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Abstract— Alternating direction method of multipliers
(ADMM) is a form of augmented Lagrangian optimisation
algorithm that found its place in many new applications in
recent years. This paper explores a possibility for an up-
grade of the ADMM by extrapolation-based acceleration,
which has been successfully utilised for a long time in case
of accelerated gradient method. The development uses a
recently proposed accelerated Duglas-Rachford splitting by
applying it on Fenchel dual problem, resulting in a method
that replaces the classical proximal point convergence
mechanism of ADMM with the accelerated gradient. The
obtained method requires that the second function involved
in the cost is strongly convex quadratic, as well as an upper
bound on the penalty parameter. A heuristic modification
of the derived method is described, and numerical exper-
iments are performed by solving a randomly generated
quadratic programming (QP) problem.

I. INTRODUCTION

The alternating direction method of multipliers
(ADMM) is a convex optimisation algorithm that has
received an intensive attention in recent years due to its
applicability to large-scale machine learning and image
processing problems [1]. Even though developed a long
time ago, the reasons for its renewed attention lie in its
form conductive to distributed-memory implementation,
its possibility of formulating closed form solutions for
subproblems involved in the algorithm, and its practical
performance, which produces solutions with accuracy
sufficiently high for many applications of interest [2].

One of the two ADMM optimisation models that
commonly appear in the literature is the Fenchel primal:

minimize f1(x) + f2(Ax)
subject to x ∈ Rn, (1)

where f1 : Rn → (−∞,∞] and f2 : Rm → (−∞,∞]
are closed proper convex functions, A is an m × n
matrix, and a feasible solution x is assumed to exist.
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The augmented Lagrangian for (1) is

Lc(x, z, λ) = f1(x)+f2(z)+〈λ,Ax− z〉+ c

2
‖Ax−z‖2,

where λ ∈ Rm is a dual variable, c > 0 is a penalty
parameter, and 〈a, b〉 denotes the inner product a′b with
a′ being the transpose of a. The ADMM takes the form

xk+1 ∈ arg min
x∈Rn

Lc(x, zk, λk),

zk+1 ∈ arg min
z∈Rm

Lc(xk+1, z, λk),

λk+1 = λk + c(Axk+1 − zk+1).

(2)

A general property of first order methods, including
the gradient method and ADMM, is their slow con-
vergence rate in comparison to advanced second order
methods. A substantial contribution to the performance
of gradient method is achieved through its acceleration
based on a sophisticated extrapolation rule between sub-
sequent gradient steps. In the case of a gradient projec-
tion method which applies to minimisation of a convex
differentiable function f : Rn → R over a closed convex
set X ⊂ Rn with f having a Lipschitz continuous
gradient, the version accelerated by extrapolation [3], [4]
involves an extrapolation step yk = xk+βk(xk−xk−1)
followed by a gradient step xk+1 = PX

(
yk −∇f(yk)

)
,

where PX : Rn → Rn denotes projection on the set
X , value x−1 = x0, and {βk} represents a sequence
of extrapolation parameters. Under some very particular
choices of the extrapolation {βk}, [3], [4], one of which
is defined as

β0 = 0, βk =
k − 1

k + 2
, ∀k ≥ 1, (3)

the O(1/k2) iteration complexity is attained, improving
the O(1/k) complexity of the non-accelerated gradient
method obtained when {βk} is βk ≡ 0.

The acceleration technique of the gradient method
has been successfully extended to acceleration of the
alternating minimisation algorithm (AMA), an algorithm
with a form similar to ADMM, and this resulted in the
fast alternating minimisation algorithm (FAMA) [5], [6].
An upgrade of ADMM by an extrapolation technique



has been analysed in [5], where it has been shown that
if both functions involved in the cost are strongly convex
with the second one being quadratic, the dual function
values converge with O(1/k2) iteration complexity pro-
vided that the penalty parameter c is small enough.

An important insight into the ADMM convergence
mechanism represents its interpretation as a special case
of proximal point algorithm applied for finding a zero
of a maximal monotone operator [7]. By replacing this
mechanism with a generalised version, a generalised
ADMM is obtained with a potential for acceleration of
convergence through a choice of overrelaxation factors.

This document derives an accelerated version of
ADMM by using a recently proposed accelerated
Douglas-Rachford (DR) splitting [8] on Fenchel dual
problem. The obtained method replaces the internal
proximal point algorithm of classical ADMM by the
accelerated gradient method applied on a specially con-
structed scaled DR envelope function [8]. The derived
algorithm addresses the optimisation model (1) with an
assumption that the function f2(z) is strongly convex
quadratic, and involves an O(1/k2) bound on the values
of the scaled DR envelope function when an upper
bound on the penalty parameter is satisfied. A heuristic
modification of the obtained method which can poten-
tially extend the benefit of extrapolation for penalties
beyond the upper bound is provided and tested in the
numerical results section.

The paper is structured as follows. Section II sum-
marises some theoretical results that will be used in the
later analysis. Section III derives the accelerated ADMM
algorithm based on accelerated DR splitting. Section
IV contains numerical experiments. Section V presents
conclusion and suggests directions for future research.

II. THEORETICAL TOOLS

A. Accelerated DR splitting

This section summarises the results of [8] by express-
ing them in a notation which will be used in the later
developments. The DR splitting addresses problems of
the form

minimize d(λ) = d1(λ) + d2(λ)
subject to λ ∈ Rm, (4)

where d1 : Rm → (−∞,∞] and d2 : Rm → (−∞,∞]
are closed proper convex functions. Given v0 ∈ Rm, the
DR splitting algorithm consists of the steps

λk = proxcd2(vk), (5)

µk = proxcd1(2λk − vk), (6)

vk+1 = vk + ρk(µk − λk), (7)

where c > 0 is a penalty parameter, {ρk} ⊂ [0, 2] is a
sequence of relaxation factors, and the expression

proxch(v) = arg min
z∈Rm

{
h(z) +

1

2c
‖z − v‖2

}
(8)

defines the proximal operator proxch : Rm → Rm which
is single valued and whose existence is guaranteed when
the function h : Rm → (−∞,∞] is closed proper
convex. Assuming that the set of optimal solutions of (4)
is nonempty, that 0 < infk{ρk} ≤ supk{ρk} < 2, and
that the relative interiors of dom(d1) and dom(d2) have
a point in common where dom(d) = {λ | d(λ) < ∞}
represents the effective domain of a function d, the
sequence {vk} converges to a fixed point of the DR
splitting v∗ which is related to λ∗ ∈ arg min{d(λ)}
as λ∗ = proxcd2(v∗). Because of the relation between
the fixed point of the DR splitting v∗ and the optimal
solution λ∗, finding a fixed point v∗ is essentially the
same as finding an optimal solution λ∗ of problem (4).

The following supplementary assumption ensures the
existence of a convex differentiable function referred
to as the DR envelope, which plays the key role in
development of the accelerated DR splitting.

Assumption 1. The function d2(λ) and the penalty c
satisfy d2(λ) = 1

2λ
′Qλ+ q′λ and c < 1

Ld2
, where Q ∈

Rm×m is symmetric positive semidefinite, q ∈ Rm, and
Ld2 is the Lipschitz constant of the function d2 (i.e., the
maximal eigenvalue of Q).

The DR envelope FDRc (v) whose existence is guar-
anteed under this additional assumption takes the form

FDRc (v) = dc2(v)− c‖∇dc2(v)‖2 + dc1(v − 2c∇dc2(v)),

with v ∈ Rm, and hc(v) denoting a Moreau envelope
of a function h(v) defined by

hc(v) = inf
x∈Rm

{
h(x) +

1

2c
‖x− v‖2

}
. (9)

The set of stationary points of the DR envelope FDRc (v)
(i.e., points v∗ ∈ arg min{FDRc (v)}) coincides with the
set of fixed points of the DR splitting.

The significance of the DR envelope is that one
iteration of the scaled gradient method

vk+1 = vk − ρkD∇FDRc (vk) (10)

is equivalent to one iteration of DR splitting (5)-(7),
provided that D = c(2(I + cQ)−1 − I)−1 and the
employed {ρk} is the same. By introducing a scaled
variable w defined by v = Sw using S = D

1
2 , the

iteration (10) can be written as

wk+1 = wk − ρk∇h(wk) (11)



where h(w) = FDRc (Sw). Since it can be shown that
the Lipschitz constant of ∇h(w) is

Lh =
1 + cLd2
1− cLd2

, (12)

it follows by convergence theory of the gradient method
with constant stepsize [3] that the algorithm converges
by choosing ρk ∈ (0, 2/Lh).

The established equivalence of one DR splitting cycle
with one iteration of the gradient method applied on
h(w) allows introduction of accelerated DR splitting,
which is obtained by applying the accelerated gradient
method on the function h(w). Given y0 = v0 ∈ Rm, the
resulting accelerated DR splitting algorithm takes the
form

λk = proxcd2(yk), (13)

µk = proxcd1(2λk − yk), (14)

vk+1 = yk + ρk(µk − λk), (15)
yk+1 = vk+1 + βk(vk+1 − vk). (16)

It can be shown that under the extrapolation rule {βk}
given in (3), the accelerated version has an O(1/k2)
iteration complexity guaranteeing that

d(µk)−d∗ ≤ FDRc (vk)−FDR∗c ≤ 2

cρ(k + 2)2
‖v0−v∗‖2,

(17)
where FDR∗c = FDRc (v∗) = d∗ = infλ∈Rm{d(λ)} and
ρ := ρk ≡ 1/Lh. By considering the strong convexity
properties of FDRc (v) [8] and utilising the extrapolation
rule {βk} from [4], a linear convergence rate can as well
be established. For the details related to development of
the previous results, the reader is referred to [8].

B. Augmented Lagrangian and proximal algorithm

The proximal iteration

λ = proxcd(µ), λ, µ ∈ Rm, (18)

where d : Rm → (−∞,∞] is closed proper convex, can
be shown to be equivalent to finding a decomposition
[3] of the form

µ = λ+ cm, m ∈ ∂d(λ), (19)

where ∂d(λ) denotes the subdifferential of the function d
at λ, which represents the set of all subgradients g ∈ Rm
at λ satisfying d(γ) ≥ d(λ) + g′(γ − λ), ∀γ ∈ Rm.

In case where the function d(λ) is defined by

d(λ) = − inf
x∈Rn

{
h(x) + 〈λ,Ax− b〉

}
, (20)

where h : Rn → (−∞,∞] is closed, proper and
convex, the proximal iteration on the function d(λ) can

be evaluated in a way which involves minimisation of
the augmented Lagrangian function, as described in, for
example, [2]:

Proposition 1. ([2], Proposition 9) Given any µ ∈ Rm,
consider the problem

inf
x∈Rn

{
h(x) + 〈µ,Ax− b〉+

c

2
‖Ax− b‖2

}
. (21)

If x̄ is an optimal solution to this problem, then setting
λ = µ+ c(Ax− b) and m = b−Ax̄ yields λ,m ∈ Rm
such that µ = λ + cm and m ∈ ∂d(λ), where d(λ) is
as defined in (20).

III. ACCELERATED ADMM

The derivation of the accelerated ADMM algorithm
based on accelerated DR splitting (13)-(16) from [8] will
be performed in a way inspired by the development
of standard ADMM in [2]. The outcome will be a
modified ADMM algorithm whose underlying working
mechanism is characterised by the O(1/k2) iteration
complexity given in (17). The optimisation model ad-
dressed by the method to be developed is the Fenchel
primal form given in (1), which can be reformulated as

minimize f1(x) + f2(z)
subject to Ax = z.

(22)

By applying the standard Lagrange duality for equality
constrained problems [9], one obtains the Lagrange dual
function:

q(λ) = inf
x∈Rn,z∈Rm

{
f1(x) + f2(z) + λ′(Ax− z)

}
= inf
x∈Rn

{
f1(x) + (A′λ)′x

}
+ inf
z∈Rm

{
f2(z)− λ′z

}
= −f?1 (−A′λ)− f?2 (λ) = −d1(λ)− d2(λ),

in which d1(λ) = f?1 (−A′λ), d2(λ) = f?2 (λ), and the
f?(λ) = supz∈Rm

{
λ′z−f(z)

}
represents the conjugate

of a function f . This leads to a Fenchel dual problem

minimize d(λ) = d1(λ) + d2(λ)
subject to λ ∈ Rm, (23)

which minimises d(λ) = −q(λ) (i.e., maximises the
dual function q(λ) defined above).

Accelerated ADMM is derived by applying the ac-
celerated DR splitting (13)-(16) to the Fenchel dual
problem (23). For this purpose, (23) should satisfy the
assumptions of Section II-A guaranteeing the existence
of the DR envelope FDRc (v).

Proposition 2. The functions d1(λ) and d2(λ) are
closed, convex and proper. Under the assumption that



the function f2(z) is strongly convex quadratic and the
penalty c is small enough:

f2(z) =
1

2
z′Pz + p′z, c <

1

Ld2
, (24)

where P ∈ Rm×m is symmetric positive definite, p ∈
Rm and where Ld2 is a Lipschitz constant of the function
d2, the conditions of the Assumption 1 are satisfied,
ensuring the existence of the DR envelope FDRc (v).

Proof: The closedness and convexity of d1(λ) and
d2(λ) follow from Lemma 8 in [2], and their properness
from Prop. 1.6.1(b) in [9]. Since by the expression for
conjugate of a strongly convex quadratic [10] there holds
d2(λ) = f?2 (λ) = 1

2λ
′P−1λ − p′P−1λ , the function

d2(λ) is strongly convex quadratic as P−1 of a positive
definite matrix P is positive definite. Considering as well
the bound imposed on the penalty c, the conditions of
Assumption 1 are satisfied.

The following lemma derives a form of the acceler-
ated ADMM based on the accelerated DR splitting. For
this purpose, an additional assumption is introduced pro-
viding two sufficient conditions that ensure the existence
of the optimal solution in the minimisation (25) below.

Assumption 2. It holds that the effective domain of the
function f1(x) is bounded and/or that A′A is invertible.

Lemma 1. Given z0, λ0 ∈ Rm, c > 0, a sequence
{ρk} ⊂ [0, 2] and a sequence {βk}, the sequence of
recursions applied to the Fenchel primal (1):

xk+1 ∈ arg min
x∈Rn

{
f1(x) + 〈λk, Ax〉+

c

2
‖Ax− zk‖2

}
,

(25)

zk+1 ∈ arg min
z∈Rm

{
f2(z)− 〈λk + Ek, z〉+

c

2
‖1

c
ξk − z‖2

}
,

(26)
λk+1 = λk + Ek + ξk − czk+1, (27)

with ξk, Ek calculated as

ξk = c(ρkAxk+1 + (1− ρk)zk), (28)

Ek = βk(λk − λk−1) + βkcA(ρkxk+1 − ρk−1xk)

+ βkc((1− ρk)zk − (1− ρk−1)zk−1), (29)

where E0 := 0, is equivalent to the accelerated DR
splitting (13)–(16) applied to the Fenchel dual (23), and
therefore equivalent to the accelerated gradient method
applied to h(w) = FDRc (Sw).

Proof: The starting point for the development is
the accelerated DR splitting (13)–(16). Given the initial

λ0 ∈ Rm, y−1 := λ0 + cz0 and v−1 := v0, (13)–(16)
can be rewritten as

µk = proxcd1(2λk − yk−1), (30)

vk = yk−1 + ρk(µk − λk), (31)
yk = vk + βk(vk − vk−1), (32)

λk+1 = proxcd2(yk), (33)

which in comparison to (13)-(16) has the λk update
moved to the end, and the indices of v and y variable
shifted from k + 1 to k. By the equivalence (18)-(19),
the sequence (30)-(33) can be equivalently written as

µk + cwk = λk − cmk, wk ∈ ∂d1(µk), (34)
vk = yk−1 + ρk(µk − λk), (35)
yk = vk + βk(vk − vk−1), (36)

λk+1 + cmk+1 = yk, mk+1 ∈ ∂d2(λk+1), (37)

where m0 = z0, and λk−cmk in (34) is obtained by sub-
stituting the yk in (37) for yk−1 in (30). By applying the
evaluation of proximal iterate by augmented Lagrangian
from Proposition 1, (34) can be written as

xk+1 ∈ arg min
x∈Rn

{
f1(x) + 〈λk − cmk, Ax〉+

c

2
‖Ax‖2

}
,

(38)
µk = λk − cmk + cAxk+1, (39)
wk = −Axk+1, (40)

as well as (37) which becomes

zk+1 ∈ arg min
z∈Rm

{
f2(z) + 〈yk,−z〉+

c

2
‖−z‖2

}
,

(41)
λk+1 = yk − czk+1, (42)
mk+1 = zk+1. (43)

By Weierstrass theorem (Prop. 3.2.1, [3]), the existence
of the solution of (38) is ensured by the Assumption 2,
and in case of (41) the existence is ensured by the
presence of the quadratic term ‖z‖2.

By using (42) to express yk−1 and (39), (43) to
express µk − λk, (35) can be written as

vk = λk + czk + ρkc(Axk+1 − zk)

= λk + c(ρkAxk+1 + (1− ρk)zk).
(44)

By introducing (44) into (36) for vk and vk−1, one
obtains

yk = λk + ξk + Ek, (45)

where ξk, Ek are defined in (28)-(29). By specifying
E0 := 0, the compliance of (45) with v−1 := v0 is
obtained.



By using the expressions (38)-(45), the cycle (34)-(37)
gets expressed as

xk+1 ∈ arg min
x∈Rn

{
f1(x) + 〈λk − czk, Ax〉+

c

2
‖Ax‖2

}
,

(46)
yk = λk + ξk + Ek, (47)

zk+1 ∈ arg min
z∈Rm

{
f2(z) + 〈yk,−z〉+

c

2
‖−z‖2

}
, (48)

λk+1 = yk − czk+1, (49)

with ξk, Ek defined as in (28)-(29). By substituting (47)
into (48) and (49), and by adding the constant terms
c
2‖zk‖

2 and c
2‖

1
c ξk‖

2 to (46) and (48), respectively, the
equations (46)-(49) take the form (25)-(27).

It can be noticed that by setting the extrapolation
term βk ≡ 0, the accelerated ADMM (25)-(27) reduces
to the generalized ADMM [7] with relaxations, and by
choosing as well the relaxations ρk ≡ 1 we obtain the
classical ADMM given in (2). The following proposition
summarises the preceding development, and provides a
proof which is an adapted version of Prop. 15 in [2].

Proposition 3. Consider the optimisation model (1) in
its equivalent form (22). Let the Assumption 2 hold,
and let the function f2(z) be strongly convex quadratic
f2(z) = 1

2z
′Pz + p′z with P ∈ Rm×m symmetric posi-

tive definite and p ∈ Rm. Assume that all subgradients
of the function d1(λ) = −infx∈Rn

{
f1(x) + (A′λ)′x

}
at each point λ ∈ Rm take the form −Ax̄ where x̄
attains the stated minimum over x. Then, there exists a
primal-dual optimal solution pair ((x∗, z∗), λ∗), and if
the sequences {xk} ⊂ Rn, {zk} ⊂ Rm and {λk} ⊂ Rm
conform to the recursion (25)-(27) under the assump-
tions of Lemma 1 using (3) for {βk} and

ρk ≡ ρ =
1− cLd2
1 + cLd2

, c <
1

Ld2
, (50)

where Ld2 is the maximal eigenvalue of P−1, then λk →
λ∞, zk → z∞ and Axk → Ax∞ = z∞ where x∞ is a
limit point of {xk} and ((x∞, z∞), λ∞) corresponds to
a primal-dual solution pair ((x∗, z∗), λ∗).

Proof: The existence of the primal-dual optimal
solution pair ((x∗, z∗), λ∗) follows from Prop. 1.2.1(a)-
(b) in [3], where the relative interior conditions are
satisfied due to the quadratic form of f2(z) and d2(λ).

The previous development shows that the recursion
(25)-(27) is equivalent to the sequence yk−1 = λk +
cmk = λk + czk from (42)-(43) produced by the
accelerated DR splitting (30)-(33), which is furthermore
equivalent to the application of the fast gradient method
to the scaled DR envelope h(w). Since the relaxation

factor ρ is by (50) chosen in accordance with the
Lipschitz constant of ∇h(w) given in (12), the sequence
{vk} of (30)-(33) converges to the DR fixed point v∞

and by (32) the sequence {yk} → v∞, if the point v∞

exists. Since the primal-dual optimal solution pair exists,
the point λ∗ + cz∗ is just such a point v∞, so it exists.
Therefore the sequence {yk} converges to a DR splitting
fixed point v∞ = y∞, and by Lemma 14 in [2] it has
the form y∞ = λ∞ + cz∞ where z∞ ∈ ∂d2(λ∞)
and −z∞ ∈ ∂d1(λ∞). By the assumption regarding
the subgradients of d1, there exists some x∞ such that
−Ax∞ = −z∞, or equivalently Ax∞ = z∞.

Since the proximal mapping proxcd2(y) is nonex-
pansive (Prop. 5.1.8 in [3]), it is also continuous. We
have proxcd2(y∞) = λ∞ and proxcd2(yk) = λk, and
because of continuity of proxcd2(y) we also have λk =
proxcd2(yk) → proxcd2(y∞) = λ∞ and threfore zk =
(yk−1−λk)/c→ z∞ = (y∞−λ∞)/c. By using the first
equation in (44) together with yk−1 = λk + czk → v∞,
since ρ > 0 due to (50) we have Axk+1−zk → 0, from
where it follows that Axk+1 → Ax∞ = z∞ with x∞

being a limit point of {xk}.

IV. NUMERICAL EXPERIMENTS

The algorithm is tested by solving a quadratic pro-
gramming (QP) problem of the form

minimize 1
2x
′Px+ p′x

subject to lb ≤ x ≤ ub,
(51)

where P ∈ Rn×n is symmetric positive definite, p ∈ Rn,
and the lb, ub ∈ Rn represent the lower and upper bound
of the variable x, respectively. The QP data are generated
randomly using Matlab commands, and are such that
n = 100, the eigenvalues of the matrix P are equally
spaced between 1 and 100, and −1 ≤ lb ≤ ub ≤ 1.

The QP (51) is expressed in the form (22) by setting
f1(x) = δX(x), f2(z) = 1

2z
′Pz + p′z, where δX(x) is

the indicator function of the set X = {x | lb ≤ x ≤ ub}.
The stopping criteria are derived as in Section 3.3 of

[1], obtaining rk+1 = Axk+1−zk+1 and sk+1 = c(zk−
zk+1) +Ek − c(1− ρk)(Axk+1− zk) as the primal and
dual residual, respectively. The stopping criteria used in
the experiments are ‖rk‖ ≤ εpri and ‖sk‖ ≤ εdual, with
εpri and εdual chosen using the absolute and relative
criterion from Section 3.3.1 of [1] with εabs = 10−4,
εrel = 10−2. The maximal number of iterations for
which the experiments are run is kmax = 10000. The
initial conditions are set to zero vectors of appropriate
dimensions.

The comparison of classical ADMM (2) with the
accelerated version over the range of penalties c ∈ (0, 1]
which ensures convergence of the accelerated version



by Prop. 3 is given in Fig. 1a. As the value of the
penalty c approaches the upper bound cmax = 1/Ld2 =
1 from (50), the relaxation ρ tends to 0 according
to (50) and thus the accelerated version, characterised
by the O(1/k2) complexity in (17), gradually worsens
performance and eventually stops converging.

For this reason, a heuristic version which uses ρ = 1
for every value of c is introduced and tested. The results
are given in Fig. 1b, where the heuristically accelerated
ADMM (i.e., the method with ρ = 1) is compared with
the classical ADMM (2), the generalised ADMM [2]
with overrelaxation set to ρ = 1.9, and the Fast ADMM
with and without restarting ([5], Algorithms 7 and 8).
Nevertheless, the heuristic modification ρ = 1 may as
well cause divergence, as can be seen on Fig. 1c where a
QP with a random matrix P containing the eigenvalues
equally spaced between 1 and 500 is considered. These
results indicate that the heuristic version could benefit
by introducing a restarting scheme, like the one of the
Fast ADMM with restarting [5], which would ensure
convergence while keeping the accelerated behaviour.

V. CONCLUSION

An accelerated version of ADMM based on accel-
erated Douglas-Rachford splitting is derived resulting
in a method characterised by an O(1/k2) complexity
of the internal convergence mechanism. In comparison
to the classical ADMM, the derived algorithm involves
an additional algebraic step which corresponds to the
extrapolations in the underlying fast gradient method.
The numerical results show that the method can improve
the performance of classical ADMM over the allowed
range of penalty parameters, and that a heuristic modifi-
cation can potentially extend the benefits of acceleration
beyond this allowed range. The future work will be
oriented to exploration of restarting schemes which can
enforce stability of the heuristic version, as well as to
testing of the derived method on practical problems.
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(a) Classical and accelerated ADMM over the theoretically allowed
range of penalties c. The condition number of QP is equal to 100.
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(b) Heuristically accelerated ADMM compared with other versions of
ADMM. The same random QP as in (a) is considered.
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