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Digital Pharmacovigilance and Disease Surveillance:
Combining Traditional and Big-Data Systems for Better
Public Health
Marcel Salathé
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The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are
electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary
strengths—high veracity in the data from traditional sources and high velocity and variety in patient-generated data—they can be
combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in partic-
ular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent
examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be
solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are
combined, these data sources will be constrained by their intrinsic limits.
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Traditional disease surveillance has been a key ingredient in any
public health portfolio for many decades. Disease surveillance is
widely recognized as one of the most important tools to assess,
predict, and mitigate infectious disease outbreaks. Traditional
disease surveillance is based on data collected by health institu-
tions, and the data typically consist of information such as mor-
bidity and mortality data, laboratory reports, individual case
reports, field investigations, surveys, and demographic data.
They are generally collected by physicians, public health labora-
tories, hospitals, and other health providers and institutions.
The computer revolution that began in the 1970s has affected
traditional disease surveillance systems by improving the acces-
sibility of data and by increasing the speed at which data are
transmitted between institutions. However, the ongoing Inter-
net and mobile phone revolution has a qualitatively distinct ef-
fect: in addition to making epidemiologic data available faster
and more broadly, new data are generated directly by the public,
often on platforms not primarily designed for health purposes.
These data streams of user-generated data are almost always by-
passing traditional public health channels. They are the data
streams on which digital epidemiology is generally based [1, 2].

One of the first and certainly the most prominent examples
of digital disease surveillance was Google Flu Trends [3].Google
Flu Trends was essentially an analytical estimate of the level of
weekly influenza activity based on the search queries that Goo-
gle received. The analytical estimate was derived by a model se-
lected by generating the best fit to the Centers for Disease
Control and Prevention’s (CDC’s) influenza-like illness (ILI)
data from a number of different US regions. The original
model results obtained a mean correlation of 0.9 with the CDC
data. A few years later, in summer 2015, Google decided to shut
down the public website of Google Flu Trends and instead opted
to give select academic and public health institutions access to the
data. This announcement followed numerous reports [4–6] that
systematically assessed Google Flu Trends’ overestimation of in-
fluenza activity, attributing it to a combination of a phenomenon
termed “big-data hubris” and algorithm dynamics. The first re-
fers to the assumption that the novel big-data streams are a sub-
stitute, rather than a supplement, to traditional data collection
efforts. The second refers to the observation that, while the Goo-
gle search algorithm receives updates on a weekly or even daily
basis, the Google Flu Trends model received updates only rarely.
This led to a situation where the model did not keep in sync with
the changing nature of the data from which it was supposed to
generate predictions.

Despite the problems of Google Flu Trends, the system was
an important example of the promises of digital epidemiology:
to use novel data streams, often generated for purposes quite
distinct from public health, to extract additional public health
signals, such as those relevant for disease surveillance. But
while Google makes some search pattern data available through
an interface called Google Trends, the raw search-query data
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that Google Flu Trends was based on is not publicly available. In
recent years, two other digital data sources have attracted the
attention of digital epidemiologists: Twitter, the popular micro-
blogging services, and Wikipedia, the world’s largest open-
access encyclopedia. Twitter data are openly accessible through
an application programming interface, which allows any third
party to stream Twitter data in real time to their own applica-
tion. Twitter has been extensively used to assess influenza activ-
ity [7, 8], but it may principally suffer from the same problems
of overfitting [9] and static algorithms. Wikipedia access logs, a
public data source, have recently attracted the attention of the
research community as a proxy of search engine query logs
because Wikipedia pages are often ranked highly in the search
engine results following disease-related queries. Early analyses
of Wikipedia access logs have shown great promise in providing
real-time estimates (so called now-casting) of the prevalence of
a number of infectious diseases [10, 11].

While search engine logs, social media posts, and Wikipedia
access logs are a few examples of big-data sets that have emerged
following the ongoing Internet penetration worldwide, there is
also another source of data that is increasingly relevant for dis-
ease surveillance—the public itself. In contrast to classical sur-
veillance that reports on a patient’s health status once they have
accessed the health system, participatory surveillance asks pa-
tients to report symptoms and other data directly online.
Web-based participatory surveillance systems have shown
great promise in the case of influenza, for example. In Europe,
the Influenzanet project has been successfully collecting data on
ILI activity in a number of European countries [12], and in the
United States, Flu Near You has emerged as a leading crowd-
sourced influenza surveillance system, and there are more in
other parts of the world [13]. Given the widespread use of
smartphones with broadband Internet access worldwide, we
can expect many more participatory public health applications
in the near future, complementing traditional surveillance
systems.

Importantly, because many of the data streams of digital ep-
idemiology have not been generated for the disease surveillance
niche, much broader insights can be gained from these data
sources. While much of the earlier work on digital epidemiolo-
gy has focused on user-generated description of symptoms, later
work has increasingly focused on the analysis of health behav-
iors and sentiments/opinions, particularly as they relate to in-
fectious diseases. For example, Twitter data have been mined
for signals of vaccine sentiments to estimate vaccine uptake
rates. During the 2009 influenza A(H1N1) pandemic, vaccina-
tion sentiments measured on Twitter correlated positively with
prospectively reported vaccination uptake rates across US states
[14]. This indicates that these new data streams can help in the
public health decision-making process, because sentiments ex-
pressed on Twitter can be measured in real time, giving those
in public health practice early warning signals of possibly

undervaccinated populations. Later work on the same data set
investigated how negative and positive sentiments about vacci-
nation spread across the social network, suggesting that negative
sentiments are more susceptible to social contagion than posi-
tive sentiments [15]. Last but not least, data from most of these
services are increasingly generated on mobile phones and other
devices, increasing the probability that high-resolution geo-
graphic information is associated with the data, a phenomenon
that will become increasingly important, given the spatial dy-
namics of disease spread.

DIGITAL PHARMACOVIGILANCE

The widespread use of the Internet and of social media in partic-
ular has had a dramatic effect not only on infectious disease sur-
veillance, but also on the surveillance of drug use and related
events. Perhaps even more so than traditional infectious disease
surveillance, traditional surveillance of adverse drug reactions
(ADRs) after drug use is slow and patchy. When reported by pa-
tients or healthcare professionals, ADRs are typically assessed by
drug experts and pharmaceutical companies, and the results are
then passed on to government agencies. This leads to substantial
data loss and delays. A recent study in the United States showed
that hospital staff did not report 86% of ADRs among patients
[16]. The rate of underreporting in nonclinical settings is argu-
ably even higher. Once government agencies receive the reports,
they often release them with a delay of months or even years. The
lack of speed and broad coverage has multiple causes, including
the fact that a proper assessment of ADR data is both imperative
and time-consuming; it is nevertheless in direct contrast with the
public health importance of ADRs. In the European Union alone,
ADRs are the cause of 5% of all hospital admissions and are re-
sponsible for an estimated 197 000 yearly deaths [17].

Public ADR reporting systems are largely unknown to the
public, despite long-term governmental support. A recent
study in Australia reported that only 10.4% of the general pop-
ulation was even aware of the national ADR reporting system
[18]. This low awareness was comparable to the results reported
in an earlier study in the United Kingdom, where only 8.5% of
the adult population was aware of the United Kingdom ADR
reporting system [19]. Among physicians, ADR reporting has
been declining over time in both countries. Such declining re-
porting by physicians has been linked to ignorance, diffidence,
lethargy, and insecurity (sorted here by decreasing frequency
associated with not reporting ADRs, as identified elsewhere
[20]), leading some to suggest that physicians should get paid
to report ADRs [21].

While consumers rarely use official ADR reporting systems,
they increasingly use online platforms to investigate potential
ADRs. Health-related interests are now a major driver of Internet
use [22]. When experiencing a potential ADR, consumers can
now easily search the web to look for information about a poten-
tial connection between their symptoms and the drugs they are
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taking. Indeed, for the purpose of mining digital consumer data
for an ARD signal, the patient does not even need to be conscious
of the link between drug intake and symptoms, as long as they
can be correlated in the data. Social media are also increasingly
used to share ADRs with others. Both digital traces left behind as
a consequence of these online activities can be used for digital
pharmacovigilance. By mining and analyzing search logs or so-
cial media posts for ADRs, signals may be detected much faster
than through the traditional ADR reporting systems.

A recent study by White et al [23] exemplifies the idea of
pharmacovigilance through search logs. Using a 2011-reported
adverse event (hyperglycemia) due to a previously unknown in-
teraction between the drugs paroxetine, an antidepressant, and
pravastatin, a cholesterol-lowering drug, the question was
whether the adverse event could have been detected earlier by
using search-log analysis. By mining through millions of search
queries on Google, Bing, and Yahoo Search from 2010 (provid-
ed to the researchers anonymously by users who opted in to
share their search history), White et al found that people who
searched for both drugs were also more likely to search for
terms related to the adverse event than those who searched
for only one of the drugs. The study was done after the ADR
had been identified, and using this approach for the identifica-
tion of unknown ADRs will remain a challenge. A later study by
some of the same authors [24] demonstrated that jointly lever-
aging data from the Food and Drug Administration’s (FDA’s)
Adverse Event Reporting System (FAERS) and search logs
could improve the identification of ADRs by 19%, compared
with use of each data source alone. This improvement corre-
sponded to the proportion of error reduction gained by using
the combined signals over the better-performing individual
data source, as measured by the difference in area under receiver
operating characteristic curve.

Social media services are increasingly becoming online places
where people share possible ADRs. Freifeld et al [25]used Twitter,
the popular microblogging service, as a data source to assess the
feasibility of digital pharmacovigilance through social media.
Using Twitter posts (termed “tweets”) in English language men-
tioning medical products, they identified possible ADRs with a
combination of manual and semiautomated techniques. The ag-
gregate frequencyof possibleADRswas then compared to FAERS.
From 6.9 million tweets collected between November 2012 and
May 2013, Freifeld at al identified 4401 possible ADRs, and al-
though the comparison of possible ADRs from Twitter to those
from FAERS at the preferred level was not possible because of
the “Internet vernacular on Twitter,” [25, pp 347] the rank
order correlation by system organ class was relatively high, with
a Spearman rank correlation coefficient of 0.75 (P < .0001).

Focusing on a more specific drug type, Adrover et al [26] an-
alyzed ADRs with respect to drugs for human immunodeficiency
virus (HIV) infection, using a data set of >40 million tweets
containing HIV drug names collected over 3 years. They used

a combination of crowdsourced human assessment and ma-
chine-learning algorithms to identify the tweets of individual re-
ports about ADRs with HIV drugs such as Atripla (Gilead and
Bristol-Myers Squibb) and Truvada (Gilead, Foster City, Califor-
nia). The remaining 1642 tweets represented ADRs from single
drugs or drug combinations and captured well-recognized toxic-
ities known from clinical practice. For example, efavirenz-
containing treatments (eg, Sustiva [Bristol-Myers Squibb, New
York City, New York] and Atripla) were often reported in con-
junction with sleep-related problems, such as nightmares or lack
of sleep, a phenomenon well-documented in the clinical litera-
ture [27]. The study also analyzed the sentiment expressed in
these tweets, which was mainly but not always negative, high-
lighting a benefit of social media studies over search query anal-
ysis. Tweets, despite their limitation of 140 characters, can still
convey much more information than a search query, containing
valuable information that can put potential ADRs in a specific
and possibly relevant context.

Another source of user-generated content on the Internet are
health forums. Leaman et al [28] mined data from the website
DailyStrength and manually annotated 3600 posts relating to 4
drugs, carbamazepine, olanzapine, trazodone, and ziprasidone.
The ADR incidence rates for these drugs is well established by
the FDA, and the study showed that there was a strong correla-
tion between those well-established incidence rates and the rates
derived from the annotations generated from the user-generat-
ed posts. The authors also developed an automated system to
identify adverse reactions by means of a primary lexical method,
using 450 of the 3600 posts. When they evaluated the system
against the 3150 posts not used for system development, they
found that it performed well, with a precision of 78.3% and a
recall (sensitivity) of 69.9%. Chee et al [29] conducted a study
with a less constrained data set consisting of 27 290 public health
and wellness groups on Yahoo. They used a natural language
processing (NLP) approach to identify drugs that were with-
drawn from the market. The identification was based on an
NLP classifier trained on forum posts, allowing for further pre-
diction of drugs that may be candidates for market withdrawal.

These studies are only a few examples of a growing literature
aiming to detect ADRs through nontraditional data streams of
patient-generated data. Such digital pharmacovigilance has the
potential to strongly supplement pharmacovigilance based on
traditional ADR reporting systems. At the same time, this
new approach comes with its own set of challenges. First, access
to data is often difficult or at times impossible. Given the wide-
spread global use of Facebook, for example, ADR reports on
Facebook would likely be a tremendous resource for pharmaco-
vigilance, but the data are not accessible to the public or to re-
searchers. Even with easier data access as provided by Twitter or
scrapable websites, the terms of service of these platforms often
prohibit access to the full data set and the sharing these data
with others to verify and replicate results.
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The challenge posed by the question “Are privately held data
accessible for public health research?” is one of many ethical
challenges surrounding the use of big data for public health.
Vayena et al [30] have identified a number of challenges sur-
rounding digital epidemiology that are directly applicable to
digital pharmacovigilance, as well. For example, issues of meth-
odologic validation are highly pertinent in the context of ADRs:
false predictions of potential adverse events may drive substan-
tial spending of limited public health resources. Algorithmic
claims of undocumented adverse effects may quickly sway pub-
lic opinion in one way or another and, if the claims turn out to
be wrong, might potentially taint otherwise safe drugs with a
bad reputation for a long time. Of course, this problem is not
limited to algorithmic suggestions alone: the now widely de-
bunked claim that the measles, mumps, and rubella vaccine
may cause autism, for example, was based on a fraudulent
study whose failings were entirely noncomputational. Neverthe-
less, today’s availability of cheap computational power substan-
tially reduces the ease with which algorithmic claims can be
made, and we therefore need to think about a system that can
weigh these claims in a way that is both scientifically sound and
remains open to anyone.

CONCLUSIONS

The emergence and subsequent public withdrawal of Google
Flu Trends has illuminated two potential key problems of digital
epidemiology: big-data hubris and algorithm dynamics [6]. As
the examples mentioned above have shown, there is tremendous
potential for epidemiology in these novel data streams that have
emerged during the growth of the Internet and the widespread
use of smartphones. Nevertheless, these data streams are condu-
cive to big-data hubris, a situation where these new data streams
seek to supplant traditional data streams, rather than supple-
ment them. In this context, it is worthwhile to note that the orig-
inal authors of Google Flu Trends warned that “this system is not
designed to be a replacement for traditional surveillance net-
works or supplant the need for laboratory-based diagnoses and
surveillance” [3, pp 1013]. Despite traditional epidemiology’s
shortcomings, it is ultimately the generator of ground-truth
data against which novel, digital systems need to be validated.
It will be prudent of the public health community to build on
the strengths of both systems—veracity in traditional epidemiol-
ogy and velocity and variety in digital epidemiology—in
conjunction [31]. At the same time, traditional public health
systems need to integrate novel data streams into their
work flow and provide the corresponding infrastructural invest-
ment. Algorithmic intelligence in the public health domain
needs to adjust to changing conditions all the time. The incen-
tive structures in most of academia (frequent publication of
novel findings) are at odds with the requirements of building
long-term systems with dynamic algorithms that need to be
maintained and updated regularly. The call for leveraging

digital epidemiology intelligence for public health is therefore
strongest when it comes from within the existing public health
institutions.
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