000226866 001__ 226866
000226866 005__ 20190507143831.0
000226866 0247_ $$2doi$$a10.1016/j.ijnonlinmec.2016.12.010
000226866 022__ $$a0020-7462
000226866 02470 $$2ISI$$a000393722500014
000226866 037__ $$aARTICLE
000226866 245__ $$aSolitary waves in longitudinally wrinkled and creased helicoids
000226866 260__ $$bElsevier$$c2017$$aOxford
000226866 269__ $$a2017
000226866 300__ $$a9
000226866 336__ $$aJournal Articles
000226866 520__ $$aElastic ribbons subjected to twist and stretch handle multiple morphological instabilities, amongst others, the longitudinally wrinkled and creased helicoids are investigated in the present paper as promising periodic nonlinear waveguides. Modeling the ribbon by isogeometric Kirchhoff-Love shells, the first longitudinal buckling mode is recovered numerically and used into the Bloch-Floquet method to obtain dispersion curves. After analyzing the effects of the buckling pattern on the different wavemodes, it is shown that classical linear axial waves interact with bending ones and become dispersive. Additionally, as buckling involves geometrical nonlinearities, the structure is expected to host stable nonlinear waves. Indeed, clear supersonic rarefaction trains are observed experimentally and their characteristics are found in agreement with the weakly nonlinear Boussinesq model.
000226866 6531_ $$aLongitudinally wrinkled and creased helicoids
000226866 6531_ $$aSupersonic rarefaction train
000226866 6531_ $$aExperiment
000226866 6531_ $$aBoussinesq model
000226866 700__ $$g215943$$0245789$$aMaurin, Florian
000226866 773__ $$j89$$tInternational Journal Of Non-Linear Mechanics$$q133-141
000226866 909C0 $$xU12614$$0252513$$pLAMMM
000226866 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:226866
000226866 917Z8 $$x241433
000226866 937__ $$aEPFL-ARTICLE-226866
000226866 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000226866 980__ $$aARTICLE