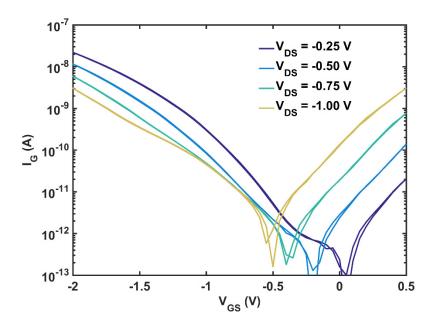

A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor

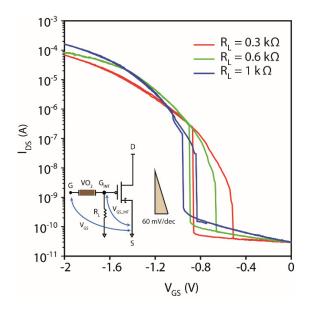
Wolfgang A. Vitale^{1†}, Emanuele A. Casu¹, Arnab Biswas¹, Teodor Rosca¹, Cem Alper¹, Anna Krammer², Gia V. Luong³, Qing-T. Zhao³, Siegfried Mantl³, Andreas Schüler² & A. M. Ionescu¹

Supplementary Figures

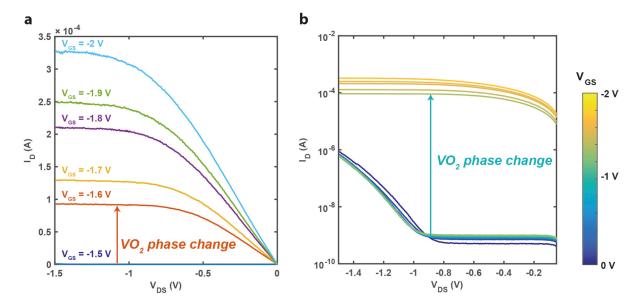
Supplementary Figure 1 | **Fabrication Process of VO₂ devices**. (a) VO₂ devices are fabricated starting from a silicon substrate with a thermal silicon oxide layer of 200 nm on top. (b) A 200 nm thick VO₂ layer is deposited with reactive sputtering of a Vanadium target in an O₂/Ar plasma at 600 °C substrate temperature. (c) Switch electrodes are defined via electron beam lithography on PMMA/MMA and lift-off of a 100 nm thick Platinum film. (d) VO₂ is removed around the switch area using electron beam lithography on ZEP and ion beam etching.

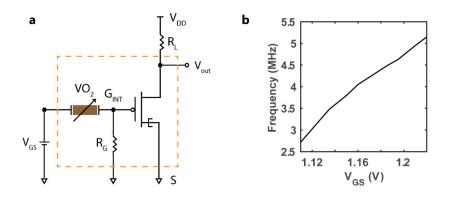

Supplementary Figure 2 | **VO₂-based MIT switch.** SEM image of a VO₂ switch, showing a relatively large VO₂ average grain size ~100 nm, resulting in a large and steep thermal MIT.

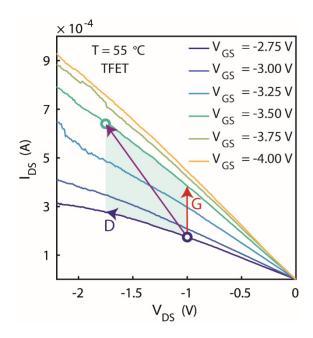
¹ Nanoelectronic Devices Laboratory (NanoLab), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

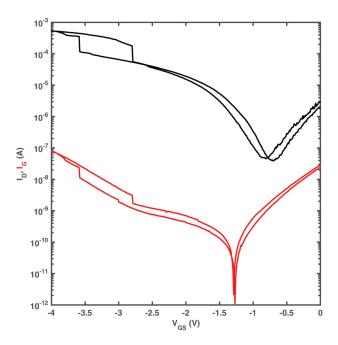

² Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

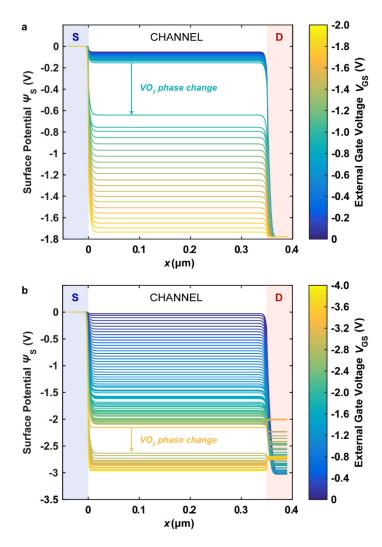
³ Peter Grünberg Institut 9 (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany


[†] Corresponding author; mail: wolfgang.vitale@epfl.ch


Supplementary Figure 3 | **TFET gate leakage**. Leakage current in the TFET used as a component for the PC-TFET for different values of drain voltage $V_{\rm DS}$, ranging from -0.25 V to -1 V. Measurements performed at room temperature.


Supplementary Figure 4 | Effect of the load resistance $R_{\rm L}$ on the actuation voltage $V_{\rm GS_act}$ in gate configuration. $I_{\rm DS}$ - $V_{\rm GS}$ of PC-TFET in gate configuration measured at room temperature with different $R_{\rm L}$ values, ranging from 0.3 k Ω to 1 k Ω , keeping constant $V_{\rm DS}$ = -0.75 V.


Supplementary Figure 5 | Output characteristics of PC-TFET in gate configuration. (a) Output characteristics of a PC-TFET in gate configuration for different applied $V_{\rm GS}$, ranging from -0.25 V to -1 V, measured at room temperature. (b) Same output characteristics in logarithmic scale, to better show the effect of the phase change in VO₂.


Supplementary Figure 6 | Voltage-controlled buffered oscillator based on the PC-TFET in gate configuration. (a) Circuit schematic diagram, highlighting the PC-TFET in gate configuration. The oscillation induced in the internal gate node $V_{\rm GS_INT}$ is read at the output $V_{\rm out}$. The PC-TFET in this configuration offers a high output impedance, allowing to decouple the output load from the oscillating source. $V_{\rm GS}$ varied from 1.11 V to 1.22 V. $R_{\rm G} = 1~\rm k\Omega$, $R_{\rm L} = 1~\rm k\Omega$. $R_{\rm VO2_OFF} = 10~\rm k\Omega$, $R_{\rm VO2_ON} = 100~\rm \Omega$. $V_{\rm act} = 1~\rm V$, VO₂ hysteresis: 0.2 V. TFET gate capacitance $C_{\rm GS} = 50~\rm pF$. (b) Simulation results, showing a linear dependence of the oscillation frequency on $V_{\rm GS}$, from 2.72 MHz to 5.12 MHz.

Supplementary Figure 7 | TFET output characteristics and effect of the internal voltage gains in the PC-TFET. The phase transition in VO₂ allows to switch abruptly between the two current points highlighted by a circle in the TFET output characteristics. This abrupt current increase is due to the combined effect of the gate voltage gain $G = dV_{GS_int}/dV_{GS} = 75$ (red arrow) and the drain voltage gain $D = dV_{DS_int}/dV_{GS} = 75$ (blue arrow). The values of G and D correspond to the ones measured in the PC-TFET in source configuration. Even if G = D, the gate voltage gain has a higher effect on the current increase.

Supplementary Figure 8 | Gate leakage for the PC-TFET in source configuration, compared to drain current. Gate leakage (red) and drain current (black) in function of $V_{\rm GS}$ for the PC-TFET in source configuration. Measurements performed at T=55 °C with an applied external $V_{\rm DS}=-2$ V. The gate leakage is negligible compared to the drain current over the whole domain of operation of the PC-TFET.

Supplementary Figure 9 | **Potential cuts along the TFET channel. (a)** Gate configuration. External gate voltage $V_{\rm GS}$ varying from 0 V to -2 V. External drain voltage $V_{\rm DS}$ = -0.75 V. Measurements performed at T = 25 °C. **(b)** Source configuration. External gate voltage $V_{\rm GS}$ varying from 0 V to -4 V. External drain voltage $V_{\rm DS}$ = -2 V. Measurements performed at T = 55 °C.