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Abstract

Point localization superresolution microscopy enables fluorescently tagged molecules to be

imaged beyond the optical diffraction limit, reaching single molecule localization precisions

down to a few nanometers. For small objects whose sizes are few times this precision, local-

ization uncertainty prevents the straightforward extraction of a structural model from the

reconstructed images. We demonstrate in the present work that this limitation can be over-

come at the single particle level, requiring no particle averaging, by using a maximum likeli-

hood reconstruction (MLR) method perfectly suited to the stochastic nature of such

superresolution imaging. We validate this method by extracting structural information from

both simulated and experimental PALM data of immature virus-like particles of the Human

Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses

with precision of a few nanometers and confirms the incomplete closure of the viral protein

lattice. The quantitative results of our analysis are consistent with previous cryoelectron

microscopy characterizations. Our study establishes the framework for a method that can

be broadly applied to PALM data to determine the structural parameters for an existing

structural model, and is particularly well suited to heterogeneous features due to its single

particle implementation.

Introduction

Many cellular machines, such as the multi-protein structures involved in membrane fission or

fusion, transport across membranes, cell division, and more, lie below the resolving power of

fluorescence microscopy. Superresolution fluorescence imaging promises to directly reveal

their organization in situ. Indeed, recent microscopy studies of the midbody [1, 2], centriole

[3–6], and nuclear pore [7, 8] have advanced the models for how such machines are

assembled.

At the same time, these studies reveal some of the current limitations in interpreting super-

resolution images. Among the highest demonstrated resolutions are methods based on single
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molecule localization, variously known as (fluorescence) photoactivated localization micros-

copy ((f)PALM) or stochastic optical reconstruction microscopy (STORM) [9–11]. These

methods use stochastic serial photo-activation of fluorescent dyes within the sample to ensure

their sparsity, which enables their precise positioning at the center of each distinct diffraction-

limited spot they generate. The position of each emiter is therefore much precised on the final

image where each diffraction spot is substituted for by its centroid (or by a smaller spot whose

size express the uncertainty of the fit). However, because of the stochastic nature of the

method, images are inherently noisy and the amount of information they carry is limited in

part by the labeling density, which is limited by the dye targets density inside the sample and

because all dyes cannot be read [12]. Furthermore, when the localization precision of single

molecules is not much smaller than the size of the object, the structural information content of

the image is distorted or obscured by positioning errors. This positioning error is intrinsic to

optical imaging and depends mainly on the fluorophore quantum yield. Thus, individual

images may often lack sufficient quality to test or build structural models. Instead, significant

particle averaging is often necessary to use the data to prove a model [3, 7, 13].

When molecular structures or particles are identical, statistical averaging over a large set of

images is a valid way to address these limitations. However, in the most general case, there can

be genuine structural variability [14, 15], that may be difficult to interpret when relying on

approaches based on population averaging. We propose to address this by introducing a new

reconstruction method, which can be applied at the single particle level. This assumes that we

have a geometrical parametrization of the structure –an a priori structural model–, and that we

want to determine its parameters from the PALM images. For instance, the object could be

known to be a cylinder whose length and radius we would like to determine: dynamin is an

example of a protein that polymerizes into such a structure to induce membrane fission [16].

Our method, a maximum likelihood approach, calculates a score for all possible values of

parameters. The score corresponds to the probability of obtaining the observed data from the

structure parametrized by this set. Thus, we can identify the highest scoring set of parameters,

which corresponds to the most probable structure underlying the measured data.

We illustrate the advantages of this approach by validating it on PALM images of budded,

immature virus-like particles (VLPs) formed from the fluorescently tagged polyprotein HIV-1

Gag. Cryo-electron microscopy has shown that VLPs are formed from an incomplete spherical

protein shell beneath the lipid viral envelope and are highly polydisperse [15, 17]. Gag proteins

from individual correctly formed VLPs are therefore expected to lie on spherical shells of vari-

able radii and closure angles (Fig 1), features that would be obscured by particle averaging. We

compute the maximum likelihood 3D geometry, thereby estimating the particle radius and

protein coverage for individual VLPs. We apply this strategy to both simulated and real PALM

data. Comparison between the parameters used as inputs to simulate the data and the output

parameters of the reconstruction procedure gives an estimate of the precision reached at a sta-

tistical level. This way, we are able to estimate the radius and the closure angle that best explain

the measured data from a given particle, and also can extract the uncertainty on this

estimation.

The remainder of this article is organized as follows. In the first section, entitled “Theoreti-

cal Framework”, we detail the likelihood calculation of a parameter set given a superresolution

image and briefly review the maximum likelihood estimator framework. We conclude this sec-

tion by introducing the geometrical parametrization we subsequently use to model HIV-1

structure. The next section, Material and Methods, details the experimental and numerical

methods we used to record, simulate and analyze the HIV-1 PALM images. Results of the anal-

ysis of simulated and experimental PALM images are described in the following “Results” sec-

tion. In the last sections, “Discussion and conclusion”, we analyze the precision and limitation
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of the maximum likelihood method applied to HIV-1 radii and completions estimation, we

compare our results to previously reported cryo-electron microscopy data, and we summarize

our findings regarding applications to other objects.

Theoretical framework

Typical structure of superresolution data

In (f)PALM or STORM data, each emitter position is determined from its diffraction spot by a

centroid-finding algorithm [11, 18, 19]. The uncertainty in position can be calculated theoreti-

cally, and is related to the width S of the microscope point spread function (PSF) and the num-

ber ni of collected photons from the emitter through si �
S
ffiffiffiffini
p [12] in an ideal microscope. In

the most common case of 2D superresolution imaging, the parameter set is then simply

(xi, yi, σi). The more photons a fluorescent probe emits and the higher its signal-to-noise ratio,

the more precisely the molecule can be localized and the smaller σi.

Our aim is to use a probabilistic approach to extract global structural information about a

molecular complex from datasets consisting of lists of molecular positions and uncertainties,

(xi, yi, σi).

Likelihood calculation

Consider the spatial distribution of emitters. We assume that an a priori 3D-density d0 models

this distribution. We will hereafter refer to this model as “the structure”. The structure is

Fig 1. Fitted structure and simulated data. (A) The assumed density of Gag (transparent blue) is shaped as a truncated spherical shell of radius R,

completion angle θ, and is tilted by an angle ϕ with the projection axis (the optical axis). Its projection is distributed around the projected sphere center

(xc, yc) and makes an angle αwith the plan x-axis. (B) To simulate palm images, we uniformly sample points in this density, project them on the plane (red

dots), and move each of them by a random normal displacement of std. σi (black dots) accounting for the superresolution imprecision.

doi:10.1371/journal.pone.0172943.g001
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defined by a set of parameters that are denoted~b (in the case of VLPs, these parameters include

radius, completion angle, and spatial orientation). The first step of the likelihood calculation is

to evaluate the probability of measuring an emitter at (xi, yi) with uncertainty in position σi,

given the spatial density of emitters d0½
~b�. The probability of measuring an emitter at a given

position is dp½
~b; si�ðxi; yiÞ, the 2D projected density of emitters at this location blurred by the

position uncertainty. To evaluate this “blurring” we need to determine the probability for an

emitter to be located at a given distance from its localization position. We call this probability

density the blurring function (bf). By definition the blurring function has the position uncer-

tainty σi as its characteristic length. Following Mukamel et al. [12], the 3D density prior projec-

tion is obtained by convolving the density of emitters d0 with the blurring function:

dbf ½
~b; si�ð~rÞ ¼

ZZZ þ1

� 1

d0½
~b�ð~r1Þ:bf ½si�ð~r1 � ~rÞ:d~r1 ð1Þ

For simplicity, we take a Gaussian of width σi to be the blurring function. We have chosen

the z-axis to be the optical axis of the microscope. As a consequence, the projected density at

(xi, yi) is given by:

dp½
~b; si�ðxi; yiÞ ¼

Z þ1

� 1

dbf ½
~b�ðxi; yi; zÞ:dz ð2Þ

By using a modified experimental setup [20–23] the zi position of single emitters can be

extracted –although typically with greater uncertainty sz
i . The aforementioned 2D procedure

extends to the 3D case by simply ignoring the projection. The complete dataset is then: (xi, yi,

σi, zi, sz
i Þ. The 2D calculations above still apply but with an anisotropic blurring function and

no projection afterwards. The 3D localization probability density is found by convolving the

structure with a gaussian of width σi in the lateral directions and sz
i in the axial one. This way,

we directly obtain the 3D blurred density of emitters [24]: dbf ½
~b; si; s

z
i �ðxi; yi; ziÞ. All that fol-

lows can be applied to this 3D localization case by substituting dbf ½
~b; si; s

z
i �ðxi; yi; ziÞ for

dp½
~b; si�ðxi; yiÞ and will not be further emphasized for the sake of readability. Note that in the

projection scheme Eq 2, it was implicitely assumed that the error in location of the emitter are

identical beyond the focal plane. While the average position of these emitters would remain

the same in the 2D projection, the error on their position estimate will be larger as emitters

move beyond the focal plane due to the spread of their photons along larger spots. This effect

is neglected in the present approach for the sake of tractability.

From another perspective, given a measurement (xi, yi, σi), the quantity dp½
~b; si�ðxi; yiÞ, is

also the likelihood that the distribution of emitters is defined by~b. Indeed, this is the condi-

tional probability density of localizing an emitter at position (xi, yi) given a structure defined

by~b and an uncertainty in measured position σi.

Since a dataset consists of ensembles of molecular positions, we need to extend the previous

calculation to obtain the joint probability for the entire set of localizations. Individual localiza-

tion events are assumed independent of each other. The likelihood for the whole set of mea-

surements to be defined by~b can therefore be written as the product of likelihoods for a single

measurement:

Lðfxj; yj; sjgÞ ¼
Y

j

dp½
~b; sj�ðxj; yjÞ ð3Þ

PALM/STORM single object reconstruction
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This result is often presented in its logarithmic form, the log-likelihood or score function:

logL½~b�ðfxj; yj; sjgÞ ¼
X

j

log ðdp½
~b; sj�ðxj; yjÞÞ ð4Þ

The optimal choice of geometric parameters~b� to describe the observed data is the set which

maximizes the likelihood function L or equivalently the log-likelihood [25]. In other words,~b�
defines the distribution of emitters that maximizes the probability to have such a measure-

ment. This condition is written as:

~b� ¼ argmax
~b

ðlogL½~b�ðfxj; yj; sjgÞÞ ð5Þ

As proposed in [26], the observed Fisher information matrix J can be used to evaluate an

upper bound on the precision of the parameter determination. For the sake of simplicity, we

use this estimation as the error bars for the fit. Under general regularity conditions, the

observed Fisher information matrix J is the negative of the log-likelihood Hessian matrix at

its maximum which has indeed the dimensions of the inverse of a covariance matrix. In other

words, the confidence interval is given by the curvature of the log-likelihood function around

its maxima:

Hij ¼
@

2logL½~b�
@bi@bj

�
�
�
�
�
~b�

and J ¼ � H � Cov� 1ð~bÞ ð6Þ

Remarkably, the blurring function and the a priori geometrical model for the spatial localiza-

tion of emitters are the only necessary inputs to conduct the reconstruction procedure outlined

in this section.

Analysis of immature HIV-1 VLP imaged by PALM

HIV-1 VLPs are good candidates for our reconstruction approach at the single particle level,

because of the high size polydispersity reported in the literature [15]. In the case of immature

HIV-1 VLPs, Gag proteins are expected to form an incomplete protein lattice. In this case, we

choose a simple a priori structural model showed in Fig 1: a truncated sphere of radius R and

protein coverage angle θ (designated below as the “completion angle”). This structure depends

on seven parameters: one for the radius of the sphere, three for its center position, two for its

orientation (Euler angles to orient the symmetry axis of the structure), and one for its comple-

tion. Once projected into 2D, we reduce the degrees of freedom by one (the axial center coor-

dinate). We parametrize the structure by β = (R, θ, ϕ, α, xc, yc), respectively radius, completion

angle, tilt angle between the microscope optical axis and the model symmetry axis, rotation

angle in focal plane, and projected center coordinates.

We can further reduce the complexity of this problem by taking advantage of the axisym-

metry of the model, and of its quantities that are quasi-invariant under the gaussian convolu-

tion (therefore hardly affected by the positioning error introduced by the Gaussian blurring

function). As proposed in [27], the first geometrical moments of the emitter distribution

define the center position and one orientational angle, and therefore allow us to center the

points distribution on its center of mass ~XCM and reorient it in the focal plane according to its

principal axis. Without loss of generality centering and orientation are calculated analytically

(see ~XCM and α calculation in supplementary information S1 File).

Using this reduced coordinate system, we compute the optimal~b� and its uncertainty by

finding the maximum log-likelihood and its local curvature as given by Eqs 5 and 6. This step

PALM/STORM single object reconstruction
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is performed numerically using a quasi-Newton algorithm which is computationally expen-

sive. To speed up the computation, we use an average value �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

js
2
j =N

q
, where N is the

total number of emitters, instead of each emitter localization uncertainty σj:

dp½
~b; sj�ðx; yÞ ) dp½

~b; �s�ðx; yÞ ð7Þ

This approximation allows us to calculate a single convolution for all of the localized fluoro-

phores instead of evaluating the convolution values N times, once for each of the localized

fluorophore positions, which considerably speeds up the computational time (see supplemen-

tary information S1 File). As a drawback, the broader the distribution of uncertainties {σj}, the

less appropriate our approximation.

For several data sets, either simulated and experimental, two local maxima compete in the

parameter range (θ, ϕ) 2 [0, π] rad ×[0, π/2] rad. One is found for a small completion angle

θ 2 [0, π/2] rad, a small viewing angle ϕ� 0 and a high radius value whereas the other is found

for θ 2 [π/2, π] with no restriction on ϕ and at a smaller radius value. Computations of the

log-likelihood values over the full domain on simulated data showed that this situation arises

when the input tilt orientation ϕ is small, otherwise no secondary extremum is seen. Since we

work on VLPs that have fully budded, we further assume more than half completion of the

Gag shell and therefore we restricted our parameter space to a range θ 2 [π/2, π] rad where

only one maximum is found.

Materials and methods

Cell culture, transfection and VLPs extraction

African green monkey kidney cells (Cos7) were cultured in DMEM supplemented with 10%

FBS (Sigma Aldrich). For VPL production 600,000 cells were grown in T75 flasks and trans-

fected with 34 μg of Gag-mEos2 plasmid (described in [14]) and 100 μl FuGene6 (Roche Diag-

nostics) in a total volume of 1 ml DMEM without FBS incubated for 15 min. 48 hours post

transfection the supernatant was collected from the cells and filtered through 0.45 μm filters.

For VLP extraction the supernatant was centrifuged over a 20% sucrose gradient at 27000 rpm

for 2 hours at 4˚C. The pellet was dissolved in filtered PBS and the VLP solution was directly

used for imaging or stored for not more than 24 hours at 4˚C prior to imaging. For imaging,

poly-L-lysine coated coverslips containing 100 nm Au fiducial markers were incubated with

VLPs for 1 hour at 4˚C, rinsed with PBS and directly used.

Superresolution imaging

VLPs were imaged using a Zeiss Axio Observer D1 inverted microscope, equipped with a

100×, 1.49 NA objective (Zeiss). Activation and excitation lasers with wavelengths 405 nm

(Coherent cube) and 561 nm (Crystal laser) illuminated the sample in total internal fluores-

cence (TIRF) mode. We used a four color dichroic 89100bs (Chroma), fluorescence emission

was filtered with an emission filter ET605/70 (Chroma) and detected with an electron-multi-

plying CCD camera (iXon+, Andor Technology) with a resulting pixel size of 160 nm. For

each region of interest, typically 30000 to 40000 images of a 20.5 x 20.5 μm2 area were collected

with an exposure time of 30 ms. The irreversible photoactivatable protein mEos2 was activated

with low continuous 405 nm laser intensity to guarantee very sparse activation and minimize

blinking, and excited with 561 nm laser intensity of� 1 kW.cm−2. Molecules were localized

using Peakselector (IDL, courtesy of Harald Hess). The single molecule localization procedure

consisted of the following steps: a) fluorescent intensity peaks were detected on each image, b)

PALM/STORM single object reconstruction
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each peak was fitted to a two-dimensional Gaussian by nonlinear least-square fitting to obtain

x and y coordinates as well as the localization precision, c) images were dedrifted using Au

fiducial markers embedded into the cover glass (Hetzig.com) (see S11 Fig for details), d) locali-

zations detected within less than the measured mean localization precision (typically between

17 and 24 nm) in space and 300 ms in time were grouped to account for blinking of mEos2.

For mEos2, we find on average 3.5 switching cycles which is insufficient for a precise determi-

nation of the localization precision (S12 Fig). Hence in the present study, we rely on the theo-

retical localization precision [28]. One grouped molecular position is counted as one Gag-

mEos2 protein [14].

Superresolution analysis

The analysis presented in the Material and Methods section is focused on viral particles that

fully escaped the cellular membrane. The data consisted of 33 sets of N superresolved position

triplets {xj, yj, σj}, N ranging from 714 to 3302 proteins and �s ranging from 15 nm to 21 nm.

The distribution of radii estimated through the MLR procedure described above was created

summing normalized Gaussian distributions centered on the estimated value, with variance

given by the first diagonal coefficient of the corresponding observed Fisher information matrix

(Eq 6). Hence a radius estimated with a large error bar contributes on a large interval and each

particle has the same weight in the total. The resulting distribution shows a strong peak at

R = 45 nm and an extended tail for larger radii. One object in the sample exhibits a radius

much larger than the mode (up to twice the main peak radius). The outlier particle, shown

in supplementary S5 Fig, exhibits an elongated shape and is likely to be an aggregate or an

ill-formed particle, and is thus excluded from the analysis. The distribution of estimated com-

pletion angle is built following the same procedure, but as the angular interval is finite, the nor-

malization was made on [π/2, π].

Simulation of super resolution data

Simulated superresolution data were produced with MATLAB1 by randomly sampling simu-

lated label positions ðx0
i ; y

0
i ; z

0
i Þ for different 3D-density-priors for the tagged-Gag layer shape

(truncated spherical shell as shown in [15]) or control reference states (fully complete spherical

shells). An imprecision for each position σi was then chosen following a Gaussian shape

distribution that mimics the experimental PALM-data localization uncertainty distribution

(μ = 20 nm, std = 5 nm). The superresolution fitted position is deduced from the sampled posi-

tion ðx0
i ; y

0
i Þ by adding a random displacement in the plane (δxi, δyi) with normal isotropic dis-

tribution di � N ð0; siÞ : ðxi; yiÞ ¼ ðx0
i þ dxi; y0

i þ dyiÞ (see Fig 1). The exponential decrease of

the exciting intensity in TIRF microscopy and subsequent diminution of positioning precision

with depth can be neglected since the TIRF depth is at least of the size of the VLPs (’100 nm):

the effect is thus at most comparable to the stochastic variation of photon yield of the fluoro-

phores before they bleach, and positioning precision can be assumed homogeneous at all the

positions. Furthermore, this effect being isotropic in the optical plan, it does not affect the sym-

metry of the image in 2D that is crucial for our centering and orientation methods.

We computed Eq 2 numerically. This step is the most computationally intensive, so we

used Fast Fourier Transform (FFT) to transform the Gaussian convolution into a simple prod-

uct and speed up the calculation (see S1 File). Once we were able to evaluate the likelihood

function for any parameter set, the optimization problem was numerically solved using the

“interior-point” algorithm of MATLAB1 “fmincon” solver. The solver was started with differ-

ent initial values to check the robustness of its convergence to a maximum. The Hessian matrix

at maxima positions was deduce from the fit of a quadratic form using 1000 evaluation points

PALM/STORM single object reconstruction

PLOS ONE | DOI:10.1371/journal.pone.0172943 March 2, 2017 7 / 18



in the neighborhood of the maximum to assure robustness towards numerical noise at low

scale (rounding errors).

Results

Reconstruction from simulated PALM images

To evaluate the performance of our maximum likelihood reconstruction (MLR) procedure, we

simulated PALM images of truncated spheres of known geometrical parameters (R, θ, ϕ). We

thus provided as an input 300 simulated datasets composed of 1500 points each with an uncer-

tainty in position of 20 nm, comparable to the experimental datasets (Fig 1). We could there-

fore compare the computed optimal structure to the “ground truth” input structure and

estimate the precision of our method from these differences. This also provides a test for the

proposed confidence estimation calculated from the observed Fisher information matrix. The

first two parameters are associated with the geometry of the virus-like-particles (radius R and

completion of the sphere θ), while the last one is an orientation parameter (tilt angle ϕ of the

particle with respect to the optical axis). This last degree of freedom, although necessary to fit

the model properly, contains no physical or biological information and will not be discussed.

The parameters of the simulated data were randomly drawn with a uniform probability in the

interval: (R, θ, ϕ) 2 [30, 80] nm ×[π/2, π] rad ×[0, π/2] rad.

The comparison between actual and estimated particle radii including the estimated error

bars are shown in Fig 2. We found that the particle radius estimation Rfitted is in good agree-

ment with the ground truth value. The standard deviation of the difference ΔR = Rfitted −
Rsimu was σΔR = 1.3 nm while the average error, or bias DR was < 1 nm). Thus 95% of the

simulated particles have been reconstructed with an error on the radius smaller than 3 nm.

Also, this error is independent of the true radius, unlike in other common simple procedures

based on averages over the distribution of emitter positions. Such geometry-dependent

error clearly affects the basic 2D radius estimator –the mean distance to the center of mass

RCM ¼<
ffiffi
ð

p
ðxj� < xj >Þ

2
þ ðyj� < yj >Þ

2
Þ >–shown for comparison. This simple estima-

tor is biased and highly variable because completion and tilt degrees of freedom are not

taken into account. Furthermore it is not able to distinguish anything smaller than or of the

order of the positioning precision as does our procedure that takes this information into

account. Remarkably, this result shows that the radius of the particle can be deduced at the

single object level from our reconstruction procedure with an accuracy better than the

microscope precision (�s � 20 nm) by one order of magnitude in the conditions of our

simulation.

The variance on each fitted parameter is estimated from the diagonal element of the

observed Fisher information matrix given in Eq 6. The average variance is equivalent to an

estimated uncertainty (standard deviation) of 3.2 nm and constitutes an upper bound of the

measured estimation error in good agreement with its order of magnitude. The details of the

error distribution are given in S4 Fig. At the level of individual objects the same observation

holds: error bars estimated from the observed Fisher matrix are an upper bound of the effective

error.

We performed a similar analysis to quantify differences between the actual and estimated

values for the Gag shell completion from the MLR on the same simulated data (Fig 3). We

observed a standard deviation σΔθ = π/10 rad. However, In contrast to the MLR values for the

radius, the standard deviation is no longer independent of the completion of the Gag shell.

The best agreement between simulated completions and MLR results is obtained for θ
between 2π/3 rad and 5π/6 rad. Values outside this range show both a larger systematic

PALM/STORM single object reconstruction
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average bias and larger standard deviation. Part of this observation is explained by the partial

degeneracy between the two boundaries: the density variations of a complete sphere (θ = π
rad) or a half sphere (θ = π/2 rad) viewed from the top (ϕ’ 0 rad) are indistinguishable. Fur-

thermore large completion results in low asymmetry of the position distribution. Combined

with positioning error and small sampling, the symmetry information might be insufficient

to properly orient the point distribution in the plane and the completion estimated on a

poorly oriented object might be ill-determined. This second interpretation argues for a care-

ful treatment of the completion results of data sets with unclear symmetry, for which only

the fitted radius is meaningful.

Variances calculated from the observed Fisher information matrix on the completion angle

are very often much larger that the effective errors θsimu − θfitted and spread over the whole

value interval. Again, the variance estimated from the Fisher Information matrix appears as an

upper bound in the order of magnitude of the error, but it is much less useful since the size of

the search interval is in the same range. The average variance is equivalent to an estimated

uncertainty (standard deviation) of 0.57 rad whereas the effective error is 0.24 rad. The details

of the error distribution is given in S4 Fig.

Fig 2. Maximum Likelihood Reconstruction efficiency on radii. The maximum likelihood method is

compared to a simpler method based on the mean distance from the center of mass. The MLR-estimates of

radii from 300 simulated superresolution data-sets R* (black dots and triangles) plotted as a function of the

ground truth values R0 follow on average the perfect estimator behavior Rsimu = Rfitted (dashed red line).

Particles for which the planar orientation α is ill-determined (quasi-isotropic distribution with Δα > π/10 -see Eq

S9 in supplementary information S1 File) are shown as empty triangles. Computation of the observed Fisher

information matrix gives an estimate of the precision reach by the estimator for each VLP (grey error bars).

For the sake of comparison, a basic statistical estimator using no specific structural information, the mean

distance to the center of mass estimator R1 ¼< k~r i � ~rCMk >, is also shown (cyan squares).

doi:10.1371/journal.pone.0172943.g002

PALM/STORM single object reconstruction

PLOS ONE | DOI:10.1371/journal.pone.0172943 March 2, 2017 9 / 18



Reconstruction from PALM images of budded HIV-1 VLP

The MLR procedure was applied to analyze PALM images of purified immature HIV-1 Virus-

Like Particles (VLPs) produced by Cos 7 cells (see Materials and Methods), applying the same

truncated sphere model used for the simulated data. The distribution of estimated radii, Fig 4,

had a major peak with mean and standard deviation of 49 nm and 6 nm respectively and a sec-

ond isolated peak due to a single cluster. The distribution of completion angles estimated from

the data is shown in Fig 5. This distribution shows a peak located at θ� 4π/5 rad, with a stan-

dard deviation of π/10 rad.

Discussion and conclusion

We demonstrate in the present work that images from microscopies such as (f)PALM and

STORM, when combined with a maximum likelihood-based reconstruction procedure can

extract structural information with nanometer precision at the single object level. We highlight

that this technique allows us to estimate the most probable structural parameters for every

object imaged. This is particularly useful when the complexes to be imaged are heterogeneous.

In this work the modeling of the imaging process was simplified and translated in an effec-

tive procedure that would describe a theoretically perfect microscope. Discrepancies between

Fig 3. Maximum Likelihood Reconstruction efficiency on completion. Estimated completion values

(zenithal angles) of 300 simulated superresolution data-sets determined by the MLR method are plotted

against ground truth values (symbols). Particles for which the planar orientation angle α is ill-determined

(quasi-isotropic distribution with Δα > π/10 -see Eq S9 in supplementary information S1 File) are shown as

empty triangles. An ideal estimator would give θmeasured = θreal (red dashed line). Calculations of the Fisher

information matrix are used as estimates of the precision reached by the estimator for each VLP (grey error

bars). For the figure to be readable, plotted error bar are only a third of the estimated std.

doi:10.1371/journal.pone.0172943.g003
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the simulated precision and the experimental situation are at risk whenever factors of error are

not taken into account in the simulations. Concerning the physics of imaging the following

optical aspect is worth mentioned: in the TIRF configuration used to image the particle in

many cases including ours, the excitation field decreases with depth. As a consequence, the

photon yield and the positioning precision also decreases with depth. We did not take this

effect into account on the simulated images. We basically took into account precision fluctua-

tions by randomly assigning the measurement precision from typical distribution to each sam-

pled position. The estimation method depicted in this work is typically designed for objects

whose size is of the order of the measure uncertainty up to a few times this value and so smaller

or at worse comparable to the penetration depth of the TIRF field (estimated at several hun-

dreds of nanometers compared to HIV typical diameter of 140 nm). As mentioned in the

Materials and Methods section, the modulation of the emission intensity by the excitation

intensity decay should be typically dominated by the relative fluctuations the stochastic fluctu-

ations of individual fluorophore photon yield that we simulated. In the case of using the simu-

lation method on larger objects, the positioning precision would certainly convey information

about the label depth and the shape of the image might also be altered to a larger extend. In

this case, to obtain the precision of likelihood estimation procedure by simulations would

require to generate more realistic images.

Fig 4. Radii distribution of the truncated spheres-MLR estimated from the experimental PALM-data

consisting in n = 33 VLPs. The mean value as well as intervals of ±1 and ±3 the standard deviation are

shown (red plain line and red dashed lines respectively). Each VLP contribution is a normalized gaussian

centered on the estimated radius and whose variance is given by the inverse of the observed Fisher matrix.

The second peak R’ 90 nm is due to a particle that is likely an aggregate (see S5 Fig) and is not taken into

account in the mean and variance.

doi:10.1371/journal.pone.0172943.g004
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We applied MLR to a specific test case: immature HIV-1 VLPs imaged using PALM. The

fluorescently tagged viral proteins Gag form an incomplete shell enclosed by a lipid mem-

brane, as observed by several groups using cryo-EM [15, 29]. Thus, we chose as a model a trun-

cated sphere of radius R and completion angle θ. The reconstruction procedure was first tested

using simulated PALM images of such truncated spheres with known input parameters.

Remarkably, we found that the MLR approach is able to estimate the radius of particles with

an excellent accuracy (� 1.3 nm), much smaller than the localization uncertainty of a single

emitter (� 20 nm). In particular, the MLR estimation for the radius gives a better result than

standard radial estimators such as the mean radius. This observation makes sense, since in

MLR, the data are analyzed given the information of a constrained geometry set by the model.

Conversely, we found that the estimation of sphere completion using the reconstruction

procedure is less successful. We interpret this observation in the following way: the projection

associated with a tilt close to ϕ’ 0 generates a degeneracy between mid- and full closure. It

also renders the determination of the orientation of the particle in the focal plane more diffi-

cult, which negatively impacts the validity of the completion estimation. Those effects account

for the large spread at the extremes of the interval. Perhaps some of the particles belonging to

each ends of the interval are falsely identified as belonging to other part of the interval. This

Fig 5. Distribution of estimated completion angles given by the MLR method on the experimental

PALM-data (n = 33 VLPs—blue), mean value and interval of ±1 and ±3 the standard deviation are

shown (red plain line and red dashed lines respectively). Each VLP contribution is a gaussian centered

on the estimated radius and whose variance is given by the inverse of the observed Fisher matrix. As

acceptable completion angle lay in [π/2, π], only this part of the gaussian is considered and normalized.

doi:10.1371/journal.pone.0172943.g005
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leads to an increase at the center of the interval which results in an overestimation of the num-

ber of particle with completion in [2π/3, 5π/6] and an underestimation of the number of parti-

cles close to full completion.

Interestingly, the aforementioned reduced efficiency for the estimation of completion at the

single object level only partially distorts an ensemble measurement. Indeed, we observed with

the simulated data that for completion values uniformly sampled on an interval [θ−, θ+], the

MLR estimation provides completion values centered on this interval, and marginally spread

values outside of this range. This information can be therefore used to define roughly the

range of variation for the completion of the imaged objects (see S3 Fig). The measurement of

3D data could also be used to reduce the degeneracy.

Based on the previous results concerning the rather uncertain determination of orientation

and completion, it might be tempting to consider that these parameters are irrelevant. In order

to address this question, we simulated a new set of incomplete particles, and we analyzed these

data with a complete sphere model (obtained with the truncated sphere model by imposing a

completion of θ = π). The results of radius reconstruction in this case is shown in S6 Fig. It is

observed that the error on the radius determination is strongly dependent on the value of ini-

tial completion and orientation. Not surprisingly, the smallest errors are obtained for almost

full completion θ * π. However the error can be as high as 5–10 nm for certain values of θ − ϕ,

and the bias is therefore much larger than in the reconstruction procedure using the truncated

sphere model (DR < 1 nm) and the dispersion is also large (’2.9 nm compared to 1.3 nm).

This shows that although the completion and orientation are determined in a poorer way than

the radius, these parameters are still essential in order to get a more accurate determination of

the radius when the actual structure is likely to be incomplete.

We also analyzed PALM images obtained on immature HIV-1 VLP using MLR in the light

of our simulations. The distribution of observed radii (Fig 4) is characterized by a mean and

standard deviation of 49 nm and 6 nm respectively. The fluorescent protein tags that are imaged

are attached to the Gag N-terminus, located at the inner surface of the Gag layer. Literature val-

ues from cryo-EM measurements give VLP sizes in terms of outer diameters. To take this into

account for the purposes of comparison, we add the reported Gag length of 25 nm in immature

VLPs [30] to the size of the measured particles. The adjusted mean radius of HIV-1 VLPs in our

measurement is on average 74 ± 6 nm, consistent with values from cryo-EM of 66 ± 9 [31], and

65 ± 17 nm [15]. Moreover, our analysis was able to identify an ill-formed HIV-1 VLP among

the others (see S5 Fig) by its abnormal effective radius (the formation of morphologically aber-

rant VLPs from Gag proteins fused to fluorescent proteins has been reported [32]).

We were also able to estimate the completion distribution. The main peak of the comple-

tion distribution is found at approximately θ = 5π/6 rad. As discussed previously, the value of

the peak is only indicative of a range of completion around this value for the imaged VLPs. We

can conclude, however, that the shape of the distribution obtained from real data is not quali-

tatively consistent with MLR completion estimations for complete spheres, or for a uniform

completion distribution on the interval (see S3 Fig). Our finding of incomplete closure is con-

sistent with the 2/3 surface coverage reported in [15].

The MLR method principle proposed in this work can be broadly applied to analyze at the

single object level other features imaged by SR-microscopy with known parameterizable

shape. Notice that the likelihood value is meant to choose the best parameter set within a

model and not to allow the comparison between two different models designed in order to

describe a common set of data as one could naively try. Other methods, which are still debated,

have been proposed instead for this purpose like the use of Akaike criterion. More informa-

tions can be found in references [33].
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Additionally, it is not possible to extract from the data more information than it carries,

even as the optimization procedure always provides a result. There is then two criteria to judge

the relevance of this result: first the statistical agreement between the estimated structure and

the measured positions (the “goodness of fit”) and second the amplitude of fluctuations in the

estimated parameters allowed by the measure stochasticity. In this paper we restricted ourself

to situations where the analysis is satisfying by simply assuming that the model reasonably

describe the situation of the measure. However we propose in supplementary information

(S1 File) a test example of the goodness of the fit obtained by the present method using the

approach of Kolmogorov-Smirnov statistical test of distribution comparison adapted to multi-

dimensional case [34]. We applied such a method to our maximum likelihood reconstruction

of complete spheres, (see supplementary information S1 File) in order to show its typical

implementation and results to the interested reader. The method is indeed able to point out

the distributions of localizations that differ significantly from the adjusted structure under the

hypothesis of a random sampling. We however detailed different test to judge of the estimation

precision. We showed in this article how to have a precise estimation of the fluctuation using

Monte-Carlo control tests for each fixed set of parameters when theoretical calculations are

not available and that Observed Fisher Information Matrix was able to evaluate an upper

bound of the order of magnitude of those fluctuations. We were able, for instance, to foresee

by such verifications that applying MLR to reconstruct budding sites geometries would yield

meaningless estimated parameters. Indeed, due to the small number of sampled positions on

the growing bud, and to a stronger positioning uncertainty due to stronger backward noise,

random fluctuations dominate in our simulation tests. In such cases, improvements to the

data such as 3D localizations or reduced positioning uncertainty �s would be required to make

further progress (see details in supplementary information S1 File). Fortunately, technological

advances in the field continue to improve image quality, and will allow MLR to become more

powerful in the future. Overall, maximum likelihood reconstruction applied to STORM and

(f)PALM data appears a promising method to obtain quantitative measurements on structures,

especially those showing variability.

Supporting information

S1 File. Supplementary informations. This file contains all the supplementary information.

(PDF)

S1 Fig. The axial projection of uniform density on a truncated sphere. The three value

domains of the indicator function (left) for the plane projection of a constant density laying on

the incomplete spherical shell (parameters: R, θ—right in black) parallel to a given projection

axis (parameter: ϕ—right in blue dashed arrow). Remarkable points (empty dots) and their

projections (filled dots) are shown: mass center (green), sphere center (black), and border cen-

ter (red). Note that the projection may change the distance measured between them. The

expression of the indicator function is deduced by combining the indicator functions of the

following regions: the circle that is the projected edge of the sphere (dashed blue—left) and the

ellipse (dashed red—left) that is the projection of the border and the strait line that links their

tangency points (dashed blue—left).

(PDF)

S2 Fig. Ensemble measurement—distribution of simulated data. The distribution recon-

struction procedure used to build the experimental distribution of radii and distribution is

applied to simulated data: each simulated set contribute with a gaussian centered on the MLR-

estimate and whose variance is given by the inverse of the observed Fisher information matrix
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(red solid line). The original simulated points produced the histogram. Bins size has been cho-

sen to point out the distribution fluctuation to compare with the reconstruction.

(PDF)

S3 Fig. Distortions of various completions distribution. Subset of the simulated particles

were selected to see how various localized distribution are distorted in the estimation process.

The shape of the distribution obtained from real data is not consistent with the full completion

of all the object neither with a uniform distribution on the interval.

(PDF)

S4 Fig. Characterization of the effective error compared to the estimated one. (a) Distribu-

tion of the normalized error on radii, Actual errors are normalized by the std. estimated

from inverse observed Fisher information matrix. (b) Distribution of the normalized error

on completion. Actual errors are normalized by the std. estimated from inverse observed

Fisher information matrix. (c) Actual versus estimated error on radii. Blue dashed lines: esti-

mated std. equal to actual error. (d) Actual versus estimated error on completion Blue

dashed lines: estimated std. equal to actual error.

(PDF)

S5 Fig. Ill-formed particle of 1550 measured proteins with estimated size equal to 90nm.

The PALM data localized positions (xi, yi) (orange dots) are shown superimposed on the prob-

ability density for the spatial positions of the localized proteins according to the estimated pre-

cision of positioning (
P

ie
k~r � ~r ik

2=2s2
i =2ps2

i –color and iso-density lines). The red circles and

arrows display the putative positions of two aggregates stuck together that may explain the

elongated structure.

(PDF)

S6 Fig. Reconstruction error of incomplete spheres fitted by complete spheres. The error

between original R = 65 nm and reconstructed radius is shown as function of the orientation ϕ
and the completion θ of the original particles simulated. Ns = 400 particles were simulated

homogeneously on the interval, all with a actual radius of R = 65 nm and N = 1500 sampled

positions. Bias is calculated by a moving average over a disc of p

12
radius -sampling density

affect mostly the dispersion and only weakly the bias.

(PDF)

S7 Fig. Correlation of radius error with the error on the estimated localization accuracy.

(PDF)

S8 Fig. Example of four experimental image of HIV1-virus like particles.

(PDF)

S9 Fig. Sampling size dependence of the precision on the reconstructed radius. Each cross

gives the dispersion of the estimated radii of a cohort of complete spheres around the actual

radius value for various density of sampled positions.

(PDF)

S10 Fig. Kolmogorov-Smirnov Goodness of fit. (left) Distribution of normalized KS ¼
ffiffiffiffi
N
p

maxjCDFmodel � CDFempiricalj values for complete sphere reconstruction of complete

spheres (blue), and truncated spheres. (red). (right) KS distribution mean value (colors and iso-

contours) for complete sphere reconstruction of simulated truncated spheres as function of

initial completion θ and orientation ϕ. The red dashed area shows the region for which 90% of

the estimated structure are rejected by the the Kolmogorov-Smirnov test for a normalized KS
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value of 1.3.

(PDF)

S11 Fig. Lateral sample drift correction using Au fiducials. Due their stability, Au fiducials

can easily be separated from VLPs within the sample. Shown are two examples from indepen-

dent experiments (A, B). (1) Individual fiducials were selected (uncorrected), (2) their X and Y
position tracked over the full length of the movie (left column) and (3) fitted with a polynomial

function (red line, left column). The fitting function is then used to (4) correct all localizations

within the sample including the Au fiducial (drift corrected). The accuracy of the fitting

(RMSE) was for A: x = 16.7nm, y = 18.4nm and for B: x = 25.1nm, y = 26.6nm. The accuracy

corresponds to the lateral localization spread of the drift corrected particle and includes the

localization precision.

(PDF)

S12 Fig. Theoretically determined localization precision. Due to the low number of switch-

ing cycles (blinks, on average 3.5) of mEos2 in our experiments (A), an experimental determi-

nation of the localization precision is not accurate. Hence, we rely on the theoretical

calculation as presented in (Thomson et al., Biophysical Journal, 2002 May 31;82(5):2775–83).

We find an average localization precision of σ = 17.6nm for single localizations (B) and σ =

13.4nm for grouped localizations (B). Shown data from three independent experiments.

(PDF)
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