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Abstract

Many natural images have low intrinsic dimension (a.k.a. sparse), meaning that they

can be represented with very few coefficients when expressed in an adequate domain. The

recent theory of Compressed Sensing exploits this property offering a powerful framework

for sparse signal recovery from undetermined linear systems.

In this thesis, we deal with two different applications of remote Fourier sensing, for

which the available measurements relate to the Fourier coefficients of our concerned sig-

nal: optical interferometry and diffusion Magnetic Resonance Imaging (dMRI). In both

applications, we face challenging problems due to a restricted number of available measure-

ments and the nonlinearity of the direct model for the data. Inspired by the Compressed

Sensing framework, our strategy to solve these nonlinear and ill-posed problems resorts

to reformulating them as linear inverse problems and propose novel priors to leverage the

intrinsic low dimensionality of the solution.

The first part of this thesis is devoted to image reconstruction from optical interferom-

etry data. State-of-the-art methods are nonconvex due to the intrinsic data nonlinearity

and are therefore known to suffer from a strong sensitivity to initialization. We reformu-

late the problem as a tensor completion problem, where the aim is to recover a tensor

from which we have information through some linear mapping. We propose two different

alternatives to solve it, one being a purely convex approach. An original nonconvex alter-

nate minimization method has also been explored. We present results on synthetic data

and compare pros and cons for both approaches. Our original formulation can be seen as

a generalization of the Phase Lift approach and can potentially be applied to other partial

phase retrieval problems.

In the second part, we tackle the problem of fiber reconstruction in dMRI. dMRI

exploits the anisotropy of the water diffusion in the brain to study the organization of its

tissue. Particularly, the goal of our work is to recover the local properties of the axon

tracts, i.e. their orientation and microstructural features in every voxel of the brain. We

resort to a reweighting scheme to leverage the structured sparsity of the solution, where
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vi Abstract

the structure originates from the spatial coherence of the fiber characteristics between

neighbor voxels. Imposing this original prior promotes a powerful regularization that

guarantees a strong robustness to undersampling. Due to a time-consuming measuring

process, this ability to solve the imaging problem from few dMRI data points is crucial to

guarantee the feasibility of this technique in a clinical context. We present results on real

and simulated data and compare our approach to other state-of-the-art methods. We also

discuss how our novel approach can actually be applied in a more generic framework for

multiple correlated sparse signal recovery.

Keywords: inverse problems, compressed sensing, sparsity, structured sparsity, con-

vex optimization, optical interferometry, diffusion MRI, spherical deconvolution, HARDI,

microstructure imaging.



Résumé

Beaucoup d’images naturelles ont une dimension intrinsèque bien réduite (alias par-

cimonieuses), signifiant qu’elles peuvent être représentées avec un nombre limité de co-

efficients si elles se trouvent exprimées dans une base adéquate. La récente théorie de

l’échantillonnage compressif (compressed sensing) exploite cette propriété en offrant un

cadre très solide pour la récupération des signaux parcimonieux à partir de systèmes

linéaires incomplets.

Dans cette thèse, nous traitons deux applications différentes de détection de Fourier

à distance, pour lesquelles les mesures qui nous sont accessibles sont liées aux coeffi-

cients de Fourier du signal qui nous intéresse : l’interférométrie optique et l’Imagerie par

Résonance Magnétique de diffusion (IRMd). Dans les deux cas, nous nous trouvons face

à des problèmes qui représentent un gros défi dû à la non-linéarité du modèle et à l’acces-

sibilité à un nombre très restreint de mesures. Inspirés par la théorie de l’échantillonnage

compressif, notre stratégie pour résoudre ces problèmes inverses mal posés et non-linéaires

recourt à les ré-exprimer comme des problèmes inverses linéaires et à proposer des nou-

velles informations à priori afin d’exploiter la petite dimension intrinsèque à la solution.

La première partie de cette thèse est consacrée à la reconstruction des images à par-

tir des données d’interférométrie optique. Dans ce domaine, les méthodes de pointe sont

non-convexes dû à la non-linéarité des données et, par conséquent, sont très sensibles à

leur initialisation. Nous reformulons ce problème comme un problème de remplissage de

tenseurs, avec le but de récupérer un tenseur duquel on obtient information à travers une

conversion linéaire. Nous proposons deux alternatives différentes pour le résoudre, dont

l’une est purement convexe. Nous avons aussi exploré une nouvelle méthode de minimisa-

tion alternée non-convexe. Nous présentons des résultats avec des données synthétiques et

on compare les avantages et désavantages des deux approches. Notre formulation originale

peut être vue comme une généralisation de l’approche PhaseLift et peut potentiellement

être appliquée à d’autres problèmes de récupération de phase.

Dans la deuxième partie, nous abordons le problème de reconstruction des fibres en
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IRMd. IRMd exploite l’anisotropie de la diffusion de l’eau dans le cerveau pour étudier

l’organisation de ses tissus. En particulier, le but de notre travail est de récupérer les

propriétés locales des voies axonales, i.e. leur orientation et microstructure pour chaque

voxel du cerveau. Nous recourons à un schéma de repondération itérative afin d’exploiter

la parcimonie structurée de la solution, structure qui a lieu grâce à la cohérence spatiale

des fibres entre les voxels voisins. En imposant cette nouvelle information a priori nous

promouvons une régularisation solide qui assure la reconstruction dans des régimes forte-

ment sous-échantillonnés. À cause d’un processus de mesure de longue durée, le fait d’être

capable de résoudre le problème avec très peu de données IRMd est crucial afin de garantir

la faisabilité de cette technique dans un contexte clinique. Nous présentons des résultats

avec des données autant simulées que réelles que nous comparons à l’état-de-l’art. Nous

discutons aussi comment notre nouvelle méthode peut être appliquée à la récupération de

multiples signaux parcimonieux corrélés dans un cadre plus générique.

Mots-clefs : problèmes inverses, échantillonnage compressif, parcimonie, parcimonie

structurée, optimisation convexe, interférométrie optique, IRM de diffusion, déconvolution

sphérique, HARDI, imagerie de la microstructure.
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Lausanne, 22 March 2017



Contents

Abstract (English/Français) v
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Chapter 1

Preface

1.1 Context

When we have a physical system we can build mathematical models to predict the

outcome of a certain measurement process. For instance, the weather forecast predicts the

curve of temperatures or the quantity of rain at a certain location based on a particular

model. These kinds of problems are commonly known as forward problems. Conversely,

inverse problems are concerned with determining the causes for an observed effect. Inverse

problems became very popular by the end of last century being increasingly used for

applications in science and engineering. As an example, the restoration of a signal or and

image from its ”degraded” versions can be cast as an inverse problem and is the basis

of many imaging modalities that involve remote sensing, such as medical, astronomical,

radar, sonar, etc. In these contexts usually only a limited number of noisy observations

is available and this limitation leads to ill-posed inverse problems, meaning that their

solution either is not unique or does not exists or is not stable. As a consequence, to

ensure a plausible solution, the problem needs to be regularized by injecting some prior

information either on the physical model or on the unknown signal itself.

Many natural signals are sparse in some adequate transformed domain, meaning that

they can actually be described with very few coefficients when expressed in a suitable

basis (i.e. they have low intrinsic dimension). For instance, wavelet techniques provide a

multi-scale representation of natural signals characterized by a sparse structure. Therefore,

functions that promote the sparsity of the signal of interest appear as very good candidates

to regularize ill-posed inverse problems.

Among inverse problems in general, linear inverse problems (l.i.p.) have been widely

studied and the theory of regularization methods in the linear case is very well developed.

One of the nice properties that makes l.i.p very attractive is that they can be efficiently

solved by using fast and versatile convex optimization methods. The theory of Compressed

Sensing (CS)∗ can actually be framed in the context of ill-posed linear sensing. CS builds

a framework where a sparse signal can be recovered from very few measurements, beyond

∗Also known as compressive sensing or compressed/ive sampling. Throughout this manuscript the
reader will find these terms used indistinctly.

1



2 Chapter 1. Preface

the requirements of the Nyquist sampling theorem, by exploiting the sparsity of the signal

and cleverly designing adequate sensing matrices.

In this thesis, we deal with sparse, ill-posed and nonlinear inverse problems that arise

from two applications of Fourier sensing: optical interferometry and diffusion Magnetic

Resonance Imaging (dMRI). In what we call Fourier sensing, not directly the signal of

interest is retrieved but a set of measurements that are related to the Fourier coefficients

of the object of interest. In both applications, we deal with undersampled problems, for

which the number of available measurements is smaller than the dimension of the signal.

Nevertheless, the nature of the ill-posedness stems from different origins, depending on

the application. In optical interferometry the undersampling is due to an highly-limited

number of sensing devices (i.e. telescopes). Otherwise, in the field of diffusion MRI the

measuring process is so time consuming that undersampling is the only way to guarantee

the feasibility of the technique in a clinical context.

We tackle these originally nonlinear inverse problems by reformulating them as lin-

ear problems, so that we can take advantage of all the flexibility of convex optimization

methods to easily inject prior information and efficiently solve them. Our formulations

to solve sparse linear inverse problems are built on the CS framework, even if in this

work we do not explore explicitly the design of sensing matrices. The strategies that have

been implemented to move from a nonlinear to a linear formulation, as well as the chosen

regularization methods to leverage the appropriate sparse structure of the signal, vary

depending on the application. The reader can find an overview of all of them in the next

subsection, devoted to describe our contributions and the organization of the manuscript.

1.2 Contributions and organization of the manuscript

In the following lines I present a brief summary of each of the parts of this manuscript:

Chapter 2 includes a review on general linear inverse problems and describes the

theory of Compressed Sensing (CS) for sparse signals. From the formulation perspective,

it addresses the problem of sparse signal recovery based on CS ideas. Regarding the

reconstruction, it revises convex optimization and proximal splitting methods. This part

is meant to provide the reader with the background required to understand subsequent

parts of the thesis and does not include any original contribution.

In part I, I detail the work we have done on image reconstruction from Optical In-

terferometry data. Optical interferometers are now the state-of-the-art to reach the best

resolution in the optical spectrum. Nevertheless, their output is not directly an image and

tools for image reconstruction are, therefore, required. Image recovery in optical interfer-

ometry is an ill-posed problem arising from incomplete power spectrum and bispectrum
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measurements. Consequently, the direct model of the data happens to be highly nonlin-

ear, inducing nonconvexity in the problem. So far, all state-of-the-art methods perform

local optimization, which (i) does not provide a global solution and (ii) makes them highly

dependent on the initialization. We generalize the Phase Lift approach [2] and reformulate

the problem as a tensor completion problem, where the aim is to recover a tensor from

which we have information through some linear mapping. In order to regularize it, we pro-

pose a novel prior to account for low-rankness of the tensor, trying to exploit the specific

conditions of our problem. For the sake of comparison, an original nonconvex gauss-seidel

alternate minimization approach has also been explored. We present results on synthetic

data and discuss pros and cons of both approaches. This work has been published in [3, 4].

In part II, I describe the work we have done on fiber reconstruction from diffusion

Magnetic Resonance Imaging (dMRI) data, in the domain of brain imaging. dMRI exploits

the random diffusional property (Brownian motion) of the water molecules to try to infer

features of the body tissue. In particular, it has become popular in brain imaging to

recover axons orientation and microstructure. In chapter 4 we give some background

information on the field and cite the main state-of-the-art local modeling methods to

explain the dMRI signal in each voxel of the brain.

Chapter 5 addresses the problem of fiber orientation estimation. The direct forward

model that explains the dMRI signal as a Gaussian mixture is actually nonlinear and

estimating its parameters directly resorts to nonlinear fitting. However, the problem

can be discretized and reformulated using a linear dictionary made of a concatenation of

”response functions” in the framework of spherical deconvolution [5, 6]. In this framework,

we take advantage of the versatility of convex optimization to include a novel prior that

imposes spatial regularization directly on the fiber space. We present results on real and

simulated data and compare our approach to other state-of-the-art methods. This work

has ben published in [7, 8].

Chapter 6 is concerned with assessing the microstructure of the fibers. Most micros-

tucture imaging techniques recover the microstructure properties by modeling the dMRI

signal in different tissue compartments. Similarly as in chapter 5, the direct nonlinear rou-

tines usually employed to fit these models are computationally very intensive and cause

practical problems for their application in clinical studies. Our novel approach is based

on the framework of AMICO† that reformulates these microstructure imaging techniques

as linear systems [9]. Again, thanks to the flexibility of convex optimization, we gener-

alize its formulation to enable microstructure estimation and fiber orientation recovery

simultaneously. Besides, we adapt the novel prior defined in chapter 5 to the problem of

microstructure recovery to impose spatial coherence on the solution. We show preliminary

results on simulated data and discuss general open questions in the field of microstructure

imaging. Part of this work has been published in [10, 11, 12, 13].

†Accelerated Microstructure Imaging via Convex Optimization
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Finally, conclusions and future perspectives are presented in Chapter 7.



Chapter 2

Sparse linear inverse problems

2.1 Introduction

Many natural signals have low intrinsic dimension (a.k.a. sparse), meaning that most

of their coefficients vanish when expressed in a suitable basis. As a consequence, the

concept of sparsity has become very popular in many signal processing problems, such

as deconvolution, denoising and deblurring. Sparsity of the signal can appear in different

domains: besides classical sparsity, TV-sparse signals (i.e. signals whose gradient has few

significant coefficients) or low-rank matrices can also be considered sparse objects since

they have much less degrees of freedom than their actual dimension.

Sparsity is therefore a good candidate to be injected as a prior to regularize ill-posed

inverse problems. Precisely, the recent theory of Compressive Sensing (CS) resorts to �1-

norm minimization to promote sparse solutions. In this chapter we address the problem

of sparse signal recovery from both, formulation and reconstruction perspective.

The chapter is organized as follows: our notation and some useful mathematical def-

initions are presented in section 2.2. In section 2.3 the reader can find a short reminder

on linear inverse problems and regularization strategies. Section 2.4 is devoted to the

formulation of convex minimization problems for the recovery of sparse signals based on

Compressive Sensing ideas. Low-rank matrix recovery is also addressed, seen as an exten-

sion of the original CS framework. In section 2.5 we revise fundamental notions on convex

optimization. We present, as well, the group of proximal splitting methods that appear as

reconstruction algorithms particularly convenient to solve the convex problems previously

proposed. We conclude in section 2.6 reviewing the background context presented in this

chapter and linking it with the novel contributions that will be introduced further in this

thesis.

2.2 Notation and basic definitions

Throughout this thesis, we use R to denote the set of real numbers and C for the com-

plex set. R+ denotes the set of non-negative real numbers. We denote vectors with bold

lower case letters, matrices with upper case letters and tensor with italic ones. We denote

5
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xi the i-th element of a vector x ∈ R
N (or alternatively C

N ) for any index i ∈ {1, . . . , N}.
Let x ∈ R

N , z ∈ C
N be two N -dimensional real and complex vectors, respectively. x�

stands for the simple transpose vector whereas z† stands for the conjugate-transpose vec-

tor.

Let x,y ∈ R
N be two N -dimensional vectors. The standard inner product on R

N is

given by 〈x, y〉 = x�y. The �2 norm, the Euclidean norm, of a vector x ∈ R
N is defined

as ‖x‖2 =
√
x�x =

√∑N
i=1 x

2
i . More generally, the �p norm (p ≥ 1) of a vector is defined

as:

‖x‖p =
(

N∑
i=1

|xi|p
)1/p

. (2.1)

In particular, for the case p = 1, the well-known �1 norm corresponds to the sum of the

absolute values of the signal. The �0 pseudo-norm of a vector is a cardinality function

which corresponds to the number of its nonzero coefficients:

‖x‖0 = #(i|xi �= 0). (2.2)

For matrices X,Y ∈ R
M×N , the standard inner product is given by:

〈X, Y〉 = tr(X�Y) =
M∑
i=1

N∑
j=1

XijYij , (2.3)

where tr denotes the trace of a matrix (i.e, the sum of the elements of its diagonal). X can

be factored as

X = UΣV�, (2.4)

where U ∈ R
M×r satisfies UU� = I (being I the identity matrix), V ∈ R

N×r satisfies

VV� = I and Σ = diag(σ1, . . . , σr) with

σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. (2.5)

Factorization (2.4) is known as the singular value decomposition (SVD) of X and σi are

the singular values. The rank r of a matrix denotes the number of its nonzero singular

values. The nuclear norm of a matrix ‖ · ‖∗ is equal to the sum of its singular values:

‖X‖∗ =
r∑

i=1

σi(X), (2.6)

for a matrix X of rank(X) = r. Note that the rank of a matrix actually corresponds to the

�0 norm of its vector of singular values, whereas the nuclear norm of a matrix is equivalent
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to the �1 norm of its vector of singular values.

A symmetric matrix Z ∈ R
N×N (or more generally ∈ C

N×N ) is called positive definite

if for all x �= 0, xZx� ≥ 0 (or zZz† ≥ 0) and we denote Z 	 0. The negative definite,

positive semidefinite, and negative semidefinite matrices are defined analogously, requiring

the expression zZz† to be always negative, nonnegative, and nonpositive, respectively.

The order (or number of dimensions, ways or modes) of a tensor X ∈ C
N1×...×Nd with

components Xi1,....,id is the number d of the indices characterizing its components. For the

sake of simplicity, we present the following notation only for tensors of order 3.

A 3-way tensor X ∈ C
N1×N2×N3 is rank-1 if it can be written as the outer product of

3 vectors, i.e. X = a ◦ b ◦ c, or component-wise Xijk = aibjck.

The rank of a tensor, rank(X), is defined as the smallest number of rank-1 tensors that

generate X as their sum. In other words, if X can be expressed as

X =
R∑

r=1

ar ◦ br ◦ cr, (2.7)

then rank(X) ≤ R. The notion of rank when applied to a tensor is analogue to the matrix

rank though most of the common properties of the latter do not hold when dealing with

objects of a dimension higher than 2. One of the main differences is that there is no

algorithm to compute the rank of a given tensor. In fact the problem is NP-hard [14].

The well-known method to find a rank-k approximation of a matrix through the largest k

values of its SVD [15] does not apply or have an equivalent for the case of high-dimension

tensors.

Matricization is the process of transforming a tensor into a matrix. The mode-n

matricization of a tensor X is denoted by X(n) and results from unfolding all its modes but

the mode n into the rows of a matrix. The n-rank of a tensor follows as

n-rank(X) = (rank(X(1)), rank(X(2)), rank(X(3))). (2.8)

In contrast to the rank function, it is easier to handle, since the problem is reduced to

calculations with matrices which are already well-known objects with nice properties. The

reader can refer to [16] for a more detailed explanation on different notions of tensor rank

and their associated decomposition methods.

A tensor is called cubical if every mode has the same size, i.e. X ∈ R
N×N×N . A cubical

tensor X is called supersymmetric if its entries are invariant under permutation of their

indices: Xijk = Xikj = Xjik = Xjki = Xkij = Xkji.
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2.3 Linear inverse problems

A typical linear inverse problem aims to solve a linear system of equations of the form

y = Φx+ η, (2.9)

where Φ ∈ R
M×N and y ∈ R

M are known, η is some noise or perturbation of the measure-

ment vector y and x ∈ R
N represents the true signal to be recovered. The least squares

(LS) approach to solve problem (2.9) chooses to minimize the data discrepancy by solving

x̂ = min
x
‖Φx− y‖2. (2.10)

However, in many applications, matrix Φ is ill-conditioned, implying that small changes in

the input argument x can result in large changes on the output value of the measurements,

making (2.9) a very unstable system, extremely sensitive to noise.

Regularization methods overcome this challenge by replacing the original ill-posed

problem by a well-conditioned problem with solution

x̂ = min
x
‖Φx− y‖2 + λfr(x). (2.11)

In (2.11) the role of the regularization function fr(·) is to improve the ill-conditioned nature

of the original problem by injecting some prior knowledge on the required solution.

The so-called regularization parameter λ controls the compromise between accuracy and

stability of the solution. Actually, the whole ”art” of regularizing relies on wisely tuning

this compromise [17]. To mention a simple example, one popular strategy, known as

Thikhonov regularization, corresponds to choosing fr(·) = ‖ · ‖22, the quadratic penalty of

the unknown:

x̂ = min
x
‖Φx− y‖2 + λ‖x‖22. (2.12)

In (2.12), the quadratic term that is added to the initial objective function helps stabilizing

the problem by controlling the norm of the solution. In this case, λ can be read off as a

trade-off between data fidelity and noise sensitivity. Problem (2.11) has also an equivalent

constrained form that reads:

x̂ = min
x

fr(x) s.t. ‖Φx− y‖2 ≤ ε, (2.13)

for some value of ε acting as a bound on the noise level.

In the following section, we focus on the design of minimization problems, i.e. the

choice of relevant regularization functions, for sparse signal recovery.
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2.4 Sparse signal model

2.4.1 Review on Compressed Sensing

It is known that a large variety of natural signals are sparse or compressible in multi-

scale dictionaries, such as wavelet bases. By definition, a signal is sparse in some orthonor-

mal basis Ψ ∈ C
N×N if its expansion α ∈ C

N , with x ≡ Ψα, contains only a small number

K  N of nonzero coefficients αi. More generally, it is compressible if its expansion only

contains a small number of significant coefficients, i.e. if a large number of its coefficients

bear a negligible value. In figure 2.1, we show an example of an image and its sparse

representations in two different bases.

Figure 2.1: Sparsity of Lena in two different basis

.

The Compressed Sensing (CS) theory [18, 19, 20] builds a framework where a signal can

be recovered with very high probability from fewer measurements M ∝ K  N than what

it had used to be considered sufficient, beyond the traditional Nyquist paradigm [21]. The

signal is assumed to be probed by M linear measurements denoted by a vector y ∈ C
M

in some orthonormal sensing basis and identified by the sensing matrix Φ ∈ C
N×M and

possibly affected by i.i.d. Gaussian noise η ∈ C
M .Therefore the following linear inverse

problem in matrix form holds:

y ≡ Θα+ η, with Θ ≡ ΦΨ ∈ C
M×N (2.14)
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One popular strategy for the signal recovery resorts to solving the associated mini-

mization problem and regularizing the originally ill-posed inverse problem by an explicit

sparsity or compressibility prior on the signal. Knowing that the representation of

signal α is sparse or compressible and considering a set of measurements y corrupted

by some bounded noise, the first natural approach to recover x would be by solving an

optimization problem like:

min
α̂∈CN

‖α̂‖0 subject to ‖y −Θα̂‖2 ≤ ε, (2.15)

where ε represents a bound on the �2 norm of the residual noise, η ≡ y − Θα̂. Unfortu-

nately, the �0 norm is a nonconvex function and it is known that finding a minimum for

(2.15) is NP-hard.

One common approach to recover x from y is to replace the nonconvex fr(·) = || · ||0 in
(2.15) by its convex approximation, the �1 norm, and solve the following convex problem:

min
α̂∈CN

‖α̂‖1 subject to ‖y −Θα̂‖2 ≤ ε. (2.16)

In (2.16), the �1 norm of the coefficients of the signal in the sparsity basis α ≡ Ψ†x is

minimized under a constraint on the �2 norm of the residual noise. This �1 minimization

approach formulates the CS problem of recovering sparse signals in the powerful framework

of convex optimization, for which there exists a number of efficient numerical solvers

and algorithms (refer to section 2.5). A simple illustrated example meant to provide an

understanding on how the �1 norm induces sparsity on the solution can be found in Figure

2.2. In the illustration, dashed lines represent an �1 ball and an �2 ball in R
2 (set of vectors

with the same �1 or �2 norm, respectively) and line A represents a linear data constraint.

The constrained line intersects the �1 ball on the axis, thus resulting in a sparse solution.

Figure 2.2: Illustration of the �p approximation x̂ of a point x ∈ R
2 by a one-dimensional space

A. Dashed lines represent an �1 ball and an �2 ball (set of vectors with the same �1 or �2 norm,
respectively). Illustration taken from [22]. Image used with permission.

The theory of CS performs an analysis of problem (2.16) and provides recovery guar-

antees under certain conditions on the signal and the sensing matrix [23]. However, convex
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optimization is particularly versatile and can account for variations in the formulation of

the problem. For instance, the unconstrained version of the �1 minimization problem can

also be considered, i.e.,

min
α̂∈CN

1

2
‖y −Θα̂‖22 + λ‖α̂‖1. (2.17)

For some value of λ, this optimization problem will yield the same result as the formulation

(2.16). Another possible variation implies optimizing the signal x itself (analysis-based

formulation), instead of solving the minimization problem for the representation vector α̂

and then recovering the signal through x̂ ≡ Ψα̂ (synthesis-based methods). Note that in

the case of Ψ being an orthonormal basis the two approaches are equivalent.

2.4.2 Beyond �1: iterative reweighted �1 minimization

In this subsection, we present a reweighted iterative algorithm that in many situations

finds the good solution for (2.14) but with less measurement requirements than considering

the �1 surrogate [24]. In this approach, the �0 norm in (2.15) is substituted by a weighted

�1 norm defined as ‖wα‖1 =
∑

iwi|αi|, for positive weights wi. A reweighted scheme

algorithm is defined, alternating between solving a problem of the form:

α̂(t) = min
α̂∈CN

‖W(t)α̂‖1 subject to ‖y −Θα̂‖2 ≤ ε, (2.18)

and updating the weights wi. In (2.18), matrix W(t) ∈ R
N represents a diagonal matrix

with coefficients {w1. . . . , wN} in the main diagonal and superindex t indexes the iteration

number.

In this kind of scheme, large weights tend to discourage nonzero entries whereas small

weights promote nonzero entries in the solution. Therefore, as it is extensively discussed

in [24], the weights need to relate to the inverse of the associated element of the solution

at the previous iteration, so as to lead to an �0-norm prior at convergence. In [24], the

authors propose to update the weights as follows:

w
(t+1)
i =

1

|x(t)i |+ τ
(2.19)

and terminate either on convergence or when t reaches a maximum-allowed number of

iterations. The parameter τ that appears in the definition of the weights has the role of

providing stability and ensuring that all weights are well defined, even for zero coefficients.

With this definition (2.19), the weights compensate the fact that simple �1 minimization

does not treat all coefficients evenly. Indeed, when minimizing the convex �1 norm to

promote sparsity, larger coefficients are actually more penalized than the smaller ones,

whereas they would be equally treated if one was directly minimizing the original �0

pseudo-norm.
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The reweighted �1 minimization outperforms plain �1 minimization in a variety of

setups and since the number of iterations is typically very low, its additional computational

cost is affordable [24]. Illustration 2.3 provides an visual example of a situation where the

(unweighted) �1 minimization fails to recovers the correct solution whereas the weighted-

�1 minimization, does not. In this simple 3D situation, the feasible set intersects the

interior of the �1 ball centered in the origin with a radius equal to ‖x0‖1, and therefore

minimizing the �1 norm does not find the correct solution (situation (b) in Figure 2.3).

However, weighting the �1 ball with appropriate weights provokes a “sharpening” effect

on the shape of the ball, avoiding its intersection with the linear constraint and leading

the weighted problem to find the correct solution.

Figure 2.3: Visual example of sparse signal recovery using a weighted �1 norm. (a): The linear
constraint y = Φx and the �1 ball containing the sparse signal to be recoverd x0 are shown. (b):
x �= x0 with ‖x‖1 < ‖x0‖1 exists. (c): Weighted �1 ball. No x such that ‖Wx‖1 < ‖Wx0‖1 exists.
Illustration taken from [24]. Image used with permission.

2.4.3 Low-rank matrix recovery

The problem of recovering a matrix from some sample of its entries, or from fewer linear

functionals about the matrix, is known as the matrix completion problem [25, 26, 27].

Mathematically, it can as well be formulated as a linear inverse problem

y = A(X) + η, (2.20)

where the unknown would be a matrix X ∈ R
N1×N2 and A a linear operator acting on the

space of N1 ×N2 matrices. Note that matrix X is represented by N1 ·N2 numbers but it

only has (2N − r) · r degrees of freedom, with N = max(N1, N2) and r = rank(X). When

the rank is small, this is notably smaller than N1 ·N2.

Analogously to the vector case, the assumption that the unknown has low dimension

(low rank) makes the search of solutions feasible. Consequently, one would like to solve
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the following optimization problem:

min
X∈RN1×N2

rank(X) subject to ‖y −A(X)‖2 ≤ ε. (2.21)

However, even if (2.21) appears as the most natural problem to solve, it is actually NP-

hard.

A popular alternative to problem (2.21) resorts to minimizing the nuclear norm of the

unknown, i.e. fr(·) = ‖ · ‖∗ [27], leading to the following formulation:

min
X∈RN1×N2

‖X‖∗ subject to ‖y −A(X)‖2 ≤ ε. (2.22)

Interestingly, the nuclear norm is a convex functional and therefore (2.22) can be solved

efficiently using convex optimization methods (see section 2.5). Note that, as already

mentioned in section 2.2, whereas the nonconvex function rank(X) corresponds to the �0

norm of the vector of singular values of X, ‖X‖∗ can be seen as its �1 norm. This creates

a strong analogy between the �1 prior in (2.16), appearing as the convex surrogate for

the natural �0 minimization, and the nuclear norm of a matrix appearing as a convex

alternative to its rank in (2.22).

This formulation is used in the so-called Phase Lift approach [28]. In that framework,

quadratic measurements of the form | 〈x,ai〉 |2 for given projection vectors ai, are seen as

linear measurements on the rank-1 matrix X = xx† representing the outer product of the

signal with itself.

2.5 Convex optimization and proximal splitting methods

A real valued function f(x), from R
N to R, is called convex if

f((1− β)x1 + βx2) ≤ (1− β)f(x1) + βf(x2) (2.23)

for any x1,x2 ∈ R
N and any β ∈ [0, 1]. Optimization problems including convex objective

functions and convex constraints, called convex optimization problems, have many attrac-

tive properties, in particular the essential property that any local minimum must be a

global minimum, which comes directly from the definition of a convex function. Also, con-

vex problems can be efficiently solved, both in theory (i.e., via algorithms with worst-case

polynomial complexity) and in practice [29].

Among the broad range of convex optimization methods, proximal splitting methods,

exhaustively reviewed in [30], offer great flexibility and are shown to capture and extend

several well-known algorithms in a unifying framework. Examples of proximal splitting

algorithms include Douglas-Rachford, iterative thresholding, projected Landweber, pro-

jected gradient, forward-backward, alternating projections, alternating direction method
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Figure 2.4: Projection onto a convex set.

of multipliers and alternating split Bregman [30]. They solve optimization problems of

the form

min
x∈RN

f1(x) + . . .+ fK(x), (2.24)

where f1(x), . . . , fK(x) are convex lower semicontinuous functions from R
N to R. In the

case of convex constrained problems, they can be reformulated as unconstrained problems

by using the indicator function of the convex constraint set as one of the functions in

(2.24), i.e. fk(x) = iC(x) where C represents the convex constraint set. The indicator

function, defined as iC(x) = 0 if x ∈ C or iC(x) = +∞ otherwise, belongs to the class of

convex lower semicontinuous functions. Note that complex-valued vectors are treated as

real-valued vectors with twice the dimension accounting for real and imaginary parts [31].

Proximal splitting methods proceed by splitting the contribution of the functions

f1(x), . . . , fK(x) individually so as to yield an easily implementable algorithm. They

are called proximal because each function in (2.24) is involved by its proximity operator,

which can be seen as a generalization of a convex projection operator.

Let f be a convex lower semicontinuous function from R
N to R, then the proximity

operator of f is defined as:

proxf (x) � arg min
z∈RN

f(z) +
1

2
‖x− z‖22. (2.25)

In the case of indicator functions of convex sets, the proximity operator is the projection

operator onto the set (see figure 2.4):

PC(x) = arg min
z∈RN

iC(z) +
1

2
‖x− z‖22. (2.26)

The proximity operator of the �1 norm is well-known as the soft-thresholding operator,

or shrinkage:

proxλ‖·‖1(x) = max{|x| − λ,0} · sign(x) � soft(x, λ). (2.27)

soft(x, λ) sends all components xi ≤ λ to zero and shrinks the rest and consequently, it
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Figure 2.5: Soft-thresholding operator

.

induces sparsity to x. Figure 2.5 shows the soft-thresholding function for one of the com-

ponents xi of a vector x and can help the reader to intuitively see how the �1 regularization

induces sparsity.

Most proximal splitting algorithms reach a solution to (2.24) by alternately applying

the proximity operator associated with each function. For example, in the case that all

functions in (2.24) are indicator functions, the algorithm reduces to the classical projection

onto convex sets algorithm [29], which performs alternate projections to reach the solution.

An important feature of proximal splitting methods is that they offer a powerful framework

for solving convex problems in terms of speed and scalability of the techniques to very high

dimensions. Hereafter two of the most popular proximal splitting methods, the forward-

backward algorithm and the Douglas-Rachford algorithm, are described in detail since

they are referred to in parts I and II of the manuscript. See [30] for a complete review of

proximal splitting methods and their applications in signal and image processing.

2.5.1 Forward-Backward algorithm

This algorithm solves optimization problems of the form:

min
x∈RN

f1(x) + f2(x), (2.28)

with f1 being a lower semicontinuous convex function from R
N to R and such that domf �=

∅, f2 : RN → R being convex with a β-Lipschitz continuous gradient ∇f2, i.e.

‖∇f2(x)−∇f2(y)‖≤β‖x− y‖, ∀(x,y) ∈ R
N × R

N , β > 0, (2.29)

and assuming that f1(x) + f2(x)→ +∞ as ‖x‖→ +∞.

Starting from an initial point x0 ∈ R
N , for a chosen step-size parameter γ ∈ (0,min{1, 1/β})

and iterating as follows:
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xn+1 = proxγnf1︸ ︷︷ ︸
backward step

(xn − γn∇f2(xn)︸ ︷︷ ︸
forward step

, (2.30)

a sequence (xn)n≥0 is generated that converges to a solution to problem (2.28) [30]. Equa-

tion (2.30) summarizes the forward-backward algorithm, that requires one single proximal

step at each iteration.

2.5.2 Douglas-Rachford algorithm

This algorithm provides solutions for problems of the form (2.28) where the Lipschitz-

differenciability condition on f2 is relaxed. Starting from y0 ∈ R
N and choosing parame-

ters γ > 0, ε ∈ (0, 1), the Douglas-Rachford algorithm can be summarized in the following

2-steps proximal scheme:

1. xn = proxγf2yn

2. yn+1 = yn + proxγf1(2xn − yn)− xn

The Douglas-Rachford algorithm can be seen as a generalization of the forward-backward

algorithm since it does not require the functions involved to be Lipschitz-differenciable.

However, it is numerically more complex than the latter since it involves two proximal

steps at each iteration.

2.6 Conclusion

In this chapter, we have presented an overview on linear inverse problems since the

theory of regularization methods is very well studied for them and they can be easily

solved using the versatile framework of convex optimization. We have focused on sparse

inverse problems, since most of the natural signals are known to be sparse or compressible

in a suitable domain. The theory of Compressed Sensing offers a powerful framework for

sparse signal recovery. We have reviewed its main results and formulated different convex

minimization problems that leverage some kind of sparsity or low dimensionality of the

signal. At the reconstruction level, we have given some notions on convex optimization

and have revised two popular proximal splitting methods that we will use further in this

thesis.

Before concluding, we want to highlight that convex optimization is an extremely

adaptable framework that enables to easily include prior information about the signal,

such as positivity, as long as it is formulated as a convex constraint. Therefore, different

minimization problems, other than the ones described in this chapter, can be straightfor-

wardly defined for the recovery. For example, a TV norm∗ may also be substituted for the

∗The TV norm of a signal is simply defined as the �1 norm of the magnitude of its gradient
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�1 norm in (2.16) for signals with sparse or compressible gradients. All this flexibility in

the definition of the optimization problem is an important manifestation of the versatility

of the convex optimization scheme and, as the reader will see, we take advantage of it

when designing the novel algorithms that we present in subsequent chapters. In particu-

lar, in chapter 3 we propose a generalization of the Phase Lift approach (2.4.3) for tensor

recovery. In chapters 5 and 6, we have designed novel reweighting schemes to minimize a

weighted �1 norm (2.4.2) that induces structure on the sparsity of the solution thanks to

a specific definition of the weights.

Part of this chapter was published in [3].





Part I

Optical Interferometry





Chapter 3

Tensor optimization for optical-interferometric

imaging

3.1 Introduction

In interferometry, electromagnetic waves are superposed to retrieve information from

their emitting sources that otherwise would not be easily accessible. An astronomical

interferometer consists of an array of telescopes that brings together their signals, offering

a much higher resolution (approximately equivalent to that of a telescope of diameter

equal to the largest separation between its individual elements).

The measurements associated with a given pair of telescopes (j1, j2) at one instant of

observation t are known as the complex visibilities, Vj1,j2(t). These measurements corre-

spond to the Fourier transform of the image of interest at a spatial frequency νj1,j2,m(t) =
−→
B
λ ≡ (u, v), where vector

−→
B indicates the projection onto the plane of the sky of the

baseline between the pair of telescopes (j1, j2) and λ denotes the wavelength. The two-

dimensional space of spatial frequencies is commonly known as the (u, v)-plane.

What an interferometer actually measures are the complex visibilities averaged during

a finite exposure duration:

〈Vj1,j2(t)〉m ≈ Gj1,j2,mÎ(νj1,j2,m). (3.1)

In (3.1), νj1,j2,m denotes to the spatial frequency sampled by the pair of telescopes (j1, j2),

averaged over the mth exposure. Gj1,j2,m indicates the effective optical transfer function

(OTF) and Î(ν) corresponds to the Fourier transform of I(θ), the brightness distribution

of the observed object under a view angle θ. The reader can find a visual representation

of an optical interferometer and its main associated parameters in figure 3.1.

At radio wavelengths, the OTF is nonnegligible (Gj1,j2,m �= 0) and the visibilities

in (3.1) are indeed accessible, thereby setting a sparse Fourier inverse problem in the

perspective of image recovery. When the OTF can be calibrated, the problem boils down

to a deconvolution problem with sparse Fourier data. Several methods have been proposed

to solve such an ill-posed problem, for instance, the standard CLEAN algorithm operates

by local iterative removal of the convolution kernel associated with the partial Fourier

21
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Figure 3.1: Sketch of an optical interferometer. The projected baseline is denoted by B; θ indi-
cates the view angle. Illustration taken from [32]. Used with permission

.

coverage [33]. Alternatively, convex optimization methods regularizing the inverse problem

through sparsity constraints have recently been proposed in the framework of the recent

theory of compressive sampling [34, 35, 36, 37, 38, 39, 40].

At optical wavelengths though, atmospheric turbulence induces a random phase de-

lay that drives Gj1,j2,m ≈ 0, implying a systematic cancellation of the visibility values.

To overcome this challenge current optical interferometers can retrieve power spectrum

information:

Sj1,j2,m = 〈|Vj1,j2(t)|2〉m ≈ Hj1,j2,m|Î(νj1,j2,m)|2. (3.2)

In this case, Hj1,j2,m becomes a nonzero transfer function that can be easily estimated.

Since the power spectrum measurements do not provide any phase information, the bispec-

trum of the complex visibilities for a triplet of telescopes (j1, j2, j3) can also be measured

[32, 41, 42]:

Bj1,j2,j3,m = 〈Vj1,j2(t)Vj2,j3(t)Vj3,j1(t)〉m ≈ Jj1,j2,j3,mÎ(νj1,j2,m)Î(νj2,j3,m)Î(νj3,j1,m). (3.3)

The transfer function Jj1,j2,j3,m in (3.3) can also be easily estimated and, since it takes

real values, has no effect on the phase of the bispectrum, the so-called phase closure.

Note that the phase closure actually corresponds to the sum of three phases around a

closed triangle of baselines and indeed is a very robust measure insensitive to atmosphere-

induced phase shifts [43]. However, for any number of telescopes, there are always less

independent Fourier phases, among all the possible phase closures that can be measured,

than the actual number of phases we would like to determine [43]. These considerations

apply both to aperture masking interferometry on a single telescope [44, 45, 46], as well
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to optical interferometer arrays such as the Very Large Telescope Interferometer (VLTI)∗.
As a result, the problem of image recovery in optical interferometry represents a very

challenging ill-posed nonlinear Fourier inverse problem with incomplete phase information.

The simplified version of this problem, with calibrated and debiased power spectrum and

bispectrum measurements, reads as:

Sj1,j2,m = |Î(νj1,j2,m)|2 + Serr
j1,j2,m,

Bj1,j2,j3,m = Î(νj1,j2,m)Î(νj2,j3,m)Î(νj3,j1,m) +Berr
j1,j2,j3,m, (3.4)

where Serr
j1,j2,m

and Berr
j1,j2,j3,m

correspond to noise terms.

To solve (3.4), the state-of-the-art MiRA method [47] takes a maximum a posteriori

(MAP) approach where the image is the solution of an optimization problem with an

objective function f(x) = fdata(x)+�fprior(x), for some arbitrary parameter � to be tuned,

and with additional positivity and total flux constraints. Sparsity priors have in particular

been promoted [47, 48]. The data nonlinearity induces nonconvexity of the objective

function. The adopted strategy is to perform only local optimization, in the context of

which the solution depends not only on the data and on the priors but also strongly on the

initial image and on the path followed by the local optimization method. The WISARD

alternative [49] takes a two-step alternate minimization self-calibration approach. Firstly,

the missing Fourier phases are recovered on the basis of a current estimate and phase

closure information enabling to build pseudocomplex visibilities. Secondly, the image is

recovered from the pseudocomplex visibilities as in radio interferometry. While the second

step is convex and leads to a unique image independently of the initialization, the first step

is not. The overall procedure remains nonconvex and the final solution depends on the

initial guess. In summary, state-of-the-art methods are nonconvex due to the intrinsic data

nonlinearity [32], and therefore known to suffer from a strong sensitivity to initialization.

The approaches proposed in this work stem from a different perspective. We firstly

formulate a linear version of the problem for the real and positive supersymmetric rank-1

order-3 tensor X = x◦x◦x formed by the tensor product of the size-N vector x representing

the image under scrutiny† with itself. This allows us to pose a linear convex problem for

recovery of a size-N3 tensor X with built-in supersymmetry. We regularize the inverse

problem through a a nuclear norm relaxation of a low-rank constraint, also enforcing

reality, positivity and optionally sparsity constraints. We also study a different nonlinear

nonconvex approach with built-in rank-1 constraint but where supersymmetry is relaxed,

formulating the problem for the tensor product u1◦u2◦u3 of 3 size-N vectors. In contrast

with the state of the art though, only linear convex minimization subproblems are solved,

∗www.eso.org/sci/facilities/paranal/telescopes/vlti/
†The image x correspond to the vector of coefficients of the brightness distribution in a representation

basis. In this work we always represent the image in real space, therefore x corresponds directly to the
unfolding of I
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alternately and iteratively for the vectors, also enforcing reality and positivity‡. While the

former approach is much heavier than the latter in terms of memory requirements and

computation complexity due to the drastically increased dimensionality of the unknown,

the underlying convexity ensures essential properties of convergence to a global minimum of

the objective function and independence to initialization, justifying a comparative analysis.

For numerical experiments, we consider a generic discrete measurement setting where

measurements identify with triple products of discrete Fourier coefficients of x. These

triple products are selected randomly according to a variable-density scheme sampling

more densely low spatial frequencies, and are affected by simple additive Gaussian noise.

The rest of the chapter is organized as follows: In subsection 3.2.1, we introduce our

generic discrete data model and describe our new linear tensor formulation of the optical-

interferometric imaging problem. In subsections 3.2.2 and 3.2.3, the new AM, NM and

NM-RW approaches are discussed. Our simulation setting for comparison of these two

methods and corresponding results are presented in section 3.3. Section 3.4 concludes this

chapter with a reminder of our contributions as well as a mention to future work.

3.2 Materials and Methods

3.2.1 Data model and tensor formulation

For the sake of simplicity, we adopt a discrete setting where the intensity image of

interest is represented by the real and positive vector x ∈ R
N
+ with components xi. Its 2D

discrete Fourier transform is denoted x̂ ∈ C
N with components x̂i. By abuse of notation,

we denote x̂−i the component of x̂ at the opposite spatial frequency to that associated

with x̂i. Signal reality implies x̂−i = x̂∗i , where
∗ stands for complex conjugation.

The optical interferometry inverse problem is simplified considering a generic discrete

measurement setting where the closure constraint is relaxed and optical-interferometric

measurements take the generic form of a triple product of Fourier coefficients of the image:

x̂ix̂j x̂k. Power spectrum measurements follow with j = −i, and k = 0 (x̂0 stands for the

Fourier coefficient at zero frequency), and explicit bispectrum measurements would follow

from the constraint that the spatial frequencies associated with x̂i, x̂j , and x̂k sum to

zero. In this context, measurements are performed on the frequencies of a discrete grid in

the Fourier plane, the so-called frequels. In a real scenario the Fourier transform should

be evaluated at (non-equispaced) continuous frequencies [31]. We write the measurement

equation in compact form as

y = V(x) + n, (3.5)

where V is a nonlinear operator providing an undersampled set of triple products of Fourier

‡We also attempted an alternative nonconvex approach consisting in solving the nonlinear problem
directly for x, using the nonconvex projected gradient method proposed by [50]. First simulations did not
produce any meaningful reconstruction and this approach was discarded.
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coefficients of x. The measurement vector y ∈ C
M , with components ya (1 ≤ a ≤ M) is

assumed to be affected by a simple noise vector n ∈ C
M with i.i.d. Gaussian components

na. The number of measurements is typically smaller than the signal dimension: M < N .

Finally, we assume that the total flux is measured independently and consider a normalized

signal such that
∑

i xi = x̂0 = 1. This flux normalization is approximately enforced by

adding the data point x̂30 = 1.

In what follows, we show how to bring the linearity of the measurement scheme by

lifting the image model from a vector to a tensor formulation. The reader can review

some tensor definitions and notations in section 2.2. The measurement model (3.5) can

be recast as the following linear model for the real and positive supersymmetric rank-1

order-3 tensor X = x ◦ x ◦ x ∈ R
N×N×N
+ :

y = T(X) + n, (3.6)

where the linear operator T consists in performing a 2D discrete Fourier transform along

each of the 3 dimensions, identified by an operator F, followed by a selection and vec-

torization operator M providing variable-density undersampling in this 6D Fourier space:

T = MF. The unit flux measurement is also included in the mask as a measurement on the

“triple-zero frequency”. Note that this formulation is a generalization of the Phase Lift

approach for the well-known phase retrieval problem [28]. In that framework, quadratic

measurements of the form | 〈x,ai〉 |2 for given projection vectors ai, are seen as linear

measurements on the rank-1 matrix X = xx† representing the outer product of the signal

with itself.

We note however that the rank-1 and supersymmetry properties are not explicitly

built-in in the tensor formulation (3.6), which thereby presents a drastically increased

dimensionality, N3, of the unknown X compared to the original x of size N in (3.5).

In the following sections, we discuss our two different regularization schemes for tensor

recovery. We firstly study a nonconvex alternate minimization (AM) approach where the

rank-1 constraint is built-in, and subsequently move to a convex nuclear minimization

(NM) scheme with built-in supersymmetry.

3.2.2 Rank-1 alternate minimization (AM)

3.2.2.1 Algorithm formulation

We consider the following explicit rank-1 formulation of (3.6), where supersymmetry

is relaxed:

y = T(u1 ◦ u2 ◦ u3) + n. (3.7)

The measurements can now be understood as an undersampled set of products of Fourier

coefficients of u1, u2, and u3, thus bringing back nonlinearity. We consider the following
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nonconvex minimization problem for tensor recovery:

min
u1,u2,u3∈RN

+

‖T(u1 ◦ u2 ◦ u3)− y‖22. (3.8)

A priori this problem seems as nonlinear and nonconvex as the initial problem (3.5).

Thanks to the nonsupersymmetric relaxation though, an alternate minimization algorithm

can be designed, solving sequentially for each variable (u1, u2 or u3) while keeping the

other two fixed, and iterating until convergence. At each iteration, the 3 linear and convex

subproblems

min
up∈RN

+

‖T(uqus)up − y‖22, (3.9)

are therefore solved sequentially for 1 ≤ p �= q �= s ≤ 3, where the linear operators T(uqus)

are defined by T(uqus)up ≡ T(up ◦ uq ◦ us). In each subproblem the linear operator

is computed using the values of the fixed variables at the current step. The final AM

algorithm is depicted in Algorithm 3. The algorithm is initialized with the same random

vector for each of the 3 subproblems. The algorithm is stopped when the relative variation

between the objective function in (3.8) evaluated at successive solutions is smaller than

some predefined bound or after the maximum number of iterations allowed is reached. At

convergence, the tensor solution takes the form of 3 vectors u1, u2, and u3. We have

no guarantee that the 3 solution vectors are identical and heuristically choose the final

solution to be their mean as shown in step 8 of Algorithm 3§.

Algorithm 1 AM algorithm

1: Initialize k = 1, u
(0)
1 ,u

(0)
2 ,u

(0)
3 ∈ R

N .
2: while not converged do

3: u
(k)
1 = argminu1 ‖T(u

(k−1)
2 u

(k−1)
3 )

u1 − y‖22.
4: u

(k)
2 = argminu2 ‖T(u

(k)
1 u

(k−1)
3 )

u2 − y‖22.
5: u

(k)
3 = argminu3 ‖T(u

(k)
1 u

(k)
2 )

u3 − y‖22.
6: k ← k + 1
7: end while
8: xAM = 1

3(u
(k)
1 + u

(k)
2 + u

(k)
3 )

9: return xAM

§Note that [51] prove that this alternate minimization approach converges to a critical point of the
objective function (3.8), provided that terms of the form γ‖up − ūp‖22 controlling the distance between
the current unknown up with respect to its value at the previous iteration ūp are added to the objective
function in (3.9), for any γ > 0. Simulations in the context of the setting described in Section 3.3 show
that the algorithm converges to the same solution for γ �= 0 and γ = 0. Other simulations also show that
starting the minimization of the three variables with the same random initial point leads to very similar
solutions for the 3 vectors, or for their mean, both in terms of signal-to-noise ratio and visual quality.
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3.2.2.2 Optimization details

To solve each of the subproblems in Algorithm 3 (steps 3–5) we resort to a forward-

backward (projected gradient) algorithm [30]. The forward-backward algorithm solves

(3.9) using a two step procedure: a gradient descent step (forward step) to minimize

the quadratic function in (3.9), and a projection step (backward step) to bring back the

current update to the constraint set. The algorithm uses the following recursion:

u
(t+1)
p = proxiC

(
u
(t)
p + μ(t)

p T†
(uqus)

(
y − T(uqus)u

(t)
p

))
, (3.10)

where t denotes the iteration variable, C = R
N
+ and μ(t) is a variable step size that

controls the gradient descent update. The step size is adapted using a backtracking line-

search procedure [52]. The proximity operator proxiC is nothing but the projector onto

the positive orthant R
N
+ , i.e. setting the imaginary part and the negative values of the

real part to zero [29].

The memory requirement to solve this minimization problem is dominated by the

storage of the 3 vectors, which is of size O(N). In terms of computation time, the algorithm

is dominated at it each iteration by the application of the operator T which computes 3

2D FFTs of size N , with an asymptotic complexity of order O(N logN). This approach is

computationally efficient. In contrast with the state-of-the-art approaches such as MiRA

and WISARD, it brings convexity to the subproblems. But the global problem remains

nonconvex and the solution may still depend on the initialization. One can easily identify

convergence to a local minimum through large residual values of the objective function.

With the aim to mitigate the dependence to initialization, and as suggested by [53], we

propose to run the algorithm nri times with random initializations, choosing a posteriori

the solution with minimum objective function value.

3.2.3 Supersymmetric nuclear minimization (NM)

3.2.3.1 Algorithm formulation

Tensor supersymmetry can be embedded in various ways. One approach is to formulate

the inverse problem (3.6) only for the subset of variables Xijk with i ≤ j ≤ k. The

collection of these values define the “subtensor” Xs, which can be related to X by an

operator R replicating tensor components over all permutations for each triplet (i, j, k):

X = R(Xs). The inverse problem would thus read y = [TR](Xs) + n. We adopt an

alternative and equivalent approach consisting in substituting the original measurement

vector y by its replicated version R(y), and using a symmetrized versionMs of the selection

mask, ensuring that all permutations of a triplet (i, j, k) are assumed to be measured. We

will see below why a symmetrized data vector together with a symmetrized measurement

operator represent a sufficient condition to impose the tensor symmetry at each step of the

algorithm in our approach, and in particular supersymmetry of the solution. The modified
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inverse problem thus reads as:

ys = Ts(X) + ns, (3.11)

with ys = R(y), ns = R(n) and Ts = MsF denoting the symmetrized versions of the

measurement vector, noise vector and measurement operator, respectively. Without loss

of generality, we assume that the initial selection operator M contains no redundant mea-

surements, i.e. i ≤ j ≤ k. This ensures that R is well-defined. Also note that the noise

statistics remains unaltered and only concerns the entries before replication.

Low-rankness, reality and positivity will be imposed as regularization priors in the

convex minimization problem to be defined. As pointed out, the rank of a tensor is difficult

to handle since the problem of finding rank(X) is NP-hard. Computing the rank of different

matricization of the tensor is an easier task. The unfoldings of a rank-1 tensor are actually

rank-1 matrices, so that a low n-rank constraint can be used as a proxy for low-rankness.

The rank of a matrix is however a nonconvex function. The nuclear norm, defined as the

�1−norm of its singular values, is a well-known convex relaxation of the rank function

that was recently promoted in matrix recovery theory [25]. Building on those results, [54]

tackle the low-n-rank tensor recovery problem through the minimization of the sum of the

nuclear norms of the mode-n matricizations X(n) for all n. In the supersymmetric case,

the mode-n matricizations are all identical and denoted X(n) = U(X) ∈ C
N×N2

, where U

stands for the unfolding operator. We propose here to exploit the symmetry of the tensor

under scrutiny, together with the signal normalization, to promote a computationally more

efficient low-rank prior. Relying on these properties, we note that summations over one

index of a tensor of the form x◦x◦x with
∑

i xi = 1 leads to the order-2 tensor x◦x, which
is real, positive, symmetric, as well as rank-1 and positive-semidefinite. We define C as

the operator performing the summation over one dimension. Once more supersymmetry

ensures that the resulting matrix is independent of the choice of the dimension along

which components are summed up: C(X) ∈ C
N×N with [C(X)]ij =

∑
k Xijk. A low-rank

constraint on C(X) will be promoted, through a nuclear norm minimization, as a convex

proxy for the low-rankness of X. Positive-semidefiniteness of C(X), i.e. positivity of the

eigenvalues, which are then identical to the singular values, may also be explicitly added

as a convex prior, denoted C(X) � 0, together with the convex reality and positivity

constraints of X: X ∈ R
N×N×N
+ . This summation approach is a priori computationally

significantly more efficient given the reduced matrix size of C(X) compared to that of the

unfolded matrix U(X).

The resulting convex nuclear norm minimization problem (NM) for X thus reads as:

min
X∈S

‖C(X)‖∗ subject to ‖ys − Ts(X)‖2 ≤ ε, (3.12)

where S = S1∩S2, with S1 = R
N×N×N
+ and S2 = {X |C(X) � 0}. Recalling that the mea-

surements y are assumed to be corrupted with simple i.i.d. complex Gaussian noise with
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variance σ2
n/2 on real and imaginary parts, the residual estimator ‖y − T(X)‖22 follows a

χ2 distribution with 2M degrees of freedom, with expectation 2M and standard deviation

is (4M)1/2. For a large number of degrees of freedom the distribution is extremely peaked

around its expectation value. This fact is related to the well-known phenomenon of the

concentration of measure [38]. The value ε20 = (2M + 4
√
M)σ2

n/2, i.e. 2 standard devia-

tions above the expectation, represents a high percentile of the distribution (in practice

extremely close to 2M), and consequently a likely bound for ‖n‖22. An equivalent bound

for the symmetrized residual noise term ‖ys−Ts(X)‖22 may simply be inferred as ε2 � αε20,

where α is simply the ratio of number of components in ys and y. We take the value α = 6

as the relative number of (i, j, k) triplets with repeated indices in the mask is very small.

Note that this last consideration only arises from the discrete setting adopted.

Once the tensor solution XNM is recovered, the problem of extracting the sought signal

xNM remains. If the tensor solution was actually a real positive rank-1 supersymmetric

tensor whose elements sum up to unity, the retrieval of xNM could be done in different ways,

such as directly extracting the first eigenvector of matrix C(XNM) or simply performing a

sum over two dimensions
∑

jk[XNM]ijk. The nuclear norm minimization approach however

does not guarantee that the final solution is indeed rank-1. We therefore resort to the

generic algorithm proposed in [55] to find the best rank-1 supersymmetric approximation

P1(XNM) of a supersymmetric tensor XNM in the least square sense. This algorithm is

a generalization for the tensor case of the power method applied to find the dominant

eigenvector of matrices [56]. It boils down to determining a unitary vector x and a scalar

λ, such that ‖X − λx ◦ x ◦ x‖ is minimized, where ‖ · ‖ indicates simply the sum of the

square of the components of the tensor. We denote the resulting solution as

xNM = [EP1](XNM), (3.13)

where E formally represents the operator retrieving from a supersymmetric rank-1 order-3

tensor its underpinning vector. Note that this vector extraction problem is not convex ¶.
The final NM algorithm is shown in Algorithm 2. To solve the complex optimization

problem in (3.12) we use the Douglas-Rachford splitting algorithm, which is tailored to

solve problems of the form in (2.24) withK = 2. The problem in (3.12) can be reformulated

as in (2.24) by setting f1(X) = ‖C(X)‖∗ + iS(X) and f2(x) = iCε(X), where Cε = {X ∈
C
N×N×N : ‖ys − Ts(X)‖2 ≤ ε}. The main recursion of the Douglas-Rachford algorithm

is detailed in steps 3-4 of Algorithm 2, where ν > 0 and τk ∈ (0, 2) are convergence

parameters. The sequence {X(k)} generated by the recursion in Algorithm 2 converges

to a solution of the problem (3.12) [30]. The algorithm is stopped when the relative

variation between successive solutions,
∥∥X(k) − X(k−1)

∥∥ / ∥∥X(k−1)
∥∥, is smaller than some

¶Note that in [55] a proof of convergence of their algorithm only for even-order tensors is provident.
Simulations in the context of the setting described in Section 3.3 show that the this procedure systematically
converges for our order-3 tensors, and provides significantly better results than a heuristic procedure based
on extracting the first eigenvector of C(XNM) or performing a sum over two dimensions

∑
jk[XNM]ijk.
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bound ξ ∈ (0, 1), or after the maximum number of iterations allowed, Tmax, is reached. In

our implementation we use the values τk = 1, ∀t, ξ = 10−3 and ν = 10−1. In the following

subsection we detail the computation of the proximity operators for f1 and f2.

Algorithm 2 NM algorithm

1: Initialize k = 1, X(1) ∈ R
N×N×N , τk ∈ (0, 2) and ν > 0.

2: while not converged do
3: Z(k) = proxνf2

(
X(k)

)
.

4: X(k+1) = X(k) + τk
(
proxνf1

(
2Z(k) − X(k)

)− Z(k)
)
.

5: k ← k + 1
6: end while
7: xNM = [EP1](X

(k)).
8: return xNM

3.2.3.2 Optimization details

The computation of the proximal operator of f1, which includes the nuclear norm

prior, as well as the positive-semidefiniteness, reality and positivity constraints, is itself a

complicated optimization problem. Therefore the dual forward-backward algorithm [30] is

used at each iteration of the Douglas-Rachford recursion to compute the proximal operator

of f1. We can decompose f1 as f1(X) = g1(X) + g2(X), where g1(X) = ‖C(X)‖∗ + iS1(X)

and g2(X) = iS2(X). Let Q(0) ∈ C
N×N and S(0) ∈ C

N×N×N be the all zero matrix and

the all zero tensor respectively. The dual forward-backward algorithm uses the following

recursion to compute proxνf1(X):

Q(t+1) =
(
I− proxνg1

) (
Q(t) + γtC(S

(t))
)

(3.14)

S(t+1) = proxνg2

(
X− C†(Q(t+1))

)
,

where I ∈ R
N×N is the identity operator and γt ∈ (0, 2) is a step size. The sequence {S(t)}

converges linearly to proxνf1(X).

The computation of proxνg1 and proxνg2 are very simple operations. We start by

computing proxνg1 . Let Q ∈ C
N×N be a symmetric matrix and suppose it has an

eigenvalue decomposition UΛU†, where U is the orthogonal matrix of eigenvectors and

Λ = diag(λ1, . . . , λN ) is the diagonal matrix with the eigenvalues. Then, the proximity

operator of νg1 is computed as:

proxνg1(Q) = UΛ̄νU
†, (3.15)

where Λ̄ν = diag((λ1−ν)+, . . . , (λN −ν)+) and (a)+ = max(0, a) denotes the positive part

of a. The operator Λ̄ν performs a soft thresholding on the eigenvalues of Q, to minimize
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the nuclear norm, and also preserves only the positive eigenvalues, to project onto the set

of positive-semidefinite matrices [57, 58]. The proximal operator of νg2 is the projector

onto the set of positive tensors in R
N×N×N which is computed by setting the imaginary

part and the negative values of the real part of the input tensor to zero, i.e.

proxνg2(S) = {(Re(Si,j,k))
+}1≤i,j,k≤N , (3.16)

where Re(·) denotes the real part of a complex number [29].

The proximal operator of f2 is the projector operator onto the set Cε, which is com-

puted as:

proxνf2(X) = X+ T†
s (Pε (Ts(X)− ys)− Ts(X) + ys) , (3.17)

where Pε(r) = min(1, ε/‖r‖2)r.
All the operations done in the computation of the proximal operators of f1 and f2

preserve tensor symmetry, provided that the symmetrized version Ts of the measurement

operator and a symmetrized data vector are used. These two are sufficient conditions to

impose supersymmetry at each iteration of Algorithm 2, and consequently for the final

tensor solution.

The memory requirement to solve this NM problem is dominated by the storage of

the tensor, which is of size O(N3). In terms of computation time, the algorithm is dom-

inated at it each iteration by the application of the operator Ts which computes N2 2D

FFTs of size N along each of the three dimensions, with an asymptotic complexity of

O(N3 logN). These orders of magnitude obviously stand in stark contrast with those for

the AM approach.

While the NM approach is much heavier than the AM approach in terms of memory

requirements and computation complexity due to the drastically increased dimensionality

of the unknown, the underlying convexity at the tensor level ensures essential proper-

ties of convergence to a global minimum of the objective function and independence to

initialization, justifying a comparative analysis.

3.2.3.3 Nuclear minimization with sparsity

Following the lines of recent evolutions in radio interferometry [34, 35, 38] and in optical

interferometry [32, 48], we decided to study the inclusion of a sparsity prior for the NM

approach. As a first proof of concept we have chosen to promote the simplest sparsity –

in image space – of the signal x of interest, as this can be done simply through adopting a

sparsity prior directly on the full tensor X. While �0-minimization would promote sparsity

explicitly, we adopt the common convex relaxation relying on the �1 norm. Note that a

nonweighted �1 norm is not a meaningful prior function as the tensor values are positive

and sum up to unity. In that scenario, we resort to a reweighting scheme consisting

in approaching both �0-minimization on X and rank minimization on C(X) by solving a
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sequence of weighted �1 and nuclear norm minimization [24, 59], each of which is initialized

with the solution of the previous problem (see sections 2.4.2 and 2.4.3).

The weighted-�1 and nuclear-norm minimization problem (NM-RW) thus reads as:

min
X∈S

||C(X)||∗,w + λ||X||1,w s. t. ‖ys − Ts(X)‖2 ≤ ε,

where S denotes the same set as in (3.12) and || · ||∗,w and || · ||1,w denote weighted nuclear

and �1 norms respectively. Notice that the weights for the nuclear and the �1 norm are

defined in a different form. In both weighted norms, each element of the vector to be

reweighted should essentially be divided by its absolute value in the previous iteration. A

stabilization parameter, δ, is necessary to define the weights properly, even when the signal

value is zero. In the weighted �1 norm, each weight is defined as wijk = δ(t)/(δ(t)+X
(t−1)
ijk ),

where t indicates the iteration of the reweighting process. λ is set to zero at the first

iteration to avoid the use of a nonweighted �1 norm as a prior, as previously mentioned.

In the following iterations, we heuristically set λ(t) = α‖X(t−1)‖∞, where ‖ · ‖∞ denotes

the maximum absolute value of the tensor and 0 < α < 1 is a parameter to be tuned.

In order to approximate the rank function through the weighted nuclear norm – i.e. the

weighted �1 norm of the singular values σi, i ∈ R
N
+ –, each weight is computed as the

inverse of the singular value of C(X) at the previous iteration, wi = δ(t)/(δ(t) + σ
(t−1)
i ).

The reweighting process stops when the relative variation between successive solutions

‖X(t) − X(t−1)‖2/‖X(t−1)‖2 is smaller than some bound or after the maximum number of

iterations allowed is reached. Finally, the signal is extracted from the tensor using the

rank-1 approximation algorithm [55], as mentioned in Section 3.2.3.1.

3.3 Simulations and results

In this section we evaluate the performance of the AM, NM and NM-RW algorithms

through numerical simulations. Our optimization code‖ was implemented in MATLAB

and run on a standard 2.4 GHz Intel Xeon processor. Given the expected large memory

requirements and long reconstructions time for the NM formulation, we consider small-size

images with N = 162 = 256 for which the image vector occupies the order of 4 KB in

double precision, while the size-N3 tensor variable already takes the order of 100 MB. The

memory requirement for the simple tensor variable would already rise to the order of 8

GB for a 322 = 1024 image size.

For what the measurement setting is concerned, we assume random variable-density

sampling in the 6D Fourier space, where low spatial frequencies are more likely to by

sampled than high frequencies. In practice the sampling pattern is obtained by sampling

frequels independently along each of the 3 tensor dimensions from a bidimensional random

Gaussian profile in the corresponding Fourier plane, associating the originally continuous

‖Code and test data are available at https://github.com/basp-group/co-oi.



3.3. Simulations and results 33
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Figure 3.2: Example of variable-density sampling pattern in the discrete 6D Fourier space of X
of dimension N3, for a N = 162 image size and an undersampling regime of M/N = 0.75.

random points with the nearest discrete frequency. The sampling is carried out progres-

sively, noting that if a product is sampled twice the result is discarded and repeating this

procedure until M samples are obtained. Again this consideration only arises from the

discrete setting adopted. Figure 3.2 presents a typical sampling pattern.

In all experiments we define the input signal-to-noise ratio as ISNR = −10 log(σ2
n/e

2
y)

where e2y = (1/M)
∑M

a |ya|2. The signal-to-noise ratio of a reconstruction x̄ is defined as

SNR = −10 log(‖x̄− x‖2/‖x‖2). With this definition, the higher the SNR, the closer the

recovered signal x̄ is from the original x.

3.3.1 AM vs NM comparison

As a preliminary experiment, we provide a comparison of the performance of the NM

approach defined in (3.12), with the equivalent minimization problem where the summa-

tion operator C is replaced by the unfolding operator U in the nuclear norm and where

the positive-semidefiniteness constraint is discarded as it does not apply for non-square

matrices. Both algorithms were tested on images constructed from 32 random spikes, with

ISNR = 30dB. The positive spike values are taken uniformly at random and normalized

to get unit flux, while positions are drawn at random from a Gaussian profile centered on

the image. The graphs in Figure 3.3 represent the SNR and timing curves as a function

of undersampling in the range [0.25, 1]. A total of 10 simulations per point are performed,

varying the signal, as well as the sampling and noise realizations. Both approaches provide

similar reconstruction qualities, with a smaller variability of the component summation

approach, which is also slightly superior at low undersamplings. The component summa-

tion approach, running in the order of 103 seconds, is as expected significantly faster than

the unfolding approach, running on average more than 10 times more slowly in the range

[0.5, 1]. We therefore discard further consideration of the latter.

Having validated our NM approach in comparison with alternative state-of-the-art low

tensor rank approaches, we compare its performance with that of the AM scheme. Firstly,

we evaluate the reconstruction quality on images constructed from 32 and 64 randomly

located spikes. The AM approach is also evaluated for varying reinitialization numbers:

nri ∈ {1, 5, 10}. The graphs in Figure 3.4 represent the SNR curves as a function of

undersampling in the range [0.25, 1]. A total of 50 and 10 simulations per point are

performed for AM and NM respectively, varying the signal, as well as the sampling and



34 Chapter 3. Tensor optimization for optical-interferometric imaging

0.2 0.4 0.6 0.8 1
0

4

8

12

16

M/N

S
N
R

(d
B
)

 

 

NM C(X )
NM U (X )

0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

M/N

T
im

e
(s
)

 

 

Figure 3.3: Reconstruction quality and timing comparison between the NM approach defined in
(3.12), with the equivalent minimization problem where the summation operator C is replaced by
the unfolding operator U. Tests done on N = 162 images with 32 randomly located spikes and
ISNR = 30dB, for undersampling ratios M/N in the range [0.25, 1]. The SNR curves (left panel)
represent average values over 10 simulations and corresponding 1-standard-deviation error bars.
The timing curves (right panel) represent average values over 10 simulations and min-max error
bars.
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Figure 3.4: Reconstruction quality results for synthetic images of size N = 162 with randomly
distributed spikes and ISNR = 30dB for undersampling ratios M/N in the range [0.25, 1]. Left
panel: 64 spikes. Right panel: 32 spikes. The curves represent the average SNR values over
multiple simulations (50 for AM and 10 for NM) and corresponding 1-standard-deviation error
bars.

noise realizations. The results show a clear superiority of AM relative to NM in terms

of average reconstruction quality. Both approaches exhibit nonnegligible variability. The

dependency of the nonconvex AM approach to initialization is clearly illustrated by the

nri = 1 and nri = 5 curves, confirming the importance of the multiple reinitializations.

We also observe a saturation between nri = 5 and nri = 10. As expected from asymptotic

complexity considerations, AM runs significantly faster than NM, with reconstructions in

the order of 102 seconds for nri = 5, approximately 10 times faster than NM.

Secondly, simulations are performed in an identical setting on realistic images rep-

resenting low-resolution versions of the Eta Carinae star system, of a simulated rapidly

rotating star, and of the M51 Galaxy∗∗. The multiple simulations per point are performed

by varying the sampling and noise realizations. The graphs in Figures 3.5, 3.6, and 3.7

present the SNR curves as a function of undersampling in the range [0.25, 1] (AM only

reported for nri = 5), confirming the previous results on random images. Reconstructed

∗∗Images from [48], downloaded from the JMMC service at apps.jmmc.fr/oidata/shared/srenard/.
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images are also reported, providing visual confirmation of the superiority of AM relative to

NM over the full undersampling range. In both approaches, the visual quality difference

between the reconstructions with, respectively, best and median SNR values illustrates

the variability of the reconstruction quality. The NM approach suffers from a significantly

larger visual degradation of median SNR value at M = 0.25N than AM. This degradation

appears at larger sampling ratios for M51.

Let us highlight that, while only 5 reinitializations are necessary in the AM approach

in low dimension to reach saturation, additional experimental tests on random signals of

size N = 642 show that nri = 20 or larger is necessary for a meaningful reconstruction,

thereby emphasizing the convergence problem due to nonconvexity in higher dimension.

Also, computation time scales linearly with nri and can rapidly blow up in this context.

3.3.2 NM vs NM-RW comparison

To compare the performance of the linear NM-RW and NM approaches, we first evalu-

ate the reconstruction quality on sparse images made of 8 and 16 randomly located spikes.

The SNR curves in Figure 3.8 are built from 10 simulations per point, varying the signal,

the sampling and noise realizations. The results show a clear improvement on the SNR

when accounting for sparsity. In Figure 3.9, the effect of the reweighting scheme can be ap-

preciated on an illustration representing a sparsified version of Galaxy M51∗∗. Reweighted
images (second row) are less blurred and their support is clearly better defined.

3.4 Conclusion

We have proposed a novel linear formulation of the optical-interferometric imaging

problem in terms of the supersymmetric rank-1 order-3 tensor formed by the tensor prod-

uct of the vector representing the image sought with itself. In this context, we proposed a

linear convex approach for tensor recovery with built-in supersymmetry, and regularizing

the inverse problem through nuclear norm minimization. We have also studied a non-

linear nonconvex alternate minimization approach where supersymmetry is relaxed while

the rank-1 constraint is built-in. While the former approach is associated with drastically

increased dimensionality of the unknown, the underlying convexity ensures essential prop-

erties of convergence to a global minimum of the objective function and independence

to initialization, justifying its analysis. Simulation results in low dimension show that

the AM scheme provides significantly superior imaging quality than the NM approach,

in addition to be much lighter in its memory requirements and computation complexity.

Another set of results in higher dimension however suggests that the number of necessary

reinitializations for the nonconvex AM scheme rapidly increases with N . This state of

things clearly calls for further considerations of a purely convex approach. As a first step

in this direction, we have studied the inclusion of a sparsity prior in the convex formulation
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Figure 3.5: Eta Carinae star system illustration (N = 162, ISNR = 30dB). Top row: original
image and SNR graph. The curves represent the average SNR values over multiple simulations
(50 for AM and 10 for NM) and corresponding 1-standard-deviation error bars. Second and third
rows: NM (second) and AM for nri = 5 (third) reconstructions with best SNR for M = N (left),
M = 0.75N (center) and M = 0.25N (right). Fourth and bottom rows: NM (fourth) and AM for
nri = 5 (bottom) reconstructions with median SNR for M = N (left), M = 0.75N (center) and
M = 0.25N (right).
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Figure 3.6: Rapidly rotating star illustration (N = 162, ISNR = 30dB). Top row: original
image and SNR graph. The curves represent the average SNR values over multiple simulations
(50 for AM and 10 for NM) and corresponding 1-standard-deviation error bars. Second and third
rows: NM (second) and AM for nri = 5 (third) reconstructions with best SNR for M = N (left),
M = 0.75N (center) and M = 0.25N (right). Fourth and bottom rows: NM (fourth) and AM for
nri = 5 (bottom) reconstructions with median SNR for M = N (left), M = 0.75N (center) and
M = 0.25N (right).
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Figure 3.7: M51 Galaxy illustration (N = 162, ISNR = 30dB). Top row: original image and SNR
graph. The curves represent the average SNR values over multiple simulations (50 for AM and 10
for NM) and corresponding 1-standard-deviation error bars. Second and third rows: NM (second)
and AM for nri = 5 (third) reconstructions with best SNR for M = N (left), M = 0.75N (center)
and M = 0.25N (right). Fourth and bottom rows: NM (fourth) and AM for nri = 5 (bottom)
reconstructions with median SNR for M = N (left), M = 0.75N (center) and M = 0.25N (right).
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Figure 3.8: Reconstruction quality results for synthetic images of size N = 162 with randomly
distributed spikes and ISNR = 30dB for undersampling ratios M/N in the range [0.25, 1]. Left
panel: 8 spikes. Right panel: 16 spikes. The curves represent the average SNR values over 10
simulations and corresponding 1-standard-deviation error bars.
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Figure 3.9: Sparsified version of M51 Galaxy illustration (N = 162, ISNR = 30dB). Top row:
original image and SNR graph. The curves represent the average SNR values over 10 simulations
and corresponding 1-standard-deviation error bars. Second and third rows: NM (second) and
NM-RW (bottom) reconstructions with best SNR for M = N (left), M = 0.75N (center) and
M = 0.25N (right).

and, in that setting, numerical simulations confirm a clear improvement in the quality of

the reconstruction of sparse images. We point out though, that in the present investiga-

tions only the simplest case of sparsity – sparsity in image space – has been considered, as

a proof of concept. Future work should investigate the effects of assuming different kinds



40 Chapter 3. Tensor optimization for optical-interferometric imaging

of sparsity priors, as suggested in recent approaches for radio interferometry [60].

Our approaches should also be studied in a more realistic setting with exact power

spectrum and bispectrum measurements in the continuous domain and for different noise

statistics, and explicitly compared to existing MiRA and WISARD implementations. The

linear approaches NM and NM-RW are extremely exacting from a computational stand-

point so that software and hardware optimization should also be studied to solve the

problem for higher dimension images, e.g. using graphics processing units [61]. Recent

results studying the uniqueness of the solution of the phase retrieval problem for sparse sig-

nals are presented in [62]. Further research should also analyze our results and formulation

in full view of this new theoretical framework.

The work presented in this chapter has been published in [3, 4]. We highlight that in

[63], the authors enhance the present work by further study of the AM approach. They

propose an algorithm that accounts for sparsity and presents convergence guarantees,

missing in our original formulation. Numerical simulations in [63] show that the inclusion

of a sparsity prior improves significantly the quality of their reconstructions, analogously

to what we observe for the NM approach. Furthermore, they successfully extend the

current model to hyperspectral imaging and demonstrate the superiority of their global

approach compared to single-channel reconstruction.
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Chapter 4

Background on diffusion MRI

4.1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is sensitive to the Brownian motion of

water molecules, i.e. its random displacement in a fluid due to thermal energy. This erratic

movement is described in statistical terms by a displacement distribution indicating the

proportion of molecules that have been displaced a specific distance in a specific direction.

Typically, the displacement distribution for free water is a Gaussian function. However,

in organs with ordered structures, such as the brain, water does not diffuse equally in all

directions [64]. This phenomenon, known as anisotropic diffusion, is exploited to study

the structure of spatial order in living organs in a non-invasive way.

This chapter aims to familiarize the reader with the principles of dMRI applied to

brain imaging and it does not contain any original contribution. The chapter is organized

as follows: Section 4.2 explains the principles behind this imaging modality and how

the diffusion process is characterized. Section 4.3 describes how and why dMRI can be

used in brain imaging to recover the properties of its fiber bundles (i.e. axon tracts),

from both neuroscientific and clinical perspectives. Sections 4.4 and 4.5 review the main

state-of-the-art methods for fiber reconstruction (orientation and microstructure recovery,

respectively). The take-home messages of this chapter are summarized in Section 4.6.

4.2 Principles of diffusion Magnetic Resonance Imaging

Thanks to Stejskal and Tanner’s experiments and proofs [65], a methodology was

defined to measure diffusion with MRI. They introduced the Pulse Gradient Spin Echo

(PGSE) sequence that makes MR imaging sequences sensitive to diffusion by inserting

two additional magnetic field gradient pulses subsequently besides the standard ones used

for spatial encoding. This protocol allows a clear distinction between the encoding time δ

(pulse duration) and the diffusion time Δ (time between the two gradient pulses). After

applying the first gradient, protons’ phase changes along the direction of the gradient.

When then, a second gradient of opposite magnitude (with the same direction and time

period) is applied, the phase-shift induced by the first gradient can be reversed. If the

43



44 Chapter 4. Background on diffusion MRI

protons moved in between the application of the gradients the net phase accumulation

cannot be exactly zero. As a result, in each voxel, we get a distribution of phase-shifts

which results in a loss of coherence and therefore to a decrease of the signal amplitude

(Figure 4.1). The wider the spread of displacements, the larger the signal damping. Thus,

by applying a pair of gradient pulses before the data acquisition we make the resultant

image sensitive to motional processes, such as diffusion.

 

Figure 4.1: Diagram of a PGSE sequence and visual understanding of signal loss due to the
dephasing of spins. Part of the illustration is taken from [66]. Image used with permission.

Each diffusion gradient is represented as a 3D vector q, oriented in its direction and

with a magnitude q proportional to its strength. The new 3D-space determined by the

coordinates of q is commonly named after q-space. The b-value, most commonly used when

characterizing the gradient, is proportional to the product of the square of the gradient

strength q and the diffusion time interval (b ∝ q2 ·Δ). A single application of the PGSE

sequence produces one brain image with a given diffusion weighting that corresponds to

one point of the q-space. The resulting has already some diffusion information: where the

main diffusion direction is aligned with the applied diffusion gradient, the intensity of the

signal is markedly decreased, and the region therefore appears darker on the image (see

figure 4.4 A). This is the principle behind the simplest diffusion imaging technique, known

as Diffusion Weighted Imaging (DWI). Multiple repetitions of the sequence, each with a

different diffusion weighting, are necessary if we want to characterize the entire diffusion

process.

The diffusion process is represented by a 3D probability density function (pdf) of

diffusion displacements at every point, i.e. for each voxel. This function p(r) ∈ R3 is

known as the Ensemble Average Propagator (EAP) for every r coordinate vector in real
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space and it relates to the diffusion signal S(q) through a 3D Fourier transform [67], as

follows:

EAP ≡ p(r) =

∫
R3

dqS(q)e−2πiq·r. (4.1)

Equation (4.1) defines a relationship between the propagator (or real) space, with coordi-

nates r, and the signal (or Fourier) space, the q-space, through a Fourier transform.

4.3 dMRI in the brain

dMRI can provide very useful information about the organization of the tissue in the

brain. In fact, the grey matter (GM) does not have an ordered fiber structure. Therefore,

GM and the cerebrospinal fluid (CSF), that can be found in the ventricles, are typically

isotropic media. However, high anisotropy can be observed in the white matter (WM),

made of axons also called tracts. Experimental evidences point at the cell membrane as

the main tissue component responsible for this anisotropy of molecular diffusion in the

WM (see Figure 4.2). The degree of myelination of the individual axons and the density

of cellular packing seem to merely modulate the anisotropy as measured with dMRI, with

microtubules and neurofilaments playing only a minor role [64].

Figure 4.2: (A) Random motion of water molecules (free diffusion). (B) Water diffusion in the
brain is mainly restricted by the membranes of the axons. (C) Inside the axons, water diffuses
mainly along the axis of the axon. Part of the illustration is taken from [68]. Image used with
permission.

Assessing the direction(s) with maximal diffusion remains one of the main interests of

the study of the WM using dMRI. Thus, the Orientation Distribution Function (ODF) is

defined to integrate the angular content of the EAP (4.1). The ODF gathers this angular

information through radial integration, as follows:

ODF ≡ o(r̂) =

∫
R+

drr2p(r, r̂), (4.2)

where r and r̂ correspond to the angular and radial components of r. An ODF can be

computed in every voxel, providing a better visualization of the diffusion at that position.

The ODF can also be interpreted as a convolution on the sphere of a fiber response function

or kernel with a Fiber Orientation Distribution function (FOD). The FOD is a real-valued
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function on the unit sphere (S2) that indicates the orientation and the volume fractions

of the fiber populations in a voxel (see Figure 4.3).

Figure 4.3: The propagator EAP (left) is a 3D pdf that indicates the probability of water
displacements. The ODF (middle) is a function on S

2 that represents the probability of diffusion
along a given direction. The FOD (right), also a function on S

2, can be interpreted as a probability
of having a fiber along a given direction. Part of the illustration is taken from [68]. Image used
with permission.

The structural neuronal connectivity of the brain can be mapped in a non-invasive way

thanks to the anisotropy of diffusion in the WM. The study of this connectivity is of major

importance in a fundamental neuroscience perspective – for developing our understanding

of the brain– but also in a clinical perspective, with particular applications for the under-

standing of stroke, schizophrenia, or Parkinson’s disease. Note that a precise mapping of

the connectivity is commonly performed by so-called fiber-tracking or tractography algo-

rithms. These algorithms produce trajectories capturing coherent orientations of maximal

diffusion that are likely to represent real axonal fibers∗. Therefore they heavily rely on

the quality of the fiber orientation recovery in each voxel.

More recently, the anisotropy of diffusion in the brain has started to be exploited to

characterize the microstructural properties of the WM, like axon diameter and density.

These features are related to conduction velocity [69] and play an important role in the

performance of the WM tracts. Also, the microstructure organization of specific areas of

the brain changes in subjects affected by certain pathologies, such as multiple sclerosis [70].

As a consequence, assessing both the orientation of the WM tracts and their microstructure

characteristics through diffusion MR imaging in vivo represents today a fundamental tool

for neuroscience as well as from the clinical point of view.

A great variety of approaches have been proposed to tackle the problem of intra-voxel

fiber estimation from dMR measurements. In what follows, we cover in detail the main

state-of-the-art dMR imaging techniques so that their strengths as well as their limitations

can be understood. We distinguish two groups of local reconstruction techniques: those

mainly concerned to recover the orientation of the fiber bundles in each voxel (section 4.4)

and those that go a step further and aim to recover the microstructure configuration of

∗Of course, there are several orders of magnitude between the resolution of the MR acquisitions and the
diameter of the axons. Therefore, a single reconstructed trajectory has to be thought of as representative
of a huge coherent set of real anatomical fibers.
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the fibers (section 4.5).

4.4 Fiber orientation reconstruction

Many methods have been proposed to assess the orientation of the main fiber bundles

voxelwise. Hereafter we present in detail the three of them that appear more relevant

in the context of this thesis: Diffusion Tensor Imaging, Diffusion Spectrum Imaging and

Spherical Deconvolution methods. We name and refer to others in section 5.1.

4.4.1 Diffusion Tensor Imaging, DTI

The Diffusion Tensor Imaging (DTI) technique was one of the first approaches proposed

to provide a unified description of the diffusion process from a series of DWI images. It

was introduced by Basser in 1994 [71]. The DT model is based on the hypothesis that

the diffusion follows a Gaussian damping with q, or equivalently, exponential in b. In an

isotropic medium, the attenuation of the MRI signal can be described as A = e−bD, where

D, the diffusion coefficient, is a scalar. However, a tensor D is required to describe the

diffusion process along the three directions of our reference frame when it takes place in

an anisotropic medium. To fully determine the diffusion tensor, diffusion-weighted images

along several gradient directions must be collected. As the diffusion tensor is symmetric,

measurements along only six directions are mandatory -instead of nine- (Figure 4.4 B),

along with an image acquired without diffusion weighting (b = 0). Once the set of DW

images is acquired, linear regression techniques can be used to estimate the full tensor

D. Its largest eigenvalue and corresponding eigenvector describe the intensity and the

principal direction of diffusion, which are then associated with the orientation of the

underlying fiber bundle.

Figure 4.4: (A) Illustration of a DWI image from sampling the signal at a single q-point. (B)
In DTI, the q-space is sampled at least at 6 q-points. (C) In DSI, the q-space is densely sampled,
each q-point corresponding to a different gradient orientation and strength. Part of the illustration
is taken from [68]. Image used with permission.

The diffusion tensor is normally visualized as an ellipsoid with the principal axes along

the eigenvectors of D, and with the length of these axes proportional to the corresponding

eigenvalues. These eigenvalues can be considered as unidimensional diffusion coefficients,
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or diffusivities, in the main directions of diffusion in the medium, so for instance, the

eccentricity of the ellipsoid gives us information about the degree of anisotropy.

The Tensor Model assumes gaussian diffusion and gaussian functions have only one

maximum. In voxels whith presence of multiple fiber orientations (fiber crossings or

branching), DTI will recover a single fiber orientation, corresponding to the mean of the

true underlying directions. Consequently, the DT model is not valid in regions of the brain

where there are fiber crossings. In such areas, other methods providing a higher angular

resolution are needed.

4.4.2 Diffusion Spectrum Imaging, DSI

DSI is a model-free imaging technique that samples densely the q-space from which the

displacement distribution can be later recovered directly exploiting the Fourier relationship

described in (4.1). It therefore requires the acquisition of many DW images, each of them

corresponding to a different q-point distributed in a Cartesian grid (Figure 4.4).

With this imaging technique, fiber orientations are also associated with directions of

maximum diffusion, but since there is no restriction on one single diffusion direction, it

appears as a more suitable approach to detect fiber crossings. DSI provides very good

angular resolution when sampling densely the q-space. Nevertheless, the main drawback

of DSI strongly relates to its complexity. Measuring the complete 3-dimensional diffusion

function requires long acquisition times and thus it is not appropriate for all clinical

applications.

4.4.3 Methods based on spherical deconvolution

Spherical deconvolution (SD) methods [5, 72, 73] reformulate the imaging problem from

dMR data as a deconvolution problem on the sphere under the following two assumptions:

(i) There is no exchange of water between different fiber bundles over the time of a dMR

measurement, meaning that the signal attenuation in a voxel with the presence of N

fiber populations can be expressed as S =
∑

N fiSi, where fi is the volume fraction

of the ith bundle and Si its corresponding signal damping.

(ii) All fiber bundles in the brain share the same diffusion attenuation profile, i.e. if

there is any difference among them it must be due to a partial-volume effect.

Under conditions (i) and (ii), the diffusion signal in every voxel can be expressed as a

convolution over the unit sphere of a response function and the FOD:

S(q) = S0

∫
S2

K(q, û)f(û)dû. (4.3)

In (4.3), S0 corresponds to the signal without diffusion weighting, K represents the kernel

or response function, f stands for the FOD and û ∈ S
2 is a unitary vector. Assuming
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this kernel K can be estimated a priori, the measurement process can be expressed as a

system of linear equations:

y = Φx+ η, (4.4)

where x corresponds to the vector of coefficients of the FOD to be estimated, y represents

the vector of measurements, the so-called dictionary Φ models the convolution operator

and η accounts for the acquisition noise. Several approaches have been proposed to solve

this ill-posed problem and the quality of the reconstructions as well as the minimum

number of q-points that needs to be sampled depend a lot on the regularization strategy.

The reader will find further discussion on the topic in chapter 5.

4.5 Microstructure imaging techniques

Most microstucture imaging techniques describe the brain tissue using multi-compartment

models distinguishing, for instance, axons, glial cells and extra-axonal space. Subsequently,

the microstructure properties are recovered by modeling the signal decay in each of the

considered tissue compartments and assuming the measured signal as a combination of all

of them (see Figure 4.5).

Figure 4.5: Schematic representation of the tissue multi-compartment model for ActiveAx [1]. In
every voxel, the signal decay Svoxel is expressed as the weighted sum of the contributions of each
compartment. fr, fh, ff and fs represent the volume fractions corresponding to the restricted,
hindered, free and stationary compartments, respectively. Part of the illustration is taken from
[74]. Image used with permission.

The main differences between different microstructure imaging methods depend on

the number of tissue compartments they consider, the chosen model for the diffusion
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in each compartment and whether they assume water exchange between them or not.

The reader can find an exhaustive survey on many of the state-of-the-art microstructure

imaging techniques in [75]. We have summarized their principal characteristics in Table

4.6, indicating for each image modality the signal model used in each compartment and

the features it estimates. In Table 4.6, we borrow Panagiotaki’s taxonomy [75] to refer to

the diverse signal models. We briefly describe them hereafter and we refer the reader to

[75] for further study:

• Intra-axonal refers to the signal decay due to water diffusion inside the axons.

Subsequently we also refer to it as restricted compartment.

� stick : provides the signal decay that would correspond to diffusion inside an

idealized 0-radius cylinder.

� cylinder : indicates the signal corresponding to diffusion inside a cylinder.

� GDRCylinders : indicates the signal decay corresponding to diffusion inside a

group of cylinders whose radii are drawn from a Γ-distribution.

• Extra-axonal refers to the signal decay due to water diffusion outside and between

axons. Subsequently we also refer to it as hindered compartment. The different mod-

els express hindered diffusion as gaussian tensors, with different degrees of freedom.

� ball : corresponds to isotropic diffusion with a single diffusivity parameter.

� zeppelin: stands for an anisotropic cylindrically-symmetric tensor with two dif-

fusivity parameters: d‖, parallel to the principal direction of the tensor and d⊥,
perpendicular to it.

� tensor : stands for an anisotropic tensor with three diffusivity parameters: d‖,
parallel to the principal direction of the tensor and d⊥1 , d⊥2 , perpendicular to

it.

• Stationary refers to the signal decay due to water trapped in other cellular struc-

tures, such as glial cells.

� sphere: models the water diffusion inside bodies with spherical boundaries.

� dot : refers to a 0-radius sphere and is intend to model water that does not

move.

• Free refers to the signal decay due to free water in a non-restrictive environment,

such as CSF.

The microstructure parameters that can be estimated with each technique depend

on its chosen tissue/signal model. When interpreting Table 4.6, consider that a specific
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feature is estimated by a particular technique if a green tick appears in the corresponding

row. A red cross indicates that the referred technique does not estimate that particular

parameter, either because it is meaningless according to the chosen signal model or because

it is fixed a priori. In general they can all be related either to the orientation, the size or

the packing density of the axons; hereafter we list those mentioned on Table 4.6:

• Fiber bundle main orientation.

• Volume fractions corresponding to every considered compartment.

• Diffusivities: each technique chooses to fix some (or all) of the diffusivity param-

eters to biologically-plausible values characteristic to the medium and to estimate

the rest from the data†. In most cases, they are related to the intra-axonal volume

fraction through a tortuosity model [76].

• Axon Diameter Distribution (ADD).

• Axon Diameter Index: It is a single summary statistics that corresponds to the

diameter that would produce the signal decay best matching the average signal

decay over the distribution. Since large axons contain more water than the small

ones, they also contribute “more” to the diffusion signal. Therefore, this diameter

index correlates to a weighted mean axonal diameter, in which the contribution of

each axon to the total signal is proportional to the square of its diameter [1].

• Orientation dispersion around the mean fiber orientation.

All microstructure imaging techniques mentioned in Table 4.6 require computationally

very expensive nonlinear procedures to fit their models to the data [9]. Moreover, they

are only valid in regions with one single fiber population, which makes them inappropriate

to characterize the microstructure of the majority of voxels in the brain. In the next

subsection, we present a general framework in which any of the existing techniques can

potentially be reformulated into a linear problem that can be easily and very rapidly solved

using convex optimization.

4.5.1 The AMICO framework

In [9], the authors define a flexible framework for microstructure imaging named after

AMICO, Accelerated Microstructure Imaging via Convex Optimization. The authors get

inspired by spherical deconvolution methods that formulate the problem of fiber orienta-

tion recovery in a voxel as a linear inverse problem, provided the response function of a

†In the table we do not specify which are the fixed/estimated diffusivities for every model since it
appears out of the scope of this thesis. A red cross indicates that the method does not estimate any
diffusivity and a green tick, some of them. The reader can refer to the original papers for more details.
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Figure 4.6: Summary-table of the main features of the following microstructure imaging tech-
niques: Stick and Ball [77], CHARMED [78, 79], AxCaliber [80], extended AxCaliber [74], ActiveAx
[1, 81], NODDI [82], Stainsz [83].

single fiber can be estimated (see section 4.4.3). To extend this idea to microstructure

imaging, in AMICO the original problem is decoupled into two independent subproblems:

(i) estimation the main orientation ( μ ∈ S
2) of the fiber population under study, and

(ii) estimation of its main microstructure features.

Assuming the presence of a single fiber population in the voxel, step (i) is easily

performed using DTI [71]. Once μ is known, the microstructure mapping problem is

expressed in terms of a linear formulation, as follows:

y = Φμx+ η, (4.5)

being y ∈ R
m
+ the vector of diffusion measurements, x ∈ R

n
+ the coefficients to be estimated

and η the acquisition noise. In (4.5), Φμ is a linear operator or dictionary that accounts for

the signal decay from different compartments (oriented along direction μ) and therefore,

it is designed according to the imaging modality that is meant to reformulate. In [9],

the authors demonstrate the linearization of ActiveAx [1] and NODDI [82], even if the

AMICO framework can be also applied to other microstructure imaging models. Hereafter,

we exemplify this linearization process by detailing the construction of the dictionary for

ActiveAx.

ActiveAx as a linear system is built from different sub-matrices:

Φμ = [Φr
μ|Φh

μ|Φi
μ]. (4.6)
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In equation (6.6), sub-matrices Φr
μ ∈ R

m×Nr , Φh
μ ∈ R

m×Nh and Φi
μ ∈ R

m model, respec-

tively, the intra-axonal, extra-axonal and isotropic contributions to the diffusion signal

along the direction μ. Each atom in sub-matrices Φr
μ models the diffusion signal cor-

responding to water molecules restricted within parallel cylinders of a specific diameter.

Alternatively, the atoms in sub-matrices Φh
μ describe the hindered space between the axons

and a single atom in Φi
μ accounts for any isotropic contribution. Nr and Nh represent,

respectively, the number of different axon radii and hindered environments considered to

build the dictionary (n = Nr +Nh + 1).

Equation (4.5) is then solved as a Tikhonov-regularized least-squares problem as fol-

lows:

min
x≥0

1

2
||Φμx− y||22 + λ

1

2
||x||22, (4.7)

where ‖ · ‖2 is the standard �2 norm and parameter λ > 0 controls the trade-off between

data and regularization terms. Equation (4.7) can be solved using fast convex optimiza-

tion methods and therefore, AMICO provides an acceleration factor of several orders of

magnitude in the intrinsic fitting time with respect to the original microstructure imaging

techniques [9]. Moreover, AMICO guarantees convergence to a global minimum without

any initialization procedure since its formulation is convex.

4.6 Conclusion

In this chapter, we have presented some background information on diffusion MRI, an

MR technique that can measure the diffusion of water in biological tissue.

We have focused on applications of dMRI in the brain, where the anisotropy of diffusion

in the white matter can be exploited 1) to map the neural connectivity in the brain through

assessing the main orientation(s) of the fiber tracts voxelwise and 2) to characterize the

microstructural properties of the white matter, like axon diameter and density. We have

presented the state-of-the-art approaches to tackle both problems, providing the reader

with an overview of their strengths and their main limitations.





Chapter 5

Structured sparsity for spatially coherent fiber

orientation estimation in diffusion MRI

5.1 Introduction

In this chapter, we propose a novel formulation to solve the problem of intra-voxel

reconstruction of the fiber orientation distribution function (FOD) in each voxel of the

white matter of the brain from diffusion MRI data.

A great variety of approaches have been proposed to tackle the problem of intra-voxel

fiber orientation estimation (see chapter 4). Diffusion Tensor Imaging (DTI) [71] is one of

the simplest and fastest reconstruction techniques since it only requires sampling 6 points

of the q-space. However, it is by construction unable to model multiple fiber populations

within a voxel and thus it is not valid in regions with crossings. Diffusion Spectrum Imaging

(DSI) [84], on the other hand, is a model-free imaging technique known to provide good

imaging quality. Yet, it requires strong magnetic field gradients and long acquisition times,

needing typically 256 samples for a good reconstruction. As a consequence, it generally

becomes too time-consuming to be of real interest in a clinical perspective. Accelerated

acquisitions, relying on as few sampling points as possible while still sensitive to fiber

crossings represent thus a major goal in the field.

In the last years, spherical deconvolution (SD) methods [5, 72, 73] have become very

popular in the framework of local reconstruction since they can recover the fiber configu-

ration with a relatively small number of points, typically from 30 up to 60. They consider

that both anisotropy and magnitude of water diffusion in white matter (WM) are constant

in the whole volume. Under this assumption, SD methods acknowledge the fact that the

diffusion signal can be expressed as the convolution of a response function, or kernel, with

the fiber orientation distribution function (FOD). The FOD is a real-valued function on

the unit sphere that indicates the orientation and the volume fraction of the fiber popu-

lations in a voxel. The Constrained Spherical Deconvolution approach [5, 73] represents

the first attempt to solve the ill-posed SD problem. It applies Tikhonov regularization,

introducing a constraint on the �2 norm of the FOD, specially to ensure its positivity.

Apart from the aforementioned work, most of the state-of-the-art methods to solve SD

problems promote sparse regularization based on �1 minimization [6, 85, 86], where the

55
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�1 norm is defined, for any real vector, as the sum of the absolute value of its coefficients.

Yet, in [87] the authors acknowledge that �1 minimization is formally inconsistent with the

fact that the volume fraction sum up to unity, and demonstrate the superiority of �0-norm

minimization. All these local reconstruction methods solve the FOD recovery problem for

each voxel independently and thus, do not exploit the spatial coherence of the fiber tracts

in the brain. A number of approaches have addressed this shortcoming by formulating

the problem globally (simultaneously for all voxels) to be able to exploit the correlation

between the different volumes. Some of them decouple the problem and propose a global

denoising of the diffusion data prior to reconstruction [88, 89]. Another group of methods

present a joint scheme for reconstruction and spatial regularization on the diffusion im-

ages at each q-space point. For instance, [90] propose a variational formulation to jointly

estimate and regularize DTI to account for the effect of Rician noise in low SNR regimes,

while the standard state-of-the-art minimization of the total variation (TV) semi-norm

[91] of the diffusion images is used to denoise in [86, 92].

In this chapter, we propose a formulation that solves the fiber configuration of all voxels

of interest simultaneously and imposes spatial regularization directly on the fiber space.

This reconstruction allows us to exploit information from the neighboring voxels that

cannot be taken into account by the existing state-of-the-art methods that approach fiber

reconstruction independently in each voxel. The natural smoothness of the anatomical

fiber tracts through the brain can be translated in a certain spatial coherence of the FOD in

neighboring voxels. Accordingly, in the aim of recovering the global FOD field in all voxels,

the present work leverages a reweighted �1-minimization scheme to promote a spatially

structured sparsity prior imposing spatial coherence. While the spatial regularization

schemes proposed in [86, 90, 92] enforce sparsity of the images at each q-space point,

our spatial regularization relates to the fundamental coherence between fiber directions –

the FOD – in neighbor voxels, thus adding anatomically driven constraints. Our code is

available at https://github.com/basp-group/co-dmri and it is distributed open-source.

The rest of the chapter is organized as follows: In section 5.2 we recall the framework

for local FOD reconstruction through spherical deconvolution. We firstly introduce the

local �0 algorithm in [87] and secondly propose a nonlocal method which solves for the FOD

in all voxels simultaneously introducing spatial coherence of the fiber bundles orientation

in neighboring voxels. We report and discuss results on both synthetic and real data in

section 5.3. Conclusions and further work to be considered are examined in section 5.4.
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5.2 Materials and Methods

5.2.1 dMRI framework for recovery of FOD via spherical deconvolution

In the SD framework, the intra-voxel structure estimation can be expressed through

the FOD recovery problem in terms of the following linear formulation:

y = Φx+ η, (5.1)

where x ∈ R
n
+ stands for the FOD, y ∈ R

m
+ is the vector of measurements, Φ is the

linear measurement operator and η is the acquisition noise. The reader can refer to [85]

for a more detailed overview on SD methods and the formal equations describing the

relationship between the FOD and the diffusion signal. We consider a dictionary Φ that

spans a set of the Diffusion Basis Functions introduced in [6]. Each of these basis functions

is generated by applying a different rotation to a kernel, which corresponds to the diffusion

signal response to a single fiber. The set of available orientations represents a discretization

of half of the unit sphere (S2), assuming antipodal symmetry in the diffusion signal. The

diffusion signal can then be expressed as a linear combination of these basis functions, also

referred to as the atoms of our dictionary Φ.

Prior constraints are essential to regularize a deconvolution problem like (5.1) in order

to find a unique solution from an originally ill-posed problem. In the framework of the

recently developed theory of compressed sensing (CS) [18, 20] sparsity priors are commonly

used as regularizers to recover a signal from a set of undersampled measurements (see

chapter 2). In formulation (5.1) the sparsity can directly be inferred from the small

number of fiber directions of interest, in correspondence with the FOD coefficients. In

this work, the method proposed in [87] is taken as the state-of-the-art algorithm in the

framework of SD local methods for FOD recovery. For the sake of completeness, it is

described in detail hereafter.

In [87], the authors propose to resort explicitly to the nonconvex �0 prior to solve for

the FOD rather than to its convex �1 relaxation. A convex optimization problem for FOD

reconstruction can be defined through a constrained formulation between adequate sparsity

prior and data, also making use of a reweighted sparse deconvolution. The proposed

minimization problem reads as:

min
x≥0

||Φx− y||22 s.t. ||x||0 ≤ k. (5.2)

In (5.2), ||·||0 represents the �0 norm (number of nonzero coefficients) and k acts as a bound

on the expected number of fiber populations in a voxel. Since the �0 norm is nonconvex,

a reweighted �1-minimization scheme [24] is used in order to approach �0 minimization by
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a sequence of convex weighted-�1 problems of the form:

min
x≥0

‖Φx− y‖22 s.t. ‖x‖w,1 ≤ k. (5.3)

In (5.3), the �0 norm has been substituted by a weighted-�1 norm defined as ‖x||w,1 =∑
iwi|xi|. The algorithm alternates between estimating the solution at iteration t, x(t),

and redefining the weights essentially as the inverse of the values of the solution at the

previous iteration w
(t+1)
i ≈ 1/x

(t)
i (see section 2.4.2). The use of these weights allows

the algorithm to iteratively better estimate the nonzero locations and induces that, at

convergence, the weighted-�1 norm mimics the �0 norm. Hence, formulation (5.2) promotes

sparsity through a sequence of problems (5.3). Hereafter we will refer to this voxel-by-voxel

method based on �2 and �0 priors as L2L0.

In the next subsection we describe an algorithm, inspired by L2L0, that exploits the

anatomical coherence of the fiber tracts of the brain by promoting a structured sparsity

prior on the FOD field. We show evidence that taking into account neighboring informa-

tion through an appropriate prior directly on the object of interest improves significantly

the results in comparison with solving for all voxels independently or using indirect spatial

regularization schemes.

5.2.2 Spatial regularization through structured sparsity

In the aim of exploiting the spatial coherence of the fibers in the brain when recovering

the local fiber configuration, we formulate a problem to solve the ensemble FOD field for

all voxels simultaneously. To emphasize the fact that the minimization problem (5.2) is

formulated separately for each voxel of the brain, we can rewrite it using the following

notation:

min
x(v)≥0

||Φx(v) − y(v)||22 s.t. ||x(v)||0 ≤ k, (5.4)

where x(v) ∈ R
n
+ represents the real-valued FOD in the particular voxel indexed v. By

concatenating all vectors x(v) columnwise, one can build a matrix X ∈ R
n×N
+ , whose

columns correspond to the FOD in each particular voxel. The elements of matrix X will

be indexed as Xdv, each row d being associated with the atom of the dictionary oriented

in direction indexed d, each column v being associated with voxel indexed v, X·v = x(v),

as represented in Figure 5.3. N denotes the total number of voxels we want to recover the

fiber configuration from. The rows of ΦX represent the modeled diffusion images at each

q-space point.

In our proposed formulation, a global data term is minimized adding a sparsity con-

straint that simultaneously promotes spatial coherence of the solution. Inspired by formu-

lation (5.3), we adopt a procedure that consists in solving a sequence of problems of the
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form:

min
X∈Rn×N

+

‖ΦX− Y‖22 s.t. ‖X‖W,1 ≤ K, (5.5)

where the matrix Y ∈ R
m×N is formed by the concatenation of all N measurement column

vectors: Y·v = y(v) ∈ R
m. The sensing matrix Φ is exactly the same as in (5.4) and ‖·‖W,1

stands for a weighted �1 norm of a matrix defined as:

‖X‖W,1 =
∑
d,v

Wdv|Xdv|. (5.6)

The following paragraphs are devoted to describe in detail the reweighting scheme and

define the weighting matrix W.

In a reweighted-�1 scheme, large weights will progressively tend to discourage nonzero

entries whereas small weights will promote nonzero entries in the solution. The weight-

ing matrix W has the same dimension as X and each of its entries acts as a weight for

the corresponding entry of X. The weights should still represent the inverse value of the

associated entry at the previous iteration, so as to lead to an �0-norm prior at conver-

gence. However, a strong spatial coherence prior can actually be promoted by adapting

the computation of the weights as follows. Our definition of the weights is driven by the

underlying anatomical assumption that fiber bundles in neighboring voxels should have

very close orientations as the trajectories are smooth (schematically represented in Figure

5.1). In terms of the FOD, this premise implies that neighbor voxels should bear similar

directions.

Figure 5.1: Synthetic FOD
field in a representative 2D
slice, which consists of two
crossing fiber bundles. Due to
the natural smoothness of the
bundles, FODs in neighboring
voxels are expected to contain
similar peaks, as highlighted
in the figure. Figure published
in [7].

To translate this idea into a mathematical formulation of the weights we start by

formally defining the concept of neighborhood. Since each atom of the dictionary represents

a direction d on the half sphere, we define an angular neighborhood N(d) for each of them

composed by the closest atoms (in terms of angular distance). In our implementation we

have considered a maximal angular distance of 15◦ to delimit the neighborhood of each

atom. Analogously, for each voxel v of the brain we define its spatial neighborhood N(v) as

the group of 26 voxels that share either a face, an edge or a vertex with the voxel of interest

v, commonly referred to as the 26-adjacent neighborhood [93]. A visual representation of
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Figure 5.2: Top row: Schematic representation of a spatial neighborhood. On the left:
Set of voxels representing the 3D-volume (brain) we want to solve for. Voxels in red configure the
neighborhood N(v) for a particular voxel v, in green. On the right: Mapping of N(v) as a set of
columns of matrix X. Bottom row: Schematic representation of an angular neighborhood.
On the left: Set of black circles representing the discretization of the half sphere chosen to build
dictionary Φ. Points highlighted in blue configure the neighborhood N(d) for a particular direction
d, in green. On the right: Mapping of N(d) as a set of rows of matrix X. Figure published in [7].

both N(d) and N(v) is shown in Figure 5.2. For convenience, we define N(d) = d ∪ N(d)

and N(v) = v ∪N(v), the neighborhoods that include the central element. We then define

the neighborhood of an element Xdv as the entries of X at the intersection of rows d and all

its neighbor directions, and columns v and all its neighbor voxels: N(dv) = {(d′, v′); d′ ∈
N(d), v′ ∈ N(v)}, as it is schematically represented in Figure 5.3.

At each iteration, every element of the weighting matrix Wdv is set as the inverse of

an average of the absolute values that X takes in the neighborhood of Xdv in the previous

iteration:

W
(t+1)
dv =

[
τ (t) +

1

|N(v)|
∑

d′v′∈N(dv)

|X(t)
d′v′ |

]−1

. (5.7)

Consequently, at each iteration t, the weighting matrixW(t) represents a blurred version

of the current estimation of the solution X(t)∗. In (5.7), we average over voxels, but sum

over directions as all values in neighbor directions are interpreted as contributing to a single

true local direction, in particular because the true direction does in general not coincide

exactly to one of the discrete points of the sphere identifying our orientation dictionary.

∗The values of the final solution are influenced by their weights, however they are not directly identified
with them.
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Figure 5.3: Schematic representation of the neighbourhood of element Xdv (in green), i.e. the
elements of X involved in the computation of weight Wdv. It includes coefficients corresponding to
directions d and all its neighbours N(d) for voxel v and all its neighbours N(dv) = {(d′, v′); d′ ∈
N(d), v′ ∈ N(v)}. Figure published in [7].

This helps to stabilize the regularization and prevent the appearance of spurious peaks:

fiber contributions are usually spread over a small angular support while spurious peaks

are associated with isolated directions. To avoid infinite values for null averages, we add

a stability parameter τ in the definition of the weights. We apply an homotopy strategy

[94] and use a decreasing sequence {τ (t)} in such a way that τ (t) → 0 when t→∞. In the

absence of any spatial constraint, W(0) corresponds to the matrix of all 1s and thus, the

weighted �1 norm is the standard �1,1 norm of a matrix, ‖X‖W,1 = ‖X‖1,1.
The specific computation of the weights described in the former paragraphs encour-

ages that neighbor voxels present the same or very close (neighbor) directions, imposing

structured sparsity of the solution. Indeed, all entries corresponding to the neighborhood

of an element contribute to its weight. Therefore those orientations that are “supported”

by the surrounding voxels are reinforced, since they will be given a small weight compared

to isolated directions that are not coherent with their environment. At convergence, our

definitions (5.6) and (5.7) thus implement a spatially coherent version of the matrix �0

norm, i.e. the sum of the �0 norms of its columns. This reweighting scheme promotes a

regularization that takes into account the true anatomy of the brain accounting for the

fact that fiber populations present a coherent trajectory across voxels close to each other

in the brain volume. This prior constitutes a powerful constraint that cannot be exploited

when solving the problem independently for each voxel, like in (5.4).

The main steps of the reweighting scheme are reported in algorithm 3; in the re-

maining of the manuscript we will refer to it as L2L0NW, in reference to the described

neighbor weighted scheme. The reweighting process stops when the relative variation be-

tween successive solutions ‖X(t) − X(t−1)‖2/‖X(t−1)‖2 is smaller than some bound or after

the maximum number of iterations allowed is reached.
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Algorithm 3 Reweighted �1 minimization for global reconstruction of the FOD

Require: Y ∈ R
m×N ; Φ ∈ R

n×m; K; ν; τthr; Nmax; N(d), d = 1, .., n; N(v), v = 1, .., N
Ensure: FOD X ∈ R

n×N
+

Initialize t← 0; X(0) = 0; W(0) ← 1
while ρ > ν and t < Nmax do
Solve:
X(t) ← minX∈Rn×N

+
‖ΦX− Y‖22 s.t. ‖X‖W,1 ≤ K

Update W(t+1)

Update ρ = ‖X(t) − X(t−1)‖2/‖X(t−1)‖2
t← t+ 1

end while
X← X(t−1)

5.2.3 Implementation details

To generate the dictionary Φ in our experiments, we estimated two different Gaussian

kernels that model the diffusion signal in the regions of the brain corresponding to (i)

white matter (WM) and (ii) partial volume with grey matter or cerebrospinal fluid (CSF).

Modeling each kernel actually corresponds to estimating the three eigenvalues of the dif-

fusion tensor. Grey matter and CSF are typically isotropic media. Consequently, their

representative kernel is spherical – a tensor with three equal eigenvalues – and not sensi-

tive to rotations. On the other hand, the kernel corresponding to the WM is anisotropic.

Its response function was first estimated by fitting a tensor from the diffusion signal in

those voxels with the highest fractional anisotropy (as expected to contain only one fiber

population) and subsequently it was rotated in 200 different directions equally distributed

on the sphere. Therefore, the final number of atoms of the dictionary used for this recon-

struction is 201: 200 atoms corresponding to WM plus 1 isotropic atom modeling partial

volume with CSF and grey matter.

Each weighted-�1 problem of the form (5.5) is solved using a forward-backward algo-

rithm [95] in the context of proximal splitting theory (see chapter 2). To set a meaningful

bound K we have followed the criterion that at convergence the weighted-�1 norm of a

matrix, as defined in section 5.2.2, mimics the �0 norm – as in formulation (5.3) –. K

is then heuristically fixed as K = 3N , as it represents a conservative bound on the total

number of fiber orientations to be identified, computed as the number of voxels N times

an average bound on the number of fiber orientation per voxel. We initialize τ (0) as the

variance of the solution after the first iteration X(0) and, in subsequent iterations, we up-

date τ (t+1) = βτ (t) with β = 10−1. Ideally τ (t) should decrease to 0 but we heuristically fix

a lower bound τthr = 10−7, above which significant signal components could be identified.

Experiments show that for a convergence bound ν = 10−3 the reweighting process stops

after a relatively small number of iterations, typically 4 or 5. In our simulations, ν is set

to 10−3 and Nmax to 10.

To extract the final fiber directions from the solution to algorithm 3 in every voxel
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we perform a search for local maxima among all directions within a cone of 15◦ around

every direction. In this entire process, we disregard the directions with contributions (i.e.

coefficients) smaller than 10% of the maxima in order to filter out spurious peaks.

5.2.4 Phantom data

We perform our experiments using the phantom data used for the HARDI reconstruc-

tion Challenge 2012 [96]. The public results in [96] allow us to compare the performance

of L2L0NW with other methods using different spatial regularization schemes – such as TV

regularization mentioned above – with no need for their explicit implementation. The

dataset is a 16 × 16 × 5 volume that comprises 5 different fiber bundles that result in

voxels with bending, crossing and kissing tracts. The response function of each bundle

has been generated with a fractional anisotropy between 0.75 and 0.90 and the diffusion

properties are constant along all its trajectory. More details on its geometry can be found

in [96].

The signal is contaminated with Rician noise [97] as follows:

Snoisy =
√
(S + ξ1)2 + (ξ2)2, (5.8)

with ξ1, ξ2 ∼ N(0, σ2) and σ = S0/SNR corresponding to a given signal-to-noise ratio

(SNR) on the S0 image. The quality of the reconstructions has been evaluated as a

function of three different noise levels, i.e. SNR = 10, 20, 30 and 5 different q-space

acquisition schemes (30, 20, 15, 10 and 6 samples), evenly spaced on half of the unit

sphere.

5.2.5 Real Data

One HARDI† dataset was acquired at b = 3000 s/mm2 using 256 directions uniformly

distributed on half of the unit sphere (as described in [98]), TR/TE = 7000/108 ms

and spatial resolution = 2.5 × 2.5 × 2.5 mm. To assess the robustness of L2L0NW to

different undersampling rates, the dataset has been retrospectively undersampled and

three additional datasets have been created, consisting of only 30, 20 and 10 diffusion

directions selected in order to be evenly spaced on half of the unit sphere using the tool

subsetpoints which is available in the camino toolbox‡. We will refer to these four data

sets as hardi256, hardi30, hardi20 and hardi10, respectively. The actual SNR in the b = 0

images, computed as the ratio of the mean value in a region-of-interest placed in the WM

and the standard deviation of the noise estimated in the background, was about 30.

To evaluate the reconstructions from the undersampled real datasets, the metrics de-

scribed in subsection 5.2.6 are computed considering the fully-sampled hardi256 as the

†High-Angular Resolution Diffusion Imaging
‡www.camino.org.uk
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golden truth, as it is suggested in [99].

5.2.6 Evaluation criteria

To evaluate the quality of the reconstructions we have focused on the performance of

each method in both correctly assessing the number of fiber populations in each voxel and

the angular accuracy in their orientation. In this work we adopted a set of metrics that

was used to evaluate and compare all methods participating in the HARDI reconstruction

Challenge 2012 [96]. For consistency we have kept their notation to design the different

quality indices. The success rate (SR∠) corresponds to the proportion of voxels in which

a reconstruction algorithm correctly estimates the number of fiber populations. A fiber is

considered to be correctly identified when an estimated fiber falls within a tolerance cone

around a true fiber. To compare our results with different algorithms evaluated in [96],

in this work the tolerance was set to 20◦. False positive and negative rates (n+
∠ and n−

∠ ,

respectively) are an average over all voxels of the number of over-/underestimated fiber

populations per voxel.

The angular accuracy is measured through the mean angular error θ̄ (in degrees)

averaged over all true fiber directions, where the angular error associated with each true

fiber is formally defined as:

θ =
180

π
arccos(|dtrue · destimated|), (5.9)

where dtrue and destimated are unitary vectors in the true fiber direction and the closest

estimated direction. Note that indices SR∠, n
+
∠ and n−

∠ represent mean values over all

voxels of interest, whereas θ̄ is computed voxelwise and we study its statistical distribution

to evaluate the general angular accuracy of each reconstruction.

5.2.7 Experimental setup

In the next section, we evaluate the quality of reconstructions using L2L0NW, both

for numerical simulations and tests on real data. As shown in [87], L2L0 outperforms

other state-of-the-art local methods that recover the FOD in the framework of spherical

deconvolution. Consequently, we have chosen it as a benchmark to compare L2L0NW with

respect to methods that perform voxel-by-voxel reconstruction of the fiber configuration.

We had access to the original implementation to run L2L0 reconstructions.

We also compare the performance of L2L0NW, which jointly estimates the FOD and

applies spatial regularization, with respect to applying first a nonlocal denoising procedure

and subsequently perform local reconstruction. We have chosen an adaptation of the

Linear Minimum Mean Squared Error (LMMSE) filter proposed in [88] to simultaneously

filter all different gradient images. We use a publicly available implementation of the Joint
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Anisotropic LMMSE filter§ and subsequently apply L2L0 to reconstruct the FOD. We refer

to this alternative as JAMMLSE+L2L0.

In addition, taking the advantage of the public results of the HARDI reconstruction

Challenge 2012 [96], we can compare the performance of L2L0NW with a representative

collection of state-of-the-art methods for simulations on phantom data. In particular, we

are able to establish a comparison with other methods using different spatial regularization

schemes – such as TV regularization mentioned above – with no need for an explicit

implementation of these methods.

Our optimization code¶ was implemented in MATLAB and run on a standard 2.4 GHz

Intel Xeon processor. The non-optimized version of the code is able to reconstruct a whole

brain volume of 106× 106× 51 voxels within approximately 4 hours.

5.3 Results and discussion

5.3.1 Phantom data

In this subsection we start comparing in detail the performance for L2L0NW relative

to L2L0 and JAMMLSE+L2L0 for the phantom data set described in subsection 5.2.4. The

performance of the three methods as a function of the undersampling rate in q-space is

reported in Figure 5.4. We consider 5 different acquisitions schemes (30, 20, 15, 10 and 6

samples) and present results for two different noise levels, at SNR = 30 and SNR = 20. The

plots demonstrate that L2L0NW outperforms L2L0 and JAMMLSE+L2L0 for all number of sam-

ples, in both noise conditions. L2L0NW exhibits an accurate reconstruction (SR∠ ≥ 85 and

mean(θ̄) ≤ 6.5◦), robust to noise for different undersampling regimes, down to 15 samples.

Denoising high-SNR data prior to reconstruction, as it is done in JAMMLSE+L2L0, seems

not to improve the quality of the reconstructions. Indeed, at SNR = 30, 20 JAMMLSE+L2L0

exhibits slightly worse results than L2L0 (moderately lower SR∠ and θ̄). With high quality

data (SNR = 30 and from 30 to 15 samples), the differences between the three methods

are fairly mild. The superiority of L2L0NW compared to L2L0 and JAMMLSE+L2L0 appears

clearer as we move to higher undersampling regimes and SNR = 20, specially in terms of

the ability of identifying the correct number of fibers (higher SR∠). The overall improve-

ment in terms of the success rate is even more evident when we go down to 10 samples,

where L2L0 and JAMMLSE+L2L0 exhibit a severe drop of the performance with SR∠ = 52

(L2L0) and SR∠ = 50 (JAMMLSE+L2L0) at SNR = 30 and SR∠ = 36 (L2L0) and SR∠ = 38

(JAMMLSE+L2L0) at SNR = 20, while SR∠ = 81 (SNR = 30) and SR∠ = 72 (SNR = 20)

are obtained with L2L0NW. We notice a significant deterioration of the reconstructions with

all methods when decreasing the number of samples down to 6.

A more detailed analysis in severe noise conditions (SNR = 10) is presented in Fig-

§http://www.nitrc.org/projects/jalmmse_dwi/
¶Code is available at https://github.com/basp-group/co-dmri.



66
Chapter 5. Structured sparsity for spatially coherent fiber orientation

estimation in diffusion MRI

ure 5.5. The plots show an important difference between the performance achieved by

L2L0, that solves the problem voxelwise, and L2L0NW and JAMMLSE+L2L0 that take into

account the correlation between voxels and directions. At SNR=10, the denoising step

in JAMMLSE+L2L0, specially indicated to correct the effect of the Rician noise at low SNR

regimes [88], improves drastically the quality of the reconstructions. In particular, the

overall θ̄ performances differ significantly between L2L0 and JAMMLSE+L2L0, with an aver-

age enhancement of up to 5◦ in the mean θ̄ in different undersampling regimes. While in

terms of angular resolution both L2L0NW and JAMMLSE+L2L0 exhibit similar performance,

L2L0NW shows a higher SR∠ down to 10 samples. In this noise setting, we analyze in

detail the ability of correctly assessing the number of fibers through the false positives

and negatives rates. Results show the effectiveness of the spatial regularization applied

both in JAMMLSE+L2L0 and L2L0NW, specially in avoiding overestimated directions (extreme

decrease of n+
∠ ) even if the number of missed fibers (n−

∠ ) is also significantly decreased.

Plots analogous to Figures 5.4 and 5.5 can be found in [96], where an exhaustive

comparison of all methods participating in the HARDI reconstruction Challenge 2012 ‖

is presented. The performance of these algorithms is evaluated on the same phantom

used in our simulations by computing the same quality metrics described in the present

paper (SR∠, θ̄, n+ and n−). Figure 5.6 shows a comparison of the performance of L2L0NW

run with 15 samples with the following eight representative methods participating in the

Challenge∗∗: (i) DTIneigh, classical DTI method enhanced using contextual information

[100]; (ii) L2-L1-DL, method using dictionary learning in the framework of �2-�1 recon-

struction [20]; (iii - iv) L2-L1-TV and L2-L1-TGV, using the �2-�1 problem formulation

and including spatial regularization schemes based on total variation and total generalized

variation, respectively [86]; (v - vi) L2-L2 and NN-L2, based on �2 norm priors [6, 25];

(vii) DOT, classical diffusion orientation transform [101]; (viii) DSILR, classical DSI en-

hanced using Lucy-Richardson deconvolution [102]. For a more detailed explanation of

each reconstruction method, you can refer to [96]. Direct quantitative comparisons with

all these standard state-of-the-art algorithms is not straightforward from the results, since

every method was tested using different sampling schemes (different number of samples

and distribution of points). Yet, L2L0NW can be positioned in the overall picture. In Figure

5.6, participant methods are sorted by the number of samples used for the reconstruction,

increasing from left to right. The actual number of samples is indicated on the plot for

every method. In mild noise conditions (SNR = 30), L2L0NW is able to correctly assess

the number of fibers in 85% of voxels (SR∠ = 85) using as few as 15 signal samples and

this quality appears comparable to the best SR∠ scores obtained in the Challenge with

methods using many more points (from 30 up to 257) to recover the fiber configuration.

The superiority of L2L0NW appears to be even more significant when a more noisy setting

is considered. At SNR = 10, L2L0NW using only 15 samples, shows the same quality of

‖http://hardi.epfl.ch/static/events/2012_ISBI
∗∗For the sake of consistency, all methods are named following the same notation as in [96].
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Figure 5.4: Comparison of SR∠ and θ̄ between L2L0, JAMMLSE+L2L0 and L2L0NW approaches.
Experiments are performed on the phantom dataset used in [96] for a fixed SNR = 30 (top row)
and SNR = 20 (bottom row). On the left, SR∠ represents the success rate. On the right, the
boxplot diagrams present the distribution of θ̄, with the edges of each box representing the 25th
and 75th percentiles, the mean and median value appear as “square” and “circle” value and the
outliers are plotted as red dots. Figure published in [7].

reconstruction, in terms of both SR∠ and θ̄, as DSI using an exhaustive cartesian sam-

pling scheme of 257 points. NN-L2 stands as the only method presenting slightly better

results in terms of SR∠, yet, using 48 samples. Only with 15 samples L2L0NW is able to

attain comparable levels of performance, thus implying a speed-up factor of three. We

pay special attention to the comparison with the rest of methods that promote any kind

of spatial regularization. L2L0NW with 15 samples (SR∠ = 85 and mean(θ̄) = 6.4◦) out-

performs L2-L1-TV, the method imposing TV regularization ([96]; see also [86]), in terms

of success rate (SR∠ = 75) and present similar average angular error (mean(θ̄) = 6◦),
stressing the fact that the latter uses a sampling scheme with the double number of points

(30 samples). Overall, we point out that all participant methods imposing spatial regu-

larization (L2-L1-TV, L2-L1-TGV) use a significant amount of measurements (from 30 to

64 points) to recover the fiber configuration. The anatomical structured sparsity prior

that we impose allows us to yield the same quality in the reconstructions using higher

undersampling regimes.
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Figure 5.5: Comparison of SR∠, θ̄, n−
∠ and n+

∠ between L2L0, JAMMLSE+L2L0 and L2L0NW ap-
proaches. Experiments are performed on the phantom dataset used in [96] for a fixed SNR = 10.
On the top left, SR∠ represents the success rate. On the top right, the boxplot diagrams present
the distribution of θ̄ with the same conventions as for Figure 5.4. On the bottom row, n−

∠ and n+
∠

represent the false negatives and positives rates. Figure published in [7].

5.3.2 Real Data

5.3.2.1 Quantitative comparison

In this subsection, we compare quantitatively the reconstructions obtained from un-

dersampled real data (i.e. hardi30, hardi20 and hardi10 ) to those with fully-sampled

data (i.e. hardi256 ), considering the latter as ground-truth, for L2L0, JAMMLSE+L2L0

and L2L0NW. Results quoted next are in agreement with those obtained for numeri-

cal simulations on the phantom, confirming that L2L0NW actually outperforms L2L0 and

JAMMLSE+L2L0. Bearing in mind that he actual SNR in the b = 0 images is about 30, re-

sults for JAMMLSE+L2L0 and L2L0NW appear in line with conclusions driven from the HARDI

Reconstruction Challenge 2012, where it was shown that spatial regularization appeared

to be effective also in low noise regimes, while merely denoising the images did not [96].

The average mean angular error (θ̄) using 30 samples was 13.9◦ ± 11.4◦ (mean ±
standard deviation over WM voxels of the whole brain volume) for L2L0, 14.5◦ ± 10.8◦

for JAMMLSE+L2L0 and 7.8◦ ± 9.14◦ for L2L0NW . Reconstructions using 20 samples had

an average error of 15.7◦ ± 11.2◦ for L2L0, 16.7◦ ± 11.8◦ for JAMMLSE+L2L0 and 9.1◦ ±
9.6◦ for L2L0NW . When one goes down to 10 samples, reconstructions using L2L0 and

JAMMLSE+L2L0 exhibit an angular error of 19.8◦ ± 11.25◦ and 19.8◦ ± 12.0◦, respectively,
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Figure 5.6: Comparison of SR∠ and θ̄ between different reconstruction methods. Experiments
are performed on the phantom dataset used in [96] for a fixed SNR = 30 (top row) and SNR = 10
(bottom row). On the left, SR∠ represents the success rate. For the sake of comparison, the
number of samples used for the reconstruction is reported in parentheses next to the name of each
method. On the right, the boxplot diagrams present the distribution of θ̄, with the edges of each
box representing the 25th and 75th percentiles, the mean and median value appear as “square”
and “circle” value and the outliers are plotted as red dots. Figure published in [7].

which is already higher than the resolution of the spherical discretization defined by our

dictionary; while the angular error for L2L0NW is 13.6◦± 10.5◦. Results for the success rate
are as well consistent with the results obtained in simulations. As in numerical simulations,

the benefits of imposing a spatial regularization directly on the fiber orientations are more

remarkable when we go to higher subsampling regimes. The SR∠ was 31.1%± 46.3% for

L2L0, 34.8% ± 47.6% for JAMMLSE+L2L0 and 67.0% ± 47.0% for L2L0NW with 30 samples;

27.9%± 44.9% for L2L0, 28.0%± 45.0% for JAMMLSE+L2L0 and 61.7%± 48.6% for L2L0NW

at 20 samples. All methods present a degradation in the quality of their reconstructions

when we go down to 10 samples, SR∠ decreasing to 16%± 36.6% for L2L0, 18.8%± 39.0%

for JAMMLSE+L2L0 and 40.6%± 49.1% for L2L0NW.

Figure 5.7 illustrate the numerical results for one representative slice of the brain

volume. The angular accuracy of each reconstruction is presented by plotting the mean

angular error θ̄ per voxel in Figure 5.7. A map of the number of false positives and false

negatives per voxel is used to illustrate the ability of each method of correctly assessing

the number of fibers in Figure 5.8. The images show the superiority of L2L0NW with respect
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Figure 5.7: Angular accuracy (map of θ̄ per voxel) in real data between L2L0, JAMMLSE+L2L0
and L2L0NW reconstructions with 30, 20 and 10 samples (hardi30, hardi20, hardi10 datasets, re-
spectively). Figure published in [7].

to L2L0 and JAMMLSE+L2L0, specially in those voxels close to the boundaries with the grey

matter and the cerebrospinal fluid.

5.3.2.2 Qualitative comparison

The reconstructions†† of the FOD obtained with L2L0 and L2L0NW for a significant slice

of the brain in the corona radiata region are compared qualitatively in Figures 5.9 and 5.10.

These plots show the robustness of each method to two different undersampling regimes,

hardi30 and hardi10. In the light of the quantitative results obtained for both phantom

and real data and given the fact that qualitative differences between reconstructions using

L2L0 and JAMMLSE+L2L0 are difficult to appreciate, we do not show qualitative results

for JAMMLSE+L2L0. In all images, three meaningful regions with fiber bundle crossings

have been highlighted. With 30 samples (Figure 5.9 corresponding to hardi30), the FODs

reconstructed by L2L0NW present neater and sharper profiles with less presence of spurious

peaks than the ones reconstructed by L2L0. In addition, the fiber orientation distribution

field reconstructed by L2L0NW looks qualitatively smoother overall. As a consequence,

fiber bundles are better defined through more clearly identified peaks. Plots in Figure

5.10 show reconstructions performed with only 4% of the original data (10 samples). In

these images – corresponding to reconstructions with highly undersampled data – the

††The images have been created using the tool mrview of mrtrix. This required the FOD from L2L0 and
L2L0NW to be previously converted to spherical harmonics.
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Figure 5.8: Ability of correctly assessing the number of fibers in real data between L2L0,
JAMMLSE+L2L0 and L2L0NW reconstructions with 30, 20 and 10 samples (hardi30, hardi20, hardi10
datasets, respectively). Map of number of false positives (top) and false negatives (bottom) per
voxel. Figure published in [7].

above-mentioned qualitative differences between the two methods are confirmed and even

more easily noticeable. As discussed in section 3.1, these differences can have a significant

impact when applying tractography methods on these fiber orientation fields.
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Figure 5.9: Qualitative comparison on HARDI human data. Reconstructions of the FODs in the
corona radiata region are shown for L2L0 (top) and L2L0NW (bottom) for 30 samples superimposed
to the FA map. Figure published in [7].

5.4 Conclusion

In this chapter we have proposed a novel algorithm to recover the intra-voxel FOD

simultaneously for all voxels. The method leverages a spatially structured sparsity prior
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Figure 5.10: Qualitative comparison on HARDI human data. Reconstructions of the FODs in the
corona radiata region are shown for L2L0 (top) and L2L0NW (bottom) for 10 samples superimposed
to the FA map. Figure published in [7].

directly on the FOD, where the structure originates from the spatial coherence of the fiber

orientation between neighbor voxels. We have made use of a reweighting scheme to enforce

structured sparsity in the solution. We have shown through numerical simulations and

tests on real data that this method outperforms a voxel-by-voxel reconstruction method
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when assessing the correct number of fibers and the angular precision of their orientation.

As shown in section 5.3, exploiting spatial information about the neighboring directions

appears essential to ensure a stronger robustness to noise and ability to go to higher

undersampling regimes, leading to accurate reconstructions with only 15 samples.

We also compare the performance of our proposed method with respect to applying

first a nonlocal denoising procedure and subsequently perform local reconstruction. This

comparison allows us to highlight the benefits of using a spatial regularization as in our

approach as opposed to this decoupled strategy. As presented in simulations, our spatial

prior on the FOD outperforms as well the empirical TV regularization of q-space images

proposed by [86], being able to recover the fiber orientation distribution using fewer sam-

ples. Note that spatial regularization of the q-space images is actually complementary to

our formulation and could be added as an additional prior to our method.

The regularization presented in this paper could as well be applied in a voxel-by-voxel

configuration, redefining the weights in formulation (5.3) to account for the values of

the FOD in a defined neighborhood. Preliminary investigations in this direction did not

provide promising results. Fixing a single bound to estimate the number of fibers separately

in every voxel of the brain appears to be too constraining. On the contrary, setting a

bound on the total number of fibers of the whole volume and solving the problem for all

voxels simultaneously leaves more freedom on the effective directions (number of nonzero

coefficients) per voxel. Furthermore, future evolutions of this algorithm should enable

undersampling in Fourier space (k-space) for each of the q-space images acquired. This

combined k − q-space sampling approach, along the lines of work by [86], will potentially

enable a significant additional acceleration, in which context a voxel-by-voxel approach is

not an option. Regarding computing resources, the memory requirements of a reweighting

scheme to solve each voxel independently but using neighborhood information to define the

weights would not differ from L2L0NW, bearing in mind that the main operator Φ remains

exactly the same for both formulations (5.3) and (5.5). In any case, the computation time

of L2L0NW is affordable for a single processor, as described in section 5.2.7.

In recent work [9], the authors present a general framework for Accelerated Microstruc-

ture Imaging via Convex Optimization (AMICO) to recover the microstructure configu-

ration voxel-by-voxel in regions with one single fiber population. In the next chapter we

consider the spatial coherence of the microstructural features of the fibers all over the brain

with the aim of extending the AMICO framework to regions of the WM with multiple fiber

populations and more complex configurations.

The work presented in this chapter has ben published in [7, 8].
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Fast microstructure estimation in regions with

multiple fibers

6.1 Introduction

Most microstructure imaging techniques recover the microstructure properties by mod-

eling the signal decay in different tissue compartments, e.g. axons, glial cells and extra-

axonal space. These methods can infer not only the orientation of the main fiber popu-

lation in a voxel, but also their microstructural properties, such as the apparent average

diameter and density of the axons. For an exhaustive survey of the existing techniques in

the field the reader can refer to chapter 4 and [75].

All the techniques mentioned in section 4.5 have demonstrated the practical possibility

to estimate microstructural information from dMRI data and the estimated microstruc-

tural indices have been shown to agree very well with known anatomical patterns observed

with histology [1, 82, 103]. However, they still suffer from sever limitations. On one hand,

the nonlinear routines usually employed to fit these models are computationally very in-

tensive and cause practical problems for their application in studies with several subjects.

Secondly, they are only valid in regions with one single fiber population, making them

inappropiate to characterize the microstructure of the majority of voxels in the brain.

Furthermore, they still require acquisition times that make them difficult to implement in

vivo in a clinical context.

Recently, Daducci et al. presented a flexible framework for Accelerated Microstructure

Imaging via Convex Optimization (AMICO) [9] to reformulate these microstructure imag-

ing techniques as linear systems that can be solved using convex optimization methods

(see 4.5.1). The convex optimization framework enables to include prior information about

the signal, such as positivity, as long as it is formulated as a convex constraint. Besides

this flexibility, convex optimization methods are fast and many efficient numerical algo-

rithms exist to solve them (see chapter 2). Despite the drastic improvement in speed, the

current framework of AMICO replicates microstructure imaging techniques that so far are

only valid in regions with one fiber population. Therefore, its use remains inadequate for

many widespread regions of the brain with multiple fiber bundles. ActiveAx was recently

extended to allow axon diameter mapping also in regions with crossing fibers [104] and

75
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thus, overcome this limitation. Still, it requires about 1-hour scan and, thus, it is difficult

to be routinely included in clinical studies.

In the first part of this chapter, we present a first preliminary extension of the AMICO

framework to be able to recover microstructure parameters also in regions with multiple

fiber populations using fast algorithms. Numerical simulations evidence the ability of our

new approach to recover microstructure parameters in regions with crossing fibers.

In the second part of the chapter, we go one step further and propose a novel formula-

tion that estimates the microstructure configuration and the fiber orientation simultane-

ously in all voxels as a global optimization problem, exploiting information from neighbor-

ing voxels that cannot be taken into account with existing techniques. Our preliminary

results show the potential of our proposed method to enable robust reconstructions from

a reduced number of diffusion measurements, thus leading to faster acquisitions, too.

6.2 AMICOX

6.2.1 Materials and Methods

The reconstruction problem for microstructure features from diffusion data accounting

for multiple fibers is presented here as an extension of AMICO [9]. In this preliminary

work we focus on extending the formulation for the ActiveAx model [1] to enable axonal

diameter mapping in case of multiple fiber populations within a voxel.

As in original AMICO, the reconstruction problem is decoupled into two simpler sub-

problems. First, the number and orientation of the fiber populations μi ∈ S
2 in each voxel

is estimated. This can be achieved using any of several reconstruction methods, such as the

standard Constrained Spherical Deconvolution (CSD) method [73]. Secondly, the linear

operator Φ to express ActiveAx as a linear system is built from different sub-matrices:

Φ = [Φr
1|Φh

1 | . . . |Φr
M |Φh

M |Φi]. (6.1)

In equation (6.6), sub-matrices Φr
i ∈ R

m×Nr and Φh
i ∈ R

m×Nh model, respectively, the

intra-axonal and extra-axonal contributions to the diffusion signal along the direction

μi(i = 1, . . . ,M). M stands for the total number of detected fiber populations in the

voxel. Each atom in sub-matrices Φr
i models the diffusion signal corresponding to water

molecules restricted within parallel cylinders of a specific diameter. Alternatively, the

atoms in sub-matrices Φh
i describe the hindered space between the axons. Nr and Nh

represent, respectively, the number of different axon radii and hindered environments

considered to build the dictionary. Sub-matrix Φi ∈ R
m has a single atom that models the

isotropic contribution corresponding to the CSF (note that it is orientation-independent).

The signal response matching both restricted and hindered water diffusion in a voxel is

estimated using the same models and parameter set as in [9]. For further details, the

reader can refer to the original manuscript and find a specific description of these models
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in [75].

The microstructure recovery problem is then solved as a Tikhonov-regularized least

squares problem as follows:

min
x≥0

1

2
||Φx− y||22 + λ

1

2
||x||22, (6.2)

where ‖·‖2 is the standard �2 norm and the parameter λ ≥ 0 controls the trade-off between

data regularization terms. The microstructure indices of interest defined by Alexander et

al. [1] can be estimated for each individual fiber population from the recovered coefficients

x by partitioning them as [xr
1|xh

1 | . . . |xr
M |xh

M |xi], corresponding to the contributions of

hindered, restricted and isotropic compartments from every fiber bundle. In every voxel,

the intra-axonal volume fraction ν ′ indicates the ratio between restricted and hindered

compartments; and for each of the fiber populations i (i = 1, . . . ,M), the mean axon

diameter index a′i is expressed as a weighted average of the coefficients corresponding to

restricted water diffusion, xr
i :

ν ′ =

∑M
i=1

∑Nr
j=1 x

r
ij∑M

i=1(
∑Nr

j=1 x
r
ij
+

∑Nh
j=1 x

h
ij
)

(6.3)

a′i =

∑Nr
j=1 2Rjx

r
ij∑Nr

j=1 x
r
ij

, (6.4)

where Rj , j ∈ {1, . . . , Nr} indicates the radius of the cylinder corresponding to the j-th

atom in Φr
i . xrij (alternatively, xhij ) denotes the contribution corresponding to the jth

restricted (alternatively, hindered) atom oriented along direction μi. We underline the

fact that a′i denotes a weighted mean axonal diameter and is not expected to correspond

to the true mean axonal diameter over the axonal diameter distribution corresponding to

the ith fiber bundle (see its precise definition in 4.5 or refer to [1]). However, by abuse of

language, we often refer to a′i as mean axonal diameter when discussing our results.

Hereafter, to make results easier to interpret for the reader, we refer to the original

AMICO formulation [9] as AMICO1 and to its extended version for multiple fibers as

AMICOX . In the next section, the performance of both formulations is compared through

numerical simulations.

6.2.2 Experiments

To evaluate the effectiveness of AMICOX , we tested it on synthetic data generated

using the Monte-Carlo diffusion simulator system available in Camino [105], with the

imaging protocol corresponding to a gradient strength Gmax = 140mT/m with 270 mea-

surements divided into 3 shells with b-values= {1930, 3090, 13190}s/mm2, corresponding

to G = {140, 131, 140}mT/m, δ = {10.2, 7.6, 17.7} ms, Δ = {16.7, 45.9, 35.8}ms and same
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TR/TE = 5000/60ms for all images. In all experiments when building the linear opera-

tors, we considered Nr = 10 different axon radii in a range of 0.1 - 8.5 μm, and Nh = 7

different hindered environments corresponding to intra-axonal volume fractions from 0.3

to 0.9. No partial volume with CSF was included in the simulations, thus we did not

consider any isotropic compartment in our dictionary (Φi = ∅). Since the goal of this

study remains to evaluate the ability of AMICOX to correctly retrieve the microstructure

indices of interest, we have chosen the regularization parameter λ that gives the minimal

average relative error when fitting the mean axonal index over a set of 5 different pair of

WM substrates. As a result, λ was fixed to 0.25.

We first simulated raw voxels with two fiber populations crossing at different angles

(from 30◦ to 90◦). Each fiber population consisted of a distribution of different axon di-

ameter, as done in [1], and several WM substrates were tested. For each configuration,

different relative ratios of the two populations were evaluated. In each case, the mean

and standard deviation of the estimated microstructural parameters was computed over

1000 repetitions, contaminating the signal with independent Rician noise realizations cor-

responding to SNR= 30, and compared them to the ground-truth. The estimation of the

fiber orientations was performed using standard CSD [73] and the CSD peak estimation us-

ing the toolbox MRTrix∗ with 90 measurements corresponding to the outer shell. For com-

pactness, only results corresponding to relative volume fractions fr1 = {0.5, 0.5} and fiber

population with 2 different radii – gamma distributions with parameters (3.27, 4.9 · 10−7)

and (4.82, 2.6 · 10−7), respectively – corresponding to average axon diameters about 5.6

and 3.6 micrometers are reported here. Results on the other substrates are consistent.

6.2.3 Results and discussion

To show evidence of the need to consider more than one fiber population in the model,

we fitted AMICO1 in the experimental settings described above to assess the impact of

using this single-fiber model in regions with more than one fiber population. In these

experiments, the atoms of the dictionary were oriented in the direction estimated with

DTI, as in the original formulation [9]. The estimated microstructure indices (mean axon

diameter and intra-cellular volume fraction) are compared with the ground-truth in Figure

6.1. AMICO1 assumes that the fibers inside the voxel follow only one direction. Results

show that making such an assumption in voxels that actually contain more than one

fiber leads to erroneous estimation of microstructural properties. Mean axonal diameter

appears overestimated whereas the intra-axonal volume fraction is underestimated; and the

absolute error increases with the crossing angle of the ground-truth fibers. As expected,

in the AMICO framework, the importance of correctly estimating the number of fiber

bundles in order to choose a correct model appears to be crucial.

Figure 6.2 compares the microstructure parameters estimated from AMICOX with the

∗http://www.nitrc.org/projects/mrtrix/
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Figure 6.1: Performance of AMICO1 on 2-fiber synthetic substrates as a function of the crossing
angle between the fibers. Plots show the mean and standard deviation of the estimatedmean axonal
diameter (left) and intra-axonal volume fraction (right). Dashed lines represent the ground-truth
values for the two populations.

ground-truth as a function of the crossing angles between the two fiber populations. The

intra-cellular volume fraction can be estimated very accurately for all crossing angles

(slightly over-estimated by about 4%). The mean axonal diameter of the two fiber pop-

ulations can be as well estimated pretty robustly (both slightly under-estimated) for all

crossing angles. However, when the two orientations are too close (≈ 30◦), the errors as

well as the standard deviations of the estimates with respect to the ground-truth increase.

These results are in line with (and slightly improve) those previously reported in [104].

The higher instability shown at 30◦ can be well related to the performance of CSD in the

peak-detection step. While the average angular error committed over the 1000 repetitions

in crossings from 90◦ to 40◦ is less than 2◦, CSD often identifies spurious peaks as true

fiber directions for angles crossing at 30◦, leading to a more unstable behavior and higher

average angular error.

Figure 6.3 illustrates the impact of the angular inaccuracy of the orientation of the fiber

populations μi on the estimation of the microstructure indices. In a substrate with two

fibers crossing at a fixed angle of 60◦, one of the directions used to build the dictionary was

deviated from 1◦ to 10◦ from the actual orientation of the fiber. The intra-cellular volume

fraction can be estimated accurately for all angular deviations, up to 10◦. The estimation

of the mean axonal diameter degrades progressively, yet absolute errors are smaller than

1μm for angular deviations up to 7◦. These results are in-line with the angular accuracy

of AMICO1 [9].

Lastly, the proposed model was tested also in a voxel with 3 non-coplanar fiber popu-

lations, as a proof of concept that evidences its generalization to multiple fiber crossings.

In this experiment, the crossing angle between two of the fibers was fixed to 90◦ and the

angle between the third one and the others varying between 30◦ and 90◦. Only results

corresponding to a crossing of two populations with an average axon diameters about 5.6

and one of about 3.6 micrometers are reported. Again, results with different substrates
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Figure 6.2: Performance of AMICOX on 2-fiber synthetic substrates as a function of the crossing
angle between the fibers. Plots show the mean and standard deviation of the estimatedmean axonal
diameter (left) and intra-axonal volume fraction (right) for the two different fiber populations.
Dashed lines represent the ground-truth values for the two populations.
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Figure 6.3: Robustness to inaccuracies in the estimation of μ2. Plots show the estimated mean
axonal diameter (left) and intra-axonal volume fraction (right) as a function of the angular devi-
ation of the estimated direction μ2 with respect to the actual orientation of fiber population 2.
Dashed lines represent the ground-truth values for the two populations.

are consistent. Figure 6.4 compares the estimated microstructure features with the ground

truth as a function of the crossing angles between the 3 estimated populations.

The non-optimized version of the code, implemented in MATLAB and run on a stan-

dard 2.70GHz Intel Core i7-3740QM processor, is able to fit the model in approximately

3.7ms/voxel. Therefore, AMICOX still enables a drastic reduction of the computation time

to solve the microstructure imaging problem as well in regions with multiple fiber popu-

lations compared to other nonlinear routines, such as ActiveAx, which take ≈ 20s/voxel

to fit its model [9].

So far, we have extended the original AMICO framework, that enables fast axonal

diameter mapping with ActiveAx [1], to include crossing fiber populations within a voxel.

Our results show through numerical simulations that AMICOX is indeed able to robustly
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Figure 6.4: Performance of AMICOX on 3-fiber synthetic substrates as a function of the crossing
angle between the fiber population 1 and 2. The crossing angle between populations 1 and 3 is
fixed to 90◦. Plots show the mean and standard deviation of the estimated mean axonal diameter
(left) and intra-axonal volume fraction (right) for the three different fiber populations. Dashed
lines represent the ground-truth values for the three populations.

estimate the microstructure parameters, provided the number and orientation of the fiber

populations in a voxel is correctly estimated (up to ≈ 7◦ of angular accuracy). We have

as well shown how, thanks to the fast convex optimization methods, AMICOX enables

a reduction of the computation time by orders of magnitude with respect to other mi-

crostructure imaging techniques also in voxels with complex fiber configurations. The

extended data model of AMICOX can be fitted fast and accurately in all voxels of the

brain, as in [104], thanks to the generalization of the original formulation to environments

with multiple fibers.

In the next section, a reformulation of the AMICO framework is proposed to enable

microstructure reconstructions from a reduced number of measurements, thus leading to

faster acquisitions.

6.3 AMICOSAM

6.3.1 Materials and Methods

With the goal of enabling reconstructions in a highly-undersampled regime and thus

speeding-up the acquisition time, we decide to impose a stronger regularization prior to

exploit the smoothness of the fiber characteristics throughout the brain. To do so, we

reformulate the microstructure recovery problem for the whole field of voxels simultane-

ously and therefore, we can take advantage of the neighbor information that cannot be

taken into account when considering the problem independently in each voxel. Inspired by

AMICOX for ActiveAx to cope with multiple fiber populations and adapting the weighting

scheme described in chapter 5 to exploit neighboring information, axon diameter mapping

is presented here as a sequence of weighted linear problems as follows:



82 Chapter 6. Fast microstructure estimation in regions with multiple fibers

min
X∈RNc×N

+

‖ΦX− Y‖22 + λ‖X‖W,1. (6.5)

In (6.5), matrix Y ∈ R
m×N contains the m diffusion measurements from all N voxels of

the image. The dictionary:

Φ = [Φ1| . . . |Φn] = [Φr
1|Φh

1 | . . . |Φr
n|Φh

n] (6.6)

is a concatenation of sub-dictionaries Φi, built as in section 6.2.1, each modeling the intra-

and extra-axonal contributions to the dMRI signal along direction μi, and {μ1, ..., μn}
is the set of discrete orientations uniformly distributed on the half-sphere used in the

reconstruction.

Each recovered coefficient is associated to a restricted (or hindered) compartment with

axonal diameter (or perpendicular diffusivity) m, oriented in direction d for voxel v, and

therefore can be indexed using a triple index dvm. Throughout this section we refer to each

coefficient as an element of a three dimensional tensor X; however, formally we organize

them in matrix form – X ∈ R
Nc×N
+ , with Nc = n · (Nr+Nh) – so that we can easily express

the linear convolution as a matrix product, see Figure 6.5. These coefficients allow us to

recover, for every voxel:

(i) The orientation of the fiber bundles.

(ii) The microstructure indices defined in [1], which are estimated in every voxel and for

each individual fiber population from the recovered coefficients X, as described in

formulations (6.3) and (6.4).

We highlight that, unlike the original AMICO framework, this new formulation enables

the simultaneous estimation of the number of fiber populations present in the voxel, their

orientation(s) and their microstructure characteristics.

In (6.5), we minimize a global data term and a sparsity constraint that simultane-

ously promotes spatial coherence of the solution, like in formulation (5.5). In this case,

the sparsity stems from the small number of fiber directions of interest. Indeed, among

the considered set of n discrete directions we expect only a few of them to have non-

negligible values. ‖ · ‖W,1 stands for the weighted �1-norm which, by properly designing

W, induces spatially structured sparsity in the solution following the principle introduced

in chapter 5 (see equation (5.6) and explanation below). In this case, the weights W allow

us to exploit neighborhood information and promote coherence in the so-called “spatial-

angular-microstructure” (SAM) space. Since each restricted atom is associated to a spe-

cific diameter, we define its microstructural neighborhood N(m) as the two atoms with the

closest bigger and smaller associated diameter. Figure 6.6 shows a visual representation

of N(m), analogous to N(d) and N(v) defined in chapter 5. Similarly, for each hindered
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Figure 6.5: Schematic representation of the unknown in tensor and matrix form

Figure 6.6: Schematic representation of the a neighborhood in the microstructure
space. On the left: Set of cylinders representing different restricted compartments. Cylinders in
orange configure the neighborhood N(m) for a particular compartment m, in green. On the right:
Mapping of N(m) as a set of columns in tensor X. Figure analogous to 5.2 to illustrate how we
have added the microstructure dimension to our formulation in chapter 5.

atom associated to a specific perpendicular diffusivity, its neighborhood is defined as the

two atoms with the closest larger and smaller diffusivity.

The weights regularize the coefficients in the microstructure dimension depending on

their spatial position and orientation, and promote anatomical coherence among them

according to the underlying fiber structure. Formally, they are defined adding the mi-

crostructural dimension to equation (5.7), as follows:
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W
(t+1)
dvm =

[
τ (t) +

1

|N(v)|
∑

d′v′m′∈N(dvm)

|X(t)
d′v′m′ |

]−1

. (6.7)

In (6.7), the weights W are expressed in tensor form to make use of the triple indexing.

However, we formally organize them in matrix form W so that ‖X‖W,1 is well defined.

The whole reweighting scheme imposes a structured sparsity of the solution, encourag-

ing that neighbor voxels present the same or close – neighbor– directions and microstruc-

ture. Indeed, these weights promote that in every voxel, the directions and the microstruc-

ture features are coherent with their environment.

The role and updating strategy for parameter τ in (6.7), as well as the main steps of

the reweighting scheme are the same as described in chapter 5.

6.3.2 Experiments

To evaluate the effectiveness of AMICOSAM , we tested it on synthetic data generated

using the Monte-Carlo diffusion simulator system available in Camino [105], with the same

imaging protocol detailed in section 6.2.2. In order to assess the robustness to data un-

dersampling, we simulated different datasets using a decreasing number of measurements,

from 270 (fully-sampled) to 54 (as typical HARDI protocols). The microstructural indices

estimated with AMICOSAM were compared to the original voxelwise fitting, AMICOX , and

results are reported as averages over 10 Rician noise realizations (SNR=30).

Since the goal of this study is mainly to investigate the behavior of AMICOSAM in highly

undersampled regimes, in all experiments, we tuned λ empirically to get the minimum

average absolute error of the estimated parameters over several WM substrates.

We present results on two different kind of simulated substrates. We first show simula-

tions considering only the signal decay due to water diffusion in the intra-axonal compart-

ments. We simulated a field of 10× 10 raw voxels corresponding to two fiber populations,

consisting of cylinders with different radii distributions – as in [1] – crossing at given angles

(30◦ – 90◦). As in the previous section, we performed the following tests with different

WM substrates but, for compactness, we report only results corresponding to populations

with mean axonal diameter 2.9 and 5.2μm. Results on other substrates were consistent.

Secondly, to account for a more realistic situation, we simulated the signal corresponding

to a field of 10×10 raw voxels with two fiber populations crossing, including this time the

contribution due to water diffusing outside the axons.

In all simulations, when building the linear operators, we considered n = 50 directions

uniformly distributed on the half sphere and Nr = 7 different axon radii in a range of 1 -

7 μm. In simulations where the extra-axonal compartment is not taken into account, we

considered Nh = 0, otherwise Nh = 7 corresponding to volume fractions from 0.3 to 0.9.
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6.3.3 Results and Discussion

Simulations without extra-axonal compartment

Figures 6.7 and 6.8 show the reconstructions for the two methods corresponding to 270

and 54 samples, respectively. The estimated microstructure indices (mean axonal diameter

and population ratio) are shown as a function of the crossing angle between the fibers;

dashed lines correspond to the ground truth values. In a fully-sampled context (Figure 6.7),

there are no significant differences between the quality of the two reconstructions other

than an increasing variability in the estimation with AMICOX compared to AMICOSAM ,

mainly when fibers get closer (30◦). However, in a highly undersampled regime (Figure

6.8), AMICOSAM continues to estimate accurately and precisely the population relative

ratio whereas AMICOX shows difficulties when the fibers are too close (≤ 45◦). Regarding
the estimation of the mean axonal diameter with 54 samples, AMICOX shows very unstable

reconstructions and does not reliably assess the true values. On the other hand, AMICOSAM

is able to disentangle the two fiber populations and shows more accurate estimations at

all crossing angles, even if we can observe a lower precision (higher std) in the estimates

with respect to the reconstructions with a fully-sampled dataset.

Simulations including extra-axonal compartment

Figures 6.9 and 6.10 show the microstructure estimates for two WM substrates with

mean axonal diameters 5.6 and 2.8 μm and an intra-axonal volume fraction of 0.75. These

reconstructions appear in general more unstable than those considering only the intra-

axonal compartment (Figures 6.7 and 6.8). We have observed that in some cases the

algorithm “confuses” the restricted atoms associated to the highest diameters and hindered

atoms, leading to an increasing general variability in the microstructure estimates.

In a fully-sampled context (Figure 6.9), there are no significant differences in the

quality of the volume fraction and population relative ratio estimates between the two

methods, even if we can observe a higher variability in the intra-axonal volume fraction

estimated with AMICOSAM . However, regarding the mean axonal diameters, AMICOX

estimates them accurately for both fiber populations, whereas AMICOSAM consistently

underestimates the highest mean axonal diameter by about 10%. We suspect the higher

variability that AMICOSAM shows in the estimation of the intra-axonal volume fraction

compared to AMICOX is linked to this underestimation of the mean axonal diameter,

pointing to a confusion between some restricted/hindered atoms that we referred to in the

former paragraph.

In a highly-undersampled regime (Figure 6.10), AMICOX shows a very unstable recon-

struction of the mean axonal diameters for both populations and an increasing degradation

of the population relative ratio estimates as the two fibers get closer. On the other hand,

the mean axonal diameters, relative population ratio and intra-axonal volume fraction

recovered with AMICOSAM are consistent for all crossing angles and coherent with the es-
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Figure 6.7: Detailed comparison of the mean axonal diameter index and population relative ratio
estimated with AMICOX (left) and AMICOSAM (right), as a function of the crossing angle between
the fiber populations. Results correspond to the fully-sampled protocol with 270 measurements,
considering only the water diffusion inside the axons.

timations using 270 samples, even if we observe an increased variability (higher standard

deviation). Considering that AMICOX is a 2-step procedure, a deeper analysis to better

understand the origin of the instability of its highly-undersampled reconstructions should

be carried out. Indeed, we should evaluate the angular errors committed when assessing

the main fiber orientations and their impact on the estimation of the microstructure in-

dices. Anyway, the inability of disentangling the 2 fiber populations at 75◦ suggests that

the main source of error comes from the minimization problem itself, and not from the

angular error.

Overall, we highlight that even if AMICOSAM consistently underestimates the highest

mean axonal diameter, it is able to correctly disentangle the two fiber populations for all

crossing angles also in a highly-undersampled regime and that the three microstructure

features are robustly estimated as we undersample.

6.3.4 Limitations and future work

In this section we have presented AMICOSAM , that provides a flexible framework to

solve both the fiber orientation and the microstructure recovery problems simultaneously
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Figure 6.8: Detailed comparison of the mean axonal diameter index and population relative ratio
estimated with AMICOX (left) and AMICOSAM (right), as a function of the crossing angle between
the fiber populations. Results correspond to an undersampled protocol with 54 measurements
(≈ 20% of the fully-sampled protocol), considering only the water diffusion inside the axons.

while applying a regularization in three spaces: spatial, angular and microstructural.

The preliminary work that we have presented so far shows robust reconstructions from

a reduced number of diffusion measurements, opening the door to fast acquisitions for

diffusion microstructure imagine. However it still shows many limitations that need to be

overcome and appear as the target for our future work.

Study different sampling schemes/sequences

In this work, we have simulated data assuming PGSE sequences with the same sam-

pling protocol used in [1], that corresponds to 3 shells with a maximum gradient strength

Gmax = 140mT/m. Different sequences (other than PGSE) and sampling protocols need

to be investigated. Indeed, problem (6.5) is ill-posed since operator Φ is extremely ill-

conditioned. One of the strategies to improve the conditioning of our linear operator Φ

would be to decrease the correlation between its columns by designing a different sampling

protocol. We are confident that this would help the algorithm in correctly distinguishing

between atoms corresponding to intra- and extra-axonal compartments.
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Figure 6.9: Detailed comparison of the mean axonal diameter index and population relative ratio
estimated with AMICOX (left) and AMICOSAM (right), as a function of the crossing angle between
the fiber populations. Results correspond to the fully-sampled protocol with 270 measurements

Study the design of the dictionary

Intrinsic parameters of the algorithm, such as the chosen number of directions on the

half-sphere n or the number and the range of the intra- and extra-axonal compartments

have a direct impact on the complexity of the dictionary. In close relation with the previous

point, the design of the dictionary should be optimized so that the linear inverse problem

to be solved is the least ill-posed as possible.
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Figure 6.10: Detailed comparison of the mean axonal diameter index and population relative ratio
estimated with AMICOX (left) and AMICOSAM (right), as a function of the crossing angle between
the fiber populations. Results correspond to an undersampled protocol with 54 measurements,
corresponding to ≈ 20% of the fully-sampled protocol.

Study different q-space undersampling strategies

AMICOSAM appears as an extension of the AMICO framework to enable microstructure

reconstructions from a reduced number of measurements, thus leading to faster acquisi-

tions. To undersample our fully-sampled dataset, so far we have uniformly reduced the

number of points in every shell, i. e. our undersampled datasets contain the same number

of data points in every shell and they are located along the same orientations. Different

undersampling strategies should be investigated. As pointed out in [106], a careful design

is central in the success of multi-shell acquisition and reconstruction techniques. In their
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work, the authors provide a general method to design multi-shell acquisition with uniform

angular coverage that should be studied in the framework of our problem.

Study different regularization strategies

As mentioned in section 6.3.1, the weights regularize the coefficients and thus, the pro-

posed reweighting scheme imposes smoothness through structured sparsity of the solution.

Thanks to the flexibility of convex optimization, different prior information can be easily

imposed through a different definition of the weights and its effect can therefore be inves-

tigated. For instance, we could make only the intra-axonal compartments be dependent

on the surrounding voxels and not the extra-axonal ones, or vice versa.

An alternative regularization function, a weighted mixed �2,1 norm† to promote group

sparsity in the solution was also considered. Preliminary results justify a deeper investi-

gation in that direction. Moreover, the reformulation of the unconstrained problem into

a constrained one would avoid tuning the regularization parameter λ, provided a good

approximation of the overall bound on the level of the noise could be estimated.

Further validation

Synthetic data obtained from a Monte-Carlo diffusion simulator offers a good starting

validation strategy, commonly used by the community [1, 9]. However, a validation of

AMICOSAM on more complex phantoms to test its ability to correctly assess the number

and orientation of the fiber populations, as well as their microstructure features in a

more challenging context appears as the next natural step. Furthermore, other validation

strategies both on ex-vivo and in-vivo data should be designed and obviously follow.

6.4 Conclusion

In this chapter, we have first presented AMICOX , a convex framework for microstruc-

ture imaging that enables fast microstructure feature mapping in regions with multiple

fiber populations. In the second part, we have applied the idea of spatial regularization

through structured sparsity described in chapter 5 to the microstructure recovery problem.

As a result, we propose a new formulation that estimates simultaneously the orientation

and the microstructure of the fiber bundles. AMICOSAM exploits neighboring information

to impose a strong regularization in the so-called “spatial-angular-microstructure” (SAM)

space. Consequently, it enables robust reconstructions from a low number of measure-

ments, thus leading to faster acquisitions.

Preliminary results on synthetic data show that AMICOSAM has the potential to disen-

tangle different fiber populations and to correctly assess both intra-axonal volume fraction

†For an arbitrary matrix X ∈ R
m×n its �2,1 norm is defined as ‖X‖2,1 =

∑m
i=1

√∑n
j=1X

2
ij .
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and relative population ratio with as few as ≈ 50 measurements (as typical HARDI pro-

tocols). It is plausible to think that the powerful regularization prior in the SAM space

can as well guarantee a strong robustness to noise. AMICOSAM should be tested under

different noise conditions to confirm this hypothesis. Also, further validation on real data

is still needed.

We highlight that AMICOSAM provides a versatile and flexible model-independent

framework for microstructure imaging. In this chapter we have presented results on

AMICOSAM for ActiveAx [1], but, as the original AMICO [9], it can potentially be ap-

plied to any other microstructure imaging modality. Moreover, the weights can be easily

redefined to impose smoothness priors according to the context of study.

The fact that AMICOSAM simultaneously estimates the fiber orientations and their

microstructure features, brings this algorithm specially close to the field of microstruc-

ture informed tractography [107, 108], that combines microstructure information and trac-

tography. Future work should consider merging the principles behind AMICOSAM with

algorithms such as COMMIT [107].

Generalization to multiple correlated sparse signal recovery

Before concluding, we would like to highlight that our proposed formulation to promote

spatial regularization through a structured sparsity prior can actually be applied in a

more generic framework for multiple correlated sparse signal recovery. In sections 5.2

and 6.3.1, spatially-correlated vectors are concatenated to build matrix X. Formulations

(5.5) and (6.5) can actually be generalized to recover multiple sparse signals correlated

through a smoothness prior on the variation of the signal support in the inter-signal

dimension. Indeed, considering the concatenation of nD correlated sparse signals into a

tensor X ∈ R
n1×...×nD and a linear operator Φ that models a measurement process on

them, equation (5.5) can be rewritten as:

min
X∈Rn1×...×nD

‖Φ(X)− y‖22 s.t. ‖X‖W,1 ≤ K, (6.8)

with ‖ · ‖W,1 denoting a weighted-�1 norm of a generic tensor defined as:

‖X‖W,1 =
∑

i1,...,iD

Wi1...iD |Xi1...iD |. (6.9)

The definition of the weights and neighborhoods will enable the embedding of the smooth-

ness prior in the signal support through the structure on the sparsity and must, of course,

be adapted to the application. Our method stands in contrast to other joint sparsity

models [109, 110] that assume a common support of the correlated signals. Social spar-

sity models [111, 112] also leverage the concept of neighborhoods to promote sparsity.

However, our proposed algorithms are essentially inspired from the reweighting scheme
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proposed by Candes et al. [24] to approach �0 minimization through the convex minimiza-

tion of a weighted �1 norm. Our contributions lie in enforcing a structured version of the

�0 norm of the solution at convergence and thus, the weights should continue to represent

the inverse value of the associated entry at the previous iteration, to converge to an �0

norm.

Part of the work presented in this chapter has been published in [8, 10, 11, 12, 13].



Chapter 7

Conclusion

In this thesis, we have studied sparse Fourier sensing problems in the fields of optical

interferometry and diffusion MRI. In both applications, we face ill-posed (with less avail-

able measurements than the dimension of the signal) and highly nonlinear problems. Our

strategy to solve these originally nonlinear problems resorts to reformulating them as linear

inverse problems that can be solved using convex optimization methods. Inspired by the

compressed sensing framework, we propose novel priors to leverage the sparse structure

(i.e. low dimensionality) of the solution.

All nice properties of the convex optimization framework prove to be the cornerstone

of our contributions:

- From the formulation point of view, convex optimization constitutes an extremely

adaptable framework that enables the straightforward inclusion of prior infor-

mation about the signal, as long as it is formulated as a convex constraint. In

this thesis we have immensely taken advantage of this characteristic to design the

proposed novel algorithms. In the application for optical interferometry, we regular-

ize the linearized inverse problem through a nuclear norm relaxation of a low rank

constraint, easily imposing also positive-semidefiniteness, reality, positivity and op-

tionally sparsity constraints. In diffusion MRI, we resort to a reweighted scheme and

design a flexible weighting system that enforces structured sparsity and promotes

spatial regularization in the solution simultaneously. Thanks to this flexibility, we

design powerful regularization priors that guarantee a strong robustness to noise and

the ability to go to higher undersampling regimes. In diffusion MRI, where the mea-

suring process is considerably time consuming, this ability of solving the problem

with few data points appears crucial for the technique to be clinically feasible.

- From the reconstruction point of view, convex problems converge to a global

minimum and do not depend on the initialization. These two properties are

key to our contribution in the field of optical interferometry, where state-of-the-

art methods generally perform local optimization, highly dependent on both the

initial image and the path followed by the method. Moreover, convex problems can

conveniently be solved using fast proximal splitting methods. The increase of

speed with respect to other nonlinear routines represents also a contribution in the
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field of microstructure imaging.

We note that our original formulation presented in Part I can be seen as a generalization

of the Phase Lift approach for the phase retrieval problem [2]. Indeed, we lift the ambient

dimension of the problem to formulate a tensor completion problem from a set of linear

measurements on the tensor. We have therefore proposed a novel linear alternative to

deal with bispectrum (nonlinear) measurements that can be useful to other fields facing

bispectral analysis.

We would also like to highlight that the method presented in Part II of this thesis to

promote spatial regularization through a structured sparsity prior can actually be applied

in a more generic framework formultiple correlated sparse signal recovery. A generalization

of our formulation can account for multidimensional signals and correlations of different

nature - such as temporal - between them. The definition of the neighborhoods as well as

the weights should be adapted to the application.

7.1 Perspectives

7.1.1 Optical Interferometry

Among our two proposed methods to solve the imaging problem in the field of optical

interferometry, the AM approach has been further studied and developed in [63], including

sparsity priors and presenting convergence guarantees. On the other hand, our proposed

linear and convex approach NM ensures desirable properties of convergence and indepen-

dence on the initialization and we are convinced it is worth a deeper study. The main

challenge associated to the practical implementation of this approach lies in the increase

of the ambient dimension, as the price to pay for the linearization. Indeed, the linear ap-

proaches NM and NM-RW turn out to be extremely demanding from the computational

point of view. Therefore, in our opinion, all efforts should be focused on studying software

and hardware optimization to solve the problem for higher dimension images, e.g. using

graphics processing units [61]. Additionally, recent approaches for radio interferometry

[60] justify the investigation of different kind of sparsity priors, thanks to the versatility

of convex optimization. Finally, our theoretical results should be confirmed on real data

and be explicitly compared to other state-of-the-art methods. Bringing our theoretical

results closer to reality would enhance our contribution that remains a unique approach

to formulate the challenging problem of image reconstruction in optical interferometry as

a tensor completion problem.
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7.1.2 diffusion MRI

Unified framework with fiber tracking

Results of the HARDI reconstruction challenge (ISBI 2013) [113], in which we partic-

ipated, already gave evidence that local reconstruction methods and global tractography

cannot be treated separately any more. In our opinion, intra-voxel dMRI and global

tractography should be unified in a single framework, intending to (i) reconstruct the

fiber configuration (orientation and microstructure) in each voxel and (ii) solve the fiber-

tracking across the whole brain, simultaneously. Work in this direction should consider

merging our approach with COMMIT [107], that provides a Convex Optimization Model

for Microstructure Informed Tractography.

Combined k-space and q-space undersampling

Further evolutions of our method for fiber reconstruction (either orientation or mi-

crostructure) should consider undersampling in Fourier space (k-space) for each of the

q-space images acquired, along the lines of work in [86]. Indeed, the assumption that our

function of interest is sparse in fiber space enables q-space undersampling, as we have

shown. As soon as the problem is formulated globally (i.e., solved for all voxels simultane-

ously instead of voxelwise), as we do, the sparsity of the signal can also be considered in

voxel space; thus leading to combined q-space and k-space undersampling and potentially

resulting into a significant additional acceleration.

In a setting where the acquisition can be accelerated either by undersampling in q-space

(probing the signal with less diffusion vectors) and/or in k-space (probing the signal in less

voxels), the optimal acceleration scheme in terms of acquisition speed (number of mea-

surements) and reconstruction quality should be studied. Recent work [114, 115] initiated

this line of investigation for fiber orientation recovery; analogous work for microstructure

estimation should follow.

Implementation on real MR scanners

In close relationship with our previous point, implementation on real MR scanners of

sampling sequences optimized for our proposed formulation should follow. Collecting real

data and confirming our numerical results would represent the ultimate validation of the

ability of our novel formulation to perform fiber reconstruction in all regions of the brain

in a clinical context.
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[48] S. Renard, E. Thiébaut, and F. Malbet, “Image reconstruction in optical interfer-

ometry: Benchmarking the regularization,” A&A, vol. 533, p. A64, 2011.

[49] S. C. Meimon, L. M. Mugnier, and G. L. Besnerais, “Reconstruction method for

weak-phase optical interferometry,” Opt. Lett., vol. 30, no. 14, pp. 1809–1811, Jul

2005.

[50] H. Attouch, J. Bolte, and B. Svaiter, “Convergence of descent methods for semi-

algebraic and tame problems: proximal algorithms, forward-backward splitting, and

regularized gauss-seidel methods,” Mathematical Programming, vol. 137, pp. 91–129,

2013.

[51] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating minimiza-

tion and projection methods for nonconvex problems,” Mathematics of Operations

Research, vol. 35, no. 3, pp. 438–457, 2010.

[52] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for

linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp.

183–202, 2009.

[53] J. Haldar and D. Hernando, “Rank-constrained solutions to linear matrix equations

using powerfactorization,” IEEE Signal Processing Letters, vol. 16, pp. 584–587,

2009.

[54] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank tensor

recovery via convex optimization,” Inverse Problems, vol. 27, p. 025010, 2011.

[55] E. Kofidis and P. A. Regalia, “On the best rank-1 approximation of higher-order

supersymmetric tensors,” SIAM J. Matrix Anal. Appl, vol. 23, pp. 863–884, 2002.

[56] G. H. Golub and C. F. V. Loan, Matrix Computations. The Johns Hopkins Uni-

versity Press, Baltimore, 1989.

[57] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for

matrix completion,” SIAM Journal of Optimization, vol. 20, no. 4, pp. 1956–1982,

2010.

[58] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38,

no. 1, pp. 49–95, 1996.

[59] E. J. Candès, Y. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via matrix

completion,” SIAM J. on Imaging Sciences, vol. 6, no. 1, pp. 199–225, 2011.



102 BIBLIOGRAPHY

[60] R. E. Carrillo, J. D. McEwen, D. VanDeVille, J.-P. Thiran, and Y. Wiaux, “Sparsity

averaging for compressive imaging,” IEEE Signal Processing Letters, vol. 20, no. 6,

pp. 591–594, 2013.

[61] F. Baron and B. Kloppenborg, “GPU-accelerated image reconstruction for optical

and infrared interferometry,” Proceedings of SPIE, Optical and Infrared Interferom-

etry II, vol. 7734, p. 77344D, 2010.

[62] J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Phase retrieval for sparse signals:

Uniqueness conditions,” CoRR, vol. abs/1308.3058, 2013.

[63] J. Birdi, A. Repetti, and Y. Wiaux, “A regularized tri-linear approach for opti-

cal interferometric imaging,” 2016, submitted to MNRAS. Preprint available at

https://arxiv.org/abs/1609.00546.

[64] C. Beaulieu, “The basis of anisotropic water diffusion in the nervous system – a

technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 435–455, 2002.

[65] E. Stejskal and J. Tanner, “Spin diffusion measurements - spin echoes in presence

of a time-dependent field gradient.” J Chem Phys, vol. 42, pp. 288–300, 1965.

[66] D. M. Patterson, A. R. Padhani, and D. J. Collins, “Technology insight: water

diffusion MRI – a potential new biomarker of response to cancer therapy,”

Nat Clin Prac Oncol, vol. 5, no. 4, pp. 220–233, 04 2008. [Online]. Available:

http://dx.doi.org/10.1038/ncponc1073

[67] P. Callaghan, Principles of nuclear magnetic resonance microscopy. Clarendon

Press, Oxford, 1991.

[68] P. Hagmann, L. Jonasson, P. Maeder, J.-P. Thiran, V. J. Wedeen, and R. Meuli, “Un-

derstanding diffusion mr imaging techniques: From scalar diffusion-weighted imaging

to diffusion tensor imaging and beyond,” RadioGraphics, vol. 26, no. suppl 1, pp.

S205–S223, 2006.

[69] J. Ritchie, “On the relation between fibre diameter and conduction velocity in myeli-

nated nerve fibres,” Proceedings of the Royal Society of London, Series B Biological

Sciences, vol. 27, pp. 29–35, 1982.

[70] M. Shintaku, A. Hirano, and J. Llena, “Increased diameter of demyelinated axons in

chronic multiple sclerosis of the spinal cord,” Neuropathol. Appl. Neurobiol., vol. 14,

pp. 505–510, 1982.

[71] P. Basser, J. Mattiello, and D. Le Bihan, “MR diffusion tensor spectroscopy and

imaging,” Biophysical journal, vol. 66, pp. 259–267, 1994.



BIBLIOGRAPHY 103

[72] D. Alexander, “Maximum entropy spherical deconvolution for diffusion MRI,” In-

formation Processing in Medical Imaging (IPMI), pp. 76–87, 2005.

[73] J. Tournier, F. Calamante, and A. Connelly, “Robust determination of the fibre

orientation distribution in diffusion MRI: Non-negativity constrained super-resolved

spherical deconvolution,” NeuroImage, vol. 35, pp. 1459—-1472, 2007.

[74] D. Barazany, P. Basser, and Y. Assaf, “In vivo measurement of axon diameter

distribution in the corpus callosum of rat brain,” Brain, vol. 132, no. 5, pp. 1210–

1220, 2009.

[75] E. Panagiotaki, T. Schneider, B. Siow, M. G. Hall, M. F. Lythgoe, and D. C.

Alexander, “Compartment models of the diffusion MR signal in brain white matter:

A taxonomy and comparison,” NeuroImage, vol. 59, no. 3, pp. 2241–2254, 2012.

[Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2011.09.081

[76] A. Szafer, J. Zhong, and J. C. Gore, “Theoretical model for water diffusion

in tissues,” Magnetic Resonance in Medicine, vol. 33, no. 5, pp. 697–712, 1995.

[Online]. Available: http://dx.doi.org/10.1002/mrm.1910330516

[77] T. Behrens, M. Woolrich, M. Jenkinson, H. Johansen-Berg, R. Nunes,

S. Clare, P. Matthews, J. Brady, and S. Smith, “Characterization and

propagation of uncertainty in diffusion-weighted MR imaging,” Magnetic

Resonance in Medicine, vol. 50, no. 5, pp. 1077–1088, 2003. [Online]. Available:

http://dx.doi.org/10.1002/mrm.10609

[78] Y. Assaf, R. Z. Freidlin, G. K. Rohde, and P. J. Basser, “New modeling and

experimental framework to characterize hindered and restricted water diffusion in

brain white matter,” Magnetic Resonance in Medicine, vol. 52, no. 5, pp. 965–978,

2004. [Online]. Available: http://dx.doi.org/10.1002/mrm.20274

[79] Y. Assaf and P. J. Basser, “Composite hindered and restricted model of diffusion

(CHARMED) MR imaging of the human brain,” NeuroImage, vol. 27, no. 1, pp.

48–58, 2005.

[80] Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, and P. J. Basser, “Axcaliber: A

method for measuring axon diameter distribution from diffusion MRI,” Magnetic

Resonance in Medicine, vol. 59, no. 6, pp. 1347–1354, 2008. [Online]. Available:

http://dx.doi.org/10.1002/mrm.21577

[81] D. C. Alexander, “A general framework for experiment design in diffusion mri

and its application in measuring direct tissue-microstructure features,” Magnetic

Resonance in Medicine, vol. 60, no. 2, pp. 439–448, 2008. [Online]. Available:

http://dx.doi.org/10.1002/mrm.21646



104 BIBLIOGRAPHY

[82] H. Zhang, T. Schneider, C. A. M. Wheeler-Kingshott, and D. C. Alexander,

“NODDI: Practical in vivo neurite orientation dispersion and density imaging of

the human brain.” NeuroImage, vol. 61, no. 4, pp. 1000–1016, 2012.

[83] G. Stainsz, A. Szafer, G. Wright, and R. Henkelman, “An analytical model of re-

stricted diffusion in bovine optic nerve,” Magnetic Resonance in Medicine, vol. 37,

no. 1, pp. 103–111, 1997.

[84] V. J. Wedeen, P. Hagmann, W. Tseng, T. Reese, and R. Weisskoff, “Mapping com-

plex tissue architecture with diffusion spectrum magnetic ressonance imaging,” Mag-

netic Ressonance in Medicine, vol. 54, pp. 1377–1386, 2005.

[85] B. Jian and B. Vermuri, “A unified computational framework for deconvolution to

reconstruct multiple fibers from diffusion weighted MRI,” IEEE Transactions on

Medical Imaging, vol. 26, pp. 1464–1471, 2007.

[86] M. Mani, M. Jacob, A. Guidon, V. Magnotta, and J. Zhong, “Acceleration of high

angular and spatial resolution diffusion imaging using compressed sensing with mul-

tichannel spiral data,” Magnetic Resonance in Medicine, 2014.

[87] A. Daducci, D. V. D. Ville, J. Thiran, and Y. Wiaux, “Sparse regularization for

fiber ODF reconstruction: from the suboptimality of �2 and �1 priors to �0,” Medical

Image Analysis, vol. 18, no. 6, pp. 820–33, 2014.

[88] A. Tristán-Vega and S. Aja-Fernández, “DWI filtering using joint information for

DTI and HARDI.” Medical Image Analysis, vol. 14, no. 2, pp. 205–218, 2010.
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[115] M. Pesce, A. Auŕıa, A. Daducci, J.-P. Thiran, and Y. Wiaux, “Joint kq-space acceler-

ation for fibre orientation estimation in diffusion MRI,” in International Biomedical

and Astronomical Signal Processing Frontiers Workshop, BASP, 1 2017.





List of Publications

Journal Publications
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