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Abstract

The problem of approximately computing the k dominant Fourier coefficients of a vector
X quickly, and using few samples in time domain, is known as the Sparse Fourier Transform
(sparse FFT) problem. A long line of work on the sparse FFT has resulted in algorithms with
O(k log n log(n/k)) runtime [Hassanieh et al., STOC’12] and O(k log n) sample complexity [Indyk
et al., FOCS’14]. These results are proved using non-adaptive algorithms, and the latter O(k log n)

sample complexity result is essentially the best possible under the sparsity assumption alone: It
is known that even adaptive algorithms must use Ω((k log(n/k))/ log log n) samples [Hassanieh
et al., STOC’12]. By adaptive, we mean being able to exploit previous samples in guiding the
selection of further samples.

This paper revisits the sparse FFT problem with the added twist that the sparse coefficients
approximately obey a (k0, k1)-block sparse model. In this model, signal frequencies are clustered
in k0 intervals with width k1 in Fourier space, and k = k0k1 is the total sparsity. Signals arising
in applications are often well approximated by this model with k0 � k.

Our main result is the first sparse FFT algorithm for (k0, k1)-block sparse signals with a sample
complexity of O∗(k0k1 + k0 log(1 + k0) log n) at constant signal-to-noise ratios, and sublinear
runtime. A similar sample complexity was previously achieved in the works on model-based
compressive sensing using random Gaussian measurements, but used Ω(n) runtime. To the best
of our knowledge, our result is the first sublinear-time algorithm for model based compressed
sensing, and the first sparse FFT result that goes below the O(k log n) sample complexity bound.

Interestingly, the aforementioned model-based compressive sensing result that relies on Gaus-
sian measurements is non-adaptive, whereas our algorithm crucially uses adaptivity to achieve the
improved sample complexity bound. We prove that adaptivity is in fact necessary in the Fourier
setting: Any non-adaptive algorithm must use Ω(k0k1 log n

k0k1
) samples for the (k0, k1)-block

sparse model, ruling out improvements over the vanilla sparsity assumption. Our main technical
innovation for adaptivity is a new randomized energy-based importance sampling technique that
may be of independent interest.



1 Introduction

The discrete Fourier transform (DFT) is one of the most important tools in modern signal processing,
finding applications in audio and video compression, radar, geophysics, medical imaging, communi-
cations, and many more. The best known algorithm for computing the DFT of a general signal of
length n is the Fast Fourier Transform (FFT), taking O(n log n) time, which matches the trivial Ω(n)

lower bound up to a logarithmic factor.
In recent years, significant attention has been paid to exploiting sparsity in the signal’s Fourier

spectrum, which is naturally the case for numerous of the above applications. By sparse, we mean that
the signal can be well-approximated by a small number of Fourier coefficients. Given this assumption,
the computational lower bound of Ω(n) no longer applies. Indeed, the DFT can be computed in
sublinear time, while using a sublinear number of samples in the time domain [GIIS14,GST08].

The problem of computing the DFT of signals that are approximately sparse in the Fourier
domain has received significant attention in several communities. The seminal work of [CT06a,RV08]
in compressive sensing first showed that only k logO(1) n samples in time domain suffice to recover a
length n signal with at most k nonzero Fourier coefficients. A different line of research on the Sparse
Fourier Transform (sparse FFT), with origins in computational complexity and learning theory,
has resulted in algorithms that use k logO(1) n samples and k logO(1) n runtime (i.e., the runtime
is sublinear in the length of the input signal). Many such algorithms have been proposed in the
literature [GL89,KM91,Man92,GGI+02,AGS03,GMS05, Iwe10,Aka10,HIKP12b,HIKP12a,LWC12,
BCG+12,HAKI12,PR13,HKPV13,IKP14,IK14,Kap16,PS15]; we refer the reader to the recent surveys
[GIIS14,GST08] for a more complete overview.

The best known runtime for computing the k-sparse FFT is due to Hassanieh et al. [HIKP12a],
and is given by O(k log n log(n/k)), asymptotically improving upon the FFT for all k = o(n). The
recent works of [IKP14,Kap16] also show how to achieve a sample complexity of O(k log n) (which
is essentially optimal) in linear time, or in time k logO(1) n at the expense of poly(log log n) factors.
Intriguingly, the aforementioned algorithms are all non-adaptive. That is, these algorithms do not
exploit existing samples in guiding the selection of the new samples to improve approximation quality.
In the same setting, it is also known that adaptivity cannot improve the sample complexity by more
than an O(log log n) factor [HIKP12a].

Despite the significant gains permitted by sparsity, designing an algorithm for handling arbitrary
sparsity patterns may be overly generic; in practice, signals often exhibit more specific sparsity
structures. A common example is block sparsity, where significant coefficients tend to cluster on
known partitions, as opposed to being unrestricted in the signal spectrum. Other common examples
include tree-based sparsity, group sparsity, and dispersive sparsity [BCDH10,BBC+16,EHC15,Bac10].

Such structured sparsity models can be captured via the model-based framework [BCDH10], where
the number of sparsity patterns may be far lower than

(
n
k

)
. For the compressive sensing problem,

this restriction has been shown to translate into a reduction in the sample complexity, even with
non-adaptive algorithms. Specifically, one can achieve a sample complexity of O(k + log |M|) with
dense measurement matrices based on the Gaussian distribution, where M is the set of permitted
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sparsity patterns. Reductions in the sample complexity with other types of measurement matrices,
e.g., sparse matrices based on expanders, are typically less [BBC14,IR13]. Other benefits of exploiting
model-based sparsity include faster recovery and improved noise robustness [BCDH10,BBC14].

Surprisingly, in stark contrast to the extensive work on exploiting model-based sparsity with
general linear measurements, there are no existing sparse FFT algorithms exploiting such structure.
This paper presents the first such algorithm, focusing on the special case of block sparsity. Even
for this relatively simple sparsity model, achieving the desiderata turns out to be quite challenging,
needing a whole host of new techniques, and intriguingly, requiring adaptivity in the sampling.

To clarify our contributions, we describe our model and the problem statement in more detail.

Model and Basic Definitions The Fourier transform of a signal X ∈ Cn is denoted by X̂, and
defined as

X̂f =
1

n

∑

i∈[n]

Xiω
−ft
n , f ∈ [n],

where ωn is the n-th root of unity. With this definition, Parseval’s theorem takes the form ‖X‖2 =

n‖X̂‖22.
We are interested in computing the Fourier transform of signals that, in frequency domain, are

well-approximated by a block sparse signal with k0 blocks of width k1, formalized as follows.

Definition 1.1 (Block sparsity). Given a sequence X ∈ Cn and an even block width k1, the j-th
interval is defined as Ij =

(
(j − 1/2)k1, (j + 1/2)k1

]
∩Z for j ∈

[
n
k1

]
, and we refer to X̂Ij as the j-th

block. We say that a signal is (k0, k1)-block sparse if it contains non-zero values within at most k0 of
these intervals.

Block sparsity is of direct interest in several applications [BCDH10, BCW10]; we highlight two
examples here: (i) In spectrum sensing, cognitive radios seek to improve the utilization efficiency in
a sparsely used wideband spectrum. In this setting, the frequency bands being detected are non-
overlapping and predefined. (ii) Audio signals often contain blocks corresponding to different sounds
at different frequencies. Such blocks may be non-uniform, and can be modeled by the (k, c) model in
which k coefficients are arbitrarily spread across c different clusters. It was argued in [CIHB09] that
any signal from the (k, c) model is also (3c, k/c)-block sparse in the uniform model.

Our goal is to output a list of frequencies and values estimating X̂, yielding an `2-distance to X̂
not much larger than that of the best (k0, k1)-block sparse approximation. Formally, we say that an
output signal X̂ ′ satisfies the `2/`2 block-sparse recovery guarantee if

‖X̂ − X̂ ′‖2 ≤ (1 + ε) min
Ŷ is (k0,k1)-block sparse

‖X̂ − Ŷ ‖2

for an input parameter ε > 0.
The sample complexity and runtime of our algorithm are parameterized by the signal-to-noise

ratio (SNR) of the input signal, defined as follows.
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Definition 1.2 (Tail noise and signal-to-noise ratio (SNR)). We define the tail noise level as

Err(X̂, k0, k1) := min
S⊂[ n

k1
]

|S|=k0

∑

j∈[ n
k1

]\S

‖X̂Ij‖22, (1)

and its normalized version as µ2 := 1
k0

Err2(X̂, k0, k1), representing the average noise level per block.

The signal-to-noise ratio is defined as SNR := ‖X̂‖2

Err2(X̂,k0,k1)
.

Throughout the paper, we assume that both n and k1 are powers of two. For n, this is a standard
assumption in the sparse FFT literature. As for k1, the assumption comes without too much loss of
generality, since one can always round the block size up to the nearest power of two and then cover
the original k0 blocks with at most 2k0 larger blocks, thus yielding a near-identical recovery problem
other than a possible increase in the SNR. We also assume that n

k1
exceeds a large absolute constant;

if this fails, our stated scaling laws can be obtained using the standard FFT.
We use O∗(·) notation to hide log log SNR, log log n, and log 1

ε factors. Moreover, to simplify
the notation in certain lemmas having free parameters that will be set in terms of ε, we assume
throughout the paper that ε = Ω

(
1

poly logn

)
, and hence log 1

ε = O(log log n). This is done purely for
convenience, and since the dependence on ε is not our main focus; the precise expressions with log 1

ε

factors are easily inferred from the proofs. Similarly, since the low-SNR regime is not our key focus,
we assume that SNR ≥ 2, and thus log SNR is positive.

Contributions. We proceed by informally stating our main result; a formal statement is given in
Section 5.2.

Theorem 1.1. (Upper bound – informal version) There exists an adaptive algorithm for approxi-
mating the Fourier transform with (k0, k1)-block sparsity that achieves the `2/`2 guarantee for any
constant ε = Θ(1), with a sample complexity of O∗

(
(k0k1 + k0 log(1 + k0) log n) log SNR), and a

runtime of O∗
(
(k0k1 log3 n+ k0 log(1 + k0) log2 n) log SNR).

Note that while we state the result for ε = Θ(1) here, the dependence on this parameter is
explicitly shown in the formal version.

The sample complexity of our algorithm strictly improves upon the sample complexity
of O(k0k1 log n) (essentially optimal under the standard sparsity assumption) when log(1 +

k0) log SNR� k1 and log SNR� log n (e.g., SNR = O(1)).
Our algorithm that achieves the above upper bound crucially uses adaptivity. This is in stark

contrast with the standard sparse FFT, where we know how to achieve the near-optimal O(k log n)

bound using non-adaptive sampling [IKP14]. While relying on adaptivity can be viewed as a weak-
ness, we provide a lower bound revealing that adaptivity is essential for obtaining the above sample
complexity gains. We again state an informal version, which is formalized in Section 6.

Theorem 1.2. (Lower bound – informal version) Any non-adaptive sparse FFT algorithm that
achieves the `2/`2 sparse recovery guarantee with (k0, k1)-block sparsity must use a number of samples
behaving as Ω

(
k0k1 log n

k0k1

)
.
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To the best of our knowledge, these two theorems provide the first results along several important
directions, giving (a) the first sublinear-time algorithm for model-based compressive sensing; (b) the
first model-based result with provable sample complexity guarantees in the Fourier setting; (c) the
first proven gap between the power of adaptive and non-adaptive sparse FFT algorithms; and (d) the
first proven gap between the power of structured (Fourier basis) and unstructured (random Gaussian
entries) matrices for model-based compressive sensing.

To see that (d) is true, note that the sample complexity O(k0 log n + k0k1) for block-sparse
recovery can be achieved non-adaptively using Gaussian measurements [BCDH10], but we show that
adaptivity is required in the Fourier setting.

Dependence of our results on SNR. The sample complexity and runtime of our upper bound
depend logarithmically on the SNR of the input signal. This dependence is common for sparse
FFT algorithms, and even for the case of standard sparsity, algorithms avoiding this dependence
in the runtime typically achieve a suboptimal sample complexity [HIKP12b, HIKP12a]. Moreover,
to our knowledge, all existing sparse FFT lower bounds consider the constant SNR regime (e.g.,
[DIPW10,PW11,HIKP12a]).

We also note that our main result, as stated above, assumes that upper bounds on the SNR
and the tail noise are known that are tight to within a constant factor (in fact, such tightness is not
required, but the resulting bound replaces the true values by the assumed values). These assumptions
can be avoided at the expense of a somewhat worse dependence on log SNR, but we prefer to present
the algorithm in the above form for clarity. The theoretical guarantees for noise-robust compressive
sensing algorithms often require similar assumptions [FR13].

Our techniques: At a high level, our techniques can be summarized as follows:
Upper bound. The high-level idea of our algorithm is to reduce the (k0, k1)-block sparse signal of

length n to a number of downsampled O(k0)-sparse signals of length n
k1
, and use standard sparse FFT

techniques to locate their dominant values, thereby identifying the dominant blocks of the original
signal. Once the blocks are located, their values can be estimated using hashing techniques. Despite
the high-level simplicity, this is a difficult task requiring novel techniques, the most notable of which is
an adaptive importance sampling scheme for allocating sparsity budgets to the downsampled signals.
Further details are given in Section 2.

Lower bound. Our lower bound for non-adaptive algorithms follows the information-theoretic
framework of [PW11], but uses a significantly different ensemble of structured approximately block-
sparse signals occupying only a fraction O

(
1

k0k1

)
of the time domain. Hence, whereas the analysis

of [PW11] is based on the difficulty of identifying one of (roughly)
(
n
k

)
sparsity patterns, the difficulty

in our setting is in non-adaptively finding where the signal is non-zero – one must take enough samples
to cover the various possible time domain locations. The details are given in Section 6.

Interestingly, our upper bound uses adaptivity to circumvent the difficulty exploited in this lower
bounding technique, by first determining where the energy lies, and then concentrating the rest of
its samples on the “right” parts of the signal.
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Notation: For an even number n, we define [n] :=
(
− n

2 ,
n
2

]
∩ Z, where Z denotes the integers.

When we index signals having a given length m, all arithmetic should be interpreted as returning
values in [m] according to modulo-m arithmetic. For x, y ∈ C and ∆ ∈ R, we write y = x ± ∆ to
mean |y− x| ≤ ∆. The support of a vector X is denoted by supp(X). For a number a ∈ R, we write
|a|+ := max{0, a} to denote the positive part of a.

Organization: The paper is organized as follows. In Section 2, we provide an outline of our
algorithm and the main challenges involved. We formalize our energy-based importance sampling
scheme in Section 3, and provide the corresponding techniques for energy estimation in Section 4.
The block-sparse FFT algorithm and its theoretical guarantees are given in Section 5, and the lower
bound is presented and proved in Section 6. Several technical proofs are relegated to the appendices.

2 Overview of the Algorithm

One of our key technical contributions consists of a reduction from the (k0, k1)-block sparse recovery
problem for signals of length n to O(k0)-sparse recovery on a set of carefully-defined signals of reduced
length n/k1, in sublinear time. We outline this reduction below.

A basic candidate reduction to O(k0)-sparse recovery consists of first convolving X̂ with a filter Ĝ
whose support approximates the indicator function of the interval [−k1/2, k1/2], and then considering
a new signal whose Fourier transform consists of samples of X̂ ? Ĝ at multiples of k1. The resulting
signal Ẑ of length n/k1 (a) naturally represents X̂, as every frequency of this sequence is a (weighted)
sum of the frequencies in the corresponding block, and (b) can be accessed in time domain using a
small number of accesses to X (if G is compactly supported; see below).

This is a natural approach, but its vanilla version does not work: Some blocks in X̂ may entirely
cancel out, not contributing to Ẑ at all, and other blocks may add up constructively and contribute
an overly large amount of energy to Ẑ. To overcome this challenge, we consider not one, but rather
2k1 reductions: For each r ∈ [2k1], we apply the above reduction to the shift of X by r · n

2k1
in

time domain, and call the corresponding vector Zr. We show that all shifts cumulatively capture the
energy of X well, and the major contribution of the paper is an algorithm for locating the dominant
blocks in X̂ from a small number of accesses to the Zr’s (via an importance sampling scheme).

Formal definitions: We formalize the above discussion in the following, starting with the notion
of a flat filter that approximates a rectangle.

Definition 2.1 (Flat filter). A sequence G ∈ Rn with Fourier transform Ĝ ∈ Rn symmetric about
zero is called an (n,B, F )-flat filter if (i) Ĝf ∈ [0, 1] for all f ∈ [n]; (ii) Ĝf ≥ 1 −

(
1
4

)F−1 for all
f ∈ [n] such that |f | ≤ n

2B ; and (iii) Ĝf ≤
(

1
4

)F−1( n
B|f |

)F−1 for all f ∈ [n] such that |f | ≥ n
B .

The following lemma, proved in Appendix A.1, shows that it is possible to construct such a filter
having O(FB) support in time domain.

Lemma 2.1. (Compactly supported flat filter) Fix the integers (n,B, F ) with n a power of two,
B < n, and F ≥ 2 an even number. There exists an (n,B, F )-flat filter Ĝ ∈ Rn, which (i) is
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supported on a length-O(FB) window centered at zero in time domain, and (ii) has a total energy
satisfying

∑
f∈[n] |Ĝf |2 ≤

3n
B .

Throughout the paper, we make use of the filter construction from Lemma 2.1, except where
stated otherwise. To ease the analysis, we assume that G and Ĝ are pre-computed and can be
accessed in O(1) time. Without this pre-computation, evaluating Ĝ is non-trivial, but possible using
semi-equispaced Fourier transform techniques (cf., Section 4.2).

With the preceding definition, the set of 2k1 downsampled signals is given as follows.

Definition 2.2 (Downsampling). Given integers (n, k1), a parameter δ ∈
(
0, 1

20

)
, and a signal X ∈

Cn, we say that the set of signals {Zr}r∈[2k1] with Zr ∈ C
n
k1 is a (k1, δ)-downsampling of X if

Zrj =
1

k1

∑

i∈[k1]

(G ·Xr)j+ n
k1
·i, j ∈

[ n
k1

]

for an
(
n, nk1

, F
)
-flat filter with F = 10 log 1

δ and support O
(
F n
k1

)
, where we define Xr

i = Xi+ar with
ar = nr

2k1
. Equivalently, in frequency domain, this can be written as

Ẑrj = (X̂r ? Ĝ)jk1 =
∑

f∈[n]

Ĝf−k1·jX̂fω
ar·f
n , j ∈

[ n
k1

]
(2)

by the convolution theorem and the duality of subsampling and aliasing (e.g., see Appendix C.1).

By the assumption of the bounded support of G, along with the choice of F , we immediately
obtain the following lemma, showing that we do not significantly increase the sample complexity by
working with {Zr}r∈[2k1] as opposed to X itself.

Lemma 2.2. (Sampling the downsampling signals) Let {Zr}r∈[2k1] be a (k1, δ)-downsampling of
X ∈ Cn for some (n, k1, δ). Then any single entry Zri can be computed in O

(
log 1

δ

)
time using

O
(

log 1
δ

)
samples of X.

This idea of using 2k1 reductions fixes the above-mentioned problem of constructive and destruc-
tive cancellations: The 2k1 reduced signals Zr (r ∈ [2k1]) cumulatively capture all the energy of X
well. That is, while the energy |Ẑrj |22 can vary significantly as a function of r, we can tightly control
the behavior of the sum

∑
r∈[2k1] |Ẑrj |22. This is formalized in the following.

Lemma 2.3. (Downsampling properties) Fix (n, k1), a parameter δ ∈
(
0, 1

20

)
, a signal X ∈ Cn, and

a (k1, δ)-downsampling {Zr}r∈[2k1] of X. The following conditions hold:

1. For all j ∈ [ nk1
],

∑
r∈[2k1] |Ẑrj |2

2k1
≥ (1− δ)‖X̂Ij‖22 − 3δ ·

(
‖X̂Ij∪Ij−1∪Ij+1‖22 + δ

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

)
.

2. The total energy satisfies (1− 12δ)‖X̂‖22 ≤
∑
r∈[2k1] ‖Ẑr‖22

2k1
≤ 6‖X̂‖22.
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The proof is given in Appendix A.2.
Location via sparse FFT: We expect each Zr (r ∈ [2k1]) to be approximately O(k0)-sparse,

as every block contributes primarily to one downsampled coefficient. At this point, a natural step is
to run O(k0)-sparse recovery on the signals Zr to recover the dominant blocks. However, there are
too many signals Zr to consider! Indeed, if we were to run O(k0)-sparse recovery on every Zr, we
would recover the locations of the blocks, but at the cost of O(k0k1 log n) samples. This precludes
any improvement on the vanilla sparse FFT.

It turns out, however, that it is possible to avoid running a k0-sparse FFT on all 2k1 reduced
signals, and to instead allocate budgets to them, some of which are far smaller than k0, and some of
which may be zero. This will be key in reducing the sample complexity.

Before formally defining budget allocation, we present the following definition and lemma, showing
that we can use less samples to identify less of the dominant coefficients of a signal, or more samples
to identify more dominant coefficients.

Definition 2.3. (Covered frequency) Given an integerm, a frequency component j of a signal Ẑ ∈ Cm

is called covered by budget s in the signal Ẑ if |Ẑj |2 ≥
‖Ẑ‖22
s .

Lemma 2.4. (LocateReducedSignal guarantees – informal version) There exists an algorithm
such that if a signal X ∈ Cn, a set of budgets {sr}r∈[2k1], and a confidence parameter p are given
to it as input, then it outputs a list that, with probability at least 1 − p, contains any given j ∈ [ nk1

]

that is covered by sr in Ẑr for some r ∈ [2k1], where {Ẑr}r∈[2k1] denotes the (k1, δ)-downsampling
of X. Moreover, the list size is O

(∑
r∈[2k1] s

r
)
, the number of samples that the algorithm takes is

O
(∑

r∈[2k1] s
r log n

)
, and the runtime is O

(∑
r∈[2k1] s

r log2 n
)
.1

The formal statement and proof are given in Appendix F, and reveal that sr essentially dictates
how many buckets we hash Ẑr into in order to locate the dominant frequencies (e.g., see [HIKP12a,
IKP14]).

Hence, the goal of budget allocation is to approximately solve the following covering problem:

Minimize{sr}r∈[2k1]

∑

r∈[2k1]

sr subject to
∑

j is covered by sr
in Ẑr for some r∈[2k1]

‖X̂Ij‖22 ≥ (1− α) · ‖X̂∗‖22, (3)

for a suitable constant α ∈ (0, 1), where sr is the budget allocated to Ẑr, and X̂∗ is the best (k0.k1)-
block sparse approximation of X̂. That is, we want to minimize the total budget while accounting
for a constant proportion of the signal energy.

Challenges in budget allocation: Allocating the budgets is a challenging task, as each block
in the spectrum of the signal may have very different energy concentration properties in time domain,
or equivalently, different variations in |Ẑrj |2 as a function of r. To see this more concretely, in Figure
1, we show three hypothetical examples of such variations, in the case that k0 = 2k1 = 6 and all of
the blocks have equal energy, leading to equal column sums in the matrices.

1As stated in the formal version, additional terms in the runtime are needed when it comes to subtracting off a
current estimate to form a residual signal.
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2k1

k0

(a) Spiky energies (b) Flat energies (c) Mixed energies

Figure 1: Three hypothetical examples of matrices with (r, j)-th entry given by |Ẑrj |2, i.e., each row
corresponds to a single sequence Zr, but only at the entries corresponding to the k0 blocks in X.

In the first example, each block contributes to a different Zr, and thus the blocks could be
located by running 1-sparse recovery separately on the 2k1 signals. In stark contrast, in the second
example, each block contributes equally to each Zr, so we would be much better off running k0-sparse
recovery on a single (arbitrary) Zr. Finally, in the third example, the best budget allocation scheme
is completely unclear by inspection alone! We need to design an allocation scheme to handle all of
these cases, and to do so without even knowing the structure of the matrix.

While the examples in Figure 1 may seem artificial, and are not necessarily feasible with the
exact values given, we argue in Appendix E that situations exhibiting the same general behavior are
entirely feasible.

Importance sampling: Our solution is to sample r values with probability proportional to an
estimate of ‖Ẑr‖22, and sample sparsity budgets from a carefully defined distribution (see Section 3,
Algorithm 1). We show that sufficiently accurate estimates of ‖Ẑr‖22 for all r ∈ [2k1] can be obtained
using O(k0k1) samples of X via hashing techniques (cf., Section 4); hence, what we are essentially
doing is using these samples to determine where most of the energy of the signal is located, and
then favoring the parts of the signal that appear to have more energy. This is exactly the step
that makes our algorithm adaptive, and we prove that it produces a total budget in (3) of the form
O(k0 log(1 + k0)), on average.

Ideally, one would hope to solve (3) using a total budget of O(k0), since there are only k0 blocks.
However, the log(1 + k0) factor is not an artifact of our analysis: We argue in Appendix E that very
different techniques would be needed to remove it in general. Specifically, we design a signal X for
which the optimal solution to (3) indeed satisfies

∑
r∈[2k1] s

r = Ω(k0 log(1 + k0)).
Iterative procedure and updating the residual: The techniques described above allow us

to recover a list of blocks that contribute a constant fraction (e.g., 0.9) of the signal energy. We
use O(log SNR) iterations of our main procedure to reduce the SNR to a constant, and then achieve
(1 + ε)-recovery with an extra “clean-up” step. Most of the techniques involved in this part are more
standard, with a notable exception: Running a standard sparse FFT with budgets sr on the reduced
space (i.e., on the vectors Zr) is not easy to implement in k0k1poly(log n) time when Zr are the
residual signals. The natural approach is to subtract the current estimate χ̂ of X̂ from our samples
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and essentially run on the residual, but subtraction in k0k1poly(log n) time is not straightforward to
achieve. Our solution crucially relies on a novel block semi-equispaced FFT (see Section 4.2), and
the idea of letting the location primitives in the reduced space operate using common randomness
(see Appendix F).

3 Location via Importance Sampling

As outlined above, our approach locates blocks by applying standard sparse FFT techniques to
the downsampled signals arising from Definition 2.2. In this section, we present the techniques for
assigning the corresponding sparsity budgets (cf., (3)).

We use a novel procedure called energy-based importance sampling, which approximately samples r
values with probability proportional to ‖Ẑr‖2. Since these energies are not known exactly, we instead
sample proportional to a general vector γ = (γ1, . . . , γ2k1), where we think of γr as approximating
‖Ẑr‖2. The techniques for obtaining these estimates are deferred to Section 4.

The details are shown in Algorithm 1, where we repeatedly sample from the distribution wrq ,
corresponding to independently sampling r proportional to γr, and q from a truncated geometric
distribution. The resulting sparsity level to apply to Zr is selected to be sr = 10 · 2q.

According to Definition 2.3, sr = 10 · 2q covers any given frequency j for which |Ẑrj |2 ≥
‖Ẑr‖22
10·2q .

The intuition behind sampling q proportional to 2−q is that this gives a high probability of producing
small q values to cover the heaviest signal components, while having a small probability of producing
large q values to cover the smaller signal components. We only want to do the latter rarely, since it
costs significantly more samples.

Algorithm 1 Procedure for allocating sparsity budgets to the downsampled signals
1: procedure BudgetAllocation(γ, k0, k1, δ, p)
2: S ← ∅
3: for i ∈ {1, . . . , 10

δ k0 · log 1
p} do

4: Sample (ri, qi) ∈ [2k1]× {1, . . . , log2
10k0
δ } with probability wrq = 2−q

1−δ/(10k0)
γr

‖γ‖1
5: S ← S ∪ {(ri, qi)}
6: for r ∈ [2k1] do
7: q∗ ← max(r,q′)∈S{q′} . By convention, max ∅ = −∞
8: sr ← 10 · 2q∗

9: return s = [sr]r∈[2k1]

We first bound the expected total sum of budgets returned by BudgetAllocation.

Lemma 3.1. (BudgetAllocation budget guarantees) For any integers k0 and k1, any positive
vector γ ∈ R2k1, and any parameters p ∈

(
0, 1

2

)
and δ ∈ (0, 1), if the procedure BudgetAllocation

in Algorithm 1 is run with inputs (γ, k0, k1, δ, p), then the expected value of the total sum of budgets
returned, {sr}r∈[2k1], satisfies E

[∑
r∈[2k1] s

r
]
≤ 200 k0

δ log k0
δ log 1

p . The runtime of the procedure is
O
(
k0
δ log 1

p + k1

)
.

9



Proof. Each time a new (r, q) pair is sampled, the sum of the sr values increases by at most 10 · 2q,
and hence the overall expected sum is upper bounded by the number of trials 10k0 log 1

p times the
expected value of 10 · 2q for a single trial:

E
[ ∑

r∈[2k1]

sr
]
≤ 10

δ
k0 · log

1

p

∑

r∈[2k1]

log2
10k0
δ∑

q=1

wrq · 10 · 2q

=
100k0 log 1

p

δ
· 1

1− δ/(10k0)

log2
10k0
δ∑

q=1

∑

r∈[2k1]

γr

‖γ‖1

≤ 200
k0

δ
log

k0

δ
log

1

p
,

where the second line follows from the definition of wrq , and the third line follows from δ
10k0
≤ 1

2 (since
δ ≤ 1) and

∑
r∈[2k1]

γr

‖γ‖1 = 1.

Runtime: Note that sampling from wrq amounts to sampling q and r values independently, and the
corresponding alphabet sizes are O

(
log k0

δ

)
and O(k1) respectively. The stated runtime follows since

we take O
(
k0
δ log 1

p

)
samples, and sampling from discrete distributions can be done in time linear in

the alphabet size and number of samples [HMM93]. The second loop in Algorithm 1 need not be
done explicitly, since the maximum q value can be updated after taking each sample.

As we discussed in Section 2, the log k0 term in the number of samples would ideally be avoided;
however, in Appendix E.2, we argue that even the optimal solution to (3) can contain such a factor.

We now turn to formalizing the fact that the budgets returned by BudgetAllocation are such
that most of the dominant blocks are found. To do this, we introduce the following notion.

Definition 3.1 (Active frequencies). Given (n, k0, k1), a signal X ∈ Cn, a parameter δ ∈ (0, 1), and
a (k1, δ)-downsampling {Zr}r∈[2k1] of X, the set of active frequencies S̃ is defined as

S̃ =
{
j ∈

[ n
k1

]
:
∑

r∈[2k1]

(
|Ẑrj |2 ·

γr

‖Ẑr‖22

)
≥ δ ·

∑
r∈[2k1] ‖Ẑr‖22

k0

}
. (4)

Observe that if γr = ‖Ẑr‖22, this reduces to
∑

r∈[2k1] |Ẑrj |2 ≥ δ ·
∑
r∈[2k1] ‖Ẑr‖22

k0
, thus essentially

stating that the sum of the energies over r ∈ [2k1] for the given block index j is an Ω
(
δ
k0

)
fraction

of the total energy. Combined with Lemma 2.3, this roughly amounts to ‖X̂Ij‖22 exceeding an Ω
(
δ
k0

)

fraction of ‖X̂‖22.
To formalize and generalize this intuition, the following lemma states that the frequencies within

S̃ account for most of the energy in X, as long as each γr approximates ‖Ẑr‖22 sufficiently well.

Lemma 3.2. (Properties of active frequencies) Fix (n, k0, k1), a parameter δ ∈
(
0, 1

20

)
, a signal

X ∈ Cn, and a (k1, δ)-downsampling {Zr}r∈[2k1] of X. Moreover, fix an arbitrary set S∗ ⊆
[
n
k1

]
of

cardinality at most 10k0, and a vector γ ∈ R2k1 satisfying
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+
≤ 40δ

∑

r∈[2k1]

‖Ẑr‖22. (*)
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Fix the set of active frequencies S̃ according to Definition 3.1, and define the signal X̂S̃ to equal X̂
on all intervals {Ij ; j ∈ S̃} (see Definition 1.1), and zero elsewhere. Then ‖X̂S∗\S̃‖

2
2 ≤ 100

√
δ‖X̂‖22.

The proof of Lemma 3.2 is given in Appendix B.1.
What remains is to show that if j is active, then j is covered by some sr in Ẑr with high constant

probability upon running Algorithm 1. This is formulated in the following.

Lemma 3.3. (BudgetAllocation covering guarantees) Fix (n, k0, k1), the parameters δ ∈ (0, 1)

and p ∈
(
0, 1

2

)
, a signal X ∈ Cn, and a (k1, δ)-downsampling {Zr}r∈[2k1] of X. Moreover, fix a vector

γ ∈ R2k1 satisfying
‖γ‖1 ≤ 10

∑

r∈[2k1]

‖Ẑr‖22. (5)

Suppose that BudgetAllocation in Algorithm 1 is run with inputs (γ, k0, k1, δ, p), and outputs the
budgets {sr}r∈[2k1]. Then for any active j (i.e., j ∈ S̃ as per Definition 3.1), the probability that there
exists some r ∈ [2k1] such that j is covered by sr in Ẑr is at least 1− p.

Proof. Recall from Definition 2.3 that if a pair (r, q) is sampled in the first loop of BudgetAllo-

cation, then j is covered provided that |Ẑrj |2 ≥
‖Ẑr‖22
10·2q . We therefore define

qrj = min

{
q ∈ Z+ : |Ẑrj |2 ≥

‖Ẑr‖22
10 · 2q

}
, (6)

and note that the event described in the lemma statement is equivalent to some pair (r, q) being
sampled with qrj ≤ q. Note that due to the range of q from which we sample (cf., Algorithm 1), this
can only occur if qrj ≤ log2

10k0
δ .

Taking a single sample: We first compute the probability of being covered for a single random
sample of (q, r), denoting the corresponding probability by P1[·]. Recalling from line 4 of Algorithm
1 that we sample each (q, r) with probability wrq = 2−q

1−δ/(10k0)
γr

‖γ‖1 , we obtain

P1[j covered] =
∑

r∈[2k1]

∑

qrj≤q≤log2
10k0
δ

wrq

=
1

1− δ/(10k0)

∑

r∈[2k1]

∑

qrj≤q≤log2
10k0
δ

2−q
γr

‖γ‖1

≥ 1

2

∑

r∈[2k1] : qrj≤log2
10k0
δ

2−q
r
j
γr

‖γ‖1

=
1

2

∑

r∈[2k1]

2−q
r
j
γr

‖γ‖1
− 1

2

∑

r∈[2k1] : qrj>log2
10k0
δ

2−q
r
j
γr

‖γ‖1
, (7)

where the third line follows since δ/(10k0) ≤ 1
2 due to the assumption that δ ≤ 1.

Bounding the first term in (7): Observe from (6) that 2−q
r
j ≥ 1

2

10|Ẑrj |2

‖Ẑr‖22
, and recall the definition

11



of being active in (4). Combining these, we obtain the following when j is active:

1

2

∑

r∈[2k1]

2−q
r
j
γr

‖γ‖1
≥ 10

4‖γ‖1

∑

r∈[2k1]

|Ẑrj |2γr

‖Ẑr‖22

≥ 10δ

4‖γ‖1
·
∑

r∈[2k1] ‖Ẑr‖22
k0

≥ δ

4k0
,

where the last inequality follows from the assumption on ‖γ‖1 in the lemma statement.
Bounding the second term in (7): We have

1

2

∑

r∈[2k1] : qrj>log2
10k0
δ

2−q
r
j
γr

‖γ‖1
≤ 1

2

∑

r∈[2k1]

δ

10k0

γr

‖γ‖1
=

δ

20k0
.

Hence, we deduce from (7) that P1[j covered] ≥ δ
5k0

.
Taking multiple independent samples: Since the sampling is done 10

δ k0 · log 1
p times inde-

pendently, the overall probability of an active block j being covered satisfies

P[j covered] ≥ 1−
(

1− δ

5k0

) 10
δ
k0·log 1

p

≥ 1− exp

(
− 10

5
· log

1

p

)
≥ 1− p,

where we have applied the inequality 1− ζ ≤ e−ζ for ζ ≥ 0.

3.1 The Complete Location Algorithm

In Algorithm 2, we give the details of MultiBlockLocate, which performs the above-described
energy-based importance sampling procedure, runs the sparse FFT location algorithm (see Appendix
F) with the resulting budgets, and returns a list L containing the block indices that were identified.

MultiBlockLocate calls two primitives that are defined later in the paper, but their precise
details are not needed in order to understand the location step:

• EstimateEnergies (see Section 4.4) provides us with a vector γ providing a good approxima-
tion of each ‖Ẑr‖22, in the sense of satisfying the preconditions of Lemmas 3.2 and 3.3;

• LocateReducedSignals (see Appendix F) accepts the sparsity budgets {sr} and runs a
standard sr-sparse fast FFT algorithm on each downsampled signal Zr in order to locate the
dominant frequencies.

Note that in addition to X, these procedures accept a second signal χ̂; this becomes relevant when we
iteratively run the block sparse FFT (cf., Section 5), representing previously-estimated components
that are subtracted off to produce a residual.

The required guarantees on LocateReducedSignals are given in Lemma 2.4 (and more for-
mally in Appendix E.2), and in order to prove our main result on MultiBlockLocate, we also
need the following lemma ensuring that we can compute energy estimates satisfying the preconditions
of Lemmas 3.2 and 3.3; the procedure and proof are presented in Section 4.4.

Lemma 3.4. (EstimateEnergies guarantees) Given (n, k0, k1), the signals X ∈ Cn and
χ̂ ∈ Cn with ‖X̂ − χ̂‖22 ≥ 1

poly(n)‖χ̂‖2, and the parameter δ ∈
(

1
n ,

1
20

)
, the procedure

12



EstimateEnergies(X, χ̂, n, k0, k1,δ) returns a vector γ ∈ R2k1 such that, for any given set S∗ of
cardinality at most 10k0, we have the following with probability at least 1

2 :

1.
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+
≤ 40δ

∑
r∈[2k1] ‖Ẑr‖22;

2. ‖γ‖1 ≤ 10
∑

r∈[2k1] ‖Ẑr‖22;

where {Zr}r∈[2k1] is the (k1, δ)-downsampling of X − χ (see Definition 2.2).
Moreover, if χ̂ is (O(k0), k1)-block sparse, then the sample complexity is O(k0k1

δ2 log 1
δ log 1

δp), and
the runtime is O(k0k1

δ2 log2 1
δ log2 n).

Remark 3.1. The preceding lemma ensures that the γr provide good approximations of ‖Ẑr‖22 in a
“restricted” and “one-sided” sense, while not over-estimating the total energy by more than a constant
factor. Specifically, the first part concerns the energy of Ẑr restricted to a fixed set of size O(k0),
and characterizes the extent to which the energies are under-estimated. It appears to be infeasible to
characterize over-estimation in the same way (e.g., replacing | · |+ by | · |), since several of the samples
could be overly large due to spiky noise.

Remark 3.2. Here and subsequently, the poly(n) lower bounds regarding (X̂, χ̂) are purely technical,
resulting from extremely small errors when subtracting off χ̂. See Section 4.2 for further details.

Algorithm 2 Multi-block sparse location
1: procedure MultiBlockLocate(X, χ̂, n, k0, k1, δ, p)
2: for t ∈ {1, . . . , 10 log 1

p} do
3: γ ← EstimateEnergies(X, χ̂, n, k0, k1, δ) . See Section 4.4
4: s(t) ← BudgetAllocation(γ, k0, k1, δ,

1
2δp) . γ = (γ1, . . . , γ2k1)

5: s← maxt s
(t) (element-wise with respect to r ∈ [2k1])

6: L← LocateReducedSignals(X, χ̂, n, k0, k1, s, δ, 1
2δp) . See Appendix F

7: return L

We are now in a position to provide our guarantees on MultiBlockLocate, namely, on the behav-
ior of the list size, and on the energy that the components in the list capture. Note that the output
of MultiBlockLocate is random, since the same is true of EstimateEnergies, BudgetAllo-

cation, and LocateReducedSignals.

Lemma 3.5. (MultiBlockLocate guarantees) Given (n, k0, k1), the parameters δ ∈
(

1
n ,

1
20

)
and

p ∈
(

1
n ,

1
2

)
, and the signals X ∈ Cn and χ ∈ Cn with χ̂0 uniformly distributed over an arbitrarily

length- ‖χ̂‖
2

poly(n) interval, the output L of the function MultiBlockLocate(X, X̂, k1, k0, n, δ, p) has
the following properties for any set S∗ of cardinality at most 10k0:

1. E
[
|L|
]

= O
(
k0
δ log k0

δ log 1
p log2 1

δp

)
;

2.
∑

j∈S∗\L ‖(X̂ − χ̂)Ij‖22 ≤ 200
√
δ‖X̂ − χ̂‖22 with probability at least 1− p.
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Moreover, if χ̂ is (O(k0), k1)-block sparse, and we have δ = Ω
(

1
poly(logn)

)
and p = Ω

(
1

poly(logn)

)
,

then (i) the expected sample complexity is O∗
(
k0
δ log(1 + k0) log n + k0k1

δ2

)
, and the expected runtime

is O∗
(
k0
δ log(1 + k0) log2 n + k0k1

δ2 log2 n + k0k1
δ log3 n

)
; (ii) if the procedure returns L, then we are

guaranteed that the algorithm used O∗
(
|L| · log n + k0k1

δ2

)
samples and O∗

(
|L| · log2 n + k0k1

δ2 log2 n +
k0k1
δ log3 n

)
runtime.

Remark 3.1. The procedure MultiBlockLocate is oblivious to the choice of S∗ in this lemma
statement.

Proof. First claim: Note that in each iteration of the outer loop when we run BudgetAlloca-

tion(γ, k0, k1, δ,
1
2δp), Lemma 3.1 implies that for any t, the following holds true:

E
[ ∑

r∈[2k1]

s(t)
r

]
= O

(k0

δ
log

k0

δ
log

1

δp

)
,

where s(t)
r is the r-th entry of the budget allocation vector st at iteration t. Therefore,

E
[ ∑

r∈[2k1]

sr
]

= E
[ ∑

r∈[2k1]

max
t=1,...,10 log 1

p

str
]
≤

10 log 1
p∑

t=1

E
[ ∑

r∈[2k1]

s(t)
r

]
= O

(
k0 log

k0

δ
log

1

p
log

1

δp

)
. (8)

We now apply Lemma 2.4, which is formalized in Appendix F; the assumption maxr∈[2k1] sr = O
(
k0
δ

)

therein is satisfied due to the range of q from which we sample in BudgetAllocation. We set
the target success probability to 1 − 1

2δp, which guarantees that the size of the list returned by the
function LocateReducedSignals is O

(∑
r∈[2k1] sr log 1

δp

)
. Therefore, by (8), we have

E[|L|] = O
(k0

δ
log

k0

δ
log

1

p
log2 1

δp

)
,

yielding the first statement of the lemma.
Second claim: Let X ′ = X − χ, and consider the set S∗ given in the lemma statement, and

an arbitrary iteration t. By Lemma 3.4 in Section 4.4 (also stated above), the approximate energy
vector γ in any given iteration of the outer loop satisfies

∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+
≤ 40δ

∑

r∈[2k1]

‖Ẑr‖22

‖γ‖1 ≤ 10
∑

r∈[2k1]

‖Ẑr‖22 (9)

with probability at least 1
2 . When this is the case, the vector γ meets the requirements of Lemmas

3.2 and 3.3. That means that the probability of having an energy estimate γ that meets these
requirements in at least one iteration is lower bounded by 1− (1

2)
10 log 1

p ≥ 1− p.
We now consider an arbitrary iteration in which the above conditions on γ are satisfied. We write

∑

j∈S∗\L

‖X̂ ′Ij‖
2
2 =

∑

j∈(S∗∩S̃)\L

‖X̂ ′Ij‖
2
2 +

∑

j∈S∗\(S̃∪L)

‖X̂ ′Ij‖
2
2. (10)

The second term is bounded by
∑

j∈S∗\(S̃∪L)

‖X̂ ′Ij‖
2
2 ≤

∑

j∈S∗\S̃

‖X̂ ′Ij‖
2
2 ≤ 100

√
δ‖X̂ ′‖22 (11)
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by Lemma 3.2, which uses the first condition on γ in (9).
We continue by calculating the expected value of the first term in (10) with respect to the ran-

domness of BudgetAllocation and LocateReducedSignals:

E
[ ∑

j∈(S∗∩S̃)\L

‖X̂ ′Ij‖
2
2

]
= E

[ ∑

j∈(S∗∩S̃)

‖X̂ ′Ij‖
2
2I
[
j /∈ L

]]

≤
∑

j∈S̃

‖X̂ ′Ij‖
2
2 · P

[
j /∈ L

]
. (12)

We thus consider the probability P[j /∈ L] for an arbitrary j ∈ S̃. If j ∈ S̃, then by Lemma 3.3
and the choice of the final parameter of 1

2δp passed to BudgetAllocation, there is at least one
r ∈ [2k1] such that j is covered, with probability at least 1 − 1

2δp. We also know from Lemma 2.4
that the failure probability of LocateReducedSignals for some covered j is at most 1

2δp. A union
bound on these two events gives

P
[
j /∈ L

]
≤ δp, ∀j ∈ S̃.

Hence, we deduce from (12) that

E
[ ∑

j∈(S∗∩S̃)\L

‖X̂ ′Ij‖
2
2

]
≤ δp · ‖X̂ ′‖22,

and Markov’s inequality gives ∑

j∈(S∗∩S̃)\L

‖X̂ ′Ij‖
2
2 ≤ δ · ‖X̂ ′‖22

with probability at least 1− p. Combining this with (10)–(11), and using the assumption δ ≤ 1
20 to

write δ ≤ 100
√
δ, we complete the proof.

Sample complexity and runtime: We first consider the sample complexity and runtime as a
function of the output L.

There are two operations that cost us samples. The first is the call to EstimateEnergies, which
costs O(k0k1

δ2 log2 1
δ ) by Lemma 3.4. The second is the call to LocateReducedSignals; by Lemma

2.4 in Appendix F, with δp in place of p, this costs O
(∑

r∈[2k1] s
r log 1

δp log 1
δ log n

)
samples (recall

that χ̂ is (O(k0), k1)-block sparse by assumption), which is O
(
|L| log 1

δp log 1
δ log n

)
. Adding these

contributions gives the desired result; the log 1
p and log 1

δ factors are hidden in the O∗(·) notation,
since we have assumed that δ and p behave as Ω

(
1

poly logn

)
.

The time complexity follows by the a similar argument, with EstimateEnergies cost-
ing O(k0k1

δ2 log2 1
δ log2 n) by Lemma 3.4, and the call to LocateReducedSignals costing

O
(
|L| log 1

δp log 1
δ log2 n + k0k1

δ log 1
δp log3 n

)
by Lemma 2.4 in Appendix F. The complexity of Es-

timateEnergies dominates that of calling BudgetAllocation, which is O
(
k1 + k0

δ log 1
p

)
by

Lemma 3.1.
The expected sample complexity and runtime follow directly from those depending on L, by simply

substituting the expectation of |L| given in the lemma statement.
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4 Energy Estimation

In this section, we provide the energy estimation procedure used in the MultiBlockLocate pro-
cedure in Algorithm 2, and prove its guarantees that were used in the proof of Lemma 3.5. To
do this, we introduce a variety of tools needed, including hashing and the semi-equispaced FFT.
While such techniques are well-established for the standard sparsity setting [IKP14], applying the
existing semi-equispaced FFT algorithms separately for each Zr in our setting would lead to a run-
time of k0k

2
1poly(log n). Our techniques allow us to compute the required FFT values for all r in

k0k1poly(log n) time, as we detail in Section 4.2.

4.1 Hashing Techniques

The notion of hashing plays a central role in our estimation primitives, and in turn makes use of
random permutations.

Definition 4.1 (Approximately pairwise-independent permutation). Fix n, and let π : [n]→ [n] be
a random permutation. We say that π is approximately pairwise-independent if, for any i, i′ ∈ [n] and
any integer t, we have P[|π(i)− π(i′)| ≤ t] ≤ 4t

n .

It is well known that such permutations exist in the form of a simple modulo-n multiplication;
we will specifically use the following lemma from [IK14].

Lemma 4.1. (Choice of permutation [IK14, Lemma 3.2]) Let n be a power of two, and define π(i) =

σ · i, where σ is chosen uniformly at random from the odd numbers in [n]. Then π is an approximately
pairwise-independent random permutation.

We now turn to the notion of hashing a signal into buckets. We do this by applying the random
permutation from Lemma 4.1 along with a random shift in time domain, and then applying a suitable
filter according to Definition 2.1.

Definition 4.2 (Hashing). Given integers (n,B), parameters σ,∆ ∈ [n], and the signals X ∈ Cn

and G ∈ Cn, we say that U ∈ CB is an (n,B,G, σ,∆)-hashing of X if

Ub =
B

n

∑

i∈[ n
B

]

Xσ(∆+j+B·i)Gj+B·i, j ∈ [B]. (13)

Moreover, we define the following quantities:

• π(j) = σ · j, representing the approximately pairwise random permutation;

• h(j) = round
(
jBn
)
, representing the bucket in [B] into which a frequency j hashes;

• oj(j′) = π(j′)− h(j) nB , representing the offset associated with two frequencies (j, j′).

With these definitions, we have the following lemma, proved in Appendix C.1. Note that here we
write the exact Fourier transform of U as Û∗, since later we will use Û for its near-exact counterpart
to simplify notation.
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Lemma 4.2. (Fourier transform of hashed signal) Fix (n,B) and the signals X ∈ Cn and G ∈ Cn

with the latter symmetric about zero. If U is an (n,B,G, σ,∆)-hashing of X, then its exact Fourier
transform Û∗ is given by

Û∗b =
∑

f∈[n]

X̂f Ĝσf−b n
B
ωσ∆f
n , b ∈ [B].

We conclude this subsection by stating the following technical lemma regarding approximately
pairwise independent permutations and flat filters.

Lemma 4.3. (Additional filter property) Fix n, and let G be an (n,B, F )-flat filter. Let π(·) be
an approximately pairwise-independent random permutation ( cf., Definition 4.1), and for f, f ′ ∈ [n],
define of (f ′) = π(f ′)− n

B round
(
π(f)Bn

)
. Then for any x ∈ Cn and f ∈ [n], we have

∑

f ′ 6=f
|X̂f ′ |2Eπ

[
|Ĝof (f ′)|2

]
≤ 10

B
‖X̂‖2. (14)

The proof is given in Appendix C.2.

4.2 Semi-Equispaced FFT

Algorithm 3 Semi-equispaced inverse FFT for approximating the inverse Fourier transform, with
standard sparsity (top) and block sparsity (bottom)

1: procedure SemiEquiInverseFFT(X̂, n, k, ζ)
2: Ĝ← Filter(n, k, ζ) . See [IKP14, Sec. 12]; same as proof of Lemma 4.5
3: Ŷi ← (X̂ ? Ĝ) in

2k
for each i ∈ [2k]

4: Y ← InverseFFT(Ŷ )
5: return {Yj}|j|≤ k

2

6: procedure SemiEquiInverseBlockFFT(X̂, n, k0, k1, c)
7: Ĝ← Filter(n, k1, n

−c) . See proof of Lemma 4.5
8: for j ∈

[
2n
k1

]
such that (X̂ ? Ĝ) k1

2
j
may be non-zero (O(ck0 log n) in total) do

9: Ỹ b
j ←

k1
2

∑ n
2k1
l=1 X̂b+2k1lĜ k1

2
j−(b+2k1l)

for each b ∈ [2k1]

10: (Ŷ 1
j , . . . , Ŷ

2k1
j )← InverseFFT(Ỹ 1

j , . . . , Ỹ
2k1
j )

11: for r ∈ [2k1] do
12: Ŷ r ← (Ŷ r

1 , . . . , Ŷ
r
n/k1

)

13: Y r ← SemiEquiInverseFFT(Ŷ r, nk1
, k0, n

−(c+1))

14: return {Y r
j }r∈[2k1],|j|≤ k0

2

One of the steps of our algorithm is to take the inverse Fourier transform of our current estimate
of the spectrum, so that it can be subtracted off and we can work with the residual. The semi-
equispaced inverse FFT provides an efficient method for doing this, and is based on the application
of the standard inverse FFT to a filtered and downsampled signal.

We start by describing an existing technique of this type for standard sparsity; the details are
shown in the procedure SemiEquiInverseFFT in Algorithm 3, and the resulting guarantee from
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[IKP14, Sec. 12] is stated as follows.2

Lemma 4.4. (SemiEquiInverseFFT guarantees [IKP14, Lemma 12.1, Cor. 12.2]) (i) Fix n and a
parameter ζ > 0. If X̂ ∈ Cn is k-sparse for some k, then SemiEquiInverseFFT(X̂, n, k, ζ) returns
a set of values {Yj}|j|≤k/2 in time O(k log n

ζ ), satisfying

|Yj −Xj | ≤ ζ‖X‖2.

(ii) Given two additional parameters σ,∆ ∈ [n] with σ being odd, it is possible to compute a set
of values {Yj} for all j equaling σj′ + ∆ for some j′ with |j′| ≤ k/2, with the same runtime and
approximation guarantee.

For the block-sparse setting, we need to adapt the techniques of [IKP14], making use of a two-level
scheme that calls SemiEquiInverseFFT. The resulting procedure, SemiEquiInverseBlockFFT,
is described in Algorithm 3. The main result of the procedure is the following analog of Lemma 4.4.

Lemma 4.5. (SemiEquiInverseBlockFFT guarantees) (i) Fix (n, k0, k1), a (k0, k1)-block sparse
signal X̂ ∈ Cn, and a constant c ≥ 1. Define the shifted signals {Xr}r∈[2k1] with Xr

i = Xi+ nr
2k1

. The

procedure SemiEquiInverseBlockFFT(X̂, n, k0, k1, c) returns a set of values Y r
j for all r ∈ [2k1]

and |j| ≤ k0
2 in time O(c2k0k1 log2 n), satisfying

|Y r
j −Xr

j | ≤ 2n−c‖X‖2. (15)

(ii) Given two additional parameters σ,∆ ∈
[
n
k1

]
with σ odd, it is possible to compute a set of

values Y r
j for all r ∈ [2k1] and j equaling σj′ + ∆ (modulo n

k1
) for some |j′| ≤ k0

2 , with the same
runtime and approximation guarantee.

The proof is given in Appendix C.3.

Remark 4.1. When applying the preceding lemmas, the signal sparsity and the number of values we
wish to estimate will not always be identical. However, this can immediately be resolved by letting
the parameter k or k0 therein equal the maximum of the two.

4.3 Combining the Tools

In Algorithm 4, we describe two procedures combining the above tools. The first, HashToBins,
accepts the signal X̂ and its current estimate χ̂, uses SemiEquiInverseFFT to approximate the
relevant entries of χ, and computes a hashing of X − χ as per Definition 4.2. The second, HashTo-

BinsReduced, is analogous, but instead accepts a (k1, δ)-downsampling ofX, and uses SemiEquiIn-

verseBlockFFT. It will prove useful to allow the function to hash into a different number of buckets
for differing r values, and hence accept {Gr}r∈[2k1] and {Br}r∈[2k1] as inputs. For simplicity, Algo-
rithm 4 states the procedures without precisely giving the parameters passed to the semi-equispaced
FFT, but the details are given in the proof of the following.

2Note that the roles of time and frequency are reversed here compared to [IKP14].
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Algorithm 4 Hash to bins functions for original signal (top) and reduced signals (bottom)

1: procedure HashToBins(X, χ̂,G, n,B, σ,∆)
2: Compute {χi} using SemiEquiInverseFFT with input (χ̂, n,O(FB), n−c

′
)

3: . See Lemma 4.4; F equals the parameter of filter G, and c′ is a large constant
4: UX ← (n,B,G, σ,∆)-hashing of X . See Definition 4.2
5: Uχ ← (n,B,G, σ,∆)-hashing of χ
6: Û ← FFT of UX − Uχ
7: return Û
8: procedure HashToBinsReduced({ZrX}r∈[2k1], χ̂, {Gr}r∈[2k1], n, k1, {Br}r∈[2k1], σ,∆)
9: Bmax ← maxr∈[2k1]B

r

10: k0 ← minimal value such that χ̂ is (k0, k1)-block sparse
11: Compute {χi} using SemiEquiInverseBlockFFT; input (χ̂, n,O(FmaxBmax + k0), k1, c

′)
12: . See Lemma 4.5; Fmax equals the maximal parameter of the filters {Gr}, and c′ is a large

constant
13: {Zrχ}r∈[2k1] ← (k1, δ)-downsampling of χ . See Definition 2.2
14: for r ∈ [2k1] do
15: U rX ←

(
n
k1
, Br, Gr, σ,∆)-hashing of ZrX . See Definition 4.2

16: U rχ ←
(
n
k1
, Br, Gr, σ,∆)-hashing of Zrχ

17: Û r ← FFT of U rX − U rχ
18: return {Û r}r∈[2k1]

Lemma 4.6. (HashToBins and HashToBinsReduced guarantees) (i) Fix (n, k,B, F ), an
(n,B, F )-flat filter G supported on an interval of length O(FB), a signal X ∈ Cn, a k-sparse signal
χ̂ For any (σ,∆), the procedure HashToBins(X, χ̂,G, n,B, σ,∆) returns a sequence Û such that

‖Û − Û∗‖∞ ≤ n−c‖χ̂‖2,

where Û∗ is the exact Fourier transform of the (n,B,G, σ,∆)-hashing of X − χ (see Definition 4.2),
and c = c′+O(1) for c′ in Algorithm 4. Moreover, the sample complexity is O(FB), and the runtime
is O(cF (B + k) log n).

(ii) Fix (n, k0, k1) and the parameters ({Br}r∈[2k1], F, δ). For each r ∈ [2k1], fix an
(
n
k1
, Br, F

)
-flat

filter Gr supported on an interval of length O(FBr). Moreover, fix a signal X ∈ Cn and its (k1, δ)-
downsampling {Zr}r∈[2k1] with δ ∈

(
1
n ,

1
20

)
, and a (k0, k1)-block sparse signal χ̂. For any (σ,∆), the

procedure HashToBinsReduced({Zr}r∈[2k1], χ̂, {Gr}r∈[2k1
, n, k1, {Br}r∈[2k1

, σ,∆) returns a set of
sequences {Û r}r∈[2k1] such that

‖Û r − Û∗r‖∞ ≤ n−c‖χ̂‖2, r ∈ [2k1],

where Û∗r is the exact Fourier transform of the
(
n
k1
, Br, Gr, σ,∆

)
-hashing for the (k1, δ)-downsampling

of X − χ, and c = c′ + O(1) for c′ in Algorithm 4. Moreover, the sample complexity is
O
(
F
∑

r∈[2k1]B
r log 1

δ

)
, and the runtime is O

(
c2(BmaxF + k0)k1 log2 n) with Bmax = maxr∈[2k1]B

r.

The proof is given in Appendix C.4.

Remark 4.2. Throughout the paper, we consider c in Lemma 4.6 to be a large absolute constant.
Specifically, various results make assumptions such as ‖X̂ − χ̂‖2 ≥ 1

poly(n)‖χ̂‖2, and the results hold
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true when c is sufficiently large compared to implied exponent in the poly(n) notation. Essentially,
the n−c error term is so small that it can be thought of as zero, but we nevertheless handle it explicitly
for completeness.

4.4 Estimating the Downsampled Signal Energies

We now come to the main task of this section, namely, approximating the energy of each Ẑr. To do
this, we hash into B = 4

δ2 · k0 buckets (cf., Definition 4.2), and form the estimate as the energy of
the hashed signal. The procedure is shown in Algorithm 5.

Before stating the guarantees of Algorithm 5, we provide the following lemma characterizing the
approximation quality for an exact hashing of a signal, as opposed to the approximation returned
by HashToBinsReduced. Intuitively, the first part states that we can accurately estimate the
top coefficients well without necessarily capturing the noise, and the second part states that, in
expectation, we do not over-estimate the total signal energy by more than a small constant factor.

Algorithm 5 Procedure for estimating energies of downsampled signals
1: procedure EstimateEnergies(X, χ̂, n, k0, k1,δ)
2: B ← 4

δ2 · k0

3: F ← 10 log 1
δ

4: H ← ( nk1
, B, F )-flat filter . See Definition 2.1

5: ∆← uniform random sample from [ nk1
]

6: σ ← uniform random sample from odd numbers in [ nk1
]

7: {Zr}r∈[2k1] ← (k1, δ)-downsampling of X − χ . See Definition 2.2
8: H← (H, . . . ,H)
9: B← (B, . . . , B)

10: {Û r}r∈[2k1] ← HashToBinsReduced({Zr}r∈[2k1], χ̂,H, n, k1,B, σ,∆) . See Section 4.1
11: for r ∈ [2k1] do
12: γr ← ‖Û r‖22
13: return γ . Length-2k1 vector of γr values

Lemma 4.7. (Properties of exact hashing) Fix the integers (m,B), the parameters δ ∈
(
0, 1

20

)
and

F ′ ≥ 10 log 1
δ , and the signal Y ∈ Cm and (m,B,F ′)-flat filter H ( cf., Definition 2.1). Let U be an

(m,B,H, σ,∆)-hashing of Y for uniformly random σ,∆ ∈ [m] with σ odd, and let π(·) be defined as
in Definition 4.2. Then, letting Û∗ denote the exact Fourier transform of U , we have the following:

1. For any set S ⊂ [m],

E∆,π

[∣∣∣‖ŶS‖22 − ‖Û∗‖22
∣∣∣
+

]
≤
(

10

√
|S|
B

+ 15
|S|
B

+ 2δ2

)
‖Ŷ ‖22,

where ‖ŶS‖22 denotes
∑

j∈S |Ŷj |2.

2. We have
E∆,π

[
‖Û∗‖22

]
≤ 3‖Ŷ ‖22.
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The proof is given in Appendix C.5.
We now present the following lemma, showing that the procedure EstimateEnergies provides

us with an estimator satisfying the preconditions of Lemmas 3.2 and 3.3.

Lemma 3.4 (EstimateEnergies guarantees – re-stated from Section 3.1) Given (n, k0, k1), the
signals X ∈ Cn and χ̂ ∈ Cn with ‖X̂ − χ̂‖22 ≥ 1

poly(n)‖χ̂‖2, and the parameter δ ∈
(

1
n ,

1
20

)
, the

procedure EstimateEnergies(X, χ̂, n, k0, k1,δ) returns a vector γ ∈ R2k1 such that, for any given
set S∗ of cardinality at most 10k0, we have the following with probability at least 1

2 :

1.
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+
≤ 40δ

∑
r∈[2k1] ‖Ẑr‖22;

2. ‖γ‖1 ≤ 10
∑

r∈[2k1] ‖Ẑr‖22;

where {Zr}r∈[2k1] is the (k1, δ)-downsampling of X − χ (see Definition 2.2).
Moreover, if χ̂ is (O(k0), k1)-block sparse, then the sample complexity is O(k0k1

δ2 log2 1
δ ), and the

runtime is O(k0k1
δ2 log2 1

δ log2 n).

Proof. Analysis for the exact hashing sequence: We start by considering the case that the
call to HashToBinsReduced is replaced by an evaluation of the exact hashing sequence Û∗r, i.e.,
Definition 4.2 applied to Zr resulting from the (k1, δ)-downsampling of X − χ. In this case, by
applying Lemma 4.7 with Ŷ = Ẑr, B = 4

δ2k0 and S = S∗ (and hence |S| ≤ 10k0), the right-hand
side of the first claim therein becomes (5δ + (15

4 + 2)δ2)‖Ẑr‖22 ≤ 6δ‖Ẑr‖22, since δ ≤ 1
20 . By applying

the lemma separately for each r ∈ [2k1] with Ŷ = Ẑr, and summing the corresponding expectations
in the two claims therein over r, we obtain

∑
r∈[2k1] E

[∣∣‖ẐrS∗‖22 − ‖Û∗‖22
∣∣
+

]
≤ 6δ

∑
r∈[2k1] ‖Ẑr‖22 and∑

r∈[2k1] E
[
‖Û∗‖22

]
≤ 3

∑
r∈[2k1] ‖Ẑr‖22. We apply Markov’s inequality with a factor of 6 in the former

and 3 in the latter, to conclude that the quantities γ∗r = ‖Û∗r‖22 satisfy
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γ∗r
∣∣∣
+
≤ 36δ

∑

r∈[2k1]

‖Ẑr‖22 (16)

‖γ∗‖1 ≤ 9
∑

r∈[2k1]

‖Ẑr‖22, (17)

with probability at least 1/2.
Incorporating 1

nc error from use of semi-equispaced FFT in HashToBinsReduced:
Since Û r is computed using HashToBinsReduced, the energy vector γ is different from the exact
one γ∗, and we write

∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+
≤
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γ∗r
∣∣∣
+

+
∣∣γr − γ∗r

∣∣. (18)

By substituting γr = ‖Û r‖22 and γ∗r = ‖Û∗r‖22, and using the identity
∣∣‖a‖22 − ‖b‖22

∣∣ ≤ 2‖a − b‖2 ·
‖b‖2 + ‖a− b‖22, we can write

∑

r∈[2k1]

∣∣γr − γ∗r
∣∣ ≤

∑

r∈[2k1]

(
2‖Û r − Û∗r‖2‖Û∗r‖2 + ‖Û r − Û∗r‖22

)
. (19)

Upper bounding the `2 norm by the `∞ norm times the vector length, we have ‖Û r − Û∗r‖2 ≤√
n‖Û r − Û∗r‖∞ ≤ n−c+1/2‖χ̂‖2, where the second inequality follows from Lemma 4.6. Moreover,
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from the definition of Û∗r in Definition 4.2 applied to Zr, along with the filter property ‖Ĝ‖∞ in
Definition 2.1, it follows that ‖Û∗r‖2 ≤ ‖Ĝ‖∞‖Ẑr‖1 ≤

√
n‖Ẑr‖2. Combining these into (19) gives

∑

r∈[2k1]

∣∣γr − γ∗r
∣∣ ≤

∑

r∈[2k1]

(
2n−c+1‖χ̂‖2‖Ẑr‖2 + n−2c+1‖χ̂‖22

)

≤ 2n−c+2
√ ∑

r∈[2k1]

‖χ̂‖22 ·
∑

r∈[2k1]

‖Ẑr‖22 + n−2c+1k1‖χ̂‖22

≤ 2n−c+3‖χ̂‖2
√ ∑

r∈[2k1]

‖Ẑr‖22 + n−2c+2‖χ̂‖22. (20)

where the second line is by Cauchy-Schwarz, and the third by k1 ≤ n.
By the second part of Lemma 2.3 and the assumption δ ≤ 1

20 , we have
∑

r∈[2k1] ‖Ẑr‖22 ≥
1
4‖X̂ −

χ̂‖22 ≥ 1
4nc′
‖χ̂‖22, where the second equality holds for some c′ > 0 by the assumption ‖X̂ − χ̂‖22 ≥

1
poly(n)‖χ̂‖2. Hence, (20) gives

∑

r∈[2k1]

∣∣γr − γ∗r
∣∣ ≤ 4

(
n−c+3nc

′/2 + n−2c+2nc
′) ∑

r∈[2k1]

‖Ẑr‖22. (21)

Since we have chosen δ > 1/n, the coefficient to the summation is upper bounded by 4δ when c is
sufficiently large, thus yielding the first part of the lemma upon combining with (16).

To prove the second part, note that by the triangle inequality,

‖γ‖1 ≤ ‖γ∗‖1 +
∣∣∣‖γ‖1 − ‖γ∗‖1

∣∣∣

≤ 9
∑

r∈[2k1]

‖Ẑr‖22 +
∑

r∈[2k1]

∣∣γr − γ∗r
∣∣, (22)

where we have applied (17). Again applying (21) and noting that the coefficient to the summation is
less than one for sufficiently large c, the second claim of the lemma follows.

Sample complexity and runtime: The only step that uses samples is the call to Hash-

ToBinsReduced. By Lemma 4.6 and the choices B = 4
δ2k0 and F = 10 log 1

δ , this uses
O
(
k1FB log 1

δ

)
= O(k0k1

δ2 log2 1
δ ) samples per call. The time complexity follows by the same ar-

gument along the assumption that χ̂ is (O(k0), k1)-block sparse, with an additional log2 n factor
following from Lemma 4.6. Note that the call to HashToBinsReduced dominates the computation
of γr, which is O(k1B),

5 The Block-Sparse Fourier Transform

In this section, we combine the tools from the previous sections to obtain the full sublinear-time block
sparse FFT algorithm, and provide its guarantees.

5.1 Additional Estimation Procedures

Before stating the final algorithm, we note the main procedures that it relies on: MultiBlockLo-

cate, PruneLocation, and EstimateValues. We presented the first of these in Section 3. The
latter two are somewhat more standard, and hence we relegate them to the appendices. However, for
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the sake of readability, we provide some intuition behind them here, and state their guarantees.
We begin with PruneLocation. The procedure MultiBlockLocate gives us a list of block

indices containing the dominant signal blocks with high probability, with a list size L = O∗
(
k0 log k0

)
.

Estimating the values of all of these blocks in every iteration would not only cost O∗(k0k1 log k0)

samples, but would also destroy the sparsity of the input signal: Most of the blocks correspond to
noise, and thus the estimation error may dominate the values being estimated. The PruneLocation

primitive is designed to alleviate these issues, pruning L to a list that contains mostly “signal” blocks,
i.e., blocks that contain a large amount of energy. Some false positives and false negatives occur, but
are controlled by Lemma 5.1 below. The procedure is given in Algorithm 8 in Appendix G.

The following lemma shows that with high probability, the pruning algorithm retains most of the
energy in the head elements, while removing most tail elements.

Lemma 5.1. (PruneLocation guarantees) Given (n, k0, k1), a list of block indices L, the pa-
rameters θ > 0, δ ∈

(
1
n ,

1
20

)
and p ∈ (0, 1), and the signals X ∈ Cn and χ̂ ∈ Cn with

‖X̂ − χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, the output list L′ of PruneLocation(X, χ̂, L, n, k0, k1, δ, p, θ) has the

following properties:

a. Let Stail denote the tail elements in the signal X̂ − χ̂, defined as

Stail =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖2 ≤

√
θ −

√
δ

k0
‖X̂ − χ̂‖2

}
,

where Ij is defined in Definition 1.1. Then, we have

E
[∣∣L′ ∩ Stail

∣∣
]
≤ δp · |L ∩ Stail|.

b. Let Shead denote the head elements in the signal X̂ − χ̂, defined as

Shead =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖2 ≥

√
θ +

√
δ

k0
‖X̂ − χ̂‖2

}
.

Then, we have

E
[ ∑

j∈(L∩Shead)\L′
‖(X̂ − χ̂)Ij‖22

]
≤ δp

∑

j∈L∩Shead

‖(X̂ − χ̂)Ij‖22.

Moreover, provided that ‖χ̂‖0 = O(k0k1), the sample complexity is O(k0k1
δ log 1

δp log 1
δ ), and the run-

time is O(k0k1
δ log 1

δp log 1
δ log n+ k1 · |L| log 1

δp).

The proof is given in Appendix G.
We are left with the procedure EstimateValues, which is a standard procedure for estimating

the values at the frequencies within the blocks after they have been located. The details are given in
Algorithm 9 in Appendix H.

Lemma 5.2. (EstimateValues guarantees) For any integers (n, k0, k1), list of block indices L,
parameters δ ∈

(
1
n ,

1
20

)
and p ∈ (0, 1/2), and signals X ∈ Cn and χ̂ ∈ Cn with ‖X̂−χ̂‖2 ≥ 1

poly(n)‖χ̂‖2,
the output W of the function EstimateValues(X, χ̂, L, n, k0, k1, δ, p) has the following property:
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∑

f∈
⋃
j∈L Ij

|Wf − (X̂ − χ̂)f |2 ≤ δ
|L|
3k0
‖X̂ − χ̂‖22

with probability at least 1−p, where Ij is the j-th block. Moreover, provided that ‖χ̂‖0 = O(k0k1), the
sample complexity is O(k0k1

δ log 1
p log 1

δ ), and the runtime is O(k0k1
δ log 1

p log 1
δ log n+ k1 · |L| log 1

p).

The proof is given in Appendix H.

5.2 Statement of the Algorithm and Main Result

Our overall block-sparse Fourier transform algorithm is given in Algorithm 6. It first calls Re-

duceSNR, which performs an iterative procedure that picks up high energy components of the signal,
subtracts them from the original signal, and then recurses on the residual signal X(i) = X − χ(i).
Once this is done, the procedure RecoverAtConstSNR performs a final “clean-up” step to obtain
the (1 +O(ε))-approximation guarantee.

Algorithm 6 Block-sparse Fourier transform.

1: procedure BlockSparseFT(X,n, k0, k1,SNR′, ν2, ε)
2: . X ∈ Cn is approximately (k0, k1)-block sparse
3: . (SNR′, ν2) are upper bounds on (SNR, µ2) from Definition 1.2
4: . ε is the parameter for (1 +O(ε))-approximate recovery
5: χ̂← ReduceSNR(X,n, k0, k1, SNR′, ν2).
6: χ̂← RecoverAtConstSNR(X, χ̂, n, k0, k1, ν

2, ε).
7: return χ̂

8: procedure ReduceSNR(X,n, k0, k1, SNR′, ν2) . Iteratively locate/estimate to reduce SNR
9: T ← log SNR′

10: δ ← small absolute constant
11: p← δ

log2 k0
δ

log4 SNR′
. Failure probability for subroutines

12: χ̂(0) ← 0 . χ̂(t) is our current estimate of X̂
13: for t ∈ {1, . . . , T} do
14: L← MultiBlockLocate(X, χ̂(t−1), n, k1, k0, δ, p)
15: θ ← 10 · 2−t · ν2SNR′ . Threshold for pruning
16: L′ ← PruneLocation(X, χ̂(t−1), L, n, k0, k1, δ, p, θ)
17: χ̂(t) ← χ̂(t−1)+ EstimateValues(X, χ̂(t−1), L′, n, k0, k1, δ, p)
18: return χ̂T

19: procedure RecoverAtConstSNR(X, χ̂, n, k0, k1, ε) . A final “clean-up” step
20: η ← small absolute constant
21: p← ηε

log2 k0
ε

. Upper bound on failure probability for subroutines

22: L← MultiBlockLocate(X, χ̂, n, k1, k0, ε
2, p)

23: θ ← 200εν2

24: L′ ← PruneLocation(X, χ̂, L, n, k0, k1, ε, p, θ)
25: W ← EstimateValues(X, χ̂, L′, n, 3k0/ε, k1, ε, p)
26: χ̂′ ←W + χ̂
27: return χ̂′

24



With these definitions in place, we can now state our final result, which formalizes Theorem 1.1.

Theorem 1.1 (Upper bound – formal version) Given (n, k0, k1), the parameter ε ∈
(

1
n ,

1
20

)
, and the

signal X ∈ Cn, if X, SNR′, µ2, and ν2 satisfy the following for (µ2, SNR) given in Definition 1.2:

1. µ2 ≤ ν2;

2. ‖X̂‖22 ≤ (k0ν
2) · SNR′;

3. SNR′ = O(poly(n));

4. µ2 ≥ ‖X̂‖22
poly(n) ;

then with probability at least 0.8, the procedure BlockSparseFT(X,n, k0, k1, SNR′, ν2, ε) satisfies
the following:

(i) The output χ̂ satisfies
‖X̂ − χ̂‖22 ≤ k0(µ2 +O(εν2)).

(ii) The sample complexity is is O∗(k0 log(1 + k0) log SNR′ log n + k0k1 log SNR′ + k0
ε2

log(1 +

k0) log n+ k0k1
ε4

), and the runtime is O∗(k0 log(1+k0) log SNR′ log2 n+k0k1 log SNR′ log3 n+ k0
ε2

log(1+

k0) log2 n+ k0k1
ε4

log2 n+ k0k1
ε2

log3 n).
The assumptions of the theorem are essentially that we know upper bounds on the tail noise µ2

and SNR. Moreover, in order to get the (1+O(ε))-approximation guarantee, the former upper bound
should be tight to within a constant factor.

In the remainder of the section, we provide the proof of Theorem 1.1, deferring the technical
details to the appendices.

Guarantees for ReduceSNR and RecoverAtConstSNR. The following lemma proves
the success of the function ReduceSNR. We again recall the definitions of Err2, µ2, and SNR in
Definition 1.2.

Lemma 5.3. (ReduceSNR guarantees) Given (n, k0, k1), parameters (ν, SNR′), and a signal X ∈
Cn, if X, SNR′, and ν2 satisfy the following for (µ2,SNR) given in Definition 1.2:

1. µ2 ≤ ν2;

2. ‖X̂‖22 ≤ (k0ν
2) · SNR′;

3. SNR′ = O(poly(n));

4. ν2 ≥ ‖X̂‖22
poly(n) ;

then the procedure ReduceSNR(X,n, k0, k1,SNR′, ν2) satisfies the following guarantees with proba-
bility at least 0.9 when the constant δ therein is sufficiently small:

(i) The output χ̂T satisfies

χ̂T is (3k0, k1)-block sparse

‖X̂ − χ̂T ‖22 ≤ 100k0ν
2.
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(ii) The number of samples used is O∗(k0 log(1 + k0) log SNR′ log n + k0k1 log SNR′), and the
runtime is O∗(k0 log(1 + k0) log SNR′ log2 n+ k0k1 log SNR′ log3 n).

The proof is given in Appendix D.1
The following lemma proves the success of the function RecoverAtConstSNR.

Lemma 5.4. (RecoverAtConstSNR guarantees) Given (n, k0, k1), parameters ν2 ≥ ‖X̂‖22
poly(n) and

ε ∈
(

1
n ,

1
20

)
, and the signals X ∈ Cn and χ̂ ∈ Cn satisfying

1. Err2(X̂ − χ̂, 10k0, k1) ≤ k0ν
2;

2. ‖X̂ − χ̂‖22 ≤ 100k0ν
2;

the procedure RecoverAtConstSNR(X, χ̂, n, k0, k1, ε) satisfies the following guarantees with prob-
ability at least 0.9 when the constant η therein is sufficiently small: (i) The output χ̂′ satisfies

‖X̂ − χ̂′‖22 ≤ Err2(X̂ − χ̂, 10k0, k1) + (4 · 105)εk0ν
2. (23)

(ii) If χ̂ is (O(k0), k1)-block sparse, then the number of samples used is O∗(k0
ε2

log(1 +k0) log n+ k0k1
ε4

)

and the runtime is O∗(k0
ε2

log(1 + k0) log2 n+ k0k1
ε4

log2 n+ k0k1
ε2

log3 n).

The proof is given in Appendix D.2.

Proof of Theorem 1.1. We are now in a position to prove Theorem 1.1 via a simple combination
of Lemmas 5.3 and 5.4.

Success event associated with ReduceSNR: Define a successful run of Re-

duceSNR(X,n, k0, k1,SNR, ν2) to mean mean the following conditions on the output χ̂T :

‖X̂ − χ̂T ‖22 ≤ 100k0ν
2

Err2(X̂ − χ̂T , 10k0, k1) ≤ k0µ
2.

By Lemma 5.3, it follows that the probability of having a successful run of ReduceSNR is at least
0.9. Note that the second condition is not explicitly stated in Lemma 5.3, but it follows by using 3k0

blocks to cover the parts where χ̂T is non-zero, and k0 blocks to cover the dominant blocks of X̂, in
accordance with Definition 1.2.

Success event associated with RecoverAtConstSNR: Define a successful run of Recov-

erAtConstSNR(X, χ̂, k0, k1, n, ε) to mean the following conditions on the output χ̂:

‖X̂ − χ̂′‖22 ≤ Err2(X̂ − χ̂, 10k0, k1) + (4 · 105)εk0ν
2.

Conditioning on event of having a successful run of ReduceSNR, by Lemma 5.4, it follows that the
probability of having a successful run to RecoverAtConstSNR is at least 0.9.

By a union bound, the aforementioned events occur simultaneously with probability at least 0.8,
as desired. Moreover, the sample complexity and runtime are a direct consequence of summing the
contributions from Lemmas 5.3 and 5.4.
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6 Lower Bound

Our upper bound in Theorem 1.1, in several scaling regimes, provides a strict improvement over
standard sparse FFT algorithms in terms of sample complexity. The corresponding algorithm is
inherently adaptive, which raises the important question of whether adaptivity is necessary in order
to achieve these improvements. In this section, we show that the answer is affirmative, by proving
the following formalization of Theorem 1.2.

Theorem 1.2 (Lower bound – formal version) Fix (n, k0, k1) and C > 0, and suppose that there exists
a non-adaptive algorithm that, when given a signal Y with Fourier transform Ŷ , outputs a signal Ŷ ′

satisfying the following `2/`2-guarantee with probability at least 1
2 :

‖Ŷ − Ŷ ′‖22 ≤ C min
Ŷ ∗ is (k0,k1)−block sparse

‖Ŷ − Ŷ ∗‖22. (24)

Then the number of samples taken by the algorithm must behave as Ω
(
k0k1 log n

k0k1

)
.

Hence, for instance, if k0 = O(1) and SNR = O(1) then our adaptive algorithm uses O(k1 +log n)

samples, whereas any non-adaptive algorithm must use Ω
(
k1 log n

k1

)
samples.

The remainder of this section is devoted to the proof of Theorem 1.2. Throughout the section,
we let k = k0k1 denote the total sparsity.

High-level overview: Our analysis follows the information-theoretic framework of [PW11].
However, whereas [PW11] considers a signal with k arbitrary dominant frequency locations and
uniform noise, we consider signals where the k = k0k1 dominant frequencies are (nearly) contiguous,
and both the noise and signal are concentrated on an O

(
1
k

)
fraction of the time domain.

As a result, while the difficulty in [PW11] arises from the fact that the algorithm needs to recover
roughly log n

k bits per frequency location for k such locations, our source of difficulty is different.
In our signal, there are only roughly log n

k bits to be learned about the location of all the blocks
in frequency domain, but the signal is tightly concentrated on an O

(
1
k

)
fraction of the input space.

As a consequence, any non-adaptive algorithm is bound to waste most of its samples on regions of
the input space where the signal is zero, and only an O

(
1
k

)
fraction of its samples can be used to

determine the single frequency that conveys the location of the blocks. In the presence of noise, this
results in a lower bound on sample complexity of Ω

(
k log n

k

)
.

Information-theoretic preliminaries: We will make use of standard results from information
theory, stated below. Here and subsequently, we use the notations H(X), H(Y |X), I(X;Y ) and
I(X;Y |U) for the (conditional) Shannon entropy and (conditional) mutual information (e.g., see
[CT06b]). We first state Fano’s inequality, a commonly-used tool for proving lower bounds by relating
a conditional entropy to an error probability.

Lemma 6.1. (Fano’s Inequality [CT06b, Lemma 7.9.1]) Fix the random variables (X,Y ) with X

being discrete, let X ′ be an estimator of X such that X → Y → X ′ forms a Markov chain (i.e., X
and X ′ are conditionally independent given Y ), and define Pe := P[X ′ 6= X]. Then

H(Y |X) ≤ 1 + Pe log |X |,
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where X = supp(X). Consequently, if X is uniformly distributed, then

I(X;Y ) ≥ −1 + (1− Pe) log |X |.

The next result gives the formula for the capacity of a complex-valued additive white Gaussian
noise channel, often referred to as the Shannon-Hartley theorem. Here and subsequently, CN(µ, σ2)

denotes the complex normal distribution.

Lemma 6.2. (Complex Gaussian Channel Capacity [CT06b, Thm. 2.8.1]) For Z ∼ CN(0, σ2
z) and

any complex random variable X with E[|X|2] = σ2
x, we have

I(X;X + Z) ≤ log

(
1 +

σ2
x

σ2
z

)
,

with equality if X ∼ CN(0, σ2
x).

The following lemma states the data processing inequality, which formalizes the statement that
processing a channel output cannot increase the amount of information revealed about the input.

Lemma 6.3. (Data Processing Inequality [CT06b, Thm. 2.8.1]) For any random variables (X,Y, Z)

such that X → Y → Z forms a Markov chain, we have I(X;Z) ≤ I(X;Y ).

Finally, the following lemma bounds the mutual information between two vectors in terms of the
individual mutual information terms between components of those vectors.

Lemma 6.4. (Mutual Information for Vectors [CT06b, Lemma 7.9.2]) For any random vectors X =

(X1, . . . , Xn) and Y = (Y1, . . . , Yn), if the entries of Y are conditionally independent given X, then
I(X;Y) ≤

∑n
i=1 I(Xi;Yi).

A communication game: We consider a communication game consisting of channel coding
with a state known at both the encoder (Alice) and decoder (Bob), where block-sparse recovery is
performed at the decoder. Recalling that we are in the non-adaptive setting, by Yao’s minimax
principle, we can assume that the samples are deterministic and require probability-1

2 recovery over a
random ensemble of signals, as opposed to randomizing the samples and requiring constant-probability
recovery for any given signal in the ensemble. Hence, we denote the fixed sampling locations by A.

We now describe our hard input distribution. Each signal in the ensemble is indexed by two
parameters (u, f∗), and is given by

Xt =




ωf
∗t t ∈ {u, . . . , u+ C′n

k − 1}

0 otherwise,
(25)

where C ′ > 0 is a constant that will be chosen later, and where all indices are modulo-n. Hence, each
signal is non-zero only in a window of length C′n

k , and within that window, the signal oscillates at
a rate dictated by f∗. Specifically, u specifies where the signal is non-zero in time domain, and f∗

specifies where the energy is concentrated in frequency domain. We restrict the values of u and f∗

to the following sets:

U =
{C ′n

k
,
2C ′n

k
. . . ,

( k
C ′
− 1
)C ′n
k
, n
}

F =
{
k, 2k, . . . ,

(n
k
− 1
)
k, n

}
.
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The communication game is as follows:

1. Nature selects a state U and a message F uniformly from U and F , respectively.

2. An encoder maps (U,F ) to the signal X according to (25).

3. A state-dependent channel adds independent CN(0, α) noise to Xt for each t ∈ {u, . . . , u+ C′n
k −

1}, while keeping the other entries noiseless. This is written as Yt = Xt +Wt, where

Wt ∼





CN(0, α) {u, . . . , u+ C′n
k − 1}

0 otherwise.
(26)

The channel output is given by Y = {Yt}t∈A for the sampling locations A.

4. A decoder receives U and Y , applies (k0, k1)-block sparse recovery to Y to obtain a signal Ŷ ′,
and then selects F ′ to be the frequency f ′ ∈ F such that the energy in Ŷ ′ within the length-k
window centered at f ′ is maximized:

F ′ = arg max
f ′∈F

‖Ŷ ′Ik(f ′)‖
2
2, (27)

where Ik(f ′) = {f ′ + ∆ : ∆ ∈ [k]}.

We observe that if adaptivity were allowed, then the knowledge of U at the decoder would make the
block-sparse recovery easy – one could let all of the samples lie within the window given in (25).
The problem is that we are in the non-adaptive setting, and hence we must take enough samples to
account for all of the possible choices of U .

We denote the subset of A falling into {u, . . . , u+ C′n
k − 1} by Au, its cardinality by mu and the

total number of measurements by m = |A| =
∑

umu. Moreover, we let XAu and YAu denote the
sub-vectors of X and Y indexed by Au.

Information-theoretic analysis: We first state the following lemma.

Lemma 6.5. (Mutual information bound) In the setting described above, the conditional mutual
information I(F ;Y |U) satisfies I(F ;Y |U) ≤ C′m

k log
(
1 + 1

α

)
, where α is variance of the additive

Gaussian noise within Au.

Proof. We have

I(F ;Y |U) =
C ′

k

∑

u

I(F ;Y |U = u)

=
C ′

k

∑

u

I(F ;YAu |U = u)

≤ C ′

k

∑

u

I(XAu ;YAu |U = u)

≤ C ′

k

∑

u

∑

t∈Au

I(Xt;Yt|U = u)

≤ C ′

k

∑

u

mu log
(

1 +
1

α

)
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=
C ′m

k
log
(

1 +
1

α

)
, (28)

where:

• Line 1 follows since U is uniform on a set of cardinality k
C′ ;

• Line 2 follows since given U = u, only the entries of Y indexed by Au are dependent on F (cf.,
(25));

• Line 3 follows by noting that given U = u we have the Markov chain F → XAu → YAu , and
applying the data processing inequality (Lemma 6.3);

• Line 4 follows from Lemma 6.4 and (26), where the conditional independence assumption holds
because we have assumed the random variables Wt are independent;

• Line 5 follows from the Shannon-Hartley Theorem (Lemma 6.2); in our case, the signal power
is exactly one by (25), and the average noise energy is α by construction.

Next, defining δu := P[F ′ 6= F |U = u], Fano’s inequality (Lemma 6.1) gives

I(F ;Y |U = u) ≥ −1 + (1− δu) log
n

k
,

and averaging both sides over U gives

I(F ;Y |U) ≥ −1 + (1− δ) log
n

k
,

where δ := E[δU ] = P[F ′ 6= F ].
Hence, and by Lemma 6.5, if we can show that our `2/`2-error guarantee (24) gives F ′ = F

constant probability, then we can conclude that

m ≥
k
(
(1− δ) log n

k − 1
)

C ′ log
(
1 + 1

α

) = Ω

(
k log

n

k

)
.

We therefore conclude the proof of Theorem 1.2 by proving the following lemma.

Lemma 6.6. (Probability of error characterization) Fix (n, k0, k1) and C > 0. If the (k0, k1)-block
sparse recovery algorithm used in the above communication game satisfies (24) with probability at
least 1

2 , then there exist choices of C ′ and α such that the decoder’s estimate of F ′ according to (27)
satisfies F ′ = F with probability at least 1

4 .

Proof. By the choice of estimator in (27), it suffices to show that Ŷ ′, the output of the block-sparse
Fourier transform algorithm, has more than half of its energy within the length-k window Ik(f

∗)

centered of f∗. We show this in three steps.
Characterizing the energy of X̂ within Ik(f

∗): The Fourier transform of X in (25) is a
shifted sinc function of “width” k

C′ centered at f∗ when the time window is centered at zero, and
more generally, has the same magnitude as this sinc function. Hence, by letting C ′ be suitably large,
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we can ensure that an arbitrarily high fraction of the energy of X̂ falls within the length-k window
centered at f∗ ∈ F . Formally, we have

‖X̂Ik(f∗)‖22 ≥ (1− η)‖X̂‖22 (29)

for η ∈ (0, 1) that we can make arbitrarily small by choosing C ′ large.
Characterizing the energy of Ŷ within Ik(f

∗): We now show that, when the noise level α in
(26) it sufficiently small, the energy in Ŷ within Ik(f∗) is also large with high probability:

∑

f∈Ik(f∗)

|Ŷf |2 ≥ (1− 2η)‖X̂‖22. (30)

To prove this, we first note that |Ŷf |2 = |X̂f + Ŵf |2 for all f ∈ [n], from which it follows that
∣∣∣∣
∑

f∈Ik(f∗)

|Ŷf |2 −
∑

f∈Ik(f∗)

|X̂f |2
∣∣∣∣ ≤

∑

f∈Ik(f∗)

|Ŵf |2 + 2
∑

f∈Ik(f∗)

|X̂f | · |Ŵf |.

Upper bounding the summation over |Ŵf |2 by the total noise energy, and upper bounding the sum-
mation over |X̂f | · |Ŵf | using the Cauchy-Schwarz inequality, we obtain

∣∣∣∣
∑

f∈Ik(f∗)

|Ŷf |2 −
∑

f∈Ik(f∗)

|X̂f |2
∣∣∣∣ ≤ ‖Ŵ‖22 + 2‖X̂‖2 · ‖Ŵ‖2. (31)

We therefore continue by bounding the total noise energy ‖Ŵ‖22; the precise distribution of the noise
across different frequencies is not important for our purposes.

Recall that every non-zero entry ofX has magnitude one, and every non-zero time-domain entry of
W is independently distributed as CN(0, α). Combining these observations gives E[‖W‖22] = α‖X‖22,
or equivalently E[‖Ŵ‖22] = α‖X̂‖22 by Parseval. Therefore, by Markov’s inequality, we have ‖Ŵ‖22 ≤
4α‖X̂‖22 with probability at least 3

4 . When this occurs, (31) gives
∣∣∣∣
∑

f∈Ik(f∗)

|Ŷf |2 −
∑

f∈Ik(f∗)

|X̂f |2
∣∣∣∣ ≤ 4(α+

√
α)‖X̂‖22. (32)

If we choose α = η2

100 , then we have 4(α +
√
α) = η2

25 + 4η
10 ≤ η. In this case, by (29) and (32), the

length-k window Ik(f
∗) centered at f∗ satisfies (30).

Characterizing the energy of Ŷ ′ within Ik(f
∗): The final step is to prove that (30) and (24)

imply the following with constant probability for a suitable choice of η:
∑

f∈Ik(f∗)

|Ŷ ′f |2 >
1

2
‖Ŷ ′‖22, (33)

where Ŷ ′ is the output of the block-sparse recovery algorithm. This clearly implies that F = F ′, due
to our choice of estimator in (27).

As a first step towards establishing (33), we rewrite (30) as
∑

f∈[n]\Ik(f∗)

|Ŷf |2 ≤ ‖Ŷ ‖22 − (1− 2η)‖X̂‖22. (34)

We can interpret (34) as an error term ‖Ŷ − Ŷ ∗‖22 for a signal Ŷ ∗ coinciding with Ŷ within Ik(f∗)
and being zero elsewhere. Since Ik(f∗) contains k contiguous elements, this signal is (k0, k1)-block
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sparse, and hence if the guarantee in (24) holds, then combining with (34) gives

‖Ŷ − Ŷ ′‖22 ≤ C
(
‖Ŷ ‖22 − (1− 2η)‖X̂‖22

)
. (35)

We henceforth condition on both (24) and the above-mentioned event ‖Ŵ‖22 ≤ 4α‖X̂‖22. Since the
former occurs with probability at least 1

2 by assumption, and the latter occurs with probability at
least 3

4 , their intersection occurs with probability at least 1
4 .

Next, we write the conditions in (30) and (35) in terms of ‖Ŷ ‖22, rather than ‖X̂‖22. Since
X̂ = Ŷ − Ŵ , we can use the triangle inequality to write ‖X̂‖2 ≥ ‖Ŷ ‖2 − ‖Ŵ‖2, and combining this
with ‖Ŵ‖22 ≤ 4α‖X̂‖22, we obtain ‖X̂‖2 ≥ ‖Ŷ ‖2

1+2
√
α
. Hence, we can weaken (30) and (35) to

∑

f∈Ik(f∗)

|Ŷf |2 ≥
1− 2η

(1 + 2
√
α)2
‖Ŷ ‖22 ≥ 0.99‖Ŷ ‖22 (36)

‖Ŷ − Ŷ ′‖22 ≤ C
(

1− 1− 2η

(1 + 2
√
α)2

)
‖Ŷ ‖22 ≤ 0.01‖Ŷ ‖22, (37)

where the second step in each equation holds for sufficiently small η due to the choice α = η2

100 .
It only remains to use (36)–(37) to bound the left-hand side of (33). To do this, we first note that

by interpreting both (36) and (37) as bounds on ‖Ŷ ‖22, and using ‖Ŷ − Ŷ ′‖22 ≥ ‖(Ŷ − Ŷ ′)Ik(f∗)‖22 in
the latter, we have ∑

f∈Ik(f∗)

|Ŷf − Ŷ ′f |2 ≤ 0.02
∑

f∈Ik(f∗)

|Ŷf |2,

since 0.01
0.99 ≤ 0.02. Taking the square root and applying the triangle inequality to the `2-norm on the

left-hand side, we obtain
∑

f∈Ik(f∗)

|Ŷ ′f |2 ≥ (1−
√

0.02)2
∑

f∈Ik(f∗)

|Ŷf |2. (38)

Next, writing ‖Ŷ ′‖2 = ‖Ŷ + (Ŷ ′− Ŷ )‖2, and applying the triangle inequality followed by (37), we
have ‖Ŷ ′‖2 ≤ 1.1‖Ŷ ‖2, and hence ‖Ŷ ‖2 ≥ 0.9‖Ŷ ′‖2. Squaring and substituting into (36), we obtain

∑

f∈Ik(f∗)

|Ŷf |2 ≥ 0.8‖Ŷ ′‖22. (39)

Finally, combining (38) and (39) yields (33), and we have thus shown that (33) holds (and hence
F = F ′) with probability at least 1

4 .
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A Omitted Proofs from Section 2

A.1 Proof of Lemma 2.1

Our filter construction is similar to [IK14], but we prove and utilize different properties, and hence
provide the details for completeness.

Definition A.1 (Rectangular pulse). For an even integer B′, let rectB
′ denote the rectangular pulse

of width B′ − 1, i.e.

rectB
′

t =

{
1, if |t| < B′

2

0 otherwise.

For an integer B′ > 0 a power of 2, define the length-n signal

W =

(
n

B′ − 1
· rectB

′
)
? · · · ?

(
n

B′ − 1
· rectB

′
)
, (40)

where the convolution is performed F times. As noted in [IK14], we have supp(WF ) ⊆ [−F ·B′, F ·B′],
and the Fourier transform is given by

Ŵf =


 1

B′ − 1

∑

|f ′|<B′
2

ωff
′

n




F

=

(
sin(π(B′ − 1)f/n)

(B′ − 1) sin(πf/n)

)F
(41)

for f 6= 0, and W0 = 1.

Lemma A.1. (Properties of W ) For every even F ≥ 2, the following hold for the signal W defined
in (40)–(41):

1 Ŵf ∈ [0, 1] for all f ∈ [n];

2 There exists an absolute constant C ≥ 0 such that for every λ > 1,
∑

f∈[n], |f |≥ λ·n
2B′

Ŵf ≤ (C/λ)F−1
∑

f∈[n]

Ŵf .

Proof. First note that the maximum of Ŵf is achieved at 0 and equals 1. Since F is even by
assumption, we have from (41) that Ŵf ≥ 0 for all f . These two facts establish the first claim.

To prove the second claim, note that for all f ∈ [n], we have

Ŵf =

∣∣∣∣
sin(π(B′ − 1)f/n)

(B′ − 1) sin(πf/n)

∣∣∣∣
F

≤
∣∣∣∣

1

(B′ − 1) sin(πf/n)

∣∣∣∣
F

(since | sin(πx)| ≤ 1)

≤
∣∣∣∣

1

(B′ − 1)2|f |/n

∣∣∣∣
F

(since | sin(πx)| ≥ 2|x| for |x| ≤ 1/2). (42)

We claim that this can be weakened to

Ŵf ≤
(

n

B′|f |

)F
. (43)

For f ∈ [−n/B′, n/B′] the right-hand side is at least one, and hence this claim follows directly from
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the first claim above. On the other hand, if |f | ≥ n/B′, we have

2(B′ − 1)|f |/n = 2B′|f |/n− 2|f |/n

≥ 2B′|f |/n− 1 (since |f | ≤ n/2)

≥ B′|f |/n (since |f | ≥ n/B′),

and hence (43) follows from (42).
Using (43), we have

∑

|f |≥ λ·n
2B′

Ŵf ≤
∑

|f |≥ λ·n
2B′

(
n

B′|f |

)F
= O(λ−F+1) · n

B′
. (44)

At the same time, for any f ∈ [− n
2B′ ,

n
2B′ ], we have

Ŵf =

∣∣∣∣
sin(π(B′ − 1)f/n)

(B′ − 1) sin(πf/n)

∣∣∣∣
F

≥
∣∣∣∣

2(B′ − 1)f/n

(B′ − 1) sin(πf/n)

∣∣∣∣
F

(since | sin(πx)| ≥ 2|x| for |x| ≤ 1/2)

≥
∣∣∣∣

2(B′ − 1)f/n

(B′ − 1)π(f/n)

∣∣∣∣
F

(since | sin(πx)| ≤ π|x|)

=

(
2

π

)F
.

This means that
∑

f∈[n]

Ŵf ≥
∑

f∈[− n
2B′ ,

n
2B′ ]

Ŵf ≥
(

2

π

)F
· n
B′
. (45)

Putting (44) together with (45), we get
∑

f∈[n], |f |≥ λ·n
2B′

Ŵf = O(λ−F+1) · n
B′
≤ C ′ ·

(π
2

)F
λ−F+1 ·

∑

f∈[n]

Wf

for an absolute constant C ′ > 0. The desired claim follows since C ′(π/2)F = ((C ′)1/(F−1) ·
(π/2)F/(F−1)))F−1 ≤ (C ′ · (π/2)2)F−1 (due to the assumption that F ≥ 2).

We now fix an integer B, and define Ĝ by

Ĝf =
1

Z

3n
4B∑

∆=− 3n
4B

Ŵf−∆.

where Z =
∑

f∈[n] Ŵf . By interpreting this as a convolution with a rectangle, we obtain that the
inverse Fourier transform Gt is obtained via the multiplication of Wt with a sinc pulse.

We proceed by showing that, upon identifying B′ = 8CB (where B′ was used in defining Ŵ , and
C is the implied constant in Lemma A.1), this filter satisfies the claims of Lemma 2.1. We start with
the three properties in Definition 2.1.

34



Proof of [Lemma 2.1 (filter property 1)]: For every f , we have

Ĝf =
1

Z
·

3n
4B∑

∆=− 3n
4B

Ŵf−∆ ≤
1

Z

∑

∆∈[n]

Ŵf−∆ = 1.

Similarly, the non-negativity of Ĝ follows directly from that of Ŵ .
Proof of [Lemma 2.1 (filter property 2)]: For every f ∈ [n] with |f | ≤ n

2B , we have

Ĝf =
1

Z
·

3n
4B∑

∆=− 3n
4B

Ŵf−∆

= 1− 1

Z

∑

|∆|> 3n
4B

Ŵf−∆

≥ 1− 2

Z

∑

f ′> n
4B

Ŵf ′ (since |f | ≤ n

2B
and W is symmetric)

= 1− 2

Z

∑

f ′> B′
2B
· n
2B′

Ŵf ′

≥ 1−
(

2C · B
B′

)F−1
. (by Lemma A.1)

Since B′/B = 8C by our choice of B′ above, we get Ĝf ≥ 1− (1/4)F−1, as required.
Proof of [Lemma 2.1 (filter property 3)]: For every f ∈ [n] with |f | ≥ n

B , we have

Ĝf =
1

Z
·

3n
4B∑

∆=− 3n
4B

Ŵf−∆

≤ 1

Z
·

∑

f ′ : |f ′|≥|f |− 3n
4B

Ŵf ′ . (by |f | ≥ n

B
)

Defining ζ ≥ 1 such that |f | = (3 + ζ) n
4B , this becomes

Ĝf ≤
1

Z
·

∑

f ′ : |f ′|≥ ζn
4B

Ŵf ′

=
1

Z
·

∑

f ′ : |f ′|≥ ζB′
2B
· n
2B′

Ŵf ′

≤
(2CB

ζB′

)F−1
(by Lemma A.1)

=
( 1

4ζ

)F−1
(since B′ = 8CB).

Rearranging the definition of ζ, we obtain ζ = 4B|f |
n − 3, and hence ζ ≥ B|f |

n due to the fact that
|f | ≥ n

B . Therefore, Ĝf ≤
(

n
4B|f |

)F−1.
Proof of [Lemma 2.1 (additional property 1)]: We have already shown that W is supported
on a window of length O(FB′) = O(FB) centered at zero. The same holds for G since it is obtained
via a pointwise multiplication of W with a sinc pulse.
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Proof of [Lemma 2.1 (additional property 2)]: Since Ĝf ∈ [0, 1], the total energy across |f | < n
B

is at most 2n
B . On the other hand, we have from the third property in Definition 2.1 that

∑

|f |≥ n
B

|Ĝf |2 ≤ 2
∑

f≥ n
B

(1

4

)2(F−1)( n

Bf

)2(F−1)

≤ 1

8

∑

f≥ n
B

( n

Bf

)2
(since F ≥ 2)

≤ 1

8
· n
B

∞∑

f=1

1

f2

≤ n

B
(since

∞∑

f=1

1

f2
< 8).

Combining this with the contribution from |f | < n
B concludes the proof.

A.2 Proof of Lemma 2.3

We are interested in the behavior of
∑

r∈[2k1] |Ẑrj |2 for each j (first part), and summed over all j
(second part). We therefore begin with the following lemma, bounding this summation in terms of
the signal X and the filter G.

Lemma A.2. (Initial downsampling bound) For any integers (n, k1), parameter δ ∈
(
0, 1

20

)
, signal

X ∈ Cn and its corresponding (k1, δ)-downsampling {Zr}r∈[2k1], the following holds for all j ∈ [ nk1
]:

∣∣∣∣
1

2k1

∑

r∈[2k1]

|Ẑrj |2 −
n∑

f=1

|Ĝf−k1j |2 · |X̂f |2
∣∣∣∣ ≤ 3δ

n∑

f=1

|Ĝf−k1j | · |X̂f |2.

Proof. Directly evaluating the sum: Using the definition of the signals Ẑr in (2), we write
∑

r∈[2k1]

|Ẑrj |2 =
∑

r∈[2k1]

( n∑

f=1

Ĝf−k1j · X̂f · ωarfn

)†( n∑

f ′=1

Ĝf ′−kj · X̂f ′ · ωarf
′

n

)

=

n∑

f=1

n∑

f ′=1

Ĝ∗f−k1j · X̂
∗
f · Ĝf ′−k1j · X̂f ′ ·

( ∑

r∈[2k1]

ωar(f
′−f)

n

)

where (·)† denotes the complex conjugate. Since ar = nr
2k1

, the term
∑

r∈[2k1] ω
ar(f ′−f)
n is equal to 2k1

if f − f ′ is a multiple of 2k1 (including f = f ′) and zero otherwise, yielding

∑

r∈[2k1]

|Ẑrj |2 = 2k1 ·
n∑

f=1

(
|Ĝf−k1j |2 · |X̂f |2 +

∑

j′∈[ n
2k1

]

j′ 6=0

Ĝ∗f−k1j · X̂
∗
f · Ĝf−2k1j′−k1j · X̂f−2k1j′

)
. (46)

Without loss of generality, we consider j = 0; otherwise, we can simply consider a version of X shifted
in frequency domain by k1j. Setting j = 0 in (46) and applying the triangle inequality, we obtain

∣∣∣∣
∑

r∈[2k1]

|Ẑr0 |2 − 2k1 ·
n∑

f=1

|Ĝf |2 · |X̂f |2
∣∣∣∣ ≤ 2k1 ·

∑

|j′|≤ n
2(2k1)

j′ 6=0

n∑

f=1

∣∣∣∣Ĝ∗f · X̂∗f · Ĝf−2k1j′ · X̂f−2k1j′

∣∣∣∣. (47)
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Bounding the right-hand side of (47): We write
∑

|j′|≤ n
2(2k1)

j′ 6=0

n∑

f=1

∣∣∣∣Ĝ∗f · X̂∗f · Ĝf−2k1j′ · X̂f−2k1j′

∣∣∣∣

=
∑

|j′|≤ n
2(2k1)

j′ 6=0

n∑

f=1

(
|Ĝf |1/2 · |Ĝf−2k1j′ |1/2

)
· |Ĝf |1/2 · |X̂∗f | · |Ĝf−2k1j′ |1/2 · |X̂f−2k1j′ |. (48)

In Lemma A.3 below, we show that

|Ĝf |1/2 · |Ĝf−2k1j′ |1/2 ≤
(1

2)F−1

|j′|(F−1)/2

for all f ∈ [n] and all |j′| ≤ n
2(2k1) with j′ 6= 0. Definition 2.2 ensures that

(
1
2

)F−1 ≤ δ, and
substitution into (48) gives

∑

|j′|≤ n
2(2k1)

j′ 6=0

n∑

f=1

∣∣∣∣Ĝ∗f · X̂∗f · Ĝf−2k1j′ · X̂f−2k1j′

∣∣∣∣

≤ δ ·
∑

|j′|≤ n
2(2k1)

j′ 6=0

1

|j′|(F−1)/2

n∑

f=1

|Ĝf |1/2 · |X̂∗f | · |Ĝf−2k1j′ |1/2 · |X̂f−2k1j′ |. (49)

Next, we apply the Cauchy-Schwarz inequality to upper bound the inner summation over f above
for any fixed j′ ∈ [ n

2k1
], yielding

n∑

f=1

|Ĝf |1/2 · |X̂∗f | · |Ĝf−2k1j′ |1/2 · |X̂f−2k1j′ | ≤

√√√√
n∑

f=1

|Ĝf | · |X̂∗f |2 ·

√√√√
n∑

f=1

|Ĝf−2k1j′ | · |X̂f−2k1j′ |2

=

n∑

f=1

|Ĝf | · |X̂∗f |2, (50)

where we used the fact that
{
|Ĝf−2k1j′ | · |X̂f−2k1j′ |2

}n
f=1

is a permutation of
{
|Ĝf | · |X̂∗f |2

}n
f=1

.
Wrapping up: Substituting (50) into (49) gives

∑

|j′|≤ n
2(2k1)

j′ 6=0

n∑

f=1

∣∣∣∣Ĝ∗f · X̂∗f · Ĝf−2k1j′ · X̂f−2k1j′

∣∣∣∣

≤ δ ·
∑

|j′|≤ n
2(2k1)

j′ 6=0

1

|j′|(F−1)/2

n∑

f=1

|Ĝf | · |X̂f |2

≤ 3δ

n∑

f=1

|Ĝf | · |X̂f |2,

where the last inequality follows from the fact that
∑
|j′|≤ n

2(2k1)

j′ 6=0

1
|j′|(F−1)/2 ≤ 2

∑∞
j′=1

1
|j′|(F−1)/2 , which

is upper bounded by 3 for F ≥ 8, a condition guaranteed by Definition 2.2. We therefore obtain the
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following bound from (47):
∣∣∣∣

1

2k1
·
∑

r∈[2k1]

|Ẑr0 |2 −
n∑

f=1

|Ĝf |2 · |X̂f |2
∣∣∣∣ ≤ 3δ

n∑

f=1

|Ĝf | · |X̂f |2.

The lemma follows by recalling that the choice j = 0 was without loss of generality, with the general
case amounting to replacing Ẑ0 by Ẑj and Ĝf by Ĝf−k1j .

In the preceding proof, we made use of the following technical result bounding the product of the
filter G evaluated at two locations separated by some multiple of 2k1.

Lemma A.3. (Additional filter property) Given (n, k1) and a parameter F ≥ 2, if G is an (n, nk1
, F )-

flat filter, then the following holds for all f ∈ [n] and all j ∈
[
n
k1

]
with |j′| ≤ n

2(2k1) and j′ 6= 0:

|Ĝf |1/2 · |Ĝf−2k1j′ |1/2 ≤
(1

2)F−1

|j′|(F−1)/2
.

Proof. For clarity, let f1 and f2 denote the frequencies corresponding to f and f − 2k1j
′ respectively,

defined in the range (−n/2, n/2] according to modulo-n arithmetic. By definition, f1 − f2 is equal
to 2k1j

′ modulo-n, and since |j′| ≤ n
2(2k1) , we have |2k1j

′| ≤ n
2 . This immediately implies that the

distance ∆ = |f1 − f2| according to regular arithmetic is lower bounded by the distance according to
modulo-n arithmetic: ∆ ≥ 2k|j′|.

Since f1 and f2 are at a distance ∆ according to regular arithmetic, it must be the case that either
|f1| ≥ ∆

2 or |f2| ≥ ∆
2 . Moreover, since j′ 6= 0, we have, from the above-established fact ∆ ≥ 2k1|j′|,

that ∆
2 ≥ k1, and hence we can apply the third filter property in Definition 2.1 to conclude that

|Gfν | ≤
(

1
4

)F−1(2k1
∆

)F−1 for either ν = 1 or ν = 2. Substituting ∆ ≥ 2k1|j′|, upper bounding
Gfν′ ≤ 1 (cf., Definition 2.1) for the index ν ′ ∈ {1, 2} differing from ν, and taking the square root,
we obtain the desired result.

We are now in a position to prove the claims of Lemma 2.3
Proof of first part of Lemma 2.3: Recall from Lemma A.2 that

∣∣∣∣
1

2k1

∑

r∈[2k1]

|Ẑrj |2 −
n∑

f=1

|Ĝf−k1j |2 · |X̂f |2
∣∣∣∣ ≤ 3δ

n∑

f=1

|Ĝf−k1j | · |X̂f |2. (51)

We proceed by lower bounding
∑n

f=1 |Ĝf−k1j |2 · |X̂f |2 and upper bounding
∑n

f=1 |Ĝf−k1j | · |X̂f |2.
Starting with the former, recalling that Ij =

(
(j − 1/2)k1, (j + 1/2)k1

]
∩ Z, we have

n∑

f=1

|Ĝf−k1j |2 · |X̂f |2 ≥
∑

f∈Ij

|Ĝf−k1j |2 · |X̂f |2

≥
(

1−
(1

4

)F−1
)2

‖X̂Ij‖22

≥ (1− δ)‖X̂Ij‖22, (52)

where the second line is by the second filter property in Definition 2.1, and the third line is by the
choice of F in Definition 2.2.
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Next, we upper bound
∑n

f=1 |Ĝf−k1j | · |X̂f |2 as follows:
n∑

f=1

|Ĝf−k1j | · |X̂f |2 ≤
∑

f∈Ij∪Ij−1∪Ij+1

|Ĝf−k1j | · |X̂f |2 +
∑

f∈[n] : |f−k1j|≥ 3k1
2

|Ĝf−k1j | · |X̂f |2. (53)

By the third property in Definition 2.1, the filter decays as |Ĝf | ≤ (1
4)F−1( k1

|f |)
F−1 for |f | ≥ k1, and

therefore the second term in (53) is bounded by

∑

|f |≥k1j+
3k1
2

|Ĝf−k1j | · |X̂f |2 ≤
(1

4

)F−1
·

∑

j′∈[ n
k1

] : |j′−j|≥2

‖X̂Ij′‖
2
2

(|j′ − j| − 1)F−1

≤
(1

2

)F−1
·

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

≤ δ ·
∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1
, (54)

where the second line follows from |j′ − j| − 1 ≥ |j
′−j|
2 , and the third line follows since the choice of

F in Definition 2.2 ensures that
(

1
2

)F−1 ≤ δ. We bound the term
∑

f∈Ij∪Ij−1∪Ij+1
|Ĝf−k1j | · |X̂f |2 in

(53) using the first property in Definition 2.1, namely, Ĝf ≤ 1:
∑

f∈Ij∪Ij−1∪Ij+1

|Ĝf−k1j | · |X̂f |2 ≤ ‖X̂Ij∪Ij−1∪Ij+1‖22. (55)

Hence, combining (53)–(55), we obtain
n∑

f=1

|Ĝf−k1j | · |X̂f |2 ≤ ‖X̂Ij∪Ij−1∪Ij+1‖22 + δ ·
∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1
. (56)

The first claim of the lemma follows by combining (51), (52), and (56).
Proof of second part of Lemma 2.3: By following the same steps as those used to handle (53),
we obtain the following analog of (56) with |Ĝf |2 in place of |Ĝf |:

n∑

f=1

|Ĝf−k1j |2 · |X̂f |2 ≤ ‖X̂Ij∪Ij−1∪Ij+1‖22 + δ ·
∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|2(F−1)
. (57)

Combining (51), (56), and (57), we obtain
∑

r∈[2k1] |Ẑrj |2

2k1
≤ ‖X̂Ij∪Ij−1∪Ij+1‖22 + δ ·

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′|2(F−1)

+ 3δ ·
(
‖X̂Ij∪Ij−1∪Ij+1‖22 + δ

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

)
,
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and summing over j ∈ [n] gives

1

2k1

∑

r∈[2k1]

‖Ẑr‖2 ≤
∑

j∈[n]

(
(1 + 3δ)‖X̂Ij∪Ij−1∪Ij+1‖22 + (3δ2 + δ)

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

)

= 3(1 + 3δ)‖X̂‖22 + (3δ2 + δ)
∑

j∈[n]

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1
(58)

The double summation is upper bounded by
∑

j′∈[n] ‖X̂Ij′‖
2
2 · 2

∑∞
∆=1

1
∆F−1 = 2‖X̂‖22 ·

∑∞
∆=1

1
∆F−1 ,

which in turn is upper bounded by 3‖X̂‖22 for F ≥ 4, a condition guaranteed by Definition 2.2. We
can therefore upper bound (58) by ‖X̂‖22(3(1 + 3δ) + 3(3δ2 + δ)), which is further upper bounded by
6‖X̂‖22 for δ ≤ 1

20 , as is assumed in Definition 2.2.
For the lower bound, we sum the first part of the lemma over all j, yielding

∑

r∈[2k1]

‖Ẑr‖2 ≥
∑

r∈[2k1] |Ẑrj |2

2k1
≥ (1− δ)‖X̂‖22 − 3δ ·

(
3‖X̂‖22 + δ

∑

j∈[ n
k1

]

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

)
.

We showed above that the double summation is upper bounded by 3‖X̂‖22, yielding an lower bound
of (1− δ − 9δ − 3δ2)‖X̂‖22. This is lower bounded by (1− 12δ)‖X̂‖22 for δ ≤ 1

20 .

B Omitted Proofs from Section 3

B.1 Proof of Lemma 3.2

Note that for any j ∈
[
n
k1

]
, solving the first part of Lemma 2.3 for ‖X̂Ij‖22 gives

‖X̂Ij‖22 ≤
1

1− δ

(
1

2k1

∑

r∈[2k1]

|Ẑrj |2 + 3δ ·
(
‖X̂Ij∪Ij−1∪Ij+1‖22 + δ

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

))
. (59)

We will sum both sides over j ∈ S∗\S̃; we proceed by analyzing the resulting terms.
Second term in (59) summed over j ∈ S∗\S̃: We have

∑

j∈S∗\S̃

3δ ·
(
‖X̂Ij∪Ij−1∪Ij+1‖22 + δ

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

)

≤ 9δ‖X̂‖22 + 3δ2
∑

j∈S∗\S̃

∑

j′∈[ n
k1

]\{j}

‖X̂Ij′‖
2
2

|j′ − j|F−1

≤ 9δ‖X̂‖22 + 10δ2‖X̂‖22 ≤ 10δ‖X̂‖22, (60)

where the last line follows by expanding the double summation to all j, j′ ∈
[
n
k1

]
with j 6= j′, noting

that 2
∑∞

∆=1
1

∆F−1 ≤ 2.5 for F ≥ 4 (a condition guaranteed by Definition 2.2), and then applying the
assumption δ ≤ 1

20 .
First term in (59) summed over j ∈ S∗\S̃: We first rewrite the sum of squares in terms of a
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weighted sum of fourth moments:

∑

j∈S∗\S̃

1

2k1

∑

r∈[2k1]

|Ẑrj |2 =
1

2k1

∑

r∈[2k1]

‖Ẑr
S∗\S̃‖

2
2 =

∑

r∈[2k1]

‖Ẑr‖2 ·
‖Ẑr

S∗\S̃‖
2
2

‖Ẑr‖2

≤ 1

2k1

√√√√√
( ∑

r∈[2k1]

‖Ẑr‖22
)( ∑

r∈[2k1]

‖Ẑr
S∗\S̃‖

4
2

‖Ẑr‖22

)
, (61)

by Cauchy-Schwarz applied to the length-2k1 vectors containing entries ‖Ẑr‖2 and
‖Ẑr

S∗\S̃
‖22

‖Ẑr‖2
.

The second summation inside the square root is upper bounded as

∑

r∈[2k1]

‖Ẑr
S∗\S̃‖

4
2

‖Ẑr‖22
≤
∑

r∈[2k1]

‖ẐrS∗‖22 ·
‖Ẑr

S∗\S̃‖
2
2

‖Ẑr‖22

≤
∑

r∈[2k1]

γr ·
‖Ẑr

S∗\S̃‖
2
2

‖Ẑr‖22
+
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+
·
‖Ẑr

S∗\S̃‖
2
2

‖Ẑr‖22
, (62)

where the first inequality follows since ‖Ẑr
S∗\S̃‖

2
2 ≤ ‖ẐrS∗‖22 and the second inequality uses ‖ẐrS∗‖22 ≤

γr +
∣∣‖ẐrS∗‖22 − γr

∣∣
+
.

Now observe that by definition of S̃ (Definition 3.1), for every j /∈ S̃, we have

∑

r∈[2k1]

(
|Ẑrj |2 ·

γr

‖Ẑr‖22

)
≤ δ ·

∑
r∈[2k1] ‖Ẑr‖22

k0
,

and summing both sides over all j ∈ S∗\S̃ gives

∑

r∈[2k1]

γr ·
‖Ẑr

S∗\S̃‖
2
2

‖Ẑr‖22
≤ δ|S∗\S̃|

k0

∑

r∈[2k1]

‖Ẑr‖22 ≤ 10δ
∑

r∈[2k1]

‖Ẑr‖22,

since |S∗| ≤ 10k0 by assumption. Applying this to the first term in (62), as well as
‖Ẑr

S∗\S̃
‖22

‖Ẑr‖22
≤ 1 for

the second term, we obtain

∑

r∈[2k1]

‖Ẑr
S∗\S̃‖

4
2

‖Ẑr‖22
≤ 10δ

∑

r∈[2k1]

‖Ẑr‖22 +
∑

r∈[2k1]

∣∣∣‖ẐrS∗‖22 − γr
∣∣∣
+

≤ 50δ
∑

r∈[2k1]

‖Ẑr‖22, (63)

where we have applied the assumption (*) of the lemma.
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Finally, substituting (63) into (61) yields

∑

j∈S∗\S̃

1

2k1

∑

r∈[2k1]

|Ẑrj |2 ≤
1

2k1

√√√√√
( ∑

r∈[2k1]

‖Ẑr‖22
)( ∑

r∈[2k1]

‖Ẑr
S∗\S̃‖

4
2

‖Ẑr‖22

)

≤ 1

2k1

√√√√
( ∑

r∈[2k1]

‖Ẑr‖22
)(

50δ
∑

r∈[2k1]

‖Ẑr‖22
)

(by (63))

≤
√

50δ

2k1

∑

r∈[2k1]

‖Ẑr‖22 ≤ 43
√
δ‖X̂‖22, (64)

where the last inequality uses the fact that
∑
r∈[2k1] ‖Ẑr‖22

2k1
≤ 6‖X‖22 by the second part of Lemma 2.3.

The proof is concluded by substituting (60) and (64) into (59), and using the assumption δ ≤ 1
20 to

deduce that 1
1−δ
(
43
√
δ + 10δ

)
≤ 100

√
δ.

C Omitted Proofs from Section 4

C.1 Proof of Lemma 4.2

The (exact) Fourier transform of U , denoted by Û∗, is given by

Û∗j =
1

B

∑

b∈[B]

Ubω
−bj
B

=
1

n

∑

b∈[B]

∑

i′∈[ n
B

]

Xσ(∆+b+B·i′)Gb+B·i′ω
−bj
B

=
1

n

∑

i∈[n]

Xσ(∆+i)Giω
−ijn/B
n , (65)

where we used the fact that ω(·)
B is periodic with period B, and then applied ωB = ω

n/B
n . We see that

(65) is the Fourier transform of the signal {Xσ(∆+i)Gi}i∈[n] evaluated at frequency jn/B, and hence,
since multiplication and convolution are dual under the Fourier transform, we obtain

Û∗j = (Ŷ ? Ĝ)jn/B, (66)

where Yi = Xσ(∆+i). Now, by standard Fourier transform properties, we have Ŷf = X̂σ−1fω
∆f
n , and

substitution into (66) gives

Û∗j =
∑

f∈[n]

X̂σ−1f Ĝj nB−fω
∆f
n

=
∑

f∈[n]

X̂f Ĝσf− n
B
jω

σ∆f
n ,

where we have used the assumed symmetry of G about zero.

42



C.2 Proof of Lemma 4.3

For brevity, let Ψ =
∑

f ′ 6=f |X̂f ′ |2Eπ
[
|Gof (f ′)|2

]
denote the left-hand side of (14). Following the

approach of [IK14, Lemma 3.3], we define the intervals Ft =
(
π(f) − n

B2t, π(f) + n
B2t
]
for t =

1, . . . , log2 b, and write

Ψ ≤
∑

f ′ 6=f
|X̂f ′ |2

log2B∑

t=1

P[π(f ′) ∈ Ft\Ft−1] max
f ′′ :π(f ′′)∈Ft\Ft−1

|Ĝof (f ′′)|2

≤ 4

B

∑

f ′ 6=f
|X̂f ′ |2

(
2 +

log2B∑

t=2

2t max
f ′′ :π(f ′′)∈Ft\Ft−1

|Ĝof (f ′′)|2
)
, (67)

where the second line follows by (i) upper bounding P[π(f ′) ∈ Ft\Ft−1] ≤ P[π(f ′) ∈ Ft] and applying
the approximate pairwise independence property (cf., Definition 4.1); (ii) using the fact that there
are at most n

B · 2
t+1 integers within Ft, and applying |Ĝf | ≤ 1 for the case t = 1.

To handle the term containing |Ĝof (f ′′)|2, we use the triangle inequality to write

|of (f ′′)| ≥ |π(f)− π(f ′′)| −
∣∣∣π(f)− n

b
round

(
π(f)

B

n

)∣∣∣

≥ |π(f)− π(f ′′)| − n

B
.

For any f ′′ with π(f ′′) /∈ Ft−1, we have |π(f) − π(f ′′)| ≥ n
B2t−1, and hence |of (f ′′)| ≥ n

B (2t−1 − 1).
As a result, for t ≥ 2, the third property in Definition 2.1 gives

Ĝof (f ′′) ≤
(1

4

)F−1( 1

2t−1 − 1

)F−1
≤
(1

4

)F−1( 1

2t−2

)F−1
=
( 1

2t

)F−1
,

and hence
log2 B∑

t=2

2t max
f ′′ :π(f ′′)∈Ft\Ft−1

|Ĝof (f ′′)|2 ≤
∞∑

t=2

( 1

2t

)2F−1
.

This sum is less than 1
2 for all F ≥ 2, and hence substitution into (67) gives Ψ ≤ 10

B ‖X̂‖
2
2, as desired.

C.3 Proof of Lemma 4.5

We use techniques resembling those used for a (k1, ε)-downsampling in Section 2, but with the notable
difference of using a more rapidly-decaying filter with bounded support in frequency domain.

Choice of filter: We let G ∈ Rn be the filter used in [IKP14] (as opposed to that used in
Definition 2.1), satisfying the following:

• There exists an ideal filter G′ satisfying G′f ∈ [0, 1] for all f , and

G′f =





1 |f | ≤ n
2k1

0 |f | ≥ n
k1
,

(68)

such that ‖G−G′‖2 ≤ n−c;

• Ĝ is supported on a window of length O(ck1 log n) centered at zero;

• Each entry of Ĝ can be computed in time O(1).
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Intuition behind the proof. Before giving the details, we provide the intuition for the proof.
Recall that our goal is to computeXr

j for |j| ≤ k0/2, for all r ∈ [2k1]. To do this, we first note thatX0
j ,

for |j| ≤ k0/2 (i.e., for only one value of r, namely 0), can be computed via a reduction to standard
semi-equispaced FFT (Lemma 4.4) on an input signal of length 2n/k1. To achieve this, consider the
signal X ·G aliased to length 2n/k1, which is close to X on all points j such that |j| ≤ n/(2k1). In
order to compute X0

j for |j| ≤ k0/2, it essentially suffices (modulo boundary issues; see below) to
calculate (X ·G)j for |j| ≤ k0/2. We show below that this can be achieved using Lemma 4.4, because
multiplication followed by aliasing are dual to convolution and subsampling: the input (k0, k1)-block
sparse signal of length n can be naturally mapped to an O(k0 log n)-sparse signal in a reduced space
with ≈ n/k1 points, in which standard techniques (Lemma 4.4) can be applied.

This intuition only shows how to compute the values of Xr
j for r = 0 and |j| ≤ k0/2, but we need

the values for all r ∈ [2k1]. As we show below, the regular structure of the set of shifts that we are
interested in allows us use the standard FFT on a suitably defined set of length-2k1 signals, without
increasing the runtime by a k1 factor. It is interesting to note that our runtime is O(log n) worse
than the runtime of Lemma 4.4 due to the two-level nature of our scheme; this is for reasons similar
to the logd n scaling of runtime of high-dimensional semi-equispaced FFT (e.g. [GHI+13,Kap16]).

We now give the formal proof of the lemma.
Computing a convolved signal: Here we show that we can efficiently compute the values

Ŷ r
j = (X̂r ? Ĝ) k1

2
j
at all j ∈

[
2n
k1

]
where it is non-zero, for all values of r ∈ [2k1]. We will later show

that applying Lemma 4.4 to these signals (as a function of j) gives accurate estimates of the desired
values of X.

Note that in the definition of Ŷ r
j , each non-zero block is convolved with a filter of support

O(ck1 log n), and so contributes to at most O(c log n) values of j. Since there are k0 non-zero blocks,
there are O(ck0 log n) values of j for which the result is non-zero.

The procedure is as follows:

1. For all j such that Ŷ r
j may be non-zero (O(ck0 log n) in total), compute Ỹ b

j =

k1
2

∑ n
2k1
l=1 X̂b+2k1lĜ k1

2
j−(b+2k1l)

for b ∈ [2k1]. That is, alias the signal {X̂f Ĝ k1
2
j−f} down to

length 2k1, and normalize by 2
k1

(for later convenience). Since Ĝ is supported on an interval of
length O(ck1 log n), this can be done in time O(c log n) per entry, for a total of O(ck1 log n) per
j value, or O(c2k0k1 log2 n) overall.

2. Compute the length-2k1 inverse FFT of Ỹj = (Ỹ 1
j , . . . , Ỹ

2k1
j ) to obtain Ŷj ∈ C2k1 . This can be

done in time O(k1 log(1 + k1)) per j value, or O(k0k1 log(1 + k1) log n) overall.

We now show that Ŷ r
j = k1

2 (Xr ?G) k1
2
j
for r = 1, . . . , 2k1. By the definition of the inverse Fourier
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transform, we have

Ŷ r
j =

2k1∑

b=1

Ỹ b
j ω

rb
2k1

=
k1

2

2k1∑

b=1

n
2k1∑

l=1

X̂b+2k1lĜ k1
2
j−(b+2k1l)

ωrb2k1

=
k1

2

n∑

f=1

X̂f Ĝ k1
2
j−fω

rf
2k1

=
k1

2

n∑

f=1

X̂f Ĝ k1
2
j−fω

rf · n
2k1

n

=
k1

2

n∑

f=1

X̂r
f Ĝ k1

2
j−f (since Xr

(·) = X(·)+ nr
2k1

by Definition 2.2),

where the second line is by the definition of Ỹ b, the third by the periodicity of ω2k1 , and the fifth since
translation and phase shifting are dual under the Fourier transform. Hence, Ŷ r

j = k1
2 (X̂r ? Ĝ) k1

2
j
.

Applying the standard semi-equispaced FFT: For r ∈ [2k1], define Ŷ r = (Ŷ r
1 , . . . , Ŷ

r
n/k1

).
We have already established that the support of each Ŷ r is a subset of a set having size at most
k′ = O(ck0 log n). We can therefore apply Lemma 4.4 with ζ = n−(c+1) to conclude that we can
evaluate Y r

j for |j| ≤ k′

2 satisfying

|Y r
j − Y ∗rj | ≤ n−(c+1)‖Y r‖2, (69)

where Y ∗r is the exact inverse Fourier transform of Ŷ r. Moreover, this can be done in time
O
(
k′ log n/k1

n−(c+1)

)
= O(c2k0 log2 n) per r value, or O(c2k0k1 log2 n) overall.

Proof of first part of lemma: It remains to show that the above procedure produces estimates of
the desired X values of the form (15).

Recall that Ŷ r
j = k1

2 (X̂r ? Ĝ) k1
2
j
. By the convolution theorem and the fact that subsampling and

aliasing are dual (e.g., see Appendix C.1), the inverse Fourier transform of Ŷ r satisfies the following
when |j| ≤ n

k1
:

Y r
j =

∑

i∈[
k1
2

]

(G ·Xr)j+ 2n
k1
i

= GjX
r
j +

∑

i∈[
k1
2

], i 6=0

(G ·Xr)j+ 2n
k1
i

=

(
G′jX

r
j +

∑

i∈[
k1
2

], i 6=0

(G′ ·Xr)j+ 2n
k1
i

)
± ‖G−G′‖2‖X‖2

= Xr
j ± n−c‖X‖2, (70)

where the last line follows from the definition of G′ in (68) and the assumption ‖G−G′‖2 ≤ n−c.
Combining (69) and (70) and using the triangle inequality, we obtain

|Y r
j −Xr

j | ≤ n−(c+1)‖Y r‖2 + n−c‖X‖2.
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Since we have already shown that we can efficiently compute Y r
j for |j| ≤ k′

2 with k′ = O(ck0 log n),
it only remains to show that ‖Y r‖2 ≤ n‖X‖2. To do this, we use the first line of (70) to write

|Y r
j | ≤

∑

i∈[
k1
2

]

|Gj+ 2n
k1
i| · |X

r
j+ 2n

k1
i
|

≤ 2
∑

i∈[
k1
2

]

|Xr
j+ 2n

k1
i
|

≤
√√√√2k1

∑

i∈[
k1
2

]

|Xr
j+ 2n

k1
i
|2, (71)

where the first line is the triangle inequality, the second line follows since the first filter assumption
above ensures that |Gj | ≤ 2 for all j, and the third line follows since the squared `1-norm is upper
bounded by the squared `2-norm times the vector length.

Squaring both sides of (71) and summing over all j gives ‖Y r‖22 ≤ 2k1‖X‖2 ≤ n2‖X‖2 (under
the trivial assumption n ≥ 2), thus completing the proof.

Proof of second part of lemma: In the proof of the first part, we applied Lemma 4.4 to
signals of length 2n

k1
. It follows directly from the arguments in [IKP14, Cor. 12.2] that since we can

approximate the entries of Xr
j for all |j| ≤ k0

2 , we can do the same for all j equaling σj′ + b modulo-
2n
k1

for some |j′| ≤ k0
2 . Specifically, this follows since the multiplication by σ and shift by b simply

amounts to a phase shift and a linear change of variables f → σ−1f in frequency domain, both of
which can be done in constant time.

However, the second part of the lemma regards indices modulo- nk1
, as opposed to modulo-2n

k1
.

To handle the former, we note that for any integer a, we either have a mod n
k1

= a mod 2n
k1

or
a mod n

k1
=
(
a+ n

k1

)
mod 2n

k1
. Hence, we obtain the desired result by simply performing two calls to

the first part, one with a universal shift of n
k1
.

C.4 Proof of Lemma 4.6

C.4.1 First Part

Since UX is computed according to X itself in Algorithm 4, we only need to compute the error in Uχ.
In the definition of hashing in Definition 4.2, since G has support O(FB), we see that the values

of X used correspond to a permutation of an interval having length k′ = O(FB). We can therefore
apply the second part of Lemma 4.4 with sparsity k′ and parameter ζ = n−c

′ for some c′ > 0, ensuring
an `∞-guarantee of n−c′‖χ‖2 for the signal χ.

Since Û is computed from these values using (13) followed by the FFT, we readily obtain via the
relation ‖v‖∞ ≤ ‖v‖2 ≤

√
m‖v‖∞ (for v ∈ Cm) and Parseval’s theorem that Û has an `∞-guarantee

of n−(c′−O(1))‖χ‖2, which can be made to equal n−c‖χ̂‖2 by choosing c′ = c+O(1).

Sample complexity and runtime: The only operation that consumes samples from the signal X
is the hashing operation applied to X. From the definition of hashing in Definition 4.2, and the fact
that the filter G has support O(FB), we find that the sample complexity is also O(FB).
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The runtime is dominated by the application of the semi-equispaced FFT, which is O(cF (‖χ̂‖0 +

B) log n) by Lemma 4.4. In particular, this dominates the O(B logB) time to perform the FFT in
Algorithm 4, and the hashing operation, whose time complexity is the same as the sample complexity.

C.4.2 Second Part

Recall the definition of a (k1, δ)-downsampling of a signal X from (2):

Zrj =
1

k1

∑

i∈[k1]

(G ·Xr)j+ n
k1
·i, j ∈

[ n
k1

]
, r ∈ [2k1].

In order to compute the
(
n
k1
, Br, Gr, σ,∆

)
-hashing of Ẑr (cf., Definition 4.2), we use the samples

of Zrj at the locations j = σ(j′ + ∆) mod n
k1

for |j′| ≤ FBr; this is because Gr is supported on
[−FBr,+FBr]. Note that FBr is further upper bounded by O(FBmax).

We claim that in the second part of Lemma 4.5, it suffices to set the sparsity level to O(FBmax +

k0). To see this, first note that k0 is added in accordance with Remark 4.2 and the fact that χ̂ is
(k0, k1)-block sparse. Moreover, note that Ẑr has length n

k1
, and one sample of Zrj can be computed

from Xr
j+i n

k1

= Xr+2i
j for |i| ≤ F as per Definition 2.2 and the fact that the filter G is supported on

[−F n
k1
,+F n

k1
]. Therefore, all we need is Xr′

j′ for each r′ ∈ [2k1] and for all j′ = σ(j + ∆) mod n
k1

with |j| ≤ FBmax.
Applying the second part of Lemma 4.5 with sparsity O(FBmax +k0) and parameter ζ = n−c

′ for
some c′ > 0, ensuring an `∞-guarantee of 2n−c

′‖χ‖2 on the computed values of χ. By an analogous
argument to the first case, this implies an `∞-guarantee of n−c‖χ‖2 on the FFT Û r of the hashing of
Zrχ, with c = c′ +O(1).

Sample complexity and runtime: We take O(FBr) samples of the r-th downsampled signal
each time we do the hashing, separately for each r ∈ [2k1]. By Lemma 2.2, accessing a single sample
of ZrX costs us O(log 1

δ ) samples of X. Hence, the sample complexity is O
(
F
∑

r∈[2k1]B
r log 1

δ

)
.

We now turn to the runtime. By Lemma 4.5, the call to SemiEquiInverseBlockFFT with
O(FBmax+k0) in place of k0 takes time O

(
c2(FBmax+k0)k1 log2 n). The hashing operation’s runtime

matches its sample complexity, and since we have assumed δ ≥ 1
n , its contribution is dominated by

the preceding term.

C.5 Proof of Lemma 4.7

First part of lemma: We start with the following bound on the expression inside the expectation:
∣∣∣‖ŶS‖22 − ‖Û∗‖22

∣∣∣
+
≤
∣∣∣‖ŶS‖22 − ‖Û∗h(S\Scoll)‖

2
2

∣∣∣
+

where h(S) = {h(j) : j ∈ S} with h(j) = round
(
π(j)Bm

)
, denoting the bucket into which element j

hashes. We define Scoll to be a subset of S containing the elements that collide with each other, i.e.,
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Scoll = {j ∈ S |h(j) ∩ h(S\{j}) 6= ∅}, yielding
∣∣∣‖ŶS‖22 − ‖Û∗‖22

∣∣∣
+
≤
∣∣∣
∑

j∈S
|Ŷj |2 −

∑

b∈h(S\Scoll)

|Û∗b |2
∣∣∣
+

=
∣∣∣
∑

j∈Scoll

|Ŷj |2 +
∑

j∈S\Scoll

(
|Ŷj |2 − |Û∗h(j)|

2
)∣∣∣

+

≤
∑

j∈Scoll

|Ŷj |2 +
∑

j∈S

∣∣∣|Ŷj |2 − |Û∗h(j)|
2
∣∣∣
+
, (72)

where the final line follows from the inequality [a+ b]+ ≤ |a|+ [b]+.
Bounding the first term in (72): We start by evaluating the expected value of the term

corresponding to Scoll over the random permutation π:

Eπ
[ ∑

j∈Scoll

|Ŷj |2
]
≤ Eπ

[∑

j∈S
|Ŷj |2I[j ∈ Scoll]

]

≤
∑

j∈S
|Ŷj |2

∑

j′∈S\{j}

P[h(j) = h(j′)]

≤
∑

j∈S

∑

j′∈S
|Ŷj |2

4

B

=
4|S|
B

∑

j∈S
|Ŷj |2, (73)

where the second line follows from the union bound, and the third line follows since π is approximately
pairwise independent as per Definition 4.1.

Bounding the second term in (72): We apply Lemma 4.2 to obtain Û∗h(j) =
∑

j′∈[m] Ŷj′Ĥoj(j′)ω
σ∆j′
m with oj(j

′) = π(j′) − h(j)mB . We write this as Û∗h(j) = ŶjĤoj(j)ω
σ∆j
m + errj

with errj :=
∑

j′∈[m]\{j} Ŷj′Ĥoj(j′)ω
σ∆j′
m , yielding

∑

j∈S

∣∣∣|Ŷj |2 − |Û∗h(j)|
2
∣∣∣
+
≤
∑

j∈S

∣∣∣|Ŷj |2 − |ŶjĤoj(j)ω
σ∆j
m + errj |2

∣∣∣

≤
∑

j∈S

(∣∣|Ŷj |2 − |ŶjHoj(j)|
2
∣∣+ |errj |2 + 2|errj | · |ŶjĤoj(j)|

)
(74)

by |ξ|+ ≤ |ξ| and the triangle inequality. We have by definition that |oj(j)| ≤ m
2B , and hence item 2

in Definition 2.1 yields Hoj(j) ≥ 1−
(

1
4

)F ′−1, which in turn implies H2
oj(j)

≥ 1−2
(

1
4

)F ′−1. Combining
this with Hf ≤ 1 from item 1 in Definition 2.1, we can weaken (74) to

∑

j∈S

∣∣∣|Ŷj |2 − |Û∗h(j)|
2
∣∣∣
+
≤
∑

j∈S

(
2|errj | · |Ŷj |+ |errj |2 + 2

(1

4

)F ′−1
|Ŷj |2

)
. (75)

We proceed by bounding the expected value of |errj |2. We first take the expectation over ∆, using
Parseval’s theorem to write

E∆[|errj |2] =
∑

j′∈[m]\{j}

|Ŷj′ |2|Ĥoj(j′)|
2.
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Taking the expectation over π, we obtain

E∆,π[|errj |2] = Eπ
[ ∑

j′∈[m]\{j}

|Ŷj′ |2|Ĥoj(j′)|
2
]

=
∑

j′∈[m]\{j}

|Ŷj′ |2Eπ[|Ĥoj(j′)|
2

≤ 10

B

∑

j′∈[m]\{j}

|Ŷj′ |2 ≤
10

B
‖Ŷ ‖22.

where the final line follows from Lemma 4.3.
Substituting into (75), and using Jensen’s inequality to write E[|errj |] ≤

√
E[|errj |2], we obtain

E∆,π

[∑

j∈S

∣∣∣|Ŷj |2 − |Û∗h(j)|
2
∣∣∣
+

]
≤ 2

∑

j∈S

√
10

B
‖Ŷ ‖22 · |Ŷj |+

10

B

∑

j∈S
‖Ŷ ‖22 + 2

(1

4

)F ′−1∑

j∈S
|Ŷj |2

≤ 10

√
|S|
B
‖Ŷ ‖22 +

(
10
|S|
B

+ 2δ2

)
‖Ŷ ‖22, (76)

where the second line follows from the fact that ‖v‖1 ≤
√
|S|‖v‖2 for any v ∈ C|S|, as well as(

1
4

)F ′−1
≤ δ by the choice of F ′. The claim follows by substituting (73) and (76) into (72).

Second part of lemma: By the definition of Û∗ (cf., Definition 4.2), we have

E∆

[
‖Û∗‖22

]
= E∆

[ ∑

b∈[B]

∣∣∣
∑

j∈[m]

ŶjĤπ(j)−bm
B
ω∆j
m

∣∣∣
2]

=
∑

b∈[B]

∑

j∈[m]

|Ŷj |2|Ĥπ(j)−bm
B
|2

by Parseval. Taking the expectation with respect to π, we obtain

E∆,π

[
‖Û∗‖22

]
=
∑

b∈[B]

Eπ
[ ∑

j∈[m]

|Ŷj |2|Ĥπ(j)−bm
B
|2
]

=
∑

b∈[B]

∑

j∈[m]

|Ŷj |2Eπ
[
|Ĥπ(j)−bm

B
|2
]

≤
∑

b∈[B]

3

B

∑

j∈[m]

|Ŷj |2 = 3‖Ŷ ‖22.

where the final line follows by noting that π(j)− bmB is uniformly distributed over [m], and applying
the second part of Lemma 2.1.

D Omitted Proofs from Section 5

D.1 Proof of Lemma 5.3

Note on 1
poly(n) assumptions in lemmas: Throughout the proof, we apply Lemmas 3.5, 5.1, and

5.2. The first of these assumes that χ̂0 uniformly distributed over an arbitrarily length-Ω
( ‖χ̂‖2

poly(n)

)

interval, and the latter two use the assumption ‖X̂ − χ̂‖2 ≥ 1
poly(n)‖χ̂‖

2
2.

We argue that these assumptions are trivial and can be ignored. To see this, we apply a minor
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technical modification to the algorithm as follows. Suppose the implied exponent to the poly(n)

notation is c′. By adding a noise term to χ̂0 on each iteration uniform in [−n−c′+10‖χ̂‖2, nc′+10‖χ̂‖2],
we immediately satisfy the first assumption above, and we also find that the probability of ‖X̂−χ̂‖2 <

1
poly(n)‖χ̂‖

2
2 is at most O(n−10), and the additional error in the estimate is O(nc

′+10‖χ̂‖2). Since we
only do O(log SNR′) = O(n) iterations (by the assumption SNR′ = O(poly(n))), this does not affect
the result because the accumulated noise added to χ̂0 which we denote by err(χ̂0), does not exceed
‖X̂‖22

poly(n) which by the final assumption of the lemma implies that err(χ̂0) ≤ ν2.

Overview of the proof: We introduce the approximate support set of the input signal X̂, given
by the union of the top k0 blocks of the signal and the blocks whose energy is more than the tail
noise level:

S0 :=
{
j ∈

[ n
k1

]
: ‖X̂Ij‖22 ≥ µ2

}
∪
(

arg min
S⊂[ n

k1
]

|S|=k0

∑

j∈[ n
k1

]\S

‖X̂Ij‖22
)
. (77)

From the definition of µ2 in Definition 1.2, we readily obtain |S0| ≤ 2k0. For each t = 1, 2, ..., T ,
define the set St as

St = St−1 ∪ L′t,

where L′t is the output of PruneLocation at iteration t of ReduceSNR. St contains the set of the
head elements of X̂, plus every element that is modified by the algorithm so far.

We prove by induction on the iteration number t = 1, . . . , T that there exist events E0 ⊇ E1 ⊇
... ⊇ ET such that conditioned on Et, the following conditions hold true:

a. |St| ≤ 2k0 + tk0
T ;

b. ‖χ̂(t)
Ij
‖22 = 0 for all j ∈

[
n
k1

]
\St;

c. ‖X̂ − χ̂(t)‖22 ≤ 99 · SNR′(k0ν
2)/2t;

and for each t ≤ T , we have P[Et+1|Et] ≥ 1− 1
10T .

Base case of the induction: We have already deduced that |S0| ≤ 2k0 and defined χ̂(0) = 0, and
we have ‖X̂ − χ̂(0)‖22 = ‖X̂‖22 ≤ SNR′ · (k0µ

2)/20 by the two assumptions of the lemma. Hence, we
can let E0 be the trivial event satisfying P[E0] = 1.

Inductive step: We seek to define an event Et+1 that occurs with probability at least 1 − 1
10T

conditioned on Et, and such that the induction hypotheses a, b, and c are satisfied for t+1 conditioned
on Et+1. To do this, we will introduce three events Eloc,t, Eprune,t, and Eest,t, and set Et+1 = Eloc,t ∩
Eprune,t ∩ Eest,t ∩ Et. Throughout the following, we let δ, θ, and p be chosen as in Algorithm 6

Success event associated with MultiBlockLocate: Let Eloc,t be the event of having a
successful run of MultiBlockLocate(X, χ̂(t), n, k1, k0, δ, p) at iteration t + 1 of the algorithm,
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meaning the following conditions on the output L:

|L| ≤ C · T · k0

δ
log

k0

δ
log3 1

δp
(78)

∑

j∈St\L

‖(X̂ − χ̂(t))Ij‖22 ≤ 0.1‖X̂ − χ̂(t)‖22, (79)

where C is a constant to be specified shortly, for a small enough δ. To show this, we invoke Lemma
3.5 with S∗ = St. Note that inductive hypothesis (a) implies |St| ≤ (2 + t

log SNR′
)k0 ≤ 3k0. By the

first part of Lemma 3.5, we have E
[
|L|
]
≤ C ′ k0

δ log k0
δ log 1

p log2 1
δp for an absolute constant C ′, and

hence (78) follows with C = 100C ′ and probability at least 1− 1
100T , by Markov’s inequality.

By the second part of Lemma 3.5, (79) holds with probability at least 1 − p provided that δ ≤(
0.1
200

)2, so by the union bound, the event Eloc,t occurs with probability at least P[Eloc,t|Et] ≥ 1−p− 1
100T .

Success event associated with PruneLocation: Let Eprune,t be the event of having a success-
ful run of PruneLocation(X, χ̂(t), L, k0, k1, δ, p, n, θ) at iteration t + 1 of the algorithm, meaning
the following conditions on the output L′:

|L′\St| ≤
k0

T
(80)

∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂(t))Ij‖22 ≤ 0.2‖X̂ − χ̂(t)‖22 + k0(µ2 + 33ν2SNR′/2t+1). (81)

The probability of (80) holding: In order to bound |L′\St|, first recall that the set Stail, defined
in Lemma 5.1 part (a), has the following form:

Stail =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂(t))Ij‖2 ≤

√
θ −

√
δ

k0
‖X̂ − χ̂(t)‖2

}
.

By substituting θ = 10 · 2−(t+1) · ν2(SNR′) and using ‖X̂ − χ̂(t)‖22 ≤ 99 · SNR′(k0ν
2)/2t from part c

of the inductive hypothesis, we have
√
θ −

√
δ

k0
‖X̂ − χ̂(t)‖2

≥
√

10 · 2−(t+1) · ν2(SNR′)−
√

δ

k0

√
99 · SNR′(k0ν2)/2t

≥
√

9 · ν2(SNR′)/2t+1,

where the last inequality holds when δ is sufficiently small. Hence,

Stail ⊇
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂(t))Ij‖22 ≤ 9 · ν2(SNR′)/2t+1

}
. (82)

Now, to prove that (80) holds with high probability, we write

|L′\St| = |(L′ ∩ Stail)\St|+ |L′\(Stail ∪ St)|. (83)

To upper bound the first term, note that by the first part of Lemma 5.1, we have

E
[∣∣L′ ∩ Stail

∣∣
]
≤ δp · |L|,

51



and hence by Markov’s inequality, the following holds with probability at least 1− 1
100T :∣∣(L′ ∩ Stail)\St

∣∣ ≤
∣∣L′ ∩ Stail

∣∣

≤ 100Tδp · |L|

≤ 100Tδp · CT k0

δ
log

k0

δ
log3 1

δp

= 100CT 2p · k0 log
k0

δ
log3 1

δp

=
100Cδ · k0 log3 1

δp

log k0
δ · log2 SNR′

,

where the third line follows from (78) (we condition on Eloc,t), and the fifth line follows from T =

log SNR′ and the choice p = δ

log2 k0
δ

log4 SNR′
in Algorithm 6. Again using this choice of p, we claim

that
100Cδ log3 1

δp

log
k0
δ
·log SNR′

≤ 1 for sufficiently small δ regardless of the values (k0, SNR′); this is because

the dependence of 1/p on k0 and SNR′ is logarithmic, so in the numerator contains log3 log k0 and
log3 log SNR′ while the denominator contains log k0 and log2 SNR′. Hence,

∣∣(L′ ∩ Stail)\St
∣∣ ≤ k0

log SNR′

with probability at least 1− 1
100T .

We now show that the second term in (83) is zero, by showing that Stail ∪ St = [ nk1
]. To see this,

note that the term ν2(SNR′)/2t+1 in the bound on Stail in (82) satisfies

ν2(SNR′)/2t+1 ≥ 1

2
ν2 ≥ 1

2
µ2, (84)

by applying t ≤ T = log SNR′, followed by the first assumption of the lemma. Hence,

Stail\St ⊇
{
j ∈

[ n
k1

]∖
St : ‖(X̂ − χ̂(t))Ij‖22 ≤ 4µ2

}
.

By part b of the inductive hypothesis, we have ‖(X̂ − χ̂(t))Ij‖22 = ‖X̂Ij‖22 for all j /∈ St, and hence

Stail\St ⊇
{
j ∈

[ n
k1

]∖
St : ‖X̂Ij‖22 ≤ 4µ2

}
.

But from (77), we know that S0 (and hence St) contains all j with ‖X̂Ij‖22 > 4µ2, so we obtain
Stail\St ⊃

[
n
k1

]
\St, and hence Stail ∪ St = (Stail\St) ∪ St =

[
n
k1

]
, as required.

Therefore, the probability of (80) holding conditioned on Et and Eloc,t is at least 1− 1
100T .

The probability of (81) holding: To show (81), we use the second part of Lemma 5.1. The set
Shead therein is defined as

Shead =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂(t))Ij‖2 ≥

√
θ +

√
δ

k0
‖X̂ − χ̂(t)‖2

}
.
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By substituting θ = 10 · 2−(t+1) · ν2(SNR′) and using ‖X̂ − χ̂(t)‖22 ≤ 99 · SNR′(k0ν
2)/2t from part c

of the inductive hypothesis, we have
√
θ +

√
δ

k0
‖X̂ − χ̂‖2

=
√

10 · 2−(t+1) · ν2(SNR′) +

√
δ

k0

√
99 · SNR′(k0ν2)/2t

≤
√

11 · ν2(SNR′)/2t+1

for sufficiently small δ, and hence

Shead ⊇
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖22 ≥ 11 · ν2(SNR′)/2t+1

}
. (85)

Next, we write
∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂(t))Ij‖22 =

∑

j∈(St∩Shead∩L)\L′
‖(X̂ − χ̂(t))Ij‖22 +

∑

j∈(St∩Shead)\(L′∪L)

‖(X̂ − χ̂(t))Ij‖22

+
∑

j∈St\(Shead∪L′)

‖(X̂ − χ̂(t))Ij‖22 +
∑

j∈[ n
k1

]\(L′∪St)

‖(X̂ − χ̂(t))Ij‖22, (86)

and we proceed by upper bounding the four terms.

Bounding the first term in (86): By the second part of Lemma 5.1 and the use of Markov, we
have ∑

j∈(St∩Shead∩L)\L′
‖(X̂ − χ̂(t))Ij‖22 ≤ δ

∑

j∈L∩Shead

‖(X̂ − χ̂(t))Ij‖22 ≤ δ‖X̂ − χ̂(t)‖22

with probability at least 1− p.

Bounding the second term in (86): Conditioned on Eloc,t, we have
∑

j∈(St∩Shead)\(L∪L′)

‖(X̂ − χ̂(t))Ij‖22 ≤
∑

j∈St\L

‖(X̂ − χ̂(t))Ij‖22 ≤ 0.1‖X̂ − χ̂(t)‖22,

where we have applied (79).

Bounding the third term in (86): We have
∑

j∈St\(Shead∪L′)

‖(X̂ − χ̂(t))Ij‖22 ≤
∑

j∈St\Shead

‖(X̂ − χ̂(t))Ij‖22

≤ |St\Shead| · max
j∈St\Shead

‖(X̂ − χ̂(t))Ij‖22

≤ |St|(11 · ν2SNR′/2t+1)

by (85). Part a of the inductive hypothesis implies that |St| ≤ 3k0, and hence
∑

j∈(L∩St)\(Shead∪L′)

‖(X̂ − χ̂(t))Ij‖22 ≤ 33k0 · ν2SNR′/2t+1.
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Bounding the fourth term in (86):
∑

j∈[ n
k1

]\(L′∪St)

‖(X̂ − χ̂(t))Ij‖22 ≤
∑

[ n
k1

]\St

‖(X̂ − χ̂(t))Ij‖22

=
∑

[ n
k1

]\St

‖X̂Ij‖22 ≤ k0µ
2,

where the equality follows from part b of the inductive hypothesis, and the final step holds since St
contains all elements with ‖X̂Ij‖22 ≥ µ2 (cf., (77)).

Adding the above four contributions and applying the union bound, we find that conditioned on
Et and Eloc,t, (81) holds with probability at least P[Eprune,t|Et ∩ Eloc,t] ≥ 1− p− 1

100T , provided that δ
is a sufficiently small constant (δ ≤ 0.1).

Success event associated with EstimateValues: Let Eest,t be the event of having a successful
run of EstimateValues(X, χ̂(t), L′, k0, k1, δ, p) at iteration t+ 1 of the algorithm conditioned on Et,
meaning the following conditions on the output signal W :

Wf = 0 for all f /∈ F
∑

j∈L′
‖(X̂ − χ̂(t) −W )Ij‖22 ≤ δ‖X̂ − χ̂(t)‖22, (87)

where F contains the frequencies within the blocks indexed by L′. By Lemma 5.2 and the fact
that |L′| ≤ 3k0 conditioned on Eprune,t, Eloc,t, and Et, it immediately follows that Eest,t occurs with
probability at least P[Eest,t|Eprune,t ∩ Eloc,t ∩ Et] ≥ 1− p.

Combining the events: We can now wrap everything up as follows:

P
[
Et+1

∣∣Et
]

= P
[
Eloc,t ∩ Eprune,t ∩ Eest,t ∩ Et

∣∣Et
]

= P
[
Eest,t

∣∣Eloc,t ∩ Eprune,t ∩ Et
]
P
[
Eprune,t

∣∣Eloc,t ∩ Et
]
P
[
Eloc,t

∣∣Et
]
.

Substituting the probability bounds into the above equation, we have

P
[
Et+1

∣∣Et
]
≥ 1− 3p− 2

100T
≥ 1− 1

20T
,

by the choice of p in Algorithm 6 along with T = log SNR.
Now we show that the event Et+1 = Eloc,t ∩ Eprune,t ∩ Eest,t ∩ Et implies the induction hypothesis.

Conditioned on Eprune,t∩Et, we have (80), which immediately gives part a. Conditioned on Eloc,t∩Eest,t,
from the definition St+1 = St ∪L′, part b of the inductive hypothesis follows from the fact that only
elements in L′ are updated. Finally, conditioned on Et ∩ Eprune,t ∩ Eest,t, we have

‖X̂ − χ̂(t+1)‖22 =
∑

j∈L′
‖(X̂ − χ̂(t+1))Ij‖22 +

∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂(t+1))Ij‖22

=
∑

j∈L′
‖(X̂ − χ̂(t) −W )Ij‖22 +

∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂(t+1))Ij‖22

≤ (0.2 + δ)‖X̂ − χ̂(t)‖22 + k0(µ2 + 33ν2SNR′/2t+1)

≤ 99ν2k0SNR′/2t+1,
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where the second line holds since W is non-zero only for the blocks indexed by L′, the third line
follows from (81) and (87), and the last line holds for sufficiently small δ from part c of the induction
hypothesis, and the upper bound µ2 ≤ 2ν2(SNR′)/2t+1 given in (84).

The first part of the lemma now follows from a union bound over the T iterations and the fact
that err(χ̂0) ≤ ν2, and by noting that the three parts of the induction hypothesis immediately yield
the two claims therein. We conclude by analyzing the sample complexity and runtime.

Sample complexity: We have from Lemma 3.5 that the expected sample complexity of Multi-

BlockLocate in a given iteration is O∗
(
k0
δ log(1 + k0) log n + k0k1

δ2

)
, and multiplying by the

number T = O(log SNR′) of iterations gives a total of O∗
(

log SNR′
(
k0
δ log(1 + k0) log n + k0k1

δ2

))
.

Hence, by Markov’s inequality, this is also the total sample complexity across all calls to Multi-

BlockLocate with probability at least 1 − 1
100 ; this probability can be combined with the

union bound that we applied above. Since δ = Ω(1), the above sample complexity simplifies to
O∗(k0 log(1 + k0) log SNR′ log n+ k0k1 log SNR′).

By Lemma 5.1, the sample complexity of PruneLocation is O(k0k1
δ log 1

δp log 1
δ ), and by Lemma

5.2, the sample complexity of EstimateValues is O(k0k1
δ log 1

p log 1
δ ). Substituting the choices of δ

and p, these behave as O∗(k0k1) per iteration, or O∗(k0k1 log SNR′) overall.

Runtime: By Lemma 3.5, the expected runtime of MultiBlockLocate in a given iteration
is O∗

(
k0
δ log(1 + k0) log2 n + k0k1

δ2 log2 n + k0k1
δ log3 n

)
. Moreover, by Lemma 5.1, the runtime of

PruneLocation as a function of |L| is O(k0k1
δ log 1

δp log 1
δ log n + k1 · |L| log 1

δp), and substituting
E
[
|L|
]

= O
(
k0
δ log k0

δ log 1
p log2 1

δp

)
from Lemma 3.5, this becomes O∗

(
k0k1
δ log n

)
in expectation, by

absorbing the log 1
δ and log 1

p factors into the O∗(·) notation.
Summing the preceding per-iteration expected runtimes, multiplying by the number of itera-

tions T , and substituting the choices of T , p and δ, we find that their combined expectation is
O∗(k0 log k0 log SNR′ log2 n + k0k1 log SNR′ log3 n). Hence, by Markov’s inequality, this is also the
total sample complexity across all calls to MultiBlockLocate and PruneLocation with prob-
ability at least 1 − 1

100 . Applying the union bound over this failure event, ĒT , and the 1/poly(n)

probability failure event arising from random perturbations of χ̂0, we obtain the required bound of
0.9 on the success probability.

By Lemma 5.2, the runtime of EstimateValues is O(k0k1
δ log 1

p log 1
δ log n+k1 · |L′| log 1

p), which
behaves as O(k0k1

δ log 1
p log 1

δ log n) conditioned on Eprune,t ∩ Et (see (80) and recall that |St| ≤ 3k0).
By our choices of p and δ, this simplifies to O∗(k0k1 log n) per iteration, or O∗(k0k1 log SNR′ log n)

overall.

D.2 Proof of Lemma 5.4

The proof resembles that of Lemma 5.3, but is generally simpler, and has some differing details. We
provide the details for completeness.
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Note on 1
poly(n) assumptions in lemmas: We use an analogous argument to the start of Section

D.1 to handle the assumptions |X̂0− χ̂0|2 ≥ 1
poly(n)‖χ̂‖

2
2 and ‖X̂ − χ̂‖2 ≥ 1

poly(n)‖χ̂‖
2
2 in Lemmas 3.5,

5.1, and 5.2. Specifically, we add a noise term to χ̂0 uniform in [−n−c′+10‖χ̂‖2, nc′+10‖χ̂‖2]. This
does not affect the result, since the noise added to χ̂0 which we denote by err(χ̂0), does not exceed
‖X̂‖22

poly(n) which by the assumptions of the lemma implies that err(χ̂0) ≤ εν2.

Overview of the proof: We first introduce the approximate support set of the input signal X̂− χ̂,
given by the top 10k0 blocks of the signal:

S0 := arg min
S⊂[ n

k1
]

|S|=10k0

∑

j /∈S

‖(X̂ − χ̂)Ij‖22 (88)

We also introduce another set indexing blocks whose energy is sufficiently large:

Sε =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖22 ≥ ε

Err2(X̂ − χ̂, 10k0, k1)

k0

}
∪ S0. (89)

It readily follows from this definition and Definition 1.2 that |Sε\S0| ≤ k0/ε.
The function calls three other primitives, and below, we show that each of them succeeds with

high probability by introducing suitable success events. Throughout, we let θ, p, and η be as chosen
in Algorithm 6

Success event of the location primitive: Let Eloc be the event of having a successful run of
MultiBlockLocate(X, χ̂, k1, k0, n, ε

2, p), meaning the following conditions on the output L:

|L| ≤ Ck0

ε2
log

k0

ε2
log3 1

ε2p
(90)

∑

j∈S0\L

‖(X̂ − χ̂)Ij‖22 ≤ 200ε‖X̂ − χ̂‖22, (91)

where C is a constant to be specified shortly. To verify these conditions, we invoke Lemma 3.5 with
S∗ = S0. By the first part of Lemma 3.5, we have E

[
|L|
]
≤ C ′ k0

ε2
log k0

ε log3 1
εp for an absolute constant

C ′, and hence (90) follows with C = 100C ′ and probability at least 1− 1
100 , by Markov’s inequality.

By the second part of Lemma 3.5 with δ = ε2, (91) holds with probability at least 1 − p, so by
the union bound, the event Eloc occurs with probability at least 1− p− 1

100 .

Success event of the pruning primitive: Let Eprune be the event of having a successful run of
PruneLocation(X, χ̂, L, n, k0, k1, ε, p, θ), meaning the following conditions on the output L′:

|L′\S0| ≤
2k0

ε
(92)

∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂)Ij‖22 ≤ 300ε‖X̂ − χ̂‖22 + 6000εν2k0 + Err2(X̂ − χ̂, 10k0, k1). (93)
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Bounding the probability of (92): In order to bound |L′\S0|, first note that the set Stail, defined
in Lemma 5.1 part (a), has the following form:

Stail =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖2 ≤

√
θ −

√
ε

k0
‖X̂ − χ̂‖2

}
.

By substituting θ = 200 · εν2 (cf., Algorithm 6) and using the assumption ‖X̂ − χ̂‖22 ≤ 100k0ν
2 in

the lemma, we have
√
θ −

√
ε

k0
‖X̂ − χ̂‖2 =

√
200 · εν2 −

√
ε

k0
‖X̂ − χ̂‖2

≥
√

200 · εν2 −
√

100 · εν2

≥
√

16 · εν2. (94)

Hence,
Stail ⊇

{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂(t))Ij‖22 ≤ 16ε · ν2

}
.

Now, to prove that (92) holds with high probability, we write

|L′\S0| = |(L′ ∩ Sε)\S0|+ |L′\(S0 ∪ Sε)|

≤ |(L′ ∩ Sε)\S0|+ |(L′ ∩ Stail)\Sε|+ |L′\(Stail ∪ Sε)|.
(95)

We first upper bound the first term as follows:

|(L′ ∩ Sε)\S0| ≤ |Sε\S0| ≤ k0/ε,

which follows directly from the definition of Sε. To upper bound the second term in (95), note that
by Lemma 5.1 part (a) with δ = ε,

E
[∣∣L′ ∩ Stail

∣∣
]
≤ εp · |L|,

and hence by Markov’s inequality, the following holds with probability at least 1− 1
100 :∣∣(L′ ∩ Stail)\Sε

∣∣ ≤
∣∣L′ ∩ Stail

∣∣

≤ 100εp · |L|

≤ 100εp · Ck0

ε
log

k0

ε
log3 1

εp

= 100Cp · k0 log
k0

ε
log3 1

εp

=
100Cηε · k0 log3 1

εp

log k0
ε

,

where the third line follows from (90) (we condition on Eloc), and the fifth line follows from and

the choice p = ηε

log2 k0
ε

in Algorithm 6. Again using this choice of p, we claim that
100Cηε log3 1

εp

log
k0
δ

≤ 1

for sufficiently small η regardless of the value of k0; this is because the dependence of 1/p on k0

is logarithmic, so the numerator contains log3 log k0, while the denominator contains log k0 which
means that the ratio is upper bounded and can be made arbitrarily small by choosing a small enough
constant η. Hence ∣∣(L′ ∩ Stail)\Sε

∣∣ ≤ k0
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with probability at least 1− 1
100 .

We now show that the third term in (95) is zero, by showing that Stail ∪ Sε = [ nk1
]. To see this,

note that the term ν2 in the definition of Stail is more than Err2(X̂−χ̂,10k0,k1)
k0

by the first assumption
of the lemma, and hence

Stail\Sε ⊃
{
j ∈

[ n
k1

]∖
Sε : ‖(X̂ − χ̂)Ij‖22 ≤ 16ε

Err2(X̂ − χ̂, 10k0, k1)

k0

}

However, the definition of Sε in (89) reveals that the condition upper bounding ‖(X̂ − χ̂)Ij‖22 is
redundant, and Stail\Sε ⊃

[
n
k1

]
\Sε, and hence Stail ∪ Sε = (Stail\Sε) ∪ Sε =

[
n
k1

]
.

Bounding the probability of (93): To show (93), we use the second part of Lemma 5.1. The set
Shead therein is defined as

Shead =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖2 ≥

√
θ +

√
ε

k0
‖X̂ − χ̂‖2

}
.

By substituting θ = 200ε · ν2 (cf., Algorithm 6) and using the assumption ‖X̂ − χ̂‖22 ≤ 100k0ν
2 in

the lemma, we have
√
θ +

√
ε

k0
‖X̂ − χ̂‖2 =

√
200ε · ν2 +

√
ε

k0
‖X̂ − χ̂‖2 ≤

√
600ε · ν2,

and hence
Shead ⊇

{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖22 ≥ 600ε · ν2

}
. (96)

Next, we write
∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂)Ij‖22 =

∑

j∈(S0∩Shead∩L)\L′
‖(X̂ − χ̂)Ij‖22 +

∑

j∈(S0∩Shead)\(L′∪L)

‖(X̂ − χ̂)Ij‖22

+
∑

j∈S0\(Shead∪L′)

‖(X̂ − χ̂)Ij‖22 +
∑

j∈[ n
k1

]\(L′∪S0)

‖(X̂ − χ̂)Ij‖22, (97)

and we proceed by upper bounding the four terms.

Bounding the first term in (97): By part b of Lemma 5.1, the choice δ = ε, and the use of
Markov, we have

∑

j∈(S0∩Shead∩L)\L′
‖(X̂ − χ̂)Ij‖22 ≤ ε

∑

j∈L∩Shead

‖(X̂ − χ̂)Ij‖22 ≤ ε‖X̂ − χ̂‖22

with probability at least 1− p.

Bounding the second term in (97): Conditioned on Eloc, we have
∑

j∈(S0∩Shead)\(L∪L′)

‖(X̂ − χ̂)Ij‖22 ≤
∑

j∈S0\L

‖(X̂ − χ̂)Ij‖22

≤ 200ε‖X̂ − χ̂‖22,

where we have applied (91).
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Bounding the third term in (97): We have
∑

j∈S0\(Shead∪L′)

‖(X̂ − χ̂)Ij‖22 ≤
∑

j∈S0\Shead

‖(X̂ − χ̂)Ij‖22

≤ |S0\Shead| · max
j∈S0\Shead

‖(X̂ − χ̂)Ij‖22

≤ |S0|(600ε · ν2)

by (96). We have by definition that |S0| = 10k0 (cf., (88)), and hence
∑

j∈(L∩S0)\(Shead∪L′)

‖(X̂ − χ̂)Ij‖22 ≤ 6000k0ε · ν2.

Bounding the fourth term in (97): We have
∑

j∈[ n
k1

]\(L′∪S0)

‖(X̂ − χ̂)Ij‖22 ≤
∑

j∈[ n
k1

]\S0

‖(X̂ − χ̂)Ij‖22

= Err2(X̂ − χ̂, 10k0, k1),

which follows from the definition of S0 in (88), along with Definition 1.2.
Hence by the union bound, it follows that Eprune holds with probability at least 1 − p − 1

1000

conditioned on Eloc.

Success event of estimation primitive: Let Eest be the event of having a successful run of
EstimateValues(X, χ̂, L, n, 3k0/ε, k1, ε, p), meaning the following conditions on the output, W :

Wf = 0 for all f /∈ F
∑

j∈L′
‖(X̂ − χ̂−W )Ij‖22 ≤ ε‖X̂ − χ̂‖22, (98)

where F contains the frequencies within the blocks indexed by L′. Since the assumption of the
theorem implies that ‖χ̂‖0 = O(k0k1), by Lemma 5.2 (with δ = ε and 3k0/ε in place of k0) and
the fact that conditioned on Eprune we have |L′| ≤ 3k0/ε (cf., (92)), it follows that Eest occurs with
probability at least 1− p.

Combining the events: We can now can wrap everything up.
Letting E denote the overall success event corresponding to the claim of the lemma, we have

P[E ] = P
[
Eloc ∩ Eprune ∩ Eest

]

= P
[
Eest

∣∣∣Eloc ∩ Eprune

]
P
[
Eprune

∣∣Eloc

]
P
[
Eloc

]
.

By the results that we have above, along with the union bound, it follows that

P
[
E
]
≥ 1− 2/100− 3p ≥ 0.95

for sufficiently small η in Algorithm 6. Applying the union bound over Ē and the 1/poly(n) probability
failure event arising from random perturbations of χ̂0, we obtain the required bound of 0.9 on the
success probability.

What remains is to first show that the statement of the lemma follows from Eloc ∩ Eprune ∩ Eest.
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To do this, we observe that, conditioned on these events,

‖X̂ − χ̂′‖22 =
∑

j∈L′
‖(X̂ − χ̂′)Ij‖22 +

∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂′)Ij‖22 + err(χ̂0)

=
∑

j∈L′
‖(X̂ − χ̂−W )Ij‖22 +

∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂)Ij‖22 + err(χ̂0)

≤ ε‖X̂ − χ̂‖22 + 300ε‖X̂ − χ̂‖22 + 6000εν2k0 + Err2(X̂ − χ̂, 10k0, k1) + εν2

≤ (4 · 105)εν2k0 + Err2(X̂ − χ̂, 10k0, k1),

where the second line follows since χ̂′ = χ̂ + W and W is non-zero only within the blocks indexed
by L′, the third line follows from (93) and (98), and the final line follows from the assumption
‖X̂ − χ̂‖22 ≤ 100k0ν

2 in the lemma.

Sample complexity: We condition on Eloc∩Eprune∩Eest and calculate the number of samples used.
By Lemma 3.5 with δ = ε2, the sample complexity of MultiBlockLocate is O∗(|L|·log n+ k0k1

ε4
)

which behaves O∗(k0
ε2

log(1+k0) log n+ k0k1
ε4

log 1
p) conditioned on Eloc (see (91)). Moreover, by Lemma

5.1 with δ = ε, the sample complexity of PruneLocation is O(k0k1
ε log 1

εp log 1
ε ). Moreover, by

Lemma 5.2 with δ = ε, the sample complexity of EstimateValues is O(k0k1
ε2

log 1
p log 1

ε ).
The claim follows by summing the three terms and noting from the choice of p in Algorithm 6

that, up to log log k0
ε factors, we can replace p by ε in the above calculations.

Runtime: As in sample complexity analysis, we condition on Eloc ∩ Eprune ∩ Eest.
First, by Lemma 3.5 with δ = ε2, the runtime of MultiBlockLocate is O∗

(
|L| · log2 n +

k0k1
ε4

log2 n + k0k1
ε2

log3 n
)
, which behaves as O∗

(
k0
ε2

log k0
ε · log2 n + k0k1

ε4
log2 n + k0k1

ε2
log3 n

)
condi-

tioned on Eloc (see (90)). Second, by Lemma 5.1 with δ = ε, the runtime of PruneLocation is
O(k0k1

ε log 1
εp log 1

ε log n+k1 ·|L| log 1
εp), which behaves as O(k0k1

ε log 1
εp log 1

ε log n+k1 · k0
ε2

log k0
ε log4 1

εp)

conditioned on Eloc (see (91)). Finally, by Lemma 5.2 with δ = ε, the runtime of EstimateValues

is O(k0k1
ε log 1

p log 1
ε log n + k1 · |L′| log 1

p), which behaves as O(k0k1
ε log 1

p log 1
ε log n) conditioned on

Eprune (see (92) and recall that |S0| = 10k0).
The claim follows by summing the above terms and replacing p by ε, with the log log n, log log SNR′

and log 1
ε terms absorbed into the O∗(·) notation.

E Discussion on Energy-Based Importance Sampling

Here we provide further discussing on the adaptive energy-based importance sampling scheme de-
scribed in Sections 2–3. Recall from Definition 2.2 that given the signal X and filter G, we are
considering downsampled signals of the form Ẑrj = (X̂r ? Ĝ)jk1 with Xr

i = Xi+ nr
2k1

for r ∈ [2k1],
and recall from (3) that the goal of energy-based importance sampling is to approximately solve the
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covering problem

Minimize{sr}r∈[2k1]

∑

r∈[2k1]

sr subject to
∑

j : |Ẑrj |2≥
‖Ẑr‖22
sr

for some r∈[2k1]

‖X̂Ij‖22 ≥ (1− α)‖X̂∗‖22 (99)

for suitable α ∈ (0, 1), where X̂∗ is the best (k0.k1)-block sparse approximation of X̂.
To ease the discussion, we assume throughout this appendix that the filter G is a width- nk1

rectangle in time domain, corresponding to a sinc pulse of “width” k1 in frequency domain. Such
a filter is less tight than the one we use (see the proof of Lemma 2.1), but similar enough for the
purposes of the discussion.

E.1 Examples – Flat vs. Spiky Energies

We begin by providing two examples for the 1-block sparse case, demonstrating how the energies
can vary with r. An illustration of the energy in each Ẑr is illustrated in Figure 2 in two different
cases – one in which X is a sinc pulse (i.e., rectangular in frequency domain), and one in which X is
constant (i.e., a delta function in frequency domain). Both of the signals are (1, k1)-block sparse with
k1 = 16, and the signal energy is the same in both cases. However, the sinc pulse gives significantly
greater variations in |Ẑrj |2 as a function of r. In fact, these examples demonstrate two extremes that
can occur – in one case, the energy exhibits no variations, and in the other case, the energy is O(k1)

times its expected value for an O
(

1
k1

)
fraction of the r values.

The second example above is, of course, an extreme case of a (1, k1)-block sparse signal, because
it is also (1, 1)-block sparse. Nevertheless, one also observes a similar flatness in time domain for
other signals; e.g., one could take the first example above and randomize the signs, as opposed to
letting them all be positive.

E.2 The log(1 + k0) factor

Here we provide an example demonstrating that, as long as we rely solely on frequencies being covered
according to Definition 2.3, after performing the budget allocation, the extra log(1 + k0) factor in
our analysis is unavoidable. Specifically, we argue that for a certain signal X, the optimal solution
to (3) satisfies

∑
r∈[2k1] s

r = Ω(k0 log(1 + k0)). However, we do not claim that this log(1 + k0) factor
is unavoidable for arbitrary sparse FFT algorithms.

We consider a scenario where k0 = Θ(k1) = o(n), and for concreteness, we let both k0 and k1

behave as Θ(n0.1); hence, log(1 + k0) = O(log k0)

Constructing a base signal: We first specify a base signal W ∈ Cn that will be used to
construct the approximately (k0, k1)-block sparse signal. Specifically, we fix the integers C and L,
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Figure 2: Behavior of ‖Ẑr‖22 as a function of r for a sinc function (top) and a rectangular function
(bottom), both of which are (1, 16)-block sparse.
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f

Figure 3: Base signal and its Fourier transform, for constructing a signal where a log k0 loss is
unavoidable with our techniques.
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and set

Wt =





√
2L−1 |t| ≤ Cn

2k1√
2L−2 Cn

2k1
< |t| ≤ 3Cn

2k1

...
...

√
2L−` (2`−1−1)Cn

2k1
< |t| ≤ (2`−1)Cn

2k1

...
...

1 (2L−1−1)Cn
2k1

< |t| ≤ (2L−1)Cn
2k1

0 |f | > (2L+1−1)Cn
2k1

.

(100)

Hence, the signal contains L regions of exponentially increasing width but exponentially decreasing
magnitude. See Figure 3 for an illustration (L = 3), and observe that we can express this function as
a sum of rectangles having geometrically decreasing magnitudes. Hence, we can specify its Fourier
transform as a sum of sinc functions.

The narrowest of the rectangles has width Cn
k1

, and hence the widest of the sinc pulses has width
k1
C . This means that by choosing C to be sufficiently large, we can ensure that an arbitrarily high pro-
portion of the energy lies in a window of length k1 in frequency domain, meaningW is approximately
1-block sparse.

Constructing a block-spare signal: We construct a k0-block sparse signal by adding multiple
copies of W together, each shifted by a different amount in time domain, and also modulated by a
different frequency (i.e., shifted by a different amount in frequency domain). We choose L such that
the cases in (100) collectively occupy the whole time domain, yielding L = Θ(log k1) = Θ(log k0).

Then, we set k0 = k1
C and let each copy ofW be shifted by a multiple of Cnk1

, so that the copies are
separated by a distance equal to the length of the thinnest segment of W , and collectively these thin
segments cover the whole space [n]. As for the modulation, we choose these so that the resulting peaks
in frequency domain are separated by Ω(k4

1), so that there the tail of the copy of W corresponding
to one block has a negligible effect on the other blocks. This is possible within n coefficients, since
we have chosen k1 = O(n0.1).

Evaluating the values of |Zrj |2 Recall that we are considering G in (99) equaling a rectangle
of width n

k1
. Because of the above-mentioned separation of the blocks in frequency domain, each

copy of W can essentially be treated separately. By construction, within a window of length n
k1
,

we have one copy of W at magnitude
√

2L−1, two copies at magnitude
√

2L−2, and so on. Upon
subsampling by a factor of k1, the relative magnitudes remain the same; there is no aliasing, since
we let G be rectangular. Hence, the dominant coefficients in the spectrum of the subsampled signal
exhibit this same structure, having energies of a form such as (8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) when
sorted and scaled (up to negligible leakage effects). Moreover, the matrix of |Ẑrj |2 values (cf., Figure
1) essentially amounts to circular shifts of a vector of this form – the structure of any given Ẑr

maintains this geometric structure, but possibly in a different order.
Lower bounding the sum of budgets allocated: We now turn to the allocation problem in

(99). Allocating a sparsity budget s to a signal Zr covers all coefficients j for which |Ẑrj |2 ≥
‖Ẑ‖2
s . For

63



the signal we have constructed, the total energy E is equally spread among the L geometric levels:
The `-th level consists of 2`−1 coefficients having energy 21−` E

L , and hence covering that level requires
that s ≥ L · 2`.

Hence, setting s = L · 2`−1 covers the top ` levels, for a total of 2` − 1 coefficients. That
is, covering some number of coefficients requires letting s be Ω(L) times that number, and hence
covering a constant fraction of the k0 coefficients requires the sum of sparsity budgets to be Ω(Lk0).
Moreover, we have designed every block to have the same energy, so accounting for a constant fraction
of the energy amounts to covering a constant fraction of the k0 coefficients.

Since we selected L = Θ(log k0), this means that the sum of sparsity budgets is Ω(k0 log k0), so
that the log k0 factor must be present in any solution to (99).

F Location of Reduced Signals

In Algorithm 7, we provide a location primitive that, given a sequence of budgets sr, locates dominant
frequencies in the sequence of reduced signals Zr using O

(∑
r∈[2k1] s

r log n
)
samples. The core of

the primitive is a simple k-sparse recovery scheme, where k frequencies are hashed into B = Ck

buckets for a large constant C > 1, and then each bucket is decoded individually. Specifically, for
each bucket that is approximately 1-sparse (i.e., dominated by a single frequency that hashed into
it) the algorithm accesses the signal at about a logarithmic number of locations and decodes the
bit representation of the dominant frequency bit by bit. More precisely, to achieve the right sample
complexity we decode the frequencies in blocks of O(log log n) bits. Such schemes or versions thereof
have been used in the literature (e.g., [GMS05,HIKP12c,Kap16]).

A novel aspect of our decoding scheme is that it receives access to the input signal X, but must
run a basic sparse recovery scheme as above on each reduced signal Zr. Specifically, for each r it must
hash Zr into sr buckets (the budget computed in MultiblockLocate and passed to LocateSignal

as input). This would be trivial since Zr can be easily accessed given access to X (cf., Lemma 2.2),
but the fact that we need to operate on the residual signal X − χ (where χ̂ is block sparse and given
explicitly as input) introduces difficulties.

The difficulty is that we would like to compute χ on the samples that individual invocations
of sparse recovery use, for each r ∈ [2k1], but computing this directly would be very costly. Our
solution consists of ensuring that all invocations of sparse recovery use the same random permutation
π, and therefore all need to access X − χ on a set of shifted intervals after a change of variables
given by π (crucially, this change of variables is shared across all r). The lengths of the intervals are
different, and given by sr, but it suffices to compute the values of χ on the shifts of the largest of
these intervals, which is done in HashToBinsReduced (see Lemma 4.6). We present the details
below in Algorithm 7.

For convenience, throughout this section, we use m to denote the reduced signal length n/k1.
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Algorithm 7 Location primitive: Given access to the input signal X, a partially recovered signal χ̂,
a budget k and bound on failure probability p, identifies any given j ∈ [n/k1] with |Ẑrj |2 ≥ ‖Ẑr‖22/k
for some r ∈ [2k1], in the (k1, δ)-downsampling of X − χ.
1: procedure LocateReducedSignals(X, χ̂, n, k0, k1, {sr}r∈[2k1], δ, p)
2: . Uses large absolute constants C1, C2, C3 > 0
3: Br ← C2s

r for each r in[2k1]
4: Hr ← (m,B,F ′)-flat filter for each r ∈ [2k1], for sufficiently large F ′ ≥ 2
5: Bmax ← Br

6: {ZrX}r∈[2k1] ← (k1, δ)-downsampling of X . See Definition 2.2
7: m← n/k1

8: L← ∅
9: for t = {1, . . . , C1 log(2/p)} do

10: σ ← uniformly random odd integer in [m]
11: A ← C3 log logm uniformly random elements in [m]× [m]

12: Λ← 2b
1
2

log2 log2mc, N ← ΛdlogΛ me . Implicitly extend X to an m-periodic length-N signal
13: for (α, β) ∈ A do . Hashing with common randomness
14: w← NΛ−g

15: ∆← α+ w · β
16: H← {Hr}r∈[2k1]

17: B← {Br}r∈[2k1]

18: Û r(α+ w · β)← HashToBinsReduced({ZrX}r∈[2k1], χ̂,H, n, k1,B, σ,∆)

19: for r ∈ [2k1] do
20: B ← C2s

r . Rounded up to a power of two
21: for b ∈ [B] do . Loop over all hash buckets
22: f ← 0
23: for g = {1, . . . , logΛN} do
24: w← NΛ−g

25: If there exists a unique λ ∈ {0, 1, . . . ,Λ− 1} such that

26:

∣∣∣∣ω
−λ·β
Λ · ω−(N ·Λ−gf)·β · Û

r
b (α+w·β)

Ûrb (α)
− 1

∣∣∣∣ < 1
3 for at least 3

5 fraction of (α, β) ∈ A

27: then f ← f + Λg−1 · λ
28: L← L ∪ {σ−1f · mN } . Add recovered element to output list

29: return L

Lemma 2.4 (LocateReducedSignal guarantees – formal version) Fix (n, k0, k1), the signals
X, χ̂ ∈ Cn with χ̂0 uniformly distributed over an arbitrarily length- ‖χ̂‖

2

poly(n) interval, the sparsity budgets
{sr}r∈[2k1] with sr = O

(
k0
δ

)
for all r ∈ [2k1], and the parameters δ ∈

(
1
n ,

1
20

)
and p ∈

(
1
n3 ,

1
2

)
, and let

{Zr}r∈[2k1] be the (k1, δ)-downsampling of X − χ.
Letting L denote the output of LocateReducedSignals(X, χ̂, n, k0, k1, {sr}r∈[2k1], δ, p), we have

that for any j ∈
[
n
k1

]
such that |Zrj |2 ≥ ‖Zr‖22/sr for some r ∈ [2k1], one has j ∈ L with

probability at least 1 − p. The list size satisfies |L| = O
(∑

r∈[2k1] s
r log 1

δ

)
. Moreover, if χ̂ is

(O(k0), k1)-block sparse, the sample complexity is O
(∑

r∈[2k1] s
r log 1

p log 1
δ log n

)
, and the runtime

is O
(∑

r∈[2k1] s
r log 1

p log 1
δ log2 n+ k0k1

δ log 1
p log3 n

)
.

Proof. We first note that the claim on the list size follows immediately from the fact that B = O(sr)
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entries are added to the list for each t and r, and the loop over t is of length O
(

log 1
p

)
.

In order to prove the main claim of the lemma, it suffices to show that for any single value of
r, if we replace the loop over r by that single value, then L contains any given j ∈

[
n
k1

]
such that

|Zrj |2 ≥ ‖Zr‖22/sr, with probability at least 1 − p. Since this essentially corresponds to a standard
sparse recovery problem, we switch to simpler notation throughout the proof: We let Y denote a
generic signal Zr, we write its length as m = n/k1, we index its entries in frequency domain as Ŷf ,
and we define k = sr.

The proof now consists of two steps. First, we show correctness of the location algorithm assuming
that the SemiEquiInverseBlockFFT computation in line 11 computes all the required values for
the computation of Û in line 19. We then prove that SemiEquiInverseBlockFFT indeed computes
all the required values of χ, and conclude with sample complexity and runtime bounds.

Proving correctness of the location process We show that each element f with |Ŷf |2 ≥
‖Ŷ ‖22/k is reported in a given iteration of the outer loop over t = 1, . . . , C1 log(2/p), with probability
at least 9/10. Since the loops use independent randomness, the probability of f not being reported
in any of the iterations is bounded by (1/10)C1 log(2/p) ≤ p/2 if C1 is sufficiently large.

Fix an iteration t. We first show that the random set A chosen in LocateReducedSignals has
useful error-correcting properties with high probability. Specifically, we let Ebalanced denote the event
that for every λ ∈ [Λ], λ 6= 0 at least a fraction 49/100 of the numbers {ωλ·βΛ }(α,β)∈A have non-positive
real part; in that case, we say that A is balanced. We have for fixed λ ∈ [Λ], λ 6= 0 that since the pair
(α, β) was chosen uniformly at random from [m]× [m], the quantity ωλ·βΛ is uniformly distributed on
the set of roots of unity of order 2s for some s > 0 (since λ 6= 0). At least half of these roots have non-
positive real part, so for every fixed λ ∈ [Λ], λ 6= 0 one has Pβ[Re(ωλ·βΛ ) ≤ 0] ≥ 1/2. It thus follows by
standard concentration inequalities that for every fixed λ at least 49/100 of the numbers {ωλ·βΛ }(α,β)∈A

have non-positive real part with probability at least 1 − e−Ω(|A|) = 1 − exp(−Ω(C3 log logm))) ≥
1− 1/(100 log2m) as long as C3 is larger than an absolute constant. A union bound over Λ ≤ log2m

values of λ shows that P[Ebalanced] ≥ 1 − (log2m) · /(100 log2m) = 1 − 1/100 for sufficiently large
m (recall from Section 1 that n

k1
exceeds a large absolute constant by assumption). We henceforth

condition on Ebalanced.
Fix any f such that |Ŷf |2 ≥ ||Ŷ ||22/k, and let q = σi for convenience. We show by induction on

g = 1, . . . , logΛN that before the g-th iteration of lines 24–27 of Algorithm 7, we have that f coincides
with q on the bottom g · log2 Λ bits, i.e., f − q = 0 mod Λg−1.

The base of the induction is trivial and is provided by g = 1. We now show the inductive
step. Assume by the inductive hypothesis that f − q = 0 mod Λg−1, so that q = f + Λg−1(λ0 +

Λλ1 + Λ2λ2 + . . .). Thus, (λ0, λ1, . . .) is the expansion of (q − f)/Λg−1 base Λ, and λ0 is the least
significant digit. We now show that λ0 is the unique value of λ that satisfies the condition of line 25
of Algorithm 7, with high probability

In the following, we use the definitions of π(f), h(f), and of (f ′) from Definition 4.2 with ∆ = 0.
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First, we have for each a = (α, β) ∈ A and w ∈W that

Ĥ−1
of (f)Ûh(f)(α+ w · β)− Ŷfω

(α+w·β)q
N = Ĥ−1

of (f)Û
∗
h(f)(α+ w · β)− Ŷfω

(α+w·β)q
N + errw

= Ĥ−1
of (f)

∑

f ′∈[m]\{f}

Ĥof (f ′)Ŷf ′ω
σf ′·(α+w·β)
N + errw =: E′(w),

where errw = Ĥ−1
of (f)(Ûh(f) − Û∗h(f))(α+ w · β).

And similarly

Ĥ−1
of (f)Ûh(f)(α)− ŶfωαqN = Ĥ−1

of (f)Û
∗
h(f)(α)− ŶfωαqN + err

= Ĥ−1
of (f)

∑

f ′∈[m]\{f}

Ĥof (f ′)Ŷ
′
f ′ω

σf ′·α
N + err =: E′′.

where err = Ĥ−1
of (f)(Ûh(f) − Û∗h(f))(α).

We will show that f is recovered from bucket h(f) with high (constant) probability. The bounds
above imply that

Ûh(f)(α+ wβ))

Ûh(f)(α)
=
Ŷfω

(α+wβ)q
N + E′(w)

Ŷfω
αq
N + E′′

. (101)

The rest of the proof consists of two parts. We first show that with high probability over the
choice of π, the error terms E′(w) and E′′ are small in absolute value for most a = (α, β) ∈ A with
extremely high probability. We then use this assumption to argue that f is recovered.

Bounding the error terms E′(w) and E′′ (part (i)). We have by Parseval’s theorem that

Ea[|E′(w)|2] ≤ Ĥ−2
of (f)

∑

f ′∈[m]\{f}

Ĥ2
of (f ′)|Yf ′ |

2 + |errw|2 + 2|errw|Ĥ−1
of (f)

∑

f ′∈[m]\{f}

Ĥof (f ′)|Yf ′ |, (102)

and

Ea[|E′′|2] ≤ Ĥ−2
of (f)

∑

f ′∈[m]\{f}

Ĥ2
of (f ′)|Ŷf ′ |

2 + |err|2 + 2|err|Ĥ−1
of (f)

∑

f ′∈[m]\{f}

Ĥof (f ′)|Ŷf ′ |,

where we used the fact that α + wβ is uniformly random in [m] (due to α being uniformly random
in [m] and independent of β by definition of A in line 6 of Algorithm 7).

Taking the expectation of the term Ĥ−2
of (f)

∑
f ′∈[m]\{f} Ĥ

2
of (f ′)|Yf ′ |

2 with respect to π, we obtain

Eπ
[
Ĥ−2
of (f)

∑

f ′∈[m]\{f}

Ĥ2
of (f ′)|Yf ′ |

2

]
= O(‖Y ‖22/B) = O(||X ′||22/(C2k))

by Lemma 4.3 (note that F ′ ≥ 2, so the lemma applies) and the choice B = C2 · k (line 20 of
Algorithm 7). We thus have by Markov’s inequality together with the assumption that |Ŷf |2 ≥
||Ŷ ||22/k that

Pπ
[
Ĥ−2
of (f)

∑

f ′∈[m]\{f}

Ĥ2
of (f ′)|Ŷf ′ |

2 > |Ŷf |2/1700

]
< O(1/C2) < 1/40

and
Pπ
[
Ĥ−2
of (f)

∑

f ′∈[m]\{f}

Ĥ2
of (f ′)|Ŷf ′ |

2 > |Ŷf |2/1700

]
< O(1/C2) < 1/40
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since C2 is larger than an absolute constant by assumption.
Bounding err and errw (numerical errors from semi-equispaced FFT computation):

Recall that we have by assumption that χ̂0 uniformly distributed over an arbitrarily length- ‖χ̂‖
2

poly(n)

interval, and that Ŷ = Ẑr for some Ẑr in the (k1, δ)-downsampling of X − χ. By decomposing
Ẑrj = ((X̂r−χ̂r)?Ĝ)jk1 into a deterministic part and a random part (in terms of the above-mentioned
uniform distribution), we readily obtain for some c′ > 0 that

‖Ŷ ‖2 ≥ ‖χ̂‖
2
2

nc′
(103)

with probability at least 1 − 1
n4 . Since p ≥ 1

n3 by assumption, we deduce that this also holds with
probability at least 1 − p/2. By the the accuracy of the χ̂ values stated in Lemma 4.5, along with
the argument used in (70)–(71) its proof in Appendix C.3 to convert (103) to accuracy on hashed
values, we know that |Ûh(f)− Û∗h(f)| ≤ ‖Û − Û

∗‖∞ ≤ n−c+1‖χ̂‖2. Hence, by using |Ĥof (f)|−2 ≤ 2 and
α, α+ w · β ≤ m, we find that

|err| ≤ 2n−c+1‖χ̂‖2 ≤ 2n−c+c
′+1‖Ŷ ‖2

|errw| ≤ 2n−c+1‖χ̂‖2 ≤ 2n−c+c
′+1‖Ŷ ‖2,

where the second inequality in each equation holds for some c′ > 0 by (103).
Note also that Ĥ−1

of (f)

∑
f ′∈[m]\{f} Ĥof (f ′)|Ŷf ′ | ≤ 2‖Ŷ ‖1 ≤ 2

√
m‖Ŷ ‖2, since we have Ĥ−1

of (f) ≤ 2

and Ĥf ′ | ≤ 1 for all f ′. We can thus write

|err|2 + 2|err| · Ĥ−1
of (f)

∑

f ′∈[m]\{f}

Ĥof (f ′)|Ŷf ′ | ≤ |err|2 + 4
√
m|err| · ‖Ŷ ‖2

≤ 4n−2c+2c′+2‖Ŷ ‖22 + 8n−c+c
′+3/2‖Ŷ ‖22

= nΩ(−c+c′)‖Ŷ ‖22, (104)

which can thus be made to behave as 1
poly(n)‖Ŷ ‖

2
2 by a suitable choice of c.

Bounding the error terms E′(w) and E′′ (part (ii)). By the union bound, we have |E′(w)|2 ≤
|Ŷf |2/1600 and |E′′|2 ≤ |Ŷf |2/1600 simultaneously with probability at least 1 − 1/20 – denote the
success event by E tf,π(w). Conditioned on E tf,π(w), we thus have by (102) and (104), along with the
fact that A is independent of π, that

Ea[|E′(w)|2|] ≤ |Yf |2/1600 and Ea[|E′′|2] ≤ |Yf |2/1600.

Another application of Markov’s inequality gives

Pa[|E′(w)|2 ≥ |Ŷf |2/40] ≤ 1/40 and Pa[|E′′|2 ≥ |Ŷf |2/40] ≤ 1/40.

This means that conditioned on E tf,π(w), with probability at least 1− e−Ω(|A|) ≥ 1− 1/(100 log2m)

over the choice of A, both events occur for all but 2/5 fraction of a ∈ A; denote this success event
by E tf,A(w). We condition on this event in what follows. Let A∗(w) ⊆ A denote the set of values of
a ∈ A that satisfy the bounds above.
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In particular, we can rewrite (101) as

Ûh(f)(α+ wβ)

Ûh(f)(α)
=
Ŷfω

(α+wβ)q
N + E′(w)

Ŷfω
αq
N + E′′

=
ω

(α+wβ)q
N

ωαqN
· ξ

(
where ξ =

1 + ω−(α+wβ)qE′(w)/Ŷ ′f

1 + ω−αqN E′′/Ŷ ′f

)

= ω
(α+wβ)q−αq
N · ξ

= ωwβq
N · ξ.

We thus have for a ∈ A∗(w) that

|E′(w)|/|Ŷ ′f | ≤ 1/40 and |E′′|/|Ŷ ′f | ≤ 1/40. (105)

Showing that A∗(w) ⊆ A suffices for recovery. By the above calculations, we get

Ûh(f)(α+ wβ)

Ûh(f)(α)
= ωwβq

N · ξ = ωNΛ−gβq
N · ξ = ωNΛ−gβq

N + ωNΛ−gβq
N (ξ − 1).

We proceed by analyzing the first term, and we will later show that the second term is small. Since
q = f + Λg−1(λ0 + Λλ1 + Λ2λ2 + . . .), by the inductive hypothesis, we have

ω−λ·βΛ · ω−NΛ−gf ·β
N · ωNΛ−gβq

N = ω−λ·βΛ · ωNΛ−g(q−f)·β
N

= ω−λ·βΛ · ωNΛ−g(Λg−1(λ0+Λλ1+Λ2λ2+...))·β
N

= ω−λ·βΛ · ω(N/Λ)·(λ0+Λλ1+Λ2λ2+...)·β
N

= ω−λ·βΛ · ωλ0·β
Λ

= ω
(−λ+λ0)·β
Λ ,

where we used the fact that ωN/ΛN = e2πf(N/Λ)/N = e2πf/Λ = ωΛ. Thus, we have

ω−λ·βΛ ω−(NΛ−gf)·β Ûh(f)(α+ wβ)

Ûh(f)(α)
= ω

(−λ+λ0)·β
Λ ξ.

We now consider two cases. First suppose that λ = λ0. Then ω(−λ+λ0)·β
Λ = 1, and it remains to

note that by (105) we have |ξ − 1| ≤ 1+1/40
1−1/40 − 1 < 1/3. Thus, every a ∈ A∗(w) passes the test in

line 25 of Algorithm 7. Since |A∗(w)| ≥ (3/5)|A| by the argument above, we have that λ0 passes the
test in line 25. It remains to show that λ0 is the unique element in 0, . . . ,Λ− 1 that passes this test.

Suppose that λ 6= λ0. Then, by conditioning on Ebalanced, at least a 49/100 fraction of ω(−λ+λ0)·β
Λ

have negative real part. This means that for at least 49/100 of a ∈ A, we have

|ω(−λ+λ0)·β
Λ ξ − 1| ≥ |i · |ξ| − 1| ≥ |(7/9)i− 1| > 1/3,

and hence the condition in line 16 of Algorithm 7 is not satisfied for any λ 6= λ0.
We thus get that conditioned on Ebalanced and the intersection of E tf,π(w) for all w ∈W and E tf,A,

recovery succeeds for all values of g = 1, . . . , logΛN . By a union bound over the failure events, we
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get that

P
[
Ebalanced ∩ E tf,A ∩

( ⋂

w∈W
E tf,π(w)

)]
≥ 1− 1/100− (logΛN) · 1

100 log2m
≥ 98/100.

This shows that location is successful for f in a single iteration t with probability at least 98/100 ≥
9/10, as required.

Sample complexity and runtime. We first consider the calls to HashToBinsReduced.
This is called for log logm values of (α, β) and logΛN = O

( logm
log logm

)
values of g in each iteration, the

product of which is O(logm) = O(log n). Moreover, the number of iterations is O
(

log 1
p

)
. Hence,

using Lemma 4.6, we find that the combination of all of these calls costs O
(
F
∑

r∈[2k1]B
r log 1

δ log n
)

samples, with a runtime of O
(
(BmaxF + k0)k1 log3 n), where Bmax = O(maxr s

r), and k0 is such
that χ̂ is (O(k0), k1)-block sparse. By the assumption maxr s

r = O
(
k0
δ

)
, the runtime simplifies to

O
(
k0k1
δ log3 n)

G Pruning the Location List

Algorithm 8 Prune a location list via hashing and thresholding techniques.
1: procedure PruneLocation(X, χ̂, L, n, k0, k1, δ, p, θ)
2: B ← 160k0k1

δ
3: F ← 10 log 1

δ
4: G← (n,B, F )-flat filter
5: T ← 10 log 1

δp
6: for t ∈ {1, . . . , T} do
7: ∆← uniform random sample from [ nk1

]
8: σ ← uniform random sample from odd numbers in [ nk1

]

9: Û ← HashToBins(X, χ̂,G, n,B, σ,∆)

10: W
(t)
j ←

∑
f∈Ij

∣∣Ĝ−1
of (f)Ûh(f)ω

−σ∆f
n

∣∣2 for all j ∈ L . h(f), of (f) in Definition 4.2

11: Wj ← Median t(W
(t)
j ) for all j ∈ L

12: L′ ← {j ∈ L : Wj ≥ θ}
13: return L′

The pruning procedure is given in Algorithm 8. Its goal is essentially to reduce the size of the
list returned by MultiBlockLocate (cf., Algorithm 1) from O(k0 log(1 + k0)) to O(k0). More
formally, the following lemma shows that with high probability, the pruning algorithm retains most
of the energy in the head elements, while removing most tail elements.

Lemma 5.1 (PruneLocation guarantees – re-stated from Section 5.1) Given (n, k0, k1), the
parameters θ > 0, δ ∈

(
1
n ,

1
20

)
and p ∈ (0, 1), and the signals X ∈ Cn and χ̂ ∈ Cn with

‖X̂− χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, the output L

′ of PruneLocation(X, χ̂, L, k0, k1, δ, p, n, θ) has the following
properties:
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a. Let Stail denote the tail elements in the signal X̂ − χ̂, defined as

Stail =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖2 ≤

√
θ −

√
δ

k0
‖X̂ − χ̂‖2

}
,

where Ij is defined in Definition 1.1. Then, we have

E
[∣∣L′ ∩ Stail

∣∣
]
≤ δp · |L ∩ Stail|.

b. Let Shead denote the head elements in the signal X̂ − χ̂, defined as

Shead =
{
j ∈

[ n
k1

]
: ‖(X̂ − χ̂)Ij‖2 ≥

√
θ +

√
δ

k0
‖X̂ − χ̂‖2

}
.

Then, we have

E
[ ∑

j∈(L∩Shead)\L′
‖(X̂ − χ̂)Ij‖22

]
≤ δp

∑

j∈L∩Shead

‖(X̂ − χ̂)Ij‖22.

Moreover, provided that ‖χ̂‖0 = O(k0k1), the sample complexity is O(k0k1
δ log 1

δp log 1
δ ), and the run-

time is O(k0k1
δ log 1

δp log 1
δ log n+ k1 · |L| log 1

δp).

Proof. We begin by analyzing the properties of the random variables Wj used in the threshold test.
We define X ′ = X − χ, let Û be the output of HashToBins, and let Û∗ be its exact counterpart as
defined in Lemma 4.6. It follows that we can write the random variable W (t)

j (cf., Algorithm 8) as

W
(t)
j =

∑

f∈Ij

∣∣∣Ĝ−1
of (f)Ûh(f)ω

−σ∆f
n

∣∣∣
2

=
∑

f∈Ij

∣∣∣Ĝ−1
of (f)Û

∗
h(f)ω

−σ∆f
n + Ĝ−1

of (f)(Ûh(f) − Û∗h(f))ω
−σ∆f
n

∣∣∣
2

=
∑

f∈Ij

∣∣∣X̂ ′f + err
(t)
f + ẽrr

(t)
f

∣∣∣
2
, (106)

where (i) err
(t)
f = Ĝ−1

of (f)

∑
f ′∈[n]\{f} X̂

′
f ′Ĝof (f ′)ω

σ∆(f ′−f)
n , with (σ,∆) implicitly depending on t; this

follows directly from Lemma 4.2, along with the definitions π(f) = σf and of (f ′) = π(f ′)− n
Bh(f).

(ii) ẽrr
(t)
f = Ĝ−1

of (f)(Ûh(f) − Û∗h(f))ω
−σ∆f , a polynomially small error term (cf., Lemma 4.6).

Bounding err
(t)
f and ẽrr

(t)
f : In Lemma G.1 below, we show that

E∆,π

[
|err

(t)
f |

2
]
≤ 20

B
‖X̂ ′‖22 (107)

|ẽrr
(t)
f | ≤ 2n−c+c

′‖X̂ ′‖2, (108)

where c is used in HashToBins, and c′ is value such that ‖X̂ − χ̂‖2 ≥ 1
nc′
‖χ̂‖2. For (108), we upper

bound the `2 norm by the square root of the vector length times the `∞ norm, yielding
√∑

f∈[n]

|ẽrr
(t)
f |2 ≤

√
nmax
f∈[n]

|ẽrr
(t)
f | ≤ 2n−c+c

′+1/2‖X̂ ′‖2. (109)

We now calculate the probability of a given block j passing the threshold test, considering two
separate cases.

• If j is in the tail: The probability for j to pass the threshold is closely related to P[W
(t)
j ≥
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θ] = P
[√

W
(t)
j ≥

√
θ
]
. From (106),

√
W

(t)
j is the `2-norm of a sum of three signals, and hence

we can apply the triangle inequality to obtain

P
[
W

(t)
j ≥ θ

]
≤ P

[∑

f∈Ij

|err
(t)
f |

2 ≥
(√

θ −
√∑

f∈Ij

|X̂ ′f |2 − 2n−c+c
′+1/2‖X̂ ′‖2

)2
]
,

where we have applied (109).

By definition, for any j ∈ Stail, we have
√
θ − ‖X̂ ′Ij‖2 ≥

√
δ
k0
‖X̂ ′‖2. Hence, and recalling that

δ ≥ 1
n , if c if sufficiently large so that

√
δ
k0
− 2n−c+c

′+1/2 ≥
√

0.9δ
k0

, then Markov’s inequality
yields

P
[
W

(t)
j ≥ θ

]
≤ P

[∑

f∈Ij

|err
(t)
f |

2 ≥ 0.9δ

k0
‖X̂ ′‖22

]

≤
E∆,π

[∑
f∈Ij |err

(t)
f |

2
]

0.9δ
k0
‖X̂ ′‖22

≤
20k1
B ‖X̂

′‖22
0.9δ
k0
‖X̂ ′‖22

≤ 1

6

where the third line follows form (107) and |Ij | = k1, and the final line follows from the choice
B = 160k0k1

δ . Since Wj is the median of T independent such random variables, it can only
exceed θ if there exists a subset of t values of size T

2 with W (t)
j ≥ θ. Hence,

P[Wj ≥ θ] ≤
(
T

T/2

)(1

6

)T/2
≤
(2

3

)T/2
≤ δp,

where we applied
(
T
T/2

)
≤ 2T , followed by T = 10 log 1

δp (cf., Algorithm 8).

• If j is in the head: We proceed similarly to the tail case, but instead use the triangle inequality
in the form of a lower bound (i.e., ‖a+ b‖2 ≥ ‖a‖2 − ‖b‖2), yielding

P
[
W

(t)
j ≤ θ

]
≤ P

[∑

f∈Ij

|err
(t)
f |

2 ≥
(√∑

f∈Ij

|X̂ ′f |2 −
√
θ − 2n−c+c

′+1/2‖X̂ ′‖2
)2
]
.

By definition, for any j ∈ Shead, we have ‖X̂ ′Ij‖2 −
√
θ ≥

√
δ
k0
‖X̂ ′‖2. Hence, if c if sufficiently

large so that
√

δ
k0
− 2n−c+c

′+1/2 ≥
√

0.9δ
k0

, then analogously to the tail case above, we have

P
[
W

(t)
j ≤ θ

]
≤ P

[∑

f∈Ij

|err
(t)
f |

2 ≥ 0.9δ

k0
‖X̂ ′‖22

]
≤ 1

6
,

and consequently P[Wj ≤ θ] ≤ δp.

First claim of lemma: Since L′ ⊂ L, we have

E
[∣∣L′ ∩ Stail

∣∣
]

=
∑

j∈L∩Stail

P
[
j ∈ L′

]
=

∑

j∈L∩Stail

P
[
Wj ≥ θ

]
.
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Since we established that P[Wj ≥ θ] is at most δp, we obtain

E
[∣∣L′ ∩ Stail

∣∣
]
≤

∑

j∈L∩Stail

δp = δp · |L ∩ Stail|.

Second claim of lemma: In order to upper bound
∑

j∈(L∩Shead)\L′ ‖X̂ ′Ij‖
2
2, we first calculate its

expected value as follows:

E
[ ∑

j∈(L∩Shead)\L′
‖X̂ ′Ij‖

2
2

]
= E

[ ∑

j∈L∩Shead

‖X̂ ′Ij‖
2
2 I
[
j /∈ L′

] ]

=
∑

j∈L∩Shead

‖X̂ ′Ij‖
2
2 P
[
j /∈ L′

]

=
∑

j∈L∩Shead

‖X̂ ′Ij‖
2
2 P
[
Wj ≤ θ

]
.

The probability P
[
Wj ≤ θ

]
for j ∈ L ∩ Shead is at most δp, and hence

E
[ ∑

j∈(L∩Shead)\L′
‖X̂ ′Ij‖

2
2

]
≤ δp

∑

j∈L∩Shead

‖X̂ ′Ij‖
2
2.

Sample complexity and runtime For the sample complexity, note that the algorithm only uses
samples via its call to HashToBins. By part (i) of Lemma 4.6 and the choices B = 160k0k1

δ and
F = 10 log 1

δ , the sample complexity is O(FB) = O(k0k1
δ log 1

δ ) per hashing operation. Since we run
the hashing in a loop 10 log 1

δp times, the sample complexity is O(k0k1
δ log 1

δ log 1
δp).

The runtime depends on three operations. The first is calling HashToBins, for which an anal-
ogous argument as that for the sample complexity holds, with the extra log n factor arising from
Lemma 4.6. The second operation is the computation of W (t)

j , which takes |Ij | = O(k1) time for each
j ∈ L. Hence, the total contribution from the loop is O(k1 · |L| log 1

δp). Finally, since the median can
be computed in linear time, computing the medians for every j ∈ L costs O(|L| log 1

δp) time, which

is dominated by the computation of W (t)
j .

In the preceding proof, we made use of the following.

Lemma G.1. (EstimateValues guarantees – re-stated from Section 5.1) Fix (n, k0, k1, B), the
signals X ∈ Cn and χ̂ ∈ Cn with ‖X̂−χ̂‖2 ≥ 1

nc′
‖χ̂‖2, and the uniformly random parameters σ,∆ ∈ [n]

with σ odd, and let Û be the output of HashToBins(X, χ̂,G, n,B, σ,∆) and Û∗ its exact counterpart.
Then defining errf = Ĝ−1

of (f)

∑
f ′∈[n]\{f} X̂

′
f ′Ĝof (f ′)ω

σ∆(f ′−f)
n and ẽrrf = Ĝ−1

of (f)(Ûh(f) − Û∗h(f))ω
−σ∆f

(for h and σf in Definition 4.2), we have

E∆,π

[
|errf |2

]
≤ 20

B
‖X̂ ′‖22 (110)

|ẽrrf | ≤ 2n−c+c
′‖X̂ ′‖2 (111)

for c used in HashToBins.

Proof. We take the expectation of |errf |2, first over ∆:

E∆

[
|errf |2

]
= |Ĝof (f)|−2

∑

f ′∈[n]\{f}

|X̂ ′f ′ |2|Ĝof (f ′)|2
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by Parseval. By Definition 2.1 and the definition of of (·), we can upper bound |Ĝof (f)|−2 ≤ 2.
Continuing, we take the expectation with respect to the random permutation π:

E∆,π

[
|errf |2

]
≤ Eπ

[
2

∑

f ′∈[n]\{f}

|X̂ ′f ′ |2|Ĝof (f ′)|2
]

= 2
∑

f ′∈[n]\{f}

|X̂ ′f ′ |2Eπ
[
|Ĝof (f ′)|2

]
≤ 20

B
‖X̂ ′‖22. (112)

by Lemma 4.3.
We now turn to ẽrrf . We know from Lemma 4.6 that |Ûh(f) − Û∗h(f)| ≤ ‖Û − Û

∗‖∞ ≤ n−c‖χ̂‖2.
Hence, and again using |Ĝof (f)|−2 ≤ 2, we find that

|ẽrrf | ≤ 2n−c‖χ̂‖2 ≤ 2n−c+c
′‖X̂ ′‖2, (113)

where the second inequality follows since ‖χ̂‖2 ≤ nc
′‖X̂ ′‖2 for some c′ > 0 by assumption.

H Estimating Individual Frequency Values

Algorithm 9 Energy estimation procedure for individual frequencies
1: procedure EstimateValues(X, χ̂, L, n, k0, k1, δ, p)
2: B ← 1200

δ k0k1

3: F ← 10 log 1
δ

4: G← (n,B, F )-flat filter . See Definition 2.1
5: F ← {f ∈ [n] : round( fk1

) ∈ L}
6: T ← 10 log 2

p
7: for t ∈ {1, . . . , T} do
8: ∆← uniform random sample from [ nk1

]
9: σ ← uniform random sample from odd numbers in [ nk1

]

10: Û ← HashToBins(X, χ̂,G, n,B, σ,∆) . of (f), h(f) in Definition 4.2
11: W

(t)
f ← Ĝ−1

of (f)Ûh(f)ω
−σ∆f for each f ∈ F

12: Wf ← Median t(x
(t)
f ) for each f ∈ F . Separately for the real and imaginary parts

13: return W

Once we have located the blocks, we need to estimate the frequency values with them. The
function EstimateValues in Algorithm 9 performs this task for us via basic hashing techniques.
The following lemma characterizes the guarantee on the output.

Lemma 5.2 (Re-stated from Section 5.1) For any integers (n, k0, k1), list of block indices L, param-
eters δ ∈

(
1
n ,

1
20

)
and p ∈ (0, 1/2), and signals X ∈ Cn and χ̂ ∈ Cn with ‖X̂ − χ̂‖2 ≥ 1

poly(n)‖χ̂‖2, the
output W of the function EstimateValues(X, χ̂, L, n, k0, k1, δ, p) has the following property:

∑

f∈
⋃
j∈L Ij

|Wf − (X̂ − χ̂)f |2 ≤ δ
|L|
3k0
‖X̂ − χ̂‖22

with probability at least 1 − p, where Ij is the j-th block. Moreover, the sample complexity is
O(k0k1

δ log 1
p log 1

δ ), and if ‖χ̂‖0 = O(k0k1), then the runtime is O(k0k1
δ log 1

p log 1
δ log n+k1 ·|L| log 1

p).
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Proof. Let X ′ = X − χ, and let Û be the output of HashToBins and Û∗ its exact counterpart. We
start by calculating W (t)

f for an arbitrary f ∈ F :

W
(t)
f = Ĝ−1

of (f)Ûh(f)ω
−σ∆f

= Ĝ−1
of (f)Û

∗
h(f)ω

−σ∆f + Ĝ−1
of (f)(Ûh(f) − Û∗h(f))ω

−σ∆f

= X̂ ′f + err
(t)
f + ẽrr

(t)
f (by Lemma 4.2), (114)

where err
(t)
f = Ĝ−1

of (f)

∑
f ′∈[n]\{f} X̂

′
f ′Ĝof (f ′)ω

σ∆(f ′−f), and ẽrr
(t)
f = Ĝ−1

of (f)(Ûh(f) − Û∗h(f))ω
−σ∆f , for

(σ,∆) implicitly depending on t.
Bounding err

(t)
f and ẽrr

(t)
f : Using Lemma G.1 in Appendix G, we have

E∆,π

[
|err

(t)
f |

2
]
≤ 20

B
‖X̂ ′‖22 (115)

|ẽrr
(t)
f | ≤ 2n−c+c

′‖X̂ ′‖2, (116)

where c is used in HashToBins, and c′ is the exponent in the poly(n) notation of the assumption
‖X̂ − χ̂‖2 ≥ 1

poly(n)‖χ̂‖2.
In order to characterize |W (t)

f − X̂
′
f |2, we use the following:

|ẽrrf |2 + 2|err
(t)
f | · |ẽrr

(t)
f | ≤ 4n2(−c+c′)‖X̂ ′‖22 + 4n−c+c

′‖X̂ ′‖2 · |err
(t)
f |. (117)

which follows directly from (116).
Characterizing |W (t)

f − X̂
′
f |2: We have from (114), (115), and (117) that

E[|W (t)
f − X̂

′
f |2] ≤ E

[
|err

(t)
f |

2 + 2|err
(t)
f | · |ẽrr

(t)
f |+ |ẽrr

(t)
f |

2
]

≤ 20

B
‖X̂ ′‖22 + 4n2(−c+c′)‖X̂ ′‖22 + 4n−c+c

′‖X̂ ′‖2E
[
|err

(t)
f |
]

≤ 20

B
‖X̂ ′‖22 + 4n2(−c+c′)‖X̂ ′‖22 + 4

√
20

B
n−c+c

′‖X̂ ′‖22, (118)

where the last line follows by writing E
[
|err

(t)
f |
]
≤
√
E
[
|err

(t)
f |2

]
via Jensen’s inequality, and then

applying (115).
Since B = 1200k0k1

δ and we have assumed δ ≥ 1
n , we have B ≤ 1200n3, and hence we have for

sufficiently large c that (118) simplifies to E[|W (t)
f − X̂

′
f |2] ≤ 25

B ‖X̂
′‖22. This means that

P∆,π

[
|W (t)

f − X̂
′
f |2 ≥

160t

B
‖X̂ ′‖22

]
≤

E∆,π

[
|W (t)

f − X̂
′
f |2
]

160t
B ‖X̂ ′‖

2
2

≤ 1

6t
. (119)

by Markov’s inequality.
Taking the median: Recall that Wf is the median of T independent random variables, with

the median taken separately for the real and imaginary parts. Since |W |2 = |Re(W )|2 + |Im(W )|2,
we find that (119) holds true when W (t)

f − X̂
′
f is replaced by its real or imaginary part. Hence, with

probability at least 1−
(
T
T/2

)(
1
6t

)T/2, we have |Re(W
(t)
f − X̂

′
f )|2 < 160t

B ‖X̂
′‖22, and analogously for the

imaginary part. Combining these and applying the union bound, we obtain

P
[
|Wf − X̂ ′f |2 ≥

320t

B
‖X̂ ′‖22

]
≤ 2

(
T

T/2

)( 1

6t

)T/2
≤ 2
( 2

3t

)T/2
≤ p

tT/2
, (120)
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where we first applied
(
T
T/2

)
≤ 2T , and then the choice T = 10 log 2

p from Algorithm 9 and the choice
of p ≤ 1/2.

We now bound the error as follows:

|Wf − X̂ ′f |2 ≤
320

B
‖X̂ ′‖22 +

∣∣∣|Wf − X̂ ′f |2 −
320

B
‖X̂ ′‖22

∣∣∣
+
. (121)

We write the expected value of the second term as

E
[∣∣∣|Wf − X̂ ′f |2 −

320

B
‖X̂ ′‖22

∣∣∣
+

]
=

∫ ∞

0
P
[∣∣∣|Wf − X̂ ′f |2 −

320

B
‖X̂ ′‖22

∣∣∣
+
≥ u

]
du

=

∫ ∞

0
P
[
|Wf − X̂ ′f |2 ≥

320

B
‖X̂ ′‖22 + u

]
du

=

∫ ∞

1

320

B
‖X̂ ′‖22P

[
|Wf − X̂ ′f |2 ≥

320v

B
‖X̂ ′‖22

]
dv

where we applied the change of variable v = 1 + u
320
B
‖X̂′‖22

. By incorporating (120) into this integral,
we obtain

E
[∣∣∣|Wf − X̂ ′f |2 −

320

B
‖X̂ ′‖22

∣∣∣
+

]
≤ 320

B
‖X̂ ′‖22

∫ ∞

1

p

vT/2
dv

≤ 320

B
‖X̂ ′‖22 ·

p

T/2− 1

≤ 80

B
‖X̂ ′‖22 · p, (122)

where the second line is by explicitly evaluating the integral (with T > 2), and the third by T/2−1 ≥ 4

(cf., Algorithm 9).
Summing (121) over F = ∪j∈LIj , we find that the total error is upper bounded as follows:

∑

f∈F
|Wf − X̂ ′f |2 ≤

320|F|
B
‖X̂ ′‖22 +

∑

f∈F

∣∣∣|Wf − X̂ ′f |2 −
320

B
‖X̂ ′‖22

∣∣∣
+
.

From (122), the expected value of the second term is at most p · 80|F|
B ‖X̂

′‖22, and hence
∑

f∈F
|Wf − X̂ ′f |2 ≤

400|F|
B
‖X̂ ′‖22

with probability at least 1 − p, by Markov’s inequality. The lemma now follows by the choice B =
1200
δ k0k1 in Algorithm 9.

Sample complexity and runtime: To calculate the sample complexity, note that the only opera-
tion in the algorithm that takes samples is the call to HashToBins. By Lemma 4.6, and the choices
B = 1200k0k1

δ and F = 10 log 1
δ , the sample complexity is O(k0k1

δ log 1
δ ) per hashing performed. Since

we run the hashing in a loop 10 log 2
p times, this amounts to a total of O(k0k1

δ log 1
δ log 1

p).
The runtime depends on two operations. The first one is calling HashToBins, whose analysis

follows similarly to the aforementioned sample complexity analysis using the assumption ‖χ̂‖0 =

O(k0k1), but with an extra log n factor compared to the sample complexity, as per Lemma 4.6.
The other operation is computation of W (t)

f , which takes unit time for each f ∈ F . Since the size
of |F| = k1 · |L|, running it in a loop costs O(k1 · |L| log 1

p). Computing the median is done in linear
time which consequently results in |F|T = O(k1 · |L| log 1

p).
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