
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Rimoldi, président du jury
Prof. M. Grossglauser, Prof. M. A. Shokrollahi, directeurs de thèse

Prof. A. Chaintreau, rapporteur
Prof. M. Garetto, rapporteur
Prof. P. Frossard, rapporteur

Alignment and Assembly:
Inferring Networks from Noisy Observations

THÈSE NO 7562 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 10 AVRIL 2017

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE POUR LES COMMUNICATIONS INFORMATIQUES ET LEURS APPLICATIONS 4

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Lyudmila YARTSEVA

The limits of the possible can only be defined

by going beyond them into the impossible.

— Arthur C. Clarke

When faced with competing hypotheses, select the one

that makes the fewest assumptions.

Do not multiply entities without necessity.

— Occam’s razor

Acknowledgements
I will begin by acknowledging my main supervisor: Matthias Grossglauser, I am happy that

I had a chance to work and learn from such a great scientist and talented supervisor. Thank

you for your brilliant intuition and your immense patience and understanding. There was

not a single time when I asked for help and did not get it. I came to the meetings with new

inspiring results or with devastating errors in the papers and I always found support and

inspiration. Thank you, Matthias, the best supervisor I could dream of (or I could imagine)!

At the end of first year at EPFL was a difficult moment of setting up my PhD and at this time I

was lucky to meet Professor Amin Shokrollahi, a very kind person who became my co-advisor

and to whom I am deeply grateful for helping me in a tough moment. I enjoyed working in

such a well organized environment and this allowed me to start my research smoothly. I

would like to also thank Professors Rüdiger Urbanke, the head of the EDIC at the point in

time, and Bernard Moret, my mentor, who in the same period provided me with a high level

of involvement and support.

I also would like to thank my jury members for accepting to come at such an inconvenient

time and to read my thesis as their Christmas reading: Augustin Chaintreau, Pascal Frossard

and Michele Garetto. Also I thank Bixio Rimoldi for being the president.

I was happy to work at EPFL, with my brilliant colleagues: Elisa Celis,Vincent Etter, Sébastien

Henri, Julien Herzen, Mohamed Kafsi, Emtiyaz Khan, Victor Kristof, Lucas Maystre, Pedram

Pedarsani, Farnood Salehi, William Trouleau and Christina Vlachou. I worked together and

learned a lot from my colleagues Ehsan Kazemi and Jefferson Ebert, thank you for productive

discussions and for finding mistakes in my proofs.

My dear friends, thank you for support, chats, coffee, lunches, hikes, travels and everything

else: Brunella Spinelli, I am glad that we were put to be officemates and you became my good

friend; Marc Desgroseilliers, who introduced me to rock climbing ;-); Nastya Tychinskaya for

being unfailing and supportive friend; Young-Jun Ko for your support, empathy and sense of

humor and to Karol Kruzelecki, Stefano Rosati, Andrej Spielman, Adrian Tarniceriu and to all

who I forgot to mention.

I thank our lab secretaries Angela, Danielle, Holly and Patricia for organizing our life here and

for always being so nice. Thank you Marc-André, Stéphane and Yves for the IT support. I also

thank Damir for your IT help, quick and efficient. Of course, I give special thanks to Holly for

editing our work, teaching, sharing wisdom and always being patient and making it such a

fun activity.

Finally, I want to thank my mom Elena Yartseva, who taught me everything, to whom I owe

i

Acknowledgements

big part of my math education and who always set the bar high for me.

My husband, who has supported me at every step, covering my abrupt decisions and unfin-

ished business; without him it would be just impossible to come here and make it through.

My daughter who expanded my world to a new dimension. There are no words to describe

what she means to me and what she brings to my life.

Lausanne, 16 January 2017 L. Y.

ii

Abstract
Over recent years, many large network datasets have become available, giving rise to novel

and valuable applications of data mining and machine learning techniques. These datasets

include social networks, the structure of the internet, and protein-interaction networks in

computational biology, to name just a few. Graph mining exploits information hidden in

these data to shed light on such problems as identifying a source of an epidemic in a human

contact network, finding relevant pages on the web, or identifying communities of strongly

connected individuals. Clearly, to address such problems, we first need the accurate and

reliable network graph. This thesis is about obtaining such a full graph from raw data with

imperfections.

In many real-world scenarios, the full graph is not available for free. For example, data-

collection processes may be noisy and unreliable, names of users in social networks may not

be unique, or node identifiers may be hidden for privacy protection. Therefore, we cannot

rely on the global uniqueness of node labels to infer the full graph. In addition, data is often

provided in a form of small local observations: For example, given a set of papers with corre-

sponding authors, we need to reconstruct the whole co-authorship network. In the hardest

case of completely ambiguous labels, we can only rely on structural information to obtain the

full graph. In this thesis, we address fundamental and practical questions of inferring a true

full network from multiple observations, each one of which is subject to noise and to label

ambiguity.

We formulate two variations of this problem: network alignment and network assembly. In

each variant, we address two types of questions: first, we characterize how graph features im-

pact the fundamental feasibility of reconstruction, regardless of computational cost; second,

we seek efficient algorithms that can scale to very large networks, and provide performance

guarantees under some classes of networks. We use random graph models for both feasibility

and performance analysis. We also evaluate our algorithms over real network data.

In the first part of this thesis, we consider network alignment. We assume two large, noisy

observations of the true network; in addition, we assume that the node labels in one net-

work are meaningless in the other, and vice versa. Network alignment refers to the problem

of aligning the vertex sets of the two networks using only structural cues. A motivating ex-

ample is the deanonimization of a social network graph by aligning it with a side informa-

tion graph. The network alignment problem can be viewed as a generalization of the classic

graph–isomorphism problem. We make the following contributions. First, we introduce a

random bigraph model that generates two correlated random graphs G1 and G2, by removing

iii

Acknowledgements

some nodes and edges from the true graph G with probabilities t and s, respectively. We an-

alyze the feasibility of aligning G1 with G2 generated from Erdős-Rényi random graph, where

every edge exists with identical probability p. We characterize conditions on p, t and s for

the feasibility of graph alignment. Second, we create an algorithm named percolation graph-

matching (PGM) that takes a small set of pre-matched nodes S, called seeds, and then incre-

mentally maps each pair of nodes (i , j) with at least r neighboring mapped pairs. We prove

conditions on the model parameters p, t , s and r for which percolation graph-matching suc-

ceeds, and we establish a phase transition in |S|.
In the second part of this thesis, we consider network assembly. We assume many small,

noisy observations of the true network, called patches. The node labels are either absent

or not unique, making the reconstruction problem nontrivial. The network assembly prob-

lem consists in reconstructing the true graph from these patches. For example, a professional

social network might be reconstructed from social networks of small organizations, or the sci-

entific co-authorship network might be reconstructed from individual papers. We make the

following contributions. First, we introduce and analyze a novel random-graph model called

G(n, p; q); this model starts with an Erdős-Rényi graph G(n, p); where each triangle is closed

with probability q . The interest of this model is to generate high clustering (or transitivity), a

salient property of real networks. We characterize feasibility conditions on p and q such that

reconstruction of G is possible, even from small patches with structural noise. Second, using

this result, we build a practical algorithm that relies on canonical labeling to reconstruct the

true graph from noiseless patches. We also propose a heuristic assembly algorithm that tries

to reconstruct the true graph, without a priori assumptions about the sizes of subgraphs and

label ambiguity.

Key words: network analysis, graph mining, complex networks, network reconstruction, graph

alignment, graph assembly, network privacy, random graphs, graph isomorphism, graph

matching, social networks

iv

Résumé
Ces dernières années, de nombreuses données portant sur des réseaux à grande échelle ont

été rendues publiques, engendrant de nouvelles applications précieuses pour des techniques

d’exploration de données ou d’apprentissage automatique. Ces nouvelles données portent

notamment sur certains réseaux sociaux, sur la structure d’Internet ou, en biologie compu-

tationnelle, sur des réseaux d’interaction entre protéines. Les techniques d’exploration des

graphes utilisent l’information cachée dans ces données pour résoudre des problèmes tels

que l’identification de la source d’une épidémie dans le réseau des interactions sociales hu-

maines, la recherche des pages les plus pertinentes sur Internet, ou l’identification de com-

munautés d’individus fortement liés les uns aux autres. Il est clair que pour pouvoir résoudre

ces problèmes, il est nécessaire d’avoir accès à un graphe fiable et intégral. Cette thèse

s’intéresse aux moyens d’obtenir de tels graphes intégraux à partir de données partielles et

imparfaites.

Dans de nombreux scénarios de la vie réelle, le graphe entier n’est pas disponible facilement.

Par exemple, les processus de collection des données peuvent être bruités et non-fiables, les

noms dans des réseaux sociaux peuvent ne pas être uniques, ou les identifiants peuvent être

cachés pour protéger ca vie privée. En conséquence, il n’est pas possible de compter sur

l’unicité de l’étiquette des nœuds pour inférer le graphe intégral. De plus, les données sont

souvent fournies sous la forme d’observations locales à petite échelle : par exemple, à partir

d’un ensemble d’articles avec le nom des auteurs, il faut reconstruire l’ensemble du réseau

des collaborations entre auteurs. Dans le cas le plus difficile, avec des étiquettes complète-

ment ambiguës, on ne peut compter que sur les informations structurelles pour obtenir le

graphe intégral. Dans cette thèse, nous nous intéressons à la question pratique et fondamen-

tale de l’inférence du réseau intégral réel à partir d’observations multiples, chacune de ces

observations étant sujette au bruit et à l’ambiguïté de son étiquette. Nous formulons deux

variantes de ce problème : l’alignement de réseaux et l’assemblage de réseaux. Pour chaque

variante, nous nous intéressons à deux types de questions : d’abord, nous caractérisons la

manière dont les caractéristiques des graphes influent sur la faisabilité fondamentale de la

reconstruction, quel qu’en soit la complexité de calcul ; ensuite, nous cherchons des algo-

rithmes efficaces pouvant passer à l’échelle sur de très grands réseaux, et nous donnons des

garanties de performance pour certaines classes de réseaux. Nous utilisons des modèles de

graphes aléatoires à la fois pour la faisabilité et pour l’analyse de performance. Nous évalu-

ons également nos algorithmes sur des réseaux réels.

Dans la première partie de cette thèse, nous considérons l’alignement de réseaux. Nous sup-

v

Acknowledgements

posons avoir deux versions différentes, bruitées, d’un réseau réel à grande échelle. En outre,

nous supposons que les étiquettes d’un des deux réseaux bruités n’ont aucune signification

dans l’autre réseau, et inversement. L’alignement de réseaux correspond au problème de

l’alignement des nœuds des deux réseaux bruités en utilisant uniquement la structure de

ces réseaux. Un bon exemple d’application est la dé-anonymisation du graphe d’un réseau

social par son alignement avec un graphe d’informations issues d’une autre source. Le prob-

lème d’alignement de réseaux peut être vu comme la généralisation du problème classique

d’isomorphisme des graphes. Nous apportons les contributions suivantes. Premièrement,

nous présentons un modèle de graphe biparti aléatoire qui permet de générer deux graphes

aléatoires corrélés G1 et G2 en enlevant des nœuds et des liens du graphe réel G , avec prob-

abilité respectivement t et s. Nous analysons la faisabilité de l’alignement de G1 avec G2

quand ils sont générés par des graphes aléatoires de Erdös-Renyi, où chaque lien existe avec

la même probabilité p. Nous caractérisons les conditions sur p, t et s pour la faisabilité de

l’alignement de réseaux. Deuxièmement, nous présentons un algorithme, appelé couplage

de graphe par percolation (PGM, Percolation graph-matching), qui utilise un petit nombre

de nœuds, appelés graines, dont on connaît la correspondance, et qui associe de manière

incrémentale chaque paire de nœuds (i , j) avec au moins r paires voisines déjà associées.

Nous démontrons que sous certaines conditions sur les paramètres du modèle p, t , s et r ,

l’algorithme PGM renvoie le bon résultat, et nous établissons une transition de phase liée à

|S|.
Dans la deuxième partie de cette thèse, nous considérons l’assemblage de réseaux. Nous sup-

posons avoir accès à plusieurs petites observations bruitées, appelées pièces, du vrai réseau.

Les étiquettes des nœuds sont soit absentes soit non-uniques, ce qui rend le problème de re-

construction non-trivial. Le problème d’assemblage de réseaux consiste en la reconstruction

du graphe réel à partir de ces pièces. Par exemple, un réseau social professionnel peut être

reconstruit à partir des réseaux sociaux de petites organisations, ou bien le réseau des col-

laborations entre auteurs reconstruit à partir des articles uniquement. Nous apportons les

contributions suivantes. Premièrement, nous présentons et analysons un nouveau modèle

de graphes aléatoires, appelé G(n, p; q) ; ce modèle part d’un graphe de Erdös-Renyi G(n, p),

et chaque triangle est ensuite fermé avec probabilité q . L’intérêt de ce modèle est de générer

un fort cloisonnement, propriété remarquable des réseaux réels. Nous caractérisons les con-

ditions sur p et q pour lesquelles la reconstruction de G est possible, même à partir de petites

pièces avec un bruit structurel. Deuxièmement, nous construisons à partir de ces résultats

un algorithme pratique qui utilise l’étiquetage canonique pour reconstruire le graphe réel

à partir de pièces non-bruitées. Nous proposons également un algorithme d’assemblage

heuristique qui tente de reconstruire le graphe réel sans faire d’hypothèse sur la taille des

sous-graphes ou sur l’ambiguïté des étiquettes.

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

1.1 Network Reconstruction Problem . 3

1.2 Related Work . 6

1.2.1 Network Alignment . 6

1.2.2 Network Assembly . 8

1.3 Contributions . 10

1.3.1 Network Alignment . 11

1.3.2 Network Assembly . 14

2 Network Alignment 19

2.1 Alignment of Networks Under Partial Node Overlap 19

2.1.1 Proof of the Theorem 2.3 . 22

2.1.2 Node Partition . 24

2.1.3 Edge Partition . 24

2.1.4 Correlation Structure . 28

2.1.5 Marking indicators . 31

2.1.6 Concentration . 34

2.2 On the Performance of Percolation Graph Matching 38

2.2.1 Bootstrap Percolation Theory . 38

2.2.2 Percolation Graph Matching Algorithm . 39

2.2.3 Deferred Matching Variant . 40

2.2.4 Performance of PGM . 42

2.2.5 Simulation Results . 48

2.2.6 Scalability Optimization . 57

3 Network Assembly 59

3.1 Feasibility of Network Assembly from Ambiguous Patches 60

3.1.1 G(n, p; q) Model . 60

3.1.2 Assembly of Noiseless Egonets . 64

3.1.3 Feasibility of Egonet Assembly . 69

vii

Contents

3.1.4 Assembly of Noisy Egonets . 71

3.1.5 Feasibility of Noisy Egonets Assembly . 73

3.1.6 Discussion . 74

3.1.7 Auxiliary Results . 74

3.2 Towards a General Assembly Algorithm for Arbitrary Patches 81

3.2.1 General Assembly Algorithm: High-Level Description 82

3.2.2 Main Steps of the Algorithm . 82

3.2.3 Evaluation . 84

3.2.4 Discussion . 91

Conclusion 93

A An appendix 97

A.1 Concentration Lemmas . 97

Bibliography 108

Curriculum Vitae 109

viii

1 Introduction

Graphs are natural means for modeling various datasets that contain entities and their inter-

actions. The application areas vary from the analysis of graphs of social networks [81, 2, 25,

57] to the modeling of protein-protein-interaction(PPI) networks in biology [106, 99]. The

following are examples of problems that are solved by network analysis: the efficient routing

of packets through computer networks [72], community detection in social networks [22, 78],

identifying the source of an epidemic in a human interaction network [65, 8, 91, 81] and find-

ing a relevant page in the web [7]. Clearly these applications rely on the assumption that the

network-graph is accurate. Unsuitable approaches to obtaining the network graph can lead

to fundamentally incorrect results. Consider the following example: the degree-distribution

of the Internet graph is one of the important characteristics for building Internet applications.

The famous work by Faloutsos et al. [43] claimed a power-law degree distribution in the graph

of routers in the Internet, by sampling traceroute packets. It was shown later that this graph

reconstruction method leads to a biased degree-distribution of the resulting graph [73]. The

cause of this phenomenon is that, when sampling from few sources to multiple destinations,

edges close to the source are sampled more often than edges further away. These erroneous

observations could lead to inefficient search and routing strategies and to unbalanced load

distribution over different links.

In some contexts it is straightforward to obtain the correct network: For example, the IP-

network of one domain is reconstructible from IP-addresses; and the social network inside an

organization can be obtained from e-mail exchanges. However, with advances in data analy-

sis, we have to work more often with human-generated data, data needed to be merged from

different sources or data that are itself an output of some analysis tools [44, 16]. Moreover, in

dealing with graphs over more complex objects the concepts of a “node” and an “edge” are

not defined. For example, suppose we are given a corpus of text, each piece describing so-

cial interactions and transactions between social contacts, i.e., characters in a play or a novel.

Clearly, in the inferred social network, there are multiple types of connections possible (co-

occurrence, explicit relation, etc.). This situation arises in digital humanities [77, 94, 111], for

example, in a project of processing a historical archive of Venice in [58] (which takes 80 km

1

Chapter 1. Introduction

of shelving of historical documents over more than 1000 years). One of the challenges is to

extract a social network from the contracts, taxation documents, etc. Naturally, there are mul-

tiple references for an individual, which gives rise to label ambiguity. For another example

of graphs over complex objects, consider the entity resolution problem [1, 46], that initially

arose in databases analysis and that addresses the problem of disambiguating references to

real world entities. Consider a Facebook entity graph where we deal with multiple types of en-

tities: people, companies or geographical-locations, etc. Some objects have multiple types,

for example, McDonald’s is a company and a location. Edges have multiple types as well,

which results in multilayered graphs [19]. The last example refers to networks changing over

time: one approach to identifying the source of an epidemic is to analyze human contacts

during the epidemic. Understandably, human behavior (hence interactions graph) changes

during epidemics [57, 82]; for some problems it is sufficient to consider a static network, but

it is important to carefully select and reconstruct this network. However, it is not straightfor-

ward to define a static graph [110, 82].

We roughly classify the difficulties of reconstruction of the network into two types: structural

noise and label ambiguity. The first type, structural noise, involves missing nodes and edges,

as well as nodes and edges erroneously included in the network: for example, when crawling

a social network from the web, very often we have some parts of the networks that remain

hidden. One reason for this is deliberate privacy protection: users hide their friend circle by

adjusting their privacy settings [52]. Another reason data may be missing is because we need

to sample networks due to the scalability issues [47, 30, 76]. Different sampling methods have

different drawbacks and introduce errors in measuring the main network characteristics: for

example, the random sampling of nodes or local neighborhoods leads to overestimating the

path-length of the considered graphs. Another, breadth-first search sampling provides incor-

rect estimators of characteristics, such as degree distribution or clustering coefficient (den-

sity of a node’s neighborhood), because the samples are biased towards observing high de-

gree nodes [71]. Another domain, where we find examples of structural noise, is in biology

in the analysis of protein and gene-interaction networks. Protein–protein interactions (PPIs)

refer to physical contacts between two protein molecules as a result of biochemical events

in a cell or in a living organism, in a specific biomolecular context [37]. The analysis of PPI

networks enables us to find proteins with common functions in different species and to shed

light on questions such as connection between network motifs and cancer development in

the organism [12]. Currently, the methods for registering protein-protein interactions are

certain for only a relatively small fraction of interactions, thus introducing a large fraction of

false positives and false negatives [17, 112]. This creates false and missing edges and makes

the global network analysis difficult [11, 97].

We call the second source of uncertainty label ambiguity; these are cases where an object is re-

ferred to by different labels or several objects are referred to by the same label. For example, a

typical individual or unit belongs to several networks, but can possess different identifiers in

different networks [26], making it very difficult to cross-identify users among these networks,

whereas many unrelated individuals can use the same name or nickname in the same net-

2

1.1. Network Reconstruction Problem

work. In the text corpus example from digital humanities, see [58], each character is referred

to by ambiguous identifiers for the protagonists, e.g., first name, nickname, or some descrip-

tive reference. Another example refers to creating a co-authorship graph from a dataset of

publications (for example computer science publications from DBL, see [20]) where names

are not unique and also formating style differs from conference to conference.

Consequently, in general, to construct a network we cannot rely completely on either labels

or structure of the raw data. In this thesis, we address a natural question: Given only noisy

observations, how can we find/approximate the correct network?

1.1 Network Reconstruction Problem

The preceding discussion explains the importance and challenges of having a correct net-

work or at least its approximation. We now turn to the central part of this thesis that addresses

a question about the reconstruction of a network from imperfect data, i.e., data having struc-

tural noise and/or label ambiguities. To define the network reconstruction problem, we as-

sume the existence of a correct solution that is some underlying true network we try to learn.

In the case of social networks, it can be all the people and relationships among them [98]. In

the case of computer networks, it can be the actual machines and routers and physical con-

nections. In the most general form we define a master graph G(V ,E), which represent this

true network. Then network reconstruction refers to restoring the master graph G from mul-

tiple different noisy observations. Below, we elaborate on different types of observations and

specify the reconstruction problem, respectively.

This work addresses the questions about network reconstruction and consists of two major

parts: (i) One part assumes we have two large correlated observations of the master graph,

and we are interested in finding the correct bijection between the two vertex sets under some

conditions (or at least part of the bijection), hence inferring knowledge of the master graph.

This problem is referred to as network alignment; (ii) the second part assumes that we have

multiple small observations of the network and we are interested in reconstructing the whole

master graph, this is called network assembly. We now define the problems more formally.

Network Alignment. The first part of this thesis addresses the question about the alignment

of two graphs G1(V1,E1) and G2(V2,E2). These graphs can be viewed as observations or real-

izations of a master graph G . For example, G can be a real social network, G1 can be personal

connections observed via Facebook graph, and G2 can be work connections observed via

e-mail exchanges in the organization. See Fig 1.1, for an example of input of the problem.

We are looking for a matching between the two graphs, defined as follows:

Definition 1.1 (Matching). A partial matchingπ between two graphs is a bijective partial func-

tion π : V1 →V2. Let Π be the set of all partial matchings π from the vertex set V1 to V2.

Note that in earlier works [61], the matching is defined as restriction of having only one coun-

3

Chapter 1. Introduction

x@ep .ch

y@ep .ch

z@ep .ch

 J. Elbert

M. Grossglauser

L. Yartseva

w@ep .ch

Figure 1.1 – The graphs of an anonymized e-mail exchange and a LinkedIn crawl within the
same organization.

terpart for each node. These two definitions are equivalent, and the bijective conditions

make the definition symmetric for V1 and V2.

There are multiple names for the problem: it is known as “network reconciliation”, “network

alignment” or “graph matching”1. We use the term “network alignment” and refer to the term

“matching ” to address the bijection itself.

In the above example, some users are present in both networks. Without loss of generality, we

denote the nodes of G observed in both G1 and G2 by V0. Further, we slightly abuse notation

and say V0 = V1 ∩V2. Then we can define a correct matching π0 : V1 → V2 s.t. for any u ∈ V0

π0(u) = u or, equivalently, π0 is {(u,u);u ∈ V0}. The network-alignment problem is defined

formally as follows.

Definition 1.2 (Network-Alignment Problem). Given the two graphs G1(V1,E1) and G2(V2,E2),

the goal is to find the correct matching π0.

The application areas vary: on the one hand, network alignment enables us to enrich users in-

formation, see [68, 60], as aligning graphs G1 and G2 gives us better approximation of the true

network G than each graph separately. On the other hand, if one of the graphs is anonymized,

aligning these graphs means de-anonymizing it [60, 85, 89, 32, 31], see details and examples

in Section 1.2. Theoretically, the feasibility of an alignment is a generalized form of graph iso-

morphism: in the noiseless case of perfect observations, finding the alignment means finding

an isomorphism between the two graphs.

We are interested in the fundamental question about the feasibility of aligning the vertex sets

through structural information, in the extreme case when node labels have very little or no

meaning. We answer the question about whether the structure of the two graphs reveals the

correspondence of some or all of the vertices. See details of our contribution in Section 1.3.1.

1In the first works on this problem (see [117], [88]) it was addressed as “graph matching”, however, this term is
ambiguous because it also refers to another problem of finding an independent edge set of the graph.

4

1.1. Network Reconstruction Problem

Network Assembly. The problem of network assembly is addressed in the second part of

the thesis and refers to the problem of reconstructing the master graph G from many, noisy,

ambiguous observations. These observations we call patches; they are extracted from the

master graph. The problem consists of putting these pieces together in an assembled graph

Ĝ . We define the input of the problem in its most general form as follows.

Definition 1.3 (Patch Collection). A patch collection is an indexed family of graphs P = {Gi =
(Vi ,Ei)}i∈I , for some set of indices I .

Definition 1.4 (Patch Generation). We say that a patch collection P = {Gi (Vi ,Ei)}i∈[n]
2 is

generated from a graph G(V = [n],E) if it is endowed with a set of functions { fi }i∈[n] , called

patching functions. For each patch fi is a bijection from some V G
i ⊆V to Vi .

For example, if a full social network cannot be released, due to the concern that this network

could be deanonymized, one protection mechanism that has been used in the literature is

the release of all the 1-hop egonets of this network, with all node identities withheld [21].

Reassembling the network would enable us to study its features [102], however this would

endanger the anonymity. Another example where a full network needs to be reconstructed

is DBLP co-authorship graph mining (DBLP collects bibliographical data about publications

at conferences and journals from different sources); the graph is used for analyzing scien-

tific communities and collaborations, and for identifying influential researches [115, 20] or

revealing security threats [27]. However, multiple issues occur due to the different formats of

naming for different conferences, translations and multiple sources of data extraction. See

Figure 1.2 for example. In both of these cases, it is useful to have a complete graph for analy-

sis, however it is not clear how and whether it is feasible to reconstruct this graph. Therefore,

we address graph assembly from multiple ambiguous patches with no or few labels.

The network-assembly problem is defined formally as follows.

Definition 1.5 (Network-Assembly Problem). Given a patch collection P = {Gi = (Vi ,Ei)}i∈I ,

the goal is to find an assembly, that is a pair (Ĝ , {ai }i∈I), where Ĝ(V̂ , Ê) is a graph (called as-

sembled graph) and each ai : [Vi] → [V] is an injective function.

We do not specify here any criteria about how well an estimator Ĝ approximates a master

graph. Note, that for different variations of the problem, additional conditions might be im-

posed, such as for labeled graphs we might require label consistency. In Section 1.3.2 we

define several variations of the problem.

2By notation [n] we mean a set of integers from 1 to n.

5

Chapter 1. Introduction

Lyudmila

Elbert

Matthias
Grossglauser

 J. Elbert

M. Grossglauser
L. Yartseva

 Je erson
 Elbert

M. Grossglauser

Figure 1.2 – The co-authorship patches extracted from the publications dataset.

1.2 Related Work

1.2.1 Network Alignment

We group the work related to network alignment in three categories. One category consists

of the works driven by particular applications, such as biological network alignment, de-

anonymizing networks with implications in privacy, and enriching user information in social

networks. The second category includes works on heuristic algorithms of network alignment.

The last group is related to the theoretical feasibility of alignment and the graph isomorphism

problem.

Among the works from the first category, aligning vertex sets of two graphs has strong impli-

cations for privacy. A naive way of protecting user’s privacy, while releasing data, is replacing

their identities with random unique IDs, a process known as a naive anonymization. This

method and similar mechanisms to preserve users’ privacy are proposed in [118, 49]. How-

ever, recent works [114, 15, 85, 88] demonstrate that naive anonymization of the network is

not enough to protect users when releasing network graphs. Network alignment is consid-

ered as a privacy violation in [48, 69]; in [67] authors analyze the different types of attacks

to online social networks. In their seminal work [85], Narayanan and Shmatikov succeed in

matching a large-scale anonymized social network to a second social network that serves as

side information. Although the node labels in the first network contain no information, the

privacy of the network is compromised through the knowledge of a correlated secondary net-

work that has node identities. Their algorithm starts with a small set of prealigned nodes,

named seed set, and adds new pairs to the matching, based on the number of common neigh-

bors and other statistics. However, their algorithm does not provide any guarantees or an

analysis of the performance for different input parameters. Although, the authors observe a

threshold behavior in the size of the seeds set. A similar approach of expanding a seed set is

used in [70]. Overall, this body of work leaves two questions open: does there exist an algo-

rithm of alignment of two networks from seeds with provable guarantees? And is it feasible

to align two networks with no side information?

6

1.2. Related Work

On the positive side, aligning two graphs of networks from different domains enables us to en-

rich information about the structure of the network and to correct structural errors. In [117],

we propose a percolation graph matching algorithm (PGM) by analogy with bootstrap per-

colation theory; the alignment algorithm “percolates” from initially prealigned nodes called

seeds. We show that a sub-linear seed-set size can suffice for a matching with zero-error

in some circumstances. In [60] Kazemi et al. drastically decrease the necessary number of

seeds but with a small payoff of negligible fraction of errors. Korula and Lattanzi [68] provide

an analysis for preferential-attachment generator graphs and random Erdős-Rényi graphs.

They consider a regime of very dense seeds, where the mapping for a constant fraction of

nodes is known a-priori. In this regime, for Erdős-Rényi network, they show that most of the

network can be matched, with high probability, in a single propagation step. Their argument

relies on every non-seed node having several seeds as neighbors, which means that non-seed

nodes can be matched in a single step directly from these neighbors. They also extend the

result to the preferential attachment graphs. In [31] Chiasserini et al. consider a more real-

istic network model, Chung-Lu [3, 53] random graphs. The graphs sampled from this model

have scale-free node degree distribution. The authors consider two regimes: (1) in the first

regime the algorithm has randomly selected seeds, and the authors showed that n
1
2+ε seeds

are enough to assure almost complete alignment; whereas (2) in the other regime the algo-

rithm can select particular seeds and, in this case, nε seeds are enough. In [32] the authors

analyze the number of seeds and number of errors for random graphs with high clustering

(random geometric graphs [90]).

One question to consider about this class of algorithms is an efficient method for search-

ing for seeds. Several ideas are proposed, such as injecting small subgraphs [15], a manual

inspection of distinguishable (for example, by degree) nodes [85]. In [87] the authors pro-

posed Bayesian framework for seedless graph matching. They proposed an algorithm that

uses nodes features such as degree and distances to other nodes as fingerprints. The algo-

rithm merges likely pairs in rounds and after each round it generates additional features of

the unmatched nodes. The theoretical side of the question (selecting seeds with guarantees),

however, remains open.

There is another significant branch of application-driven research on network alignment in

biology. The alignment of gene and protein networks helps us to infer and predict motifs

and to find proteins with common functions among species [105, 103, 106]. Aligning protein-

protein-interaction (PPI) networks helps us to increase confidence in the interactions that

occur in multiple species, thus to reduce noise in the network. However, most of the work

is focused on finding a local alignment, for example, identifying conserved small subgraphs

(motifs or pathways) across different species. In [63, 62], the authors search for a small-to-

large graph alignment. The known results on global alignment rely on node-labels and some

very restricted structural information hence, do not provide either performance guarantees

or feasibility analysis [106, 79].

A second group of works contains heuristic algorithms: a few algorithms are proposed, based

7

Chapter 1. Introduction

on the formulation of network alignment as an optimization problem, and they use linear

programming relaxations [66, 40] and belief propagation [18] to efficiently compute an ap-

proximate solution. They do not provide, however, performance/optimality guarantees and,

usually, do not scale well. Network alignment also arises in other fields, such as ontology

alignment. Several automated tools were created to match sets of labels describing data [38,

104, 96]. The specifics of the problems assume small-scale graphs [38], and the algorithms

rely heavily on the properties and attributes of the nodes. It is shown in [50] that structural

features are much more powerful for graph mining tasks such as network classification and

de-anonymization.

The last group of works related to network alignment are theoretical contributions. Inter-

estingly, network alignment can be considered as a generalization of the classic subgraph

isomorphism problem or a maximal common subgraph problem. Both are known to be NP-

complete [35]. For specific classes of graphs, more is known: for example, for the Erdős-Rényi

random graph G(n, p) [42], the threshold function for asymmetry is known to be p = log(n)/n

(see [14, 24]), and to have symmetries clearly implies the impossibility of unique alignment.

The class of graphs that appear the most challenging is thought to be the strongly regular

graphs [109]. In addition, in the scenarios considered in this thesis, the two graphs are sub-

ject to noise and uncertainties, hence we want to check whether two graphs are “inexactly”

isomorphic [34] and the problem that we address is similar to an approximate or inexact iso-

morphism [10].

In another seminal work, a random graph model served to provide insight into the fundamen-

tal feasibility of graph alignment for an adversary with unlimited computational power [88].

Pedarsani and Grossglauser demonstrate that under rather benign conditions, two graphs

can be aligned perfectly. They introduce a metric thats quantifies the quality of the matching

and is minimized by the correct matching (The metric is the number of mismatched edges

under fixed matching of two graphs). The drawback of their work is an unrealistic assumption

of complete node overlap; we relax this assumption in this thesis. Later in [36] this achievabil-

ity bound was improved by a factor s, also a converse bound was stated with only a constant-

factor gap with the achievability bound. However, the authors assume the full node overlap

of the two graphs.

1.2.2 Network Assembly

Network assembly is a fundamental problem related to graph reconstruction, network dis-

ambiguation, pattern search and subgraph isomorphism, and it was addressed in areas such

as data mining, machine learning and in theoretical computer science. In the same manner

as for network alignment, we classify related work into three categories: theoretical works

on the feasibility of assembly and subgraph isomorphism, application driven research and,

finally, heuristic algorithms.

The first group of works address the feasibility of graph assembly. Under partial or full node-

8

1.2. Related Work

ambiguity, reassembling the true graph from small subgraphs (called patches) is an interest-

ing statistical and computational problem. It is related to the reconstruction conjecture, that

is formulated by Kelly[64], it addresses the question of a graph G being uniquely identifiable

by all its subgraphs obtained by deleting one vertex from G (this collection of subgraphs is

called a deck). In [23] Bollobás shows that almost all graphs are reconstructible but, in gen-

eral, the conjecture stays unproven. A closely related problem was considered recently by

Mossel et al. [83, 84], who are also interested in the graph assembly problem; they address a

network assembly for several graph models with a low clustering coefficient. Among other

models, they consider the assembly of Erdős-Rényi and random regular graphs. They find

thresholds for the feasibility of the assembly expressed as a function of the graph density and

of the radius of patches. They find that the patches still have to be quite large (though smaller

than in the conjecture) for assembly to be feasible. For the Erdős-Rényi random graph for a

sparse regime with np a constant, the patch radius r has to be Ω(logn). For the denser regime

with np � log2 n, assembly with r = 3 is feasible. The idea is that, in this case, each node has

a unique neighbor-degree sequence, thus this node is identifiable in other egonets. We conjc-

ture that r = 3 is required because of the lack of transitivity (short cycles) in such graphs and

we prove that the assembly is feasible even for r = 1 if the graph is more clustered.

Problems of the feasibility of an assembly, similar to ours (in flavor) are considered in the area

of genome assembly. In [74, 28], the authors state theoretical limits for assembling a genome

sequence from multiple noisy reads and answer the fundamental question about whether

there exists a unique reconstruction. In another work [108], the authors consider a problem

of reconstructing a neural network (a graph formed by a set of neurons and connections be-

tween them) and propose a method of observing small samples of the network. The goal of

the method is to infer the whole network out of these observations. Neurons have several

types that can serve as labels of the nodes.

In the second group of works, a large bulk of research is in the field of databases, in par-

ticular, entity resolution: several interesting solutions for resolving ambiguities in data are

known [1, 59]. However they rely mostly on the similarity between the labels of the entities

and entity features, hence, text mining, and the later phases involve some structural infor-

mation through features. The main drawback of these traditional approaches is that they

do not use the graph structure overall, instead they search for a statistical explanation of the

data. These approaches are more suitable for relational databases and do not scale well in

general [33].

Another important application of network assembly is (KG) Knowledge Graph construction.

A KG was proposed by Google to improve the quality of search data [107]. The idea is to shift

from search with keywords over documents to search with entities over organized data. The

challenges include frequent updates and rapid growth of available data, multiple sources of

noise and a high diversity of data [93, 92]. There are several approaches to constructing the

KG, including the entity resolution approach described above. These methods rely on the

text analysis of entities data; they incorporate structural information as a first step to cluster

9

Chapter 1. Introduction

entities [59] and merge them later, based on some probabilistic criteria. However we think

that a more profound use of the network structure will push the quality of the data on the

new level.

The last examples of the application-driven research are several works that address the network-

assembly question under the authorship-name ambiguity problem: this problem arises be-

cause different authors publish under the same name or the same author publish under var-

ious names due to abbreviations, nicknames, etc. In [80], the authors introduce a ranking-

based name-matching algorithm for solving the name-ambiguity problem. In [95], graph-

based algorithms solve the name-ambiguity problem as follows, they first construct a graph

by creating a node for each ambiguous name and then employ some clustering algorithms to

find and merge duplicate entities.

The last group of works contains several heuristic algorithms: In the first example [102, 101],

Sharad et al. used a machine-learning approach to reassemble the call-network graph from

small ego-graphs; where an ego-graph is a graph induced by phone calls of one individual.

This data was released during The Data for Development (D4D) Challenge [21] for the ad-

vancement of quality of life in Ivory Coast. The authors show that the original phone-call

graph is reconstructible from a set of ego-graphs. The result shows that these anonymiza-

tion techniques do not ensure data privacy. The second example of the group is related to

patterns discovery. In [6], the authors address a question about constructing a graph with

ambiguous labels. They look at the problem of approximate labeling of the nodes and they

propose and minimize some distance function rather than focus on using structural informa-

tion. The last example is in [41], where the authors study what information about the node

can be learned from its neighbors. They learn the attributes of the nodes by reconstructing

a bipartite feature graph, whereas we are interested in reconstructing connections between

the entities.

1.3 Contributions

As we discussed above this thesis addresses network reconstruction in general and consists of

the two major chapters that address the network-alignment and the network-assembly prob-

lems, respectively. For both we group contributions into three parts: tractable models for

problem analysis, analysis of the theoretical feasibility of network reconstruction and practi-

cal algorithms for network reconstruction.

We highlight the key results in the Table 1.1 where we describe information-theoretic and

algorithmic contributions and consider two regimes with or without side information. The

four major results are: feasibility of network alignment, feasibility of network assembly for

random graph models and algorithms for network alignment and network assembly where

side information is present. We describe each contribution in the detail below.

10

1.3. Contributions

Information-Theoretic Algorithmic

no side information • feasibility of network alignment [61]
• feasibility of network assembly [116]

with side information • percolation graph match-
ing from a seed-set [117]

• labeled graph assembly

Table 1.1 – Summary of contributions to the network reconstruction problem

1.3.1 Network Alignment

BiG(G ; t , s) Sampling Model

For the first contribution, we introduce a model that generates two observations of the master

graph. The model has tunable parameters to control the amount of noise. This model is

an extension of the graph sampling model from [88]. The novelty is that our model takes

into account partial node overlap, reflecting scenarios when two network node sets are not

exactly the same, but correlated. Without loss of generality we can assume that all nodes are

identified by a number in [1. . .n] where n = |V | is the size of the node-set of the master graph.

Definition 1.6 (BiG(G ; t , s) sampling model). Let G(V ,E) be a master graph and let G1(V1,E1)

and G2(V2,E2) be two samples of G obtained as follows: Each node i ∈V is sampled with prob-

ability t independently to both V1 and V2. After that an edge e is sampled in E1 and E2 with

probability s if both its endpoints are sampled in V1 and V2, respectively.

We show two graphs generated from the BiG(G ; t , s) sampling model at Figure 1.3.

For the special case t = 1 we call it the BiG(G ; s) sampling model, while it is equivalent to the

model introduced in [88]. For the analysis of feasibility of alignment, we use an Erdős-Rényi

random graph G(n, p) as a master graph, where every edge exists with identical probabil-

ity p(n), independently of all the other edges. The G(n, p) model has been widely used in

the study of complex and social networks [42, 54, 86], and it is a plausible candidate for the

study of the network reconstruction problem. This parsimonious model is a poor approxi-

mation of most real networks, that have salient properties not shared with random graphs

(skewed degree distribution, clustering, community structure, etc.). However, we conjecture

that network alignment for random graphs is harder than for real graphs, because the struc-

tural features of real networks make nodes more distinguishable than in random graphs. Our

results suggest that, even for the difficult case of random graphs, network alignment is funda-

mentally easy given sufficient computational power. If the master graph G is an Erdős-Rényi

graph, we call the sampling models BiG(n, p; t , s) and BiG(n, p; s), respectively.

11

Chapter 1. Introduction

Figure 1.3 – The BiG(G ; t , s) random bigraph sampling model. The two graphs G1(V1,E1)
and G2(V2,E2) are sampled from the generator graph G(V ,E) through node sampling (with
probability t)and edge sampling (with probability s) processes.

Feasibility of Alignment Under Partial Node-Overlap

For the next contribution, in Section 2.1, we show the feasibility of alignment for large net-

works with different node sets. We explore the fundamental limits for de-anonymization,

regardless of the specific algorithm employed (or given an adversary with infinite computa-

tional power who is able to check each alignment solution) and establish the relationship

between network parameters and the feasibility of network alignment with no side informa-

tion. We introduce a metric measuring the quality of a matching π, named Δπ, basically a

weighted count of “mismatched” edges with a weighting parameter α (see formal definition

in Section 2.1), and we show that this metric is minimized by a correct matching π0. We state

the following theorem:

Theorem 2.3. In the BiG(n, p; t , s) bigraph model with logn
ns3t 2 � p � 13, there exists a value of

α such that with high probability

π0 = argmin
π

Δπ.

where α is a weighting parameter.

3We use f � g and f � g meaning f = o(g) and f =ω(g), respectively.

12

1.3. Contributions

Percolation Graph Matching Algorithm

For a third contribution in the network alignment chapter, in Section 2.2, we propose a net-

work alignment algorithm that iteratively builds a matching from a side information, that is

a set of prealigned nodes S = {(i , j) : i ∈V1, j ∈V2} called seed-set. We call it Percolation Graph

Matching (PGM) as it relies on a threshold rule reminiscent of bootstrap percolation models

[4]. Simply put, it starts from a seed-set S as an initial set of aligned pairs, and a pair (i , j)

is added to the matching if there are at least r aligned pairs that are neighbors of (i , j)4. It

repeats this process until there are no more pairs to add. We describe a basic version of the

PGM and a deferred version for improved performance in Section 2.2.

Percolation Graph Matching Algorithm; Guarantees Under the BiG(n; p, s) Model

For the fourth contribution, we analyze the performance of PGM under the BiG(n; p, s) model.

Consider two graphs G1 and G2, generated from the BiG(n; p, s) sampling model and let r ≥ 4.

Define

ac =
(
1− 1

r

)((r −1)!

n(ps2)r

) 1
r−1

(1.1)

and note that ps2 is the probability of an edge being sampled in both G1 and G2 or, equiva-

lently, the probability of an edge being contained in the intersection of the edge sets E1 ∩E2.

Here we show that ac is the critical value of the initial size of the seed set. This means that for

an initial number of seeds a0 lower than ac , the PGM algorithm stops with the final matching

size a∗ at most 2a0; and for a0 larger than ac , the algorithm propagates to most of the graph.

Theorem 2.15. [Subcritical regime] Fix ε> 0. For n−1 � ps2 � s2n− 3
r −ε/logn, if a0/ac →α<

1, the PGM algorithm stops with a∗ ≤ r
r−1 ac w.h.p.5 In particular a∗ = (φ(α)+o(1)) r

r−1 ac ≤
r

r−1 a0, where φ(α) is the unique root in [0,1] of rφ(α))−φ(α)r = (r −1)α.

This means that in the subcritical regime, the final map is only slightly larger than the seed

set, because the mapping process does not percolate.

Theorem 2.16. [Supercritical regime] Fix ε > 0. For n−1 � ps2 � s2n− 3
r −ε/logn, if a0/ac ≥

α> 1 the algorithm propagates, and the size of the final mapping is a∗ = n −o(n) w.h.p.

In summary, there is a sharp phase transition at a0 = ac which separates almost-certain fail-

ure from almost-certain success of the percolation graph matching process.

4More precisely, two pairs (i , j) and (i ′, j ′) are neighbors iff (i , i ′) ∈ E1 and (j , j ′) ∈ E2.
5With high probability, i.e., with probability that tends to 1 as n →∞.

13

Chapter 1. Introduction

Evaluation and Performance Optimization

For the last contribution of the chapter, we evaluate the algorithm over both random graphs

and real social network data, and we confirm the presence of the phase transition in the seed

set.

We also describe the optimizations of some steps of the PGM. We introduce two optimiza-

tions: The first uses efficient data structures that enables the time complexity to be optimized

and the second one modifies the main steps of PGM to make it suitable for a parallel map-

reduce implementation. With these optimizations, we are able to push the sizes of the con-

sidered graphs to millions of nodes.

1.3.2 Network Assembly

G(n, p; q) Graph Generator Model

For the first contribution of the network assembly chapter, we introduce a new random-

graph model of independent interest, called G(n, p; q): it accounts for such real-network

property as high clustering and possesses randomness of network structure. In many real net-

works, neighborhoods of nodes are highly connected (i.e., have high clustering coefficient6).

For example, in social networks, friends of any given person are likely to know each other.

This behavior is called triadic closure [100]. We address the question of how a graph’s cluster-

ing coefficient improves the feasibility of assembly.

There are several random graphs models that generate networks with high clustering: Watts

and Strogatz [113] proposed a graph-generation algorithm that connects neighbors of a cycle.

While the generated graphs are highly clustered the nodes-neighborhoods are similar and the

degree distribution is homogeneous; it is unlike real world graphs and make these unfeasible

candidate to network assembly problem.

The G(n, p; q) model is defined via an intermediate Erdős-Rényi random graph Gp (Vp ,Ep) ∼
G(n, p). The graph G(V ,E) ∼G(n, p; q) contains a random subset of all the possible closures

of connected triples in Gp . More precisely, for each u, v, w ∈ V , if (u, v) ∈ Ep and (v, w) ∈ Ep

we add (u, w) to E with probability q . Our goal is to obtain a model that is mathematically

tractable (akin to the Erdős-Rényi model [42]), but possesses a higher clustering coefficient.

Network Assembly From Egonets

As the second contribution, in Section 3.1, we formulate a specific variation of the network

assembly problem, where each patch is created by extracting the egonet around each vertex

in the master graph. The egonet, or 1-egonet of a vertex i in a graph G , denoted Hi , is the

6The clustering coefficient of a node u is the density of the subgraph induced by its neighbors; assumed to be
0 if u is a singleton.

14

1.3. Contributions

induced subgraph 7 generated by i and its neighbors in G — we say that i is the center of this

egonet. We will further assume that, for each egonet in the patch collection, the identity of i

is either kept intact or somehow inferable, but all other identities are removed.

We modify a definition 1.4 for this specific form of patches:

Definition 1.7 (Egonet Collection Extraction). Let G be a graph with V (G) = [n] for some n ∈N,

and edge set E(G).

• An unlabeled egonet collection of G is a set of graphs P = {Gi = fi (Hi)}i∈[n], where a

patching function fi : V (Hi) → [|V (Gi)|] is a bijection such that fi (i) = 1.

• An unlabeled noisy egonet collection of G is a set of graphs P = {Gi = fi (H∗
i)}i∈[n], where

H∗
i are obtained from Hi by removing each edge with probability s independently and a

patching function fi : V (H∗
i) → [|V (G∗

i)|] is as defined above.

• Patching functions { fi } are called anonymization functions and the relabeled version of

Hi denoted by Gi is called an anonymized egonet.

Note that fi relabels every vertex in Hi arbitrarily, except for i that is forcefully assigned the

label 1. This means that, as long as the indices of each graph in the collection are known, the

identities of the respective centers are also known.

Definition 1.8 (Egonet collection assembly). Let P = {Gi }i∈[n] be a collection of graphs, such

that V (Gi) = [ni] for some ni ∈N. An assembly of P is a pair (Ĝ , {ai }i∈[n]), where Ĝ is a graph

(called assembled graph) with V (Ĝ) = [n], and each ai : [ni] → [n] is an injective function

such that ai (1) = i .

An assembly determines not only which graph Ĝ is ultimately obtained, but also how each

vertex in each egonet of our collection is mapped to Ĝ . This is enough for us to formally state

the egonet assembly problem:

• Input: an unlabeled egonet collection P = {Gi }i∈[n];

• Output: an assembly (Ĝ , {ai }i∈[n]) of P .

Feasibility of Network Assembly in a Noiseless Case

For a third contribution, we prove the feasibility of a network assembly result under the afore-

mentioned G(n, p; q) model. We find that, even from relatively small patches (1-hop egonets)

it is still possible to reconstruct a whole network.

7An induced subgraph is a subset of the vertices together with any edges whose endpoints are both in this
subset.

15

Chapter 1. Introduction

The key observation is that, for a G(n, p; q) random graph, any two edges have non-isomorphic

subgraphs of common neighbors, where a subgraph of common neighbors of an edge (u, v)

is a subgraph induced by nodes adjacent to u and v simultaneously . Therefore this feature

acts as a fingerprint for all edges in a graph and enables us to identify these edges across

different egonets.

Theorem 3.3. Let G be a G(n, p; q) random graph, with (np)5p → 0, fixed q and npq2 =
12logn +ω(1), and let P = {Gi }i ∈ [n] be an unlabeled egonet collection extracted from G.

There exists an assembly algorithm that builds Ĝ from the input P and V (Ĝ) = V (G) and

E(Ĝ) = E(G).

To show feasibility, we propose a practical algorithm of network assembly. The algorithm

assumes that the patches are in the form of perfect (noiseless) egonets, and it uses unique

edge fingerprints to reconstruct the original graph.

Feasibility of Network Assembly in Noisy Case

As a fourth contribution of the chapter, we consider a more realistic scenario where we deal

with imperfect patches. For instance, the observations of a user’s circle in social networks can

be noisy. In contrast with the noiseless case, perfect (no edge mismatch) assembly can no

longer be expected. Rather, we expect that in low-noise scenarios, the correct assembly has a

small number of edge mismatches, due to the correlation induced in the patch collection by

the true graph. Therefore, we intuitively expect the correct assembly to have minimum edge

inconsistency, i.e., edge mismatch.

In order to find the conditions where the hypothesis is true, we prove a result analogous to

Theorem 3.3.

Theorem 3.9. Let G be a G(n, p; q) random graph, with (np)5p → 0, fixed q and npq2 =
32logn+16log(npq2)+ω(1)

s3 , and let P = {Gi }i∈[n] be an unlabeled, noisy egonet collection extracted

from G. There exists an assembly algorithm that builds Ĝ from the input P and V (Ĝ) = V (G)

and E(Ĝ) = E(G).

To show this, we modify the algorithm from a noiseless case to look for an edge with “closest”

fingerprint rather than an edge with identical fingerprint.

General Algorithm of Network Assembly

As the last contribution in the chapter, in the Section 3.2, we consider the most realistic sce-

nario where patches are general subgraphs with highly ambiguous labels. We assume that

the master graph is labeled with a small label set and that this labeling is preserved through

a patch-generation process or, in other words, the images of nodes in the patches have the

16

1.3. Contributions

same labels as in the master graph. For example, consider a neural network assembly prob-

lem, where labels are types of neurons. The existing recording techniques enable us to ob-

serve only a small fraction of large networks simultaneously, hence it is very difficult to esti-

mate a network, given the noise specific to the problem [108]. Another example refers to the

assembly of a social network, from its multiple observations where labels are the first names.

The labels are highly ambiguous because many persons can have the same name. In general,

the observations are not required to be ego-centered (for example it can be some groups or

communities) and some observations can be more incomplete than another.

We propose a graph assembly algorithm that merges patches pairwise until there is only one

left and that is an estimator of the master graph. The algorithm selects a pair of patches based

on the frequencies of common, small, labeled subgraphs that we call “seed-subgraphs” by

analogy with a seed-set in the input of the PGM algorithm. These subgraphs serve as markers

that enable us to stitch patches together by aligning them with the PGM algorithm.

17

2 Network Alignment

We recall an example of two on-line social networks where some individuals have accounts

in both. Aligning users of the two networks provides information that is used for targeted

marketing and for information-diffusion research; this helps to enrich user information and

to reconstruct a more realistic network of a person’s contacts. However, names are often

ambiguous or absent, hence we have to rely on some structural information to align these

networks.

As we mentioned, Narayanan and Shmatikov in [85] succeed in matching a large-scale anony-

mized social network to a second social network that serves as side information. This proves

that network alignment is possible for a large scale network. In another work [88], a ran-

dom graph model provides insight on the fundamental feasibility of graph alignment under

full node-overlap for an adversary with unlimited computational power. Two major ques-

tions remain unanswered: The first is about the theoretical feasibility of an alignment of two

networks under partial node-overlap with no additional information. The second question

addresses the existence and analysis of practical algorithms.

In the Section 2.1, we show the feasibility of network alignment for two networks sampled

from the BiG(G ; t , s) sampling model. In the Section 2.2, we propose and analyze a percolation-

based graph-matching algorithm.

2.1 Alignment of Networks Under Partial Node Overlap

For input of the network alignment problem, we have G1(V1,E1) and G2(V2,E2) that can be

viewed as observations or realizations of a master graph G . For example, G can be a real

social network, G1 be personal connections observed via a Facebook graph, and G2 can be

work connections observed via e-mail exchanges in the organization.

Recall that we are interested in finding a matching that is a partial bijection π : V1 → V2 be-

tween (a subset of) the vertex sets of the two graphs. We note that, due to the bijection restric-

tion, the definition is symmetric and V1 and V2 are interchangeable. We denote by V1(π) a do-

19

Chapter 2. Network Alignment

main of π and by V2(π) a range of π. For a pair of nodes e = (i , j), we define π(e) = (π(i),π(j)
)
.

We say e = (i , j) ∈ E1(π) if i , j ∈ V1(π) and e ∈ E1, same for E2(π). We assume that, without

loss of generality, V1,2 ⊂ [n] = {1, . . . ,n} and denote n1 = |V1|, n2 = |V2| and n0 = |V0| (recall

V0 =V1 ∩V2).

If the two graphs are sampled from the BiG(G ; t , s) model then the matching π0 can be writ-

ten as a set of pairs of vertices sampled from the same nodes of G . Recall that our goal is to

find π0 given G1 and G2. This means finding corresponding domain and range V0 ⊆ V1 and

V0 ⊆V2 and find a correct matching between found nodes.

To measure the quality of the matching without knowledge of the ground truth, we now de-

fine a cost function that quantifies the structural mismatch between the two graphs under a

given partial matching π.

Definition 2.1 (Cost Function). The cost function has two terms Φπ and Ψπ:

• Mismatched edges:

Φπ = ∑
e∈E1(π)

1{π(e)∉E2} +
∑

e∈E2(π)
1{π−1(e)∉E1}.

• Unmatched edges: Ψπ =Ψ1
π+Ψ2

π, where Ψ1
π and Ψ2

π are the number of unmatched edges

in E1 and E2, respectively. More precisely, we define

Ψ1
π = |{e ∈ E1\E1(π)}| and Ψ2

π = |{e ∈ E2\E2(π)}|.

The cost function is a weighted sum of Φπ and Ψπ:

Δπ =Φπ+αΨπ. (2.1)

Our approach consists in minimizing the cost function Δπ over all possible partial match-

ings π. There is a tradeoff between the two cost terms (2.1): adding node couples to the

matching π cannot decrease Φπ (and it can increase even for correct couples because of edge

sampling), while Ψπ cannot increase. The parameter α controls this tradeoff: with α = 0,

the trivial empty matching minimizes Δπ; with α > 1 the optimal matching is always of the

largest possible size min{n1,n2}, because the increase in Φπ when adding a couple to π is

smaller than the decrease in αΨπ. Below, we identify constraints on α and provide an ap-

propriate value such that with high probability, the matching found by minimizing Δπ is the

correct partial matching π0.

Example of Matching

We give an example of the matching and define few more variables:

Definition 2.2 (Matching Characteristics). For a matching π we define (i) |π| as the size of

matching π, (ii) l as the number of correctly matched nodes of the form π(i) = i and, (iii) k =

20

2.1. Alignment of Networks Under Partial Node Overlap

|π|− l as the number of wrongly matched nodes. Let Πl
k represent a class of matchings of size

|π| = l +k ≤ min{n1,n2} with l correctly matched nodes. Note that the sets Πl
k partition the set

Π of all partial matchings.

For example, Figure 2.1 shows the identity matching π0 ∈ Π7
0 and the matching π ∈ Π2

6 from

V1 to V2.

u1 u1

u2 u2

V1 V2

(i) π0 ∈ Π7
0

u3 u3

u4 u4

u5 u5

u6 u6

u7 u7

u8

u9

u10

u11

u12

×

×

×

×

×

V0 V0

u1 u1

u2 u2

V1 V2

(ii) π ∈ Π2
6

u3 u3

u4 u4

u5 u5

u6 u6

u7 u7

u8

u9

u10

u11

u12

×

×

×

×

×

V0 V0

Figure 2.1 – Examples of two matchings: (i) The true matching π0 ∈Π7
0 = {[u1,u1], . . . , [u7,u7]},

and (ii) the matching π ∈ Π2
6. White nodes are sampled in both graphs, while red nodes are

sampled in only one but not the other.

We introduce few more contracted definitions for further simplicity: For a node u, we say

π(u) is null (denoted by π(u) = �) if either u is not sampled (u �∈ V1) or u is not matched

(i.e., u ∈ V1 but u �∈ V1(π)). Similarly, for a node v , we say π−1(v) is null (π−1(v) =�) if v �∈ V2

or v �∈ V2(π). For a pair e = (u, v), π(e) is defined to be null (denoted by π(e) = �) if either

π(u) = � or π(v) = �. Similarly, π−1(e) = � if either π−1(u) = � or π−1(v) = �. For example,

π(u7) =� and π−1(u10) =� at the Figure 2.1 (ii).

We now state the main result of the section.

Theorem 2.3. In the BiG(n, p; t , s) model with 6144logn+ω(1)
ns3t 2 = p � 1, there exists a value of α

21

Chapter 2. Network Alignment

such that with high probability

π0 = argmin
k,l ,π∈Πl

k

Δπ. (2.2)

Before proving Theorem 2.3, we provide some context for the result.

Expressed in terms of the expected degree npst of the two observable graphs G1,2, the thresh-

old is log(n)/s2t for perfect matchability. The dependence on n is tight. To see this, consider

the intersection graph G0 = G (V0,E1 ∩E2). Its expected degree is nps2t 2.1 If this is asymp-

totically less than lognt 2, then G0 has symmetries w.h.p. (which in fact stem from isolated

vertices [24]). In this case, the correct matching cannot be determined uniquely. To see this,

assume that an oracle reveals, separately for G1 and for G2, the set of nodes and edges with-

out counterpart. These sets contain no useful information to estimate π0 over the common

nodes, because of the independence assumptions in the model. Essentially, given an oracle,

G0 is a sufficient statistic for π0, whose symmetries would preclude inferring π0.

Based on this argument, the dependence on t is tight as well, while there is a gap of a factor

of s between the achievability result in Theorem 2.3 and the trivial lower bound based on G0.

With t = 1, we can recover the achievability result of Pedarsani and Grossglauser [88] up to a

constant. Note that this is not trivial, as their problem formulation minimizes a cost function2

over the set {Πl
k : k + l = n}, while here we minimize over the larger set {Πl

k : k + l ≤ n}.

The cost function Δπ with α = 1 is similar to a simple graph edit distance between G1 and

G2. Suppose we wanted to find the cheapest way to transform the unlabeled graph G1 into

G2 through edge additions and deletions. Then the number of operations is exactly Δπ. Our

conditions onα (discussed in detail within the proof) show that minimizing this edit distance

does not work. Instead, the tradeoff between penalizing mismatched mapped edges and

unmapped edges needs to be controlled more finely through an appropriate choice of α that

depends on p and s.

2.1.1 Proof of the Theorem 2.3

We provide a brief sketch followed by the detailed proof. Let S be the number of matchings

π ∈Π such that Δπ−Δπ0 ≤ 0. Following the Markov inequality, as S is a non-negative integer-

valued random variable, we have P[S ≥ 1] ≤ E[S]. We will prove that, under the conditions of

Theorem 2.3,

P[S ≥ 1] ≤ E[S] = ∑
π∈Π

P(Δπ−Δπ0 ≤ 0) → 0. (2.3)

1To be precise, (n −1)ps2t 2; we sometimes omit lower-order terms for readability.
2Identical to ours with α= 0.

22

2.1. Alignment of Networks Under Partial Node Overlap

The main complication of the proof stems from the fact that the random variables Δπ and

Δπ0 are correlated in a complex way, because they are both functions of the random vertex

and random edge sets V1,2 and E1,2. Both Δπ and Δπ0 can be written as sums of Bernoulli

random variables. The main challenge in the proof is to decompose the difference Δπ−Δπ0

into components that are mutually independent and can be appropriately bounded.

For this, we first partition the node sets V1 and V2, with respect to how they are mapped by

π and π0. This node partition induces an edge partition. The elements of some parts of the

edge partition contribute equally to Δπ and Δπ0 and can be ignored. The remaining parts can

be further subdivided into linear structures (specifically, chains and cycles) with only internal

and short-range correlation. Finally, this leads to the desired decomposition of the sums of

i.i.d. Bernoulli’s random variables to apply standard concentration arguments to Δπ and Δπ0

individually, and then to stochastically bound their difference.

Proof. [Theorem 2.3] We consider the contribution of edges (or potential edges) to the terms

Δπ and Δπ0 as a random variable in the BiG(n, p; t , s) probability space. More precisely, for

a pair of nodes u, v ∈ V1 and their images under the matching π (i.e., π(u),π(v)) we look at

the probability of having/not having an edge between these nodes in G1,2. From now on, a

pair e represents a possible edge e = (u, v) that, based on the realization of the BiG(n, p; t , s)

random model, might have an actual edge between the nodes u and v .

Let us call the set of all pairs in G1 as V 2
1 (here, we slightly abuse the notation, meaning

(V1
2

)
).

The set V 2
2 is defined similarly. We define, by analogy, the set of matched pairs V 2

1 (π) as the

set of all the pairs (u, v) ∈ (V1(π)
2

)
. Also, the set V 2

2 (π) is defined similarly.

The term Φπ counts the number of edges in both graphs that are matched to a nonexistent

edge in the other graph. More precisely, the contribution of a pair e ∈ V 2
1 (π) and its image

π(e) ∈ V 2
2 (π) to Φπ is φ(e) = |1{e∈E1(π)} − 1{π(e)∈E2(π)}|. Note that the pairs e and π(e) contribute

to Φπ if and only if exactly one of them exists in G1 or G2. Also, for e ∈ V 2
1 \ V 2

1 (π), we define

ψ1(e) = 1{e∈E1\E1(π)} ; it represents the contribution of the pair e to Ψ1
π. This indicator term is

equal to 1 if the edge between the unmatched pair e in G1 exists. Similarly, for e ∈V 2
2 \ V 2

2 (π),

we define ψ2(e) = 1{e∈E2\E2(π)}. To sum up, we can write Δπ as

Δπ = ∑
e∈V 2

1 (π)

φ(e)+α

⎡
⎣ ∑

e∈V 2
1 \V 2

1 (π)

ψ1(e)+ ∑
e∈V 2

2 \V 2
2 (π)

ψ2(e)

⎤
⎦ . (2.4)

In order to compute contributions of pairs to Δπ and Δπ0 , we first partition the vertices in the

set V1 ∪V2 based on the matchings π and π0. Then we partition the node pairs with respect

to this node partition.

23

Chapter 2. Network Alignment

2.1.2 Node Partition

We partition the nodes in V1 ∪V2 into the following five parts based on the matching π:

(i) �(π) is the set of nodes that are matched correctly by π, i.e.,

�(π) = {u ∈V1 ∪V2|π(u) = u}.

(ii) → (π) is the set of nodes that are matched in the graph G1, but π−1 is null for them, i.e.,

→ (π) = {u ∈V1 ∪V2|π(u) �= �,π−1(u) =�}.

(iii) ← (π) is the set of nodes that are matched in the graph G2, and π is null for them, i.e.,

← (π) = {u ∈V1 ∪V2|π(u) =�,π−1(u) �= �}.

(iv) ↔ (π) is the set of nodes that are matched in both graphs G1,2, but wrongly, i.e.,

↔ (π) = {u ∈V1 ∪V2|π(u) �= {u,�},π−1(u) �= �}.

(v) ×(π) is the set of nodes which are null in both graphs G1,2 under the matching π, i.e.,

×(π) = {u ∈V1 ∪V2|π(u) =�,π−1(u) =�}.

In the matching π0 all the nodes in V0 are matched correctly and the other nodes are left

unmatched; therefore, only the two sets �(π0) and ×(π0) are nonempty. The pairwise inter-

sections of the partitions under the two matchings π and π0 are defined in Table 2.1. For an

example of these pairwise intersections, see Table 2.2.

������π0

π � ↔ → ← ×

� C W L R S

× � � Q X U

Table 2.1 – Partition of the nodes in V1∪V2 into eight sets based on the pairwise intersections
of partition of the nodes in V1 ∪V2 under π and π0.

2.1.3 Edge Partition

We now partition the set of pairs based on the classes of nodes which are defined in Table 2.1.

A pair e contributes equally to Δπ and Δπ0 if it is matched in the same way by π and π0 (i.e.,

π0(e) =π(e)), or if it is null in both. The following sets are those pairs that contribute equally

to Δπ and Δπ0 , and consequently, their contributions will cancel out in the difference Δπ−Δπ0 :

24

2.1. Alignment of Networks Under Partial Node Overlap

������π0

π � ↔ → ← ×

� u1,u2 u3,u4,u5,u6 � u7 �
× � � u8,u9 u12 u10,u11

Table 2.2 – Example of partition of the nodes V1 ∪V2 of the graphs G1,2 from Fig. 2.1.

1. Pairs between the nodes in the set C . These pairs are present in both graphs and their

endpoints are matched correctly by both π and π0. For example, in Fig. 2.1, the pair

(u1,u2) is matched to the same pair by matchings π0 and π.

2. Pairs in G1 between U ∩V1 (i.e., the nodes in V1 which are unmatched by π and not

sampled in V2) and V1 contribute equally to both Ψπ and Ψπ0 . Similarly, for the pairs in

(U ∩V2)×V2 in the graph G2. Note that these pairs are present in only one of the graphs.

As an example, in Fig. 2.1, the pairs (u10,u11), (u10,u12) and (u10,u2) in the graph G2 are

matched neither under π nor under π0.

3. Pairs e between Q and S ∪R in the graph G1 contribute equally to both Ψπ and Ψπ0

by a term ψ1(e). Similarly, the pairs between X and S ∪L in the graph G2 contribute

a term ψ2(e) under both matchings π and π0. Note that these pairs are present only in

one of the graphs. In Fig. 2.1, (u7,u8) and (u7,u9) provide two examples of pairs in this

class from graph G1.

Let Zπ and Zπ0 denote the contribution of these pairs to Δπ and Δπ0 , respectively. By defi-

nition Zπ = Zπ0 . Call E the set of all the remaining pairs that are matched differently under

π and π0. Note that E depends on both matchings π and π0. As for each instance of the

BiG(n, p; t , s) model the matching π0 is fixed, for simplicity of notation we drop the depen-

dence on π0 and define Xπ =Δπ−Zπ and Yπ =Δπ0 −Zπ0 . Here Xπ and Yπ represent the sums

of indicator terms over the contribution of pairs in the set E under the matchings π and π0,

respectively.

To wrap up, we have

Δπ−Δπ0 = (Xπ+Zπ)− (Yπ+Zπ0) = Xπ−Yπ. (2.5)

The next step of the proof is to find a lower-bound for Xπ − Yπ. In order to compute the

contributions of pairs from the set E to different indicator terms in Xπ and Yπ, we partition

this set into the following subclasses:

1. The set of pairs present in only one of the graphs G1,2 and matched by π. Note that at

least one of the endpoints of these pairs is not sampled in either V1,2. Therefore, these

pairs are not matched by π0. These pairs are divided into the two following sets:

25

Chapter 2. Network Alignment

• E�,M∗ = {(i , j) ∈ (Q×V1(π))
}

is the set of pairs that contribute ψ1(e) to Ψ1
π0

and

φ(e) to Φπ.

• E�,∗M = {(i , j) ∈ (X ×V2(π))} is the set of pairs that contribute ψ2(e) to Ψ2
π0

and

φ
(
π−1(e)

)
to Φπ.

For example, in Fig. 2.1, we have (u3,u8) ∈ E�,M∗ and (u1,u12) ∈ E�,∗M .

2. The set of pairs present in both graphs G1,2 but unmatched by π in at least one of the

graphs. These pairs can be further partitioned into three subclasses:

• EM ,M� = {(i , j) ∈L × (C ∪W ∪L)
}

is the set of pairs that are matched in G1 and

unmatched in G2. A pair e ∈ EM ,M� contributes to a φ(e) to Φπ0 and Φπ, and ψ2(e)

to Ψ2
π.

• EM ,�M = {(i , j) ∈ R × (C ∪W ∪R)} is the set of pairs that are matched in G2 and

unmatched in G1.

• EM ,�� = {(i , j) ∈ (S ×V0)
⋃

(L ×R)} is the set of pairs that are unmatched by π in

both graphs. These pairs contribute to a φ(e) to Φπ0 , and ψ2(e) to both Ψ1
π and

Ψ2
π.

In Fig. 2.1, the unmatched pair (u4,u7) in G1 is matched by π only in G2, i.e., (u4,u7) ∈
EM ,�M .

3. EM ,M M = {(i , j) ∈ W × (C ∪W)} is the set of pairs that are present and matched, but

wrongly, by π in both graphs G1,2. These pairs are matched differently by π and π0. The

pairs in the set EM ,M M contribute to a φ(e) in Φπ0 , and contribute to the terms φ(e)

and φ
(
π−1(e)

)
in Φπ. For example, in Fig. 2.1, the pairs (u1,u3) and (u4,u5) which are

matched differently by π0 and π belong to the set EM ,M M .

One observation is that there are small subset of pairs that are present and matched but

do not conribute to Δπ−Δπ0 . Indeed, transpositions3 in π contribute equally to both

Φπ and Φπ0 . We have at most �k/2� pairs of this type, because the number of wrongly

matched couples is k. To be precise, we do not consider these pairs in the set EM ,M M .

Now, let us define the sizes of the described sets as follows: m1 = |E�,M∗ ∪ E�,∗M |, m2,1 =
|EM ,M� ∪EM ,�M |, m2,2 = |EM ,��|, m2 = m2,1 +m2,2 and m3 = |EM ,M M |. Also, we define the

total size of the set of contributing pairs m = |E | = m1 +m2 +m3.

Indicator Terms and Expected Values

In Lemma 2.4, the two terms Xπ and Yπ are expressed as sums of indicator terms (Bernoulli

random variables) over the pairs in E .

3A pair (u, v) is a transposition under π if π(u) = v and π(v) = u.

26

2.1. Alignment of Networks Under Partial Node Overlap

Lemma 2.4. For Xπ we have:

Xπ = ∑
e∈E�,M∗∪EM ,M�∪EM ,M M

φ(e)+α

[∑
e∈EM ,�M∪EM ,��

ψ1(e)+ ∑
e∈EM ,M�∪EM ,��

ψ2(e)

]
, (2.6)

where φ(e) ∼ Be
(
2ps(1−ps)

)
and ψ1(e),ψ2(e) ∼ Be(ps). For Yπ we have:

Yπ = ∑
e∈EM ,M�∪EM ,�M∪EM ,��∪EM ,M M

φ(e)+α

[∑
e∈E�,M∗

ψ1(e)+ ∑
e∈E�,∗M

ψ2(e)

]
, (2.7)

where φ(e) ∼ Be
(
2ps(1− s)

)
, and ψ1(e),ψ2(e) ∼ Be(ps).

Proof. First, note that E�,M∗ ∪ EM ,M� ∪ EM ,M M = E ∩V 2
1 (π) is the set of all matched pairs

from G1 which are in the set E . Remember that by (2.5) the term Xπ is the sum of indicators

in Δπ over pairs in the set E . Thus, we get the first term in the right hand side of (2.6). Each

pair e (same is true for π(e)) exists in each of the graphs G1,2 with probability ps; therefore

φ(e) = Be
(
2ps(1−ps)

)
. Second, we compute the number of terms ψ1,2(e) that contribute to

Xπ. These are (i) the pairs of type EM ,M�∪EM ,�M that contribute to either Ψ1
π or Ψ2

π, and (ii)

the pairs of type EM ,�� that contribute to both Ψ1
π and Ψ2

π. The probability of a pair e to have

an actual edge e ∈ E1,2 is ps, hence ψ1(e),ψ2(e) ∼ Be(ps).

Yπ is the contribution of the pairs in the set E to Δπ0 . For each pair e matched by π0 and π,

e ∈ EM ,M�∪EM ,�M ∪EM ,��∪EM ,M M there is an indicator φ(e) in Yπ. Note that this φ(e) is an

indicator of the event that e is sampled in G1 and π(e) = e is not sampled in G2 (or vice versa).

Thus φ(e) = Be
(
2ps(1− s)

)
. The argument for ψ1(e),ψ2(e) is the same as for Xπ. This proves

the second part (2.7).

In the next corollary, we compute the expected values of Xπ and Yπ.

Corollary 2.5. For Xπ and Yπ we have:

E[Xπ] =
(
m3 +

m1 +m2,1

2

)
2ps(1−ps)+αm2,1ps +2αm2,2ps.

E[Yπ] = (m2 +m3)2ps(1− s)+αm1ps.

Proof. Note that the term φ(e), which is defined as φ(e) = |1{e∈E1(π)} − 1{π(e)∈E2(π)}|, depends

on pairs e and π(e) from the graphs G1 and G2, respectively. Also, as the matching π is an

injective function, each pair e ∈ V 2
1 can be matched to at most one pair from V 2

2 . This is

generally true for pairs e ∈ V 2
2 from G2. Therefore, the number of pairs from graph G1 which

contribute to the {φ(e)} terms is equal to the number of pairs from graph G2 which contribute

27

Chapter 2. Network Alignment

to these terms, i.e., |E�,M∗ ∪EM ,M� ∪EM ,M M | = |E�,∗M ∪EM ,�M ∪EM ,M M |. Remember that

|E�,M∗ ∪E�,∗M | = m1 and |EM ,M� ∪EM ,�M | = m2. To sum up, number of {φ(e)} terms which

contribute to Xπ (defined precisely in Lemma 2.4) is m3 + m1+m2,1

2 . The rest comes directly

from the definitions of m1,m2 and m3.

In the following lemma, we prove that the expected value for Xπ is larger than the expected

value of Yπ.

Lemma 2.6. If 1−ps >α> 1− s, then E[Xπ] > E[Yπ].

Proof. From Corollary 2.5, we have E[Xπ] > ps
(
(1−ps)m1 +2αm2 +2(1−ps)m3

) > E[Yπ] if

the following inequalities hold: (i) (1−ps) >α, (ii) α> (1− s), and (ii) (1−ps) > (1− s). Note

that if the first two inequalities hold, then the third inequality holds.

2.1.4 Correlation Structure

Lemma 2.6 guarantees that for any π �= π0, E[Δπ] > E[Δπ0]. In the following, we demonstrate

that Xπ and Yπ, as sums of correlated Bernoulli random variables, concentrate around their

means.

Due to the edge sampling process, the presence of edges between the nodes in V0 is corre-

lated in the two graphs G1 and G2. For example, consider an event φ(e) that is a function

of the pairs e ∈ G1 and π(e) ∈ G2. Furthermore, assume π(e) is sampled and matched in the

graph G1. Then, the presence of π(e) in G1 is correlated with the presence of π(e) in G2. There-

fore, the two terms φ(e) and φ (π(e)) are correlated. By the same lines of reasoning, if π2(e)

is sampled and matched in G1, the two terms φ (π(e)) and φ
(
π2(e)

)
are correlated, and so on.

Thus, terms Φπ and Ψπ are the sums of correlated Bernoulli random variables.

To address these correlations, we first define chains and cycles of correlated pairs under the

matching π. We call a sequence of different pairs (e1, · · · ,ei · · · ,eq) a chain if (i) π−1(e1) = �,

i.e., e1 is either unmatched or not sampled in G2; (ii) π(eq) = �, i.e., eq is either unmatched

or not sampled in G1; and (iii) π(ei) = ei+1 for 1 ≤ i < q , i.e., each pair in a chain is the

image of the previous pair in that chain under the matching π. In Fig. 2.2b, the sequence

((u3,u9), (u5,u6), (u4,u7)) is an example of a chain of length three. Also, we call a sequence of

different pairs (e1, · · · ,ei , · · · ,eq) a cycle if (i) π(ei) = ei+1 for 1 ≤ i < q ; and (ii) π(eq) = e1. As an

example, see the cycle ((u2,u3), (u2,u5), (u2,u4)) in Fig. 2.3a.

Following the discussion above, we state Lemma 2.7: In Part 1 of the lemma we (i) partition

all the pairs of E into chains and cycles; and (ii) demonstrate contributions of these pairs

to different indicator terms. In Part 2 we characterize correlations between the terms in the

induced sequence of indicators.

Lemma 2.7. Part 1:

28

2.1. Alignment of Networks Under Partial Node Overlap

e

(u8, u9)

π(e)

(u12, u6)

φ(e)

(a)

e

(u3, u9)

π(e)

(u5, u6)

π2(e)

(u4, u7)

ψ1(π(e))

φ(π(e))φ(e)

(b)

Figure 2.2 – (a) Example of a chain with length one from the matching π from Fig. 2.1. (b)
Example of a chain with length three from the matching π from Fig. 2.1. The term ψ1 (π(e))
corresponds to the contribution of the pair (u2,u6) in the graph G1. In this chain, the term
φ (π(e)) is correlated with the two terms φ(e) and ψ1 (π(e)).

e

(u2, u3)

π(e)

(u2, u5)

π2(e)

(u2, u4)

φ(π(e))

φ(e)

φ(π2(e))

(a)

e

(u3, u5)

π(e)

(u5, u4)

π2(e)

(u4, u3)

φ(π(e))

φ(e)

φ(π2(e))

(b)

Figure 2.3 – Examples of two cycles from the matching π from Fig. 2.1. The pairs generate a
cycle of dependent terms. In these cycles, the terms φ(e),φ (π(e)) and φ

(
π2(e)

)
are correlated

pairwise.

All the pairs in the set E can be partitioned into chains and cycles, where they induce sequences

of indicator terms as follows:

For each cycle (e1, · · · ,ei , · · ·eq),1 ≤ i < q, its pairs contribute to the induced sequence of indi-

cator terms
(
φ(e1), · · ·φ(ei), · · ·φ(eq)

)
.

For each chain (e1, · · ·ei , · · ·eq),1 ≤ i < q, its pairs contribute to one of the following five types

of induced sequences of indicator terms:

1. e1 ∈ E�,M∗ and eq ∈ E�,∗M , these pairs contribute to the induced sequence of indicator

terms
(
φ(e1), · · ·φ(ei), · · ·φ(eq−1)

)
.

2. e1 ∈ E�,M∗ and eq ∈ EM ,�M , these pairs contribute to the induced sequence of indicator

terms
(
φ(e1), · · ·φ(ei), · · ·φ(eq−1),ψ1(eq)

)
.

3. e1 ∈ EM ,M� and eq ∈ E�,∗M , these pairs contribute to the induced sequence of indicator

terms
(
ψ2(e1),φ(e1), · · ·φ(ei), · · ·φ(eq−1)

)
.

4. e1 ∈ EM ,M� and eq ∈ EM ,�M , these pairs contribute to the induced sequence of indicator

terms
(
ψ2(e1),φ(e1), · · ·φ(ei), · · ·φ(eq−1),ψ1(eq)

)
.

29

Chapter 2. Network Alignment

5. e1 ∈ EM ,�� is a specific case where we have a chain of length one. The pair e1 contributes

to the induced sequence of indicator terms
(
ψ2(e1),ψ1(e1)

)
.

Part 2:

For sequences of induced indicator terms from partitions in Part 1, we have

• All the induced indicators φ/ψ associated with different chains and cycles are mutually

independent.

• For a chain, each indicator φ/ψ is correlated with at most the preceding and subsequent

indicators in the induced sequence.

• For a cycle, each indicator φ/ψ is correlated with at most the preceding and subsequent

indicators in the induced sequence, and φ(e1) is correlated with φ(eq).

Proof. We prove that the set chains and cycles correctly partition the pairs in set E , and we

characterize the dependence structure of the indicators within this partition.

First, note that each pair e ∈ E�,M∗ is present only in G1, thus it contributes only to one φ(e)

indicator term. Consider the chain (e,π(e), . . .πc (e)) when c is the smallest number such that

πc+1(e) is null. This occurs in one of the two following cases:

• if πc (e) ∈ E�,∗M then πc (e) is matched and exists only in G2. Therefore, this chain of

pairs induces the sequence
(
φ(e), · · · ,φ

(
πc−1(e)

))
of indicator terms. Fig. 2.2a is an ex-

ample of such a chain under the matching π from Fig. 2.1.

• if πc (e) ∈ EM ,�M then πc (e) exists in both graphs but is matched only in G2. Therefore,

this chain induces the sequence
(
φ(e), · · · ,ψ1 (πc (e))

)
of indicator terms. Fig. 2.2b is an

example of such a chain under the matching π from Fig. 2.1.

Second, each pair e ∈ EM ,M� is present in both G1 and G2, but is matched only in G1, thus it

contributes to the terms φ(e) and ψ2(e). Consider the chain (e,π(e), . . .πc (e)) when c is the

smallest number such that πc+1(e) is null. This case happens in one of the two following

cases:

• if πc (e) ∈ E�,∗M , then πc (e) is matched and exists only in the graph G2. Therefore, this

chain induces the sequence
(
ψ2(e),φ(e), · · · ,φ

(
πc−1(e)

))
of indicator terms.

• if πc (e) ∈ EM ,�M , then πc (e) exists in both graphs but is matched only in the graph

G2. Therefore, this chain induces the sequence
(
ψ2(e),φ(e), · · · ,ψ1 (πc (e))

)
of indicator

terms.

Now we formulate a cycle/chain partition process as follows:

30

2.1. Alignment of Networks Under Partial Node Overlap

• Chain partition: First, for each pair, we build a chain as described above; second, for

each pair e ∈ EM ,M� we build another chain; third, for each pair of type e ∈ EM ,�� we

build another chain (ψ1(e),ψ2(e)). Note that the first two types of chains are duals of

each other: For each chain of pairs that ends with a pair e ∈ E�,∗M or e ∈ EM ,�M , we can

build backwards the same chain of pairs; starting from e and applying π−1 instead of π.

Based on this observation, we compute that there are m1 + m2 pairs that start or end a

chain.

• Cycle partition: The fourth step is to partition the remaining, unvisited pairs that all

have type EM ,M M (note that they are sampled and matched by π in both graphs). For

each unvisited pair e, the unvisited pair π(e) also has type EM ,M M (otherwise π(e) and

e belong to some chain hence, e is visited), thus the pairs e and π(e) are not null. To

build a cycle, we start with a pair e and build the sequence (e, · · · ,πc (e)), where c is the

smallest number such that πc (e) = e. We continue until there are no more unvisited

pairs.

Note that pairs induced by transpositions generate cycles of length two, i.e., for a pair

e = (u, v) with π(u) = v and π(v) = v the cycle
(
φ(e),φ(π(e)

)
is generated where π2(e) =

e.

Note that each indicator of a pair belongs to at most one chain or cycle, because π is an injec-

tive function from V 2
1 to V 2

2 . Fig. 2.3 provides examples of cycles of pairs under the matching

π from Fig. 2.1.

Remember that we defined the indicator terms as follows: (i) φ(e) = |1{e∈E1(π)} − 1{π(e)∈E2(π)}|;
(ii) ψ1(e) = 1{e∈E1\E1(π)}; and (iii) ψ2(e) = 1{e∈E2\E2(π)}. From the definition, it is clear that for two

node pairs ei �= e j , we have ψ1(ei) ⊥⊥ψ2(e j). Also, if e j ∉ {ei ,π(ei)}, then φ(ei) ⊥⊥ψ1(e j),ψ2(e j).

Further, if e j ,π(e j) ∉ {ei ,π(ei)}, then φ(ei) ⊥⊥φ(e j).

Following these independence arguments, we can simply conclude that indicators associ-

ated with different chains and cycles are mutually independent, and these indicators are cor-

related only with their precedent and subsequent terms in induced sequences.

2.1.5 Marking indicators

In Lemma 2.7, we defined induced sequences of indicators terms and characterized their

correlation. We showed that each term φ(e) (or ψ1,2(e)) is correlated with at most two of its

neighbors (e.g., see Figs. 2.2 and 2.3). Now, we associate a mark 0 or 1 with all the induced

φ(e) and ψ1,2(e) terms by alternating marks in such a way that almost all the indicators with

the same mark are independent. This is not generally true for the terms at start and end of

cycles with odd number of indicators: although they have the same mark, but they are not

independent (we deal with these separately, see below). Another requirement is that for each

31

Chapter 2. Network Alignment

type of indicator, i.e., (i) indicators φ(e) and (ii) start/end indicators ψ1,2(e) at least a constant

fraction of indicators should be marked with 0 and a constant fraction of them with 1.

Based on this marking strategy, we can split the terms which contribute to Xπ into two sums

of independent random variables and derive concentration bounds for each sum.

For each sequence of indicators
(
φ(e1), · · ·φ(ei), · · ·φ(eq)

)
which are induced by a cycle, we

start with a pair φ(e1) and mark it with m
(
φ(e1)

)= 0. Next, we mark φ(e2) with 1, φ(e3) with 0

and so on. We continue the next sequence with a new mark (if we ended with 1 then we start

with 0 and vice versa) until there are no more cycles with unmarked indicators.

For sequences of indicators which are induced by chains, the marking is slightly more compli-

cated. First, note that we can iteratively mark a sequence from the beginning or from the end.

Second, we remind the reader that all the indicators induced by e = e1/eq beginning/end of

the chain are either φ(e) for e ∈ E�,M∗∪E�,∗M or ψ(e) for e ∈ EM ,M�∪EM ,�M ∪EM ,��. Now, let

us mark all the sequences of indicators which are induced by chains while doing the following

four steps iteratively:

1. Take a sequence that starts/ends with an indicatorφ(e) and markφ(e) with m
(
φ(e)
)= 0

next we mark φ (π(e)) (or φ
(
π−1(e)

)
) with 1 , φ

(
π2(e)

)
with 0 and so on.

2. Take a sequence that starts/ends with an indicator ψ(e) and mark ψ(e) with m
(
ψ(e)

)=
0 next we mark φ (π(e)) (or φ

(
π−1(e)

)
) with 1, φ

(
π2(e)

)
with 0 and so on.

3. Take a sequence that starts/ends with an indicator φ(e) and markφ(e) with m
(
φ(e)
)= 1

next we mark φ (π(e)) (or φ
(
π−1(e)

)
) with 0 , φ

(
π2(e)

)
with 1 and so on.

4. Take a sequence that starts/ends with an indicator ψ(e) and mark ψ(e) with m
(
ψ(e)

)=
1 next we mark φ (π(e)) (or φ

(
π−1(e)

)
) with 0, φ

(
π2(e)

)
with 1 and so on.

If we do not have more sequences that starts/ends with an indicator of one of the types, we

continue marking the remaining sequences alternating a start mark with 0 or 1.

Lemma 2.8. The proposed strategy of marking the indicators {φ(e)∪ψ1,2(e)} with 0/1 marks

guarantees that

1. at least 1
3 indicators of pairs {E�,M∗ ∪EM ,M� ∪EM ,M M } gets mark 0 and at least 1

3 gets

mark 1.

2. at least 1
6 indicators {ψ1(e)}, {ψ2(e)} of sets of pairs {EM ,�M ∪EM ,��}, {EM ,M� ∪EM ,��}

respectively gets mark 0 and at least 1
6 gets mark 1.

3. if m
(
φ(e1)

) = m
(
φ(e2)

)
and e1 �= πc (e2) for some c ≥ 0, then the indicators φ(e1) and

φ(e2) are independent. The same is true for ψ1,2 indicators.

32

2.1. Alignment of Networks Under Partial Node Overlap

Proof. We start by proving the second clause of the lemma. At each iteration, out of eight

considered start/end indicators (four starts and four ends) at least two and at most six have

type ψ. Out of these six, at least one is marked with 0 at step two and at least one with 1 at step

four (which exactly amounts to at least 1
6 of the considered subset). If we are in the case of

no more chains starting/ending from an indicator φ, we mark every second chain-start with

0. In this case, at least 1
4 of indicators of type ψ is marked with 0. The same argument is true

for mark 1.

Now we prove the first clause. Consider the indicators {φ(e)} of pairs {E�,M∗∪EM ,M�∪EM ,M M }.

For the indicators induced by cycles, we start marking with 0, and alternating 0 and 1. Thus

approximately (depending if we stopped at 0 or 1) half of the pairs is marked with 0 and the

rest is marked with 1. For the chains, at least 1
6 start/end indicators of type φ is marked with

1 and the same for mark 0 (The argument here is the same as for the indicators of the pairs of

type ψ.). For internal indicators, as we alternate the start counter at each iteration, at least 1
3

of the indicators is marked with 0 and at least 1
3 of the indicators is marked with 1.

The final statement of the lemma follows directly from the definition of the chains and cycles.

For simplicity of notation, we write m(e) = 0/1 meaning m
(
φ(e)
)= 0/1 or m

(
ψ(e)

)= 0/1.

Using this marking algorithm, we split Xπ into two sums: Xπ = S1 +S2, such that

S1 = ∑
e∈E�,M∗∪EM ,M�∪EM ,M M

m(e)=0

φ(e)+α

⎡
⎢⎣ ∑

e∈EM ,�M∪EM ,��
m(e)=0

ψ1(e)+ ∑
e∈EM ,M�∪EM ,��

m(e)=0

ψ2(e)

⎤
⎥⎦

and

S2 = ∑
e∈E�,M∗∪EM ,M�∪EM ,M M

m(e)=1

φ(e)+α

⎡
⎢⎣ ∑

e∈EM ,�M∪EM ,��
m(e)=1

ψ1(e)+ ∑
e∈EM ,M�∪EM ,��

m(e)=1

ψ2(e)

⎤
⎥⎦

Lemma 2.9. We have

E[S1] ≥ E[Xπ]

6
and E[S2] ≥ E[Xπ]

6
.

Proof. This follows directly from Lemma 2.8 and the linearity of expectation.

33

Chapter 2. Network Alignment

2.1.6 Concentration

We define μ1 = E[Xπ] and μ2 = E[Yπ] and we formulate concentration results for Xπ and Yπ.

(2.5).

Lemma 2.10.

P[Xπ < μ1 +μ2

2
] ≤ 2exp(− (μ1 −μ2)2

96μ1
)

P[Yπ > μ1 +μ2

2
] ≤ exp(− (μ1 −μ2)2

12μ1
)

Proof. As Xπ = S1 +S2, then

P[Xπ < (1−ε)μ1] ≤P
[
S1 < (1−ε)E[S1]

⋃
S2 < (1−ε)E[S2]

]
≤P [S1 < (1−ε)E[S1]]+P [S2 < (1−ε)E[S2]] .

We prove that P[S1 < (1−ε)E[S1]) (the proof for S2 is similar).

From the result of Lemma 2.8, we know that all the terms in S1 are independent except for

those that are the beginning and end of cycles with odd lengths (i.e., a cycle where the be-

ginning and the end indicators have the same mark). For those cycles φ(e1), . . . ,φ(ec), we in-

troduce a new variable We1 = φ(e1)+φ(ec)
2 and for the rest of the indicators we define We = φ(e)

2 .

Note that if W =∑Wei , then 2W = S1 and all We terms are independent. Hence,

P [S1 < (1−ε)E[S1]] =P[∑Wi < (1−ε)E[W]
]

≤exp

(
−E[W]ε2

2

)
(by a Chernoff-Hoeffding bound A.1)

≤exp

(
−E[S1]ε2

4

)
≤ exp

(
−E[Xπ]ε2

24

)
(by Lemma 2.9)

To sum up, we put ε= μ1−μ2

2μ1
, note that μ1+μ2

2 =μ1 − μ1−μ2

2 =μ1(1− μ1−μ2

2μ1
). For μ2 we can write

similarly μ1+μ2

2 =μ2(1+ μ1−μ2

2μ1
), and obtain the bound for Xπ.

The result for Yπ follows directly from a Chernoff bound because all the terms are indepen-

dent.

34

2.1. Alignment of Networks Under Partial Node Overlap

Next, we estimate P [Xπ−Yπ ≤ 0] based on the concentration results of Xπ and Yπ.

P [Xπ−Yπ ≤ 0] ≤P
[

Xπ < μ1 +μ2

2

]
+P
[

Yπ > μ1 +μ2

2

]
. (2.8)

We lower-bound (μ1−μ2)2

μ1
to estimate (2.8) as follows. Define

α′ = min
((

1−ps −α), (α− (1− s)
))

.

From Corollary 2.5 we have μ1 −μ2 ≥α′ps(m1 +m2 +m3) ≥α′mps.

Also, note that μ1 ≤ 2mps and μ2 ≤ 2mps. Hence,

(μ1 −μ2)2

μ1
≥α′2 mps

2

To sum up, we have

P[Xπ−Yπ ≤ 0] ≤ 3exp
(
−α′2 mps

192

)
. (2.9)

Thus the expected number of matchings π �=π0 such that Δπ ≤Δπ0 is

E(S) ≤∑
k,l

|Πl
k |P[Xπ−Yπ ≤ 0] ≤∑

k,l
|Πl

k |3exp

(
− α′2

192
mps

)
.

To finalize our proof, it remains to find a lower bound for m (as the number of node pairs in

the set E) and an upper bound for |Πl
k |.

Lemma 2.11. We have

1. if k ≤ n0 − l , then m > (n0−l)(n0−2)
2 and |Πl

k | < n3(n0−l).

2. if k > n0 − l , then m > k(n0−2)
2 and |Πl

k | < n3k .

Proof. First, we upper-bound the number of matchings in the set Πl
k . Assume we first choose

l nodes from n0 nodes in the set V0 that are matched correctly. Then, we choose k other nodes

35

Chapter 2. Network Alignment

from the remaining nodes of V1 and V2. Also, there are at most k ! possible matchings between

these k chosen nodes. Therefore,

|Πl
k | ≤
(

n0

l

)(
n1 − l

k

)(
n2 − l

k

)
k ! ≤ nn0−l

0 nk
1 nk

2 . (2.10)

Based on the value of k we consider two different cases:

• if k ≤ n0−l , then |Πl
k | < n3(n0−l). By definition, m = |E | is the number of pairs which are

matched differently by π and π0. This includes the set of pairs between any sampled

node v1 ∈ V0 and any node v2 ∈ V0 matched differently by π and π0. Note that these

pairs are all the present pairs and there are m2 +m3 of them. Also, we should consider

the pairs that contribute equally to both terms due to transpositions. Thus we have

m ≥
(

n0 − l

2

)
+ (n0 − l)l −�k

2
� ≥ (n0 − l)(n0 −2)

2
.

• if k > n0− l , then |Πl
k | < n3k . Here note that the set E includes all the pairs between any

sampled node v1 ∈ V0 and any node v2 ∈ V1(π)∪V2(π) which are matched differently

by π and π0. Again, we should consider transpositions. We compute the number of

pairs matched by π as m ≥ m3 +m1 ≥ (k2)+kl −�k
2 �. After that, if k ≥ n0, we have the

statement immediately; otherwise, we use l > n0 −k, and obtain

m ≥
(

k

2

)
+k(n0 −k)−�k

2
� ≥ k(n0 −2)

2
.

Now, we find an upper bound for E[S] based on the above cases.

(1) If k ≤ n0 − l : we define i = n0 − l . Using the facts that m > (n0−l)(n0−2)
2 , k ≤ n and |Πl

k | <
n3(n0−l), we obtain

E[S] ≤∑
k,l

3exp

(
i

(
3logn −ps

α′2

384
(n0 −2)

))

≤
n0∑

i=1
3exp

(
(3i +1)logn − i ps

α′2

384
(n0 −2)

)
.

36

2.1. Alignment of Networks Under Partial Node Overlap

(2) If k > n0 − l : using the facts that m > k(n0−2)
2 and |Πl

k | < n3k , we obtain

E[S] ≤∑
k,l

3exp

(
k

(
3logn −ps

α′2

384
(n0 −2)

))

≤
n∑

k=1
3exp

(
(3k +1)logn −kps

α′2

384
(n0 −2)

)
.

The geometric sum goes to 0 if the first term goes to 0. Thus given that ps = 1536
α′2

logn+ω(1)
n0

, we

obtain E[S] → 0. We obtain n0 = nt 2 (1+o(1)) from a Chernoff bound and get ps = 1536
α′2

logn+ω(1)
nt 2 .4

To conclude the proof of Theorem 2.3, we choose α= (1−ps)+(1−s)
2 = 1− s(1+p)

2 ; then α′ = s(1+p)
2

and we derive the final bound 6144logn+ω(1)
ns3t 2 = p.

Summary

We formulated conditions on the master-graph density p, and proved that within these con-

ditions the true partial matching between the node sets of the two graphs can be inferred

with zero error. The conditions on the node and edge similarity parameters t and s are quite

benign: essentially, the average node degree has to grow as ω
(

log(n)
s2t

)
.

We take an information-theoretic perspective in that we ignore computational limitations

and identify sufficient conditions such that a combinatorial optimization problem yields the

correct answer with high probability. In the next section we discuss the question of efficient

algorithm. The interesting result about the alignment was given at [36], it addresses a network

alignment under full node-overlap, closing the gap between feasibility and a converse and

improving the bound by a factor s. The question of extending this result to a partial node-

overlap remains open and is a natural following step.

4For any α ∈ [1− s,1−ps].

37

Chapter 2. Network Alignment

2.2 On the Performance of Percolation Graph Matching

In this section we propose an algorithm for a network alignment with a side information.

Consider two networks G1 and G2 sampled from BiG(n, p; s) model. The algorithm matches

node pairs in the two graphs G1,2 starting with a preselected seed-set and iteratively expands

this set, by identifying additional pairs of nodes i ∈G1, j ∈G2 that can plausibly be matched.

Whether (i , j) is a plausible match is computed from the positions of i and j , with respect

to the known matched nodes. Our main theoretical contribution in this section is to identify

conditions on the model parameters (n, p, s) and on the size of the seed set a0 (a small set of

initially pre-matched pairs of nodes) such that percolation graph matching (PGM) algorithm

succeeds with high probability. For this, we rely on recent advances in the analysis of boot-

strap percolation in the G(n, p) random graph by Janson et al. [55]. We briefly summarize

their model and key results here.

2.2.1 Bootstrap Percolation Theory

Janson et al. proposed a method for the analysis of infection spread in a network and estab-

lished several results about the process. The described bootstrap percolation algorithm starts

with an initially infected set and, at each time step, it takes exactly one seed and increases the

infection mark counter of its neighbours.

Percolation theory is the study of the presence of large (or infinite) clusters in random envi-

ronments, such as lattices with missing nodes or links, or random graphs. In bootstrap per-

colation, we study systems where a node is part of a cluster only if it has at least r neighbors

that belong to the cluster. This more restrictive notion of inclusion can capture, for example,

the spread of influence through a social network, where an individual is convinced of an idea

only if she hears this idea from several acquaintances.

In a seminal paper [55], Janson et al. succeed in analyzing this process precisely for the Erdős-

Rényi (G(n, p)) random graph. They stated the following results for G(n, p) infection spread

with a threshold r . For given r , n, and p define,

ac := (
1− 1

r

)((r −1)!

npr

)1/(r−1)
, (2.11)

(2.12)

They analyzed the process and estimated the size of the final active/infected set a∗ depend-

ing on the size of the initially active set a0.

Theorem 2.12 (Janson [55]). Suppose r ≥ 2 and n−1 � p � n−1/r .

38

2.2. On the Performance of Percolation Graph Matching

• If a0/ac → α < 1, then a∗ = r
r−1 (φ(α)+o(1))ac w.h.p., where φ(α) is the unique root in

[0,1] of

rφ(α)−φ(α)r = (r −1)α. (2.13)

[For r = 2, φ(α) = 1−�
1−α.]

• If a0/ac ≥ α > 1, then a∗ = n − o(n) w.h.p.; in other words, w.h.p. the process almost

percolates. 5

We use this theorem to analyze the percolation-based matching algorithm in the BiG(n, p; s)

graph model. Although the criterion for propagation is the same in the graph matching pro-

cess and in the bootstrap percolation (≥ r neighbors infected), the objects of interest in our

algorithm are pairs of nodes rather than individual nodes as in the Janson et al. model. In

other words, in our algorithm, a node pair is matched if it has at least r neighboring node

pairs that are already matched. See the details of the algorithm in the next section.

One key result in the section is establishing an equivalence between the percolation process

over node pairs for matching and bootstrap percolation, which makes the machinery of [55]

available to analyze this process. One subtlety concerns matching errors: They make the

process hard to analyze; and they can propagate, thus reducing the quality of the matching.

To conclude that the algorithm is correct, we need to show two facts: (i) that the matching

process percolates and touches “most” nodes, and (ii) that the algorithm matches nodes cor-

rectly.

2.2.2 Percolation Graph Matching Algorithm

We now describe the graph-matching algorithm that addresses the network alignment prob-

lem with side information, whose analysis is the main contribution of this section. The

matching algorithm has access only to the structure of the two graphs, i.e., it sees unlabeled

versions of G1,2. Its purpose is to find a correct matching π0

We now describe our PGM algorithm more formally. The input of the algorithm is the follow-

ing:

• Two graphs G1 = (V1,E1) and G2 = (V2,E2);

• A seed set A0 of size a0, consisting of tuples (i , i) of known pairs of matched nodes.

The algorithm we propose and analyze simply matches any two nodes with at least r neigh-

boring pairs that are already matched. An equivalent description emphasizes the incremen-

tal nature of the process: we associate with every pair of nodes (i ∈V1, j ∈V2) a count of marks

5For larger value of p the process percolates to the full set w.h.p.

39

Chapter 2. Network Alignment

Mi , j . At each time step t , the algorithm uses exactly one unused but already matched pair

(it , jt). This pair adds one mark to each neighboring pair, i.e., to every pair in N1(it)×N2(jt),

where N1,2(i) is the neighborhood of the node i in V1,2. As soon as any pair gets r marks, it is

added to the current map; if for some node i there are several nodes j such that all (i , j) have

r marks, one pair is picked at random. The process iterates until there are no more unused

pairs.

The set A(t) consists of the map built until time t , and the set Z (t) ⊂ A(t) consists of matched

pairs that have been used until t . We construct these sets in the following way:

• At time t = 0, A(0) = A0 and Z (0) =�,

• At time step t the algorithm randomly selects a pair (it , jt) ∈ A(t −1)\ Z (t −1) and adds

one credit mark to all pairs (i ′, j ′) ∈V1 ×V2 such that there exist (it , i ′) ∈ E1 and (jt , j ′) ∈
E2 (cf. Fig. 2.4).

If a pair (i ′, j ′) has more than r marks then it is added to the map A(t); furthermore, all

other candidates (i ′′, j ′) and (i ′, j ′′) are permanently removed from consideration.

Let N (A(t)) be the set of pairs with r marks, which are added to the map at time t .

Then

A(t) = A(t −1)∪N (A(t))

and

Z (t) = Z (t −1)∪ {(it , jt)}.

Note that a(t) ≥ z(t) = t , where a(t) = |A(t)| and z(t) = |Z (t)|.

The process stops when A(t) \ Z (t) = �, which happens when all pairs from the map A(t)

are used. Denote this time step by T = min(t ≥ 0 s.t. A(t) \ Z (t) = �). The final map is A∗ =
A(T) = Z (T) and its size is a∗ = T .

The role of the parameter r is important: it controls the amount of evidence in favor of a pair

of nodes, before these nodes are matched permanently. There is a tradeoff between two types

of errors. If r is chosen too low, the probability of a false match increases. If r is chosen too

high, then the algorithm may simply run out of candidate pairs to match and stops early.

2.2.3 Deferred Matching Variant

The algorithm as defined above leads to a tractable probabilistic model, and in particular,

can be analyzed using the bootstrap percolation results from [55], as shown below. The basic

algorithm greedily matches any candidate pair as soon as it reaches r credits, even if A(t)\Z (t)

is not empty. This is obviously not optimal in most circumstances, as the credits yet to be

40

2.2. On the Performance of Percolation Graph Matching

Figure 2.4 – Red nodes are the seeds, green nodes are the set of matched pairs after the first
three iterations, for r = 2.

generated by the remaining pairs in A(t) \ Z (t) might improve the credit counts Mi , j and

avoid matching errors. There is an easy fix to this, which we describe here; we use this variant

of the algorithm in the experiments in Section 2.2.5.

The modified algorithm works as follows. Whenever A(t) \ Z (t) is nonempty, we are conser-

vative and continue to attribute credits to candidate pairs, without forming any new couples.

Once A(t) \ Z (t) is empty, we form exactly one couple (i , j) that has the maximum Mi , j of all

candidates (provided this is also above the threshold r ; otherwise we stop), and add it to A(t);

and so forth.

This variant has the advantage of being conservative about matching new couples: it first

uses all the available evidence by using all unused pairs before making irreversible decisions.

Also, it makes the choice of the parameter r somewhat less important. In particular, if r is

chosen too low, the maximum rule ensures that only the best candidate pairs relative to other

candidates are matched. Our simulation results show that the variant performs well, but

exhibits the same phase transition in r as the basic (greedy) approach.

Formally, at each time step t ,

• The algorithm processes a matched pair (it , jt) ∈ A(t −1) \ Z (t −1) and adds one credit

to every neighboring pair, as in the basic algorithm;

• If A(t) \ Z (t) =�, the algorithm takes a pair whose number of credits is maximal and at

least r , and adds it to A(t); if there are several such pairs it picks one at random.

The algorithm stops when there are no more pairs with at least r marks.

41

Chapter 2. Network Alignment

Our experiments show that this optimization decreases the error rate in certain scenarios,

but exhibits similar threshold behavior in the seed set size as the basic version. For more

details see Section 2.2.5.

2.2.4 Performance of PGM

Now we analyze the performance of PGM with respect to the initial number of seeds a0. But

first we state the important properties of the propagation process.

Properties of the Propagation Process

Let E(i , i ′) denote the event that the edge (i , i ′) is present in G ; and E1(i , i ′) and E2(j , j ′) are

the events that edges (i , i ′) and (j , j ′) occur in G1, G2, respectively.

Observation 2.13. Since the master graph G is G(n, p), the unconditional edge probability

P
(
E1(i , i ′)

)=P
(
E2(j , j ′)

)= ps.

But since G1 and G2 are sampled from the same generator,

P
(
E1(i , i ′)|E2(i , i ′)

)= s.

For the convenience of notation, we omit the reference to the graph when it is clear from the

context, and we refer to the nodes of G1 by index i and to the nodes of G2 by index j . We

write E1(i , it) as Ei ,t and E2(j , jt) as E j ,t . By i = j we mean that i and j correspond to the

same node of G .

Let Ii , j (t) be an indicator of the event that a pair (i , j) received a mark at time step t , as a

result of using a pair (it , jt). This is equivalent to the event that there exist edges (i , it) ∈ G1

and (j , jt) ∈G2. Hence its probability is

P
(
Ii , j (t)=1

)=P
(
Ei ,t ,E j ,t

)
.

We state the following lemma about the increments at time t , conditional on no matching

errors so far:

Lemma 2.14. Conditional on iτ = jτ for all τ≤ t

1. P
(
Ii , j (t) = 1

)=
⎧⎨
⎩(ps)2, i �= j

ps2, i = j

2. For fixed t , the {Ii , j (t)}i , j ,i �= j are not independent.

3. For fixed t , the {Ii ,i (t)}i are independent.

42

2.2. On the Performance of Percolation Graph Matching

4. For fixed t1 �= t2, t1,2 ≤ t and any i , j , the Ii , j (t1) and Ii , j (t2) are independent.

Proof. Conditional on iτ = jτ for all τ≤ t

1. If at time t , a seed is mapped correctly, the nodes it and jt are sampled from the same

node of G , so by Observation 2.13,

P
(
Ii , j (t) = 1

)=P
(
Ei ,t ,E j ,t

)=
⎧⎨
⎩(ps)2, i �= j

ps2, i = j

2. For i �= j and i1 �= j :

P
(
Ii , j (t)=1|Ii1, j (t)=1

)=P
(
Ei ,t ,E j ,t |Ei1,t ,E j ,t

)=P
(
Ei ,t |Ei1,t

)=P
(
Ei ,t
)= ps

3. For i = j and i1 = j1 (i1 �= i):

P
(
Ii , j (t)=1|Ii1, j1 (t)=1

)=P
(
Ei ,t ,E j ,t |Ei1,t ,E j1,t

)=P
(
Ei ,t ,E j ,t

)= (ps)2

4. For t1 �= t2:

P
(
Ii , j (t1)=1|Ii , j (t2)=1

)=P
(
Ei ,t1 ,E j ,t1 |Ei ,t2 ,E j ,t2

)=P
(
Ei ,t1 ,E j ,t1

)
,

because for the case i �= j , {Ei ,t2 ,E j ,t2 } and {Ei ,t1 ,E j ,t1 } are disjoint, and for the case i = j ,

Ei ,t2 �= Ei ,t1 .

Clause 1 of the Lemma 2.14 says that a correct pair has a probability of collecting a new

marker that is larger by a factor of 1/p than the probability of a wrong pair collecting a marker,

as long as the pairs generating the credits are correct. While there are many more incorrect

pairs than correct pairs (Θ(n2) vs n), this difference in the marker rates for correct and wrong

pairs is the reason why the algorithm can work well, provided the factor 1/p is large enough.

Clause 2 states that markers obtained for two different pairs with a node in common are not

independent. Given that a pair (i , j) gets a mark, the event that another pair (i1, j) also gets a

mark is more likely. Clause 3 is key for further analysis of the process. It states that correctly

mapped pairs obtain marks independently. Thus, if a pair (i , i) got a mark at time t , it does

not correlate with (j , j) getting a mark. Clause 4 asserts that each seed spreads its marks

independently. In other words, at a time step t , a pair gets a mark independently of other

time steps.

43

Chapter 2. Network Alignment

The count Mi , j (t) is the number of marks of (i , j) at time t :

Mi , j (t) =
t∑

s=1
Ii , j (s).

Under the conditions of Lemma 2.14, each Mi , j (t) is the sum of i.i.d. Bernoulli random vari-

ables, so it is either a ��
(
n, (ps)2

)
(Binomial) for i �= j or a ��

(
n, ps2

)
for i = j . In the following

section, we develop conditions when PGM does not match wrong pairs (w.h.p.).

Main Theorems

Let r ≥ 4, and note that ps2 is the probability of an edge being sampled in both G1 and G2 or,

equivalently, the probability of an edge to be contained in the intersection of the edge sets

E1 ∩E2. Recall that ac =
(
1− 1

r

)((r−1)!
n(ps2)r

) 1
r−1

. We show that ac is the critical value of the initial

size of the seed set and prove theorems stated in the contribution section.

Theorem 2.15 (Subcritical regime). Fix ε> 0. For n−1 � ps2 � s2n− 3
r −ε/logn, if a0/ac ≤α<

1, the PGM algorithm stops with a∗ ≤ r
r−1 ac w.h.p. In particular a∗ = (φ(α)+ o(1)) r

r−1 ac ≤
r

r−1 a0, where φ(α) is the unique root in [0,1] of rφ(α))−φ(α)r = (r −1)α.

Now we consider what happens above the threshold a0 > ac .

Theorem 2.16 (Supercritical regime). Fix ε > 0. For n−1 � ps2 � s2n− 3
r −ε/logn, if a0/ac ≥

α> 1 the algorithm propagates, and the size of the final mapping is a∗ = n −o(n) w.h.p.

We discuss the implications of this phase transition and the scaling of the main parameters

in more detail in Subsection 2.2.4.

Proof Sketch and Bootstrap Percolation

We briefly outline the main steps of the proof and provide full details in the next subsection.

Our main goal is to prove that the couple formation process A(t) defined in the previous sec-

tion can be analyzed using the bootstrap percolation model introduced in [55]. In summary,

in [55] authors analyze a process where, at every time step t , objects collect a credit with prob-

ability p, independently of everything else. We want to analyze the PGM algorithm within the

BiG(n, p; s) model. However, our object of interest is not an individual node, but a pair (i , j).

At every time-step, one pair spreads credits to other node pairs. However, we do not have the

critical feature that makes the analysis of [55] tractable: as shown in Lemma 2.14, the credit

increments Ii , j (t) are not equiprobable, and they are not independent. Therefore, the results

of [55] cannot be applied directly.

Fortunately, the specific structure of the process of increments over pairs reveals a way out.

The key observation is that the credits of correct pairs Mi ,i (t) are in fact independent of each

44

2.2. On the Performance of Percolation Graph Matching

other. Another observation of Lemma 2.14 is that correct pairs are more likely to obtain a

mark. Thus, the (small) subset of pairs of the form (i , i) within all the possible pairs V ×V can

be analyzed using the bootstrap percolation framework.

Therefore, we first consider the event X that at any time t , a wrong pair (i , j) has collected at

least r credits without either of the “competing” correct pairs (i , i) and (j , j) having collected

r credits. In the case of event X , it is possible (but not guaranteed) that a matching error has

occurred.

In Lemma 2.17 below, we show that P (X) → 0, under appropriate conditions. Under these

conditions, the matching algorithm does not make wrong matches (w.h.p.) and is suitable

for further analysis.

It remains to be shown whether the algorithm percolates. For this, it is conservative to only

consider the credits Mi ,i attributed to correct pairs, as the probability of percolating can only

increase if additional pairs are added into the system.

As the correct counts are independent binomials, it is then straightforward to map the prob-

lem into the bootstrap percolation framework.

Proofs of Theorems 2.15 and 2.16

In this section, we use the results from [55] to formulate our key results. We show a sharp face

transitions in the final map size a∗ depending on a0 < ac or a0 > ac .

A key lemma bounds the probability that no error happens in the matching process. An error

may occur if at some time step, a bad pair (i , j) collects r marks before its adjacent good pairs

(i , i) and (j , j) have collected more than r marks. If such errors are very rare, then we can

focus only on correctly mapped pairs in the analysis of A(t). Let Xi , j (t) denote the event that

the algorithm made an error at time step t by mapping a pair (i , j), i �= j , where r ≤ t ≤ n. The

probability of this event is

P
(
Xi , j (t)

)≤P
(
Mi , j (t) = r, Mi ,i (t) ≤ r, M j , j (t) ≤ r

)

Denote by X = ⋃
t ,i �= j

Xi , j (t) the event that at any time-step t an error happened.

Lemma 2.17. If p � n− 3
r −ε/logn (with r ≥ 4), then P (X) → 0 with n →∞,

Proof. First we bound the probability of mapping a wrong pair (i , j) (i �= j) at time step t ,

conditional on no wrong used pairs up to time t −1. Note that conditioning on a correct used

pair iτ = jτ at time τ implies that this pair was correctly matched at some time τ′ before τ,

which in turn ascertains that for this pair, the correct count Miτ,iτ(τ′) “won” over all wrong

counts Mi ′,iτ(τ′) and Miτ, j ′(τ′). Therefore, conditional on iτ = jτ for τ < t , correct counts

45

Chapter 2. Network Alignment

are stochastically (slightly) larger, and wrong counts stochastically smaller. In the following

argument, we are conservative in ignoring this bias in bounding the probability of future

errors.

P
(
Xi , j (t)

)≤P
(
Mi , j (t) = r, Mi ,i (t) ≤ r, M j , j (t) ≤ r

)
≤P
(
Mi , j (t) = r, Mi ,i (t) ≤ r

)

We split our proof into two cases: for earlier steps t we upper-boundP
(
Xi , j (t)

)
byP

(
Mi , j (t) = r

)
and show that P

(
Mi , j (t) = r

)→ 0 or, equivalently, we show that for earlier steps t the wrong

pairs do not get r marks w.h.p. For later steps we upper-bound P
(
Xi , j (t)

)
by P

(
Mi ,i (t) ≤ r

)
and demonstrate that P

(
Mi ,i (t) ≤ r

)→ 0 or, equivalently, we show that the pair (i , i) has col-

lected more marks than r w.h.p. Then we take a union bound for all i , j and t to upper-bound

P (X).

Fix an arbitrary ε> 0.

• Early steps t : let t (ps)2 ≤ n− 3
r −ε and let X1 be an event that an error happens early (for

all i , j and t satisfying the condition above)

P (X1) ≤ ∑
i , j ,t

P
(
Xi , j (t)

)
≤ ∑

i , j ,t
P
(
Mi , j (t) = r

)
= ∑

i , j ,t
P
(
��
(
t , (ps)2)= r

)

= ∑
i , j ,t

(
t

r

)
(ps)2r (1− (ps)2)t−r

≤ ∑
i , j ,t

(t (ps)2)r

(a)≤ n3(n− 3
r −ε)r = n−rε, thus

P (X1) → 0

where (a) follows from the condition on t .

• Later steps t : let t (ps)2 > n− 3
r −ε, equivalently, t >

(
n− 3

r −ε
(ps)2

)
and let X2 be an event that an

46

2.2. On the Performance of Percolation Graph Matching

error happens at later steps (for all i , j and corresponding t).

P (X2) ≤ ∑
i , j ,t

P
(
Xi , j (t)

)
≤ ∑

i , j ,t
P
(
Mi ,i (t) ≤ r

)
= ∑

i , j ,t
P
(
��
(
t , ps2)≤ r

)
(a)≤ ∑

i , j ,t
exp(r − t ps2/2)

(b)≤ n3 exp
(
r − n− 3

r −ε

2p

)

= exp
(
3logn + r − 1

2n
3
r +εp

)
, thus

P (X2) → 0, if p � n− 3
r −ε/logn

where (b) follows from the condition on t and (a) uses the following Chernoff bound

for the left tail of the binomial:

P
(
X ≤ (1−σ)μ

)≤ exp
(−σ2μ

2

)
.

Here X is ��
(
t , ps2

)
, μ= t ps2 and σ= 1− r

t ps2 (to make (1−σ)μ= r). Then,

P
(
��
(
t , ps2)≤ r

)≤ exp

(−(1− r
t ps2)2t ps2

2

)

= exp(− t ps2

2
+ r − r 2

2t ps2)

≤ exp(r − t ps2/2)

Taking a union bound we obtain P (X) ≤P (X1)+P (X2) → 0, if p � n− 3
r −ε/logn.

Therefore for p � n− 3
r −ε/logn, Lemma 2.17 guarantees that w.h.p. we need only consider

the evolution of the correct counts {Mi ,i }, to which we can apply the results of [55] directly.

Proof. [Theorems 2.15 and 2.16]

The PGM process restricted to correct pairs (i , i) is isomorphic to the bootstrap percolation

process for a G(n,h) random graph, with h = ps2. Consider the two events {{Mi ,i } percolates

} and X . In the supercritical case, by virtue of Theorem 2.12 and Lemma 2.17, both events

occur with high probability. Therefore, PGM percolates correctly and to a set of size n −o(n)

w.h.p.

47

Chapter 2. Network Alignment

In the subcritical case, the process {Mi ,i } does not percolate. As P (X) → 0, the full PGM

process over all pairs does not percolate either by virtue of Lemma 2.17.

Interpretation of Results

Here we look into more details on the parameters of the algorithm. In particular, we consider

how the threshold ac scales with respect to r, p and s, and we elaborate on what happens near

the bounding conditions on h = ps2.

The parameter r controls a tradeoff between matching errors and percolation blocking. If r is

too low, then a wrong pair (i , j) might accumulate r credits before the correct pairs (i , i) and

(j , j) do; if r is too high, the process might not percolate, and most nodes do not get matched.

Note that r has to be at least 2 for the algorithm to work: For r = 1, the algorithm would match

pairs of nodes with only one mapped neighbor, which would necessarily lead to ambiguity,

except in degenerate cases.

The lower bound 1
n � h simply ensures that the intersection of the two graphs has a giant

component, without which the algorithm cannot percolate. The upper bound h � s2n− 3
r −ε

logn

is more subtle. Of course, if h exceeds the upper bound, the algorithm still percolates, but

it will make errors. This is because the ratio in the probabilities of generating correct and

wrong credits is not large enough to guarantee X . As expected, the threshold ac decreases

with increasing p and s, hence denser graphs require smaller seed sets. For most scenarios of

practical interest, r would be a constant. For example, if s is a constant, and the mean degree

nh grows as nδ, with 0 < δ < 1 a constant, then there is a constant r that satisfies the upper

bound h � s2n− 3
r −ε/logn. In this case, the seed set threshold scales as ac = Θ(n1−δ r

r−1). If

the average degree grows, but less than a power law, then ac is closer to linear. For example,

suppose the mean is nh =Θ(logn) (which is the threshold for the disappearance of symmetry

and of isolated vertices [24]), then ac scales as follows: ac = (1− 1
r)(r − 1)!

1
r−1 n(logn)−r /r−1.

With r = 4 this is ac =Θ(n log−
4
3 n).

2.2.5 Simulation Results

In this section, we test the PGM algorithm over real and artificial graphs, with two goals: to

validate the phase transitions predicted by theory, and to check how well the algorithm per-

forms on real networks.

To evaluate the performance of the algorithm, we use two metrics: The first is the size of final

the map a∗ (the total number of mapped pairs), which says how far the algorithm propagates.

The second is the error rate, i.e., the fraction of wrong pairs in the map. Recall that the error

rate is |(i , j):i �= j ,(i , j)∈A∗|
a∗−a0

.

The following ground-truth network graphs are considered:

48

2.2. On the Performance of Percolation Graph Matching

• Erdös-Rényi random graph G(n, p);

• Slashdot social network;

• EPFL e-mail exchange network;

• Geometric random graph Gg eom(n,d).

We run the deferred matching version of the algorithm (see Section 2.2.3) with r = 2; how-

ever the results are qualitatively similar for the basic version. For the G(n, p), Slashdot and

Gg eom(n,d) random graph, we use the BiG(G ; s) sampling model: each edge appears in the

observed network with probability s. The experiment with the EPFL network is in some sense

more challenging, because the two networks to be matched are in fact different observations

of the social interactions within an organization at two different points in time. Figures 2.5

- 2.12 show the dependence of the performance metrics on the size of the seed set a0. Each

figure contains 3 curves for different values of the sampling parameter, which is either the

sampling parameter s, or an estimate of s in the case of the EPFL dataset. The value of the

parameter s2 determines the size of the overlap of the observed networks: the intersection of

the edge sets of the two graphs have a size proportional to s2. We average all the results over

10 realizations.

BiG(n, p; s) Model

To support our results, we first simulate the BiG(n, p; s) graph matching model exactly. Specif-

ically, in this model, the generator graph G is an Erdös-Rényi G(n, p) graph with n = 100000

and p = 20/n.

We observe that when the size of the seed set is sufficiently large, the algorithm propagates to

the complete mapping (see Figure 2.5). We also see the sharp phase transitions predicted in

Theorems 2.15 and 2.16. Furthermore, the theoretically obtained threshold ac appears very

precise. According to the definition (1.1) of ac , for the first curve, s = 0.9 the critical size of

the seed set ac is 191, for s = 0.8 the ac is 305 and for s = 0.7 the ac is 520. We can see that

the observed transitions are close to these values. To highlight this fact, we normalize the

x-axis by the computed ac . In Figure 2.6, we observe that, after re-scaling, all the curves look

essentially the same. The number of wrong pairs in all the experiments is negligible (∼ 0.0001

of n) hence we do not plot it.

To confirm that deferred version does not change the observed phenomenons, we also ran

the analogous experiments with the basic version of the PGM and observe identical threshold

behavior.

49

Chapter 2. Network Alignment

100 200 300 400 500 600 700 800

Number of seeds

0

20000

40000

60000

80000

100000

To
ta

ln
um

be
r

of
co

rr
ec

t
m

at
ch

es

s2 = 0.49

s2 = 0.64

s2 = 0.81

Figure 2.5 – Total number of correctly matched pairs vs number of seeds for the PGM algo-
rithm over G(n, p) with n = 105 and p = 20/n.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Number of seeds / critical value ac

0

20000

40000

60000

80000

100000

To
ta

ln
um

be
r

of
co

rr
ec

t
m

at
ch

es

s2 = 0.49

s2 = 0.64

s2 = 0.81

Figure 2.6 – Total number of correctly matched pairs vs number of seeds for the PGM algo-
rithm over G(n, p) with n = 105 and p = 20/n. The x-axis is rescaled according to the value of
ac .

50

2.2. On the Performance of Percolation Graph Matching

Real Networks: Slashdot and E-mail Graphs

In the second set of experiments, we run PGM over large-scale social networks. First, we run

the algorithm over real friend/foe links between Slashdot users [75] obtained in November

2008 (cf. Table 2.3).

Nodes 77360
Edges 546487
Number of components 1
Average clustering coefficient 0.0555
Diameter (longest shortest path) 10

Table 2.3 – Slashdot dataset statistics.

To generate two observations of the network, we resort to edge sampling. In this model, when

s = 0.9, the overlap of the two networks is less than 63000 nodes; when s = 0.8, the overlap is

about 49000 nodes; when s = 0.7, it is 38000 nodes.

0 50 100 150 200 250 300 350
Number of seeds

5000

10000

15000

20000

25000

30000

35000

40000

To
ta

l
n
u
m

b
e
r

o
f

m
a
p
p
e
d
 p

a
ir

s

s=0.7

s=0.8

s=0.9

Figure 2.7 – Total number of mapped pairs vs number of seeds for the PGM algorithm over
the Slashdot network.

The results suggest phase transitions in the size of the final mapping, albeit less sharp than

for G(n; p) (see Figure 2.7). We also see that if the algorithm propagates (supercritical case),

the error rate is encouragingly small (see Figure 2.8). For example, for s = 0.9, it is enough to

51

Chapter 2. Network Alignment

have 150 seeds (which is 0.2% of all nodes) for the algorithm to propagate over the majority

of the graph. Figure 2.8 shows that the error rate drops rapidly with a0.

0 50 100 150 200 250 300 350 400
Number of seeds

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
e
rr

o
r

m
a
p
p
e
d
 p

a
ir

s

s=0.7

s=0.8

s=0.9

Figure 2.8 – Error rate vs number of seeds for the PGM algorithm over the Slashdot network.

Second, we obtained snapshots of the e-mail traffic on the EPFL campus for different time

periods (the week numbering starts at the beginning of year). Each node corresponds to an

e-mail account, and an undirected edge means that at least one e-mail was sent between two

accounts. The experiment is more realistic in the sense that we do not rely on the BiG(G ; s)

sampling model to generate two similar graphs G1,2, but instead these graphs correspond to

the real traffic patterns in two different time periods.

The challenge for the algorithm is that in the considered graphs not only the edge sets are

different, but so are the vertex sets. In other words, the PGM does not match the vertex sets

of two graphs anymore, instead it identifies common subsets and matches them. If the two

graphs are different enough the PGM cannot separate the nodes that are not presented in

both graphs and tries to match them thus increasing the error rate. Another challenge is that

the graphs are quite sparse, the average degree is about 7. The three curves demonstrate the

behavior of the algorithm on the e-mail exchanges graphs for the following periods:

• G1 is a graph of e-mails sent between weeks 3 and 17 and G2 is a graph of e-mails sent

between weeks 8 and 12. Each graph contains approximately 60000 nodes and 230000

edges. The intersection graph has 50000 nodes and 160000 edges.

52

2.2. On the Performance of Percolation Graph Matching

Figure 2.9 – Total number of mapped pairs vs number of seeds for the PGM algorithm over
the EPFL contact network.

• For weeks 5-19 and 8-12, respectively: Each graph contains approximately 61500 nodes

and 231000 edges. The intersection graph has 54000 nodes and 185000 edges.

• For weeks 7-21 and 8-12, respectively: Each graph contains approximately 61500 nodes

and 231000 edges. The intersection graph has 59000 nodes and 207000 edges.

The results reveal similar phase transitions on the size of the final mapping and error rate as

for those in Slashdot(see Figures 2.9 and 2.10). Moreover, we observe that given enough seeds

the algorithm correctly identifies nodes that are present in both graphs thus suggesting that

the PGM is robust to partial node overlap. This was confirmed later in [60].

53

Chapter 2. Network Alignment

Figure 2.10 – Error rate vs number of seeds for the PGM algorithm over the EPFL contact
network.

Random Geometric Graph Gg eom(n,d)

The performance of our proposed PGM algorithm is surprisingly good over both the G(n, p; s)

random graphs and over real social networks. We conjecture, however, that its success relies

in part on the compactness of these graphs, which ensures that even with a relatively small

number of seeds, every node in the network is close to some seeds, which allows to “triangu-

late” the nodes.

To illustrate this, we report on an experiment where the generator graph G is a random geo-

metric graph Gg eom(n,d). A random geometric graph is a random undirected graph which is

generated by placing vertices uniformly at random on the unit square [0,1)2. Two vertices u

and v are connected if and only if the distance between them is at most d [90]. The typical dis-

tance in a supercritical random geometric graph scales as n1/2, in contrast to the logarithmic

distance in G(n, p) and other “small-world” networks.

Figures 2.11 and 2.12 show the experiment for Gg eom(n = 10000,d = 0.01). We observe that

the algorithm does not percolate, and that it has a very high error rate within the map. While

a complete understanding of the limits of percolation-based graph matching is lacking, this

does suggest that PGM performs better with compact networks.

54

2.2. On the Performance of Percolation Graph Matching

0 50 100 150 200 250 300 350
Number of seeds

0

100

200

300

400

500

To
ta

l
n
u
m

b
e
r

o
f

m
a
p
p
e
d
 p

a
ir

s

s=0.7

s=0.8

s=0.9

Figure 2.11 – Total number of mapped pairs vs number of seeds for the PGM algorithm over
G(n,d) random geometric graph model where n = 10000 and d = 0.01.

55

Chapter 2. Network Alignment

0 50 100 150 200 250 300 350 400
Number of seeds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

c
ti

o
n
 o

f
e
rr

o
r

m
a
p
p
e
d
 p

a
ir

s

s=0.7

s=0.8

s=0.9

Figure 2.12 – Error rate vs number of seeds for the PGM algorithm over G(n,d) random geo-
metric graph model where n = 10000 and d = 0.01.

56

2.2. On the Performance of Percolation Graph Matching

2.2.6 Scalability Optimization

In this section, we describe two optimizations of PGM which enable us to push the sizes of

considered graphs (sampled from BiG(n, p; t , s) model) to millions of nodes. We introduce

time and space complexity improvements that involve embedding efficient datastructures

for sequential implementation and adapting the PGM for parallel implementation. These

two improvements address different bottlenecks of the algorithm, by thus assuring full flex-

ibility of the experiments. The parallel implementation is less flexible; for example, it does

not maintain a deferred version of PGM, however it enables running PGM for larger graphs

faster.

Efficient Datastructures

Here we describe optimizations of a sequential implementation that allows to address the

main bottlenecks of the first implementations of the PGM. The improvements are imple-

mented joined with Jefferson Elbert.

One of the drawbacks of the straightforward approach described in Sections 2.2.2 and 2.2.3

is maintaining (and operating) the structure that contains all the accumulated marks of pairs

that are not matched up to the current step t . In the basic version, we have to store informa-

tion about all the pairs (i , j) : i ∈ V1, j ∈ V2 such that (i , j) has less than r number of marks.

In the deferred version, we store information about all the pairs (i , j) : i ∈V1, j ∈V2 such that

(i , j) is not mapped yet. This structure can take O(n2) space and takes a long time to operate.

We need to maintain two basic operations: take a pair with maximal number of marks (or all

the pairs with marks above r) and update a number of marks of a given pair.

To optimize the first operation, we store the current candidate-mappings as a hash-map of

lists grouped by r (here r is a key and list of pairs with r marks is a value). We use the fact that

on average we have 10-20 of such groups, as r does not grow too large. Then it takes constant

time to select a best match (any element of the list with max key). Another “expensive” oper-

ation is to locate a pair in a list to increment its number of marks, while processing a current

seed. To optimize this step we maintain another structure that is a map, with key being a pair

and value being a reference to the position of the pair in the group from above.

We introduce a third improvement, that is a map that stores positions of pairs grouped by left

and right entities (instead of a map where the whole pair is a key we use two nested maps

with a left entity as a first key and a right entity as a second key and another two nested maps

for a reversed search). This improvement enables us quickly locate a pair by its left and right

unit. Obviously these structures need tedious maintenance of cross consistency. However,

with this implementation, we were able to fully align two graphs of size 106 with 3000 seeds

in around 2 hours.

57

Chapter 2. Network Alignment

MapReduce Implementation

This implementation was done during a semester project by Jéremy Weber, co-supervised by

Ehsan Kazemi and myself.

As described above, operating over large amount of candidates can be time expensive, and

as currently there are networks of billions of nodes, the capacity of a single machine is not

sufficient for our purposes. The key intuition for this optimization is that the main steps of

PGM are easy to adapt for parallelization. Indeed, spreading marks from each seed is inde-

pendent of spreading marks from any other seeds; collecting marks, as well, can be grouped

into “word-count” type of jobs.

Using this observation, we implement a PGM as a sequence of four map-reduce jobs that

include formatting of the input graphs for Hadoop.

We iterate the following main steps of the program, where each step is a map-reduce job:

• we spread marks from all current generation seeds, that are not used pairs with more

than r marks (parallel)

• we group and count marks of all the pairs that were given at previous step (parallel)

• we extract all the pairs with more than r marks (parallel).

As it is shown in [55], there are only few generations of the percolation process until it stops.

Hence we need only limited number of iterations of these steps.

The improved versions of PGM from [60] such as ExpandWhenStuck are implemented as well.

As a result, from less than 20 seeds we are able to align graphs sampled from BiG(n; p, s) with

10 million nodes on the Hadoop Cluster in less than 20 min.

58

3 Network Assembly

In this chapter we address the second scenario of the network reconstruction problem. For

an input we assume multiple, possibly noisy, small observations extracted from a master-

graph. These observations are called patches. According to Definition 1.5, which defines the

problem in its most general form, the graph-assembly problem takes as input a finite collec-

tion of patches and puts these pieces together in an assembled graph Ĝ . For example, if, to

anonymize a phonecall network, the data provider shared only unlabeled egonets [21] then,

assembling these patches back to the original network means de-anonymizing this scheme.

We consider two scenarios: First, we assume some restriction on the number and structure

of the patches (patches being egonets) and full ambiguity in labels of the nodes (By full am-

biguity we mean that the labels of vertices in each patch bear no resemblance at all to their

original labels in the master graph). In Section 3.1 we study the feasibility of an assembly for

a master graph generated via the G(n, p; q) model. The second scenario has no assumption

about the form of the patches, however it relies on meaningful labels from some small label

set (labels of nodes in patches are the same as those of nodes of the master graph). We see

that, even if the label set is extremely small compared to the size of the master graph, the as-

sembly is still possible. We propose a practical algorithm for network assembly and evaluate

it in Section 3.2.

In both scenarios, we try to identify small specific subgraphs that serve as markers or gluing

points for merging patches together. In the first version of the problem, these subgraphs

are unique through the whole master graph and they uniquely identify some nodes across

egonets. In the second scenario, we consider rare specific subgraphs and use their frequency

to compute a graph similarity. We call these seed-subgraphs by analogy with seeds in the

network alignment problem.

59

Chapter 3. Network Assembly

3.1 Feasibility of Network Assembly from Ambiguous Patches

In this section, we consider a specific variation of this problem, where each patch is created

by extracting the egonet around each vertex in the master graph. Recall, the egonet, or 1-

egonet of a vertex i in a graph G , denoted Gi , is the induced subgraph generated by i and its

neighbors in G — we say that i is the center of this egonet. We assume that, for each egonet in

the patch collection, the identity of i is either kept intact or somehow inferable, but all other

identities are removed.

Recall that we deal with an unlabeled egonet collection P = {Gi = fi (Hi)}i∈[n] of a master

graph G , where each patching function fi : V (Hi) → [|V (Gi)|] is a bijection such that fi (i) = 1.

Clearly, we want a guarantee to have the assembled graph Ĝ equal to the master graph G .

Indeed, if P = {Gi }i∈[n] is an unlabeled egonet collection of G — that is, for every i ∈ [n],

Gi = fi (Gi) — it is not difficult to see that (G , { f −1
i }) is a valid assembly of P . The interesting

theoretical question is whether G is the only graph for which there is such an assembly.

3.1.1 G(n, p; q) Model

For some random graphs models it was shown that egonet patches should be relatively large

to contain enough information to make assembly feasible [83, 84]. However in real networks,

neighborhoods of nodes are more complex and highly connected (i.e., have high clustering

coefficient), thus containing richer structure. For example, in social networks, friends of any

given person are more likely to know each other. This behavior is called triadic closure [100].

We suggest here that highly clustered networks are easier to assembly and address the ques-

tion of how a clustering coefficient is correlated with the feasibility of assembly.

For this purpose, we introduce the G(n, p; q) random graph model and analyze its properties.

The graph G ∼G(n, p; q) is obtained by taking V = [n] as a vertex set and generating a random

edge set E over V according to the following steps,

1. An intermediate Erdős-Rényi graph over V is generated: an undirected edge is drawn

between each pair of vertices with probability p, independently of the other pairs. We

denote the obtained graph by Gp (V ,Ep).

2. For each connected triple (u, g , v) in Gp , i.e., a triple of vertices such that (u, g), (g , v) ∈
Ep , we add an edge (u, v) to E by closing the triangle with probability q , independently

for each triple. In this case, we say that g is a generator for the q-edge (u, v). All q-edges

are allowed to co-exist with previous p-edges if they overlap with them. If any q-edge

has more than one generator, the resulting q-edges are collapsed. The obtained graph

is denoted G = (V ,E).

For convenience, we denote by Pe = 1{e∈Ep } the indicators of the edges in Gp , with Qe = 1{e∈E }

being the indicators of the edges in our final graph G . We refer to the edges in Ep as p-edges

60

3.1. Feasibility of Network Assembly from Ambiguous Patches

and the edges in E as q-edges.

Define the set of independent ��
(
q
)

1 random variables {Tt }t∈V ×(V
2) and put Tu,g ,v = Tv,g ,u .

Let t be a connected triple (u, g , v) in Gp , i.e., a pair of incident edges (u, g), (g , v) ∈ Ep . The

idea is that, for each such connected triple, we apply triadic closure with probability q . Thus

the edge (u, v) ∈ E if and only if Tu,g ,v = 1 for at least one g ∈ V \ {u, v} that is connected to

both u and v by p-edges. We define

Se = S(u,v) = {g ∈V : Pu,g Pg ,v Tu,g ,v = 1}

the set of generators for an edge (u, v). Thus, there is an edge e ∈ E iff it has at least one

generator.

Some additional useful definitions are as follows: for any u ∈ V , the neighborhood Nu of u

is the set of vertices adjacent to u in G (thus, via q-edges), with du = |Nu | its degree, and the

p-neighborhood N p
u of u is the set of vertices adjacent to u in Gp (via p-edges).

Remark 1. The following facts hold:

1. For any e ∈ (V2), the size of the set of generators is |Se | =��
(
n, p2q

)
; 2

2. For any e ∈ (V2), the probability of an edge is Qe =��
(
1− (1−p2q)n

)
.3

We show some key properties of this model. Let cu be the clustering coefficient of node u.

Proposition 3.1. Let u ∈V be arbitrary. If np →∞, n2p3 → 0 and q is fixed, then:

• E [|E |] � n3p2q
2 ;

• E [du] � (np)2q;

• E [cu] � q

np
.

Proof. We begin by noting that our hypothesis implies np2 → 0. In this case, (1−(1−p2q)n) �
np2q and, therefore, E

[
Qu,v

]� np2q for any u, v .

The first two statements are easily derived by using this fact, after applying the linearity of

expectation to |Eq | = ∑
u,v

Qu,v and du =∑
x

Qu,x , respectively. For the third statement, note that

1
��
(
q
)

is a Bernoulli random variable with probability q .
2
��
(
n, p
)

is a Binomial random variable with n trials each with probability p.
3Since n →∞, we frequently omit constant subtractions and replace n −1,n −2, . . . with n without comment,

provided this does not affect the result.

61

Chapter 3. Network Assembly

cu can be written as cu =

∑
x,y

Qx,uQu,yQx,y∑
x,y

Qx,uQu,y
= N

D
. Using a first order Taylor expansion (assured

by the concentration of N and D around their non-zero means, see [29], pages 240-245):

E [cu] = E [N]

E [D]
+op

(
E [N]

E [D]

)
,

where op means convergence in probability. Below we show in details that the numerator

E [N] is asymptotically equal to (npq)3/2. Analogously the denominator E [D] is asymptoti-

cally equal to E [D] = (n2p2q)2/2 , but we omit lengthy calculations. These statements imply

our result.

It is enough to determine the functions f1(n, p, q), f2(n, p, q) ∼ (npq)3/2 such that f1 ≤ E [N] ≤ f2.

An analogous procedure, which we omit, can be performed for the denominator as well.

Denote Ia,b,c = Ia,b,c (x, y) = Pa,uPa,x Pb,uPb,y Pc,x Pc,y Tu,a,x Tu,b,y Tx,c,y , for a �= u, x;b �= u, y ;c �=
x, y . This enables us to write

E [N] =
∑

(x,y)
P
(
Qx,uQu,yQx,y = 1

)

= ∑
x,y �=u

P

(⊕
a,b,c

Pa,uPa,x Pb,uPb,y Pc,x Pc,y Tu,a,x Tu,b,y Tx,c,y = 1

)

= ∑
x,y �=u

P

(⊕
a,b,c

Ia,b,c = 1

)

Note that, if x, y �= u, then P
(
Ia,b,c = 1

)
can take three possible values: p3q3 if a = b = c, p5q5

if a = b �= c (or the two other symmetric cases), and p6q6 if a �= b �= c �= a.

For the right inequality, note that
⊕

Ia,b,c = 1 iff
∑

Ia,b,c ≥ 1. Union bound yields:

E [N] =
∑

x,y �=u
P

(∑
a,b,c

Ia,b,c ≥ 1

)

≤ ∑
x,y �=u

∑
a,b,c

P
(
Ia,b,c ≥ 1

)= ∑
x,y �=u

∑
a,b,c

P
(
Ia,b,c = 1

)
≤ ∑

x,y �=u

(∑
a=b=c

P
(
Ia,a,a = 1

)+∑
a=b �=c

+symm cases

P
(
Ia,a,c = 1

)+∑
a �=b �=c �=a

P
(
Ia,b,c = 1

))

≤
(

n

2

)
(np3q3 +3n(n −1)p5q3 +n(n −1)(n −2)p6q3)

� (npq)3

2
(1+np2 +n2p3) � (npq)3

2

where, in the last equation, we use the fact that np2,n2p3 → 0.

62

3.1. Feasibility of Network Assembly from Ambiguous Patches

Now, for the left inequality, we drop some terms from the binary sum, and manipulate a bit

further to obtain

E [N] =
∑

x,y �=u
P

(⊕
a,b,c

Ia,b,c = 1

)

≥ ∑
x,y �=u

P

⎛
⎜⎝ ⊕

a �=u,x,y
a=b=c

Ia,a,a = 1

⎞
⎟⎠

= ∑
x,y �=u

1−P

⎛
⎜⎝ ⊕

a �=u,x,y
a=b=c

Ia,a,a = 0

⎞
⎟⎠

Now, note that, for a �= a′, Ia,a,a and Ia′,a′,a′ are independent, as they do not share any random

variables. Recall that Ia,a,a = (
p3q3

)
. Then, we have:

E [N] ≥
∑

x,y �=u
1−P

⎛
⎜⎝ ⊕

a �=u,x,y
a=b=c

Ia,a,a = 0

⎞
⎟⎠

= ∑
x,y �=u

1− (1−p3q3)n−3 � (npq)3

2

Thus E [N] = E(
∑
x,y

Qx,uQu,yQx,y) � (npq)3

2

See example of the dominating case where g = a = b = c in Figure 3.1.

Figure 3.1 – Edges of neighborhood of u.

Consider for comparison an Erdős-Rényi random graph G(n, p ′) with the same expected den-

sity. It has an edge probability p ′ = np2q , average degree of (np)2q , and its expected cluster-

ing coefficient is therefore np2q . For the considered regime we have n2p3 → 0 and q is fixed,

63

Chapter 3. Network Assembly

hence cu(G(n, p ′)) � cu(G(n, p; q), precisely np2q � q/np.

Another interesting feature of the G(n, p; q) model is that, for a rather general regime of p, all

edges have a very limited number of generators.

Lemma 3.2. For np →∞,n5p6 → 0 and fixed q, w.h.p., all edges have at most two generators.

Proof. It is enough to show that the expected number of edges with three or more generators

vanishes, as this implies the result by the first moment method.

Let pk denote the probability that an arbitrary edge (u, v) has precisely k generators. Recall

from Remark 1 that the generator set of an edge has size ��
(
n, p2q

)
. This implies

pk =
(

n

k

)
(p2q)k (1−p2q)n−k ≤ (np2q)k .

For any edge e, the probability that it has at least 3 generators is given by

P (|Se | ≥ 3}) =
∑
k≥3

pk ≤ ∑
k≥3

(np2q)k

= (np2q)3 1

(1−np2q)
� (np2q)3

where the last steps follow from the convergence of the geometric series for large enough n

— note that our hypothesis implies that np2 → 0. Finally,

E [{(u, v) : |S(u, v)| ≥ 3}] =
∑
u,v

P (|Se | ≥ 3}) ≤
∑
u,v

(np2q)3 = n2(np2q)3 � n5p6q3 = o(1).

One observation from the proof is that the expected number of edges with two generators is

E [{(u, v) : |S(u, v)| = 2}] = n4p4q3 that is a negligible fraction of the total number of edges.

From now on, we consider the following more restrictive regimes on p and q : (np)5p → 0,

fixed q , and npq2 = 12logn+ω(1). These constraints imply an average degree d of Ω(log2 n),

while still being sparse enough to allow a characterization of local structures (the common-

neighbor subgraphs over all edges) that are central in the reassembly process.

3.1.2 Assembly of Noiseless Egonets

Our goal of this section is to demonstrate that for a certain regime of the parameters p and q ,

it is feasible to reassemble a collection of noiseless 1-hop egonets extracted from a G(n, p; q)

random graph. For this, we characterize a number of properties that this random graph pos-

64

3.1. Feasibility of Network Assembly from Ambiguous Patches

sesses with a high probability, and these properties naturally lead to a very intuitive algorithm

for reassembling the given egonets.

The intuition behind the algorithm is as follows. Let us assume for a moment that the edges

of the master graph are uniquely labeled, and that this labeling is preserved through patch

generation process — that is, edges in egonets that correspond to the same edge on the mas-

ter graph are given the same label. In this case, it is straightforward to re-identify the nodes.

For instance, if the edge (u, v) is assigned the unique label 35, then there is an edge labeled 35

in the egonet of u, which means its other endpoint must be v , since no edge to another node

is assigned the label 35. Analogously, we can identify u on the egonet of v .

This observation means that the problem can be solved, as long as we can assign such a

consistent labeling to edges between all egos and its respective neighbors. However, we must

assign these labels by looking only at the structure of the egos and nothing else. Fortunately,

under the condition that either u or v is the ego-center, any edge (u, v) has a structural feature

that is preserved by the egonet extraction process. This feature is the induced subgraph of

common neighbors of u and v , which we denote by Hu,v . Note that this feature is symmetric

by nature, thus Hu,v ∼ Hv,u (From here ∼ means graph isomorphism). As the main result of

this section, we show that, for a G(n, p; q) random graph, any two edges have non-isomorphic

subgraphs of common neighbors. Therefore this feature acts as a fingerprint for all edges in

a graph.

Further we formulate the main result of this section, provide key lemmas where we show that

all the edges of G have “unique edge fingerprints” across the patches and, at last, we prove

the theorem by providing a particular assembly algorithm.

Theorem 3.3. Let G be a G(n, p; q) random graph, with (np)5p → 0, fixed q and npq2 =
12logn +ω(1) and let P = {Gi }i∈[n] be an anonymized egonet collection extracted from G.

There exists an assembly algorithm that builds Ĝ from the input P and V (Ĝ) = V (G) and

E(Ĝ) = E(G).

Structural Properties of Patches

In the section, we characterize a number of additional properties of the graphs generated

by G(n, p; q) random graph model. To determine when all edges indeed have unique (up to

isomorphism) subgraphs of common neighbors, we must first characterize the structure of

these subgraphs. We start by determining the node set of Hu,v , which we call Nu,v .

Lemma 3.4. If G is sampled from G(n, p; q) with np →∞, (np)5p → 0, q is fixed, then for any

fixed u, v ∈G such that u is adjacent to v, the following statements hold w.h.p.:

• For each x ∈ Nu,v , there exists g ∈ S(u, v)∩S(u, x)∩S(v, x) – i.e., all the edges of the uxv

triangle have at least one common generator;

• |Nu,v | =��
(
n, |S(u, v)|pq2

)
and E

[
|Nu,v |

∣∣∣|S(u, v)|
]
= |S(u, v)|npq2.

65

Chapter 3. Network Assembly

See Figure 3.2 for an illustration of Nu,v .

Figure 3.2 – If x ∈ Nu,v is a common neighbor of u and v then all three edges (x,u), (x, v) and
(u, v) have a common generator g .

Proof. The proof is similar to the proof of the Proposition 3.1, we give it later in Section 3.1.7.

We note here that the probability of a node x to be connected to u, v is (1 + o(1))n2p4q2

(see 3.1.7), thus summing through all possible subgraphs Hu,v there is a negligible fraction

of nodes that are connected to some u, v through other generators than S(u, v). These nodes

do not affect further computations, thus we omit these for simplicity.

We now characterize edges between the nodes of the neighborhoods Nu,v . For any x, y ∈ Nu,v ,

by Lemmas 3.2 and 3.4 there exist g1, g2 ∈ S(u, v) such that Pg1,x = 1 and Pg2,y = 1. Consider

two cases:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 = g2 = g , then x y ∈ E if Txg y = 1 or if Pg3,x Pg3,y Txg3 y = 1 for some g3.

Hence P
(
Qx,y = 1|x, y ∈ Nu,v , g1 = g2

)= q +np2q.

g1 �= g2, then x y ∈ E if Pg1,y Txg1 y = 1 or if Pg2,x Txg2 y = 1 or if Pg3,x Pg3,y Txg3 y = 1 for some g3.

Hence P
(
Qx,y = 1|x, y ∈ Nu,v , g1 �= g2

)= 2pq +np2q.

Corollary 3.5. Under the conditions of Lemma 3.4, w.h.p., one of these cases holds:

1. |S(u, v)| = 1 and Hu,v is a single Erdős-Rényi graph G(
(
n, pq2

)
, q);

2. |S(u, v)| = 2 and Hu,v consists of two components, each is an Erdős-Rényi graph G(
(
n, pq2

)
, q)

and edges between nodes of different components exist with probability np2q.

We note that the exact probability of an edge in the considered Erdős-Rényi graph is q +
np2q ; however we omit the negligible part for readability, since it does not affect further

computations. Also, we observe, as np2q � q in the latter case, that the two Erdős-Rényi

66

3.1. Feasibility of Network Assembly from Ambiguous Patches

graphs have dense structure, but are very loosely connected. See Figure 3.3, for the example

of a subgraph Hu,v induced by common neighbors of an edge (u, v) with one generator g .

Figure 3.3 – A subgraph Hu,v induced by common neighbors of an edge (u, v) with one gen-
erator g .

Uniqueness of Edge Fingerprints

We are now ready to prove our key result of this section about uniqueness of common-neighbors

subgraphs.

Theorem 3.6. Let G be a G(n, p; q) random graph, with (np)5p → 0, fixed q and npq2 =
12logn +ω(1). Then, w.h.p., for any pairwise adjacent nodes u, v and i , j , either {u, v} = {i , j }

or Hu,v is not isomorphic to Hi , j .

Proof. Denote by W the number of quadruples (u, v, i , j), with u and v adjacent, i and j are

adjacent and (i , j) �= (u, v), (v,u), such that Hu,v is isomorphic to Hi , j . By the first moment

method, it is enough to show that E [W] → 0. We note that E [W] = ∑
u,v,i , j

P
(
Hu,v ∼ Hi , j

)
.

Now, we fix u, v, i and j and split our analysis into several cases. We consider the most com-

plex case in detail and omit lengthy and similar computations for the other cases.

1. |S(u, v)| = |S(i , j)| = 1:

(a) S(u, v) = S(i , j) = {g }, where g is the common generator of (u, v) and (i , j):

i. u = i and v �= j (or, analogously, u �= i and v = j):

Note that, by Lemma 3.4 any vertex x ∈ V belongs to both Hu,v and Hu, j ac-

cording to the following criteria:

67

Chapter 3. Network Assembly

- x ∈ Hu,v iff Pg ,x Tu,g ,x Tv,g ,x = 1 (w.p pq2)

- x ∈ Hu, j iff Pg ,x Tu,g ,x T j ,g ,x = 1 (w.p pq2)4

Let J be a common super-graph of Hu,v and Hu, j , such that it is induced by

{x ∈ V : Pg ,x Tu,g ,x = 1}. By the definition, any node that is not in J cannot

belong to neither Hu,v or Hu, j . Note that, by reasoning analogous to those in

Lemma 3.4 and in Corollary 3.5 the graph J is an Erdős-Rényi random graph

G(��
(
n, pq

)
, q) (each node x ∈ V satisfies Pg ,x Tu,g ,x = 1 independently with

probability pq ; and any two nodes x, y ∈ J are adjacent if and only if Tx,g ,y = 1,

that happens with probability q , for all pairs independently).

Furthermore, each node x ∈ J belongs to Hu,v or Hu, j if Tv,g ,x = 1 or T j ,g ,x = 1,

and these conditions hold independently with probability q . This means

Hu,v and Hu, j are obtained from J by sampling each node independently

with probability q . To bound the probability of these two graphs being iso-

morphic, we use the Lemma 3.10 (see Section 3.1.7).

We put m = ��
(
n, pq

)
and t = q into the Lemma 3.10 and fix 0 < δ < 1 and

obtain:

P
(
Hu,v ∼ Hu, j

)≤ exp
(
m logm −m2c

)+2exp

(
−δ2mq

2

)

for c = (1−δ)2q2(1− q) logc1 and c1 = (q2 + (1− q)2)−1 ∈ (1,2]. Note, how-

ever, that m is a random variable. We can apply the Chernoff bound (see

Appendix A.1) to bound npq(1−δ) ≤ m ≤ npq(1+δ). Thus:

P
(
Hu,v ∼ Hi , j

)≤ exp
(
npq(1+δ) lognpq(1+δ)− (npq)2(1−δ)2c

)
+4exp

(
−δ2npq2

3

)
.

There is a negligible fraction of nodes that is connected to u, v with probabil-

ity (np2q)2 through other generators, however we ignore these since only a

negligible fraction of edges are adjacent to these nodes.

ii. u �= i and v �= j . The case is analogous to the previous case. We observe that

both Hu,v and Hi , j are obtained by node sampling the graph J ′ = N p
s ; where

J ′ is an Erdős-Rényi random graph G(��
(
n, p
)

, q) and each node is sampled

with probability q2 to Hu,v and Hi , j . We apply again Lemma 3.10 (see Sec-

tion 3.1.7):

P
(
Hu,v ∼ Hi , j

)≤ exp
(
npq2(1+δ) lognpq2(1+δ)− (npq)2(1−δ)2c

)
+4exp

(
−δ2npq2

3

)
.

4The probability of x being connected to u, v through other generator(s) g ′ is o(pq2).

68

3.1. Feasibility of Network Assembly from Ambiguous Patches

(b) S(u, v) �= S(i , j). Denote S(u, v) = {g1} and S(i , j) = {g2}. Since N p
g1
∩N p

g2
=� holds

w.h.p, it also holds that Nu,v ∩ N j ,i = � (by Lemma 3.4). Then, by a reasoning

similar to that in Lemma 3.10, P
(
Hu,v ∼ Hi , j

)≤ m!(q2 + (1−q)2)(m
2).

2. |S(u, v)| = 2. Denote S(u, v) = {g1, g2}. In this case, Hu,v consists of two weakly con-

nected Erdős-Rényi graphs H 1
u,v ∪ H 2

u,v , and similarly for Hi , j . We can separate these

components by using the fact that the number of edges between components is at most

constant, while each node inside the component has ω(1) degree. Thus we can scan

through all such combinations of edges to identify two components. Then we can con-

sider isomorphism of each of the components and reduce the problem to the previous

case. Thus, we stochastically upper-bound this case by the previous case.

Using the loosest bound of the previous cases, we can bound E [W]:

E [W] ≤ n4
(

exp
(
npq(1+δ) lognpq(1+δ)− (npq)2(1−δ)2c

)+4exp

(
−δ2npq2

3

))
= exp

(
4logn +npq(1+δ) lognpq(1+δ)− (npq)2(1−δ)2c

)
+4exp

(
4logn − δ2npq2

3

)

the last summand dominates and thus the whole sum goes to 0 if p ≥ 12logn+ω(1)
δ2q2n . Note that if

q ∈ (0,1) and δ< 1, c is constant.

3.1.3 Feasibility of Egonet Assembly

The results leading to Theorem 3.6 enable us to analyze a simple assembly algorithm that

works as follows. Let P = {Gi }i∈[n] be an unlabeled egonet collection of a graph G = (V ,E),

that is the master-graph we want to obtain at the end of the assembly process; and also as-

sume that all edges in G have unique fingerprints, that is, for any two distinct edges (u, v) ∈ E

and (i , j) ∈ E , the subgraphs Hu,v and Hi , j are not isomorphic.

G must have [n], the index set of P = {Gi }i∈[n], as its node set, so we begin by setting [n] as the

vertex set of our assembled graph Ĝ . To construct its edge set E(Ĝ), we choose a node u ∈ [n].

We know that u is present in the egonet Gu and has been assigned the label 1 in Gu . Take a

node j ∈Gu other than 1. Edge (1, j) is the image of some edge (u, v) in G , and the subgraph

of Gu induced by 1, j and their common neighbors is a relabeled version of Hu,v . Extract this

fingerprint from Gu and search for a second edge, in a different egonet, with an isomorphic

fingerprint. Since the fingerprints of the edges in G are unique, there will be exactly one such

edge, say (1,k) on the egonet Gu′ , and both of them must have originated from the same edge

on the master graph. The labels of this edge must be the egonet centers u and u′ of the two

matching edges, so we add the edge (u,u′) to E(Ĝ). In this way we defined au(j) = u′ and

a′
u(k) = u. Repeat this for all egonets until they are exhausted, at which point the algorithm

69

Chapter 3. Network Assembly

terminates. We will call this the fingerprint assembly algorithm.

If all edges in G have unique fingerprints, this algorithm will always reassemble G correctly:

Proof. [Theorem 3.3]

By the generation process of the patch collection, every edge (u, v) in the master graph is

center-incident in exactly two patches: the one centered at u and the one at v . It is straight-

forward to see that if we can correctly collapse all the center-incident edges in all the patches

(and ignoring all the other edges), this reveals the original graph G . Therefore, if the edge fin-

gerprint given by the isomorphism class of Hu,v is unique for each (u, v), fingerprint assembly

succeeds.

Note that the fingerprint assembly algorithm requires
(|E |

2

)
checks for small-graphs isomor-

phism. This is, in general, a computationally expensive procedure even after recent improve-

ments, with the best known algorithm having quasi-polynomial time complexity [13]. With

an oracle for the graph isomorphism problem, the average case complexity of this algorithm

drops to around |E |(npq2)+ |E |2, from the subgraph extraction process and the checks for

graph isomorphism, respectively. Any technique for optimizing the graph isomorphism step,

such as applying approximate graph isomorphism techniques, can be used to reduce its run-

ning time. Additionally, if this step is solved by constructing an isomorphism whenever pos-

sible, one can use the information given by this isomorphism to further reduce the number

of fingerprints comparisons.

Our implementation of this algorithm uses canonical labeling methods to check for subgraph

isomorphism. A canonical labeling is a labeling of the graph’s vertices that uniquely captures

the structure of the graph, and two graphs are isomorphic if and only if their canonical forms

are precisely equal. The problems of canonization and isomorphism are similar in both the-

ory and algorithm design, even though it is not known whether they are poly-time equiva-

lent [9].

Our implementation has an additional optimization step: Instead of searching through all

edges in the egonets looking for edges with isomorphic fingerprint, we convert each fin-

gerprint to an integer value. These integers are extracted from the canonical form of the

fingerprint and are therefore graph invariants. Afterwards these edges are stored in a hash

map where we use the corresponding integer fingerprints as the search key; thus, reducing

the pairwise search for isomorphic fingerprints to a scan over the hash map for edges with

matching keys. This optimization reduces the algorithm complexity from
(|E |

2

)
checks for iso-

morphism to |E | calculations of canonical forms, at the cost of |E | additional graph-to-integer

conversions. Although eventual hash collisions can in principle insert noise in our fingerprint

comparison, we do not expect such collisions to be frequent. Additional graph invariants,

70

3.1. Feasibility of Network Assembly from Ambiguous Patches

such as number of edges, can also be extracted from the fingerprints to disambiguate even

further in case of eventual collisions, but we choose not to use them in our implementation.

We implement the algorithm by using the canonical labeling procedure from the Bliss li-

brary [56]. This library provides us with a hash calculation procedure, that we use to convert

fingerprints to integer values. Additional collisions can result from this, and the same miti-

gation techniques described previously (number of edges and degree sequences) can also be

applied here. We ran a set of experiments for finite graphs sampled from G(n, p; q) model

and found out that the algorithm can restore all the edges with precision 1.

We do not focus on developing the most efficient algorithm in this section, hence we do not

set up an extensive experiment set with different theoretical and practical models. One of the

interesting future directions would be to consider real and artificial noisy data-models and to

develop an approximate assembly algorithm for this. Here we are more interested in the fea-

sibility of graph reconstruction from very poor additional information. And the experiments

fully support the theoretical results: for graphs sampled from the G(n, p; q) model the edge

fingerprints are unique, thus assuring the feasibility of assembly.

3.1.4 Assembly of Noisy Egonets

Recall that in the noisy case our goal is to reconstruct a master graph Ĝ from the noisy egonets

collection P = {Gi = fi (H∗
i)}, where we generate a noisy observation H∗

i by keeping the origi-

nal node set of Hi but sampling edges independently with probability s and anonymizing the

obtained graph with a function fi .

We cannot rely anymore on the isomorphism of the subgraphs of common neighbors, how-

ever we hypothesize that the common neighbors still preserve enough of the structure to be

identifiable. In order to show that the hypothesis is true under certain conditions, we prove a

result analogous to Theorem 3.6. This result can be expressed in terms of the edge mismatch

between two graphs.

Definition 3.7 (Edge Mismatch). Let H1(V1,E1) and H2(V2,E2) be two graphs with |V1| = |V2|
and let π be a bijection between V1 and V2. The edge mismatch of π of H1 and H2, denoted by

Δ(H1, H2,π), is given by: Δ(H1, H2,π) =∑(u,v)∈(V1
2) 1{(u,v)∈E1⊗(π(u),π(v))∈E2}

This metric is equivalent to the one from Definition 2.1 with α= 0 and conditioning on all the

nodes being matched.

Furthermore, for two neighboring nodes u and v , we denote by Hu,v the subgraph of Gu

induced by the common neighbors of u and v . Note that Hu,v and Hv,u have the same node

sets5. However, since both Gu and Gv are noisy egonet-observations, it does not hold in

general that Hu,v = Hv,u , which differs from the noiseless case. Rather, Hu,v and Hv,u are

5In the regimes further considered, these graphs remain connected.

71

Chapter 3. Network Assembly

both subgraphs of Hu,v . We also note that the notation is not symmetric anymore meaning

that Hu,v is a subgraph induced by an egocenter u and its neighbor v , i.e., the first index

denotes the center of the egonet.

Lemma 3.8. Let G be a G(n, p; q) random graph, with (np)5p → 0, fixed q and

npq2 = 32logn+16log(npq2)+ω(1)
s3 . Then, w.h.p., for any pairwise-adjacent nodes u, v and i , j , ei-

ther {u, v} = {i , j } or Δ(Hu,v , Hv,u ,π0) <Δ(Hu,v , Hi , j ,π) for any bijection π (with π0 the identity

mapping over Nuv).

Proof. The proof is very similar to the one of Theorem 3.6, we explain the main steps. Analo-

gously to Theorem 3.6, denote by W the number of quadruples (u, v, i , j), with u and v adja-

cent, i and j are adjacent and (i , j) �= (u, v), (v,u), such that Δ(Hu,v , Hv,u ,π0) ≥Δ(Hu,v , Hi , j ,π)

for some bijection π. We show that E [W] → 0.

Fix u, v , i and j and consider only the case S(u, v) = S(i , j) = {g }, u �= i and v = j — other cases

as broken down in the proof of Theorem 3.6 will be omitted, as they yield stricter bounds. Our

goal is to show that P
(
Δ(Hu,v , Hv,u ,π0) ≥Δ(Hu,v , Hi ,v ,π) for some π

)→ 0.

Denote J = {x ∈ V s.t. Pg ,x Tu,g ,x = 1} a common noiseless super-graph of Hu,v and Hi ,v . For

every node x in J it belongs to Hu,v , Hi ,v independently with probability q . Furthermore, all

edges between nodes in these sets will show up in the corresponding graphs with probability

s, independently. Thus, all three graphs can be seen as a result of two-step sampling process

similar to the BiG(n, p; t , s) model where the master-graph is a subgraph J . See details in

Section 3.1.7 and Figure 3.4 for an illustration of this process.

We further assume that |Hu,v | = |Hi ,v | = m, as otherwise there are no bijections between the

node sets of these graphs and the quadruple is not counted in W by default.

We put J =G(m, q) and t = q into the Lemma 3.11 and fix 0 < δ< 1 and obtain:

P
(
Exists π : Δ(Hu,v , Hv,u ,π0) >Δ(Hu,v , Hu, j ,π)

)≤ 2
∞∑

k=2
mk exp

(
k

(
logm − mps3

16

))

+exp

(
−δ2m(1−q)

2

)

where mk is a usual upper bound for a number of matchings with k nodes mapped wrongly.

Recall that, by Lemma 3.4, m = |Nu,v | = ��
(
n, pq2

)
. The Chernoff bound (see A.1) implies

72

3.1. Feasibility of Network Assembly from Ambiguous Patches

(1−δ)npq2 ≤ m ≤ (1+δ)npq2, so summing over all quadruples yields

E [W] ≤
∑

u,v,i , j

[
2

∞∑
k=2

exp

(
k

(
lognpq2(1+δ)− npq2s3(1−δ)

16

))
+3exp

(
−δ2npq2(1−q)

3

)]

≤ 2
∞∑

k=2
exp

(
4logn +k

(
lognpq2(1+δ)− npq2s3(1−δ)

16

))

+3exp

(
4logn − δ2npq2(1−q)

3

)

Under the assumptions, the right side vanishes, which concludes the proof.

3.1.5 Feasibility of Noisy Egonets Assembly

Based on Lemma 3.8 we build a variation of the fingerprint assembly algorithm that can be

used to assemble a collection of noisy egonets P = {Gi }i∈[n]. The noisy-fingerprint algorithm

takes {Gi } as input and proceeds like the fingerprint assembly algorithm, except for the fol-

lowing modification: For each egonet Gu and each node j �= 1 in Gv , we match it to an edge

(1,k) on an egonet G ′
u′ , but we change the criteria “both fingerprints match exactly” to the

criteria “edge mismatch between both fingerprints is minimized”.

Just like in the noiseless scenario, this algorithm is able to completely assemble the master-

graph G .

Theorem 3.9. Let G be a G(n, p; q) random graph, with (np)5p → 0, fixed q and npq2 =
32logn+16log(npq2)+ω(1)

s3 and let P = {Gi }i∈[n] be an unlabeled noisy-egonet collection extracted

from G. If Ĝ is the output graph of the noisy-fingerprint algorithm with input P , then E(Ĝ) =
E(G) w.h.p.

Proof. The proof proceeds exactly as in the noiseless case, except that the test of isomor-

phism of the common-neighbor subgraph is replaced with the test for a minimal edge mis-

match distance.

Unlike the fingerprint-assembly algorithm, the noisy-fingerprint algorithm has no trivial effi-

cient implementation. The main reason is that the subgraph isomorphism subroutine must

be replaced by the calculation of a minimum inconsistency between the input subgraphs,

which is a computationally expensive task to which there is no known efficient approxima-

tion, to the best of our knowledge. A practical approximation that warrants some interest

is to use the optimized form of the algorithm that has been implemented with the Bliss li-

brary, but use a locality-sensitive hash function over labeled graphs to store all subgraphs in

our hash map. This way, the task of searching for graphs with similar topology (i.e., similar

73

Chapter 3. Network Assembly

fingerprints) would be reduced to determining entries that are closely located in this hash

map.

3.1.6 Discussion

We stated two results that characterize the regimes where complete graph assembly, using

only the structure of very small, unlabeled patches is feasible. We have shown how the rel-

atively high transitivity (compared to Erdős-Rényi) of the G(n, p; q) random graph model

leads to the existence of features in egonet patches, which can be exploited in the assembly

of the egonet collection through a very simple algorithm.

We have shown that an assembly is still feasible if the patches in our collection are noisy

observations of egonets. The conditions required on the model’s parameters are stronger but

only slightly: the lower bounds imposed on the average degree of the intermediate graph Gp

differ by a multiplicative penalty of s−3 due to the noise parameter s (i.e., s−6 in terms of the

average degree of G).

It is important to highlight that the focus of this section is not chiefly on particular algorithms

for solving the graph assembly problem. Rather, we evaluate the impact of a fundamental

network property — its clustering coefficient — on the theoretical feasibility of solving the

graph assembly problem. Nevertheless, our approach of generating unique fingerprints for

edges, based on their common-neighbor subgraphs, may be relevant for network assembly

in practice. We consider a realistic algorithm in the following section.

3.1.7 Auxiliary Results

Proof of Lemma 3.4

Proof. To prove the first statement, it is enough to show that, under stated assumptions and

given u and v are adjacent, the expected size of the set X = {x ∈ V : Qu,xQv,x = 1,S(u, x)∩
S(v, x)∩S(u, v) =�} goes to 0. The first moment method then implies that this set has size 0

a.a.s., which is equivalent to the desired result.

We start by using the tower property:

E
[|X | ∣∣Qu,v = 1

]= E
[
E
[|X | ∣∣ N p

u , N p
v ,S(u, v),Qu,v = 1

] ∣∣Qu,v = 1
]

Recall that, for any node g , N p
g denotes the set of p-neighbors of g that showed up during the

construction process of the G(n, p; q) graph. Note that the condition on the inner expectation

can be expressed as a function only of random variables of the kinds Pu∗, Pv∗ and Tu∗v . By

construction, any functions of random variables other than these are independent of this

condition.

74

3.1. Feasibility of Network Assembly from Ambiguous Patches

To bound this inner expectation, fix vertex sets U ,V ,S with S ⊆U ∩V and denote current

values being fixed event by T = {N p
u =U , N p

v = V ,S(u, v) =S ,Qu,v = 1}. Then

E [|X | |T] =
∑

x∉{u,v}
P (x ∈ X |T)

Note that u, v ∉ X , as S(u,u),S(v, v) =� by construction. For any x ∉ {u, v}, we write

P (x ∈ X | T) =P (|S(u, x)| ≥ 1, |S(v, x)| ≥ 1,S(u, x)∩S(v, x)∩S(u, v) =� | T)

=P (|S(u, x)| ≥ 1, |S(v, x)| ≥ 1,S(u, x)∩S(v, x)∩S =� | T)

Rewriting expressions on S(u, x) and S(v, x) in terms of our basic random variables:

P (x ∈ X | T) =P

(⊕
g ′ �=u,x

Pg ′,uPg ′,x Tu,g ′,x = 1,
⊕

g ′′ �=v,x
Pg ′′,v Pg ′′,x Tv,g ′′,x = 1,

⊗
g∈S

Pu,g Pv,g Px,g Tu,g ,x Tv,g ,x = 0

∣∣∣∣∣T
)

=P

⎛
⎜⎜⎝ ⊕

g ′ �=u,x
g ′′ �=v,x

(
Pg ′,uPg ′,x Tu,g ′,x Pg ′′,v Pg ′′,x Tv,g ′′,x = 1,

⊗
g∈S

Px,g Tu,g ,x Tv,g ,x = 0
) ∣∣∣∣∣T

)

where the last step used the condition that S(u, v) = S and, therefore, Pu,g Pv,g = 1 for any

g ∈S . Now, we can apply union bound to the latest expression:

P (x ∈ X | T) ≤
∑

g ′ �=u,x
g ′′ �=v,x

P
(
Pg ′,uPg ′,x Tu,g ′,x Pg ′′,v Pg ′′,x Tv,g ′′,x = 1,

⊗
g∈S

Px,g Tu,g ,x Tv,g ,x = 0

∣∣∣∣∣T
)

The summand has different values depending on g ′, g ′′. Let us detail all possible cases:

1. g ′ = g ′′ ∈ S — since the condition implies Pg ′,uPg ′,v Tu,g ′,v = 1, the event expression

reduces to (Pg ′,x Tu,g ′,x Tv,g ′,x = 1,⊗g∈S Px,g Tu,g ,x Tv,g ,x = 0); the two parts of the expres-

sion are mutually exclusive, hence, the event has probability 0;

2. g ′ = g ′′ ∈U ∩V \S — by the same argument as the previous item, the event expression

reduces to (Pg ′,x Tu,g ′,x Tv,g ′,x = 1,⊗g∈S Px,g Tu,g ,x Tv,g ,x = 0); using independence:

75

Chapter 3. Network Assembly

P

(
Pg ′,uPg ′,x Tu,g ′,x Pg ′′,v Pg ′′,x Tv,g ′′,x = 1,

⊗
g∈S

Px,g Tu,g ,x Tv,g ,x = 0

∣∣∣∣∣T
)

=P

(
Pg ′x Tu,g ′,x Tv,g ′,x = 1,

⊗
g∈S

Px,g Tu,g ,x Tv,g ,x = 0

∣∣∣∣∣T
)

≤P
(
Pg ′x Tu,g ′,x Tv,g ′,x = 1

∣∣T)
=P
(
Pg ′x Tu,g ′,x Tv,g ′,x = 1

)
= pq2

This pattern of manipulation also applies to following cases and will be further omitted;

3. g ′ = g ′′ ∉U ∩V — in this case, either g ′ ∉U , which implies Pg ′,u = 0, or g ′′ ∉ V , which

implies Pg ′′,v = 0; both facts imply that Pg ′,uPg ′,x Tu,g ′,x Pg ′′,v Pg ′′,x Tv,g ′′,x = 0 so the event

has probability 0;

4. g ′ �= g ′′, g ′ ∈U , g ′′ ∈ V — the expression reduces to

Pg ′,x Tu,g ′,x Pg ′′,x Tv,g ′,x = 1,⊗g∈S Px,g Tu,g ,x Tv,g ,x = 0,

similarly to case 2, and the probability is bounded by p2q2;

5. g ′ �= g ′′, (g ′ ∉U or g ′′ ∉ V) — as in case 3, the choices of g ′ and g ′′ imply that

Pg ′,uPg ′,x Tu,g ′,x Pg ′′,v Pg ′′,x Tv,g ′′,x = 0

yielding an event of probability 0;

Case 2 will happen for |U∩V | choices of g ′ and g ′′, and case 4 will happen for |U |·|V |−|U∩V |
such choices. Thus

P (x ∈ X | T) ≤ |U ∩V |pq2 + (|U | · |V |− |U ∩V |)p2q2

= |U ∩V |p(1−p)q2 +|U | · |V |p2q2

Since this is valid for any x �= u, v

E
[|X | ∣∣T ,Qu,v = 1

]≤
(

n

2

)
(|U ∩V |p(1−p)q2 +|U | · |V |p2q2)

and,

E
[|X | ∣∣Qu,v = 1

]= E
[
(n −2)(|N p

u ∩N p
v |p(1−p)q2 +|N p

u | · |N p
v |p2q2)

]

76

3.1. Feasibility of Network Assembly from Ambiguous Patches

By linearity of expectation and independence of N p
u and N p

v ,

E
[|X | ∣∣Qu,v = 1

]= (n −2)(E
[|N p

u ∩N p
v |
]

p(1−p)q2 +E
[|N p

u |
] ·E[|N p

v |
]

p2q2)

� n ·np2 ·pq2 + (np)2p2q2

= np3q2 +n2p4q2 = o(1)

To show the second and third statements of the lemma, we use the following argument, for

any two events A and B , such that A ⊆ B the following holds:

P (A) =P (B)
P (A∩B)

P (B)
=P (B)P (A|B) .

Hence,

P
(
Qx,uQx,v = 1

∣∣Qu,v = 1
)=P

(
x ∈ ⋃

g∈S(u,v)
N p

g

)
·P
(

Qx,uQx,v

∣∣∣∣∣Qu,v = 1∧x ∈ ⋃
g∈S(u,v)

N p
g

)
.

Thus |Nu,v | =��
(
n, |S(u, v)|pq2

)
and E

[|Nu,v |
∣∣ S(u, v)

]= n|S(u, v)|pq2.

Graph Alignment Results

In this section we present several alignment results for different sampling models, that are

modifications of the BiG(n, p; t , s) model.

Node Sampling

Let G(V ,E) be a realization of an Erdős-Rényi random graph G(m, p), and let G1(V1,E1) and

G2(V2,E2) be two samples of G obtained as follows: Each node u ∈ V is sampled with proba-

bility t independently to V1 and V2, and E1 and E2 are all edges of E whose both endpoints

are sampled in V1 and V2, respectively.

Lemma 3.10.

P (G1 ∼G2) ≤ exp
(
m logm −cm2

)
+2exp−δ2mt

2

where c(p, t ,δ) = (1−δ)2t 2(1− t) log
(
(p2 + (1−p)2)−1

)
and 0 < δ< 1.

Proof. If |V1| �= |V2|, this event has probability 0, so we assume |V1| = |V2| = m′. Denote by V0

the set of nodes in G that are sampled in both V1 and V2, and let m1 = |V1 \V0| = |V2 \V0|.

Consider an arbitrary mapping π : V1 →V2. For any pair of nodes x ∈V1 \ V0, y ∈V1, if π is an

isomorphism, then either (x, y) ∈ E1 and (π(x),π(y)) ∈ E2, or (x, y) �∈ E1 and (π(x),π(y)) �∈ E2.

77

Chapter 3. Network Assembly

This happens with probability p2 + (1−p)2, since x is not a fixed point of π. In total, we have

approx m′m1 such pairs, and the event above happens independently for each pair, hence

P (G1 ∼π G2) ≤ (p2 + (1−p)2)m′m1 .

Denote by c1 = (p2 + (1−p)2)−1. In total we have at most m′! mappings from G1 to G2, thus

P (G1 ∼G2) ≤ m′!(c1)−m′m1 ≤ exp
(
m′ logm′ −m′m1 logc1

)

Recall that m′ = (m, t) and m1 = (m, t (1− t)). Then, P
(
m′ ≤ (1−δ)mt

)≤ exp
(
−δ2mt

2

)
by

Chernoff bound since m →∞, and similarly P (m1 ≤ (1−δ)mt (1− t)) ≤ exp
(
−δ2mt

2

)
. There-

fore,

P (G1 ∼G2) ≤ exp
(
m logm −cm2)+2exp

(
−δ2mt

2

)
,

where c = (1−δ)2t 2(1− t) logc1 .

Node-Edge Sampling (Noisy Egonets Assembly)

Consider now the following variation of this graph sampling process. First, graphs G , G1 and

G2 are generated as previously described. Now, graphs G1,1 = (V1,E1,1), G1,2 = (V1,E1,2) are ob-

tained by sampling edges from E1 independently with probability s, this sampling also being

independent for G1,1 and G1,2. Similarly, G2,1 = (V2,E2,1) is obtained via this edge-sampling

process from G2. This process is illustrated in Figure 3.4.

Figure 3.4 – Node-edge sampling process that generates the edge neighborhoods.

Assume |V1| = |V2| = m, and denote by π0 the identity mapping over V1. Denote by D an event

that there exists π such that Δ(G1,1,G1,2,π0) >Δ(G1,1,G2,1,π) .

78

3.1. Feasibility of Network Assembly from Ambiguous Patches

Lemma 3.11. For s �
(
ω(1) logm

m

) 2
3

and p, t fixed, then

P (D) ≤
m∑

k=x+1
exp
(
k
(
logm − mps

16
· s2
))
+exp

(
−δ2 m(1− t)

2

)
.

for x = �m(1− t)� and 0 < δ< 1.

Proof. Denote by k the number of nodes u such that π(u) �= u and denote by Πk a subset of all

such mappings that fix m−k nodes and permute k nodes. Note that always k ≥ |V2 \V0| = m′.
Then we can write

P (D) ≤P
(
D|m′ ≤ x

)+P
(
D|m′ > x

)
≤P
(
D|m′ ≥ m(1− t)

)+P
(
m′ < m(1− t)

)
as k > m′ > x

≤
m∑

k=x

(∑
π∈Πk

P
(
Δ(G1,1,G1,2,π0) >Δ(G1,1,G2,1,π)

))+P
(
m′ < x

)
(3.1)

First we estimate P
(
Δ(G1,1,G1,2,π0) >Δ(G1,1,G2,1,π)

)
. We partition V2 into two sets of nodes

Cπ ⊂V2 and Wπ ⊂V2 such that u ∈Cπ iff π−1(u) = u and u ∈Wπ otherwise. Also denote by V0

nodes that are sampled in G1 and G2. Note, that |Cπ| = m −k, |Wπ| = k and m′ = |V2 \ V0| =
�� (m,1− t).

Define mapping π′ =π◦g where g is a bijection g : V2 →V1, which works as follows: If u ∈Cπ,

then g (u) = u; the remaining nodes Wπ we map as follows, we arbitrarily split Wπ into two

equal parts6 to W1 and W2 and we map each u ∈ W1 s.t. g (u) = π0(π−1(u)) the rest we map

arbitrarily, but not in place. Note that π′|W1∪Cπ
=π0|W1∪Cπ

In the following, we show that w.h.p. Δ(G1,1,G1,2,π′) < Δ(G1,1,G2,1,π). This follows from

Lemma A.2(see Appendix), that states

P
(
Δ(G1,1,G1,2,π′)−Δ(G1,1,G2,1,π) < 0

)≤ exp
1

8

(λ1 −λ2)2

λ1 +λ2
, (3.2)

whereλ1 = E
[
Δ(G1,1,G2,1,π)

]
andλ2 = E

[
Δ(G1,1,G1,2,π′)

]
. It only remains to prove that (λ1−λ2)2

λ1+λ2
=

ω(1)

6Without loss of generality we can assume |Wπ| is even.

79

Chapter 3. Network Assembly

λ1 =
(

m −k

2

)
2ps(1− s)+

(
(m −k)k +

(
k

2

))
2ps(1−ps)

λ2 =
(

m −k + k
2

2

)
2ps(1− s)+

((
m −k + k

2

)
k

2
+
(

k
2

2

))
2ps(1−ps)

λ1 −λ2 = k

(
m − 3

4
k

)
ps2(1−p) ≥ k

m

4
ps2(1−p)

λ1 +λ2 =
(
2m2 −3mk + 5

4
k2
)

ps(1− s)+
(
3mk − 5

4
k2
)

ps(1−ps)

≤ 4m2ps(2− s −ps)

Thus, (λ1−λ2)2

λ1+λ2
≥ k2s3p

64(2−s−ps) that is ω(1) for k > x. This enables us to bound the first term of 3.1:

m∑
k=x+1

∑
π∈Πk

P
(
Δ(G1,1,G1,2,π0) >Δ(G1,1,G2,1,π)

) (a)≤
m∑

k=x+1

∑
Πk

P
(
Δ(G1,1,G1,2,π0) >Δ(G1,1,G1,2,π′)

)
(b)≤

m∑
k=x+1

expk
(
logm − mps

16
· s2
)

(3.3)

The (a) follows from 3.2 and the last inequality (b) follows from Equation 19 of [88] where

conditions of the Theorem 4.1 from [88] are met (except the condition p → 0 that the authors

never use).

The second term of 3.1 follows from the fact that

P
(
m′ < x

)≤P
(
m′ < m(1− t)(1−δ)

)≤ exp−m(1− t)δ2

2
(3.4)

due to Chernoff bound. Note that m′ =�� (m,1− t).

Then putting together 3.1, 3.3 and 3.4 we obtain

P (D) ≤
m∑

k=x+1
exp
(
k
(
logm − mps

16
· s2
))
+exp

(
−δ2 m(1− t)

2

)
.

80

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

3.2 Towards a General Assembly Algorithm for Arbitrary Patches

In Section 3.1, we considered a graph assembly problem in the setup where patches are pos-

sibly noisy egonets. The proposed fingerprint-assembly algorithms rely on the fact that (i)

each patch consists of a central node and adjacent neighbors and (ii) we have all the egonets

of the master graph as an input. Many questions remain open: (i) What if we have the gen-

eral shaped patches (not egonets)? (ii) What if nodes have labels, how can we incorporate

this information? (iii) What if the number of patches is smaller than the number of nodes?

(Obviously there is some overhead of edges that are highly repetitive among the egonets, this

overhead can be explored to reduce the number of patches.) (iv) What if noise in the patch

creation process is not uniform? These questions reflect real network-assembly challenges

such as neural-network assembly, where labels are types of neurons and the goal is to assem-

ble a neural network from its small observations [108]; or, the assembly of a social network

from its multiple observations, where labels are the first names. Consider the last example

in detail: assume we are given multiple observations of a social network, where only the first

names of users are known. The labels are highly ambiguous because many persons can have

the same name. In general, observations are not ego-centered and some observations are

more incomplete than others. For example, consider collaboration networks provided by the

e-print arXiv [45, 75] constructed from citation graphs of papers from a particular a category

(Astro Physics, Condensed Matter, General Relativity, etc.). The authors’ names are provided,

but they are ambiguous. The goal is to construct a general collaboration graph. In these

examples, we cannot apply fingerprint assembly algorithms because of the assumptions de-

scribed above. However, we have some labels as side information. We assume that the same

users across two patches keep the same label.

In this section, we propose a general assembly algorithm that does not rely on the shape

or the number of patches. We emphasize that the proposed algorithm is rather a direction

towards a general class of a graph-assembly algorithms. Many questions about different

regimes (small large patches) as well as about the theoretical guarantees and analysis of pro-

posed heuristics, remain open.

In summary, we are interested in the general scenario where we have multiple patches of ar-

bitrary shapes. We consider a patch collection P in its most general form, see Definition 1.4,

originated from a master graph G . We assume that the master graph is labeled with a small

label set [l] and that this labeling is preserved through the patching process. In other words,

each copy of a node in the patches has the same labels as in the master graph. Then, an as-

sembly problem is to merge these patches to obtain the estimator Ĝ of the master graph G ,

as before.

The labels serve as side information. For the preprocessing step of the algorithm that we

propose, we process this side information as follows: for each patch we identify small, rare,

labeled subgraphs. By analogy with the network-alignment problem, we call these subgraphs

seed-subgraphs. Using the frequencies of these subgraphs, we identify patches with large

81

Chapter 3. Network Assembly

intersection. After this, we proceed by aligning the chosen pairs of patches and merging them

pairwise.

3.2.1 General Assembly Algorithm: High-Level Description

Our strategy consists of three major steps, repeated iteratively:

1. Select a pair of patches G1,G2 ∈ P that are “close” to each other. By close, we mean

patches having large node-intersection or, in other words, having many nodes origi-

nated from the same node of the master graph.

2. Find an alignment π between these two patches (see Definition 1.1). We consider a

regime where we have few relatively large patches: in this scenario it is rational to use

PGM to align the patches.

3. We merge the two aligned patches into a new patch and replace the two patches in the

collection P by the new one.

We repeat these steps until |P | = 1. The remaining element is the estimator Ĝ of the master-

graph G .

Below, we explain each step of the algorithm in detail and evaluate its performance.

3.2.2 Main Steps of the Algorithm

Selecting “Close” Patches: Graph Similarity Heuristic

To select a pair of patches that have a large node-intersection, we propose a heuristic that

measures the similarity of two graphs, based on frequencies of common seed-subgraphs.

This seed-similarity metric puts a larger weight on rare subgraphs. The intuition behind this

is that the more rare a subgraph is overall, the more likely its occurrence in both graphs will

signal an overlap. Finding these rare subgraphs of a graph is a problem of independent inter-

est. It is studied in network security for finding threats [51], for identifying malicious software

pieces, or for revealing attacks on social networks [15].

We say that a labeled graph H occurs in a graph G if there exists a subgraph H ′ of G that is

isomorphic to H with consistent labels. Denote by NH (Gi) the number of occurrences of

H in Gi . In this work, we restrict ourselves to the following types of subgraphs: singletons,

single-edges, closed triangles and 4-cliques. Denote the set of all the labeled subgraphs of

these four types by T . We call a labeled subgraph H ∈ T a seed-subgraph. We also define

NH (P) = ∑
Gi∈P

NH (Gi) a total number of occurrences of a subgraph H through all the patches

of a collection. We formally define a graph similarity metric as follows.

82

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

Definition 3.12 (Seed-Similarity).

si m(Gi ,G j) = ∑
H∈T

min(NH (Gi), NH (G j))

NH (P)

This metric is similar to tf− idf metric 7, where graphs can be viewed as documents and seed-

subgraphs as terms. However, in experiments, we observe that the si m metric has a slight

advantage as it is normalized by the total number of occurrences rather than by the number

of patches where a subgraph occurs. See evaluation of the proposed heuristic in 3.2.3.

For the first step of each iteration of the assembly algorithm, we select two patches from P

as follows, G1 is picked at random, G2 is the one with the highest seed-similarity si m(G1,G2).

Seed Selection for Patch Alignment

We align two patches G1 and G2 selected at the previous step with the PGM algorithm de-

scribed in Section 2.2. To find an initial seed-set, we use the fact that PGM is highly robust to

the noise in the seed-set [60], thus we can tolerate some errors in the seed-set. Given the two

selected patches G1 and G2, we find similar nodes based on the Jaccard similarity index be-

tween the following multisets, each consists of labels of neighbors of the node. The definition

of the Jaccard-similarity index of the two sets, A and B , is as follows:

J (A,B) = |A∩B |
|A∪B | =

|A∩B |
|A|+ |B |− |A∩B | .

More precisely, for the two graphs G1(V1,E1) and G2(V2,E2), the seed selection step works

as follows. Denote by Nl (v) a multiset of labels of neighbors of v . For each node v1 ∈ V1,

we select a node v2 ∈ V2 such that J (Nl (v1), Nl (v2)) is minimal over all v2 ∈ V2. We order an

obtained list of pairs (v1, v2) by their corresponding Jaccard indices J (Nl (v1), Nl (v2)). We take

the top a0 pairs (with the highest Jaccard index) where a0 is the required number of seeds that

we want to select.

Percolation Graph Matching and Merge

By embedding labels into the PGM process, we adjust the PGM algorithm to the labeled case,

thus considering only nodes with the same label as the possible matches.

7tf− idf heuristic is intended to reflect how important a word is to a document in a collection or corpus.
tf− idf = T F (t)I DF (t), where
T F (t) = (Number of times word t appears in a document) / (Total number of words in the document).
I DF (t) = loge (Total number of documents / Number of documents with word t in it).

83

Chapter 3. Network Assembly

We run a PGM over the selected pair of patches G1(V1,E1) and G2(V2,E2) with the selected

seeds (with high Jaccard similarity) and obtain the alignment π. We merge these two graphs

into a new patch G3(V3,E3) as follows. The new vertex set V3 = V1 ∪V2 \π(V1) and the new

edge set E3 = E1 ∪E ′
2, where E ′

2 are the edges E2 projected to the new vertex set V3 as follows:

for any (i , j) ∈ E2 we include (i ′, j ′) to E ′
2 where if i ∈V2\π(V1) then i ′ = i else i ′ =π−1(i) (same

for j ′, if j ∈ V2 \π(V1) then j ′ = j else j ′ = π−1(j)). Consider the example of two patches in

Figure 3.5 and assume we merge them via alignment π= {(�,1), (2,2), (3,5), (4,4), (5,�)}. As a

result V3 = [5], E ′
2 = {(1,3), (2,3), (3,4)} and E3 = {(1,3), (2,3), (2,5), (3,4), (4,5)}.

Figure 3.5 – Two patches G1 and G2 generated from a master graph G where nodes are labeled
with red and black.

Note that the merge procedure is, in fact, symmetric because the new edge set is a union of

the edge sets of the two merged graphs, even though the labels of the aligned vertices are

taken from the left graph.

3.2.3 Evaluation

Experimental Setup

We experiment with an egonet patch collection P = {Gi }i∈[n] similar to the one considered

in the previous Section 3.1, only with larger ego-nets. We start by generating a master graph

G(V ,E) from the G(n, p; q) model (see Section 1.3.2). We assign labels uniformly from a label

84

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

set [l] with size l � n. From G , we generate a patch collection P with m patches, as follows.

To generate a patch Gi , we select a node i ∈ V at random; then we explore G starting from

i with a breadth-first search, until we visit D nodes. We denote the obtained set of visited

nodes by Ni . We take a subgraph of G induced by Ni and anonymize it, as described in

Definition 1.7; the resulting graph Gi is our patch. We keep original labels in the patches. We

generate m patches in this way.

Note that, even though we use the G(n, p; q) model and extend egonets as patches, the algo-

rithm does not rely on any of these assumptions and is applicable to an arbitrary network

and an arbitrary type of patches. We create a table of the main parameters of the algorithm

and the ranges of considered values:

Parameter Range

Number of labels l {50,100200,500}
Number of patches m {50,100,200}
Size of a patch D {500,1000,2000,4000}
PGM threshold r {3,8,14}
Average degree of the generator graph np 12
Probability of triangle closure q 0.95
Number of nodes in the graph n 20000

Table 3.1 – Parameters of the graph assembly algorithm.

Graph-Similarity Heuristic

To evaluate the proposed seed-similarity metric, we set up the following experiment: From

the aforementioned patch collection P , we select a patch Gi at random; then, for each patch

G j �=Gi , we plot the size of the intersection (taken from the ground truth) Gi ∩G j vs. the value

of the proposed heuristic si m(Gi ,G j); we repeat for 20 realizations of the master graph.

In the later experiments on the assembly algorithm, we consider only the simplest seed-

subgraphs (triangles) for computational purposes. We suggest, however, that more compli-

cated (hence more rare) subgraphs should provide higher confidence in the selected patches.

For this we evaluate three variations of the seed-similarity metric: First, we plot si m(Gi ,G j)

where the set of seed-subgraphs contains only triangles (T = T3); second, we plot si m(Gi ,G j)

where the set of seed-subgraphs contains all the triangles and subgraphs that are formed by

4-cliques (T = T3,4); and third, we consider the tf− idf metric that is similar to si m(Gi ,G j),

but is normalized by a number of patches containing a seed subgraph instead of the total

number of occurrences.

See Figures 3.6, 3.7 and 3.8 for comparisons of three proposed variations of the heuristic for

the graph similarity, with respect to how well they reflect node overlap. For 50 labels we al-

ready observe high correlation between the proposed seed-similarity of the two patches and

85

Chapter 3. Network Assembly

their node overlap. Note that we are interested in the question about whether highly simi-

lar patches have high node overlap? Precisely, at each iteration, we need to select only one

pair of patches for the algorithm to continue, hence we are not interested in dense clusters

of patches with low overlaps. Figure 3.6 demonstrates a regime where we have an extremely

small number of labels l = 20, this is insufficient to identify highly overlapping patches. In Fig-

ure 3.7, we see that even l = 50 labels are enough to efficiently find close patches. Figure 3.8

shows the result for larger patches D = 1000, where the seed-similarity with T = T3 has a

slight advantage over the tf− idf metric. We also note that the seed-similarity with T = T3,4 is

more accurate for the patches with low overlap. Overall, we see that selecting graphs with a

large seed-similarity likely provides us patches with high intersection.

−20 0 20 40 60 80 100 120 140 160
Overlap of two patches

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Si
m

ila
ri

ty

Similarity (T3)

−50 0 50 100 150 200
Overlap of two patches

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Similarity (T3,4)

0 50 100 150 200
Overlap of two patches

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
TF-IDF Similarity

Figure 3.6 – The proposed heuristics for graph similarity for l = 20,m = 100,D = 500.

−50 0 50 100 150 200 250 300
Overlap of two patches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Si
m

ila
ri

ty

Similarity (T3)

−50 0 50 100 150 200 250
Overlap of two patches

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Similarity (T3,4)

0 50 100 150 200 250 300
Overlap of two patches

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
TF-IDF Similarity

Figure 3.7 – The proposed heuristics for graph similarity for l = 50,m = 100,D = 500.

86

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

0 50 100 150 200 250 300 350 400 450
Overlap of two patches

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
Similarity (T3)

0 50 100 150 200 250 300 350 400 450
Overlap of two patches

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Similarity (T3,4)

0 50 100 150 200 250 300 350
Overlap of two patches

0.2

0.4

0.6

0.8

1.0

TF-IDF Similarity

Figure 3.8 – The proposed heuristics for graph similarity for l = 50,m = 100,D = 1000.

Seed Selection for Patch Alignment

To evaluate our seed-selection strategy we set up the following experiment: for label-set sizes

l = {100, . . . ,1000}, we generate a labeled graph G(n, p; q) with n = 20000 and generate a patch

collection with 500 patches, each of size 2000. We select two patches G1 and G2 as follows: the

first patch is picked at random and the second one is the one with maximal seed-similarity;

then we select a0 ∼ 200,600,1000 seed-pairs with the highest Jaccard similarity index, as de-

scribed above, and we compute a fraction of correct seeds among the selected ones (the cor-

rect ones are those originated from the same node of the master graph). We compare the

performance of our algorithm with a simple baseline that selects a0 pairs with the same la-

bel as follows. First, it takes a least frequent label γ of G1 then it adds to a seed-set all the

pairs (s1, s2) such that s1 ∈ V1 and s2 ∈ V2 and s1 and s2 have the label γ; it proceeds with

the second least frequent label and so on, until it reaches a0 seeds. The results are shown at

the Figure 3.9. You can see that the number of labels has little effect on the fraction of cor-

rect seeds, whereas number a0 is important. Hence it is easy to find a few correct seeds with

highly similar neighborhoods. This observation can be helpful step towards seedless network

alignment.

Figure 3.9 – Number of correct seeds vs. number of labels l (m = 500,D = 2000).

87

Chapter 3. Network Assembly

Experiments on the Assembly Algorithm

We run several experiments to demonstrate the trade-offs between different parameters of

the algorithm and to evaluate its performance.

Performance Characteristics

To evaluate the performance of the algorithm we compute and plot the precision, recall and

F1-score metrics, we compute these by comparing the obtained results with the ground truth

defined as follows. First, for an initial patch collection P = {Gi }i∈[n], for each patch Gi (Vi ,Ei),

we define a ground truth function gi = f −1
i : Vi → V (recall from Definition 1.4 that fi is

a bijection). Each time we merge two patches G1(V1,E1) and G2(V2,E2) into a new patch

G3(V3,E3), we define g3 : V3 →V as g3(v) = g1(v) if v ∈V1 and g3(v) = g2(v) if v ∈V3 \V1.

As we described earlier, the algorithm terminates when only one patch remains in the collec-

tion. We take it as an estimator Ĝ of the master graph G . We take its corresponding ground

truth function and denote it g : V̂ →V ; we also define g (Ê) : Ê → (V2) from g . We compute the

following quantities from the output of the algorithm: the set of recovered edges Ê and the

set of recovered edges in the ground truth coordinates g (Ê). Denote Ecor r = g (Ê)∩E , where

E is a set of original edges. We define the precision, recall and F1-score:

precision = |Ecor r |
|Ê |

recall = |Ecor r |
|E |

F1 = 2 · precision · recall

precision+ recall

Note that the projected set g (Ê) (hence the introduced metrics) can take different values in

scenarios where the algorithm cannot make a deterministic choice. See the example in Fig-

ure 3.5 that contains two patches generated from a master graph. Although merging these

two patches, the algorithm cannot possibly decide between the two following alignments:

π1 = {(�,1), (2,2), (3,�), (4,4), (5,5)} or π2 = {(�,1), (2,2), (3,5), (4,4), (5,�)}, however, these two

alignments result in different estimated edge-sets g (Ê1) and g (Ê2). Hence, for patches merged

via π1, |Ecor r | = 5 and resulting in recall = 1 and precision = 1, whereas for patches merged

via π2, |Ecor r | = 4 resulting in recall = 4
5 and precision = 4

5 .

For the numbers of labels in {50,200,500}, in Figures 3.10, 3.11 , 3.12 , 3.13 , 3.14 and 3.15, we

plot the precision/recall/F1 curves vs. the size of the patch D and vs. the number of patches

m.

We see that the performance of the algorithm depends strongly on several factors and has sev-

eral sensitive parameters: large/small number of labels l , large/small patch size D , many/few

patches m and large/small r .

88

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

1000 1500 2000 2500 3000 3500 4000
Size of the patch

0.0

0.2

0.4

0.6

0.8

1.0
r = 3

1000 1500 2000 2500 3000 3500 4000
Size of the patch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 8

1000 1500 2000 2500 3000 3500 4000
Size of the patch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 14

labels=50; precision
labels=50; recall
labels=200; precision
labels=200; recall
labels=500; precision
labels=500; recall

Figure 3.10 – Precision/Recall of the assembly vs. size of the patch D for a number of patches
m = 50.

1000 1500 2000 2500 3000 3500 4000
Size of the patch

0.0

0.2

0.4

0.6

0.8

1.0
r = 3

1000 1500 2000 2500 3000 3500 4000
Size of the patch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 8

1000 1500 2000 2500 3000 3500 4000
Size of the patch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 14

labels=50; precision
labels=50; recall
labels=200; precision
labels=200; recall
labels=500; precision
labels=500; recall

Figure 3.11 – Precision/Recall of the assembly vs. size of the patch D for a number of patches
m = 150.

We show three subplots for three values of r = {3,8,14}. Note that executions with different

values of r introduce fundamentally different types of errors: for a small r , the algorithm

tends to percolate to a larger set of nodes introducing errors by merging erroneously and

reducing recall; whereas for a larger r , the algorithm stops too early, hence introduces dupli-

cates (not merging some nodes) thus reducing precision.

Several observations:

• Larger patches (and more patches), i.e., larger D and m, introduce more errors in some

regimes (see Figure 3.10 with r = 14, for example). Explanation: suppose the entire net-

work (or a large part) is covered by patches and the graph assembly algorithm succeeds

in merging most of them. Beyond this, adding more patches introduces duplicates and

errors, increasing the number of wrong edges; whereas the number of correct edges

does not increase or increases very little.

• There is a tradeoff in the size of the patch D vs. the number of patches m: We need

to assure that not only a large part of the network is covered by patches, but also that

patches have a large enough intersection to find alignments. However, in the proposed

approach, few larger patches are easier to align than multiple small patches.

89

Chapter 3. Network Assembly

40 60 80 100 120 140 160 180 200
Number of patches

0.0

0.2

0.4

0.6

0.8

1.0
r = 3

40 60 80 100 120 140 160 180 200
Number of patches

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 8

40 60 80 100 120 140 160 180 200
Number of patches

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 14

labels=50; precision
labels=50; recall
labels=200; precision
labels=200; recall
labels=500; precision
labels=500; recall

Figure 3.12 – Precision/Recall of the assembly vs. number of patches m for a size of a patch
fixed to D = 1000.

40 60 80 100 120 140 160 180 200
Number of patches

0.0

0.2

0.4

0.6

0.8

1.0
r = 3

40 60 80 100 120 140 160 180 200
Number of patches

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 8

40 60 80 100 120 140 160 180 200
Number of patches

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
r = 14

labels=50; precision
labels=50; recall
labels=200; precision
labels=200; recall
labels=500; precision
labels=500; recall

Figure 3.13 – Precision/Recall of the assembly vs. number of patches m for a size of a patch
fixed to D = 3000.

• The algorithm that runs with a smaller r is more sensitive to the label-set size l , because

labels prevent the algorithm from erroneously merging nodes (see Figures 3.14 and

3.15 for r = 3).

• The algorithm that runs with a larger r performs worse for larger patches (see Fig-

ures 3.14 and 3.15 for r = 8 and r = 14), because for a larger r , the PGM stops too

early hence introduces more duplicates. And labels do not help in this case. Thus, exe-

cutions with larger patches and large r introduce more duplicates than executions with

smaller patches.

90

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

40 60 80 100 120 140 160 180 200
Number of patches

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
r = 3

40 60 80 100 120 140 160 180 200
Number of patches

0.40

0.45

0.50

0.55

0.60

0.65

0.70
r = 8

40 60 80 100 120 140 160 180 200
Number of patches

0.35

0.40

0.45

0.50

0.55

0.60

0.65
r = 14

labels=50; F1-score
labels=200; F1-score
labels=500; F1-score

Figure 3.14 – F1-score of the assembly vs. number of patches m for a size of a patch fixed to
D = 1000.

40 60 80 100 120 140 160 180 200
Number of patches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
r = 3

40 60 80 100 120 140 160 180 200
Number of patches

0.3

0.4

0.5

0.6

0.7
r = 8

40 60 80 100 120 140 160 180 200
Number of patches

0.3

0.4

0.5

0.6

0.7
r = 14

labels=50; F1-score
labels=200; F1-score
labels=500; F1-score

Figure 3.15 – F1-score of the assembly vs. number of patches m for a size of a patch fixed to
D = 3000.

3.2.4 Discussion

Space/Time Complexity

First, note that our algorithm makes exactly m−1 iterations; at each iteration it selects, aligns

and merges a pair of patches. The largest data-structure we have to maintain is the counts

of the seed-subgraphs {NH (Gi)H∈T } for each patch Gi (for that we also maintain the total

frequencies for the collection {NH (P)H∈T }), we call these structures fseed . If we consider only

triangles as seed-subgraphs T = T3, the total number of labeled copies of these is l 3, hence

for m patches we have to maintain up to ml 3 frequencies in fseed . Computing this map

for each patch takes around Dd 2
av g checks for node connectivity (to find triangles we check

whether two neighbors of a node are connected), where dav g is an average degree of the

node in the patch. We have to recompute fseed completely at each iteration of the algorithm,

because if a structure of at least one patch is changed, the total number of occurrences of the

seed-subgraphs NH (P) needs to be updated and the frequencies have to be renormalized.

Thus we need around m2Dd 2
av g connectivity checks to maintain this structure fseed . At each

iteration, we need to search the frequencies fseed m times to compute seed-similarity and to

select a similar pair of patches, thus we perform around m2 computations of seeds similarity,

91

Chapter 3. Network Assembly

that is up to m2l 3 operations over the maps. We implement fseed as a hashmap for each

patch, where the key is a triple of the labels of the seed-subgraph (we assume three labels are

ordered, to account for permutations) and the value is a normalized frequency of the seed-

subgraph. Hence the time complexity of the algorithm can be estimated as Θ(m2Dd 2
av g +

m2|x|), where x is at most l 3 a number of different seed-subgraphs in a patch. In summary,

the performance of the algorithm is highly dependent on m and D , whereas the dependency

on n is only imposed through the necessity of the network being well covered by patches.

The proposed algorithm is a direction towards a general powerful class of graph assembly

algorithms. The first open question is about theoretical analysis of the proposed graph sim-

ilarity metric and seed-selection criteria for different random graph models. Overall, mea-

suring labeled-graph similarity based on common rare subgraphs is of independent research

interest. Another question is about considering very small patches. The use of PGM is not

justified in this scenario. Thus some other technique for alignment of pairs of patches can

be used. We suggest to use techniques analogous to the seed selection method (similarity of

labeled neighborhoods) to find an alignment of the nodes of the two patches.

92

Conclusion

In this thesis, we study network reconstruction from ambiguous data. We discussed many

reasons for data to be ambiguous and incomplete, such as privacy concerns, specifics of data

collection, or errors in the data processing. We proposed to explore structural information

in the data to reconstruct an accurate version of the network. We looked at the problem

from two different perspectives: First, we formulated the network alignment problem, where

we infer a network from large, but noisy observations; second, we formulated the network

assembly problem where we infer a network from multiple small observations, called patches.

We considered two settings that are with and without side information.

In Chapter 2, we investigated the network alignment problem. In the first part, we demon-

strated the theoretical feasibility of an alignment of two graphs with partial node overlap

under a proposed random graph model. We formulated sufficient conditions on density and

overlap where networks can be aligned with no side information. In the second part, we as-

sumed that we are given a small amount of side information in the form of a seed set, and we

proposed and analyzed a percolation graph matching algorithm for network alignment. We

characterized a sharp threshold in the number of seeds for the algorithm to succeed. We also

proposed an improvement of the algorithm to a scalable version that successfully aligns large

graphs of 10 millions nodes.

In Chapter 3, we investigated the network assembly problem. At first we showed the theoret-

ical feasibility of assembly of networks from multiple, possibly noisy observations under the

proposed random graph model. We formulated a property of the graphs generated from this

model. This property is the uniqueness of subgraphs of common neighbors of an edge. These

subgraphs serve as an unique edge fingerprint and enables us to stitch patches together. In

the second part of the chapter, we assume access to side information, in the form of node

labels, where labels are assigned from a small label set. We proposed a graph assembly algo-

rithm that works with patches of the most general form.

Future Directions and Perspectives

Network alignment has received much of attention recently and many open problems were

solved, such as the analysis of PGM under more realistic network model or tight converse

93

Chapter 3. Network Assembly

bounds on the feasibility of network alignment. We list a few questions that remain open:

• The next step in the understanding of network alignment is to characterize conditions

for the feasibility of network alignment with no side information for more realistic mod-

els. The graphs generated from, for example, Barabási–Albert [5] model possess such

a property as a power-law degree distribution, thus suggesting more distinctive neigh-

borhoods of nodes. Such properties might help in finding an alignment.

• Another open direction is finding algorithms for seedless graph-alignment. One idea

is to use the seed-selection techniques analogous to those in 3.2.2, but instead of label-

sets of the neighbors, we could look at the similarities of the degree sequence of the

neighbors of a node. Another idea is to combine the PGM with the matching algorithm

proposed in [87] to search for likely seeds. The fact that PGM is robust to the noise in

the seed-set enables us to tolerate errors in the output of the matching algorithm.

• One unusual application of PGM is an efficient finding duplicates in the graph. For this

we observe that PGM searches for a counterpart of the nodes in two aligned graphs.

Thus, if we align the graph G(V ,E) with itself, with slight modifications of PGM, for

each pair of duplicates v, v ′ ∈ V the PGM should provide us a list of pairs (v, v), (v ′, v ′),

(v ′, v) and (v, v ′) all with the same number of marks. We suggest experimenting on this

hypothesis in the noiseless and the noisy scenarios, and analyzing the performance

under the Erdős-Rényi graph model. We also point out here that the complexity of

PGM is Θ(n ∗d 2
av g), whereas naive search for duplicates might need n2 comparisons;

which is extremely important for large graphs.

As we mentioned, the network assembly problem is a new direction with many unexplored

questions. We name only a few; this list is not exhaustive.

• For the feasibility of the graph-assembly problem, the first open question is about how

many egonet patches are actually needed. Is it enough to have each edge occur exactly

once in the patch collection and to have at least one patch to merge until we reach n

nodes of the graph?

• A theoretical analysis of our proposed heuristics for graph assembly, such as seed-

similarity metric and seed-selection criteria, is an open direction. First, an analysis

of these, for basic random-graph models, might provide some theoretical guarantees

and some ways for improvements. Second, it is interesting to compare the proposed

seed-similarity with other graph-similarity metrics, that are of independent interest.

• Maintaining a history of merges in the graph-assembly process might improve the qual-

ity of the results, as well as provide a more precise evaluation technique that estimates

each merge and not only the final estimator.

94

3.2. Towards a General Assembly Algorithm for Arbitrary Patches

• One interesting application of the network assembly is to analyze some graph proper-

ties without complete graph reconstruction. For example, to obtain and analyze a path

v1, v2, . . . , vk we could stitch several patches (via some of the proposed assembly algo-

rithms), thus obtaining a small subgraph of a whole graph that contains the path. This

is relevant for extremely large graphs that are hard to analyze as a whole.

• The last observation is that graph-assembly algorithms are highly parallelizable be-

cause each merge is independent of the others, thus we might adapt the current im-

plementation in order to scale the algorithms to even larger graphs.

95

A An appendix

A.1 Concentration Lemmas

Lemma A.1. [Chernoff-Hoeffding bound [39]]

Let X �∑n
i=1 Xi where Xi ,1 ≤ i ≤ n, are independently distributed in [0,1]. Then for 0 < ε< 1,

P ([X > (1+ε)E[X]]) ≤ exp

(
−ε2

3
E[X]

)
,

P ([X < (1−ε)E[X]]) ≤ exp

(
−ε2

2
E[X]

)
.

Lemma A.2. [Difference of Binomials [88]] Let X1 and X2 be two binomial random variables

with means λ1 and λ2, where λ2 >λ1. Then,

P (X2 −X1 ≤ 0) ≤ 2exp

(
−1

8

(λ2 −λ1)2

λ2 +λ1

)
.

97

Bibliography

[1] I. BHATTACHARYA AND L. GETOOR, Collective entity resolution in relational data, ACM

Transactions on Knowledge Discovery from Data, 1 (2007). [Cited on pages 2 and 9.]

[2] E. ADAR AND L. A. ADAMIC, Tracking information epidemics in blogspace, in Proceed-

ings of the IEEE/WIC/ACM International Conference on Web Intelligence, Washington,

DC, USA, 2005. [Cited on page 1.]

[3] W. AIELLO, F. CHUNG, AND L. LU, A random graph model for power law graphs, Experi-

mental Mathematics, (2001). [Cited on page 7.]

[4] M. AIZENMAN AND J. L. LEBOWITZ, Metastability Effects in Bootstrap Percolation, Jour-

nal of Physics A: Mathematical and General, 21 (1988). [Cited on page 13.]

[5] R. ALBERT AND A.-L. BARABÁSI, Statistical mechanics of complex networks, Reviews of

Modern Physics, (2002). [Cited on page 94.]

[6] P. ANCHURI, M. J. ZAKI, O. BARKOL, S. GOLAN, AND M. SHAMY, Approximate graph

mining with label costs, in Proceedings of the 19th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, Chicago, IL, USA, August 2013. [Cited

on page 10.]

[7] A. ARASU, J. NOVAK, AND J. TOMLIN, Pagerank computation and the structure of the

web: Experiments and algorithms, 2002. [Cited on page 1.]

[8] J. ARINO AND P. VAN DEN DRIESSCHE, A Multi-City Epidemic Model, Mathematical Pop-

ulation Studies, 10 (2003). [Cited on page 1.]

[9] V. ARVIND, B. DAS, AND J. KÖBLER, The space complexity of k -tree isomorphism, in

Proceedings of the 18th International Symposium on Algorithms and Computation,

Sendai, Japan, December 2007. [Cited on page 70.]

[10] V. ARVIND, J. KÖBLER, S. KUHNERT, AND Y. VASUDEV, Approximate graph isomorphism,

in Mathematical Foundations of Computer Science : 37th International Symposium,

Proceedings, 2012. [Cited on page 8.]

[11] N. ATIAS AND R. SHARAN, Comparative analysis of protein networks: Hard problems,

practical solutions, Communications of the ACM, 55 (2012). [Cited on page 2.]

99

Bibliography

[12] A. AWAN, H. BARI, F. YAN, S. MOKSONG, S. YANG, S. CHOWDHURY, Q. CUI, Z. YU,

E. PURISIMA, AND E. WANG, Regulatory network motifs and hotspots of cancer genes

in a mammalian cellular signalling network, IET Systems Biology, 1 (2007). [Cited on

page 2.]

[13] L. BABAI, Graph isomorphism in quasipolynomial time, CoRR, abs/1512.03547 (2015).

[Cited on page 70.]

[14] L. BABAI, P. ERDÖS, AND S. M. SELKOW, Random graph isomorphism, SIAM Journal on

Computing, 9 (1980). [Cited on page 8.]

[15] L. BACKSTROM, C. DWORK, AND J. KLEINBERG, Wherefore art thou r3579x?:

Anonymized social networks, hidden patterns, and structural steganography, in Pro-

ceedings of the 16th International Conference on World Wide Web, 2007. [Cited on

pages 6, 7, and 82.]

[16] S. BANDYOPADHYAY, U. MAULIK, L. B. HOLDER, AND D. J. COOK, Advanced Methods

for Knowledge Discovery from Complex Data (Advanced Information and Knowledge

Processing), Springer-Verlag New York, Inc., 2005. [Cited on page 1.]

[17] J. B. L. BARD AND S. Y. RHEE, Ontologies in biology: Design, applications and future

challenges, Nature Reviews Genetics, 5 (2004). [Cited on page 2.]

[18] M. BAYATI, D. F. GLEICH, A. SABERI, AND Y. WANG, Message-passing algorithms for

sparse network alignment, ACM Transactions Knowledge Discovery Data, 7 (2013).

[Cited on page 8.]

[19] I. BHATTACHARYA AND L. GETOOR, Entity resolutions in graphs, in Mining Graph Data,

Wiley, 2006. [Cited on page 2.]

[20] M. BIRYUKOV, Co-author Network Analysis in DBLP: Classifying Personal Names, 2008.

[Cited on pages 3 and 5.]

[21] V. D. BLONDEL, M. ESCH, C. CHAN, F. CLÉROT, P. DEVILLE, E. HUENS, F. MORLOT,

Z. SMOREDA, AND C. ZIEMLICKI, Data for development: The d4d challenge on mobile

phone data, arXiv preprint arXiv:1210.0137, (2012). [Cited on pages 5, 10, and 59.]

[22] V. D. BLONDEL, J.-L. GUILLAUME, R. LAMBIOTTE, AND E. LEFEBVRE, Fast unfolding of

communities in large networks, Journal of Statistical Mechanics: Theory and Experi-

ment, 2008 (2008). [Cited on page 1.]

[23] B. BOLLOBÁS, Almost every graph has reconstruction number three, Journal of Graph

Theory, 14 (1990). [Cited on page 9.]

[24] B. BOLLOBÁS, Random Graphs (2nd edition), Cambridge University Press, 2001. [Cited

on pages 8, 22, and 48.]

100

Bibliography

[25] P. BONACICH, Power and centrality: A family of measures, American journal of sociology,

92 (1987). [Cited on page 1.]

[26] D. BOYD AND N. B. ELLISON, Social Network Sites: Definition, History, and Scholarship,

Journal of Computer-Mediated Communication, 13 (2007). [Cited on page 2.]

[27] O. BRDICZKA, J. LIU, B. PRICE, J. SHEN, A. PATIL, R. CHOW, E. BART, AND N. DUCH-

ENEAUT, Proactive insider threat detection through graph learning and psychological

context, in IEEE Symposium on Security and Privacy Workshops, San Francisco, CA,

USA, May 2012. [Cited on page 5.]

[28] G. BRESLER, M. BRESLER, AND D. TSE, Optimal assembly for high throughput shotgun

sequencing, BMC bioinformatics, 14 (2013). [Cited on page 9.]

[29] G. CASELLA AND R. BERGER, Statistical Inference, Thomson Learning, 2002. [Cited on

page 62.]

[30] S. CATANESE, P. D. MEO, E. FERRARA, G. FIUMARA, AND A. PROVETTI, Crawling face-

book for social network analysis purposes, in International Conference on Web Intelli-

gence, Mining and Semantics, 2011. [Cited on page 2.]

[31] C. F. CHIASSERINI, M. GARETTO, AND E. LEONARDI, De-anonymizing scale-free social

networks by percolation graph matching, in Proceedings of IEEE Information Commu-

nication, Hong Kong, 2015. [Cited on pages 4 and 7.]

[32] C. F. CHIASSERINI, M. GARETTO, AND E. LEONARDI, Impact of clustering on the per-

formance of network de-anonymization, in Proceedings of ACM Conference on Online

Social Networks, Palo Alto, CA, USA, November 2015. [Cited on pages 4 and 7.]

[33] P. CHRISTEN, A survey of indexing techniques for scalable record linkage and deduplica-

tion, IEEE Transactions on Knowledge and Data Engineering, (2011). [Cited on page 9.]

[34] D. CONTE, P. FOGGIA, C. SANSONE, AND M. VENTO, Thirty years of graph matching in

pattern recognition, International journal of pattern recognition and artificial intelli-

gence, 18 (2004). [Cited on page 8.]

[35] S. A. COOK, The complexity of theorem-proving procedures, in Proceedings of the Third

Annual ACM Symposium on Theory of Computing, 1971. [Cited on page 8.]

[36] D. CULLINA AND N. KIYAVASH, Improved achievability and converse bounds for erdős-

rényi graph matching, Proceedings of the ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Science, (2016). [Cited on pages 8 and 37.]

[37] J. DE LAS RIVAS AND C. FONTANILLO, Protein–protein interactions essentials: Key con-

cepts to building and analyzing interactome networks, PLoS Comput Biol, (2010). [Cited

on page 2.]

101

Bibliography

[38] P. DOSHI, R. KOLLI, AND C. THOMAS, Inexact matching of ontology graphs using

expectation-maximization, Web Semantics: Science, Services and Agents on the World

Wide Web, 7 (2009). [Cited on page 8.]

[39] D. DUBHASHI AND A. PANCONESI, Concentration of Measure for the Analysis of Ran-

domized Algorithms, Cambridge University Press, 1st ed., 2009. [Cited on page 97.]

[40] M. EL-KEBIR, J. HERINGA, AND G. W. KLAU, Natalie 2.0: Sparse global network align-

ment as a special case of quadratic assignment, Algorithms, 8 (2015). [Cited on page 8.]

[41] D. ERDŐS, R. GEMULLA, AND E. TERZI, Reconstructing graphs from neighborhood data,

ACM Transactions on Knowledge Discovery from Data, 8 (2014). [Cited on page 10.]

[42] P. ERDÖS AND A. RÉNYI, On random graphs isomorphism, Publicationes Mathematicae

Debrecen, 6 (1959). [Cited on pages 8, 11, and 14.]

[43] M. FALOUTSOS, P. FALOUTSOS, AND C. FALOUTSOS, On power-law relationships of the

internet topology, in Proceedings of the Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communication, 1999. [Cited on page 1.]

[44] A. GANDOMI AND M. HAIDER, Beyond the hype: Big data concepts, methods, and ana-

lytics, International Journal of Information Management, 35 (2015). [Cited on page 1.]

[45] J. GEHRKE, P. GINSPARG, AND J. KLEINBERG, Overview of the 2003 kdd cup, ACM

SIGKDD Explorations Newsletter, (2003). [Cited on page 81.]

[46] L. GETOOR AND A. MACHANAVAJJHALA, Entity resolution: Theory, practice & open chal-

lenges, in International Conference on Very Large Data Bases, 2012. [Cited on page 2.]

[47] M. GJOKA, M. KURANT, C. T. BUTTS, AND A. MARKOPOULOU, Walking in facebook: A

case study of unbiased sampling of osns, in Proceedings of the 29th Conference on In-

formation Communications, INFOCOM, 2010. [Cited on page 2.]

[48] R. GROSS AND A. ACQUISTI, Information revelation and privacy in online social net-

works, in Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,

2005. [Cited on page 6.]

[49] S. GUHA, K. TANG, AND P. FRANCIS, NOYB: Privacy in Online Social Networks, in Work-

shop on Online Social Networks, 2008. [Cited on page 6.]

[50] K. HENDERSON, B. GALLAGHER, L. LI, L. AKOGLU, T. ELIASSI-RAD, H. TONG, AND

C. FALOUTSOS, It’s who you know: Graph mining using recursive structural features,

in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, 2011. [Cited on page 8.]

[51] P. HOLME, B. J. KIM, C. N. YOON, AND S. K. HAN, Attack vulnerability of complex net-

works, Physical Review, 65 (2002). [Cited on page 82.]

102

Bibliography

[52] M. HUMBERT, T. STUDER, M. GROSSGLAUSER, AND J.-P. HUBAUX, Nowhere to Hide:

Navigating around Privacy in Online Social Networks, Springer Berlin Heidelberg, 2013.

[Cited on page 2.]

[53] J. J. P. III, T. L. FOND, S. MORENO, AND J. NEVILLE, Fast generation of large scale social

networks with clustering, CoRR, (2012). [Cited on page 7.]

[54] S. JANSON, T. ŁUCZAK, AND A. RUCIŃSKI, Random Graphs, Wiley, 2000. [Cited on

page 11.]

[55] S. JANSON, T. ŁUCZAK, T. TUROVA, AND T. VALLIER, Bootstrap percolation on the ran-

dom graph gn,p , The Annals of Applied Probability, 22 (2012). [Cited on pages 38, 39,

40, 44, 45, 47, and 58.]

[56] T. A. JUNTTILA AND P. KASKI, Engineering an efficient canonical labeling tool for large

and sparse graphs, in Proceedings of the Ninth Workshop on Algorithm Engineering

and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics,

New Orleans, LA, USA, January 2007. [Cited on page 71.]

[57] M. KAFSI, E. KAZEMI, L. MAYSTRE, L. YARTSEVA, M. GROSSGLAUSER, AND P. THI-

RAN, Mitigating epidemics through mobile micro-measures, NetMob, (2013). [Cited on

pages 1 and 2.]

[58] F. KAPLAN, The venice time machine, in Proceedings of the ACM Symposium on Docu-

ment Engineering, 2015. [Cited on pages 1 and 3.]

[59] H. KARDES, D. KONIDENA, S. AGRAWAL, M. HUFF, AND A. SUN, Graph-based ap-

proaches for organization entity resolution in mapreduce, 2013. [Cited on pages 9

and 10.]

[60] E. KAZEMI, S. H. HASSANI, AND M. GROSSGLAUSER, Growing a graph matching from a

handful of seeds, International Conference on Very Large Data Bases, 8 (2015). [Cited

on pages 4, 7, 53, 58, and 83.]

[61] E. KAZEMI, L. YARTSEVA, AND M. GROSSGLAUSER, When can two unlabeled networks

be aligned under partial overlap?, in 53rd Annual Allerton Conference on Communica-

tion, Control, and Computing, Monticello, IL, USA, September 2015. [Cited on pages 3

and 11.]

[62] B. P. KELLEY, R. SHARAN, R. M. KARP, T. SITTLER, D. E. ROOT, B. R. STOCKWELL, AND

T. IDEKER, Conserved pathways within bacteria and yeast as revealed by global pro-

tein network alignment, Proceedings of the National Academy of Sciences, 100 (2003).

[Cited on page 7.]

[63] B. P. KELLEY, B. YUAN, F. LEWITTER, R. SHARAN, B. R. STOCKWELL, AND T. IDEKER,

Pathblast: A tool for alignment of protein interaction networks., Nucleic Acids Research,

32 (2004). [Cited on page 7.]

103

Bibliography

[64] P. J. KELLY, A congruence theorem for trees., Pacific Journal of Mathematics, 7 (1957),

pp. 961–968. [Cited on page 9.]

[65] W. O. KERMACK AND A. G. MCKENDRICK, A contribution to the mathematical theory of

epidemics, Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 115 (1927). [Cited on page 1.]

[66] G. W. KLAU, A new graph-based method for pairwise global network alignment, MC

Bioinformatics, 10 (2009). [Cited on page 8.]

[67] A. KOROLOVA, R. MOTWANI, S. U. NABAR, AND Y. XU, Link Privacy in Social Networks,

in Proceeding of the 17th ACM Conference on Information and Knowledge Manage-

ment, 2008. [Cited on page 6.]

[68] N. KORULA AND S. LATTANZI, An efficient reconciliation algorithm for social networks,

in Proceedings of the Very Large Data Bases Endowment, 2014. [Cited on pages 4

and 7.]

[69] B. KRISHNAMURTHY AND C. E. WILLS, Characterizing privacy in online social networks,

in Proceedings of the First Workshop on Online Social Networks, 2008. [Cited on

page 6.]

[70] O. KUCHAIEV AND N. PRŽULJ, Integrative network alignment reveals large regions of

global network similarity in yeast and human, Bioinformatics, 27 (2011). [Cited on

page 6.]

[71] M. KURANT, A. MARKOPOULOU, AND P. THIRAN, Towards unbiased bfs sampling, IEEE

Journal on Selected Areas in Communications, 29 (2011). [Cited on page 2.]

[72] J. F. KUROSE AND K. ROSS, Computer Networking: A Top-Down Approach Featuring the

Internet, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002. [Cited

on page 1.]

[73] A. LAKHINA, J. W. BYERS, M. CROVELLA, AND P. XIE, Sampling biases in IP topology

measurements, in Proceedings of the 22nd Annual Joint Conference of the IEEE Com-

puter and Communications Societies, vol. 1, 2003. [Cited on page 1.]

[74] K.-K. LAM, A. KHALAK, AND D. TSE, Near-optimal assembly for shotgun sequencing

with noisy reads, BMC bioinformatics, 15 (2014). [Cited on page 9.]

[75] J. LESKOVEC, Stanford network analysis project. http://snap.stanford.edu/index.html.

[Cited on pages 51 and 81.]

[76] J. LESKOVEC AND C. FALOUTSOS, Sampling from large graphs, in Proceedings of the

International Conference on Knowledge Discovery and Data Mining, 2006. [Cited on

page 2.]

104

Bibliography

[77] J. LESKOVEC, J. KLEINBERG, AND C. FALOUTSOS, Graphs over time: Densification

laws, shrinking diameters and possible explanations, in Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005.

[Cited on page 1.]

[78] J. LESKOVEC, K. J. LANG, A. DASGUPTA, AND M. W. MAHONEY, Community structure

in large networks: Natural cluster sizes and the absence of large well-defined clusters,

CoRR, (2008). [Cited on page 1.]

[79] C.-S. LIAO, K. LU, M. BAYM, R. SINGH, AND B. BERGER, Isorankn: Spectral methods

for global alignment of multiple protein networks, Bioinformatics, 25 (2009). [Cited on

page 7.]

[80] J. LIU, K. H. LEI, J. Y. LIU, C. WANG, AND J. HAN, Ranking-based name matching for

author disambiguation in bibliographic data, in Proceedings of the Knowledge Discov-

ery from Data Cup Workshop, 2013. [Cited on page 10.]

[81] W. LUO AND W. TAY, Estimating infection sources in a network with incomplete obser-

vations, in Global Conference on Signal and Information Processing, Austin, TX, USA,

December 2013. [Cited on page 1.]

[82] N. MASUDA AND P. HOLME, Predicting and controlling infectious disease epidemics us-

ing temporal networks, tech. rep., 2013. [Cited on page 2.]

[83] E. MOSSEL AND N. ROSS, Shotgun assembly of labeled graphs, ArXiv e-prints, (2015).

[Cited on pages 9 and 60.]

[84] E. MOSSEL AND N. SUN, Shotgun assembly of random regular graphs, ArXiv e-prints,

(2015). [Cited on pages 9 and 60.]

[85] A. NARAYANAN AND V. SHMATIKOV, De-anonymizing social networks, in Proceedings of

the 30th IEEE Symposium on Security and Privacy, Washington, DC, USA, 2009. [Cited

on pages 4, 6, 7, and 19.]

[86] M. E. J. NEWMAN, D. J. WATTS, AND S. H. STROGATZ, Random graph models of so-

cial networks, Proceedings of the National Academy of Sciences of the United States of

America, 99 (2002). [Cited on page 11.]

[87] P. PEDARSANI, D. R. FIGUEIREDO, AND M. GROSSGLAUSER, A bayesian method for

matching two similar graphs without seeds, in Communication, Control, and Com-

puting (Allerton), 2013 51st Annual Allerton Conference on, 2013. [Cited on pages 7

and 94.]

[88] P. PEDARSANI AND M. GROSSGLAUSER, On the privacy of anonymized networks, in Pro-

ceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2011. [Cited on pages 4, 6, 8, 11, 19, 22, 80, and 97.]

105

Bibliography

[89] W. PENG, F. LI, X. ZOU, AND J. WU, A two-stage deanonymization attack against

anonymized social networks, Computers, IEEE Transactions on, 63 (2014). [Cited on

page 4.]

[90] M. PENROSE, Random Geometric Graphs, Oxford University Press, USA, 2003. [Cited

on pages 7 and 54.]

[91] P. C. PINTO, P. THIRAN, AND M. VETTERLI, Locating the source of diffusion in large-scale

networks, Physical review letters, 109 (2012). [Cited on page 1.]

[92] J. PUJARA AND L. GETOOR, Building dynamic knowledge graphs, in NIPS Workshop on

Automated Knowledge Base Construction, 2014. [Cited on page 9.]

[93] J. PUJARA, H. MIAO, L. GETOOR, AND W. COHEN, Knowledge graph identification, in

International Semantic Web Conference (ISWC), 2013. [Cited on page 9.]

[94] A. QUAN-HAASE AND K. MARTIN, Digital humanities: The continuing role of serendipity

in historical research, in Proceedings of the 2012 iConference, 2012. [Cited on page 1.]

[95] M. ROSEN-ZVI, T. GRIFFITHS, M. STEYVERS, AND P. SMYTH, The author-topic model

for authors and documents, in Proceedings of the 20th Conference on Uncertainty in

Artificial Intelligence, 2004. [Cited on page 10.]

[96] M.-E. ROSOIU, C. T. DOS SANTOS, AND J. EUZENAT, Ontology matching benchmarks:

Generation and evaluation, in Proceedings 6th ISWC Workshop on Ontology Matching

(OM), Bonn, Germany, 2011. [Cited on page 8.]

[97] M. H. SCHAEFER, L. SERRANO, AND M. A. ANDRADE-NAVARRO, Correcting for the study

bias associated with protein-protein interaction measurements reveals differences be-

tween protein degree distributions from different cancer types, Frontiers in Genetics, 6

(2015). [Cited on page 2.]

[98] G. SCHOENEBECK, Potential networks, contagious communities, and understanding so-

cial network structure, in Proceedings of the 22Nd International Conference on World

Wide Web, 2013. [Cited on page 3.]

[99] B. SCHWIKOWSKI, P. UETZ, AND S. FIELDS, A network of protein-protein interactions in

yeast, Nature Biotechnology, 18 (2000). [Cited on page 1.]

[100] C. SESHADHRI, A. PINAR, N. DURAK, AND T. G. KOLDA, Directed Closure Measures for

Networks with Reciprocity, ArXiv e-prints, (2013). [Cited on pages 14 and 60.]

[101] K. SHARAD AND G. DANEZIS, De-anonymizing d4d datasets, in Workshop on Hot Top-

ics in Privacy Enhancing Technologies, Bloomington, Indiana, USA, 2013. [Cited on

page 10.]

106

Bibliography

[102] K. SHARAD AND G. DANEZIS, An automated social graph de-anonymization technique,

in Proceedings of the 13th Workshop on Privacy in the Electronic Society, Scottsdale,

AZ, USA, November 2014. [Cited on pages 5 and 10.]

[103] Y.-K. SHIH AND S. PARTHASARATHY, Scalable multiple global network alignment for

biological data, in ACM Conference on Bioinformatics, Computational Biology and

Biomedicine, 2011. [Cited on page 7.]

[104] P. SHVAIKO AND J. EUZENAT, Ontology matching: State of the art and future challenges,

IEEE Transactions on Knowledge and Data Engineering, 25 (2013). [Cited on page 8.]

[105] R. SINGH, J. XU, AND B. BERGER, Pairwise global alignment of protein interaction net-

works by matching neighborhood topology, in Annual International Conference on Re-

search in Computational Molecular Biology, 2007. [Cited on page 7.]

[106] R. SINGH, J. XU, AND B. BERGER, Global alignment of multiple protein interaction net-

works with application to functional orthology detection, Proceedings of the National

Academy of Sciences, 105 (2008). [Cited on pages 1 and 7.]

[107] A. SINGHAL, Introducing the knowledge graph: Things, not strings, Official Google Blog,

May, (2012). [Cited on page 9.]

[108] D. SOUDRY, S. KESHRI, P. STINSON, M.-H. OH, G. IYENGAR, AND L. PANINSKI, A shot-

gun sampling solution for the common input problem in neural connectivity inference,

ArXiv e-prints, (2013). [Cited on pages 9, 17, and 81.]

[109] D. A. SPIELMAN, Faster isomorphism testing of strongly regular graphs, in Proceedings

of the twenty-eighth annual ACM symposium on Theory of computing, Philadephia,

USA, 1996. [Cited on page 8.]

[110] M. STARNINI, A. BARONCHELLI, A. BARRAT, AND R. PASTOR-SATORRAS, Random walks

on temporal networks, Physical Review, 85 (2012). [Cited on page 2.]

[111] S. SUDHAHAR, Automated Analysis of Narrative Text using Network Analysis in Large

Corpora, PhD thesis, University of Bristol, 2015. [Cited on page 1.]

[112] C. VON MERING, R. KRAUSE, B. SNEL, M. CORNELL, S. G. OLIVER, S. FIELDS, AND

P. BORK, Comparative assessment of large-scale data sets of protein–protein interactions,

Nature, 417 (2002). [Cited on page 2.]

[113] D. J. WATTS AND S. H. STROGATZ, Collective dynamics of ’small-world’ networks., Na-

ture, (1998). [Cited on page 14.]

[114] G. WONDRACEK, T. HOLZ, E. KIRDA, AND C. KRUEGEL, A practical attack to de-

anonymize social network users, in Proceedings of the IEEE Symposium on Security

and Privacy, 2010. [Cited on page 6.]

107

Bibliography

[115] J. YANG AND J. LESKOVEC, Defining and evaluating network communities based on

ground-truth, CoRR, abs/1205.6233 (2012). [Cited on page 5.]

[116] L. YARTSEVA, J. S. ELBERT, AND M. GROSSGLAUSER, Assembling a network out of am-

biguous patches, in Proceedings of the 54rd Annual Allerton Conference on Communi-

cation, Control, and Computing, no. EPFL-CONF-212900, 2016. [Cited on page 11.]

[117] L. YARTSEVA AND M. GROSSGLAUSER, On the performance of percolation graph match-

ing, in Proceedings of the First ACM Conference on Online Social Networks, Boston,

MA, USA, October 2013. [Cited on pages 4, 7, and 11.]

[118] B. ZHOU AND J. PEI, Preserving privacy in social networks against neighborhood attacks,

in Proceedings of the IEEE 24th International Conference on Data Engineering, 2008.

[Cited on page 6.]

108

Lyudmila Yartseva

Present Address
Lausanne, Switzerland
Contacts:
E-mail: lyudmila.v.yartseva@gmail.com
Office Phone: +41 21 693 6468
Mobile Phone: +41 76 226 2901

Interests:
Networks Mining, Reconstruction and Analysis; Large Network Algorithms; Random Graphs.

EPFL and IIS projects
• Current research: Graph assembly and graph alignment. Reconstructing graphs from

multiple different observations
• Current research: Graph matchability, graph-matching algorithm

Supervision: Professor Grossglauser (EPFL LCA4). We investigate the problem of graph
matching which refers to aligning the vertex sets of two networks by using structural
cues and it can be viewed as the generalization of the classic graph–isomorphism prob-
lem. We identify a condition for perfect matchability of two partially overlapping net-
works. We also propose matching algorithm and prove its efficiency theoretically and
show experimentally that it performs well over real and random network data with par-
tial node overlap. The algorithm is well parallelizable and implemented with Map-Reduce
(Java/Hadoop).

• Adaptive and incremental computation. Dynamic complexity of some problems.
Supervision: Professor Koch (EPFL DATA Lab). We investigated dynamic complexity
classes and found a dyn-complexity of following relations: Reverse-Same-Generation re-
lation, Transitive Closure and Natural Join.

• Schema Covering with Concept Lattices.
Supervision: Dr. Miklos (EPFL LSIR). We build a polynomial algorithm for a version of a
Schema Covering Problem.

• Definability issues on structures over words and trees.
Supervision: Professor Selivanov. We investigated problems of definability of structures
over words with a subword order and over repetition free words with the same order. We
established a result about biinterpretability of these structures with a standard model of
arithmetic.

Education
PhD École Polytechnique Fédérale de Lausanne 2011 - 2017

Unaffiliated Doctoral
Student École Polytechnique Fédérale de Lausanne 2010 - 2011

Post Graduate Student A.P. Ershov Institute of Informatics Systems 2008 - 2011

Master Student Novosibirsk State University 2005 - 2007
Department: Mechanics and Mathematics
Programming Section

Undergraduate Student Novosibirsk State University 2001 - 2005
Department: Mechanics and Mathematics

4.85/5 GPA, first class degree
109

Professional Experience
Software engineering intern Google Zurich 2015

Analysis and reducing effect of correlations in score computation for entities reconciliation
(C++)

Software developer/ MS Team 2007 - 2010
Database Developer

Software products development: Windows applications, Web, data conversions, import-export,
database design and logical data model. (C �, VFoxPro, Transact-SQL)

Passed Microsoft Exam: “Designing and Implementing Databases with MS SQL Server 2000
Enterprise Edition.” (2008)

Software developer Eltex 2005 - 2006

Development various small applications: embedded http server and billing system for a phone
station, a client for maintaining a calls database (FireBird, Borland C++, SQL), software for
remote operations with a phone and BAS (protocols UDP, telnet, using WinAPI)

Research practice United Institute of Geology, 2003 - 2006
Geophysics, and Mineralogy

Investigation of db models (Hierarchical, Network, Relational). Development of technology for
cascade conversions of hierarchical data schemes (C/C++, XML, Z39.50)

Awards
Diploma (second degree) from the International Scientific Students Conference

Extracurricular
Sport: Badminton, Climbing
Permit type: B
Languages: Russian, English, French (B2), German (A1)
Marital status: married, one child

110

