary (non-terminating) term depen-

dencies need to be excluded from paths. The core DOT cal-

culus presented in this paper does not include these features,

but we discuss potential avenues of extension in Section 7.2.

Our work on DOT helped identify and clarify these

soundness issues, and identify potential fixes. In the case

of null, there are no easy fixes: the DOT effort has under-

lined the necessity for future versions of Scala and similar

languages to consider nullability explicitly in the type sys-

tem.

3. Formal Model of DOT

Figure 1 shows the syntax and static semantics of the DOT

calculus we study. For readability, we omit well-formedness

requirements from the rules, and assume all types to be syn-

tactically well-formed in the given environment. We write

T x when x is free in T . The type assignment syntax is over-

loaded: we use Γ ⊢ t : T for the usual term type assignment

and Γ ⊢ t :! T for a path type assignment used in subtyp-

ing of type selections, specifically rules (SEL1) and (SEL2).

We use Γ ⊢ t :(!) T for rules that are defined for both cases,

specifically rules (VAR), (VARUNPACK), and (SUB).

627

Syntax

x, y, z Variable

L Type label

m Method label

Γ ::= ∅ | Γ, x : T Context

S, T, U ::= Type

⊤ top type

⊥ bottom type

L : S..U type member

m(x : S) : Ux method member

x.L type selection

{z ⇒ T z} recursive self type

T ∧ T intersection type

T ∨ T union type

t, u ::= Term

x variable reference

{z ⇒ d} new instance

t.m(t) method invocation

d ::= Initialization

L = T type initialization

m(x) = t method initialization

Subtyping Γ ⊢ S <: U
Lattice structure

Γ ⊢ ⊥ <: T (BOT)

Γ ⊢ T1 <: T

Γ ⊢ T1 ∧ T2 <: T
(AND11)

Γ ⊢ T2 <: T

Γ ⊢ T1 ∧ T2 <: T
(AND12)

Γ ⊢ T <: T1 , T <: T2

Γ ⊢ T <: T1 ∧ T2

(AND2)

Γ ⊢ T <: ⊤ (TOP)

Γ ⊢ T <: T1

Γ ⊢ T <: T1 ∨ T2

(OR21)

Γ ⊢ T <: T2

Γ ⊢ T <: T1 ∨ T2

(OR22)

Γ ⊢ T1 <: T , T2 <: T

Γ ⊢ T1 ∨ T2 <: T
(OR1)

Type and method members

Γ ⊢ S2 <: S1 , U1 <: U2

Γ ⊢ L : S1..U1 <: L : S2..U2

(TYP)

Γ ⊢ S2 <: S1

Γ, x : S2 ⊢ Ux
1 <: Ux

2

Γ ⊢ m(x : S1) : U
x
1 <: m(x : S2) : U

x
2

(FUN)

Path selections

Γ ⊢ x.L <: x.L (SELX)

Γ[x] ⊢ x :! (L : T..⊤)

Γ ⊢ T <: x.L
(SEL2)

Γ[x] ⊢ x :! (L : ⊥..T)

Γ ⊢ x.L <: T
(SEL1)

Recursive self types

Γ, z : T z
1 ⊢ T z

1 <: T z
2

Γ ⊢ {z ⇒ T z
1 } <: {z ⇒ T z

2 }
(BINDX)

Γ, z : T z
1 ⊢ T z

1 <: T2

Γ ⊢ {z ⇒ T z
1 } <: T2

(BIND1)

Transitivity

Γ ⊢ T1 <: T2 , T2 <: T3

Γ ⊢ T1 <: T3

(TRANS)

Type assignment Γ ⊢ t :(!) T

Variables, self packing/unpacking

Γ(x) = T

Γ ⊢ x :(!) T
(VAR)

Γ ⊢ x : T x

Γ ⊢ x : {z ⇒ T z}
(VARPACK)

Γ ⊢ x :(!) {z ⇒ T z}

Γ ⊢ x :(!) T
x

(VARUNPACK)

Subsumption

Γ ⊢ t :(!) T1 , T1 <: T2

Γ ⊢ t :(!) T2

(SUB)

Method invocation

Γ ⊢ t : (m(x : T1) : T
x
2) , y : T1

Γ ⊢ t.m(y) : T y

2

(TAPPVAR)

Γ ⊢ t : (m(x : T1) : T2) , t2 : T1

Γ ⊢ t.m(t2) : T2

(TAPP)

Object creation

(labels disjoint)

Γ, x : T x
1 ∧ . . . ∧ T x

n ⊢ di : T
x
i ∀i, 1 ≤ i ≤ n

Γ ⊢ {x ⇒ d1 . . . dn} : {z ⇒ T z
1 ∧ . . . ∧ T z

n}
(TNEW)

Member initialization Γ ⊢ d : T

Γ ⊢ T <: T

Γ ⊢ (L = T) : (L : T..T)
(DTYP)

Γ, x : T1 ⊢ t : T2

Γ ⊢ (m(x) = t) : (m(x : T1) : T2)
(DFUN)

Figure 1. DOT Syntax and Type System

628

Compared to the original DOT proposal [4], which used

several auxiliary judgements such as membership and ex-

pansion, the presentation here is vastly simplified, and uses

only subtyping to access function and type members. Com-

pared to µDOT [5], the calculus is much more expressive,

and includes key features like intersection and union types,

which are absent in µDOT.

The Scala syntax used above maps to the formal notation

in a straightforward way:

{ type T = Elem } ❀ T : Elem..Elem
{ type T >: S <: U } ❀ T : S..U
{ def m(x: T) = t } ❀ m(x) = t

A & B, A | B ❀ A ∧B, A ∨B

In addition, top-level definitions of vals and types desugar

to local definitions, by the usual desugaring of let-bindings

into applications. Intersection and union types, along with

the ⊥ and ⊤ types, provide a full subtyping lattice.

Note that each kind of object member, i.e. a type member

L = T or a method member m(x) = t, includes its specific

label L or m, respectively. The same holds for the corre-

sponding types. A sensible alternative would be to decou-

ple object membership and the underlying primitive types

for methods (having dependent function types instead) and

types (having “type tag” types instead that can be derefer-

enced as types). Because objects are recursive in their self

type, we find coupling the labels more intuitive in terms of

reasoning.

When typing object creation, rules (TNEW) and (DTYP)

ensure syntactically that object values have “good bounds”,

avoiding soundness issues due to lattice collapsing (which

we explain in Section 4.3). First, labels are disjoint. Sec-

ond, type member initialization requires exact aliases, not

bounds. Finally, to avoid circular reasoning, the checking of

member initialization is done without subsumption on the

self type.

In subtyping, members of the same label and kind can

be compared via rules (TYP) and (FUN). The type member

upper bound, and method result type are covariant while the

type member lower bound and the method parameter type

are contravariant – as is standard. In rule (FUN), we allow

some dependence between the parameter type and the return

type of a method, when the argument is a variable. This is

another difference to previous versions of DOT [4, 5], which

did not have such dependent method types.

If a variable x can be assigned a type member L, then

the type selection x.L is valid, and can be compared with

any upper bound when it is on the left, and with any lower

bound when it is on the right, via rules (SEL1) and (SEL2).

Furthermore, a type selection is reflexively a subtype of itself

via rule (SELX). This rule is explicit, so that even abstract

type members can be compared to themselves.

Finally, recursive self types can be compared to each

other via (BINDX). They can also be dropped if the self

identifier is not used, via rule (BIND1). During type as-

signment, the rules for variable packing and unpacking,

(VARPACK) and (VARUNPACK), serve as introduction and

elimination rules, enabling recursive types to be compared

to other types as well. Since types can be recursive, and

since subtype comparisons may introduce temporary bind-

ings that may need to be unpacked, there are two contractive-

ness restrictions on type selections that ensure well-founded

induction in the proofs (Section 6.2). First, the typing as-

signment judgement used in type selections, Γ ⊢ x :! T ,

forbids (VARPACK). Note that this typing is used to match

an unpacked type member type, anyways. Second, type se-

lections restrict the environment to disregard bindings in-

troduced after the self. In general, environments have the

form Γ = y : T , z : T , with proper term bindings y fol-

lowed by bindings z introduced by subtype comparisons.

The notation Γ[x] in rules (SEL1) and (SEL2) signifies that

all z : T bindings to the right of x are dropped from Γ,

where x can be either a proper term binding y or a z bind-

ing. While these restrictions are necessary for the proofs,

they do not limit expressiveness of the type system in any

significant way. Similar, and in many cases more impeding,

restrictions are standard in type systems with recursive types

[33]. Intuitively, note that the transitivity rule can always

be used to relate type selections across the context. Note as

well that there is no (BIND2) rule, symmetric to (BIND1),

which is another kind of contractiveness restriction. We con-

jecture that these contractiveness restrictions could be lifted

without breaking soundness, since we can always construct

explicit conversion functions that use rules (VARPACK) and

(VARUNPACK) on proper term bindings. However, remov-

ing these contractiveness restrictions would likely require

different and harder to mechanize proof techniques such as

a coinductive interpretation of subtyping.

In the version of DOT presented here, we make the tran-

sitivity rule (TRANS) explicit, although, as we will see in

Section 4, we will sometimes need to ensure that we can

eliminate uses of this rule from subtyping derivations so that

the last rule is a structural one.

The aim of DOT is to be a simple, foundational calculus

in the spirit of FJ [22], without committing to specific deci-

sions for nonessential things. Hence, implementation inheri-

tance, mixin strategy, and prototype vs class dispatch are not

considered.

4. Static Properties of DOT

Having introduced the syntax and static semantics of DOT,

we turn to its metatheoretic properties. Our main focus of in-

terest will be type safety: establishing that well-typed DOT

programs do not go wrong. Of course, type safety is only

meaningful with respect to a dynamic semantics, which we

will discuss in detail in Section 5. Here, we briefly touch

some general static properties of DOT and then discuss spe-

cific properties of the subtyping relation, which (or their ab-

sence!) makes proving type safety a challenge.

629

Decidability Type assignment and subtyping are undecid-

able in DOT. This follows directly from the fact that DOT

can encode F<:, and that these properties are undecidable

there.

Type Inference DOT has no principal types and no global

Hindley-Milner style type inference procedure. But as in

Scala, local type inference based on subtype constraint solv-

ing [34, 31] is possible, and in fact easier than in Scala due

to the existence of universal greatest lower bounds and least

upper bounds through intersection and union types. For ex-

ample, in Scala, the least upper bound of the two types C and

D is approximated by an infinite sequence:

trait A { type T <: A }

trait B { type T <: B }

trait C extends A with B { type T <: C }

trait D extends A with B { type T <: D }

lub(C, D) ~ A with B { type T <: A with B { type T <: ... } }

DOT’s intersection and union types remedy this brittleness.

While the term syntax and type assignment given in Fig-

ure 1 is presented in Curry-style, without explicit type an-

notations except for type member initializations, a Church-

style version with types on method arguments (as required

for local type inference) is possible just as well. Our mech-

anized proof handles both Curry and Church style via op-

tional parameter and return types. The Curry-style presenta-

tion glosses over explicit upcasts – a feature that can easily

be added, for example through a typed let construct. Upcasts

– whether explicit or implicit in the surface syntax – matter

for nominality by ascription, as discussed in Section 2.

4.1 Properties of Subtyping

The relevant static properties we are interested in with regard

to type safety are transitivity, narrowing, and inversion of

subtyping and type assignment. They are defined as follows.

Inversion of subtyping (example for functions):

Γ ⊢ m(x : S1) : U
x
1 <: m(x : S2) : U

x
2

Γ ⊢ S2 <: S1 Γ, x : S2 ⊢ Ux
1 <: Ux

2

(INVFUN)

Transitivity of subtyping:

Γ ⊢ T1 <: T2 , T2 <: T3

Γ ⊢ T1 <: T3

(TRANS)

Narrowing:

Γ1 ⊢ T1 <: T2 Γ2 ⊢ T3 <: T4

Γ1 = Γ2(x → T1) Γ2(x) = T2

Γ1 ⊢ T3 <: T4

(NARROW)

where Γ1 = Γ2(x → T1) denotes that Γ1 is like Γ2 except

the binding for x maps to T1.

On a high-level, the basic challenge for type safety is to

establish that some value that e.g. has a function type actu-

ally is a function, with arguments and result corresponding

to the given type. This is commonly known as the canonical

forms property. Inversion of subtyping is required to extract

the argument and result types from a given subtype relation

between two function types, in particular to derive

T2 <: T1 and U1 <: U2

from

m(x : T1) : U1 <: m(x : T2) : U2

when relating method types from a call site and the definition

site.

Transitivity is required to collapse multiple subsumption

steps that may have been used in type assignment. Narrow-

ing can be seen as an instance of the Liskov substitution prin-

ciple, preserving subtyping if a binding in the environment

is replaced with a subtype. Narrowing is required for appli-

cation, when the argument type is a subtype of the declared

parameter type.

Unfortunately, as we will show next, these properties do

not hold simultaneously in DOT, at least not in their full

generality.

4.2 Inversion, Transitivity and Narrowing

First of all, let us take note that these properties are mutually

dependent. In Figure 1, we have included (TRANS) as an

axiom. If we drop this axiom, then we obtain key rules like

(INVFUN) by direct inversion of the corresponding typing

derivation, as only the structural rule (FUN) can match the

pattern of comparing two function types. But then, we would

need to prove (TRANS) as a lemma.

Transitivity and narrowing are also mutually dependent.

Transitivity requires narrowing in the following case, where

we are given

{z ⇒ T1} <: {z ⇒ T2} <: {z ⇒ T3}

and want to derive:

{z ⇒ T1} <: {z ⇒ T3}

By inversion we obtain

z : T1 ⊢ T1 <: T2 z : T2 ⊢ T2 <: T3

and we narrow the right-hand derivation to z : T1 ⊢ T2 <:
T3 before we apply transitivity inductively to obtain z : T1 ⊢
T1 <: T3 and thus {z ⇒ T1} <: {z ⇒ T3}.

Narrowing depends on transitivity in the case for type

selections

x.L <: T or its counterpart T <: x.L

Assume that we want to narrow x’s binding from T2 in

Γ2 to T1 in Γ1, with Γ1 ⊢ T1 <: T2. By inversion we obtain

x : (L : ⊥..T)

and, disregarding rules (VARPACK) and (VARUNPACK) we

can deconstruct this assignment as

Γ2(x) = T2 Γ2 ⊢ T2 <: (L : ⊥..T).

We first apply narrowing inductively and then use transi-

tivity to derive the new binding

Γ1(x) = T1 Γ1 ⊢ T1 <: T2 <: (L : ⊥..T).

630

On first glance, the situation appears to be similar to

simpler calculi like F<:, for which the transitivity rule can

be shown to be admissible, i.e. implied by other subtyping

rules and hence proved as a lemma and dropped from the

definition of the subtyping relation. Unfortunately this is not

the case in DOT.

4.3 Good Bounds, Bad Bounds

The transitivity axiom (or subsumption step in type assign-

ment) is essential and cannot be dropped. Let us go through

and see why we cannot prove transitivity directly.

First of all, observe that transitivity can only hold if all

types in the environment have “good bounds”, i.e. only

members where the lower bound is a subtype of the upper

bound. Through “bad” bounds in the context and subtyping

transitivity, the subtyping lattice can collapse. For example,

assume a binding with “bad” bounds like Int..String. Then

the following subtype relation holds via transitivity

x : {A = Int..String} ⊢ Int <: x.A <: String

but Int is not a subtype of String. Of course core DOT does

not have Int and String types, but any other incompatible

types can be taken as well.

But even if we take good bounds as a precondition, we

cannot show

{z ⇒ T1} <: {z ⇒ T2} <: {z ⇒ T3}

because we would need to use x : T1 in the extended

environment for the inductive call, but we do not know that

T1 has indeed good bounds.

Of course we could modify the {z ⇒ T1} <: {z ⇒ T2}
rule (BINDX) to require T1 to have good bounds. But then

this evidence would need to be narrowed, which unfortu-

nately is not possible. Again, here is an example, considering

a type under a context:

x : {A : ⊥..⊤} ⊢ x.A ∧ {B = Int}

This type has good bounds, but when narrowing x in the

context to the smaller type {A = {B = String}} (which

also has good bounds), its bounds become contradictory.

In summary, even if we assume good bounds in the envi-

ronment, and strengthen our typing rules so that only types

with good bounds are added to the environment, we may

still end up with bad bounds due to narrowing and intersec-

tion types. This refutes one conjecture about possible proof

avenues from earlier work on DOT [5].

Intuitively, all the questions related to bad bounds have

a simple answer: We ensure good bounds at object creation

time, so why do we need to worry in such a fine-grained

way?

4.4 No (Simple) Substitution Lemma

As a final negative result, we illustrate how typing is not

preserved by straightforward substitution in DOT, because

of path-dependent types.

Γ, x : {z ⇒ L : Sz..Uz ∧m(_) : T z} ⊢ tx : x.L

Now, consider substituting x in t with u, given

Γ ⊢ u : {z ⇒ L : Sz..Uz ∧m(_) : T z}

First, tx might invoke method x.m(_) and therefore require

assigning type (m(_) : T x) to x. However, the self bind

layer can only be removed if an object is accessed through a

variable, otherwise we would not be able to substitute away

the self identifier. Second, we cannot derive Γ ⊢ tu : x.L
with x removed from the environment, but we also cannot

replace x in x.L with a term u that is not an identifier. Hence,

u cannot be an arbitrary term, because path-dependent types

are not syntactically valid for arbitrary terms.

Intuitively, there is still hope for substitution, but only

with forms that preserve syntactic validity of path-dependent

types. Another option is to settle for a relaxed notion of path-

dependent types that allows type selections on values [2].

4.5 There is Still Hope: Key Observations

Based on the discussion so far, we can make the following

observations, which reveal a possible avenue for proving

type soundness despite the difficulties:

Observation 1. If objects can only be created with type

aliases (L = T), not arbitrary bounds T1..T2, then runtime

objects cannot have bad bounds.

Observation 2. If we assume a call-by-value evaluation

strategy, then whenever we execute a method call at runtime,

all variables are bound to existing objects.

Observation 3. The only place in a soundness proof where

we rely on the (INVFUN) property is for the evaluation of

such method calls.

Taken together, these observations suggest that making a

clear distinction between runtime values and other terms is a

prerequisite for a successful soundness proof. Observation 3

further suggests that subtyping transitivity and narrowing

can be treated as axioms in subtyping comparisons and when

assigning types to static terms, as long as we can recover the

(INVFUN) property in contexts that consist exclusively of

runtime objects.

5. Operational Semantics

Type soundness is only meaningful with respect to a notion

of evaluation: an operational semantics. In order to realize

the soundness proof strategy outlined in Section 4.5, we need

to pick a semantics that allows us to distinguish runtime val-

ues from normal terms. While such a distinction is partic-

ularly natural in big-step evaluators, the particular style of

semantics does not matter so much, and different styles of

semantics can be formally inter-derived using the techniques

of Danvy et al. [12, 13, 1]. In our development, we have de-

fined both big-step evaluators and small-step reduction se-

mantics, and used them as the basis for mechanized proofs

[36]. Here, we focus our presentation on a small-step reduc-

tion semantics, shown in Figure 2.

631

Syntax...

x ::= Variable

y Concrete Variable (i.e. Store Location)

z Abstract Variable

v ::= y Value (Store Location)

ρ ::= ∅ | ρ, y : d Store

Reduction ρ1 t1 → t2 ρ2

ρ {z ⇒ dz} → v ρ, (v : dv) with v fresh

ρ v1.m(v2) → tv2 ρ if ρ(v1) ∋ m(x) = tx

ρ1 e[t1] → e[t2] ρ2 if ρ1 t1 → t2 ρ2

where e ::= [] | [].m(t) | v.m([])

Subtyping... ρ Γ ⊢ S <: U

ρ(y) ∋ (L = U) ρ ∅ ⊢ T <: U

ρ Γ ⊢ T <: y.L
(SSEL2)

ρ(y) ∋ (L = U) ρ ∅ ⊢ U <: T

ρ Γ ⊢ y.L <: T
(SSEL1)

Type assignment... ρ Γ ⊢ t :(!) T

(y, dy) ∈ ρ

(labels disjoint) ∀i, 1 ≤ i ≤ n

ρ ∅, (x : T x
1 ∧ . . . ∧ T x

n) ⊢ dxi : T x
i

ρ Γ ⊢ y : T y
1 ∧ . . . ∧ T y

n

(TLOC)

Figure 2. Small-Step Operational Semantics and Store Typing

We allocate all objects in a store-like structure, which

grows monotonically. In this setting, store locations are the

only values, i.e. passed around between functions and stored

in environments. Figure 2 also shows necessary extensions

to subtyping and type assignment, which we explain next.

A store-less alternative is also possible as detailed in

Amin’s thesis [2]. The key ideas are to remove the store

indirection by treating values as concrete, and variables as

abstract, and to relax the syntax of path-dependent types to

also allow values as paths, in addition to variables.

5.1 Concrete Variables in Typing and Subtyping

To assign types to terms that occur during evaluation, we

need to be able to handle path-dependent types that refer

to variables bound in the store ρ, and type store locations.

Accordingly, we extend the type system judgements with

an additional store parameter ρ. The rules from Figure 1

are still valid, and merely thread the extra store parameter

ρ unchanged. The additional cases are shown in Figure 2.

For concrete variables (i.e. store locations) in type selec-

tions, we use the precise type member given at object cre-

ation time by looking it up in the store, as defined by the

new rules (SSEL1) and (SSEL2).

In this extended subtyping relation, we continue to use

the same rules for type selections on variables bound in

Γ, (SEL1) and (SEL2) from Figure 1. Hence, the auxiliary

judgement ρ Γ ⊢ z :! T , which excludes (VARPACK), is

only used for typing abstract variables.

Finally, we also need a new case for concrete variables in

typing, (TLOC). It resembles (TNEW), except that it looks

up the definitions in the store, it does not create a recursive

type (because we can reuse the store location in the result

type instead), and it does not consider the abstract context

while checking the definitions (because all free variables in

the store must be concrete).

6. Type Soundness

We discuss in detail our proofs for type soundness (Theo-

rem 1), highlighting challenges and insights. Our statement

of type safety is the following, folding together the usual no-

tions of progress and preservation [41]:

Definition 1 (Type Safety). If a term t typechecks to some

type T in a store and empty context ρ ∅ (i.e. ρ ∅ ⊢ t : T),

then either the term t is a variable or the store-term con-

figuration ρ, t steps to a configuration ρ′, t′ where the new

store ρ′ extends the old store ρ and the resulting configura-

tion typechecks to the same type T (i.e. ρ′ ∅ ⊢ t′ : T).

Note that Definition 1 assumes deterministic execution.

Otherwise the statement would need to be modified to con-

sider all possible following configurations.

We outline the main strategic choices next, with pointers

to further subsections that describe the technical details. We

reflect again on the higher-level strategy in Section 6.5.

Lenient Well-Formedness Any syntactically valid form

(type or term) is considered well-formed, if all its free vari-

ables are bound in environments. Our strategy is to impose

no semantics (e.g. good bounds for type members) on well-

formedness, and ensure desired properties by construction

only when they’re needed (e.g. for runtime objects).

Lemma 1 (Regularity). If a judgement holds, all its forms

are well-formed.

632

Lemma 2 (Subtyping Reflexivity). Any well-formed type is

a subtype of itself.

This leniency pays off. As we saw in Section 4.3, trying to

enforce semantic properties can break narrowing and other

monotonicity properties. For example, the subtyping lattice

is full just by definition, since the greatest lower bound and

least upper bound of two types always exist, just by syntactic

constructs (intersection and union).

“Pushback” For type soundness, we need to establish

Canonical Forms (Section 6.3) properties: that if a concrete

variable has a structural member type, then its definition in

the store include a matching member definition.

This is challenging, as the evidence from the typing

derivation might be indirect, because of subsumption and

subtyping transitivity. Hence, we need to “pushback” such

indirections.

We have two choices: pushback transitivity in subtyping

(described in Section 6.1), or pushback value typing into

directly invertible evidence (an independent alternative de-

scribed in Section 6.6).

In both options, a key insight is that we only need to do

the pushback in an empty abstract context, which circum-

vents the impossibility results of Section 4. This is where

it pays off to distinguish between runtime values and only

static types. Plus, for runtime values, we can rely on any

properties enforced during their construction, in particular

“good bounds”.

Substitution By design, substitution is only needed to re-

place an abstract variable with a concrete one. Because the

abstract variable might have a less precise type, there’s also

a narrowing step involved. Furthermore, type selections on

concrete variables are defined more precisely than for ab-

stract ones, which requires converting the evidence from

subtyping with abstract type selections to concrete. We de-

scribe further in Section 6.2

6.1 Narrowing and Transitivity Pushback

In simpler type systems like F<:, transitivity can be proved

as a lemma, together with narrowing, in a mutual induction

on the size of the middle type in a chain T1 <: T2 <: T3

(see e.g. the POPLmark challenge documentation [7]).

Unfortunately, for subtyping in DOT, the same proof

strategy fails, because subtyping may involve a type selec-

tion as the middle type: T1 <: z.L <: T3. Since proving

transitivity becomes much harder, we adopt a strategy from

previous DOT developments [5]: admit transitivity as an ax-

iom (TRANS), but prove a ‘pushback’ lemma that allows to

push uses of the axiom further up into a subtyping deriva-

tion, so that the top level becomes invertible. We denote this

as precise subtyping T1 <! T2.

Definition 2 (Precise Subtyping). If ρ Γ ⊢ T1 <: T2 and

the derivation does not end in rule (TRANS) then we say that

ρ Γ ⊢ T1 <! T2.

Such a strategy is reminiscent of cut elimination in natu-

ral deduction, and in fact, the possibility of cut elimination

strategies is already mentioned in Cardelli’s original work

on F<: [9].

The narrowing lemma does not have any dependencies:

Lemma 3 (Narrowing).

ρ Γ1 ⊢ T1 <: T2 ρ Γ2 ⊢ T3 <: T4

Γ1 = Γ2(z → T1) Γ2(z) = T2

ρ Γ1 ⊢ T3 <: T4

Proof. By structural induction, and using the (TRANS) ax-

iom.

Lemma 4 (Transitivity Pushback).

ρ ∅ ⊢ T1 <: T2

ρ ∅ ⊢ T1 <! T2

Proof. We prove an auxiliary lemma by induction on the

subtyping derivation T1 <: T2:

ρ ∅ ⊢ T1 <: T2 , T2 <! T3

ρ ∅ ⊢ T1 <! T3

using narrowing (Lemma 3) in cases (FUN), (BINDX),

(BIND1). Transitivity pushback follows from the special

case T2 = T3.

Lemma 5 (Inversion of Subtyping). For example for func-

tion types:

ρ ∅ ⊢ m(x : S1) → Ux
1 <: m(x : S2) → Ux

2

ρ ∅ ⊢ S2 <: S1 ρ x : S2 ⊢ Ux
1 <: Ux

2

Proof. By transitivity pushback (Lemma 4) and inversion of

the resulting derivation.

Inversion of subtyping is only required in a concrete run-

time context, without abstract component (Γ = ∅). There-

fore, transitivity pushback is only required then. Transitivity

pushback requires narrowing, but only for abstract bindings

(those in Γ, never in ρ). Narrowing requires these bindings

to be potentially imprecise, so that the transitivity axiom can

be used to inject a step to a smaller type without recursing

into the derivation. In summary, we need both (actual, non-

axiom) transitivity and narrowing, but not at the same time.

The insight that transitivity pushback is only required in a

concrete-only runtime context is crucial for supporting lan-

guage features such as intersection types that may collapse

the subtyping lattice in unrealizable contexts.

6.2 Bootstrapping Substitution and Canonical Forms

To mirror the effect of reduction ρ x.m(y) → ty ρ given

ρ(x) ∋ m(z) = tz , we need a substitution lemma for terms,

but we also need to mirror the reduction on the type level,

since types can refer to variables via type selections. More

precisely, we need a substitution lemma that enables us to

replace all type selections on an abstract variable z.A with

633

concrete ones y.A. For this, we need to ensure that for a con-

crete variable with a structural type-member type, its def-

initions in the store include a corresponding type member

– a Canonical Forms property for type members (see Sec-

tion 6.3).

We cannot prove either of these properties directly and

therefore need to bootstrap a mutual induction. The key

induction measure will be an upper bound on the uses of

(VARPACK) in a typing derivation.

Definition 3 (VARPACK Metric). Let ρ Γ ⊢≤m y : S

denote a derivation ρ Γ ⊢ y : S with no more than m uses

of (VARPACK).

Definition 4 (Substitution). Let Subst(m) denote:

ρ ∅ ⊢≤m1
y : Sy m1 < m

ρ z : Sz,Γz ⊢ T1
z <: T2

z

ρ Γy ⊢ T1
y <: T2

y

We go on to prove preliminary canonical forms lemmas,

assuming the ability to perform substitution for a given m.

Lemma 6 (Pre-canonical Forms for Recursive Types).

ρ ∅ ⊢≤m y : {z ⇒ T z} Subst(m)

ρ ∅ ⊢≤m−1 y : T y

Proof. Any trailing uses of (SUB) can be accumulated into

a single subtyping statement ρ ∅ ⊢ {z ⇒ T ′z} <: {z ⇒
T z}, and the remaining derivation must end in (VARPACK).

By inversion we obtain ρ ∅ ⊢≤m−1 y : T ′y . After tran-

sitivity pushback (Lemma 4), the subtyping derivation must

end in (BINDX), from which we obtain ρ z : T ′z ⊢ T ′z <:
T z . We can now apply our Subst(m) capability to obtain

ρ ∅ ⊢ T ′y <: T y . Applying subsumption (SUB) yields

ρ ∅ ⊢≤m−1 y : T y .

Lemma 7 (Pre-canonical Forms for Type Members).

ρ ∅ ⊢≤m y : {L : S..U} Subst(m)

ρ(y) ∋ (L = T) ρ ∅ ⊢ S <: T <: U

Proof. Again, we accumulate trailing uses of (SUB) into

an invertible subtyping. If we hit (VARPACK), the resulting

subtyping derivation must collapse into (BIND1). We fin-

ish the case by applying Lemma 6, Subst(m), and (SUB).

Case (TLOC) is immediate from inversion of member case

(DTYP).

We are now ready to prove our substitution lemma, together

with two helpers. The proof is by simultaneous induction,

first over m, and then an inner induction over the size of the

<: or :! derivation.

Lemma 8 (Substitution for <:). ∀m.Subst(m), i.e.:

ρ ∅ ⊢≤m y : Sy ρ z : Sz,Γz ⊢ T1
z <: T2

z

ρ Γy ⊢ T1
y <: T2

y

Proof. The key challenge is translating from the rules (SEL1)

/ (SEL2) to the rules (SSEL1) / (SSEL2). For (SEL2), if we

are selecting z.A, we have ρ z : Sz ⊢ z :! (L : T z..⊤), and

with Lemma 10 we obtain ρ ∅ ⊢≤m y : (L : T y..⊤). We in-

voke canonical forms (Lemma 7), which yields ρ(y) ∋ (L =
U) and ρ ∅ ⊢ T y <: U . Note that we can apply Lemma 7

because of our outer induction on m. If we are selecting z′.A

with z′ 6= z, we apply Lemma 9. Case (SEL1) is analogous.

Note that the (SEL1)/(SEL2) rules are carefully set up so

that Γ[z] = z : S.

Lemma 9 (Substitution for :!).

ρ ∅ ⊢≤m y : Sy z′ 6= z ρ z : Sz,Γz ⊢ z′ :! T
z

ρ Γy ⊢ z′ :! T
y

Proof. Straightforward. Case (SUB) uses Lemma 8.

Lemma 10 (Substitution for :).

ρ ∅ ⊢≤m y : Sy ρ z : Sz,Γz ⊢ z :! T
z

ρ ∅ ⊢≤m y : T y

Proof. Case (VAR) is immediate. In case (VARUNPACK),

we have ρ z : Sz,Γzz :! {z2 ⇒ T z2}z and by induction

we obtain ρ ∅ ⊢≤m y : {z2 ⇒ T z2}y , as required. In case

(SUB), we have ρ z : Sz,Γzz :! T
′z and ρ z : Sz,Γzz :!

T ′z <: T z . Applying the induction hypothesis and Lemma 8

and using (SUB) we get ρ ∅ ⊢≤m y : T ′y .

Finally, we can prove a substitution on terms.

Lemma 11 (Substitution in Term Typing).

ρ (z : S),Γz ⊢ tz : T z ρ ⊢ y :! S

ρ Γy ⊢ ty : T y

Proof. Straightforward induction. Case (SUB) uses substitu-

tion of subtyping (Lemma 8).

6.3 Inversion of Value Typing (Canonical Forms)

As a corollary of substitution (Lemma 8), we can extend the

preliminary canonical forms lemmas to all m.

Lemma 12 (Canonical Forms for Type Members).

ρ ∅ ⊢ y : {L : S..U}

ρ(y) ∋ (L = T) ρ ∅ ⊢ S <: T <: U

Proof. Follows directly from Lemma 7 and Lemma 8.

We also prove an additional canonical forms lemma for

function members, which will be required by the main proof.

Lemma 13 (Canonical Forms for Method Members).

ρ ∅ ⊢ y : m(x : S2) → Ux
2

ρ(y) ∋ m(x) = t

ρ ∅, x : S1 ⊢ t : Ux
1

ρ ∅ ⊢ m(x : S1) → Ux
1 <: m(x : S2) → Ux

2

634

Proof. Analogous to Lemma 7. Case (TLOC) eliminates the

self variable in the abstract context by applying substitution

of term typing (Lemma 11).

6.4 The Main Soundness Proof

Our main type safety theorem combines the usual progress

and preservation lemmas into a single unified statement.

Theorem 1 (Type Safety). If ρ ∅ ⊢ t : T , then either t = y

and ρ(y) = {d} or ρ t → t′ ρ′ and ρ′ ∅ ⊢ t′ : T

Proof. By structural induction. The most interesting case is

the dependent application (TAPPVAR), if the receiver of

the call is already evaluated to a store location y. We have

ρ ∅ ⊢ y.m(y1) : U
y1

2 and, by inversion, ρ ∅ ⊢ y : (m(x :
S2) : T x

2) and ρ ∅ ⊢ y1 : S1. By canonical forms for

method members (Lemma 13) we obtain ρ(y) ∋ m(x) = tx,

ρ x : S1 ⊢ tx : Ux
1 , and ρ ⊢ m(x : S1) : Ux

1 <:
m(x : S2) : Ux

2 . We know that ρ y.m(y1) → ty1 ρ, so

we need to show that the result is well-typed with the same

type: ρ ∅ ⊢ ty1 : U
y1

2 . We apply inversion of subtyping

(Lemma 5) and obtain ρ ∅ ⊢ S2 <: S1 and ρ x : S2 ⊢
Ux
1 <: Ux

2 . With (SUB), we have ρ ∅ ⊢ y1 : S1, and we

can apply substitution of term typing (Lemma 11), to obtain

ρ ∅ ⊢ ty1 : Uy1

2 . With (SUB) and applying substitution of

subtyping (Lemma 8) to derive ρ ∅ ⊢ U
y1

1 <: U
y1

2 , we

arrive at the required ρ ∅ ⊢ ty1 : Uy1

2 .

6.5 Some Reflection

The soundness proof was set up carefully to avoid cycles

between required lemmas. Where cycles did occur, as with

transitivity and narrowing, we broke them using a pushback

technique. Where this was cumbersome to do, as with sub-

stitution and canonical forms, we used mutual induction. A

key property of the system is that, in general, we are very le-

nient about things outside of the concrete runtime store. The

only place where we invert a dependent function type and go

from abstract to concrete is in showing safety of the corre-

sponding type assignment rules. This enables subtyping in-

version and pushback to disregard abstract bindings for the

most part.

When seeking to unpack recursive self types within

lookups of type selections in subtype comparisons, the

option of disregarding abstract bindings is no longer so

easy. Every lookup of a variable, while considering a path-

dependent type, may potentially need to unfold and invert

self types. In particular, the substitution lemma itself that

converts imprecise into precise bounds may unfold a self

type. Then it will be faced with an abstract variable that first

needs to be converted to a concrete variable. More generally,

whenever we have a chain

{z ⇒ T1} <: T <: {z ⇒ T2},

we first need to apply transitivity pushback to perform in-

version. But then, the result of inversion will yield another

imprecise derivation

T1 <: U <: T2

which may be bigger than the original derivation due to

transitivity pushback. So, we cannot process the result of the

inversion further during an induction. This increase in size

is a well-known property of cut elimination: removing uses

of a cut rule (like our transitivity axiom) from a proof term

may increase the proof size exponentially.

This is why type selections use the abstract variable type

assignment, which disallow packing, relying on unpacking

and subtyping instead.

Furthermore, for sub-derivations on a self type, the ab-

stract context must be restricted to not include any binding

added after the binding for the self type, so that the push-

back lemma can be applied during substitution. In fact, this

last restriction in the model is not just a technical device, it

seems reasonable for soundness. Indeed, a self type might

use a type that has bad bounds within a definition (for exam-

ple, in a function parameter type, or a type member alias).

When subtyping two recursive types, such nonsensical types

might be added to the abstract context, but we do not want

to unpack a self type by using such temporary bad evidence.

6.6 Alternative: Invertible Concrete Variable Typing

In the preceding sections, the presence of the subsumption

rule in type assignment required us to prove various canon-

ical forms lemmas. It is also possible to turn this around:

design a type assignment relation for concrete variables that

is directly invertible, and prove the subsumption property

(upwards-closure with respect to subtyping) as a lemma.

Here we sketch this alternative, focusing on the set up

of the auxiliary relation and lemmas rather than the proof

details.

Invertible Concrete Variable Type Assignment We define

the concrete variable type assignment, ρ ⊢ y :! T , to be

directly invertible by excluding subsumption, and instead

relating a value in the store to each of its possible type. There

is one case per syntactic form, except no case for ⊥ and two

cases for union types.

Definition 5 (Concrete Variable Type Assignment). ρ ⊢
y :! T is defined inductively by the following rules.

y ∈ ρ

ρ ⊢ y :! ⊤
(V-TOP)

ρ(y) ∋ (L = T) ρ ∅ ⊢ S <: T , T <: U

ρ ⊢ y :! (L : S..U)
(V-TYP)

(y, dy) ∈ ρ

(labels disjoint) ∀i, 1 ≤ i ≤ n

ρ ∅, (x : T x
1 ∧ . . . ∧ T x

n) ⊢ dxi : T x
i

∃j, dxj = (m(z : S) = tz) T x
j = m(z : Sx) : Ux,z

ρ ∅ ⊢ S′ <: Sy ρ ∅, (z : S′) ⊢ Uy,z <: U ′z

ρ ⊢ y :! (m(x : S′) : U ′x)
(V-FUN)

635

ρ(x) ∋ (L = T) ρ ⊢ y :! T

ρ ⊢ y :! (x.L)
(V-SEL)

ρ ⊢ y :! T
y

ρ ⊢ y :! {z ⇒ T z}
(V-BIND)

ρ ⊢ y :! T1 , y :! T2

ρ ⊢ y :! T1 ∧ T2

(V-AND)

ρ ⊢ y :! T1

ρ ⊢ y :! T1 ∨ T2

(V-OR1)

ρ ⊢ y :! T2

ρ ⊢ y :! T1 ∨ T2

(V-OR2)

Bootstrapping Substitution and Widening We proceed in

a way similar to Section 6.2 to bootstrap a mutual induction,

but this time with swapped assumptions: canonical forms

properties are now immediate, but we need to assume a

widening (i.e. subsumption) capability.

Definition 6 (V-BIND Metric). Let ρ ⊢≤m y :! S denote

a derivation ρ ⊢ y :! S with no more than m uses of (V-

BIND).

Definition 7 (Widening). Let Widen(m) denote:

ρ ⊢m y :! T ρ ∅ ⊢ T <: U

ρ ⊢≤m y :! U

We prove three substitution lemmas, analogous to Lem-

mas 8,9, and 10, but predicated on Widen(m), and with re-

spect to concrete variable typing (ρ ⊢ y :! T) instead of

term typing (ρ ∅ ⊢ y : T).

Lemma 14 (Substitution for Subtyping).

ρ ⊢≤m y :! S
y Widen(m)

ρ z : Sz,Γz ⊢ T1
z <: T2

z

ρ Γy ⊢ T1
y <: T2

y

Lemma 15 (Substitution for Abstract Variable Typing).

ρ ⊢≤m y :! S
y Widen(m)

z′ 6= z ρ z : Sz,Γz ⊢ z′ :! T
z

ρ Γy ⊢ z′ :! T
y

Lemma 16 (Substitution for Concrete Variable Typing).

Widen(m) ρ ⊢≤m y :! S
y ρ z : Sz,Γz ⊢ z :! T

z

ρ ⊢≤m y :! T
y

Note that the abstract context in the premise of Lemma 16

disappears entirely from the conclusion, which is about con-

crete type assignment. This gives another intuition why the

model restricts the abstract context when typing recursive

types for type selections. Indeed, the extra abstract bindings

that come from subtyping recursive types within recursive

types might cause more derivations to hold, via lattice col-

lapsing, in the abstract than in the concrete.

We can now prove that a general widening or subsump-

tion rule is admissible.

Lemma 17 (Concrete Variable Widening). ∀m.Widen(m),
i.e.:

ρ ⊢m y :! T ρ ∅ ⊢ T <: U

ρ ⊢≤m y :! ⊢ U

Finally, we can relate the normal typing relation and our

concrete variable typing.

Lemma 18 (Concrete Variable Typing Inversion). Term typ-

ing of a concrete variable in an empty abstract context im-

plies the same concrete variable type assignment.

ρ ∅ ⊢ y : T

ρ ⊢ y :! T

7. Perspectives

7.1 DOT is Sound, but is Scala Sound?

It is not always clear how well results from a small formal

model translate to a realistic language. In the case of DOT,

the interleaved process of designing and proving sound a

prescriptive core model of Scala’s type system has provided

valuable insights into the design space. Through debugging

DOT models, we have uncovered several soundness issues

in Scala. We have already discussed problems related to null

values in Section 2. While it can be argued that null is a fun-

damentally unsound feature anyways, and therefore sound-

ness issues involving null may be acceptable, we give two

further examples here, which use only safe language features

and thus constitute uncontroversial soundness violations.

In DOT, type members in new instances are restricted

to aliases, so that “good bounds” are enforced syntactically

rather than semantically. This restriction was added after it

became clear that subtle situations could arise during object

initialization with recursive types, where runtime contexts

would be polluted by “bad” evidence that is temporary or

justified only through circular reasoning. For a similar rea-

son, there is no subsumption in member initialization, so

type-checking at object creation (TNEW) can tie the recur-

sive knot, without needing to check bounds.

Scala was designed and implemented before all these cor-

ner cases became apparent and allows more flexible bounds.

Bounds are checked to be “good”, but these checks are not

sufficient. Here is an example where a concrete object with

“bad bounds” slips through in Scala 2.11.8, causing a cast

exception at runtime.

trait O { type A >: Any <: B; type B >: A <: Nothing }

val o = new O {}

def id(a: Any): Nothing = (a: o.B)

val n: Int = id("Boom!") // runtime cast exception

As another example, Scala allows lazy vals in paths of

type selections, while trying to enforce realizability to pre-

vent unsoundness due to “bad bounds” on non-terminating

lazy paths that are never forced but appear in types. But from

DOT, we know that realizability is not preserved by narrow-

ing, and with a bit of work, we can exploit this insight and

demonstrate the pitfalls of this approach.

636

trait A { type L <: Nothing }

trait B { type L >: Any}

trait U {

type X <: B

val p: X

def id(x: Any): p.L = x // used in plausible context

}

trait V extends U {

type X = B with A // unrealizable

lazy val p: X = p // non-terminating

}

val v = new V {}

val n: Int = v.id("Boom!") // runtime cast exception

To conclude this section, we believe that formal work

on core language models is important and, even though we

do not and cannot consider a full language, this work still

helps making full languages safer. In addition, formal work

can also chart new territory and lead to more general and

more regular full languages, by (cautiously) suggesting that

a feature may be safer than previously thought and relaxing

some constraints. For example, structural recursive types are

more expressive in our DOT model than in Scala.

7.2 Scaling up: The Road Ahead

While we have seen in Section 2 that DOT can encode a

large class of realistic Scala programming patterns, a num-

ber of non-quintessential but practically relevant features

have been (sometimes deliberately) left out of DOT’s for-

mal model. Below is an attempt to classify these features ac-

cording to their ease of integration with DOT and potential

implications for type soundness.

Largely Orthogonal Features (1) Traits, Classes, Inheri-

tance and Mixins: DOT does not model any “implementation

reuse” mechanisms such as inheritance and mixins (which

Scala has) and prototype dispatch (which does not currently

exist in Scala, but would be interesting to consider). Most

likely, such extensions will be through encodings, showing

type preservation of a translation, and not through extending

the DOT meta-theory itself. Some challenges: type member

inheritance vs “good bounds” at creation time, open con-

struction of nominal hierarchies. (2) Mutable State: this will

require standard extensions to the operational semantics, and

it is important that type selections remain stable, i.e. exclude

mutable variables. As is standard, the interaction of mutation

and polymorphism requires care [39], but previous work [36]

has shown that mutation can be added to DOT-like type sys-

tems without interfering with soundness. (3) Implicits: Scala

has both implicit parameters and implicit conversions, which

are automatically inserted by the compiler based on types

and scopes. Implicit parameters are useful for modeling type

classes. Implicits do not introduce new types as typing rules

and are unlikely to interfere with soundness.

Fitting Extensions (1) Full Paths: extend type selections

to include chains of immutable field selections x.a.b.C in

addition to variables x.A. Some challenges: path equality

and reduction in type selections, field initialization, circular

reasoning with self occurrences. (2) Singleton Types: x.type

in addition to x.A, denoting the type that is only inhabited by

the value of x. An interesting question is whether singleton

types are already encodable in DOT.

Restricted Extensions (1) Laziness: DOT relies on the

assumption of call-by-value evaluation. To model Scala’s

lazy vals, some restrictions are necessary. As a first ap-

proximation one can forbid type selections on lazy vals, but

relaxations in combination with traits and class types may be

possible, though challenging in terms of balancing flexibility

and safety. Another avenue is deliberately forcing evaluation

of lazy vals that occur in types. (2) By-Name Arguments:

must not occur in type selections.

Debatable Extensions Type Projections, Type Lambdas

and Higher-Kinded Types: These features are most likely not

faithfully encodable in DOT. Type projections T#A are similar

to type selections x.A, but crucially lose the guarantee of

variable x pointing to an existing object. Thus, it is presently

unclear how to approach soundness of type projections. For

type lambdas, what is missing is a way to calculate the type

resulting from a type application. This could be encoded

through type projections or through dependent types beyond

just paths. Simplified models are readily doable (as outlined

in the introduction of Section 2), so it is not clear whether

the unrestricted encoding is worth the extra complexity.

Incompatible Extensions As discussed in Section 2 and

elsewhere [6], Scala’s oblivious treatment of null pointers,

which mainly exists for backwards compatibility with Java,

seems to be fundamentally unsound. Future version of Scala

can achieve soundness by (1) reflecting nullability in the

type system, e.g. via union types, (2) preventing nullable

expressions in type selections, similar to mutable variables

or by-name arguments, and (3) tightening the rules for object

member initialization so that null values cannot be observed

during object creation.

8. Related Work

Scala Foundations Much work has been done on ground-

ing Scala’s type system in theory. Early efforts included

νObj [30], Featherweight Scala [11] and Scalina [26], all of

them more complex than what is studied here. None of them

lead to a mechanized soundness result, and due to their in-

herent complexity, not much insight was gained why sound-

ness was so hard to prove. DOT [4] was proposed as a sim-

pler and more foundational core calculus, focusing on path-

dependent types but disregarding classes, mixin linearization

and similar questions. The original DOT formulation [4] had

actual preservation issues because lookup was required to be

precise. This prevented narrowing, as explained in Section 4.

The originally proposed small step rewriting semantics with

a store exposed the difficulty of relating paths at different

stages of reductions.

637

The µDOT calculus [5] is the first calculus in the line

with a mechanized soundness result, (in Twelf, based on

total big-step semantics), but the calculus is much simpler

than what is studied in this paper. Most importantly, µDOT

lacks bottom, intersections and type refinement. Amin et

al. [5] describe in great detail why adding these features

causes trouble. Because of its simplicity, µDOT supports

both narrowing and transitivity with precise lookup. The

soundness proof for µDOT was also with respect to big-

step semantics. However, the semantics had no concept of

distinct runtime type assignment and would thus not be able

to encode F<: and much less full DOT.

After the first version of this paper was circulated as a

tech report [36], a soundness proof sketch for another DOT

variant was proposed by Odersky [3]. While on the surface

similar to the DOT version in this paper and in [36], there

are some important differences that render the calculus in

[3] much less expressive. First, the calculus is restricted to

Administrative Normal Form (ANF) [18], requiring all inter-

mediate subexpressions to be let-bound with explicit names.

While seemingly a minor issue, reported difficulties in prov-

ing encodings of simpler calculi such as F<: that are not in

ANF may suggest that this restriction is not entirely trivial.

Second, and more importantly, the calculus does not sup-

port subtyping between recursive types (rules (BINDX) and

(BIND1)), only their introduction and elimination as part of

type assignment. This skirts most of the thorny issues in the

proofs (see Section 6.2) and also limits the expressiveness of

the calculus. For example, an identifier x bound to a refined

type {z ⇒ T ∧ Uz} can be treated as having type T , but if

it instead has type S → {z ⇒ T ∧ Uz}, it can not be as-

signed type S → T . Instead, one has to eta-expand the term

into a function (i.e. an object with a single method), let-bind

the result of the call, and insert the required coercion to T .

Similar considerations apply to types in other non-toplevel

positions such as bounds of type members, but there it is

not even clear if an analogue of eta-expansion is available.

With this requirement for explicit conversions, the calculus

in [3] does not, at least in our view, capture the essence of

a type system based on subtyping. The results reported in

the present paper predate those from [3], and they have no

such restrictions: we provide a soundness proof, mechanized

in Coq, for a calculus that is not restricted to ANF, and that

supports subtyping between recursive types.

ML Module Systems 1ML [37] unifies the ML module

and core languages through an elaboration to System Fω

based on earlier such work [38]. Compared to DOT, the

formalism treats recursive modules in a less general way

and it only models fully abstract vs fully concrete types,

not bounded abstract types. Although an implementation is

provided, there is no mechanized proof. In good ML tradi-

tion, 1ML supports Hindler-Milner style type inference, with

only small restrictions. Path-dependent types in ML mod-

ules go back at least to SML [25], with foundational work

on transparent bindings by Harper and Lillibridge [21] and

Leroy [24]. MixML [14] drops the stratification requirement

and enables modules as first-class values.

Other Related Languages Other languages and calculi

that include features related to DOT’s path dependent types

include the family polymorphism of Ernst [15], Virtual

Classes [17, 16, 27, 19], and ownership type systems like

Tribe [10, 8]. Nominality by ascription is also achieved in

Grace [23].

9. Conclusions

The key aim behind DOT is to build a solid foundation for

Scala and similar languages from first principles. DOT has

also been described as the essence of Scala: what remains

after you “boil Scala on a slow flame and wait until all

incidental features evaporate” [29].

We have presented the first soundness result for a variant

of DOT that includes recursive type refinement and a sub-

typing lattice with full intersection types, demonstrating how

the difficulties that prevented such a result previously can be

overcome with a semantic model that exposes a distinction

between static terms and runtime values.

We also think that it is important to convey not just that a

calculus is sound in isolation, but also what assumptions the

soundness proof relies on in order to evaluate the broader

applicability of the work. In particular, our proof relies cru-

cially on runtime values having only type members with

good bounds, which the syntax enforces. Because of recur-

sive types, such a property would be difficult to enforce se-

mantically. It also relies on call-by-value semantics, in that

it expects all variables that can partake in types to point to

runtime values when a method body is evaluated.

Finally, in our own experience with DOT, the process

of designing the calculus and proving it sound have been

intertwined. As we understood the landscape better, we have

been able to make the model more uniform yet powerful.

Acknowledgements

The initial design of DOT is due to Martin Odersky. Ge-

offrey Washburn, Adriaan Moors, Donna Malayeri, Samuel

Grütter and Sandro Stucki have contributed to its develop-

ment. For insightful discussions we thank Amal Ahmed,

Jonathan Aldrich, Derek Dreyer, Sebastian Erdweg, Erik

Ernst, Matthias Felleisen, Ronald Garcia, Paolo Giarrusso,

Scott Kilpatrick, Grzegorz Kossakowski, Alexander Kuklev,

Viktor Kuncak, Ondřej Lhoták, Alex Potanin, Jon Pretty, Di-

dier Rémy, Lukas Rytz, Miles Sabin, Ilya Sergey, Jeremy

Siek, Josh Suereth, Ross Tate, Eelco Visser, Philip Wadler

and Jason Zaugg. Finally, we thank the anonymous review-

ers for their thoughtful comments.

This research received funding from the European Re-

search Council (ERC) under grant 587327 DOPPLER, from

NSF under CAREER award 1553471, and from Purdue Uni-

versity through a faculty startup package.

638

References

[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A

functional correspondence between evaluators and abstract

machines. In PPDP, 2003.

[2] N. Amin. Dependent Object Types. PhD thesis, EPFL, 2016.

[3] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki.

The essence of dependent object types. In WadlerFest, A List

of Successes That Can Change the World: Essays Dedicated

to Philip Wadler on the Occasion of His 60th Birthday, 2016.

[4] N. Amin, A. Moors, and M. Odersky. Dependent object types.

In FOOL, 2012.

[5] N. Amin, T. Rompf, and M. Odersky. Foundations of path-

dependent types. In OOPSLA, 2014.

[6] N. Amin and R. Tate. Java and Scala’s type systems are

unsound: the existential crisis of null pointers. In OOPSLA,

2016.

[7] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C.

Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and

S. Zdancewic. Mechanized metatheory for the masses: The

PoplMark Challenge. In TPHOLs, 2005.

[8] N. R. Cameron, J. Noble, and T. Wrigstad. Tribal ownership.

In OOPSLA, 2010.

[9] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An ex-

tension of system F with subtyping. Inf. Comput., 109(1/2):4–

56, 1994.

[10] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe:

a simple virtual class calculus. In AOSD, 2007.

[11] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core

calculus for Scala type checking. In MFCS, 2006.

[12] O. Danvy and J. Johannsen. Inter-deriving semantic arti-

facts for object-oriented programming. J. Comput. Syst. Sci.,

76(5):302–323, 2010.

[13] O. Danvy, K. Millikin, J. Munk, and I. Zerny. On inter-

deriving small-step and big-step semantics: A case study

for storeless call-by-need evaluation. Theor. Comput. Sci.,

435:21–42, 2012.

[14] D. Dreyer and A. Rossberg. Mixin’ up the ML module

system. In ICFP, 2008.

[15] E. Ernst. Family polymorphism. In ECOOP, 2001.

[16] E. Ernst. Higher-order hierarchies. In ECOOP, 2003.

[17] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class

calculus. In POPL, 2006.

[18] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The

essence of compiling with continuations. In PLDI, 1993.

[19] V. Gasiunas, M. Mezini, and K. Ostermann. Dependent

classes. In OOPSLA, 2007.

[20] J.-Y. Girard. Interprétation fonctionelle et élimination des

coupures de l’arithmétique d’ordre supérieur. 1972.

[21] R. Harper and M. Lillibridge. A type-theoretic approach to

higher-order modules with sharing. In POPL, 1994.

[22] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a

minimal core calculus for java and gj. ACM Trans. Program.

Lang. Syst., 23(3), 2001.

[23] T. Jones, M. Homer, and J. Noble. Brand objects for nominal

typing. In ECOOP, 2015.

[24] X. Leroy. Manifest types, modules and separate compilation.

In POPL, 1994.

[25] D. Macqueen. Using dependent types to express modular

structure. In POPL, 1986.

[26] A. Moors, F. Piessens, and M. Odersky. Safe type-level

abstraction in Scala. In FOOL, 2008.

[27] N. Nystrom, S. Chong, and A. C. Myers. Scalable extensibil-

ity via nested inheritance. In OOPSLA, 2004.

[28] M. Odersky. The trouble with types. Presentation at Strange

Loop, 2013.

[29] M. Odersky. The essence of Scala. http://www.scala-lang.

org/blog/2016/02/03/essence-of-scala.html, February

2016.

[30] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal

theory of objects with dependent types. In ECOOP, 2003.

[31] M. Odersky and K. Läufer. Putting type annotations to work.

In POPL, 1996.

[32] M. Odersky and T. Rompf. Unifying functional and object-

oriented programming with Scala. Commun. ACM, 57(4):76–

86, 2014.

[33] B. C. Pierce. Types and programming languages. MIT Press,

2002.

[34] B. C. Pierce and D. N. Turner. Local type inference. ACM

Trans. Program. Lang. Syst., 22(1):1–44, 2000.

[35] J. C. Reynolds. Towards a theory of type structure. In

Symposium on Programming, volume 19 of Lecture Notes in

Computer Science, pages 408–423. Springer, 1974.

[36] T. Rompf and N. Amin. From F to DOT: Type soundness

proofs with definitional interpreters. Technical report, Purdue

University, July 2015.

http://arxiv.org/abs/1510.05216.

[37] A. Rossberg. 1ML - core and modules united (f-ing first-class

modules). In ICFP, 2015.

[38] A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. J.

Funct. Program., 24(5):529–607, 2014.

[39] A. J. Summers. Modelling java requires state. In Proceedings

of the 11th International Workshop on Formal Techniques for

Java-like Programs, page 10. ACM, 2009.

[40] G. A. Washburn. SI-1557: Another type soundness hole.

https://issues.scala-lang.org/browse/SI-1557, 2008.

[41] A. K. Wright and M. Felleisen. A syntactic approach to type

soundness. Inf. Comput., 115(1):38–94, 1994.

639

http://www.scala-lang.org/blog/2016/02/03/essence-of-scala.html
http://www.scala-lang.org/blog/2016/02/03/essence-of-scala.html
http://arxiv.org/abs/1510.05216
https://issues.scala-lang.org/browse/SI-1557

A. Mechanization in Coq

We outline the correspondence between the formalism on paper and its implementation in Coq (oopsla16.namin.net).

A.1 Model (dot.v)

A.1.1 Syntax (Figure 1)

ty S, T, U ::= Type

TTop ⊤ top type

TBot ⊥ bottom type

TTyp L S U L : S..U type member

TFun m S U m(x : S) : Ux method member

TSel X L x.L type selection

TBind T {z ⇒ T z} recursive self type

TAnd T T T ∧ T intersection type

TOr T T T ∨ T union type

tm t, u ::= Term

tvar b x x variable reference

tobj d {z ⇒ d} new instance

tapp t m t t.m(t) method invocation

dm d ::= Initialization

dty T L = T type initialization

dfun [S] [T] t m(x) = t method initialization

dms d

To demonstrate that both Church and Curry syle are possible, the parameter and return types S and T of a method initialization

dfun [S] [T] t are optional.

For representing variable names in relation to an environment (context or store), we use a reverse de Bruijn convention, so

that the name is invariant under environment extension. An environment is a list of right-hand sides. The older the binding, the

more to the right, the smaller its number name. The name is uniquely determined by the position in the list as the length of

the tail. For terms, a concrete variable y corresponds to tvar true y, and an abstract variable z corresponds to tvar false z.

Similarly, in types, a concrete variable y corresponds to TVar true y, and an abstract variable z corresponds to TVar false z.

Like in the paper, the y identifiers map to the store ρ and the z identifiers to the context Γ.

In addition, for types, we use a locally-nameless de Bruijn convention for variables under dependent types so that it’s easy

to substitute binders without variable capture. A variable x bound in T x by a recursive type {x ⇒ T x} or a method member

m(x : S) : T x is represented by TVarB i where i is the de Bruijn level, i.e. the number of other binders in scope in between a

bound variable occurrence and its binder.

The labels L and m are not part of the Coq syntax for member initialization (dty and dfun), so that label disjointness is by

design. Labels are auto-assigns from 0 at the right to n−1 at the left, for a sequence of length n. (Viewed as a list of right-hand

sides, this is the same naming convention as for environments above.)

A.1.2 Small-Step Operational Semantics (Figure 2)

step ρ t ρ′ t′ ρ t → t′ ρ′ Reduction

The step relation makes explicit the two congruence cases (ST_App1, ST_App2) of the reduction semantics.

A.1.3 Type System (Figures 1 & 2)

stp Γ ρ S U n ρ Γ ⊢ S <: U Subtyping

has_type Γ ρ t T n ρ Γ ⊢ t : T Typing

dms_has_type Γ ρ d T n ρ Γ ⊢ d : T Member Initialization

htp Γ ρ x T n ρ Γ ⊢ x :! T Abstract Variable Typing (for Subtyping)

The argument n at the end of each judgement denotes the size of derivation.

640

oopsla16.namin.net

The relation dms_has_type is used in the premise of both (TNEW) mapping to T_Obj and (TLOC) mapping to T_Vary.

It folds in member initialization, as it recursively maps over the sequence of member definitions. The resulting sequence of

intersected types is associated to the right. For uniformity, an empty sequence adds an inner most ⊤ type.

The context restriction in subtyping type selection in rules (SEL1)/(SEL2) mapping to stp_sel1/stp_sel2 is folded into

the relation htp.

As we mention in Section 3, we omit routine well-formedness checks from the rules on paper for readability. In Coq, these

correspond to closed conditions, which ensure that all the variables in a type are well-bound for the given environment and

binding structure. The relation closed |Γ| |ρ| k T ensures that T is well-bound in a context Γ, a store ρ and under at most ≤ k

binders.

A.1.4 Type-Checked Examples (dot_exs.v)

As a sanity check, we ensure that our model can indeed type-check some intended examples, including a module for covariant

lists as presented in Section 2.

A.2 Soundness Proofs (dot.v, dot_soundness.v, dot_soundness_alt.v)

The file dot_soundness.v presents the main development of the soundness proof, as presented in Section 6. The file

dot_soundness_alt.v presents the alternative development of the soundness proof, briefly sketched in Section 6.6. In addition

to the model, the file dot.v contains common infrastructure and lemmas.

A.2.1 Definitions

1. (Type Safety) – see also Theorem 1 – corresponds to Theorem type_safety.

2. (Precise Subtyping) corresponds to Inductive stpp.

3. (VARPACK Metric) corresponds to Inductive htpy as ρ Γ ⊢≤m y : S maps to htpy m ρ y S with Γ = ∅.

4. (Substitution) corresponds to Definition Subst.

5. (Concrete Variable Type Assignment) corresponds to Inductive vtp.

6. (V-BIND Metric) is built-into Inductive vtp as ρ ⊢≤m y :! S maps to vtp m ρ y S n.

7. (Widening) corresponds to Lemma vtp_widen.

A.2.2 Lemmas

1. (Regularity) corresponds to Lemma stpd_reg1 and Lemma stpd_reg2.

2. (Subtyping Reflexivity) corresponds to Lemma stpd_refl.

3. (Narrowing) corresponds to Lemma stp_narrow.

4. (Transitivity Pushback) corresponds to Lemma stp_trans_pushback.

5. (Inversion of Subtyping) corresponds to Coq’s Inversion after pushing back from stp to stpp.

6. (Pre-canonical Forms for Recursive Types) corresponds to pre_canon_bind.

7. (Pre-canonical Forms for Type Members) corresponds to pre_canon_typ.

8. (Substitution for <:) corresponds to the first projection in Lemma subst_aux. See also Lemma stp_subst and Lemma all_Subst.

9. (Substitution for :!) corresponds to the second projection in Lemma subst_aux.

10. (Substitution for :) corresponds to the third projection of Lemma subst_aux.

11. (Substitution in Term Typing) corresponds to Lemma hastp_subst.

12. (Canonical Forms for Type Members) corresponds to Lemma canon_typ.

13. (Canonical Forms for Method Members) corresponds to Lemma canon_fun.

14. (Substitution for Subtyping) corresponds to Lemma stp_subst_narrow0.

15. (Substitution for Abstract Variable Typing) corresponds to the helper lemma htp_subst_narrow02 within htp_subst_narrow0.

16. (Substitution for Concrete Variable Typing) corresponds to Lemma stp_subst_narrowX.

17. (Concrete Variable Widening) corresponds to Lemma vtp_widen.

18. (Concrete Variable Typing Inversion) corresponds to Lemma hastp_inv.

641

	Introduction
	Types in Scala and DOT
	Formal Model of DOT
	Static Properties of DOT
	Properties of Subtyping
	Inversion, Transitivity and Narrowing
	Good Bounds, Bad Bounds
	No (Simple) Substitution Lemma
	There is Still Hope: Key Observations

	Operational Semantics
	Concrete Variables in Typing and Subtyping

	Type Soundness
	Narrowing and Transitivity Pushback
	Bootstrapping Substitution and Canonical Forms
	Inversion of Value Typing (Canonical Forms)
	The Main Soundness Proof
	Some Reflection
	Alternative: Invertible Concrete Variable Typing

	Perspectives
	DOT is Sound, but is Scala Sound?
	Scaling up: The Road Ahead

	Related Work
	Conclusions
	Mechanization in Coq
	Model (dot.v)
	Syntax (Figure 1)
	Small-Step Operational Semantics (Figure 2)
	Type System (Figures 1 & 2)
	Type-Checked Examples (dot_exs.v)

	Soundness Proofs (dot.v, dot_soundness.v, dot_soundness_alt.v)
	Definitions
	Lemmas

