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Committee members:

Dr. N. Macris
President of the jury

Prof. E. Telatar and Dr. O. Lévêque
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Abstract

While wired infrastructure constitutes the backbone of most wireless networks,
wireless systems appeal the most to the dynamic and rapidly evolving require-
ments of today’s communication systems because of their ease of deployment
and mobility, not to mention the high cost of building a wired infrastructure.
This led to an increased interest in the so called wireless ad hoc networks
formed of a group of users, known as nodes, capable of communicating with
each other through a shared wireless channel. Needless to say, these nodes are
asked to use the shared wireless medium in the most efficient fashion, which
is not an easy task given the absence of wired backbone. This requires a
profound understanding of the wireless medium to establish a decentralized
cooperation scheme, if needed, that best utilizes the resources available in the
wireless channel. A significant part of this thesis focuses on the properties of
the shared wireless channel, whereby we are interested in studying the spatial
diversity and the beamforming capabilities in large wireless networks which are
crucial in analyzing the throughput of ad hoc networks.

In this thesis, we mainly focus on the problem of broadcasting information
in the most efficient manner in a large two-dimensional ad hoc wireless net-
work at low SNR and under line-of-sight propagation. A new communication
scheme, which we call multi-stage back-and-forth beamforming, is proposed,
where source nodes first broadcast their data to the entire network, despite
the lack of sufficient available power. The signal’s power is then reinforced via
successive back-and-forth beamforming transmissions between different groups
of nodes in the network, so that all nodes are able to decode the transmitted
information at the end. This scheme is shown to achieve asymptotically the
broadcast capacity of the network, which is expressed in terms of the largest
singular value of the matrix of fading coefficients between the nodes in the
network. A detailed mathematical analysis is then presented to evaluate the
asymptotic behavior of this largest singular value. We further characterize the
maximum achievable broadcast rate under different sparsity regimes. Our re-
sult shows that this rate depends negatively on the sparsity of the network.
This is to be put in contrast with the number of degrees of freedom available
in the network, which have been shown previously to increase with the sparsity
of the network. In this context, we further characterize the degrees of freedom
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iv Abstract

versus beamforming gain tradeoff, which reveals that high beamforming gains
can only be obtained at the expense of reduced spatial degrees of freedom.

Another important factor that impacts the throughput in wireless networks
is the transmit/receive capability of the transceiver at the nodes. Tradition-
ally, wireless radios are half-duplex, i.e. they can not transmit and receive
at the same time over the same frequency band. However, building on self-
interference cancellation techniques, full-duplex radios have emerged as a vi-
able paradigm over the recent years. In the last part of this thesis, we ask
the fundamental question: how much can full-duplex help? Intuitively, one
may expect that full-duplex radios can at most double the capacity of wireless
networks, since they enable nodes to transmit and receive at the same time.
However, we show that the capacity gain can indeed be larger than a factor of
2; in particular, we construct a specific instance of a wireless network where
the the full-duplex capacity is triple the capacity of the half-duplex network.
We also propose a universal schedule for half-duplex networks of independent,
memoryless, point-to-point channel capable of ensuring a fraction of 1/4 of the
full-duplex capacity. This means that, for point-to-point networks full-duplex
cannot more than quadruple the capacity of wireless networks.

Keywords: Wireless ad hoc networks, scaling laws, broadcast capacity, low
SNR communications, beamforming strategies, sparsity, degrees of freedom
versus beamforming gain tradeoff, random matrix theory, full-duplex relaying,
half-duplex relaying, point-to-point channels, scheduling



Résumé

Tandis qu’une infrastructure câblée est à la base de la plupart des réseaux
sans fil actuels, l’évolution dynamique et rapide des nouveaux réseaux sans
fil appelle à de nouvelles infrastructures elles-mêmes sans fil pour faciliter le
déploiement de ces réseaux et mieux gérer la mobilité des utilisateurs, ainsi
que pour minimiser les coûts d’installation de telles infrastructures. Ce fait
a considérablement renforcé l’intérêt pour l’étude de réseaux sans fil dits ad
hoc, consistant en des groupes d’utilisateurs, appelés noeuds, capables de com-
muniquer à travers un canal sans fil partagé. Ces noeuds ont pour but de
communiquer de manière optimale à travers ce canal commun, ce qui n’est
pas une tâche aisée, étant donné l’absence d’infrastructure câblée pour relayer
les communications. Ceci requiert une pleine compréhension du milieu sans fil
pour établir des schémas de coopération décentralisés qui utilisent au mieux les
ressources présentes. Une partie significative de la présente thèse s’intéresse aux
propriétés de ce milieu sans fil, en particulier à la diversité spatiale ainsi qu’au
gain de puissance par formation de faisceaux qu’il est possible d’atteindre dans
un réseau sans fil de grande taille. Ces deux grandeurs sont en effet cruciales
pour déterminer la capacité de tels systèmes.

Dans cette thèse, nous nous concentrons sur le problème de la diffusion
la plus efficace d’information dans un réseau ad hoc sans fil de grande taille,
lorsque le rapport signal sur bruit (SNR) est bas. Le modèle de propaga-
tion étudié est celui de la propagation des ondes électromagnétiques dans le
vide. Un nouveau schéma de communication est proposé, que nous appelons
schéma d’augmentation de gain de puissance à plusieurs étapes, dans lequel les
noeuds transmetteurs diffusent d’abord leur données à tout le réseau, malgré
le manque de puissance disponible. La puissance du signal émis est alors ren-
forcée par des transmissions successives d’une partie du réseau à l’autre, de
telle manière à ce que tous les noeuds puissent décoder l’information au bout
du processus. Il est ensuite montré que ce schéma de communication atteint
asymptotiquement la capacité de diffusion maximale du réseau, que l’on peut
exprimer mathématiquement en termes de la plus grande valeur singulière de
la matrice des coefficients d’atténuation entre les noeuds du réseau. Une anal-
yse mathématique détaillée est ensuite présentée pour évaluer le comportement
asymptotique de cette plus grande valeur singulière.
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vi Résumé

Nous caractérisons de plus le taux maximum de diffusion pour des réseaux
de densité variable. Nos résultats montrent que ce taux augmente avec la
densité du réseau. Ce résultat est à mettre en perspective avec les résultats
obtenus précédemment sur le nombre de degrés de liberté du réseau, qui eux
décroissent avec la densité du réseau. Dans ce contexte, nous caractérisons le
compromis qui existe entre la diversité spatiale du milieu sans fil et le gain
de puissance atteignable dans un tel milieu, et montrons que de forts gains de
puissance ne peuvent être obtenus qu’au prix d’une réduction du nombre de
degrés de liberté.

Un autre facteur important qui impacte la capacité de réseaux sans fil est
lié aux capacités émettrices-réceptrices des noeuds. Traditionnellement, les ra-
dios sans fil travaillent en mode semi-duplex, i.e., elles ne peuvent émettre et
recevoir en même temps sur la même bande de fréquence. Toutefois, en util-
isant des techniques d’annulation d’auto-interférence, des radios travaillant en
mode duplex intégral ont vu le jour ces dernières années. Dans la dernière
partie de cette thèse, nous posons cette question fondamentale: de quel facteur
le mode duplex intégral peut-il augmenter la capacité d’un réseau sans fil? De
manière intuitive, on pourrait s’attendre à ce que le mode duplex intégral per-
mette au mieux de doubler la capacité d’un réseau, du fait que ce mode permet
une transmission et une réception simultanées. Nous montrons cependant que
ce gain de capacité peut être plus grand qu’un facteur 2; en particulier, nous
construisons une instance particulière de réseau dont la capacité en mode du-
plex intégral est le triple de celle en mode semi-duplex. Nous proposons aussi
un schéma universel de communication pour les réseaux en mode semi-duplex,
avec une unique source et une unique destination, capable d’atteindre un fac-
teur 1/4 de la capacité en mode duplex intégral de même réseau. Ceci signifie
pour ces réseaux que le mode duplex intégral ne peut au mieux que quadrupler
la capacité du réseau.
Mots-clés: réseaux sans fil ad hoc, lois d’échelle, capacité de diffusion, com-
munications à bas SNR, stratégies de gain de puissance, compromis degrés de
liberté - gain de puissance, matrices aléatoires, mode duplex intégral, mode
semi-duplex
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Résumé v
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Introduction 1
We live in a world where wireless communication networks are in the heart of all
kinds of industries and businesses, not to mention their fundamental role and
impact in our everyday lives. This fact prompted huge and profound research
work in wireless communication theory to better understand the fundamentals
of wireless technology. In fact, a better understanding of the properties of this
technology improves cellular networks and wireless LANs (local area networks),
which are examples of wireless networks, in terms of speed of communication,
quality of service, and design of such systems.

While most wireless networks rely on wired infrastructure leaving the wire-
less system as the last stage of communication, researchers put wireless systems
to the forefront of communication networks. The ease of deploying wireless sys-
tems and their mobility, to name but a few, highly appeal to the requirements
of communication networks. On the other hand, building wired infrastructure
to serve as a high capacity backbone is difficult, expensive, and lacks the flexi-
bility required by the dynamic and the highly evolving network systems. This
discussion leads us to the so called wireless ad hoc networks. These networks
rely merely on wireless communication without any wired infrastructure. An
ad hoc network is formed of a group of users, known as nodes, capable of com-
municating with each other through wireless transmission. Each node has a
certain power to transmit information to the rest of the nodes and is equiva-
lently capable of receiving information from other nodes. This communication
is carried out through a shared wireless medium without any infrastructure
assistance.

The absence of a wired backbone connecting base stations to assist the
nodes in ad hoc networks throws the burden of traffic management throughout
the network on the nodes themselves. In other words, the nodes present in
the network must organize themselves in a decentralized fashion and cooperate

1



2 Introduction

in an efficient way to best utilize the resources available in the shared wireless
medium. This requires a thorough understanding of the properties of this chan-
nel on one hand and the transmit-receive capabilities of the nodes themselves
on the other hand. Together they constitute the core of this thesis.

Concerning the properties of the shared wireless channel, we are interested
in studying the spatial diversity and the beamforming capabilities in large wire-
less networks which play a central role in analyzing the throughput of ad hoc
networks. Furthermore, regarding the transmission mode of each user, our goal
is to identify the gain, in terms of the throughput across wireless networks, of
having full-duplex nodes that can transmit and receive at the same time instead
of half-duplex nodes that cannot transmit and receive simultaneously.

While spatial diversity is determined by the spatial degrees of freedom of
the channel matrix H, the beamforming gain is dictated by the channel matrix
spectral norm ‖H‖, i.e. the largest singular value of the channel matrix H.
Consequently, a significant part of this thesis involves random matrix theory
required to provide a rigorous mathematical analysis of unconventional random
matrices, as we will see. Contrary to both spatial degrees of freedom and
beamforming gain, the transmission mode is not an innate property of the
channel model considered in the network. For this reason, in this thesis, we
analyze the impact of the user transmission mode on the throughput across
the network under simplistic point-to-point wireless transmission model, which
paves the road to broader analysis with a less restrictive assumption about the
channel model. This approach diverts the focus from the channel model to the
duplexing ability of the nodes, which reduces the problem to a combinatorial
optimization problem. Our goal is to find the maximum throughput gain one
gets from having full-duplex nodes instead of half-duplex nodes, which involves
discovering optimal schedules for the half-duplex scenario.

So we disclosed the motive behind studying the impact of the transmission
mode of the nodes in wireless networks, which will be handled in Chapter 4.
On the other hand, the analysis of spatial degrees of freedom and spectral
norm of the channel matrix aims at characterizing the optimal communication
schemes in large ad hoc networks. While the degrees of freedom of the channel
matrix proved to have a significant impact on the multiple-unicast capacity of
large wireless networks at high signal-to-noise ratio (SNR) regimes [45, 46], its
spectral norm turns out to be the other main factor affecting both the broadcast
and the multi-unicast capacity of large wireless networks at low-SNR regime.
The current dissertation concentrates on the broadcast capacity of wireless ad
hoc networks at low SNR, which was the driving force behind characterizing
the beamforming gain in wireless networks. In Chapter 2, we fully characterize
the broadcast capacity of extended1 wireless networks. Generalizing this result
to wireless networks with different sparsity, in terms of how the area of the
network relates to the number of users, will be the focus of Chapter 3, which,
as we will see, boils down to studying the tradeoff between the spatial diversity
and the beamforming gain.

1The number of the users in the network is equal to the area of the network.



1.1. Throughput Scaling in Ad Hoc Networks 3

We adopt standard notation from complexity theory; O(.), Ω(.), and Θ(.)
describe asymptotic upper, lower, and tight bounds, respectively, throughput
the current dissertation.

1.1 Throughput Scaling in Ad Hoc Networks

In the past decades, a lot of effort was put into understanding the behavior
of ad hoc networks, which requires a vivid understanding of the fundamental
capacity limits of large wireless networks. Beside the virtue they have from
the theoretical point of view, results on network capacity provide insight into
sophisticated cooperation strategies and protocol design in wireless networks,
which may alter the state-of-the-art physical-layer wireless systems that are
mostly restricted to multihop protocol relying merely on point-to-point com-
munication. While the latter simply mimics the operation of wired network
and replaces the wire between two nodes by a wireless link of certain capac-
ity, sophisticated strategies involve cooperation and coordination among mul-
tiple users in the network. Information-theoretic scaling laws, independent of
the communication strategy, manifest either the optimality of simple multihop
scheme or the urge to discover novel communication schemes that can attain
higher throughput scaling.

The seminal work [22] by Gupta and Kumar, introduced a simple yet in-
sightful model for wireless ad hoc networks with a large number of users. Al-
though their model is restricted to multihop transmission with pairwise cod-
ing and decoding, it explicitly takes into account the significant properties of
wireless networks; namely, the spatial distribution of nodes, the nature of the
wireless medium, the signal attenuation with distance, and the traffic require-
ment between the users whereby all the nodes in the network are required to
transmit at a common rate. The ultimate goal is to figure out the scaling limit
of the achievable rate as the number of nodes in the network grows. Follow-
ing this work, numerous research work was conducted to obtain scaling laws
independent of the communication protocol, which led to many interesting
yet sophisticated cooperative strategies such as network coding [7, 15, 16, 32],
hierarchical cooperation [20, 45, 46], and space-time coding [10, 50, 53].

A shallow literature review reveals diverse research directions pertaining to
the throughput analysis of large wireless networks. For instance, the authors in
[27] study the broadcast capacity of multihop wireless network as the maximum
rate at which a set of nodes generate broadcast packets in the network whereby
all nodes are required to receive the packets successfully. Another related
research direction is to consider mobile nodes, contrary to static networks where
the location of the nodes are fixed and modeled according to some process,
for instance Poisson point process as in [56]. Mobility-based routing method
[14, 21] proves to increase the per node capacity in condition that we allow
packet delay to grow arbitrarily large. This led to many interesting results
on throughput scaling under different constraints on the mobility of the nodes
or the delay to further characterize the throughput-delay tradeoff for mobile
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networks [3, 18, 34, 40, 47]. Beside the constraints on the routing protocol or the
mobility of the users in the network, other limiting factors on the broadcast
capacity can be the power available at the nodes, prompting the study of
broadcast capacity of power-constrained networks [26, 56].

1.1.1 Broadcasting in Ad Hoc Networks

The literature on the study of scaling laws in large ad hoc wireless networks con-
centrates mainly on multiple-unicast (one-to-one) transmissions (see e.g. [22,
43, 45]). This does not degrade by any means the importance of investigat-
ing multicast (one-to-many) transmissions for several reasons such as the need
of many network protocols to broadcast control signals carrying channel state
information or to enhance cooperation among nodes belonging to the same
cluster or cell. Broadcasting control signals to the entire network is indis-
pensable to all routing protocols for they assist not only in route discovery,
but also in network monitoring and maintenance [24, 27, 51]. In other words,
broadcast communication is an integral part of many multiple-unicast rout-
ing protocols, such as Dynamic Source Routing (DSR), Ad Hoc On Demand
Distance Vector (AODV), Zone Routing Protocol (ZRP), and Location Aided
Routing (LAR) [24]. Thus, despite the fact that multiple-unicast transmission
is the main service targeted in ad hoc networks, the throughput analysis of
ad hoc networks remains incomplete if we ignore the limitations imposed by
network-wide broadcast communication. For this reason, we dedicate Chapters
2 and 3 to address an a priori much easier scenario than the multiple-unicast
scenario. Instead of every source node willing to communicate each to a dif-
ferent destination node, we consider the broadcast scenario, where each source
node wishes to send some piece of information to all the other nodes in the
network.

As in the case of multiple-unicast ad hoc networks, for broadcast ad hoc
networks, the ultimate goal resides in establishing information-theoretic scal-
ing laws independent of the communication strategy. Equivalently, we are
interested in studying how source nodes can broadcast their data to the whole
network in the most efficient way. Previous works investigated the broadcast
capacity of wireless networks under specific channel models and mainly at high
SNR [25, 27, 33, 49, 51]. Of course, multiple strategies exist in this context,
but from the scaling law point of view (that is, for large networks), the simplest
communication strategy, where source nodes take turns broadcasting their mes-
sages to the entire network, can be shown to be asymptotically optimal (up to
logarithmic factors), when the power path loss is that of free space propaga-
tion. For a stronger power path loss, still at high SNR, simple multihopping
strategies also allow to achieve an asymptotically optimal broadcast capacity,
so there is not much to be discussed either in this case from the scaling law
point of view.

We address the low-SNR regime and consider the line-of-sight (LOS) prop-
agation model [36, 52] described in Sections 2.1 and 3.1. In this regime, the
power available does not allow for a source node to successfully transmit a
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message to its nearest neighbor without waiting for some amount of time in
order to spare power.

This raises an interesting question, as a naive cut-set argument upper-
bounding the broadcast capacity seems to indicate that potentially much higher
rates could be achievable in this case. As a consequence, none of the two strate-
gies described above (time-division or multihop broadcasting) is asymptotically
optimal.

This issue was first revealed in [36] in the context of one-dimensional net-
works, under the line-of-sight model. For such networks, the authors proposed
a hierarchical beamforming scheme to broadcast data to the network, which
was proven to achieve asymptotic optimal performance.

The key idea behind the scheme is that in a one-dimensional network and
under line-of-sight fading, a group of nodes sharing some common information
and using a proper precoding scheme, can beamform this information simul-
taneously to all the other nodes in the network, which allows to compensate
for the lack of available transmit power. This idea can be used recursively
to beamform information to larger and larger groups of nodes, reaching an
optimal beamforming gain at the final stage.

The generalization of this idea to two-dimensional networks is not imme-
diate. Indeed, a particular feature of one-dimensional networks is that it is
always possible for a group of nodes to beamform a given signal to all the
other nodes in the network simultaneously. In two dimensions, a full beam-
forming gain is only achievable between groups of nodes that are sufficiently
far apart from each other. This was already observed in [37], where a strategy
was developed to enhance multiple-unicast communications in wireless net-
works under the line-of-sight model. Taking inspiration from this paper, we
propose a new multi-stage back-and-forth beamforming scheme which is shown
to achieve asymptotically optimal2 performance for broadcasting information
in a two-dimensional wireless network.

1.1.2 Physical Limits in Wireless Networks

Chapters 2 and 3, as already mentioned, focus on the problem of broadcasting
information in the most efficient manner in a large two-dimensional ad hoc wire-
less network at low SNR. We propose a novel broadcast communication scheme,
where source nodes first broadcast their data to the entire network, despite the
lack of sufficient available power. The signal’s power is then reinforced via
successive back-and-forth beamforming transmissions between different groups
of nodes in the network, so that all nodes are able to decode the transmitted
information at the end. This scheme is shown to achieve asymptotically the
broadcast capacity of the network, which is expressed in terms of the largest
singular value of the matrix of fading coefficients between the nodes in the

2Technically speaking, the performance of our scheme is shown below to be asymptotically
optimal up to a mutliplicative factor nε, where ε can be taken arbitrarily small, but fixed.
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network. A detailed mathematical analysis is then presented to evaluate the
asymptotic behavior of this largest singular value.

We characterize the maximum achievable broadcast rate in a wireless net-
work at low SNR and under line-of-sight fading assumption. Our result shows
that this rate depends negatively on the sparsity of the network. This is to be
put in contrast with the number of degrees of freedom available in the network,
which have been shown previously to increase with the sparsity of the network.

Because of the inherent broadcast nature of wireless signals, managing the
interference between the multiple source-destination pairs is a key issue and has
led to various interesting proposals [1, 2, 6, 22, 38, 39, 41, 45]. In some of these
works, it appeared that the model considered for the fading environment may
substantially impact the performance of the proposed communication schemes
(see [17]). In particular, the channel diversity, both spatial and temporal, turns
out to be a key parameter for the analysis of the various schemes.

In this context, the broadcast nature of the wireless medium can only help
relaying communications, so that the situation seems simpler to handle, if not
trivial. What we show in Chapter 3 is that even in this simpler scenario,
the optimal communication performance highly depends on the nature of the
wireless medium. The conclusions we draw put again channel diversity to the
forefront. But whereas diversity was beneficial for establishing multiple paral-
lel communication channels in the multiple-unicast scenario, it turns out that
in the present case, diversity is on the contrary detrimental to a proper broad-
casting of information. A duality is further established between the number of
degrees of freedom available for multi-party communications and the beamform-
ing gain of broadcast transmissions, which allows for a better dissemination of
information. At one end, in a rich scattering environment, degrees of freedom
are prominent, while beamforming is practically infeasible. At the other end,
degrees of freedom become a scarce resource, while high beamforming gains
can be achieved via collaborative transmissions.

This discussion brings us back to the limitations physics of wave propaga-
tion impose on the throughput scaling in large ad hoc networks [17, 46]. As
much as it is important to have throughput scaling laws independent of any
communication strategy, which was first studied in [54], it is crucial to avoid
assumptions on the fading model, such as the path loss gain or the phase shifts
introduced to the transmitted signals, that defy physics laws of electromagnetic
propagation leading to non-realistic bounds on the throughput scaling. While
the authors in [17] and [46] are interested in the spatial degrees of freedom
dictated by Maxwell’s physics of wave propagation, in this dissertation we are
interested in the beamforming capabilities allowed by the very same Maxwell’s
equations.

For the multiple-unicast scenario at high SNR, having uncorrelated fading
coefficients increases the throughput across the network. In other words, ide-
ally we want the channel coefficients between the nodes to be independent in
order to achieve a linear scaling (with respect to the number of nodes) multi-
unicast throughput. The linear scaling can be achieved when the nodes form
distributed MIMO arrays through hierarchical cooperation architecture [45].
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[17] shows that this assumption is only valid if the nodes are far apart and
the density of the network is less than the inverse of the number of nodes
in the network. Otherwise, Maxwell’s propagation model establishes correla-
tion among the fading coefficients, which increases with the increase in the
density of the network above this threshold (1/n, where n is the number of
nodes). Equivalently, the spatial degrees of freedom increase as the area of
the network increases3. This realization shuffled all the cards concerning op-
timal multi-unicast strategies available and led to sparsity oriented approach
whereby networks of different sparsity may have different optimal communica-
tion strategies. This problem was put to rest in [46], where the authors show
that depending on how the area of the network4 relates to the number of nodes
(i.e. the sparsity of the network), the spatial diversity is dictated. As a conse-
quence, the authors prove that in the multi-unicast networks high-SNR regime,
while multihopping is optimal in extended networks5, sophisticated coopera-
tion schemes, such as hierarchical cooperation or MIMO-multihop schemes,
are required in sparser networks to fully exploit the spatial degrees of free-
dom available. What about the broadcast scenario? How does sparsity impact
the broadcast capacity? What about in the multi-unicast networks low-SNR
regime?

In this thesis, we show that, contrary to the multi-unicast scenario at high
SNR, correlation among fading coefficients comes in favor of broadcast capacity
at low SNR. Consequently, the denser an ad hoc network becomes the more the
nodes are required to cooperate in order to exploit the beamforming capabili-
ties in the network. The duality between the spatial degrees of freedom and the
beamforming gain is translated to the following relation: 1) in a rich scattering
environment, while for the multi-unicast scenario at high SNR the users are
asked to cooperate to exploit the spatial degrees of freedom available in the
network, for the broadcast scenario at low SNR multihopping is optimal. 2)
in a poor scattering environment, while for the multi-unicast scenario at high
SNR multihopping is optimal, for the broadcast scenario at low SNR the users
are required to cooperate to exploit the correlation among the fading coeffi-
cients. An interesting scenario, previously studied in [35], that may require the
cooperation among the nodes available in the network in both rich and poor
scattering environments is the multi-unicast scenario at low SNR, which is out
of the scope of the current dissertation.

1.2 Full-Duplex vs Half-Duplex

Consider a wireless network where information is relayed with the help of many
intermediate relay nodes. In common practice, these relays are half-duplex, i.e.
they cannot transmit and receive at the same time over the same frequency

3Note that the users are randomly and uniformly distributed over a square area.
4For simplicity, we do not mention the carrier wavelength.
5Needless to say that multihopping is optimal not only in extended networks but in

denser networks as well.
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band. Over the recent years however, full-duplex relays have become increas-
ingly viable. These full-duplex relays can transmit and receive at the same time
and intuitively can be expected to double the capacity of wireless networks. In
Chapter 4, we show that the capacity gain can indeed be larger than a factor of
2. We construct a specific instance of a wireless network and show that its full-
duplex capacity (the capacity of the network when relays were full-duplex) is
3 times its half-duplex capacity (the capacity of the same network when relays
are half-duplex). This is a single-source single-destination network consisting
of a long chain of orthogonal channels.

A natural follow-up question is whether there are wireless networks where
the ratio between the full-duplex and the half-duplex capacity can be even
larger than 3, possibly increasing unboundedly with the size of the network.
Answering this question requires one to either construct instances of wireless
networks where the gain is even larger or prove universal upper bounds on
the capacity gain with full-duplex operation. To this end, we show in this
dissertation that for wireless networks composed of independent, memoryless,
point-to-point channels the capacity gain provided by full-duplex operation
cannot be larger than a factor of 4.

While various works in the literature have considered the approximation
of the capacity of half-duplex networks [8, 44], the complexity of half-duplex
scheduling [5, 9], and the computational complexity of computing capacity
[4], we are not aware of any works that tackle the question we consider: how
much can full-duplex operation help to increase the capacity of wireless net-
works? Chapter 4 formulates this question and provides an example which
demonstrates that the correct answer is not the intuitive one. Our discussion
is mostly restricted to a single-source single-destination network with orthogo-
nal noisy (AWGN) channels, but the question we raise can be studied in much
more generality for networks with multiple source-destination pairs and with
channel models that incorporate wireless broadcast and superposition.



Broadcast Capacity Scaling of
Large Wireless Networks at Low
SNR 2
In this chapter, we fully characterize the broadcast capacity of wireless networks
with density 1; a network of area A = n contains n users. We address the low-
SNR regime and consider the line-of-sight (LOS) propagation model ([36, 52])
described in Sections 2.1. In this regime, the power available does not allow
for a source node to successfully transmit a message to its nearest neighbor
without waiting for some amount of time in order to spare power.

We give a detailed description of the broadcast scheme in Section 2.2, as
well as a proof of its optimality in Section 2.3. The proof of optimality is
done in two steps. We first provide a general upper bound on the broadcast
capacity of wireless networks (see Theorem 2.3.1), whose expression involves
the matrix made of fading coefficients between the nodes in the network. We
then proceed to characterize the broadcast capacity of two-dimensional wireless
networks under LOS model, by obtaining an asymptotic upper bound on the
largest singular value of the above mentioned matrix. This result is of interest
in its own right, as such matrices have not been previously studied in the
mathematical literature. In particular, there is much less randomness in such a
matrix than in classically studied random matrices. We propose here a recursive
method to upper bound its largest singular value.

2.1 Model

There are n nodes uniformly and independently distributed in a square of area
A = n, so that the node density remains constant as n increases. Every node
wants to broadcast a different message to the whole network, and all nodes want
to communicate at a common per user data rate rn bits/s/Hz. We denote by
Rn = n rn the resulting aggregate data rate and will often refer to it simply
as “broadcast rate” in the sequel. The broadcast capacity of the network,

9
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denoted as Cn, is defined as the maximum achievable aggregate data rate Rn.
We assume that communication takes place over a flat channel with bandwidth
W and that the signal Yj [m] received by the j-th node at time m is given by

Yj [m] =
∑
k∈T

hjkXk[m] + Zj [m],

where T is the set of transmitting nodes, Xk[m] is the signal sent at time
m by node k and Zj [m] is additive white circularly symmetric Gaussian noise
(AWGN) of power spectral density N0/2 Watts/Hz. We also assume a common
average power budget per node of P Watts, which implies that the signal Xk

sent by node k is subject to an average power constraint E(|Xk|2) ≤ P . In
line-of-sight environment, the complex baseband-equivalent channel gain hjk
between transmit node k and receive node j is given by

hjk =
√
G

exp(2πirjk/λ)

rjk
, (2.1)

where G is Friis’ constant, λ is the carrier wavelength, and rjk is the distance
between node k and node j. Let us finally define

SNRs =
GP

N0W
,

which is the SNR available for a communication between two nodes at distance
1 in the network.

It should be noticed that the above line-of-sight model departs from the
traditional assumption of i.i.d. phase shifts in wireless networks. The latter as-
sumption is usually justified by the fact that inter-node distances are in practice
much larger than the carrier wavelength, implying that the numbers 2πrjk/λ
can be roughly considered as i.i.d. This approximation was however shown in
[17] to be inaccurate in the setting considered in our work. A second remark
is that no multipath fading is considered here, which would probably reduce in
practice the efficiency of the strategy proposed in the following paragraph.

We focus in the following on the low-SNR regime, by which we mean, as in
[36], that SNRs = n−γ for some constant γ > 0. This means that the power
available at each node does not allow for a constant rate direct communication
with a neighbor. It is important to note here that making the assumption that
the SNR decays as a inverse power of the number of nodes is key to uncover
the fact that plain time-division fails to be optimal at low SNR. This type of
assumption was already made in previous contributions regarding the multiple
unicast problem (see in particular [42, 48]), leading to similarly interesting
conclusions.

In order to simplify notation, we choose new measurement units such that
λ = 1 and G/(N0W ) = 1 in these units. This allows us to write in particular
that SNRs = P .
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2.2 Back-and-Forth Beamforming Strategy

First note that under LOS model (2.1) and the assumptions made in the pre-
vious section, the time division scheme described in the introduction achieves
a broadcast (aggregate) rate Rn of order min(P, 1). Indeed, a rate of order 1
is obviously achieved at high SNR1. At low SNR (i.e. when P ∼ n−γ for some
γ > 0), each node can spare power while the others are transmitting, so as to
compensate for the path loss of order 1/n between the source node and other
nodes located at distance at most

√
2n, leading to a broadcast rate of order

Rn ∼ log(1 + nP/n) ∼ P . As we will see, this broadcast rate is not optimal at
low SNR.

In the following, we propose a new broadcasting scheme that will prove to be
order-optimal. In this new scheme, source nodes still take turns broadcasting
their messages, but each transmission is followed by a series of network-wide
back-and-forth transmissions that reinforce the strength of the signal, so that
at the end, every node is able to decode the message sent from the source.

The reason why back-and-forth transmissions are useful here is that in line-
of-sight environment, nodes are able to (partly) align the transmitted signals
so as to create a significant beamforming gain for each transmission (whereas
this would not be the case in high scattering environment with i.i.d. fading
coefficients).

In what follows, we describe the scheme used to broadcast the message of a
given source node to the entire network. In other words, the scheme described
below is repeated n times to ensure the broadcast of the message of each and
every node to the entire network.

Scheme Description.

The scheme is split into two phases:

Phase 1. Broadcast Transmission. The source node broadcasts its
message to the whole network. All the nodes receive a noisy version of the
signal in this phase, which remains undecoded. This phase only requires one
time slot.

Phase 2. Back-and-Forth Beamforming with Time Division. Let
us first present here an idealized version of this second phase: upon receiv-
ing the signal from the broadcasting node, nodes start multiple back-and-forth
beamforming transmissions between the two halves of the network, in order
to enhance the strength of the signal. Although this simple scheme probably
achieves the optimal performance claimed in Theorem 2.2.1 below, we lack
the analytical tools to prove it. We therefore propose a time-division strategy,

where clusters of size M = n1/4

2c1
× n1/2

4 and separated by horizontal distance

d = n1/2

4 pair up for the back-and-forth transmissions, as illustrated on Fig. 2.1.

During each transmission, there are Θ
(
n1/4−ε) cluster pairs operating in par-

allel (see (2.2)), so Θ(n1−ε) nodes are communicating in total. The number of
rounds needed to serve all nodes must therefore be Θ(nε).

1We coarsely approximate logP by 1 here!
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s

Figure 2.1 –
√
n ×
√
n network divided into clusters of size M = n1/4

2c1
× n1/2

4 .
Two clusters of size M placed on the same horizontal line and separated by

distance d = n1/2

4 pair up and start back-and-forth beamforming. The vertical

separation between adjacent cluster pairs is c2n
1/4+ε.

After each transmission, the signal received by a node in a given clus-
ter is the sum of the signals coming from the facing cluster, of those coming
from other clusters, and of the noise. We assume a sufficiently large vertical
distance c2n

1/4+ε separating any two adjacent cluster pairs, as illustrated on
Fig. 2.1. We show below that the broadcast rate between the operating clusters
is Θ(n

1
2P ). Since we only need Θ(nε) number of rounds to serve all clusters,

phase 2 requires Θ(n−
1
2 +εP−1) time slots per bit. As such, back-and-forth

beamforming achieves a broadcast rate of Θ(n
1
2−εP ) bits per time slot.

In view of the described scheme, we are able to state the following result.

Theorem 2.2.1. For any ε > 0 and P = O(n−
1
2 ), the following broadcast rate

Rn = Ω
(
n

1
2−εP

)
is achievable with high probability2 in the network. As a consequence, when
P = Ω(n−

1
2 ), a broadcast rate Rn = Ω(n−ε) is achievable with high probability.

The broadcast rate achieved by our scheme outperforms therefore plain
time-division in a large network. Interestingly, Theorem 2.2.1 also says that
our scheme requires asymptotically less power to achieve the same performance
as plain time-division. In a large network, this could allow for example to send
control signals or channel state information at low cost in the network, without
hurting other transmissions.

2that is, with probability at least 1−O
(

1
np

)
as n→∞, where the exponent p is as large

as we want.
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Before proceeding with the proof of the theorem, the following lemma pro-
vides an upper bound on the probability that the number of nodes inside each
cluster deviates from its mean by a large factor. Its proof can be found in [35],
but is also provided in Appendix 2.A for completeness.

Lemma 2.2.2. Let us consider a cluster of area M with M = nβ for some
0 < β < 1. The number of nodes inside each cluster is then between ((1 −
δ)M, (1 + δ)M) with probability larger than 1 − n

M exp(−∆(δ)M) where ∆(δ)
is independent of n and satisfies ∆(δ) > 0 for δ > 0.

As shown in Fig. 2.1, two clusters of size M = n1/4

2c1
× n1/2

4 placed on the

same horizontal line and separated by distance d = n1/2

4 form a cluster pair.
During the back-and-forth beamforming phase, there are many cluster pairs

operating simultaneously. Given that the cluster width is n1/4

2c1
and the vertical

separation between adjacent cluster pairs is c2n
1/4+ε, there are

NC =
n1/2

n1/4

2c1
+ c2n1/4+ε

= Θ
(
n1/4−ε

)
(2.2)

cluster pairs operating at the same time. Let Ri and Ti denote the receiving
and the transmitting clusters of the i-th cluster pair, respectively.

Two key ingredients for analyzing the multi-stage back-and-forth beam-
forming scheme are given in Lemma 2.2.3 and Lemma 2.2.4. The proofs are
presented in Appendix 2.A.

Lemma 2.2.3. The maximum beamforming gain between the two clusters of
the i-th cluster pair can be achieved by using a compensation of the phase shifts
at the transmit side which is proportional to the horizontal positions of the
nodes. More precisely, there exist a constant c1 > 0 (remember that c1 is
inversely proportional to the width of i-th cluster) and a constant K1 > 0 such
that the magnitude of the received signal at node j ∈ Ri is lower bounded with
high probability by ∣∣∣∣∣∑

k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≥ K1
M

d
,

where xk denotes the horizontal position of node k.

Lemma 2.2.4. For every constant K2 > 0, there exists a sufficiently large
separating constant c2 > 0 such that the magnitude of interfering signals from
the simultaneously operating cluster pairs at node j ∈ Ri is upper bounded with
high probability by∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤ K2
M

dnε
log n.
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Proof of Theorem 2.2.1. The first phase of the scheme results in noisy obser-
vations of the message X at all nodes, which are given by

Y
(0)
k =

√
SNRkX + Z

(0)
k ,

where E(|X|2) = E(|Z(0)
k |2) = 1 and SNRk is the signal-to-noise ratio of the

signal Y
(0)
k received at the k-th node before the back-and-forth beamforming

starts (time (0) of the back-and-forth beamforming, denoted by the superscript

(0) in the variables Y
(0)
k and Z

(0)
k ). In what follows, we drop the index k from

SNRk and only write SNR = mink{SNRk}. Note that it does not make a
difference at which side of the cluster pairs the back-and-forth beamforming
starts or ends. Hence, assume the left-hand side clusters ignite the scheme by
amplifying and forwarding the noisy observations of X to the right-hand side
clusters. The signal received at node j ∈ Ri (denoted by the subscript) after
the 1st cluster-to-cluster transmission (denoted by the superscript (1)) is given
by

Y
(1)
j =

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
AY

(0)
k + Z

(1)
j (2.3)

where A is the amplification factor (to be calculated later) and Z
(1)
j is additive

white Gaussian noise of variance Θ(1). We start by applying Lemma 2.2.3 and
Lemma 2.2.4 to lower bound

∣∣∣∣∣
NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≥
∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣
−

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≥
(
K1 −K2

log n

nε

)
M

d
= Θ

(
M

d

)
.

For the sake of clarity, we can therefore approximate3 the expression in (2.3)

3We make this approximation to lighten the notation and make the exposition clear, but
needless to say, the whole analysis goes through without the approximation; it just becomes
barely readable.
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as follows

Y
(1)
j =

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
A
√

SNRkX

+

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
AZ

(0)
k + Z

(1)
j

' AM

d

√
SNRX +

A
√
NCM

d
Z(0) + Z

(1)
j

=
AM

d

√
SNRX +

AM

d

√
NC
M

Z(0) + Z
(1)
j ,

where

Z(0) =
d√
NCM

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
Z

(0)
k .

Note that E(|Z(0)|2) = Θ(1). Repeating the same process t times (denoted by
the superscript (t)) in a back-and-forth manner results in a final signal at node
j ∈ Ri in the left or the right cluster (depending on whether t is odd or even)
that is given by

Y
(t)
j =

(
AM

d

)t√
SNRX +

(
AM

d

)t√
NC
M

Z(0)

+ . . .+

(
AM

d

)t−s√
NC
M

Z(s) + . . .+ Z
(t)
j ,

where for 0 ≤ s ≤ t− 1,

Z(s) =
d√
NCM

NC∑
b=1

∑
k∈Tb

exp(2πi(rjk − xk))

rjk
Z

(s)
k .

Note again that for 0 ≤ s ≤ t − 1, E(|Z(s)|2) = Θ(1), and Z
(t)
j is additive

white Gaussian noise of variance Θ(1). Finally, note that the reason behind
the amplification of the noise at each beamforming cycle by a factor AM

d is
Lemma 2.2.4 which ensures an upper bound on the beamforming gain of the
noise signals, i.e.,∣∣∣∣∣

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≤
∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣
+

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≤
(

1 +K2
log n

nε

)
M

d
.
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(notice indeed that the first term in the middle expression∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≤ M

d
,

because it contains M terms, all less than 1/d). Now, we want the power of
the signal to be of order 1, that is:

E

((AM
d

)t√
SNRX

)2
 =

(
AM

d

)2t

SNR = Θ(1) (2.4)

⇒ A = Θ

(
d

M
SNR−

1
2t

)
.

Since at each round of TDMA cycle there are Θ(NCM) nodes transmitting,
then every node will be active Θ

(
NCM
n

)
fraction of the time. As such, the

amplification factor is given by

A = Θ

(√
n

NCM
τP

)
,

where τ is the number of time slots between two consecutive transmissions, i.e.
every τ time slots we have one transmission. Therefore, we have

A = Θ

(
d

M
SNR−

1
2t

)
= Θ

(√
n

NCM
τP

)
⇒ τ = Θ

(
NC d

2

nM P
SNR−

1
t

)
.

We can pick the number of back-and-forth transmissions t sufficiently large to

ensure that SNR−
1
t = O(nε), which results in

τ = O

(
1

n1/2P

)
.

Moreover, the noise power is given by

t−1∑
s=0

E

((AM
d

)t−s√
NC
M

Z(s)

)2
+ E

((
Z

(t)
j

)2
)

≤ tE

((AM
d

)t√
NC
M

Z(0)

)2
+ 1

≤ t
(
AM

d

)2t
NC
M

+ 1

(a)

≤ t+ 1 = Θ(1),
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where (a) holds if and only if SNR = Ω(NC/M) = Ω(n−1/2−ε) (check eq.
(2.4)), which is true: Distance separating any two nodes in the network is at
most

√
2n, which implies that the SNR of the received signal at all the nodes

in the network is Ω(n−1/2).
Given that the required τ = O

(
1

n1/2P

)
, we can see that for P = O(n−1/2)

the broadcast rate between simultaneously operating clusters is Ω(n1/2P ). Fi-
nally, applying TDMA of n

NCM
= Θ(nε) steps ensures that X is successfully

decoded at all nodes and the broadcast rate Rn = Ω
(
n1/2−εP

)
.

As a last remark, let us mention that the consequence stated in the theorem
for the regime where more power is available at the transmitters is an obvious
one: by simply reducing the amount of power used at each node to exactly
n−1/2 ≤ P , one achieves the following broadcast rate, using the first part of
the theorem:

Rn = Ω
(
n

1
2−ε n−

1
2

)
= Ω

(
n−ε

)
.

This completes the proof of the theorem.

2.3 Optimality of the Scheme

In this section, we first establish a general upper bound on the broadcast capac-
ity of wireless networks at low SNR, which applies to a general fading matrix
H (with proper measurement units such that again, SNRs = P in these units).

Theorem 2.3.1. Let us consider a network of n nodes and let H be the n×n
matrix with hjj = 0 on the diagonal and hjk = the fading coefficient between
node j and node k in the network. The broadcast capacity of such a network
with n nodes is then upper bounded by

Cn ≤ P ‖H‖2

where P is the power available per node and ‖H‖ is the spectral norm (i.e. the
largest singular value) of H.

Proof. Using the classical cut-set bound [11, Theorem 15.10.1], the following
upper bound on the broadcast capacity Cn is obtained:

Cn ≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj |Xj).

Moreover, we have

I(X{1,...,n}\{j}, Xj ;Yj) = I(X{1,...,n}\{j};Yj) + I(Xj ;Yj |X{1,...,n}\{j})
(a)
= I(X{1,...,n}\{j};Yj)

= I(Xj ;Yj) + I(X{1,...,n}\{j};Yj |Xj)

(b)

≥ I(X{1,...,n}\{j};Yj |Xj),
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where (a) follows from the fact that Xj − X{1,...,n}\{j} − Yj forms a Markov
chain, which means that I(Xj ;Yj |X{1,...,n}\{j}) = 0, and (b) follows from the
fact that I(Xj ;Yj) ≥ 0. Therefore, we get

Cn ≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj |Xj)

≤ max
pX :

E(|Xk|2)≤P, ∀1≤k≤n

min
1≤j≤n

I(X{1,...,n}\{j};Yj)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

min
1≤j≤n

log(1 + hjQXh
†
j)

where hj = (hj1, . . . , hj,j−1, 0, hj,j+1, . . . , hjn), as the joint distribution pX
maximizing the above expression is clearly Gaussian. Using then the fact that
the minimum of a set of numbers is less than its average, the above expression
can be further bounded by

Cn ≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n

n∑
j=1

log(1 + hjQXh
†
j)

= max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n

n∑
j=1

log det(In + h†jhjQX)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

log det

In +
1

n

n∑
j=1

h†jhjQX


using successively the property that log det(I + AB) = log det(I + BA) and
the fact that log det(·) is concave. Observing now that the n × n matrix H
whose entries are given by hjk = (hj)k is the one in the theorem statement

and that
∑n
j=1 h

†
jhj = H†H, we can rewrite, using again log det(I + AB) =

log det(I +BA):

Cn ≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

log det

(
In +

1

n
HQXH

†
)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n
Tr(HQXH

†)

≤ max
QX≥0

(QX)kk≤P, ∀1≤k≤n

1

n
Tr(QX) ‖H‖2 = P ‖H‖2

where the last inequality follows from the fact that Tr(BAB†) ≤ ‖B‖2Tr(A),
for any matrix B and A ≥ 0. This completes the proof.

We now aim to specialize Theorem 2.3.1 to line-of-sight fading, where the
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matrix H is given by

hjk =

0 if j = k
exp(2πirjk)

rjk
if j 6= k.

(2.5)

The rest of the section is devoted to proving the proposition below which,
together with Theorem 2.3.1, shows the asymptotic optimality of the back-
and-forth beamforming scheme presented in Section 2.2 for two-dimensional
networks at low SNR and under LOS fading. It is also worth mentioning that
for a one-dimensional network in LOS environment, Theorem 2.3.1 allows to
recover the result already obtained in [36].

Proposition 2.3.2. Let H be the n×n matrix given by (2.5). For every ε > 0,
there exists a constant c > 0 such that

‖H‖2 ≤ c n 1
2 +ε

with high probability as n gets large.

Analyzing directly the asymptotic behavior of ‖H‖ reveals itself difficult.
We therefore decompose our proof into simpler subproblems. The first building
block of the proof is the following Lemma, which can be viewed as a general-
ization of the classical Geršgorin discs’ inequality.

Lemma 2.3.3. Let B be an n × n matrix decomposed into blocks Bjk, j, k =
1, . . . ,K, each of size M ×M , with n = KM . Then

‖B‖ ≤ max

{
max

1≤j≤K

K∑
k=1

‖Bjk‖, max
1≤j≤K

K∑
k=1

‖Bkj‖

}

The proof of this Lemma is relegated to Appendix 2.A. The second building
block of this proof is the following lemma, the proof of which is also given in
Appendix 2.A.

Lemma 2.3.4. Let Ĥ be the M×M channel matrix between two square clusters
of M nodes distributed uniformly at random, each of area A = M . Then there
exists a constant c > 0 such that

‖Ĥ‖2 ≤ c M
1+ε

d

with high probability as M gets large, where 2
√
M ≤ d ≤ M denotes the dis-

tance between the centers of the two clusters.

Proof of Proposition 2.3.2. The strategy for the proof is now the following: in
order to bound ‖H‖, we divide the matrix into smaller blocks, apply Lemma
2.3.3 and Lemma 2.3.4 in order to bound the off-diagonal terms ‖Hjk‖. For
the diagonal terms ‖Hjj‖, we reapply Lemma 2.3.3 and proceed in a recursive
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Figure 2.2 –
√
n ×
√
n network split into K clusters and numbered in order.

As such, Rj = {j−
√
K− 1, j−

√
K, j−

√
K+ 1, j− 1, j, j+ 1, j+

√
K− 1, j+√

K, j +
√
K + 1}, which represents the center square containing the cluster j

and its 8 neighbors (marked in shades).

manner, until we reach small size blocks for which a loose estimate is sufficient
to conclude. Let us therefore decompose the network into K clusters of M
nodes each, with n = KM . By Lemma 2.3.3, we obtain

‖H‖ ≤ max

{
max

1≤j≤K

K∑
k=1

‖Hjk‖, max
1≤j≤K

K∑
k=1

‖Hkj‖

}
, (2.6)

where the n × n matrix H is decomposed into blocks Hjk, j, k = 1, . . . ,K,
with Hjk denoting the M ×M channel matrix between cluster number j and
cluster number k in the network. Let us also denote by djk the corresponding
inter-cluster distance, measured from the centers of these clusters. According
to Lemma 2.3.4, if djk ≥ 2

√
M , then there exists a constant c > 0 such that

‖Hjk‖2 ≤ c
M1+ε

djk
≤ c nε M

djk

with high probability as M →∞.

Let us now fix j ∈ {1, . . . ,K} and define Rj = {1 ≤ k ≤ K : djk < 2
√
M}

and Sj = {1 ≤ k ≤ K : djk ≥ 2
√
M} (see Fig. 2.2). By the above inequality,

we obtain
K∑
k=1

‖Hjk‖ ≤
∑
k∈Rj

‖Hjk‖+
√
c nε

∑
k∈Sj

√
M

djk

with high probability as M gets large. Observe that as there are 8l clusters or
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less at distance l
√
M from cluster j, we obtain

∑
k∈Sj

√
M

djk
≤

√
K∑

l=2

8l

√
M

l
√
M

= O
(
M1/4K3/4

)
= O

(
n3/4

M1/2

)
as K = n/M . There remains to upper bound the sum over Rj . Observe
that this sum contains at most 9 terms: namely the term k = j and the 8
terms corresponding to the 8 neighboring clusters of cluster j. It should then
be observed that for each k ∈ Rj , ‖Hjk‖ ≤ ‖H(Rj)‖, where H(Rj) is the
9M ×9M matrix made of the 9×9 blocks Hj1,j2 such that j1, j2 ∈ Rj . Finally,
this leads to

K∑
k=1

‖Hjk‖ ≤ 9‖H(Rj)‖+
√
c nε

n3/4

M1/2

Using the symmetry of this bound and (2.6), we obtain

‖H‖ ≤ 9 max
1≤j≤K

‖H(Rj)‖+
√
c nε

n3/4

M1/2
. (2.7)

A key observation is now the following: the 9M × 9M matrix H(Rj) has
exactly the same structure as the original matrix H. So in order to bound its
norm ‖H(Rj)‖, the same technique may be reused! This leads to the following
recursive Lemma.

Lemma 2.3.5. Assume there exist constants c > 0 and b ∈ [1/4, 1/2] such
that

‖H‖ ≤
√
c nε nb

with high probability as n gets large. Then there exists a constant c′ > 0 such
that

‖H‖ ≤
√
c′ nε nf(b)

with high probability as n gets large, where f(b) = 3b
4b+2 < b.

Proof. The assumption made implies that there exist c > 0 and b ∈ [1/4, 1/2]
such that for every M ×M diagonal sub-block HM of the matrix H,

‖HM‖ ≤
√
cM ε M b ≤

√
c nε M b

with high probability as M gets large. Together with (2.7), this implies that

‖H‖ ≤ 9
√
c nε M b +

√
c nε

n3/4

M1/2

= 10
√
c nε

(
M b +

n3/4

M1/2

)
Choosing M = bn3/(4b+2)c, we obtain

‖H‖ ≤
√
c′ nε n3b/(4b+2).
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Besides, it is easy to check that the assumption of Lemma 2.3.5 holds with
b = 1/2. Apply for this the slightly modified version of the classical Geršgorin
inequality (which is nothing but the statement of Lemma 2.3.3 applied to the
case M = 1):

‖H‖ ≤ max

{
max

1≤j≤n

n∑
k=1

|hjk|, max
1≤j≤n

n∑
k=1

|hkj |

}
= max

1≤j≤n

n∑
k=1
k 6=j

1

rjk

For any 1 ≤ j ≤ n, it holds with high probability that for c large enough,

n∑
k=1
k 6=j

1

rjk
≤

√
n∑

l=1

(cl log n)
1

l
= O(

√
n log n)

which implies that ‖H‖ = O
(√

n1+ε
)

for any ε > 0.

By applying Lemma 2.3.5 successively, we obtain a decreasing sequence of
upper bounds on ‖H‖:

‖H‖ ≤
√
c nε nb0 , ≤

√
c nε nb1 , ≤

√
c nε nb2

where the sequence b0 = 1/2, b1 = f(b0) = 3b0/(4b0 + 2) = 3/8, b2 = f(b1) =
3b1/(4b1 + 2) = 9/28 converges to the fixed point b∗ = f(b∗) = 1/4 (as f is
strictly increasing on [ 1

4 ,
1
2 ] and f(b) < b for every 1

4 < b ≤ 1
2 ). This finally

proves Proposition 2.3.2.

2.4 Summary

In this chapter, we characterize the broadcast capacity of two-dimensional wire-
less networks, specifically extended networks of area A = n, at low SNR in
line-of-sight environment, which is achieved via a back-and-forth beamforming
scheme. We show that the broadcast capacity is upper bounded by the total
power transfer in the network, which in turn is equal to P ‖H‖2. We present a
detailed analysis of the largest singular value of the fading matrix H. We fur-
ther present a practical broadcasting scheme that guarantees the total power
transfer throughout the network. This scheme relies on back-and-forth beam-
forming among clusters through multiple stage time division channel accesses.
In other words, this chapter can be summarized, combining Theorem 2.2.1,
Theorem 2.3.1, and Proposition 2.3.2, in the following Theorem.

Theorem 2.4.1. Under line-of-sight model assumption, the aggregate broad-
cast capacity in a network of n nodes, area A = n, and carrier wavelength
λ = 1, scales as

Cn ∼ min{
√
nP, 1}

up to a multiplicative factor nε, for any fixed ε > 0.
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Figure 2.3 – Coordinate system.

2.A Appendix

Proof of Lemma 2.2.2. The number of nodes in a given cluster is the sum of n
independently and identically distributed Bernoulli random variables Bi, with
P(Bi = 1) = M/n. Hence

P

(
n∑
i=1

Bi ≥ (1 + δ)M

)

= P

(
exp

(
s

n∑
i=1

Bi

)
≥ exp(s(1 + δ)M)

)
≤ En(exp(sB1)) exp(−s(1 + δ)M)

=

(
M

n
exp(s) + 1− M

n

)n
exp(−s(1 + δ)M)

≤ exp(−M(s(1 + δ)− exp(s) + 1)) = exp(−M∆+(δ))

where ∆+(δ) = (1 + δ) log(1 + δ) − δ by choosing s = log(1 + δ). The proof
of the lower bound follows similarly by considering the random variables −Bi.
The conclusion follows from the union bound.

Proof of Lemma 2.2.3. We present lower and upper bounds on the distance rjk
separating a receiving node j ∈ Ri and a transmitting node k ∈ Ti. Denote by
xj , xk, yj , and yk the horizontal and the vertical positions of nodes j and k,
respectively (as shown in Fig. 2.3). An easy lower bound on rjk is

rjk ≥ xk + xj + d

On the other hand, using the inequality
√

1 + x ≤ 1 + x
2 , we obtain

rjk =
√

(xk + xj + d)2 + (yj − yk)2

= (xk + xj + d)

√
1 +

(yj − yk)2

(xk + xj + d)2

≤ xk + xj + d+
(yj − yk)2

2d
≤ xk + xj + d+

1

2c21
.
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Therefore,

0 ≤ rjk − xk − xj − d ≤
1

2c21
.

After bounding rjk, we can proceed to the proof of the lemma as follows:∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk − xj − d))

rjk

∣∣∣∣∣
≥ <

(∑
k∈Ti

exp(2πi(rjk − xk − xj − d))

rjk

)

≥
∑
k∈Ti

cos
(
π
c21

)
rjk

≥ K1
M

d
,

where the constant c1 is chosen sufficiently large so that cos
(
π
c21

)
> 0.

Proof of Lemma 2.2.4. There areNC clusters transmitting simultaneously. Ex-
cept for the horizontally adjacent cluster of a given cluster pair (i-th cluster
pair), all the rest of the transmitting clusters are considered as interfering clus-
ters (there are NC − 1 of them). With high probability, each cluster contains
Θ(M) nodes.

For the sake of clarity, we assume here that every cluster contains exactly
M nodes, but the argument holds in the general case. In this lemma, we upper
bound the magnitude of interfering signals from the simultaneously interfering
clusters at node j ∈ Ri as follows∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≤

NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

exp(2π(rjk − xk))

rjk

∣∣∣∣∣
≤

NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

cos(2π(rjk − xk))

rjk

∣∣∣∣∣+

NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

sin(2π(rjk − xk))

rjk

∣∣∣∣∣
≤ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣+ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

sin(2π(rjk − xk))

rjk

∣∣∣∣∣∣
where T ′l denotes the l-th interfering transmit cluster that is at a vertical

distance of (l − 1)n
1/4

2c1
+ lc2n

1/4+ε from the desired receiving cluster Ri. Note

that there are at most two clusters that are at a vertical distance of (l−1)n
1/4

2c1
+
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lc2n
1/4+ε from the receiving cluster. We further upper bound the first term

(cosine terms) in the equation above as follows (notice that we can upper bound
the second term (sine terms) in exactly the same fashion):∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k∈T ′l

X
(l)
k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))
+
∑
k∈T ′l

E
(
X

(l)
k

)∣∣∣∣∣∣
(a)

≤

∣∣∣∣∣∣
∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
k∈T ′l

E
(
X

(l)
k

)∣∣∣∣∣∣
(b)
= M

∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣+M
∣∣∣E(X(l)

1

)∣∣∣
(2.8)

where (a) follows from the triangle inequality and (b) results from the fact that

the X
(l)
k ’s (note that X

(l)
k = (cos(2π(rjk−xk)))/(rjk) ∀k ∈ T ′l ) are independent

and identically distributed. Let us first upper bound the second term in (2.8):
∀k ∈ T ′l , we have

|rjk − xk| =
√

(xk + xj + d)2 + (yj − yk)2 − xk ≥ d =
n1/2

4

is a C2 function and∣∣∣∣∂ (rjk − xk)

∂yk

∣∣∣∣ =

∣∣∣∣∂ rjk∂yk

∣∣∣∣ =
|yk − yj |
rjk

≥
l c2 n

1/4+ε + (l − 1) n
1/4

2c1

n1/2

≥ l c2 n−1/4+ε

Moreover, r′′jk changes sign at most twice. By the integration by parts formula,
we obtain∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

=

∫ yk1

yk0

dyk
2πr′jk

2πr′jkrjk
cos(2π(rjk − xk))

=
− sin(2π(rjk − xk))

2πr′jkrjk

∣∣∣∣yk1

yk0

+
1

2π

∫ yk1

yk0

dyk
rjkr

′′
jk + (r′jk)2

(r′jkrjk)2
sin(2π(rjk − xk))
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which in turn yields the upper bound∣∣∣∣∣
∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

∣∣∣∣∣
≤ 1

2π

(
2

minyk{|r′jk||rjk|}
+

∫ yk1

yk0

dyk
|r′′jk|

(r′jk)2|rjk|
+

∫ yk1

yk0

dyk
1

r2
jk

)

≤ 1

2π

(
4

l c2 n1/4+ε
+

1

minyk{|rjk|}

∫ yk1

yk0

dyk
|r′′jk|

(r′jk)2
+
|yk1 − yk0|
minyk{r2

jk}

)

≤ 1

2π

(
4

l c2 n1/4+ε
+

4

l c2 n1/4+ε
+

2

n3/4

)
≤ 9/(2π)

l c2 n1/4+ε
.

Therefore, for any k ∈ T ′l ,

∣∣∣∣E(X(l)
k

) ∣∣∣∣ =

∣∣∣∣∣∣ 4

n1/2

∫ n1/2

4

0

dxk
1

|yk1 − yk0|

∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣
≤ 4

n1/2 |yk1 − yk0|

∫ n1/2

4

0

dxk

∣∣∣∣∣
∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

∣∣∣∣∣
≤ 9/(2π)

|yk1 − yk0| l c2 n1/4+ε
≤ 9c1
πc2

1

l n1/2+ε
≤ 9c1
πc2

1

l d nε
. (2.9)

We further upper bound the first term in (2.8) by using Hoeffding’s inequality

[23]. Note that the X
(l)
k ’s are i.i.d. and integrable random variables such that

for any 1 ≤ l ≤ NC and ∀k ∈ T ′l , we have X
(l)
k ∈ [−1/d, 1/d]. As such,

Hoeffding’s inequality yields

P

∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣ > t

 ≤ 2 exp

(
−M t2

2/d2

)

= 2 exp

(
−1

2
M d2 t2

)
(a)
= 2 exp(−nε),

where (a) holds if t = 1
d

√
2nε

M . Therefore, we have

∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣ ≤ 1

d

√
2nε

M
(2.10)
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with probability ≥ 1− 2 exp(−nε). Combining (2.9) and (2.10), we can upper
bound (2.8) as follows∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣ ≤M
∣∣∣∣∣∣ 1

M

∑
k∈T ′l

(
X

(l)
k − E

(
X

(l)
k

))∣∣∣∣∣∣+M
∣∣∣E(X(l)

1

)∣∣∣
≤ M

d

√
2nε

M
+

9c1
πc2

M

l dnε
.

Finally, we have∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≤ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣+ 2

NC∑
l=1

∣∣∣∣∣∣
∑
k∈T ′l

sin(2π(rjk − xk))

rjk

∣∣∣∣∣∣
(a)

≤ 4

NC∑
l=1

(
M

d

√
2nε

M
+

9c1
πc2

M

l dnε

)

≤ 4
√

2
NC
√
nεM

d
+

36c1
πc2

M

dnε
log n

≤
(

4
√

2
NC n

3ε/2

√
M log n

+
36c1
πc2

)
M

dnε
log n

=

(
Θ

(
n1/4−εn3ε/2

n3/8 log n

)
+ Θ(1)

)
M

dnε
log n = Θ

(
M

dnε
log n

)
,

where (a) holds with high probability (more precisely, with probability ≥ 1 −
4NC exp(−nε)), which concludes the proof.

Proof of Lemma 2.3.3. - Let us first consider the case where B is a Hermitian
and positive semi-definite matrix. Then ‖B‖ = λmax(B), the largest eigenvalue
of B. Let now λ be an eigenvalue of B and u be its corresponding eigenvector,
so that λu = Bu. Using the block representation of the matrix B, we have

λuj =
K∑
k=1

Bjk uk, ∀1 ≤ j ≤ K

where uj is the jth block of the vector u. Let now j be such that ‖uj‖ =
max1≤k≤K ‖uk‖. Taking norms and using the triangle inequality, we obtain

|λ| ‖uj‖ =

∥∥∥∥∥
K∑
k=1

Bjk uk

∥∥∥∥∥ ≤
K∑
k=1

‖Bjk uk‖

≤
K∑
k=1

‖Bjk‖ ‖uk‖ ≤
K∑
k=1

‖Bjk‖ ‖uj‖
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Figure 2.4 – Two square clusters that have a center-to-center distance d, with
each cluster decomposed into

√
M vertical

√
M × 1 rectangles. djk is distance

between the centers (marked with cross) of the two rectangles j and k. More-
over, we have the points j1(xj1 , yj1) and k1(xk1 , yk1) in the rectangles j and k,
respectively.

by the assumption made above. As u 6≡ 0, ‖uj‖ > 0, we obtain

|λ| ≤ max
1≤j≤K

K∑
k=1

‖Bjk‖

As this inequality applies to any eigenvalue λ of B and ‖B‖ = λmax(B), the
claim is proved in this case.

- In the general case, observe first that ‖B‖2 = λmax(BB†), where BB† is
Hermitian and positive semi-definite. So by what was just proved above,

‖B‖2 = λmax(BB†) ≤ max
1≤j≤K

K∑
k=1

‖(BB†)jk‖

Now, (BB†)jk =
∑K
l=1BjlB

†
kl so

K∑
k=1

‖(BB†)jk‖ =
K∑
k=1

∥∥∥∥∥
K∑
l=1

BjlB
†
kl

∥∥∥∥∥
≤

K∑
k=1

K∑
l=1

‖Bjl‖ ‖Bkl‖ ≤
K∑
l=1

‖Bjl‖ max
1≤j≤K

K∑
k=1

‖Bkj‖

and we finally obtain

‖B‖2 ≤

(
max

1≤j≤K

K∑
l=1

‖Bjl‖

) (
max

1≤j≤K

K∑
k=1

‖Bkj‖

)

which implies the result, as ab ≤ max{a, b}2 for any two positive numbers
a, b.
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Proof of Lemma 2.3.4. As in the case of ‖H‖, analyzing directly the asymp-

totic behavior of ‖Ĥ‖ reveals itself difficult. We therefore decompose our proof
into simpler subproblems. The strategy is essentially the following: in order to
bound ‖Ĥ‖, we divide the matrix into smaller blocks, bound the smaller blocks

‖Ĥjk‖, and apply Lemma 2.3.3. Let us therefore decompose each of the two

square clusters into
√
M vertical

√
M × 1 rectangles of

√
M nodes each (See

Fig. 2.4).
By Lemma 2.3.3, we obtain

‖Ĥ‖ ≤ max

 max
1≤j≤

√
M

√
M∑

k=1

‖Ĥjk‖, max
1≤j≤

√
M

√
M∑

k=1

‖Ĥkj‖

 (2.11)

where the M ×M matrix Ĥ is decomposed into blocks Ĥjk, j, k = 1, . . . ,
√
M ,

with Ĥjk denoting the
√
M ×

√
M channel matrix between k-th rectangle of

the transmitting cluster and the j-th rectangle of the receiving cluster. As
shown in Fig. 2.4, let us also denote by djk the corresponding inter-rectangle
distance, measured from the centers of the two rectangles. We want to show
that for 2

√
M ≤ d ≤ M , where d is the distance between the centers of the

two clusters, there exist constants c, c′ > 0 such that

‖Ĥjk‖2 ≤ c′
M ε

djk
≤ c M

ε

d
(2.12)

with high probability as M →∞. Applying (2.11) and (2.12), we get

‖Ĥ‖ ≤ max

 max
1≤j≤

√
M

√
M∑

k=1

‖Ĥjk‖, max
1≤j≤

√
M

√
M∑

k=1

‖Ĥkj‖

 ≤
(
c
M1+ε

d

)1/2

Therefore, what remains to be proven is inequality (2.12). The strategy we

propose in order to upper bound ‖Ĥjk‖2 is to use the moments’ method, relying
on the following inequality:

‖Ĥjk‖2 = λmax(ĤjkĤ
†
jk) ≤

(
M∑
k=1

(λk(ĤjkĤ
†
jk))`

)1/`

=
(

Tr
(

(ĤjkĤ
†
jk)`

))1/`

valid for any ` ≥ 1. So by Jensen’s inequality, we obtain that E(‖Ĥjk‖2) ≤(
E(Tr((ĤjkĤ

†
jk)`))

)1/`

. In what follows, we show that taking `→∞ leads to

E(‖Ĥjk‖2) ≤ c logM
djk

. More precisely, we show that

E(Tr((ĤjkĤ
†
jk)`) ≤ M(c logM)`−1

d`+1
jk

(2.13)
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which implies(
E(Tr((ĤjkĤ

†
jk)`))

)1/`

≤ M1/`(c logM)1−1/`

d
1+1/`
jk

→
`→∞

c
logM

djk
.

We first prove (2.13) for ` = {1, 2}, then generalize it to any `. To simplify the

notation, let F = Ĥjk. For ` = 1, we obtain

E(Tr(FF †)) =

√
M∑

j1,k1=1

E(fj1k1f
∗
j1k1) =

√
M∑

j1,k1=1

E(|fj1k1 |2) =

√
M∑

j1,k1=1

1

r2
j1k1

≤ M

d2
jk

(2.14)
Note here that given the definition of djk, it only holds that rj1k1 ≥ djk−1 and

not djk. However, given our assumption that djk ≥
√
M , this simplification

does not matter asymptotically and also allows to lighten the notation. We
will make this simplification constantly in the following. For ` = 2, we obtain

E(Tr((FF †)2)) = E(Tr(FF †FF †))

=

√
M∑

j1,j2,k1,k2=1

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)

≤
∑
j1=j2
k1,k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2) +

∑
j1,j2
k1=k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)

+
∑
j1 6=j2
k1 6=k2

E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)

≤ 2
M3/2

d4
jk

+M2S2

(a)

≤ 2
M

d3
jk

+M2S2

where S2 = |E(fj1k1f
∗
j2k1

fj2k2f
∗
j1k2

)| with j1 6= j2 and k1 6= k2 does not depend
on the specific choice of j1 6= j2 and k1 6= k2, and (a) results from fact that
djk ≥

√
M . In what follows, we upper bound S2.

S2 = |E(fj1k1f
∗
j2k1fj2k2f

∗
j1k2)|

=

∣∣∣∣ 1

M2

∫ 1

0

dxj1

∫ √M
0

dyj1

∫ 1

0

dxj2

∫ √M
0

dyj2

∫ 1

0

dxk1

∫ √M
0

dyk1∫ 1

0

dxk2

∫ √M
0

dyk2
e2πi(gj1j2 (k1)+gj2j1 (k2))

ρj1j2(k1) · ρj2j1(k2)

∣∣∣∣, (2.15)

where

gj1j2(k1) = rj1k1 − rj2k1 = −gj2j1(k1)

=
√

(djk − 1 + xj1 + xk1)2 + (yj1 − yk1)2

−
√

(djk − 1 + xj2 + xk1)2 + (yj2 − yk1)2 (2.16)
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and

ρj1j2(k1) = rj1k1 · rj2k1 = ρj2j1(k1) ≥ d2
jk, (2.17)

where 0 ≤ xj1 , xj2 , xk1 , xk2 ≤ 1 and 0 ≤ yj1 , yj2 , yk1 , yk2 ≤
√
M are the hori-

zontal and the vertical positions, respectively (see Fig. 2.4).
From now on, let us use the short-hand notation∫

dj for

∫ 1

0

dxj

∫ √M
0

dyj

Using this short-hand notation as well as equations (2.16) and (2.17), we can
rewrite (2.15) as follows

S2 =

∣∣∣∣ 1

M2

∫
dj1

∫
dj2

∫
dk1

e2πigj1j2 (k1)

ρj1j2(k1)

∫
dk2

e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
≤ 1

M2

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ · ∣∣∣∣ ∫ dk2
e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
=

1

M2

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ ·B2,1

where

B2,1 =

∣∣∣∣ ∫ dk2
e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

dxk2

∫ √M
0

dyk2
e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
≤
∫ 1

0

dxk2

∫ √M
0

dyk2

∣∣∣∣e2πigj2j1 (k2)

ρj2j1(k2)

∣∣∣∣
=

∫ 1

0

dxk2

∫ √M
0

dyk2
1

ρj2j1(k2)
≤
√
M

d2
jk

= B̃.

(2.18)

We therefore obtain

S2 ≤
1

M3/2d2
jk

∫
dj1 ·A1,2 (2.19)

where

A1,2 =

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
Before further upper bounding (2.19), we present the following lemma, taken
from [46] and adapted to the present situation.

Lemma 2.A.1. Let g : [0,
√
M ] → R be a C2 function such that |g′(y)| ≥

c1 > 0 for all z ∈ [0,
√
M ] and g′′ changes sign at most twice on [0,

√
M ] (say

e.g. g′′(y) ≥ 0 in [y−, y+] and g′′(y) ≤ 0 outside). Let also ρ : [0,
√
M ]→ R be
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a C1 function such that |ρ(y)| ≥ c2 > 0 and ρ′(y) changes sign at most twice
on [0,

√
M ]. Then ∣∣∣∣∣

∫ √M
0

dy
e2πig(y)

ρ(y)

∣∣∣∣∣ ≤ 7

π c1 c2
.

Proof. By the integration by parts formula, we obtain∫ √M
0

dy
e2πig(y)

ρ(y)
=

∫ √M
0

dy
2πig′(y)

2πig′(y)ρ(y)
e2πig(y)

=
e2πig(y))

2πig′(y)ρ(y)

∣∣∣∣
√
M

0

−
∫ √M

0

dy
g′′(y)ρ(y) + g′(y)ρ′(y)

2πi(g′(y)ρ(y))2
e2πig(y)

which in turn yields the upper bound∣∣∣∣∣
∫ √M

0

dy
e2πig(y)

ρ(y)

∣∣∣∣∣ ≤ 1

2π

(
1

|g′(
√
M)||ρ(

√
M)|

+
1

|g′(0)||ρ(0)|

+

∫ √M
0

dy
|g′′(y)|

(g′(y))2|ρ(y)|
+

∫ √M
0

dy
|ρ′(y)|

g′(y)(ρ(y))2

)

By the assumptions made in the lemma, we have∫ √M
0

dy
|g′′(y)|

(g′(y))2|ρ(z)|
≤ 1

c2

∫ √M
0

dy
|g′′(y)|
(g′(y))2

=
1

c2

(
−
∫ y−

0

dy
g′′(y)

(g′(y))2
+

∫ y+

y−

dy
g′′(y)

(g′(y))2
−
∫ √M
y+

dy
g′′(y)

(g′(y))2

)

=
1

c2

(
1

g′(
√
M)
− 1

g′(0)
+

2

g′(y−)
− 2

g′(y+)

)

So ∫ √M
0

dy
|g′′(y)|

(g′(y))2|ρ(y)|
≤ 7

c1 c2
.

We obtain in a similar manner that∫ √M
0

dy
|ρ′(y)|

g′(y)(ρ(y))2
≤ 7

c1 c2

Combining all the bounds, we finally get∣∣∣∣∣
∫ √M

0

dy
e2πig(y)

ρ(y)

∣∣∣∣∣ ≤ 7

π c1 c2
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For any ε > 0, we can upper bound A1,2 in equation (2.19) as follows

A1,2 =

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
=

∫
|yj2−yj1 |<ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
+

∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤
∫
|yj2−yj1 |<ε

√
M

dj2

∫
dk1

1

ρj1j2(k1)

+

∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤ εM

d2
jk

+

∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ (2.20)

Furthermore, note that

gj1j2(k1) = rj1k1 − rj2k1

= −
∫ xj2

xj1

djk − 1 + x+ xk1√
(djk − 1 + x+ xk1)2 + (yj1 − yk1)2

dx

+

∫ yj2

yj1

yk1 − y√
(djk − 1 + xj2 + xk1)2 + (y − yk1)2

dy

Therefore, the first order partial derivative of gj1j2(k1) with respect to yk1 is
given by

∂gj1j2(k1)

∂yk1
=

∫ xj2

xj1

(yk1 − yj1)(djk − 1 + x+ xk1)

((djk − 1 + x+ xk1)2 + (yj1 − yk1)2)
3/2

dx

+

∫ yj2

yj1

(djk − 1 + xj2 + xk1)2

((djk − 1 + xj2 + xk1)2 + (y − yk1)2)
3/2

dy

From this expression, we deduce that for a constant c3 > 0∣∣∣∣∂gj1j2(k1)

∂yk1

∣∣∣∣ ≥ c3 |yj2 − yj1 |djk
− |yk1 − yj1 |.|xj2 − xj1 |

d2
jk

≥ c3
|yj2 − yj1 |

djk
−
√
M

d2
jk

(a)

≥ c3 |yj2 − yj1 | − 1

djk
, (2.21)

where (a) follows from the fact that djk ≥
√
M . For c3 |yj2 − yj1 | − 1 > 0 (we

will tune ε accordingly, as we will see), using (2.17) and (2.21), we can apply
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lemma 2.A.1 and upper bound the second term in (2.20) as follows∫
|yj2−yj1 |≥ε

√
M

dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤
∫
|yj2−yj1 |≥ε

√
M

dj2

∫ 1

0

dxk1

∣∣∣∣ ∫
√
M

0

dyk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣
≤
∫
|yj2−yj1 |≥ε

√
M

dyj2
7

π
c3|yj2−yj1 |−1

djk
d2
jk

≤ 7

πc3djk

∫
|yj2−yj1 |≥ε

√
M

1

|yj2 − yj1 | − 1/c3
dyj2

≤ 7

πc3djk
log

(
1

ε

)
(2.22)

which gives the following upper bound on (2.20)

A1,2 ≤
εM

d2
jk

+
7

πc3djk
log

(
1

ε

)
(a)
= O

(
logM

djk

)
= Ã, (2.23)

where (a) results from choosing ε = c4√
M

with sufficiently large c4 > 0, which

also ensures that c3 |yj2 − yj1 | − 1 > 0. For the chosen value of ε, we get

S2 = O

(
1√
Md4jk

)
+O

(
1

Md3jk
logM

)
= O

(
1

Md3jk
logM

)
. As a result, we get

E(Tr((FF †)2)) ≤ 2
M

d3
jk

+M2S2 = O

(
M

logM

d3
jk

)
. (2.24)

Now, we generalize our result to any moment ` > 2. We start with the following
lemma.

Lemma 2.A.2. For ` ≥ 1 and 0 ≤ i ≤ 2`− 2, let

S
(i)
` =

∣∣E(fj1k1f
∗
j2k1 . . . fj`k`f

∗
j1k`

)
∣∣, (2.25)

with i “equality”s, where by “equality” we mean an index is equal to another
index. For example, if i = 0, then j1 6= . . . 6= j` and k1 6= . . . 6= k`. For all

0 ≤ i ≤ 2`− 2 and any S
(i)
` out of the

∑i
i1=0

(
`
i1

)(
`

i−i1

)
possible ones, we have

2`−2∑
i=0

(
√
M)2`−iS

(i)
` = O

(
`−1∑
i=0

√
M Ã`−i−1B̃i+1 +

(
√
M)`

d2`
jk

)
,

where Ã and B̃ are defined as in (2.23) and (2.18), respectively.
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Proof of Lemma 2.A.2. In general, for any ` ≥ 1, we have

S
(0)
` =

∣∣∣∣ 1

M `

∫
dj1

∫
dj2

∫
dk1

e2πigj1j2 (k1)

ρj1j2(k1)

∫
dj3

∫
dk2

e2πigj2j3 (k2)

ρj2j3(k2)
. . .∫

dj`

∫
dk`−1

e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∫
dk`

e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
≤ 1

M `

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ ∫ dj3

∣∣∣∣ ∫ dk2
e2πigj2j3 (k2)

ρj2j3(k2)

∣∣∣∣ . . .∫
dj`

∣∣∣∣ ∫ dk`−1
e2πigj`−1,j`

(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣.∣∣∣∣ ∫ dk`
e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
=

1

M `

∫
dj1A1,2 ·A2,3 · · ·A`−1,` ·B`,1

where (just as we defined A1,2 and B2,1)

At−1,t =

∫
djt

∣∣∣∣ ∫ dkt−1
e2πigjt−1,jt

(kt−1)

ρjt−1,jt(kt−1)

∣∣∣∣ for 2 ≤ t ≤ `

and

B`,1 =

∣∣∣∣ ∫ dk`
e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣.
Similarly to how we proceeded with A1,2 and B2,1 in (2.23) and (2.18), re-

spectively, we can upper bound At,t+1 ≤ Ã (for 2 ≤ t ≤ `) and B`,1 ≤ B̃.
Therefore, we get

S
(0)
` ≤ 1

M `

∫
dj1A1,2 ·A2,3 · · ·A`−1,` ·B`,1

≤ 1

M `

∫
dj1Ã

`−1B̃ =
Ã`−1B̃

M `−1/2
. (2.26)

To generalize this result to any 0 ≤ i ≤ `− 1, we use the following observa-
tion. Assume the first “equality” is given by km = kp, where 1 ≤ m < p ≤ `−1.
This means instead of having the term

Ap,p+1 =

∫
djp+1

∣∣∣∣ ∫ dkp
e2πigjp,jp+1

(kp)

ρjp,jp+1
(kp)

∣∣∣∣ ≤ Ã
we have ∫

djp+1

∣∣∣∣e2πigjp,jp+1
(km)

ρjp,jp+1(km)

∣∣∣∣ ≤
√
M

d2
jk

= B̃.

Therefore, for 1 ≤ m < p ≤ `− 1, we have

S`(km = kp) ≤
1

M `−1/2

∫
dj1A1,2 · · ·Ap−1,p · B̃ ·Ap+1,p+2 · · ·A`−1,` ·B`,1

≤ 1

M `−1/2

∫
dj1Ã

`−2B̃2 =
Ã`−2B̃2

M `−1
.
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The only case remaining for the first “equality” is km = k`, where 1 ≤ m <
`. In this case, the term

A`−1,` ·B`,1 =

∫
dj`

∣∣∣∣ ∫ dk`−1
e2πigj`−1,j`

(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣ · ∣∣∣∣ ∫ dk`
e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣ ≤ ÃB̃
is replaced by ∫

dj`

∣∣∣∣ ∫ dk`−1
e2πigj`−1,j`

(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣ · ∣∣∣∣e2πigj`,j1 (km)

ρj`,j1(km)

∣∣∣∣
≤
∫
dj`

∫
dk`−1

∣∣∣∣e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣ · ∣∣∣∣e2πigj`,j1 (km)

ρj`,j1(km)

∣∣∣∣
≤M
d4
jk

= B̃2,

which results in the same upper bound on S`(km = k`) as before. As such,

S
(1)
` = O

(
Ã`−2B̃2

M `−1

)
. (2.27)

For the second “equality”, without loss of generality, assume jm = jp, where
1 ≤ m < p ≤ `. If index kp−1 still exists (did not vanish due to the first
“equality”), then instead of having the term

Ap−1,p =

∫
djp

∣∣∣∣ ∫ dkp−1
e2πigjp−1,jp

(kp−1)

ρjp−1,jp(kp−1)

∣∣∣∣ ≤ Ã
we have∣∣∣∣ ∫ dkp−1

e2πigjp−1,jm
(kp−1)

ρjp−1,jm(kp−1)

∣∣∣∣ ≤ ∫ dkp−1

∣∣∣∣e2πigjp−1,jm
(kp−1)

ρjp−1,jm(kp−1)

∣∣∣∣ ≤
√
M

d2
jk

= B̃.

Therefore,

S`(jm = jp, ku = kv, p 6= v + 1) ≤ 1

M `−1

∫
dj1Ã

`−3B̃3 =
Ã`−3B̃3

M `−3/2
.

Note that if the index kp−1 vanished due to the first “equality”, then having
jm = jp as the second “equality” results in

S`(jm = jp, ku = kp−1) ≤ Ã`−2B̃2

M `−1
.

As such, we get

S
(2)
` = O

(
Ã`−3B̃3

M `−3/2
+
Ã`−2B̃2

M `−1

)
. (2.28)
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Note that the second term in (3.24) can be ignored, since we know from the

upper bound on S
(1)
` that

(
√
M)2`−2 Ã

`−2B̃2

M `−1
≤ (
√
M)2`−1 Ã

`−2B̃2

M `−1
.

Combining (2.26), (3.23) and (3.24), we have

2∑
i=0

(
√
M)2`−iS

(i)
` = O

(
2∑
i=0

√
M Ã`−i−1B̃i+1

)
.

Note that every time we add a new “equality”, we obtain exactly one new term
that results from replacing one Ã term by one B̃ term. As such, covering all
the possible less than ` number of “equality”s gives

`−1∑
i=0

(
√
M)2`−iS

(i)
` = O

(
`−1∑
i=0

√
M Ã`−i−1B̃i+1

)
.

For ` ≤ i ≤ 2` − 2, we have the following trivial bound on S
(i)
` (with any i

“equality”s),

S
(i)
` =

∣∣E(fj1k1f
∗
j2k1 . . . fj`k`f

∗
j1k`

)
∣∣

≤ E
(∣∣fj1k1f∗j2k1 . . . fj`k`f∗j1k` ∣∣) ≤ 1

d2`
jk

.

Therefore, we obtain

2`−2∑
i=`

(
√
M)2`−iS

(i)
` ≤

2`−2∑
i=`

(
√
M)2`−i

d2`
jk

≤ (`− 1)
(
√
M)`

d2`
jk

= O

(
(
√
M)`

d2`
jk

)
,

which concludes the proof of the Lemma.

We are now set out to prove:

E(Tr((FF †)`)) = O

(
M( logM)`−1

d`+1
jk

)
.
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We can write E(Tr((FF †)`)) as follows

E(Tr((FF †)`)) ≤
2`−2∑
i=0

i∑
i1=0

(
`

i1

)(
`

i− i1

)
(
√
M)2`−i max

( `i1)(
`

i−i1) cases
{S(i)

` }

(a)
= O

(
`−1∑
i=0

√
M Ã`−i−1B̃i+1 +

(
√
M)`

d2`
jk

)

= O

√M Ã`
`−1∑
i=0

(
B̃

Ã

)i+1

+
(
√
M)`

d2`
jk

 ,

where (a) follows from Lemma 2.A.2. Further note that since djk ≥
√
M ,

Ã =
logM

djk
≥ B̃ =

√
M

d2
jk

.

Therefore, B̃

Ã
≤ 1, which means

E(Tr((FF †)`)) = O

(
√
M Ã`

(
B̃

Ã

)
+

(
√
M)`

d2`
jk

)

= O

(
M(logM)`−1

d`+1
jk

+
(
√
M)`

d2`
jk

)
(a)
= O

(
M(logM)`−1

d`+1
jk

)
,

where (a) follows from the fact that djk ≥
√
M . The last step, which concludes

the proof, includes applying Markov’s inequality to get

P
(
λmax(ĤjkĤ

†
jk) ≥ c′M

ε

djk

)
≤

E((λmax(ĤjkĤ
†
jk))`)

(c′M ε/djk)`

≤ E(Tr((FF †)`))

(c′M ε/djk)`

≤
M (c logM)`−1/d`+1

jk

(c′M ε/djk)`

≤ M (logM)`−1

djkM ε`

which, for any fixed ε > 0, can be made arbitrarily small by taking ` sufficiently
large. Proving (2.12) concludes the proof of the Lemma.

A last remark is that we proved Lemma 2.3.4 for aligned clusters. However,
the proof can be easily generalized to tilted clusters, as shown in Fig. 2.5. We
can always draw a larger cluster containing the original cluster and having the
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Figure 2.5 – Two tilted square clusters that have a center-to-center distance
d. We can draw larger squares (drawn in dotted line) containing the original
clusters with the same centers that are aligned.

same center. The larger cluster can at most contain twice as many nodes as
the original cluster. The large clusters are now aligned. Moreover, the distance
d from the centers of the two newly created large clusters still satisfies the
required condition (2

√
M ≤ d ≤M).





Communication Tradeoffs in
Wireless Networks Under
Different Regimes 3
The first contribution in this chapter can be seen as a generalization of Theo-
rem 2.4.1. While in Chapter 2 we assume a constant density independent of the
number of nodes, in this chapter we study all sparsity regimes; ranging from
very dense networks (density of n) to very sparse networks (density ≤ 1/n).
Obviously the constant density regime falls as a special case in the spectrum
of regimes we study in this chapter. However, with all the technical details
involved in characterizing the broadcast capacity under different sparsity as-
sumptions, formally stated in Theorem 3.2.1 below, it was rather important,
for the ease of exposition, to start by characterizing the broadcast capacity of
networks with constant density. Consequently, the tools we use in this chapter
are similar to those used in the previous chapter.

While the ingredients to prove Theorem 3.2.1 remain the same as those
used to prove Theorem 2.4.1, new significant challenges are posed in the math-
ematical analysis of the maximum achievable broadcast rate and the study of
the spectral norm of the channel matrix H when we assume different sparsity
regimes. For instance, the recursive approach used to upper bound the norm of
the channel matrix H in the case of density 1 breaks down, as we will see, when
we assume the case where the density is proportional or inversely proportional
to the number of nodes available in the network.

Furthermore, it is worth discussing, or at least justifying, the significance
of analyzing networks with different sparsity, as it directly serves the main
purpose of this chapter, as its title suggests, to study and analyze the com-
munication tradeoffs in wireless networks. Wireless networks consist of users
willing to communicate data to other users. While the purpose of communi-
cating information remains the same, the properties of the wireless networks
differ from one setting to another. While some wireless networks can be highly
loaded others can be highly sparse. For example, cellular networks in urban ar-
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eas versus cellular networks in rural areas, campus wireless local area network
(LAN) during working days versus campus wireless LAN during vacations.

We know from [17] and [46] that under LOS model the spatial diversity,
equivalently the number of degrees of freedom, of a given wireless network is
proportional to the square root of its area and inversely proportional to the
carrier wavelength. Consequently, in this chapter we show that for a given
number of nodes n (resp. for a given area A) decreasing the network area
A (resp. increasing the number of nodes n) increases the correlation among
the channels which improves the beamforming capabilities in the network thus
increasing the broadcast capacity. On the other hand, as shown in [45] and
[46], multi-unicast communication is bounded by the spatial degrees of free-
dom present in the network. In other words, while degrees of freedom in the
network are proportional to

√
A/λ, the beamforming gain, represented by the

spectral norm of the channel matrix, is inversely proportional to
√
A/λ. This

conflict of interest in terms of the network density between broadcast capacity
and multi-unicast capacity constitutes the main contribution of this chapter.
Finally, it is worth mentioning that if the cut-set bound on the multi-unicast
capacity is dictated by the power transfer across the network, which corre-
sponds to the low-SNR regime, rather than spatial degrees of freedom, then
the communication scheme must exploit the beamforming capabilities together
with the degrees of freedom available in the network, if possible.

As in Chapter 2, our analysis relies on the simplistic line-of-sight fading
model for signal attenuation over distance, where signal amplitude attenuation
is inversely proportional to distance and phase shifts are also proportional
to distance. Yet, this model, along with another parameter characterizing
the sparsity of the network, allows to capture the different regimes mentioned
above and to characterize the performance tradeoffs. In addition, we would like
to highlight here that despite the simplicity of the model, the mathematical
analysis needed to establish the result on the maximum achievable broadcast
rate in the network requires a precise and careful study of the spectral norm of
unconventional random matrices, rarely studied in the mathematical literature.

3.1 Model

The system model is the same as that in Section 2.1, except for the area of
the network. There are n nodes uniformly and independently distributed in
a square network of area A = nν , ν > 0. Each node has a different message
to broadcast to the whole network, and all nodes want to communicate at a
common per user data rate rn bits/s/Hz. As in Chapter 2, we denote by Rn =
n rn the resulting aggregate data rate and refer to it as “broadcast rate”. The
broadcast capacity of the network, denoted as Cn, is defined as the maximum
achievable aggregate data rate Rn. The communication takes place over a flat
fading channel with bandwidth W and that the signal Yj [m] received by the
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j-th node at time m is given by

Yj [m] =
∑
k∈T

hjkXk[m] + Zj [m],

where T is the set of transmitting nodes, Xk[m] is the signal sent at time
m by node k and Zj [m] is additive white circularly symmetric Gaussian noise
(AWGN) of power spectral density N0/2 Watts/Hz. We also assume a common
average power budget per node of P Watts, which implies that the signal Xk

sent by node k is subject to an average power constraint E(|Xk|2) ≤ P . In
line-of-sight environment, the complex baseband-equivalent channel gain hjk
between transmit node k and receive node j is given by

hjk =
√
G

exp(2πirjk/λ)

rjk
, (3.1)

where G is Friis’ constant, λ is the carrier wavelength, and rjk is the distance
between node k and node j. Let us finally define

SNRs =
GP

N0W
n1−ν ,

which is the SNR available for a communication between two nodes at distance
n
ν−1
2 ; the typical distance between two neighboring nodes in a network of area

A = nν .
In order to simplify notation, we choose new measurement units such that

λ = 1 and G/(N0W ) = 1 in these units. This allows us to write in particular
that SNRs = n1−νP .

3.2 Main Result

We first present a known result on the multiple-unicast scenario [46]. In this
case, the aggregated network throughput scales as1

Tn ∼


n if A/λ2 ≥ n2

√
A/λ if n ≤ A/λ2 ≤ n2

√
n if 1 ≤ A/λ2 ≤ n

at high-SNR regime. We give the aggregate multi-unicast throughput at high
SNR, because it is dictated by the spatial degrees of freedom available in
the network. Such an aggregate throughput is achieved by a hierarchical coop-
erative strategy involving network-wide distributed MIMO transmissions in the
first two cases, while a simple multihopping strategy achieves the performance
claimed in the third regime.

A totally different scenario awaits us in the broadcast case. Our main result
can be summarized in the following Theorem.

1up to logarithmic factors
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Theorem 3.2.1 (Claim (?)). The aggregate broadcast capacity scales as

Cn ∼


min{SNRs, 1} if (A/λ2) ≥ n2

min

{(
n√
A/λ

)
SNRs, 1

}
if 1 ≤ (A/λ2) ≤ n2

up to a multiplicative factor nε, for any fixed ε > 0.

(?) The above theorem relies on Claim 3.A.2 in Lemma 3.A.1. Since other
lemmas/proposition (Specifically, Proposition 3.3.5, Lemma 3.3.6, and Lemma
3.A.1) presented in this chapter rely on the very same claim, we will denote
them by (?) in what follows.

The broadcast capacity characterized in the theorem above is achieved2

by multihopping or simple time division based broadcast transmission in the
first case and by a multi-stage back-and-forth beamforming strategy in the
second case. The performance is further capped at 1, which means that such
beamforming gains can only be obtained at low SNR.

We see here that no particular beamforming gain can be obtained for a
sparse network of density O(1/n) (regime where A ∼ n2). The beamforming
gain starts appearing as the density goes above 1/n and it continues increasing
as the network gets denser. In the previous chapter, we already proved the
result when the network is of constant density (A ∼ n).

A final observation shows the duality of the two previous results: in the
regime where A/λ2 ≥ n (that is, for networks of constant density or sparser),

we have DoF = min
{
n,
√
A/λ

}
spatial degrees of freedom, while the beam-

forming gain is BG = max
{

1, n√
A/λ

}
. This means that, for A/λ2 ≥ n, we

have

DoF×BG = n, (3.2)

which represents the tradeoff between the degrees of freedom available and the
beamforming gain achievable in the network. The relation we have in (3.2)
captures the fact that high beamforming gains can only be obtained at the
expense of a reduced number of degrees of freedom (or reciprocally).

Another interesting observation is that at low SNR, for any ε > 0, the
multiple-unicast capacity is upper bounded by n1+εSNRs, which represents
the total power transfer across the network. In other words, at low SNR, the
multi-unicast capacity is equal to (DoF×BG) × SNRs up to a multiplicative
factor nε, for any ε > 0. As such, to achieve the multi-unicast capacity in
the low-SNR regime; equivalently, to ensure an optimal power transfer in the
network, the wireless communication scheme deployed in the network must
exploit (if possible) both the beamforming capabilities and the spatial degrees
of freedom present in the network. This is an interesting open problem worth
the investigation.

2up to a multiplicative factor nε, for any fixed ε > 0
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3.3 Broadcast Capacity

3.3.1 At High SNR

Under LOS model (3.1) and the assumptions made in the Section 3.1, a sim-
ple time division scheme achieves a broadcast (aggregate) rate Rn of order
min(SNRs, 1). Indeed, a rate of order 1 is obviously achieved at high SNR3.

At high SNR, when SNRs = Ω(1), each node is capable to broadcast to
the entire network every n time slots. In other words, since the nodes take
turns, then each node will remain silent for n time slots during which it can
accumulate a power of Ω(nP ). Moreover, since any two nodes are at most
separated by a distance of

√
2nν , then the received power at every node is

Ω

(
nP

nν

)
= Ω(SNRs) = Ω(1).

3.3.2 At Low SNR

As in Chapter 2, our focus is on low-SNR regime, SNRs = n−γ for some
constant γ > 0, which means that the power available at each node is not
enough to establish a constant rate direct communication with a neighbor.
This could be the case e.g., in a sensor network with low battery nodes, or in
a sparse network (large ν) with long distances between neighboring nodes.

At low SNR, each node can spare power while the others are transmitting,
so as to compensate for the path loss of order 1/nν between the source node
and other nodes located at distance at most

√
2nν , leading to a broadcast rate

of order Rn ∼ log(1 + nP/nν) ∼ n1−νP = SNRs.
In the following, we will see that, at low SNR, while the described simple

TDMA based broadcast scheme is order-optimal4 for networks of area A ≥ n2,
it is not optimal for networks with area A < n2 (ν < 2) (for simplicity, as
stated in Section 3.1, we take λ = 1). On the other hand, the back-and-forth
beamforming scheme, presented in the previous chapter, proves to be order-
optimal4 for A < n2.

Broadcasting Schemes

As described in Chapter 2, the back-and-forth beamforming scheme involves
source nodes taking turns to broadcast their messages. Each transmission is
followed by a series of network-wide back-and-forth transmissions that reinforce
the strength of the signal, so that at the end, every node is able to decode the
message sent from the source.

The reason why back-and-forth transmissions are useful for small area
networks/dense networks is that in line-of-sight environment, nodes are
able to (partly) align the transmitted signals so as to create a significant beam-
forming gain for each transmission (whereas this would not be the case in high

3We coarsely approximate logP by 1 here!
4up to a multiplicative factor nε, for any ε > 0
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s

Figure 3.1 –
√
n ×
√
n network divided into clusters of size M = nν/4

2c1
× nν/2

4 .
Two clusters of size M placed on the same horizontal line and separated by

distance d = nν/2

4 pair up and start back-and-forth beamforming. The vertical

separation between adjacent cluster pairs is c2n
ν/4+ε.

scattering environment/sparse networks with i.i.d. fading coefficients).
In short, the back-and-forth beamforming scheme is split into two phases:

Phase 1. Broadcast Transmission. The source node broadcasts its
message to the whole network. A noisy version of the signal, which remains
undecoded, is received at the nodes. Only on time slot is required for this
phase.

Phase 2. Back-and-Forth Beamforming with Time Division. Upon
receiving the signal from the broadcasting node, nodes start multiple back-
and-forth beamforming transmissions between the two halves of the network.

Clusters of size M = nν/4

2c1
× nν/2

4 and separated by horizontal distance d = nν/2

4
pair up for the back-and-forth transmissions. During each transmission, there
are Θ

(
nν/4−ε

)
cluster pairs operating simultaneously, so in total there are

Θ(n1−ε) nodes communicating. As such, to serve all nodes, Θ(nε) time rounds
are required.

Upon each transmission cycle, a node in a given cluster receives a signal
that is the sum of the signals coming from the facing cluster, of those com-
ing from simultaneously operating clusters, and of the noise. For this reason,
we introduce a sufficiently large vertical distance c2n

ν/4+ε separating any two
adjacent cluster pairs. We show below that the broadcast rate between the op-
erating clusters is Θ(n2− 3ν

2 P ) = Θ(n1− ν2 SNRs). Since we only need Θ(nε)

number of rounds to serve all clusters, phase 2 requires Θ(n−2+ 3ν
2 +εP−1)

time slots. As such, back-and-forth beamforming achieves a broadcast rate
of Θ(n2− 3ν

2 −εP ) = Θ(n1− ν2−εSNRs) bits per time slot. Now that we have
described the broadcasting scheme we use for networks of different sparsity,
which is identical to the scheme described in the previous chapter for extended
networks, we are able to state the following Theorem.
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Theorem 3.3.1. For any ε > 0, 0 < ν < 2, and P = O(n−2+ 3ν
2 ), the following

broadcast rate

Rn = Ω
(
n2− 3ν

2 −εP
)

= Ω

(
n√
A
n−εSNRs

)
is achievable with high probability5 in the network. As a consequence, when P =
Ω(n−2+ 3ν

2 ), a broadcast rate Rn = Ω(n−ε) is achievable with high probability.

The proof of the above theorem proceeds in exactly the same fashion as that
of Theorem 2.2.1. A direct extension of lemma 2.2.2 is given in the following
lemma, which provides an upper bound on the probability that the number of
nodes inside each cluster deviates from its mean by a large factor. For the sake
of completeness, the proof is provided in the Appendix 3.A.

Lemma 3.3.2. Let us consider a cluster of area M with M = nβ for some
ν − 1 < β < ν. The number of nodes inside each cluster is then between ((1−
δ)Mn1−ν , (1+δ)Mn1−ν) with probability larger than 1− nν

M exp(−∆(δ)Mn1−ν)
where ∆(δ) is independent of n and satisfies ∆(δ) > 0 for δ > 0.

As shown in Fig. 3.1, two clusters of size M = nν/4

2c1
× nν/2

4 placed on the

same horizontal line and separated by distance d = nν/2

4 form a cluster pair.
During the back-and-forth beamforming phase, there are many cluster pairs

operating simultaneously. Given that the cluster width is nν/4

2c1
and the vertical

separation between adjacent cluster pairs is c2n
ν/4+ε, there are

NC =
nν/2

nν/4

2c1
+ c2nν/4+ε

= Θ
(
nν/4−ε

)
cluster pairs operating at the same time. Let Ri and Ti denote the receiving
and the transmitting clusters of the i-th cluster pair, respectively.

Lemma 3.3.3 and Lemma 3.3.4 are the two main ingredients for analyz-
ing the multi-stage back-and-forth beamforming scheme. While the proof of
Lemma 2.2.3 can be trivially extended to prove Lemma 3.3.3, the proof of
Lemma 2.2.4 requires additional effort to tailor it for Lemma 3.3.4. The proofs
are presented in the Appendix 3.A.

Lemma 3.3.3. The maximum beamforming gain between the two clusters of
the i-th cluster pair can be achieved by using a compensation of the phase shifts
at the transmit side which is proportional to the horizontal positions of the
nodes. More precisely, there exist a constant c1 > 0 (remember that c1 is
inversely proportional to the width of i-th cluster) and a constant K1 > 0 such
that the magnitude of the received signal at node j ∈ Ri is lower bounded with
high probability by ∣∣∣∣∣∑

k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≥ K1
Mn1−ν

d
,

5that is, with probability at least 1−O
(

1
np

)
as n→∞, where the exponent p is arbitrary.
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where xk denotes the horizontal position of node k.

Lemma 3.3.4. For every constant K2 > 0, there exists a sufficiently large
separating constant c2 > 0 such that the magnitude of interfering signals from
the simultaneously operating cluster pairs at node j ∈ Ri is upper bounded with
high probability by∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤ K2
Mn1−ν

dnε
log n.

Proof of Theorem 3.3.1. As you will notice, here we follow exactly the same
steps used to prove Theorem 2.2.1.

The first phase of the scheme results in noisy observations of the message
X at all nodes, which are given by

Y
(0)
k =

√
SNRkX + Z

(0)
k ,

where E(|X|2) = E(|Z(0)
k |2) = 1 and SNRk is the signal-to-noise ratio of the

signal Y
(0)
k received at the k-th node. In what follows, we drop the index k

from SNRk and only write SNR = mink{SNRk}. Note that it does not make
a difference at which side of the cluster pairs the back-and-forth beamforming
starts or ends. Hence, assume the left-hand side clusters ignite the scheme by
amplifying and forwarding the noisy observations of X to the right-hand side
clusters. The signal received at node j ∈ Ri is given by

Y
(1)
j =

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
AY

(0)
k + Z

(1)
j (3.3)

where A is the amplification factor (to be calculated later) and Z
(1)
j is additive

white Gaussian noise of variance Θ(1). We start by applying Lemma 3.3.3 and
Lemma 3.3.4 to lower bound∣∣∣∣∣

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≥
∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣
−

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≥
(
K1 −K2

log n

nε

)
Mn1−ν

d
= Θ

(
Mn1−ν

d

)
.
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For the sake of clarity, we can therefore approximate6 the expression in (3.3)
as follows

Y
(1)
j =

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
A
√

SNRkX

+

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
AZ

(0)
k + Z

(1)
j

' AMn1−ν

d

√
SNRX +

A
√
NCMn1−ν

d
Z(0) + Z

(1)
j

=
AMn1−ν

d

√
SNRX +

AMn1−ν

d

√
NC

Mn1−ν Z
(0) + Z

(1)
j ,

where

Z(0) =
d√

NCMn1−ν

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk
Z

(0)
k .

Note that E(|Z(0)|2) = Θ(1). Repeating the same process t times in a back-
and-forth manner results in a final signal at node j ∈ Ri in the left or the right
cluster (depending on whether t is odd or even) that is given by

Y
(t)
j =

(
AMn1−ν

d

)t√
SNRX +

(
AMn1−ν

d

)t√
NC

Mn1−ν Z
(0)

+ . . .+

(
AMn1−ν

d

)t−s√
NC

Mn1−ν Z
(s) + . . .+ Z

(t)
j ,

where for 0 ≤ s ≤ t− 1,

Z(s) =
d√

NCMn1−ν

NC∑
b=1

∑
k∈Tb

exp(2πi(rjk − xk))

rjk
Z

(s)
k .

Furthermore, for 0 ≤ s ≤ t − 1, E(|Z(s)|2) = Θ(1), and Z
(t)
j is additive white

Gaussian noise of variance Θ(1). Finally, note that Lemma 3.3.4 ensures an
upper bound on the beamforming gain of the noise signals, i.e.,∣∣∣∣∣

NC∑
l=1

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ ≤
∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣
+

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣
≤
(

1 +K2
log n

nε

)
Mn1−ν

d
.

6As in Chapter 2, we make this approximation to lighten the notation, but the whole
analysis goes through without the approximation.
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(notice indeed that the first term in the middle expression is trivially upper
bounded by Mn1−ν/d, as it contains Mn1−ν terms, all less than 1/d). Now,
we want the power of the signal to be of order 1, that is:

E

((AMn1−ν

d

)t√
SNRX

)2
 =

(
AMn1−ν

d

)2t

SNR = Θ(1) (3.4)

⇒ A = Θ

(
d

Mn1−ν SNR−
1
2t

)
. (3.5)

Since at each round of TDMA cycle there are Θ
(
NCMn1−ν) = Θ

(
n1−ε) nodes

transmitting, then every node will be active a fraction

f = Θ

(
NCMn1−ν

n

)
= Θ

(
NCM

nν

)
of the time. Moreover, let τ denote the number of time slots between two
consecutive transmissions, i.e. every τ time slots we have one transmission.
This results in an amplification factor of

A =
√
f × τ × P = Θ

(√
nν

NCM
τP

)
. (3.6)

Combining (3.5) and (3.6), we get

A = Θ

(
d

Mn1−ν SNR−
1
2t

)
= Θ

(√
nν

NCM
τP

)
⇒ τ = O

(
1

P

(
d

Mn1−ν

)2

n−εSNR−1/t

)
.

We can pick the number of back-and-forth transmissions t sufficiently large to

ensure that SNR−
1
t = O(nε), which results in

τ = O

(
1

P

(
d

Mn1−ν

)2
)

= O

(
1

n2− 3ν
2 P

)
.

Moreover, the noise power is given by

t−1∑
s=0

E

((AMn1−ν

d

)t−s√
NC

Mn1−ν Z
(s)

)2
+ E

((
Z

(t)
j

)2
)

≤ tE

((AMn1−ν

d

)t√
NC

Mn1−ν Z
(0)

)2
+ 1

≤ t
(
AMn1−ν

d

)2t
NC

Mn1−ν + 1

(a)

≤ t+ 1 = Θ(1),
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where (a) holds if and only if SNR = Ω
(

NC
Mn1−ν

)
= Ω(nν/2−1−ε) (check eq.

(3.4)), which is true: Distance separating any two nodes in the network is as
most

√
2nν , which implies that the SNR of the received signal at all the nodes

in the network is Ω(nτP/nν) = Ω
(
nν/2−1

)
.

Given that the required τ = O
(

1
n2−3ν/2P

)
, we can see that for P = O(n3ν/2−2)

the broadcast rate between simultaneously operating clusters is Ω(n2−3ν/2P ).
Finally, applying TDMA of n

NCMn1−ν = Θ(nε) steps ensures that X is success-

fully decoded at all nodes and the broadcast rate Rn = Ω
(
n2−3ν/2−εP

)
. This

completes the proof of the theorem.

Optimality of the Scheme

We start with the general upper bound already established in Theorem 2.3.1
on the broadcast capacity of wireless networks at low SNR, which applies to a
general fading matrix H.

We now aim to specialize Theorem 2.3.1 to line-of-sight fading, where the
matrix H is given by

hjk =

0 if j = k
exp(2πirjk)

rjk
if j 6= k.

(3.7)

The rest of the section is devoted to proving the proposition below which,
together with Theorem 2.3.1, shows the asymptotic optimality of the back-
and-forth beamforming scheme for small area networks/dense networks
(0 < ν < 2) and the asymptotic optimality of the simple TDMA based broad-
cast scheme for high scattering environment/sparse networks (ν ≥ 2) at
low SNR and under LOS fading. The spectral norm ‖H‖ represents the beam-
forming capabilities in the network; the smaller the network gets, the denser it
becomes, thus increasing the correlation between the entries of the matrix H,
which results in a larger spectral norm.

Proposition 3.3.5 (?). Let H be the n× n matrix given by (3.7). For every
ε > 0, there exists a constant c > 0 such that

‖H‖2 ≤

{
c n2− 3ν

2 +ε if 0 < ν < 2

c n1−ν+ε if ν ≥ 2

with high probability as n gets large.

Consequently, Theorem 2.3.1 gives the following upper bound on the broad-
cast capacity

Cn ≤ P ‖H‖2 ≤

{
c n2− 3ν

2 +εP = c n√
A
nεSNRs if 0 < ν < 2

c n1−ν+εP = c nεSNRs if ν ≥ 2,

which, together with Theorem 3.3.1, concludes the proof of Theorem 3.2.1.
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For the proof of Proposition 3.3.5, analyzing directly the asymptotic be-
havior of ‖H‖ reveals itself difficult. We therefore decompose our proof into
simpler subproblems. The first building block of the proof is Lemma 2.3.3,
which is a generalization of the classical Geršgorin discs’ inequality. The sec-
ond building block of this proof is the following lemma, the proof of which is
given in the Appendix 3.A.

Lemma 3.3.6 (?). Let Ĥ be the m × m channel matrix between two square
clusters of m nodes distributed uniformly at random, each of area A = mν ,
ν > 0. Then

‖Ĥ‖2 ≤ max

{
m2+ε

Ad
,
m1+ε

d2

}
≤

{
m2+ε

Ad if 0 < ν < 2

max
{
m2+ε

Ad , m
1+ε

d2

}
if ν ≥ 2

with high probability as m gets large, where 2
√
A ≤ d ≤ A denotes the distance

between the centers of the two clusters.

Proof of Proposition 3.3.5. First we consider the case where ν ≥ 2. The strat-
egy for the proof is now the following: in order to bound ‖H‖, we divide the
matrix into smaller blocks, apply Lemma 2.3.3 and Lemma 3.3.6 in order to
bound the off-diagonal terms ‖Hjk‖. For the diagonal terms ‖Hjj‖, we reap-
ply Lemma 2.3.3 and proceed in a recursive manner, until we reach small size
blocks for which a loose estimate is sufficient to conclude. However, we should
note that the parameter ν, used to relate the area to the number of nodes avail-
able, increases with every new layer of the recursion. In other words, consider
a cluster of area Am that contains m nodes. We know that the density of the
entire network is equal to n1−ν . Therefore, we get

m

Am
=

m

mν′
=

n

nν

(a)

≤ m

mν
(3.8)

where (a) follows from the fact that ν ≥ 2 > 1 and ν′ is the new parameter
relating area Am of the network to the number of nodes m available in the
network. As a result, we get ν′ ≥ ν.

As we mentioned, a network with area A0 = nν has a density of n1−ν .
This means that a cluster of area A1 = m1n

ν−1 contains m1 nodes with high
probability. Let us therefore decompose the network into K1 square clusters of
area m1n

ν−1 with m1 nodes each. Without loss of generality, we assume each
cluster has exactly m1 nodes and K1 = n/m1 = A0/A1. By Lemma 2.3.3, we
obtain

‖H‖ ≤ max

{
max

1≤j≤K1

K1∑
k=1

‖Hjk‖, max
1≤j≤K1

K1∑
k=1

‖Hkj‖

}
(3.9)

where the n × n matrix H is decomposed into blocks Hjk, j, k = 1, . . . ,K1,
with Hjk denoting the m1 ×m1 channel matrix between cluster number j and
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Figure 3.2 – nν/2 × nν/2 network split into K clusters and numbered in order.
As such, Rj = {j−

√
K− 1, j−

√
K, j−

√
K+ 1, j− 1, j, j+ 1, j+

√
K− 1, j+√

K, j +
√
K + 1}, which represents the center square containing the cluster j

and its 8 neighbors (marked in shades).

cluster number k in the network. Let us also denote by djk the corresponding
inter-cluster distance, measured from the centers of these clusters. Based on
Lemma 3.3.6, if djk ≥ 2

√
A1, we obtain

‖Hjk‖2 ≤ max

{
m2+ε

1

A1djk
,
m1+ε

1

d2
jk

}
(a)
=

m1+ε
1

d2
jk

with high probability as m1 → ∞, where (a) follows from the fact that
A1/m1 = nν−1 ≥ nν/2 ≥ djk, since ν ≥ 2 (equivalently, m1

A1
≤ 1

djk
).

Let us now fix j ∈ {1, . . . ,K1} and define Rj = {1 ≤ k ≤ K1 : djk < 2
√
A1}

and Sj = {1 ≤ k ≤ K1 : djk ≥ 2
√
A1} (see Fig. 3.2). By the above inequality,

we obtain
K1∑
k=1

‖Hjk‖ ≤
∑
k∈Rj

‖Hjk‖+
√
nε
∑
k∈Sj

√
m1

djk

with high probability as m1 gets large. Observe that as there are 8t clusters or
less at distance t

√
A1 from cluster j, so we obtain

∑
k∈Sj

√
m1

djk
≤

√
K1∑
t=2

8t

√
m1

t
√
A1

= O

(√
K1m1

A1

)
.

There remains to upper bound the sum over Rj . Observe that this sum contains
at most 9 terms: namely the term k = j and the 8 terms corresponding to the
8 neighboring clusters of cluster j. It should then be observed that for each
k ∈ Rj , ‖Hjk‖ ≤ ‖H(Rj)‖, where H(Rj) is the 9m1× 9m1 matrix made of the
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9× 9 blocks Hj1,j2 such that j1, j2 ∈ Rj . Finally, this leads to

K1∑
k=1

‖Hjk‖ ≤ 9‖H(Rj)‖+ 8
√
nε
√
K1m1

A1

Using the symmetry of this bound and (3.9), we obtain

‖H‖ ≤ 9 max
1≤j≤K1

‖H(Rj)‖+ 8
√
nε
√
K1m1

A1
. (3.10)

A key observation is now the following: For all 1 ≤ j ≤ K1, the 9M × 9M
matrix H(Rj) has exactly the same structure as the original matrix H. There-
fore, without loss of generality7, let us assume ‖H1‖ = max1≤j≤K1

‖H(Rj)‖ =
‖H(R1)‖. Finally, to bound ‖H1‖, the same technique may be reused. Based
on (3.8), we know that the parameter relating the area of the network to the
number of nodes increases with the higher layers of the recursion. In other
words, this parameter always remains greater than 2, which means that, at
any layer of the recursion if the clusters area is Am and it contains m nodes,
then

max

{
m2+ε

Amdjk
,
m1+ε

d2
jk

}
=
m1+ε

d2
jk

.

This leads to the following recursive solution.

‖H‖ = O

(
‖H1‖+

√
nε
√
K1m1

A1

)

= O

(
‖H2‖+

√
nε
√
K2m2

A2
+
√
nε
√
K1m1

A1

)

= O

(
‖Hl‖+

√
nε

l∑
t=1

√
Ktmt

At

)

= O

(
‖Hl‖+

√
nε
√
n1−ν

l∑
t=1

√
Kt

)
,

where mt denotes the number of nodes in a square cluster of area At. Moreover,
Kt = At−1/At = mt−1/mt denotes the number of square clusters of area At
and mt nodes in a square network of area At−1 containing mt−1 nodes (note
that A0 = A = nν and m0 = n). Finally, ‖Ht‖ denotes the norm of the channel
matrix of the network with square area At and mt nodes.

Note that we have a trivial bound on ‖Hl‖. Apply for this the slightly
modified version of the classical Geršgorin inequality (which is nothing but the
statement of Lemma 2.3.3 applied to the case M = 1):

‖Hl‖ ≤ max

{
max

1≤j≤ml

ml∑
k=1

|(Hl)jk|, max
1≤j≤ml

ml∑
k=1

|(Hl)kj |

}
= max

1≤j≤ml

ml∑
k=1
k 6=j

1

rjk

7We present a uniform upper bound on ‖H(Rj)‖.
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For any 1 ≤ j ≤ ml, it holds with high probability that for c large enough,

ml∑
k=1
k 6=j

1

rjk
≤

√
ml∑
t=1

c t log n

t n
ν−1
2

= O
(√

ml n
1−ν
2 log n

)
= O

(
n1−ν

√
Al log n

)
,

where the first inequality comes from the fact that at a distance t n
ν−1
2 there

are at most c t clusters of area nν−1 with at most log n nodes each. This implies
that ‖Hl‖ = O

(√
nε n1−ν√Al

)
for any ε > 0. Therefore, we have

‖H‖ = O

(
√
nε n1−ν

√
Al +

√
nε
√
n1−ν

l∑
t=1

√
At−1

At

)
.

Upon optimizing over the At’s, we get At = nν−
t
l+1 . Note that At is a

decreasing function of t and A0 = nν . Thus, for ν ≥ 2, we get the desired
result

‖H‖ = O
(
n

1−ν
2 n

ε
2 + 1

2 (l+1)

)
,

where for any ε′ > ε/2, we can pick l large enough so that ε
2 + 1

2 (l+1) < ε′

(notice that ε and ε′ can be as small as we want).

For 0 < ν < 2, we will take the following approach: We notice that a dense
network can be seen as a superposition of sparse networks. In other words, we
will look at a network with n nodes uniformly and independently distributed
over the area nν , as the superposition of n1−ν/2 networks with m = nν/2 nodes
uniformly and independently distributed over the area nν = m2. Again, by
Lemma 2.3.3, we obtain

‖H‖ ≤ max

 max
1≤j≤n1−ν/2

n1−ν/2∑
k=1

‖Hjk‖, max
1≤j≤n1−ν/2

n1−ν/2∑
k=1

‖Hkj‖


where the n×n matrix H is decomposed into blocks Hjk, j, k = 1, . . . , n1−ν/2,
with Hjk denoting the m×m channel matrix between sparse network number
j and sparse network number k. Since each of these sparse networks has area
m2 with m nodes, we can apply the upper bound we got for ν = 2, and
∀ j, k = 1, . . . , n1−ν/2, obtain

‖Hjk‖ = O
(
m−

1
2 +ε
)

= O
(
n−

ν
4 + ε

2

)
,

which results in

‖H‖ = O
(
n1− 3ν

4 + ε
2

)
.

This finally proves Proposition 3.3.5.
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3.4 Multiple-Unicast Capacity

3.4.1 At High SNR

Multiple-Unicast Schemes

In [31] and [46], the authors show that for two clusters of area A separated by
distance d, the following spatial degrees of freedom are achievable

{
min

{
n,
√
A/λ

}
, if 1 ≤ d ≤

√
A

min
{
n, Aλd

}
, if

√
A ≤ d ≤ A/λ.

(3.11)

A follow up result to the achievable degrees of freedom is the multi-unicast
capacity scaling in large ad hoc networks.

Given that we are considering the high-SNR regime, for the multiple-unicast
communications in a wireless network, we are interested in exploiting the spatial
degrees of freedom available in the network. In [46], the authors show that
under line-of-sight model, the distributed MIMO based hierarchical cooperation
architecture in [45] achieves a capacity scaling as

max

{
√
n,min

{
n,

√
A

λ

}}

in a network of n source-destination pairs uniformly distributed over an area
A and communicating around a carrier wavelength λ. The authors in [46],
show that the scaling of the capacity depends on how n compares to

√
A/λ.

They further uncover the missing thread when it comes to the spatial degrees
of freedom available in large networks that can be divided into three categories
covering all possible regimes.

1)
√
A/λ ≥ n : Capacity scales linearly in n. There are sufficient spatial

degrees of freedom for all the users. Distributed MIMO communication can
fully exploit all the available degrees of freedom.

2)
√
A/λ ≤

√
n : Capacity scales as

√
n. The spatial degrees of freedom

available in the network are highly limited. Multihop communication is opti-
mal.

3)
√
n ≤

√
A/λ ≤ n : The spatial limitation is present in this regime,

since we do not have full n spatial degrees of freedom. However, one can have
more than what simple multihopping achieves, since we have more than

√
n

degrees of freedom. The authors in [46] show that either a modification of
the hierarchical cooperation scheme in [45] or a version of the MIMO-multihop
scheme in [42] can achieve the

√
A/λ available degrees of freedom and therefore

the optimal scaling of the capacity in this regime.
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Optimality of the Scheme

For the multiple-unicast scenario, we still need to know if the aggregated net-
work throughput indeed scales as

Tn ∼


n if (A/λ2) ≥ n2

(
√
A/λ) if n ≤ (A/λ2) ≤ n2

√
n if 1 ≤ A/λ2 ≤ n.

(3.12)

The authors in [46] showed that such an aggregate throughput is achieved by
a hierarchical cooperative strategy involving network-wide distributed MIMO
transmissions in the first two cases, while a simple multihopping strategy
achieves the performance claimed in the third regime. We therefore see that the
wider the area is, the more degrees of freedom are available for communication
in the network. The regime where A ∼ n2 (corresponding to a sparse network
of density O(1/n)) models the case when the phase shifts are large enough to
ensure sufficient channel diversity and full degrees of freedom of MIMO trans-
missions. On the contrary, in the regime where A ∼ n (corresponding to a
network of constant density), and even though this may seem surprising at
first sight, phase shifts do not allow for efficient MIMO transmissions, so that
multihopping becomes the best way to transfer information across the network.

In [17] the authors show that in real wireless networks, under the physical
line-of-sight propagation model, the network area dictates the spatial degrees of
freedom available in the network, thus significantly affecting the multi-unicast
capacity. They show that physics laws of electromagnetic propagation restrict
the spatial degrees of freedom of long-range distributed MIMO transmissions
in ad hoc networks to

√
A/λ. In other words, when the network area A is

relatively small and
√
A/λ ≤

√
n, then the multi-unicast capacity is bounded

by
√
n. On the other hand, if

√
n <

√
A/λ ≤ n then the capacity is equal

to the number of degrees of freedom available in the network, which is indeed
equal to

√
A/λ. Finally, for relatively large networks,

√
A/λ > n, we have full

degrees of freedom enabling a capacity of the order of number of nodes n. This
means that, at high SNR the multi-unicast capacity is upper bounded by

max

{
√
n,min

{
n,

√
A

λ

}}
.

Therefore, based on [46] and [17], we know that the aggregated multi-unicast
network throughput scales as in (3.12) up to logarithmic factors.

Further note that for the case of two clusters of area A separated by dis-
tance d, the authors in [12] and [13] try to find a matching upper bound to
the achievable spatial degrees of freedom in (3.11). For this reason, they ap-
proximate the original matrix with a new matrix G whose entries are given
by

gjk = exp

(
−2πiyjyk

λd

)
, (3.13)
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where 0 ≤ yj , yk ≤
√
A are the vertical components of nodes j and k placed in

two squares of area A each and separated by a distance d. In other words, the
authors in [12] use a Taylor approximation to quadratic order around 0 in the
variable (yj − yk), to get

rjk =
√

(xj + d+ xk)2 + (yj − yk)2

≈ (xj + d+ xk) +
(yj − yk)2

2d

= (xj + d+ xk) +
y2
j

2d
+
y2
k

2d
− yjyk

d
. (3.14)

Therefore,

hjk :=
exp(2πirjk/λ)

rjk

≈ h̃jk :=
exp(2πi(uj + vk − yjyk/d)/λ)

rjk
,

where uj = d/2 + xj +
y2j
2d and vk = d/2 + xk +

y2k
2d . The authors further note

that the eigenvalues of H̃H̃∗ do not depend on the particular values of the uj ’s
and vk’s, which means that they are the same as the eigenvalues of GG∗ (G as
defined in (3.13)).

The maximum number of bits per second per Hertz that can be transferred
reliably from the transmit cluster to the receive cluster given by

Cn = max
Q≥0:Qkk≤P,∀k

log det(I +HQH∗)

≤ log det(I + nPHH∗),

where Q is the covariance matrix of the input signal vector. The authors claim
(through numerical evidence) that the following approximation holds:

log det(I + nPHH∗) = log det(I +GG∗)(1 + o(1))

with high probability as n gets large. Finally, they present the following the-
orem which suggests the tightness of the lower bound found in [46] (given by
(3.11)).

Theorem 3.4.1. If A
λd �

√
n, then there exists a constant K2 > 0 such that

log det(I +GG∗) ≤ K2 min

{
n,

A

λd

}
log n,

with high probability, as n gets large.

The theorem above states that if A
λd �

√
n, then the number of spatial

degrees of freedom of a MIMO transmission between two clusters of area A
separated by distance d is of order A

λd , up to logarithmic factors.
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Therefore, for λ = 1 and inter-cluster distance 2
√
A ≤ d ≤ A, we get

DoF ∼ min

{
n,
A

d

}
. (3.15)

Moreover, for the same channel model (LOS model) with λ = 1, we know from
Lemma 3.3.6 and the tightness of the upper bound on the broadcast capacity
that if Ĥ is the n × n channel matrix between two square clusters of n nodes
distributed uniformly at random, each of area A, then

‖Ĥ‖2 ∼ max

{
n2

Ad
,
n

d2

}
, (3.16)

where 2
√
A ≤ d ≤ A denotes the distance between the centers of the two

clusters. Combining (3.15) and (3.16), we obtain

DoF× ‖Ĥ‖2 ∼ n2

d2

which is equivalent to the result in (3.2) (DoF× BG = n), since

‖Ĥ‖2P = BG× nP

d2
= BG× SNRl,

where the SNRl = nP
d2 denotes the long-range SNR at the nodes in the desti-

nation cluster, because there are n nodes transmitting with power P and the
signal attenuation over the inter-cluster distance d is 1/d2. Furthermore, we
consider the power path loss in the ad hoc network to be that of free space
propagation (path loss gain is α = 2). Therefore, we get

SNRs = SNRl,

which results from the fact that

SNRs =
P(

n
ν−1
2

)α = n1−νP

and

SNRl =
nP(
nν/2

)α = n1−νP,

where nν/2 is the average distance between two nodes in the network.

3.4.2 At Low SNR

Trivial Upper Bound

If we assume the complex baseband-equivalent channel gain between node j
and node k at time t is given by

hjk[t] =
√
G

exp(iθjk[t])

rjk
,
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where θjk[t] is the random phase at time t, uniformly distributed in [0, 2π] and
{θjk[t]; j 6= k} is a collection of i.i.d random process, we know from [42] that the
upper bound on the multi-unicast capacity, controlled by the power transfer
across the network at low-SNR regime, is of order

n(log n)3SNRs.

Furthermore, for the line-of-sight propagation model (3.1), we know from [35]
that for networks of area A = n (equivalently, density 1) and at low SNR, for
any fixed ε > 0, the multi-unicast capacity is upper bounded by n1+εSNRs.
Here we generalize this result to networks with different sparsity. Indeed, we
show that, at low SNR, a trivial upper bound on the multi-unicast capacity is
given by the following theorem.

Theorem 3.4.2. For any ε > 0, in a wireless ad hoc network with n nodes
and area A = nν , ν > 0, and under low-SNR regime, the multi-unicast capacity
can be upper bounded as

T (n) ≤ n2−ν+εP = n1+εSNRs.

Before proving the theorom above, we have the following lemma.

Lemma 3.4.3. In a wireless ad hoc network with n nodes and area A = nν ,
ν > 0, the following properties hold with high probability as n gets large:

1. For any δ > 0, there exists a constant c(δ) > 0 such that the minimum
distance between a randomly chosen node and all the other nodes in the

network is greater than c(δ)n
ν−1
2

nδ
.

2. For any ε > 0, if the network is divided into n squares of area nν−1 each,
then there are less than nε nodes in each cell.

Proof. Consider randomly chosen node in the network which is at distance

larger than n
ν−1
2

nδ
to all other nodes in the network. This is equivalent to

saying that there are no other nodes inside a circle of area π n
ν−1

n2δ around this
node. The probability of such an event is

P

(
minimum distance to a node ≥ n

ν−1
2

nδ

)
=

(
1−

π n
ν−1

n2δ

nν

)n−1

≥ 1− c(δ)

n2δ
,

where, for some constant c(δ) > 0, c(δ)/n2δ goes to 0 with increasing n.

For the second part of the lemma, the proof is similar to that of Lemma
3.3.2.
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Proof of Theorem 3.4.2. Consider a source-destination pair s − d in the net-
work. The transmission rate R(n) from source node s to destination d is
bounded by the capacity of the single-input multiple-output (SIMO) channel
between the source node s and the rest of the network:

R(n) = max
pX

I
(
Xs;Y{1,...,n}\{s}

)
= log

1 + P
∑
j 6=s

|hjs|2


≤
∑
j 6=s

P |hjs|2 =
∑
j 6=s

P

r2
js

(3.17)

We further divide the network into square cells of area nν−1 each. By the
aforementioned lemma, there are at most nε nodes in each cell. Moreover,
the cell S containing the source node s has at most 8 cells in the first layer
(which represent the set of adjacent cells denoted by Sadj), at most 16 cells in
the second layer, and at most 8` cells in the `-th layer (denoted by S`), where
2 ≤ ` ≤

√
n− 1. As such, we can further upper bound (3.17) as follows

R(n) ≤
∑
j 6=s

P

r2
js

≤
∑

j∈S∪Sadj

∑
j 6=s

P

r2
js

+

√
n−1∑
`=2

∑
j∈S`

P

r2
js

(a)

≤ 9Pnε(
c(δ)n

ν−1
2

nδ

)2 +

√
n−1∑
`=2

∑
j∈S`

P

r2
js

(b)

≤ nε1n1−νP +

√
n−1∑
`=2

8` Pnε(
` n

ν−1
2

)2

= O
(
nε1n1−νP + nεn1−ν log nP

)
= O (nε1SNRs) ,

where nε1 = 9nε+2δ/c(δ)
2
, (a) results from Lemma 3.4.3 and (b) follows from

Lemma 3.4.3 and the fact that nodes in layer ` are at a distance of order
`n(ν−1)/2.

Finally, we conclude the proof by upper bounding the multi-unicast capacity
as follows

T (n) ≤ nR(n) ≤ n1+ε1SNRs

with high probability.

Available Achievable Schemes

Contrary to the case of high SNR, where there are communication schemes that
achieve the upper bound on the multi-unicast capacity in ad hoc networks for
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all sparsity regimes, in the case of low SNR, we do not have achievable schemes
that match the upper bound in Theorem 3.4.2 except for very dense networks
(area A = 1) and very sparse networks (area A ≥ n2). In other words, we
know that if A = 1 (ν = 0), the back-and-forth beamforming scheme (which
we originally proposed as a broadcasting scheme) achieves a rate of nSNRs

and if A ≥ n2 (ν ≥ 2), the hierarchical cooperation scheme also achieves a rate
of nSNRs. The optimality of the existing schemes in the regimes mentioned
at low SNR results from the following observations:

1. In dense networks, A = 1, the phases of the signals transmitted are highly
correlated, which makes the back-and-forth scheme a perfect candidate
to ensure the power transfer in the network. For this reason, if the area
of the network is 1, back-and-forth beamforming scheme is capable of
achieving a capacity of n SNRs.

2. In sparse networks, A ≥ n2, the phases of the signals transmitted are
highly uncorrelated and converge to the identically and independently
distributed case. For this reason, the hierarchical cooperation scheme
is a perfect candidate to fully exploit all the spatial degrees of freedom
available in the network and achieve a capacity of nSNRs.

Based on the discussion above, at low SNR, for networks of area 1 < A < n2

(0 < ν < 2), the communication scheme should both exploit the correlation
among the phases of the transmitted signals and the degrees of freedom avail-
able in the network to ensure an optimal power transfer across the network
thus achieving a capacity of nSNRs

8. In other words, one should think of
a hybrid communication scheme capable of beamforming over all the degrees
of freedom optimally and this remains an interesting open problem worth the
investigation9.

3.5 Communication Tradeoffs

In this work, we characterize the broadcast capacity of a wireless network at
low SNR in line-of-sight environment and under various assumptions regarding
the network density. The result exhibits a dichotomy between sparse networks,
where node collaboration can hardly help enhancing communication rates, and
dense networks, where significant gains can be obtained via collaborative beam-
forming. Moreover, we discuss the multi-unicast scenario presented in previous
works to highlight the importance of spatial degrees of freedom.

We realize that the increase in the number of degrees of freedom comes at
the expense of the beamforming capabilities in the network. In other words,
dense networks provide higher correlation among the phases of the transmitted

8Assuming the trivial upper bound given in Theorem 3.4.2 is indeed achievable up to a
multiplicative factor nε.

9For A = n, it is shown in [35] that a throughput capacity of n6/7SNRs is achievable at
low SNR.
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Figure 3.3 – Coordinate system.

signals which results in larger beamforming capabilities and smaller degrees of
freedom, while sparse networks provide higher degrees of freedom and smaller
beamforming capabilities. While the beamforming capabilities play a central
role in the broadcast capacity at low SNR and the spatial degrees of freedom
play a central role in multi-unicast capacity at high SNR, they both appear to
be crucial when studying the multi-unicast capacity at low SNR, which remains
an open problem.

3.A Appendix

Proof of Lemma 3.3.2. The number of nodes in a given cluster is the sum of n
independently and identically distributed Bernoulli random variables Bi, with
P(Bi = 1) = M/nν . Hence

P

(
n∑
i=1

Bi ≥ (1 + δ)Mn1−ν

)

= P

(
exp

(
s

n∑
i=1

Bi

)
≥ exp(s(1 + δ)Mn1−ν)

)
≤ En(exp(sB1)) exp(−s(1 + δ)Mn1−ν)

=

(
M

nν
exp(s) + 1− M

nν

)n
exp(−s(1 + δ)Mn1−ν)

≤ exp(−Mn1−ν(s(1 + δ)− exp(s) + 1)) = exp(−Mn1−ν∆+(δ))

where ∆+(δ) = (1 + δ) log(1 + δ) − δ by choosing s = log(1 + δ). The proof
of the lower bound follows similarly by considering the random variables −Bi.
The conclusion follows from the union bound.

Proof of Lemma 3.3.3. We present lower and upper bounds on the distance rjk
separating a receiving node j ∈ Ri and a transmitting node k ∈ Ti. Denote by
xj , xk, yj , and yk the horizontal and the vertical positions of nodes j and k,
respectively (as shown in Fig. 3.3). An easy lower bound on rjk is

rjk ≥ xk + xj + d
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On the other hand, using the inequality
√

1 + x ≤ 1 + x
2 , we obtain

rjk =
√

(xk + xj + d)2 + (yj − yk)2

= (xk + xj + d)

√
1 +

(yj − yk)2

(xk + xj + d)2

≤ xk + xj + d+
(yj − yk)2

2d
≤ xk + xj + d+

1

2c21
.

Therefore,

0 ≤ rjk − xk − xj − d ≤
1

2c21
.

After bounding rjk, we can proceed to the proof of the lemma as follows:∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Ti

exp(2πi(rjk − xk − xj − d))

rjk

∣∣∣∣∣
≥ <

(∑
k∈Ti

exp(2πi(rjk − xk − xj − d))

rjk

)

≥
∑
k∈Ti

cos
(
π
c21

)
rjk

≥ K1
Mn1−ν

d
,

where the constant c1 is chosen sufficiently large so that cos
(
π
c21

)
> 0.

Proof of Lemma 3.3.4. There areNC clusters transmitting simultaneously. Ex-
cept for the horizontally adjacent cluster of a given cluster pair (i-th cluster
pair), all the rest of the transmitting clusters are considered as interfering clus-
ters (there are NC − 1 of them). With high probability, each cluster contains
Θ(Mn1−ν) nodes.

For the sake of clarity, we assume here that every cluster contains exactly
Mn1−ν nodes, but the argument holds in the general case. In this lemma,
we upper bound the magnitude of interfering signals from the simultaneously
interfering clusters at node j ∈ Ri as follows∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

sin(2π(rjk − xk))

rjk

∣∣∣∣∣∣∣
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We only upper bound the first term (cosine terms) in the equation above as
follows (we can upper bound the second term (sine terms) in exactly the same
fashion):

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk
− E

(
cos(2π(rjk − xk))

rjk

)∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

E
(

cos(2π(rjk − xk))

rjk

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk
− E

(
cos(2π(rjk − xk))

rjk

)∣∣∣∣∣∣∣
+

NC∑
l=1
l 6=i

∣∣∣∣∣∑
k∈Tl

E
(

cos(2π(rjk − xk))

rjk

)∣∣∣∣∣
≤

∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk
− E

(
cos(2π(rjk − xk))

rjk

)∣∣∣∣∣∣∣
+ 2

NC∑
l=1
l 6=i

∣∣∣∣∣∣
∑
k∈T ′l

E
(

cos(2π(rjk − xk))

rjk

)∣∣∣∣∣∣ (3.18)

where T ′l denotes the l-th interfering transmit cluster that is at a vertical

distance of (l−1)n
ν/4

2c1
+lc2n

ν/4+ε from the desired receiving clusterRi. Note the
difference between the first terms of the equations (2.8) and (3.18). Although
we apply Hoeffding’s inequality to upper bound the first term in (3.18) as
before, we will see that it requires a slightly different approach than the one
used to upper bound the first term in (2.8). Let us first upper bound the second

term in (3.18). Denote by X
(l)
k = (cos(2π(rjk−xk)))/(rjk) ∀k ∈ T ′l . Note that

X
(l)
k ’s are independent and identically distributed. For any k ∈ T ′l , we have

|rjk − xk| =
√

(xk + xj + d)2 + (yj − yk)2 − xk ≥ d =
nν/2

4
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is a C2 function and∣∣∣∣∂ (rjk − xk)

∂yk

∣∣∣∣ =

∣∣∣∣∂ rjk∂yk

∣∣∣∣ =
|yk − yj |
rjk

≥
l c2 n

ν/4+ε + (l − 1) n
ν/4

2c1

nν/2

≥ l c2 n−ν/4+ε

Moreover, r′′jk changes sign at most twice. By the integration by parts formula,
we obtain∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

=

∫ yk1

yk0

dyk
2πr′jk

2πr′jkrjk
cos(2π(rjk − xk))

=
− sin(2π(rjk − xk))

2πr′jkrjk

∣∣∣∣yk1

yk0

+
1

2π

∫ yk1

yk0

dyk
rjkr

′′
jk + (r′jk)2

(r′jkrjk)2
sin(2π(rjk − xk))

which in turn yields the upper bound∣∣∣∣∣
∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

∣∣∣∣∣
≤ 1

2π

(
2

minyk{|r′jk||rjk|}
+

∫ yk1

yk0

dyk
|r′′jk|

(r′jk)2|rjk|
+

∫ yk1

yk0

dyk
1

r2
jk

)

≤ 1

2π

(
4

l c2 nν/4+ε
+

1

minyk{|rjk|}

∫ yk1

yk0

dyk
|r′′jk|

(r′jk)2
+
|yk1 − yk0|
minyk{r2

jk}

)

≤ 1

2π

(
4

l c2 nν/4+ε
+

4

l c2 nν/4+ε
+

2

n3ν/4

)
≤ 9/(2π)

l c2 nν/4+ε
. (take ν > 2ε)

Therefore, for any k ∈ T ′l ,

∣∣∣∣E(X(l)
k

) ∣∣∣∣ =

∣∣∣∣∣∣ 4

nν/2

∫ nν/2

4

0

dxk
1

|yk1 − yk0|

∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣
≤ 4

nν/2 |yk1 − yk0|

∫ nν/2

4

0

dxk

∣∣∣∣∣
∫ yk1

yk0

dyk
cos(2π(rjk − xk))

rjk

∣∣∣∣∣
≤ 9/(2π)

|yk1 − yk0| l c2 nν/4+ε
≤ 9c1
πc2

1

l nν/2+ε
≤ 9c1
πc2

1

l d nε
. (3.19)

We further upper bound the first term in (3.18) by using Hoeffding’s inequality

[23]. Denote by Xk =
cos(2π(rjk−xk))

rjk
, where 1 ≤ k ≤ NCMn1−ν = Θ

(
n1−ε).
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Note that Xk’s are i.i.d. and integrable random variables that represent all
nodes in all the interfering clusters. In other words, we have∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk
− E

(
cos(2π(rjk − xk))

rjk

)∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
n1−ε∑
k=1

(Xk − E(Xk))

∣∣∣∣∣∣ .
We have Xk ∈ [−1/d, 1/d]. As such, Hoeffding’s inequality yields

P

 1

n1−ε

∣∣∣∣∣∣
n1−ε∑
k=1

(Xk − E (Xk))

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
−n

1−ε t2

2/d2

)

= 2 exp

(
−1

2
n1−ε d2 t2

)
(a)
= 2 exp(−nε1),

where (a) holds if t =
√

2nε+ε1−1

d . Therefore, we have∣∣∣∣∣∣
n1−ε∑
k=1

(Xk − E(Xk))

∣∣∣∣∣∣ ≤ n1−εt =

√
2n1−ε+ε1

d
(3.20)

with probability ≥ 1−2 exp(−nε1). Combining (3.19) and (3.20), we can upper
bound (3.18) as follows∣∣∣∣∣∣∣

NC∑
l=1
l 6=i

∑
k∈Tl

cos(2π(rjk − xk))

rjk

∣∣∣∣∣∣∣ ≤
√

2n1−ε+ε1

d
+

NC∑
l=1

9c1
πc2

Mn1−ν

l d nε

≤
√

2n1−ε+ε1

d
+

9c1
πc2

Mn1−ν

dnε
log n.

Note that for M = Θ
(
n3ν/4

)
and ν ≤ 2− 2(ε+ ε1), we have

√
2n1−ε+ε1

d
≤ 9c1
πc2

Mn1−ν

dnε
log n

Finally, upper bounding the sine terms in the same fashion, we obtain∣∣∣∣∣∣∣
NC∑
l=1
l 6=i

∑
k∈Tl

exp(2πi(rjk − xk))

rjk

∣∣∣∣∣∣∣ = O

(
Mn1−ν

dnε
log n

)

with high probability (more precisely, with probability ≥ 1 − 4 exp(−nε1)),
which concludes the proof.
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Proof of Lemma 3.3.6. We try to extend the proof of the particular case of
A = m (ν = 1) presented in Chapter 2.

For the first moment, we have

E
(

Tr
(
ĤĤ†

))
=

m∑
j1,k1=1

E(ĥj1k1 ĥ
∗
j1k1)

=
m∑

j1,k1=1

E(|ĥj1k1 |2) =
m∑

j1,k1=1

1

r2
j1k1

= O

(
m2

d2

)
.

For ` ≥ 1,the `-th moment is given by

E(Tr((ĤĤ†)`)) =
m∑

j1,...,j`=1
k1,...,k`=1

E(ĥj1k1 ĥ
∗
j2k1 . . . ĥj`k` ĥ

∗
j1k`

)

≤
2`−2∑
i=0

i∑
i1=0

(
`

i1

)(
`

i− i1

)
m2`−i max

( `i1)(
`

i−i1) cases
{Ŝ(i)

` },

where Ŝ
(i)
` =

∣∣E(ĥj1k1 ĥ
∗
j2k1

. . . ĥj`k` ĥ
∗
j1k`

)
∣∣ with i “equality”s (as in Chapter 2,

by “equality” we mean an index is equal to another index). Note that the nodes
corresponding to the indices are randomly and uniformly positioned on

√
A-by-√

A square clusters. In other words, Ŝ
(i)
` assumes that the points corresponding

to j’s and k’s are randomly chosen in two squares of area A, respectively. We
start with the following lemma.

Lemma 3.A.1 (?). For ` ≥ 1 and 0 ≤ i ≤ 2`− 2, let

Ŝ
(i)
` =

∣∣E(ĥj1k1 ĥ
∗
j2k1 . . . ĥj`k` ĥ

∗
j1k`

)
∣∣, (3.21)

with i “equality”s, where by “equality” we mean an index is equal to another
index. For example, if i = 0, then j1 6= . . . 6= j` and k1 6= . . . 6= k`. For all

0 ≤ i ≤ 2`− 2 and any Ŝ
(i)
` out of the

∑i
i1=0

(
`
i1

)(
`

i−i1

)
possible ones, we have

2`−2∑
i=0

m2`−iŜ
(i)
` = O

(
`−1∑
i=0

m2`−i Ã
`−i−1B̃i+1

(
√
A)2`−i−1

+
m`

d2`
jk

)
,

where

Ã =
logA

djk
and B̃ =

√
A

d2
jk

.
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Proof of Lemma 3.A.1. In general, for any ` ≥ 1, we have

Ŝ
(0)
` =

∣∣∣∣ 1

A2`

∫
dj1

∫
dj2

∫
dk1

e2πigj1j2 (k1)

ρj1j2(k1)

∫
dj3

∫
dk2

e2πigj2j3 (k2)

ρj2j3(k2)
. . .∫

dj`

∫
dk`−1

e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∫
dk`

e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
≤ 1

A2`

∫
dj1

∫
dj2

∣∣∣∣ ∫ dk1
e2πigj1j2 (k1)

ρj1j2(k1)

∣∣∣∣ ∫ dj3

∣∣∣∣ ∫ dk2
e2πigj2j3 (k2)

ρj2j3(k2)

∣∣∣∣ . . .∫
dj`

∣∣∣∣ ∫ dk`−1
e2πigj`−1,j`

(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣.∣∣∣∣ ∫ dk`
e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
=

1

A`+1/2

∫
dj1 Â1,2 · Â2,3 · · · Â`−1,` · B̂`,1

where

Ât−1,t =
1√
A

∫
djt

∣∣∣∣ 1√
A

∫
dkt−1

e2πigjt−1,jt
(kt−1)

ρjt−1,jt(kt−1)

∣∣∣∣ for 2 ≤ t ≤ `

and

B̂`,1 =

∣∣∣∣ 1√
A

∫
dk`

e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣ ≤ 1√
A

∫
dk`

∣∣∣∣e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣ ≤
√
A

d2
jk

= B̃.

Note that each integral in Ât−1,t and B̂`,1 is normalized by
√
A to account

for the uniform distribution of the horizontal component of each point over 0
and
√
A. Despite the fact that the points corresponding to j and k indices are

randomly distributed over square clusters instead of rectangular clusters, we
have the following claim.

Claim 3.A.2. Similar to the case of rectangular clusters studied in Chapter 2
(see (2.23)), for the case of square clusters, the upper bound on Ât,t+1 is given
by

Ât,t+1 ≤
logA

djk
= Ã.

Therefore, we have

Ŝ
(0)
` ≤ 1

A`+1/2

∫
dj1 Â1,2 · Â2,3 · · · Â`−1,` · B̂`,1

≤ 1

A`+1/2

∫
dj1Ã

`−1B̃ =
Ã`−1B̃

A`−1/2
. (3.22)

To generalize this result to any 0 ≤ i ≤ `− 1, we use the following observa-
tion. Assume the first “equality” is given by km = kp, where 1 ≤ m < p ≤ `−1.
This means instead of having the term

Âp,p+1 =
1√
A

∫
djp+1

∣∣∣∣ 1√
A

∫
dkp

e2πigjp,jp+1
(kp)

ρjp,jp+1(kp)

∣∣∣∣ ≤ Ã
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we have
1√
A

∫
djp+1

∣∣∣∣e2πigjp,jp+1
(km)

ρjp,jp+1(km)

∣∣∣∣ ≤
√
A

d2
jk

= B̃.

Therefore, for 1 ≤ m < p ≤ `− 1, we have

Ŝ`(km = kp) ≤
1

A`

∫
dj1 Â1,2 · · · Âp−1,p · B̃ · Âp+1,p+2 · · · Â`−1,` · B̂`,1

≤ 1

A`

∫
dj1Ã

`−2B̃2 =
Ã`−2B̃2

A`−1
.

The only case remaining for the first “equality” is km = k`, where 1 ≤ m <
`. In this case, the term

Â`−1,` · B̂`,1

=
1√
A

∫
dj`

∣∣∣∣ 1√
A

∫
dk`−1

e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣ · ∣∣∣∣ 1√
A

∫
dk`

e2πigj`,j1 (k`)

ρj`,j1(k`)

∣∣∣∣
≤ ÃB̃

is replaced by

1√
A

∫
dj`

∣∣∣∣ 1√
A

∫
dk`−1

e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣ · ∣∣∣∣e2πigj`,j1 (km)

ρj`,j1(km)

∣∣∣∣
≤ 1√

A

∫
dj`

1√
A

∫
dk`−1

∣∣∣∣e2πigj`−1,j`
(k`−1)

ρj`−1,j`(k`−1)

∣∣∣∣ · ∣∣∣∣e2πigj`,j1 (km)

ρj`,j1(km)

∣∣∣∣
≤ A

d4
jk

= B̃2,

which results in the same upper bound on S`(km = k`) as before. As such,

Ŝ
(1)
` = O

(
Ã`−2B̃2

A`−1

)
. (3.23)

For the second “equality”, without loss of generality, assume jm = jp, where
1 ≤ m < p ≤ `. If index kp−1 still exists (did not vanish due to the first
“equality”), then instead of having the term

Âp−1,p =
1√
A

∫
djp

∣∣∣∣ 1√
A

∫
dkp−1

e2πigjp−1,jp
(kp−1)

ρjp−1,jp(kp−1)

∣∣∣∣ ≤ Ã,
we have ∣∣∣∣ 1√

A

∫
dkp−1

e2πigjp−1,jm
(kp−1)

ρjp−1,jm(kp−1)

∣∣∣∣
≤ 1√

A

∫
dkp−1

∣∣∣∣e2πigjp−1,jm
(kp−1)

ρjp−1,jm(kp−1)

∣∣∣∣ ≤
√
A

d2
jk

= B̃.
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Therefore,

Ŝ`(jm = jp, ku = kv, p 6= v + 1) ≤ 1

A`−1/2

∫
dj1Ã

`−3B̃3 =
Ã`−3B̃3

A`−3/2
.

Note that if the index kp−1 vanished due to the first “equality”, then having
jm = jp as the second “equality” results in

Ŝ`(jm = jp, ku = kp−1) ≤ Ã`−2B̃2

A`−1
.

As such, we get

Ŝ
(2)
` = O

(
Ã`−3B̃3

A`−3/2
+
Ã`−2B̃2

A`−1

)
. (3.24)

Note that the second term in (3.24) can be ignored, since we know from the

upper bound on Ŝ
(1)
` that

m2`−2 Ã
`−2B̃2

A`−1
≤ m2`−1 Ã

`−2B̃2

A`−1
.

Combining (2.26), (3.23) and (3.24), we have

2∑
i=0

m2`−iŜ
(i)
` = O

(
2∑
i=0

m2`−i Ã
`−i−1B̃i+1

(
√
A)2`−i−1

)
.

Note that every time we add a new “equality”, we obtain exactly one new term
that results from replacing one Ã term by one B̃ term. As such, covering all
the possible less than ` number of “equality”s gives

`−1∑
i=0

m2`−iŜ
(i)
` = O

(
`−1∑
i=0

m2`−i Ã
`−i−1B̃i+1

(
√
A)2`−i−1

)
.

For ` ≤ i ≤ 2` − 2, we have the following trivial bound on Ŝ
(i)
` (with any i

“equality”s),

Ŝ
(i)
` =

∣∣E(ĥj1k1 ĥ
∗
j2k1 . . . ĥj`k` ĥ

∗
j1k`

)
∣∣ ≤ E

(∣∣ĥj1k1 ĥ∗j2k1 . . . ĥj`k` ĥ∗j1k` ∣∣)
≤ 1

d2`
jk

.

Therefore, we obtain

2`−2∑
i=`

m2`−iŜ
(i)
` ≤

2`−2∑
i=`

m2`−i

d2`
jk

≤ (`− 1)
m`

d2`
jk

= O

(
m`

d2`
jk

)
,

which concludes the proof of the Lemma.
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Using Lemma 3.A.1, we can further proceed and upper bound the `-th
moment as such

E(Tr((ĤĤ†)`)) =
m∑

j1,...,j`=1
k1,...,k`=1

E(ĥj1k1 ĥ
∗
j2k1 . . . ĥj`k` ĥ

∗
j1k`

)

≤
2`−2∑
i=0

i∑
i1=0

(
`

i1

)(
`

i− i1

)
m2`−i max

( `i1)(
`

i−i1) cases
{Ŝ(i)

` }

= O

(
2`−2∑
i=0

m2`−i Ã
`−i−1B̃i+1

(
√
A)2`−i−1

+
m`

d2`
jk

)

= O

2`−2∑
i=0

m2`−i
(logA/djk)

`−i−1
(√

A/d2
jk

)i+1

(
√
A)2`−i−1

+
m`

d2`
jk


= O

(
2`−2∑
i=0

(
m2 logA

djkA

)`(
A

mdjk logA

)i
A

djk logA
+
m`

d2`
jk

)

= O

max


(
m2 logA

djkA

)`
,

(
m

d2
jk

)`
 .

As in Appendix 2.A, applying the Markov’s inequality, concludes the proof
of lemma 3.3.6 for aligned clusters, which can be easily generalized to tilted
clusters, as shown in Fig. 2.5.



Full-Duplex vs Half-Duplex 4
Usually, wireless radios are half-duplex, i.e. they can not transmit and re-
ceive at the same time over the same frequency band. However, building on
self-interference cancellation techniques, full-duplex radios have emerged as a
viable paradigm over the recent years. In this chapter, we ask the following
question: how much can full-duplex increase the capacity of wireless networks?
Intuitively, one may expect that full-duplex radios can at most double the ca-
pacity of wireless networks, since they enable nodes to transmit and receive at
the same time. However, we show that the capacity gain can indeed be larger
than a factor of 2; in particular, we construct a specific instance of a wireless
relay network where the capacity with full-duplex radios is triple the capacity
of the network when the relays are half-duplex. We also propose a univer-
sal schedule for half-duplex networks composed of independent, memoryless,
point-to-point channels which achieves at least a fraction of 1/4 of the corre-
sponding full-duplex capacity. This means that for wireless networks composed
of point-to-point channels full-duplex capability at the relays cannot more than
quadruple the capacity of network.

The chapter is structured as follows. Section 4.1 presents some preliminaries
and gives a brief description of the type of network models we want to study. In
Section 4.2, we prove that there exists wireless network where the full-duplex
capacity can be as large as 3 times the capacity of the corresponding half-
duplex network. Finally, Section 4.3 shows that full-duplex operation can at
most quadruple the capacity of wireless half-duplex networks of independent,
memoryless, point-to-point AWGN channels.

73
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4.1 Problem Formulation and Background

Consider a single-source single-destination network with orthogonal noisy (for
example AWGN) channels and N relay nodes denoted by node 1 through node
N assisting the communication between the source node 0 and the destination
node N + 1 (see Fig. 4.3). For the relay nodes, we consider either full-duplex
operation, i.e. the relays are capable of receiving and transmitting simulta-
neously, or half-duplex operation, i.e. they are limited to either receiving or
transmitting over a given frequency at any given time. Note that when there is
broadcast and superposition, i.e. the constituent channels are not independent
of each other, the information theoretic capacity of relay networks remains
unknown to date, both when the relays are half-duplex and full-duplex.

When the network consists of independent, memoryless, noisy channels and
the relays are full-duplex, the information theoretic capacity of the network is
simple to obtain. In particular, due to network equivalence [28], the channel
between any two nodes can be equivalently considered as a noiseless bit pipe
with capacity equal to the capacity of the corresponding noisy channel. In
this case, the highest possible rate of communication from the source to the
destination with full-duplex relays is given by the max-flow min-cut theorem
[19]

C(FD) = min
A⊆[1:N ]

∑
u∈A,v∈Ā

cu,v, (4.1)

where cu,v denotes the point-to-point capacity of the noisy channel from node
u to node v. Note that cu,v = 0 if u and v are not connected or the data flow
is in the opposite direction (from v to u).

When the relays are half-duplex, the capacity remains open even when the
network consists of orthogonal noisy AWGN channels. What complicates the
problem in this case is that now each relay needs to develop a strategy of when
to listen and when to transmit. Fixed scheduling strategies are those where the
listen-talk states of the relays are established prior to the start of communica-
tion (but perhaps depending on global channel/network knowledge). However,
random scheduling strategies, which allow the schedules to change during run-
time, can be also used so as to convey additional information with the transmit
and receive states of the relays. Such random schedules can increase capacity
[30, 29, 55]. Moreover, the transmit power of the relays can be optimized across
different configurations of the network while still satisfying an average power
constraint at the nodes. Note that in a network ofN relays where each relay can
be in either transmit or receive state, there are 2N different possible configura-
tions for the network. While the capacity of such networks remains unknown
in general, inner and upper bounds on the capacity are available which differ
by a constant gap that depends only on N and is independent of the channel
configurations and the network topology. For example, [44] develops inner and
upper bounds on the capacity of any half-duplex Gaussian network (under a
general model which enables broadcast and superposition of signals, and use of
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Figure 4.1 – Single-source single-destination network with 3 relay nodes.

multiple antennas at each node), where the gap is linear in the total number of
nodes (or the total number of antennas in case of nodes with multiple anten-
nas). When the upper bound in [44, Theorem 2.3] is specialized to case where
the channels in the network are independent AWGN channels, it implies the
highest possible rate of communication from the source to the destination with
half-duplex relays can be upper bounded by the following cutset like bound

C(HD) ≤ max
PS[1:N]

min
A⊆[1:N ]

∑
u∈A,v∈Ā

cu,v × P(Su = 1, Sv = 0) + 3N, (4.2)

where cu,v is the corresponding point-to-point capacity of the channel from u
to v as before; S[1:N ] denotes the vector [S1, . . . , SN ]. For any i ∈ [1 : N ],
Si ∈ [0 : 1] denotes the state random variable that takes value 0 if node i is in
receive-mode and value 1 if node i is in transmit-mode. PS[1:N]

corresponds to a
half-duplex schedule specifying how much time the network spends in each state
S[1:N ]. Note that the first term in the expression corresponds to the capacity
of the half-duplex network under the best possible fixed schedule. The result
(50) of [44] essentially bounds the potential gain due to random scheduling and
power control across different schedules within the additive term 3N . We will
make use of this upper bound in the sequel. Note that a lower bound on the
capacity of the half-duplex network can be obtained by computing the capacity
under any fixed schedule. In this chapter, we are interested in understanding

how large the ratio C(FD)

C(HD) can be for a wireless network.

4.2 Full-Duplex can Triple the Capacity of Wireless
Networks

We start with a simple example which illustrates why full-duplex operation can
more than double the capacity of the corresponding half-duplex network.

Consider the single-source single-destination point-to-point network with 3
relaying nodes shown in Fig. 4.1. Each link in the given network is marked by
its corresponding capacity. Using (4.1), the full-duplex capacity

C(FD) = C.

On the other hand, to evaluate the upper bound in (4.2) on the half-duplex
capacity, we need to find the best transmit/receive schedule for the relay nodes.
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(a) Links from nodes 0 and 3 to nodes 1
and 4, respectively, are activated.
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(b) Links from node 1 to nodes 2 and 3 are
activated.
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(c) Links from nodes 1 and 2 to node 3 are
activated.

Figure 4.2 – Schedules for the network given in Fig. 4.1.

One can show that in the optimal schedule, the network in Fig. 4.1 will be
in only one of the three states shown in Fig. 4.2 with states (a), (b), and (c)
operating 0.4, 0.3, and 0.3 fraction of the time, respectively. As such, the upper
bound in (4.2) gives

C(HD) ≤ 2

5
C + 9.

Therefore, for C� 9, we have

C(HD)

C(FD)
≤

2
5C + 9

C
≈ 2

5
<

1

2
,

which means that full-duplex operation indeed more than doubles the capacity
of the half-duplex network given in Fig. 4.1. Note that in order to achieve half
the capacity of the full-duplex network in the half-duplex network, we would
need all the links to be active at least half of the time. Assume we ensure this
for all links except for the link from node 1 to node 3, i.e. the remaining 4 links
are active at least half of the time. In other words, consider the line network
with 4 hops from node 0 to node 4. To activate these 4 links half of the time,
we must activate the links in the 1st and the 3rd hop simultaneously half of
the time, and activate the links in the 2nd and the 4th hop simultaneously
the other half of the time. One can see that such a scheduling deactivates
the link from node 1 to node 3 all the time, because nodes 1 and 2 are in
transmit/receive mode simultaneously all the time. This conflict in scheduling
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Figure 4.3 – Triangle chain network with N ≥ 1 relay nodes.

precludes the half-duplex network to achieve half of the full-duplex capacity.
Based on this observation, we build a long triangle chain network as shown in
Fig. 4.3, which leads to the following proposition.

Proposition 4.2.1. Full-duplex radios can triple the capacity of wireless net-
works.

Proof. We prove the proposition by showing that there exists an instance of
wireless networks where the full-duplex capacity is indeed at least three times
the capacity of the corresponding half-duplex network.

Consider a triangle chain network of independent, memoryless, point-to-
point channels, where we have N ≥ 1 (N being an odd number) relaying
nodes, as shown in Fig. 4.3. The links denoted by 2/3 have a capacity of
(2/3)C and those denoted by 1/3 have a capacity of (1/3)C. Based on (4.1),
the full-duplex capacity of this network is equal to C. We want to prove that
the half-duplex capacity of the given network is indeed less than or equal to
1/3 of the full-duplex capacity.

Let us deactivate all the base links of the triangular subnetworks in the
triangle chain network (shown in Fig. 4.3) and only consider the line network
with N+1 hops from node 0 to node N+1 each of capacity (2/3)C. By simply
activating the odd hops half of the time and the even hops the other half of
the time, we can lower bound the half-duplex capacity by

CHD ≥ C/3.

We will show in what follows that the described relay scheduling is indeed
optimal for large values of N , hence proving that full-duplex operation triples
the capacity of this triangle chain network.

For 1 ≤ i ≤ (N + 1)/2, let Ai denote the event that the link from node
2i− 2 to node 2i is active, Bi denote the event that the link from node 2i− 2
to node 2i− 1 is active, and Ci denote the event that the link from node 2i− 1
to node 2i is active. Note that events Bi and Ci are disjoint because of the
half-duplex constraint at the relay node 2i − 1. Furthermore, events Ai ∪ Ci
and Ai+1 ∪Bi+1 are disjoint because of the half-duplex constraint at the relay
node 2i. This means that

P(Ai ∩Bi) + P(Ai ∩ Ci) ≤ P(Ai) (4.3)
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and
P(Ai ∪ Ci) + P(Ai+1 ∪Bi+1) ≤ 1. (4.4)

Note that the relevant cuts to upper bound the first term in (4.2) are given
by the N + 1 cuts shown in Fig. 4.3. To evaluate each cut, we sum over
the capacity of each traversed link multiplied with the fraction of time it is
active (equivalently, the probability that the link is active), which precisely
corresponds to the first term in (4.2). We further normalize the value of each
cut by C to avoid repetition. Thus, we can upper bound these cuts as follows:

cut0 :
1

3
P(A1) +

2

3
P(B1)

=
2

3
(P(A1) + P(B1))− 1

3
P(A1)

=
2

3
(P(A1 ∪B1) + P(A1 ∩B1))− 1

3
P(A1) = t0

cut1 :
2

3
(P(A1 ∪ C1) + P(A1 ∩ C1))− 1

3
P(A1) = t1

...

cutN−1 :
2

3
(P(AN+1

2
∪BN+1

2
) + P(AN+1

2
∩BN+1

2
))

− 1

3
P(AN+1

2
) = tN−1

cutN :
2

3
(P(AN+1

2
∪ CN+1

2
) + P(AN+1

2
∩ CN+1

2
))

− 1

3
P(AN+1

2
) = tN .

Therefore, using (4.2) we can upper bound the half-duplex capacity as fol-
lows

C(HD) ≤ C× min
i∈{0,...,N}

{ti}+ 3N. (4.5)

We can further upper bound (4.5) by the average over all the cuts as follows

C(HD) ≤ C

N + 1

N∑
i=0

ti + 3N

=
C

N + 1

(
2

3

(
P(A1 ∪B1) + P(AN+1

2
∪ CN+1

2
)
)

+
2

3

N−1
2∑
i=1

(P(Ai ∪ Ci) + P(Ai+1 ∪Bi+1))

+
2

3

N+1
2∑
i=1

(P(Ai ∩Bi) + P(Ai ∩ Ci))−
2

3

N+1
2∑
i=1

P(Ai)

)
+ 3N.
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Using the inequalities in (4.3) and (4.4), we get

C(HD) ≤ C

N + 1

4

3
+

2

3

N − 1

2
+

2

3

N+1
2∑
i=1

P(Ai)−
2

3

N+1
2∑
i=1

P(Ai)

+ 3N

=
C

N + 1

(
2

3
+
N + 1

3

)
+ 3N

=
C

3
+

2

3

C

N + 1
+ 3N.

Therefore, as N → ∞, the upper bound on the half-duplex capacity is domi-
nated by C/3 if we choose C� N (for example, choose C = N2). This proves
that for the triangle chain network given in Fig. 4.3, full-duplex can at least
triple the capacity, since

lim
N→∞

C(HD)

C(FD)
≤ lim
N→∞

1

3
+

2

3

1

N + 1
+

3N

C
=

1

3
,

which concludes the proof.

4.3 Full-Duplex Operation Cannot More Than Quadruple
the Capacity of a Half-Duplex Network

The goal of this section is to prove the following proposition.

Proposition 4.3.1. Full-duplex radios cannot more than quadruple the capac-
ity of single-input single-output wireless networks of independent, noisy (for
example AWGN) point-to-point channels.

Proof. We start our proof by showing that for any single-source single-destination
network there exists a fixed deterministic schedule that ensures that all links
are active 1

4 of the time. We prove the existence of this schedule by the prob-
abilistic method.

Consider communication over T time-slots and construct a scheduling table
S with N columns and T rows, where the rows are enumerated by the time-
slots 1 ≤ i ≤ T and the columns are enumerated by the nodes in the network
1 ≤ j ≤ N . Each entry S(i, j) is a binary value that represents the transmission
mode of the j-th node in the i-th time slot; 1 if the node is in the transmit-mode
and 0 if it is in the receive-mode.

We construct a schedule randomly by filling each entry with a 0 or 1 by fair
coin flips. The edge eu→v going from node u to node v is active at time slot i, if
node u is in transmit-mode and node v is in receive-mode, i.e. if S(i, u) = 1 and
S(i, v) = 0. Denote by Neu→v the number of times the edge eu→v is active over
the T time-slots. Our random schedule construction for half-duplex networks
ensures, for any ε > 0,

P
(
Neu→v ≥ (1− ε)T

4

)
→ 1
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as T gets large by the law of large numbers. We choose T large enough such
that

P
(
Neu→v ≥ (1− ε)T

4

)
> 1− 1

M
, (4.6)

where M denotes the number of edges in the network. Assume the edges are
numbered from 1 to M . For 1 ≤ m ≤M , let em, Em, and E{

m denote the m-th
edge, the event {Nem ≥ (1− ε)T/4}, and its complement event, respectively.
Using (4.6) and the union bound, we get

P

(
M⋂
m=1

Em

)
≥ 1−

M∑
m=1

P
(
E{
m

)
= 1−

M∑
m=1

(1− P (Em))

> 1−M
(

1−
(

1− 1

M

))
= 0.

Therefore, there exists a deterministic schedule with T̂ ≤ T time slots for
which all the edges of the network are active for more than (1− ε)/4 fraction
of the time, where ε here can be taken arbitrarily small.

Applying this deterministic schedule to the network over T̂ time-slots, we
obtain a network where each link in the network is active only in certain time
slots but in a total of at least (1− ε)T̂ /4 time-slots. From a capacity perspec-

tive, such a network is equivalent to a network where links are composed of T̂
frequency bands but each link has access to only a subset of these frequencies,
a total of at least (1 − ε)T̂ /4. This is because from a capacity perspective we
can interchange the independent channels over time with independent channels
over different frequency bands provided that we normalize the capacity of the
second network by T̂ . Since we know that every link has access to at least
(1 − ε)T̂ /4 independent frequency bands, the capacity of this network, when

normalized by T̂ is lower bounded by a fraction of (1− ε)/4 of the capacity of
the original full-duplex network. This implies that the deterministic schedule
activating each link at least a fraction of (1 − ε)/4 of the time can achieve a
rate in the half-duplex network which is at least as large as (1−ε)/4 fraction of
the full-duplex capacity. Noting that ε can be made arbitrarily small concludes
the proof of the proposition.

4.3.1 Universal Deterministic Schedule

We next construct an explicit deterministic schedule which given any network
topology with N nodes ensures that all the links in the network are active
exactly 1/4 fraction of the time. Moreover, the number of time slots required
by this schedule increases linearly with the number of nodes in the network.This
is equivalent to saying that the number of active states in this schedule is linear
in N . Note that it has been recently shown in [5, 9], the optimal half-duplex
schedule in any Gaussian network has only N + 1 states, however no efficient
algorithms are known for finding this schedule.
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Our schedule requires T = 2blog2(2N)c time slots, which means that N <
T ≤ 2N . It is constructed as follows: for a positive integer m (we will see how
we choose the value of m later), construct a 2m-by-m binary matrix by listing
all possible binary sequences of length m as its 2m rows. Call the columns of
this matrix X1, . . . , Xm. Further, construct a 2m-by-(2m − 1) matrix S, the
columns of which are indexed by all non-empty subsets of {1, . . . ,m}. The
column indexed by the subset Q is equal to

∑
i∈QXi mod 2.

Lemma 4.3.2. Such a construction ensures that any two columns of the matrix
S have the property that the combinations (0, 0), (0, 1), (1, 0), and (1, 1) occur
equal number of times, i.e. 2m/4 times.

Proof. In fact, the columns of matrix S constitute all the codewords, except for
the all-zero codeword, of a Hadamard code with block length 2m. Every non-
zero codeword in this codebook has a Hamming weight of 2m−1. Equivalently,
every column in matrix S has equal number (2m−1) of zeros and ones. Consider
any two columns, denoted by Y1 and Y2, in matrix S. We want to prove that

#{i : Y1(i) = 0, Y2(i) = 0}
= #{i : Y1(i) = 0, Y2(i) = 1}
= #{i : Y1(i) = 1, Y2(i) = 0}
= #{i : Y1(i) = 1, Y2(i) = 1} = 2m/4. (4.7)

Let T = 2m and Y3 = Y1 ⊕ Y2. Note that Y3 must also be a column in S.
Since every column in S has equal number of zeros and ones, we have

#{i : Y1(i) = 0} =
T

2
= #{i : Y1(i) = 0, Y2(i) = 0}
+ #{i : Y1(i) = 0, Y2(i) = 1}, (4.8)

#{i : Y1(i) = 1} =
T

2
= #{i : Y1(i) = 1, Y2(i) = 0}
+ #{i : Y1(i) = 1, Y2(i) = 1}, (4.9)

#{i : Y3(i) = 0} =
T

2
= #{i : Y1(i) = 0, Y2(i) = 0}
+ #{i : Y1(i) = 1, Y2(i) = 1}, (4.10)

#{i : Y3(i) = 1} =
T

2
= #{i : Y1(i) = 1, Y2(i) = 0}
+ #{i : Y1(i) = 0, Y2(i) = 1}. (4.11)

Solving (4.8), (4.9), (4.10), and (4.11), leads to the result in (4.7).
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t {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
1 0 0 0 0 0 0 0
2 0 0 1 0 1 1 1
3 0 1 0 1 0 1 1
4 0 1 1 1 1 0 0
5 1 0 0 1 1 0 1
6 1 0 1 1 0 1 0
7 1 1 0 0 1 1 0
8 1 1 1 0 0 0 1

Table 4.1 – Universal deterministic schedule with 8 time slots for networks of N ∈
{4, 5, 6, 7} nodes.

As before, the entry S(i, j) represents the transmission mode of the j-th
node in the i-th time slot; 1 if the node is in transmit-mode and 0 if it is in
receive-mode. Therefore, the matrix S corresponds to a good schedule with
T = 2m for networks of at most 2m − 1 nodes. Given the number of nodes
N , we choose m just large enough to ensure N ≤ 2m − 1. Equivalently, we
pick m, such that 2m−1 ≤ N < 2m, i.e. m − 1 = blog2Nc. Finally, we pick
the submatrix with the first N columns of S (note that we can pick any N
columns of the matrix S) and 2m rows as the schedule for the N half-duplex
nodes. Therefore, based on Lemma 4.3.2, the universal deterministic schedule
proposed ensures that all the links in any network are “used properly” exactly
1/4 fraction of the time.

Let us discuss the example of universal deterministic schedule given in Table
4.1 for networks of N ∈ {4, 5, 6, 7} nodes. Assume we have a network with
N = 5 nodes. This means that m = blog2Nc+ 1 = 3. We construct a 23-by-3
binary matrix by listing the possible combinations of 3 bits as the 23 rows. Call
the columns of this matrix X1, X2, and X3. Afterwards, we construct a 23-by-
(23 − 1) matrix S, the columns of which are indexed by all non-empty subsets
of {1, 2, 3}. The column corresponding to the subset Q is equal to

∑
i∈QXi

mod 2, as shown in Table 4.1. Note that any two columns of the matrix S
contain the combinations (0, 0), (0, 1), (1, 0), and (1, 1) exactly 2 times. Since
we have only 5 nodes in the network, we pick the submatrix with the first N = 5
columns and the T = 8 rows as the schedule for our half-duplex network.

4.4 Summary

In this chapter, we show that full-duplex can more than double the capacity
of wireless networks. Indeed, we construct an instance of wireless network
where the ratio between the full-duplex and the half-duplex capacity is 3. The
follow-up question that remains open is whether there exists an instance of
wireless network where full-duplex can more than triple the capacity of the
half-duplex network. This might require a better understanding of the optimal
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scheduling in half-duplex multi-relay networks, which can give an insight about
how to construct networks that exploit the weak points of half-duplex nodes to
minimize the half-duplex capacity. Moreover, we propose a universal schedule
for half-duplex networks that ensures all links are active 1/4 of the time. As
a consequence, we show that full-duplex radios cannot more than quadruple
the capacity of wireless networks of independent, memoryless, point-to-point
channels.





Conclusions and Future
Directions 5
In this chapter, we summarize the main contributions of this dissertation and
briefly discuss some open problems and possible future research directions.

5.1 Impact of Communication Medium on Network
Throughput

The first main contribution of the thesis, presented in Chapters 2 and 3, charac-
terizes the broadcast capacity of a wireless network at low SNR in line-of-sight
environment and under different assumptions regarding the network density.
Our analysis proves that to achieve the broadcast capacity at low SNR, the
nodes available in the network are required to collaborate and efficiently ex-
ploit the beamforming capabilities available in the network when the network is
dense. On the other hand, sparse networks lead to uncorrelated channel coeffi-
cients which results in the absence of beamforming capabilities in the network,
which in turn means that no cooperation is required by the nodes to achieve
the broadcast capacity.

Another contribution related to the impact of the communication medium
on the network throughput resides in the following observation: an increase
in the number of degrees of freedom comes at the expense of the beamform-
ing capabilities in the network. In other words, sparse networks diminish the
correlation among the channel coefficients which on one hand improves the
spatial diversity, thus, increasing the number of degrees of freedom available,
and on the other hand reduces the beamforming gain of the channel matrix.
Equivalently, dense networks provide higher correlation among the phases of
the transmitted signals which results in larger beamforming capabilities and
smaller degrees of freedom.
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5.1.1 Future Research Directions

In this dissertation, we show the impact of the beamforming gain on the broad-
cast capacity of ad hoc networks at low-SNR regime. We further provide an
achievable scheme, namely, multi-stage back-and-forth beamforming, which ex-
ploits the beamforming gain in an optimal fashion to achieve the broadcast
capacity. Furthermore, we present previous works on the multi-unicast capac-
ity in ad hoc networks at high-SNR regime. In these works, authors propose
sophisticated schemes, based on hierarchical cooperation, that can fully ben-
efit from the spatial degrees of freedom available to achieve the multi-unicast
capacity.

A scenario that may require a communication scheme that exploits both the
beamforming gain and the degrees of freedom is the multi-unicast capacity at
low SNR, which still remains an open problem. This is because at low SNR the
multi-unicast capacity is given by the power transfer across the network. This
may require an optimal power transfer (equivalently an optimal beamforming
scheme) along each dimension of the communication medium. In other words,
we suspect that the optimal communication scheme should be capable of com-
bining strategies used by the hierarchical cooperation (MIMO transmission)
with strategies used by the back-and-forth beamforming scheme, if it were to
achieve the multi-unicast capacity at low-SNR regime. Such a hybrid scheme
is still unknown and subject to future investigation.

5.2 Impact of Transmission Mode on Network Throughput

The second part of the thesis, presented in Chapter 4, emphasizes the impact
of the transceiving capabilities of the nodes, rather than the communication
channel, on the network throughput. We show that full-duplex can more than
double the capacity of wireless networks. In fact, we construct an instance of
wireless network where the full-duplex capacity is three times the half-duplex
capacity. We further propose a universal schedule for half-duplex networks of
independent, memoryless, point-to-point channels that is capable of achieving
a fraction of 1/4 of the full-duplex capacity. In other words, we show that full-
duplex radios cannot more than quadruple the capacity of wireless networks of
independent, memoryless, point-to-point channels.

5.2.1 Future Research Directions

Note that in this work, we consider single-source single-destination networks.
Consequently, we consider acyclic networks. However, the schedule we propose
in 4.3.1 guarantees that all links are active 1/4 fraction of the time in both cyclic
and acyclic networks. This may suggest that we may have better schedules for
acyclic networks.
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Figure 5.1 – Cyclic network with N = 3 nodes.

Figure 5.2 – Cyclic network with N = 5 nodes.

Cyclic vs Acyclic Networks

Consider the triangular cyclic network shown in Fig. 5.1. If any of the three
links is activated, then none of the other two links can be activated simulta-
neously. As a consequence, each link can be activated only 1/3 fraction of
the time to ensure equal data transfer through all the links. We can extend
the triangular cyclic network to a pentagonal cyclic network as shown in Fig.
5.2. In this network, at most 3 links can be activated simultaneously. As a
result, to ensure equal data transfer through all the 10 links, each link should
be activated only 3/10 fraction of the time.

One can generalize the topology of cyclic networks shown in Fig.5.1 and
Fig.5.2 as follows. Consider a network with N (assume N � 1 is odd) nodes
placed on a circle. Each node has N−1

2 outgoing links connected respectively to

the N−1
2 neighboring nodes that follow it on the circle. In this cyclic network,

to ensure equal data transfer through all the N(N−1)
2 links, each link should be

activated only 1/4 fraction of the time for sufficiently large N . Proof Approach:
One can show that, in order to simultaneously activate the largest number of
links in the given network, N−1

2 nodes should be in transmit-mode and N+1
2 of

the remaining nodes should be in receive-mode (or vice versa). Moreover, we
can randomly pick the nodes that are in transmit-mode. Therefore, without
loss of generality, assume the first N−1

2 nodes are in transmit-mode and the
rest of the nodes are in receive-mode. Note that for the first transmitting
node, only one link is activated. For the second transmitting node, two links
are activated. This trend continues until the last transmitting node which has
all its N−1

2 outgoing links activated. This results in a total of

1 + 2 + . . .
N − 1

2
=
N2 − 1

8

links activated out of N(N−1)
2 links. Therefore, for large values of N , at any
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instance, we can activate

N2−1
8

N(N−1)
2

=
1

4

N + 1

N

N→∞→ 1/4

fraction of the links in the network simultaneously. This means that, to ensure
equal data transfer through all the links, each link should be activated 1/4
fraction of the time. This may suggest that the maximum capacity gain that
full-duplex radios can achieve is indeed 4. However, this may require to come
up with with a communication scenario1, whereby all the links in the above
described topology are indeed readily required to be active for an equal fraction
of the time.

On the other hand, the maximum gain of full-duplex networks over half-
duplex networks may vary between cyclic and acyclic networks. In other words,
the maximum gain might be equal to 3 for acyclic or single-source single-
destination networks, and equal to 4 for cyclic or multiple-source multiple-
destination networks. All these claims and suggestions are plausible and worth
the investigation.

1For example, we may have to consider multiple-source multiple-destination networks
instead of single-source single-destination networks.
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