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Abstract

National Ambient Air Quality Standards and the Regional Haze Rule man-

date that states implement control strategies to reduce particulate matter (PM)

emissions in order to maintain progress towards national air quality and visi-

bility goals. The availability of long-term speciated aerosol datasets is very

useful for investigating the aerosol composition over multiple seasons to pro-

vide guidance on how to e↵ectively address air pollution at local levels. Unlike

the inorganic fraction of PM, organic aerosol (OA) sources and their season-

ality remain poorly characterized. This work approaches the problem by pre-

senting a reference study from 6 Interagency Monitoring of PROtected Visual

Environment (IMPROVE) sites containing 616 samples collected in 2011 and

establishing a method for systematic interpretation of multi-site, multi-season

source apportionment of organic matter (OM) from Fourier Transform Infrared

(FT-IR) measurements. To confirm the validity of site aggregation, a cluster-

based evaluation indicates that common factor profiles may be obtained at all

6 sites and seasons. Multi-site factor analysis resolves 4 factor profiles, Pro-

cessed 1, Processed 2, Hydrocarbon, and Hydroxyl, which explain the major

variations in OM across all sites and seasons, and were attributed to a com-

mon set of sources. Phoenix exhibited a strong seasonal cycle, with winter
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OM maxima reaching 2.2 µgm�3 , generally dominated by emissions from lo-

cal residential wood burning, tra�c, and construction. OM in Trapper Creek

(annual average of 0.22 µgm�3 ) was dominated by sources not readily con-

trollable by the local jurisdiction, including marine aerosol, volcanic activity,

natural wildland fires, and international emissions from shipping lanes. The

OM composition at Olympic (annual average of 0.43 µgm�3 ) is a↵ected by

mobile sources, industrial point sources, and area sources at the Port of Seat-

tle and its metropolitan area. Mobile sources, biomass burning, and vegetative

emissions are important at Mesa Verde and Proctor Maple, while at St Marks

emissions from prescribed fires and agricultural clearing are the most signif-

icant contributor to visibility impairment, reaching over 6 µgm�3 in summer.

The multi-site analysis of 24-hour monitoring network measurements introduces

several unique aspects. First, multiple factor-source associations can result if

chemical similarity is shared among (anthropogenic and biogenic) sources, such

as the backbone of alkane hydrocarbon precursor. Second, year-round and sea-

sonal co-variation of Hydrocarbon and Processed factors suggest co-incident

emission and atmospheric processing over the diurnal cycle at these locations.

Third, varying contributions of two anthropogenic combustion factors to the

local OM reveal di↵erences in contribution of atmospheric processing that are

specific to the given location.
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1. Introduction

The impact of aerosols on health, air quality, Earth’s radiative budget, and

compliance with National Ambient Air Quality Standards and the Regional

Haze Rule is a growing concern. Sucessful air quality management strategies to

reduce PM in the atmosphere require comprehensive undertanding of particu-5

late matter sources, chemical processing, transport, and lifespan. For instance,

the Regional Haze Rule mandates that states implement long-term enforceable

plans for reducing visibility-impairing pollution in more than 100 Class I areas,
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such as National Parks and Wilderness Areas. These plans ar revised every 10

years (eg, in 2018, 2028) (EPA, 1999). One of the major di�culties in designing10

e↵ective mitigation strategies is that there are a variety of sources responsi-

ble for producing primary and secondary aerosols. In this paper we focus on

source apportionment of OA, which is a dominant contributor to air pollution

in many regions of the US and can represent up to 90% of submicron ambient

PM (Zhang et al., 2007). As opposed to the sources of inorganic fraction of15

PM, which are reasonably well identified (Kleindienst et al., 2007), the organic

fraction remains challenging to characterize due to the vast number of directly

emitted compounds (eg, > 1000; (Pio et al., 2001)) and products of atmospheric

photooxidation. OA sources range from point sources, such as emissions from

industrial combustion (Calvo et al., 2013), residential wood burning (Brown20

et al., 2007), or wildland fires (Corrigan et al., 2013), to mobile sources, such

as emissions from windblown dust (Breider et al., 2014), motor vehicles, or on-

road and non-road diesel engines (Kinney et al., 2000; Wu et al., 2007; Liu et al.,

2012). Additionally, local air quality is often impacted by international emis-

sions through a long-range transport. Transnational sources of aerosol, such as25

emissions from international shipping lanes (Brewer and Moore, 2009) or large-

scale dust storms in East Asia (Takemura et al., 2002), are very complex to

predict and constrain, because they are outside of state jurisdiction and thus

remain ungovernable. Understanding the contribution of each source type to

the local air pollution burden enables the development of policies to reach air30

quality and visibility goals.

Another di�culty in addressing air quality at local levels is that a substantial

fraction of pollutants originates upwind and travels significant distances. For

example, a work by Wagstrom and Pandis (2011) examined aerosol transport

at 10 sites in the Eastern and Southeastern US and concluded that the aver-35

age transport distance of primary aerosol species and elemental carbon is 175

km. Secondary OA and sulfate on average originated 350 km away from the

receptor area, in some instances reaching up to 2000 km. Transport distance

further depends on the location and altitude of the source, wind speed, and
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other meteorological variables (Rinaldi et al., 2015). As a result, background40

levels of pollution are especially challenging for state, local, and tribal planners

to determine, highlighting the need for understanding the spatial and seasonal

patterns in primary and secondary aerosols.

Long-term PM composition data from large-scale monitoring networks, such

as IMPROVE or Chemical Speciation Network (CSN), are very useful for ob-45

serving trends and quantifying sources to provide guidance to policy-makers in

their e↵orts in reducing emissions. The IMPROVE and CSN networks have

been collecting PM samples for speciated aerosol analysis for more than 30 and

15 years, respectively (Malm et al., 2002; Hand et al., 2013). The number of

participating sites has exceeded 150 in 2016. Both networks have sampling,50

handling, analytical, and quality control protocols, which ensure the data is

consistent and comparable across all sites within a each network.

The vast multi-site aerosol speciation data from the IMPROVE network has

been used to investigate spatial and temporal trends in aerosol concentrations.

For instance, the study by Hand et al. (2013) aggregated IMRPOVE and CSN55

data from 2007 to 2010 at over 300 sites to produce isopleths of seasonal mean

OM and elemental carbon (EC) concentrations in winter, spring, summer, and

fall. In spring and summer the highest OM concentrations were experienced in

the Southeast (up to 6.6 µgm�3 ) while in winter the highest OM was found

along the West Coast (up to 6.6 µgm�3 ). Similarly, several years before, Malm60

et al. (2004) examined nation-wide monthly concentrations of fine aerosol species

(sulfates, nitrates, organics, light-absorbing carbon, dust, and coarse gravimetric

mass) by aggreggating IMPROVE data from 2001. Additionally, Hand et al.

(2014) consolidated OM and EC from IMPROVE and CSN data to infer urban

influence on regional concentration during 2008-2011. Network data has also65

been used for source apportionment at individual sites, such as in Phoenix

(Brown et al., 2007) or at southwestern Oregon (Hwang and Hopke, 2007).

Although the IMPROVE and CSN datasets have been used to study trends in

aerosol composition at many individual sites, the multi-site, multi-season nature

of the datasets has not been utilized extensively for understanding OM sources.70
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OA source contributions are estimated from measurements using either a

supervised or unsuperived method. In a “supervised” approach, source pro-

files are obtained from sampling various emissions (e.g., vehicles or biomass

burning), and their contributions are obtained by regressing ambient sample

spectra against these profiles. In an “unsupervised” approach, a matrix of am-75

bient sample spectra is decomposed into a set of underlying spectra based on

how variables co-vary over time or across samples (Paatero and Tapper, 1994;

Henry, 2003); each spectrum is then associated with di↵erent sources (emissions

or photochemical oxidation and partitioning) through interpretation. Less a pri-

ori information is assumed in the unspervised approach than in the supervised80

case.

Chemical Mass Balance (CMB) is a supervised approach, which uses ambient

OC and speciated concentrations of tracer compounds from gas chromatogra-

phy with mass spectrometry (GC-MS) measurements along with source profiles

to estimate sources. Given the variations in chemical composition within source85

classes and range of subsequent chemical transformations that can occur, con-

structing an appropriate set of source profiles from emissions sampling and lab-

oratory studies can pose significant challenges. Positive Matrix Factorization

(PMF) (Paatero and Tapper, 1994) is a factor analytic technique which per-

forms the desired form of decomposition by constraining component or “factor”90

profiles to be non-negative, and also permitting weighting of variables accord-

ing to their uncertainty. PMF has enjoyed wide use in the mass spectrometry

community (e.g., Ulbrich et al., 2009; Williams et al., 2010). Particularly for

aerosol mass spectrometry (AMS), the large number of factor profiles collectively

amassed by the community has permitted the application of a hybrid approach95

combining CMB and PMF (Lanz et al., 2007; Canonaco et al., 2013), where

some factors are constrained by PMF components determined from archived

field campaigns and the rest from new measurements.

Russell et al. (2009) introduced the application of PMF for FT-IR spectra

of submicron PM samples, and since then it has been used in many studies.100

While AMS and other mass spectrometry online techniques take advantage of
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high time resolution (less than an hour) for resolving variations in contribu-

tions from sources, FT-IR (where samples are collected on the order of over

several hours) produces feature-rich spectra that leads to complementary in-

terpretations (Corrigan et al., 2013). PMF analyses conducted individually on105

field campaign FT-IR measurements sought solutions which had low inter-factor

correlations such that each factor component was likely to be associated with

di↵erent source classes, and factors were labeled with probable source classes

by examining correlations of factor strengths with trace elements, geographic

origin, and spectral features in factor profiles. A meta-analysis of 14 campaigns110

(Russell et al., 2011) identified factors as being from one of six categories: fossil

fuel combustion (processed and less processed), marine biogenic (polluted and

unpolluted), and terrestrial biogenic (burning and non-burning). These factors

shared similar spectral features and source composition, which was identified

by their relative functional group contribution. However, the applicability of115

supervised source apportionment approach for IMPROVE samples remains un-

certain due to di↵erences in particle size cut and sampling artifacts (Weakley

et al., 2016).

Therefore, to address the question of seasonal OA source composition in the

IMPROVE network, in this paper we utilize an unsupervised approach. We120

use six IMPROVE network sites (one urban and five rural) from 2011 previ-

ously characterized by Ruthenburg et al. (2014). Their study (which included

an additional site that was operated until mid-2011) reported median contribu-

tions to OM over the entire year across sites to be 73% alkane CH, 15% alcohol

OH, 4% carboxylic OH, and 7% carbonyl CO. Site-wide OM/OC ratios ranged125

between 1.5 and 2.0 (10th and 90th percentiles), with a median value of 1.7.

These ratios varied by season but with di↵erent trends across sites, suggesting

the di↵ering role of local sources to OM. To determine the origins of this ob-

served OM, it is possible to consider performing PMF analysis for each site or

season, or pool all samples together in a single analysis, as depicted in Figure130

1, which is the approach taken in this study. While PMF analysis on samples

segregated by site and season may yield more precise factors for each locale,
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inclusion of a diverse set of related ambient aerosol mixtures increases the sta-

tistical likelihood that a few are dominated by a single source, which aids in

separation of source contributions (Henry, 2003; Paatero et al., 2002). One im-135

pliction of conducting a pooled analysis is that that sources impacting the sites

are assumed to be approximately constant (or that factors profiles attributed to

a source are averaged over their many variations). Furthermore, 24-hour time-

integrated measurements of PM observed at each site is assumed to embody the

combination of transported primary emissions and quasi-stationary atmospheric140

transformations (including secondary organic aerosol formation) that occur be-

tween origin and measurement site for the samples considered together (Zhou

et al., 2005).

To evaluate the sensibility of aggregating available monitoring network sam-

ples within a single PMF analysis, initial cluster analysis of all 616 IMPROVE145

sample spectra was performed (Section 3.1). Results indicated that spectro-

scopic profiles are hardly unique to each site or season, supporting the notion

that, to a first order, a common set of factors may be assumed to underlie these

geographically and temporally diverse samples. Such an interpretation is also

supported by prior conclusions of Russell et al. (2011), who reported similar-150

ities in FT-IR PMF factors obtained across a large number of geographically

and temporally diverse short-term field campaigns. Therefore, pooling all 616

samples into one dataset, we apply factor analysis and present a method for

exploring PMF solution space and facilitating solution selection in Section 3.3.

Referencing specific mathematical and physical criteria: cluster analysis of PMF155

factors, explained variation, singular value decomposition, and physical basis of

the solution, in Section 3.4 we select and present 4 chemical factors. We identify

each factor (Processed 1, Processed 2, Hydrocarbon, and Hydroxyl) by referring

to its similarity to profiles reported in earlier literature, the abundance of key

functional groups, oxygenated content, and temporal profile (i.e., factor source160

strengths). By comparing the time series of factors with the time series of source

markers to infer origins or atmospheric processes contributing to factor’s emis-

sions, in Section 3.5 we assign each factor with site-specific source labels and
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calculate their seasonal contributions to OM. We distinguish between natural

and anthropogenic origins of OA sources. We close with a site-by-site summary165

of OA factors, sources, their relative contribution to the local OM, including

examining OM uncertainty.

2. Methods

2.1. Spectral and functional group data

We use FT-IR spectra of 616 particulate matter ( 2.5µm in diameter,170

PM2.5) samples collected between 1 January 2011 and 31 December 2011 at

six IMPROVE network sites: Mesa Verde National Park (Colorado), Olympic

National Park (Washington), Phoenix (Arizona), Proctor Maple Research Fa-

cility (Vermont), St Marks (Florida), and Trapper Creek (Alaska). All sam-

pling sites but Phoenix are rural. Figure 2 shows the location of the sites and175

Table 1 details their geographical and meteorological characteristics, includ-

ing elevation, annual temperature range, and precipitation available from The

National Oceanic and Atmospheric Administration database (NOAA, 2011).

The Phoenix site has co-located IMPROVE samplers but filters from only

one sampler are used in this study. The original IMPROVE 2011 dataset180

includes 53 measurements from Sac and Fox, KS but the site was excluded

from our analysis due to its discontinuation in summer 2011. In our evalu-

ation we also exclude 36 samples (mostly from Proctor Maple and St Marks

sites), which were identified as spectrally anomalous in (Ruthenburg et al.,

2014). The Polytetrfluoroethylene (PTFE, Pall Corporation, 25 mm in di-185

ameter) filters used for FT-IR analysis were sampled every third day for 24

hours at a nominal flow rate of 22.8 Lmin

�1. Concentrations of elemental

species are obtained via X-ray florescence. Particulate matter and aerosol com-

position data are available through a publicly hosted IMPROVE repository

http://views.cira.colostate.edu/fed/.190

Ruthenburg et al. (2014); Dillner and Takahama (2015b,a) detail the me-

chanics of spectra acquisition of PM constituents on PTFE filters by Fourier
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transform infrared (FT-IR) spectroscopy. Prior to factor analysis, all spectra

were baseline corrected using the smoothing splines baseline correction algo-

rithm formalized in Kuzmiakova et al. (2016) to minimize the PTFE inter-195

ference. We use the mid-infrared wavenumber region between 4000 and 1500

cm�1which contains quantifiable peaks of relevant functional groups. The car-

bon dioxide absorption band between 2500 and 2220 cm�1is also removed using

interpolation method described by Takahama et al. (2013b) to minimize the

interference not associated with particulate matter composition. Finally, we ex-200

clude background regions (with nominally zero absorbance) between 4000 and

3710 cm�1and between 2000 and 1820 cm�1as they provide no useful informa-

tion to the analysis. Ruthenburg et al. (2014) reported abundances of alkane

CH, carbonyl CO, and carboxylic and alcohol hydroxyl OH groups. These

groups typically represent the major fraction of organic aerosol content in am-205

bient atmospheric samples (Russell et al., 2011). While remaining absorbing

functional groups, such as alkenes, aromatics, or organonitrates, may account

for a detectable OM contribution in some instances (e.g., Day et al., 2010), vi-

sual inspection of IMPROVE samples confirms their contribution may be below

detection limit and therefore they are omitted from this study.210

2.2. Cluster analysis

In this work, we used the hierarchical clustering algorithm of Ward (1963),

which arranges data into a set of nested clusters organized as a tree and has

previously been used to obtain meaningful cluster assignments in FT-IR spectra

(Liu et al., 2009; Takahama et al., 2011; Corrigan et al., 2013). Cluster analy-215

sis reduces the dimensionality of the ambient FT-IR measurements and derive

physically meaningful patterns for categorization and interpretation without any

apriori knowledge. Clustering will categorize FT-IR samples into groups (known

as clusters), each of which share distinct inter-cluster characteristics as a result

of specific source composition, chemical properties, or extent of atmospheric220

processing. While factor analysis can resolve invidual sources that contribute

to the ambient sample mixture, clustering may form sets of sample mixtures
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consisting of relatively similar proportion of factor components and their re-

spective strengths. In the past, cluster categories were documented to provide

complementary information for source apportionment results (Takahama et al.,225

2011; Corrigan et al., 2013). Some researchers (Takahama et al., 2011) suggest

that the solution space of cluster analysis is somewhat better constrained than

for PMF. Therefore, when applied to the entire dataset, clustering can be a

useful starting point which helps decide whether PMF should be applied to all

sites (or all seasons) or whether a specific site (or a season) should be exam-230

ined separately. If samples from a specific site (or a season) are assigned to a

single cluster category, this subspace most likely possesses distinct spectral fea-

tures or history, including sources and extent of atmospheric processing, unlike

the rest of the dataset. To identify the dominance of sources responsible for

these unique patterns, it may be the best to analyze the single-site cluster in a235

separate PMF analysis. Otherwise, if aggregated with the rest of the samples,

the distinct features may not be resolved completely. On the other hand, a

uniform assignment of sites to multiple cluster categories implies that all sites

contain sample mixtures with relatively similar proportion of contributing fac-

tors, as evidenced by intra-cluster similarity. The number of clusters is specified240

by the user. As a general rule, selecting a higher number of clusters may be

more e↵ective for discriminating against “atypical” spectral features as a result

of “atypical” source composition while selecting a very low number of clusters

may not permit su�cient distinction between individual sources of the existing

aerosols.245

2.3. Positive matrix factorization

Factor analysis was used to extract a set of common profiles that contribute

in di↵erent proportions to the measured ambient PM FT-IR spectra. As a re-

sult, the factor analysis can linearly transform the measured dataset (a spectral

matrix with rows representing time series of wavenumber variables) into several250

factor profiles while reducing the dimensionality of measurements and preserving

most of the explained variance at the same time. Each extracted factor typically
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corresponds to molecular mixtures with specific functional group assignments

and contains information about their sources, processing age, or chemical prop-

erties. Out of existing factor analysis techniques, in atmospheric sciences Pos-255

itive Matrix Factorization (PMF) (Paatero and Tapper, 1994) has been widely

adopted for source apportionment of atmospheric aerosol constituents. PMF has

a long record in use for characterizing FT-IR spectra (Russell et al., 2010, 2011;

Bahadur et al., 2010; Takahama et al., 2011; Takahama, 2015), X-ray absorption

spectra (Liu et al., 2009; Takahama et al., 2010), aerosol mass fragment spectra260

(Zhang et al., 2011; Aiken et al., 2008; Canonaco et al., 2013), ambient particu-

late matter concentrations (Aguilera et al., 2015) and size distributions (Sowlat

et al., 2016). While the detailed methods of PMF programs have been reported

elsewhere (Paatero and Tapper, 1994; Paatero, 1997), in summary PMF gen-

erates factor solutions according to non-negativity constraints in factor profiles265

(chemical constituents) and their mass contributions, subject to weighting of

sample and variable by uncertainties:

xij =
pX

k=1

gikfkj + eij (1)

where xij refers to the spectra data matrix with i samples and j wavenumbers,

fkj is a representation of kth factor profile at jth wavenumber, and gik is a mass

contribution of kth factor towards i

th sample. eij refers to PMF residuals. g270

and f are found iteratively by minimizing a quantity Q defined as:

Q =
mX

i=1

nX

j=1

✓
eij

sij

◆2

(2)

where sij represent the weights based on estimated measurement uncertainties

specific to each sample and variable. Since the PMF method is a weighted least

squares fit, the nature of the atmospheric aerosol data necessitates sij to be

chosen judiciously to reflect the quality of spectral data and important physical275

implications from the FT-IR measurement process. Past studies (Takahama

et al., 2011; Russell et al., 2011) worked with a simplistic representation of sij

for FT-IR spectra, which consisted only of a term considering only wavenumber-
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dependent blank uncertainty. In actual FT-IR measurements, as with many

instrumental signals, the analytical uncertainty increases with concentration of280

analyte. Thus, failing to account for this heteroscedastic behavior may place

undue weight on the most prominent spectral features (e.g., those originating

from functional groups with high absorption coe�cients but not necessarily

high abundance), and neglect more subtle features that can provide guidance

for factor analytic decomposition. Furthermore, improved estimates of sij can285

better indicate the expected structure of residuals eij and enable alignment of

Q values with the system degrees of freedom [Qexp = mn � p(m + n); Paatero

et al., 2002] used as a reference for model evaluation.

2.3.1. FT-IR measurement uncertainty

For absorption-dominated interactions between sample and infrared radia-290

tion, the Beer-Lambert law describes the linear relationship between sample

concentration c and observed absorbance x for wavenumber ⌫̃ and substance r:

x(⌫̃) = �r(⌫̃)cr + ✏(⌫̃) . (3)

� is the absorption coe�cient, and the term ✏ represents the measurement er-

ror, often assumed to be normally distributed with mean of zero and standard

deviation �: ✏ ⇠ N (0,�) (Skoog et al., 2017). However, because measurement

error increases with measured signal intensity (Sokal and Rohlf, 1981), we de-

compose the error term into a fixed term and concentration-dependent term,

both of which are assumed to be normally distributed with a mean of zero (the

notation for wavenumber dependence will henceforth be dropped to simplify the

presentation):

✏ ⇠ N (0,�0) +N (0,�(c)) (4)

Assuming proportionality between the standard deviation and concentration

in the second term through a wavenumber-dependent constant  (e.g., Noblitt

et al., 2016), the expected value and variance of the overall measurement error
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model can be described as follows:

E[✏|c] = 0

Var[✏|c] = �

2(c) = �

2
0 + 

2
c

2
. (5)

�

2
0 is a fixed contribution from the variability of blank signal and 

2
c

2 is a

variable error contribution that grows with sample concentration. Therefore,

Equation 5 conforms to a theoretical expectation of variance terms being addi-295

tive. Rather than working with concentrations (which we do not know generally

for ambient samples), we reformulate Equation 5 as a function of measured ab-

sorbance:

�̃

2(x) = �

2
0 + ̃

2
x

2 (6)

where ̃ = /� (from equations 3 and 5).

Our approach is to estimate �0 and ̃ directly from measurements, and300

obtain an expression for PMF uncertainty for use in equation 2:

sij =
q

�

2
0,j + ̃

2
x

2
ij . (7)

To obtain an estimate for �0,j , we apply the smoothing splines baseline correc-

tion algorithm of Kuzmiakova et al. (2016) (same as that applied to ambient

sample spectra) on 54 blank PTFE sample spectra. While on average, the blank

absorbances are zero at each wavenumber, the variability about the mean is used305

to determine the fixed variance contribution from instrumental signal, baseline

correction, and blank signal (�2
0,j) (Russell et al., 2009).

To obtain an estimate for ̃, we permit regression residuals from fitting

equation 3 to measurements of reference standards to serve as surrogates for

measurement errors, and develop a relationship between x

2 and �̃

2 as described310

in equation 6. We use 238 laboratory standards prepared by Ruthenburg et al.

(2014) from aqueous or ethanolic solutions of pure, atmospherically-relevant

compounds, such as alcohol, sugars, and dicarboxylic acids. Each compound
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contains only a few relevant functional groups making it suitable to identify non-

interfering, absorbing species necessary for developing analytical uncertainty315

models. All standard spectra are baseline corrected using the same smooth-

ing splines algorithm as for ambient and blank sample spectra to isolate the

absorption contributions for Equation 3 to be valid. We group standards by

their compound type, and within each compound type we identify all functional

group bands which do not overlap with peaks from other functional groups.320

These isolated bands were selected for the quantitative analysis and are sum-

marized in Table 2. To minimize variability across di↵erent samples, we measure

absorbance at specific wavenumbers (⌫1 and ⌫2 in Table 2), which correspond to

the centers of peaks where maximum absorbance intensities are expected. When

two spectral bands from the same functional group absorb with no successive325

overlap, for example two isolated peaks in ammonium sulfate), we measure ab-

sorbance values from both peaks separately at their respective frequencies ⌫1

and ⌫2 to increase robustness of our models. Figure 3 summarizes results of

fitting equation 3 to the dataset just described. An adaptive moving window

containing seven successive points of ✏, ordered according to magnitude of x,330

are used to pair the mean value of x and associated variance �̃

2 within each

window. As �̃2 contains the fixed uncertainty, the latter is subtracted prior to

estimating ̃ using equation 6. In this way, ̃ are obtained for a few functional

groups over several wavenumbers. Given that a precise value is not available

over all wavenumbers, we calculate the global mean value from all estimated335

values of ̃ for use in equation 7.

2.3.2. PMF solution space and source assignment

While the main objective of the PMF analysis is to explore underlying covari-

ation of variables from FT-IR measurements to extract physically interpretable

factors, which provide accurate information about OA sources, atmospheric340

processes, and chemical properties, PMF algorithm provides only mathemati-

cal solutions which necessitate careful selection, evaluation, and interpretation.

PMF solution may vary depending on user’s selection of free parameters. In
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this application, there are 3 degrees of freedom, which scope the PMF solution

set: the number of factors, the rotational parameter (FPEAK), and seed value.345

FPEAK defines the linear combinations of factor profile and strength matrices

which are constructed to characterize the possible solutions and therefore can

indicate if there is rotational freedom in the solution. Seed values influence the

likelihood that the solution will correspond to a global minimum of Q (Paatero

et al., 2002; Brown et al., 2012). Thus to explore the factor solution space and350

facilitate solution selection, we use di↵erent mathematical and physical crite-

ria, such as Q/Qexp (defined in Section 2.3), factor cluster groupings, EV , and

physical basis of the solutions.

After selecting the factor solution, we use functional group abundances for

IMPROVE ambient samples estimated by Ruthenburg et al. (2014) (with mi-355

nor revisions introduced by Takahama and Dillner (2015)) using linear model

for calibration. In the past, the non-linear peak-fitting method of Takahama

et al. (2013b) was applied to obtain such estimates (e.g., Russell et al., 2009).

However, di↵erences in abundances estimated by Takahama et al. (2013b) and

Ruthenburg et al. (2014) can be expected on account of di↵erent reference stan-360

dards and algorithms used for calibration. In this work, we formulate our OM

and functional group composition estimation in PMF factors to explain those

reported by Ruthenburg et al. (2014) (Section 2.1). Nominally, the relation-

ship between functional group abundances in individual samples (yiz) and PMF

factors (ykz) in such cases may be expressed through the following relationship:365

yiz = x̃ij b̃jz = gikf̃kj b̃jz = gikykz , (8)

where bjz are the coe�cients obtained from partial least squares regression.

However, the calibration model (embodied by regression coe�cients) of Ruthen-

burg et al. (2014) was developed for raw spectra without baseline correction;

tildes above symbols in equation 8 identify quantities associated with them (in-

cluding f̃ , which represents the spectral profiles resulting from a hypothetical370

bilinear decomposition of the raw spectra). As our PMF analysis is applied to
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baseline corrected spectra, the regression coe�cients are not directly applica-

ble to our factor profiles. Therefore, we find functional group abundances for

each factor from those estimated for each ambient sample using a least squares

approach to satisfy the relationship:375

yiz = gik ykz + ✏iz . (9)

gik is the source contribution of kth factor towards ith sample obtained by PMF

on baseline corrected spectra obtained from equation 1.

Two extensions to the estimates of Ruthenburg et al. (2014) are provided

for yiz used in this work: 1) aggregation of carboxylic COH and carbonyl CO

to carboxyl functional groups, and 2) estimation of ammonium NH. Carboxyl380

groups (COOH) consist of carbon bonded to -OH and =O in the same functional

group. While the abundances of the two vibrational modes (O-H stretching and

double-bonded O stretching) are often quantified separately, it is sensible to

determine how much of the carbonyl is associated with carboxyl groups how

many are associated with others (e.g., ketone, aldehyde, ester). This appor-385

tionment can be achieved by comparing the molar abundance of carbonyl CO

in excess of carboxylic COH (Takahama et al., 2013b), and assigning this to

the non-carboxylic carbonyl. Our analysis indicates that the estimated car-

bonyl CO and carboxylic COH have nearly a 1:1 correspondence, suggesting

that the carbonyl CO quantified in these samples belong to carboxylic COOH.390

The lack of additional non-carboxylic CO is surprising given their abundance

in biogenic and biomass burning samples reported previously Schwartz et al.

(2010); Takahama et al. (2011); Corrigan et al. (2013). However, analysis of

carbonyl absorption bands in spectra (near 1720 cm�1) indicates that relative

peak heights in IMPROVE network samples are generally less than those found395

in submicron aerosols sampled over shorter intervals (Russell et al., 2011), sup-

porting this interpretation. Ammonium NH (largely associated with inorganic

salts) is considered an interferant for OM analysis as it can co-absorb over the

same wavenumber range as many organic functional groups (Maria et al., 2003).

This group is accounted for but not quantified in spectral analyses for quantifi-400
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cation of OM (Takahama et al., 2013b; Ruthenburg et al., 2014). However,

as its presence can be expected in the ambient FT-IR spectra and resulting

PMF factor profiles, we estimate their abundances by assuming full neutraliza-

tion of sulfate and nitrate anions measured by ion chromatography (Dillner and

Takahama, 2015b).405

The solutions to equation 9 are additionally examined for consistency be-

tween estimated chemical composition and spectroscopic profile — for instance,

factors with significant abundances of carboxylic groups should are expected to

exhibit absorbances (fkj) in the carboxylic COH and carbonyl C=O absorption

bands. This additional criterion (referred to as “chemical consistency” in this410

work) further provided guidance on the selection of the solution profiles.

In Section 3.4 we identify each factor profile based on its similarity to pro-

files reported in literature (Russell et al., 2011; Corrigan et al., 2013; Frossard

et al., 2014), the abundance of key functional groups in each profile, oxygenated

content, and factor’s temporal profile. Finally, site-specific source labels were415

assigned by comparing the time series of factors with the time series of source

markers to infer origins or atmospheric processes which gave rise to emissions

contributing to chosen PMF factors in Section 3.5.

3. Results

3.1. Cluster analysis420

Figure 5 presents cluster memberships for all 616 samples di↵erentiated by

site (horizontal panel) and season (left vertical panel). In this application,

we considered selecting between 3 and 8 clusters to maintain consistency with

Section 3.3 where we vary the number of factors from 3 to 8. We selected 8

clusters to gain advantage of more distinct clusters due to greater homogeneity425

within a group and greater di↵erence between groups as mentioned in Section

2.2. In Figure 5 we notice that no site or season is singled out in a separate

cluster, which would imply spectroscopic signature consistently distinct from

the remaining dataset. All sites have been assigned to at least 5 di↵erent clus-
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ters, which contain members from all 6 sites. This confirms that intra-cluster430

spectroscopic features associated with similar contribution of sources contained

in aerosol mixtures are present uniformly across all 6 sites. Therefore, uniform

cluster assignment supports the multi-site application. Also, we notice no signif-

icant di↵erence between urban samples (Phoenix) and rural samples (remaining

sites) with the exception of clusters 7 and 8, which detected several unusual435

samples collected in fall and winter at Phoenix and St Marks sites. Figure S1

reveals that sources of these aerosols are dominated by biomass burning emis-

sions and indicates similarities in atmospheric processing that may have occured

during transport from their original locations in Arizona and Florida to their

respective measurement sites, Phoenix and St Marks. Because these are only440

10 samples (< 2% of total measurements) their spectral features may not be

well represented by the PMF. More detailed analysis on IMPROVE clusters is

outside the scope of this study and can be found in Ruthenburg et al. (2014). In

our context, cluster-based evaluation is a first step towards data summarization

and determining whether a multi-site or single-site source apportionment should445

be performed.

3.2. FT-IR measurement error model

This section presents results for the heteroscedastic component of FT-IR er-

ror, which is necessary to obtain a PMF uncertainty matrix, si,j representative

of FT-IR measurements. Figure 3 shows fitted linear calibration models to rep-450

resent a relationship between reference concentration and an FT-IR instrument

response (absorbance) for each functional group and compound type. To obtain

calibration curves representative of ambient PM samples, we only work with

standards containing absorbance values < 0.5, which corresponds to roughly

twice the maximum absorbance found in our IMPROVE samples. Excellent455

agreements were obtained as coe�cients of determination (R2) in all models

from Figure 3 were > 0.95. Regression residuals, ✏ (Equation 3), were used to

determine variance, �̃2, using the moving average described in Section 2.3.1. Fig-

ure 4 shows fitted linear regression lines to relate x

2 (squared absorbance) and
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2
0 from Equation 6 for each functional group and relevant compound type.460

Since Equation 6 does not contain any additional physical terms, we performed

regression through the origin (i.e. the fitted lines pass through (0,0)). Addi-

tionally, we exclude malonic acid (functional group: carbonyl), levoglucosane

(alcohol), d-glucose (alcohol), arachidyl dodecanoate (alcohol), and 1-docosanol

(alkane and alcohol) due to limited sample size or negligible variance values (i.e.465

when �̃

2 is on the order of �2
0). The final scaling coe�cient, ̃, is determined

as the square root of the mean of the 9 slopes of the regressed lines in Figure 4

and was found to be 0.054. The heteroscedastic component of error introduced

in this work is found to be orders of magnitude larger than the fixed error term

used previously (Russell et al., 2009).470

3.3. PMF solution space

In this section, we systematically explore the PMF solution space of the three

parameters: number of factors, FPEAK, and seed parameters. The following

values were used: seed values = {1, 10, 100}; FPEAK = {-1.6, -1.2, -0.8, -0.4,

0, 0.4, 0.8, 1.2, 1.6}; and number of factors = {3, 4, 5, 6, 7, 8}. Therefore,475

the total number of PMF simulations was 162 (3 ⇥ 9 ⇥ 6). Figure S2 shows

Q/Qexp decreases from 3.5 in 3-factor solution to 0.8 in 8-factor solution. The

overall range of Q/Qexp is comparable to those from past studies (Takahama

et al., 2013a) and is reflective of our FT-IR measurement uncertainty matrix,

si,j . While a systematic comparison between the old and new methods for480

estimation of si,j have been conducted in this study, the di↵erence on Q/Qexp is

not immediately apparent. Because Q/Qexp does not display a clear minimum

and universally decreases with increase in the number of factors, this metric

does not o↵er a method for selecting the correct number of factors. However, a

large decrease in Q/Qexp with the addition of the fourth factor (from 3.5 to 2.3)485

implies that the additional factor can explain a significant fraction of the OM

variation that was unaccounted for by the previous three factors. In past studies

(Paatero and Tapper, 1994) a large decrease in Q/Qexp caused by an additional

factor had been used as a metric for choosing a solution. This trend is consistent
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with an increase in explained variation in OM when we add a fourth factor to490

increase explained variation from 90 to 95% (Figure S3). Generally, in solutions

with more than 4 factors the total OM was well apportioned and explained

variation was > 95%. However, adding a fifth or sixth factor does not appear to

change explained variation in the spectra and selecting a fewer number of factors

leads to a parsimonious model that is less likely to be overfitted. Finally, using495

di↵erent seed and FPEAK values did not appear to yield additional variations

in Q/Qexp for a given number of factors, indicating robustness of solutions.

Additional method for examining the variance of the original aerosol sample

matrix, xij , includes evolving factor analysis (Keller and Massart, 1992). We

applied singular value decomposition (SVD) to the sample matrix (which does500

not account for the measurement uncertainty matrix sij) using a fixed-size mov-

ing window. Percentage of data recovery at each wavenumber using di↵erent

numbers of components was estimated by normalizing the cumulative contri-

bution of their singular values by the trace of the covariance matrix. Figure

S4 shows that three components explain approximately 90% of the variation505

in the FT-IR measurements across most wavenumbers, consistent an explained

variation of 90% from 3-factor solution in the PMF analysis. The percentage

recovery signal is consistent with mean PMF residual structure, ✏j , in Figure

S5.

Given the large number of solutions that are generated for the range of510

seed values and rotational parameters specified, we consider the possibility that

these solutions may be reoccurring realizations of a few solution sets. Previous

studies have shown consistent reports of spectral features associated with par-

ticular source classes (Russell et al., 2011). In Figure 6 we apply hierarchical

clustering to assign factor profiles from all 162 solutions into groups based on515

their spectral similarity. Note that the number of factor groups and the number

of factors in each solution are two parameters controlled independently by the

user. The number of cluster groups can be smaller than the number of factors

specified if resulting spectra appear very similar to each other (eg, when we use

6 factors; fourth row). Conversely, large spectral di↵erences in factors across520
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simulations warrant additional cluster groups (eg, when we use 4 factors; second

row). The plot shows the PMF solution set follows reocurring solutions across a

di↵erent number of factors. Observing trends across columns simulations with

di↵erent seed and FPEAK parameters will lead to similar realizations of the

same spectral profiles regardless of the number of factors used, thereby con-525

firming the rotational stability of solutions (Paatero et al., 2002). For instance,

cluster 2 in column 2 contains a hydrocarbon-like profile with visible methylene

peaks in all simulations. However, solutions with > 5 factors begin to generate

physically improbable, degenerate profiles, which either contained only a single

organic functional group (eg, hydroxyl group in factor-cluster 6) or exhibited ar-530

tificially jagged spectral features, which presented an unrealistic departure from

smooth Gaussian peaks (Takahama et al., 2013b) (eg, factor-clusters 7 and 8).

Such cases could be formally classified via a roughness metric but the imple-

mentation is outside the scope of our study. Additionally, in Figure S6, which

compares pair-wise g-score correlations in each simulation, we see that increas-535

ing the number of factors beyond 4 leads to profiles which strongly correlate

(r > 0.65) with other profiles in the given solution set. Strong correlation be-

tween two factors in time (eg, in our case factors from clusters 1 and 6) suggests

they likely originated from the parent factor. This is consistent with “factor

splitting” discussed in Ulbrich et al. (2009), suggesting that emissions from a540

single source are prescribed to two or more PMF factors.

According to our factor profile clustering scheme, the 162 solutions can be

grouped into 22 categories (Figure S7), which provides a simplification in the

PMF analysis. We note that as many samples from multiple periods and sites

are grouped together in the analysis, the PMF factor profiles, while spectro-545

scopically (and presumably chemically) similar, may be associated with di↵er-

ent source classes. As shown in Figure S6, there exist factor pairs from a single

solution which are grouped into the same factor-cluster (factor-clusters 1, 3,

and 5), while maintaining factor strengths (g-scores) that are nearly orthogo-

nal to one another (Figure S7). The interpretation of factor components which550

are spectroscopically similar but due to di↵erent sources is a topic of this work
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(Figure 1), but additional approaches may be investigated in future works. For

example, classifying solutions based not only on factor profiles (f -values) but

their strengths (g-scores) can potentially be fruitful in di↵erentiating patterns

in reoccuring solutions.555

As a result of the above evaluations, we constrain the number of factors to

4 and generate another set of PMF solutions over a wider seed range = {1, 3,

5, 10, 15, 20, 30, 50, 75, 100} (FPEAK range remains the same as above) to

determine the set of profiles and their frequency. In total, these combinations

lead to 90 PMF solutions divided into 3 solution classes, as previously described560

in Figured S7. The most frequently occurring solution class is plotted in Figure

S8. Its factor profiles belong to factor-clusters 1, 2, 3, and 4, and occured in 81%

of cases (73 out of 90). The remaining two solution classes occured in 12% (11

out of 90) and 7% of cases (6 out of 90), respectively, and are plotted in Figures

S9a and S9b. These solution sets contain profiles from factor-clusters i) 1, 3, 4,565

5, and ii) 1, 3, 5, 6. We reject these two solution sets for two reasons: i) using

a frequentist approach (i.e., a consensus selection argument; Héberger, 2010)

over a range of plausible seeds and rotation parameters, the solution appears

in at most 12% cases, ii) the inverse functional group estimation for the fourth

profile (with prominent carbonyl and methylyne peaks) would be inconsistent570

with its spectral profile. Therefore, we select the 81% solution in Figure S8 for

our work with the expectation that each profile represents a chemically feasible

factor with specific spectroscopic signature.

3.4. Spectral profiles

Four distinct spectral profiles were identified using PMF. Due to the ap-575

parent similarity in chemical composition in aerosol mixtures originating from

di↵erent sources at several sites, we find that multiple source labels could plau-

sibly be assigned to each spectroscopic (factor) profile (Figure 1). This marks a

departure from previous studies where each PMF factor profile was attributed to

a specific source. It is possible that this multi-site approach to PMF lumps dis-580

tinct but similar chemical profiles into a single factor on account of resolvability.
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PMF localized to specific sites may better able to determine more precise pro-

files. However, preliminary analysis of a single-site PMF case for Olympic, WA,

suggests that profiles obtained for site-specific PMF may yield similar results to

the multi-site PMF presented in the body of this work (Figure S10). Further585

comparisons of multi-site and site-specific PMF, alongside other factor analysis

methods which target features that discriminate among the most source-relevant

variations (rather than overall variation), are topics that can be investigated in

future studies. For the remainder of this work, we describe our factor inter-

pretations for the multi-site PMF. Table 3 summarizes their key characteristics590

and Figure 7 profiles the factors with their functional group composition.

Processed 1 and Processed 2 are two distinct anthropogenic fossil fuel com-

bustion factors resulting from di↵erent degree of photochemical processing. One

of the evident features in both combustion factors is substantial ammonium

absorbance (2850 – 3300 cm�1), similar to anthropogenic combustion factors595

reported in previous campaigns (Corrigan et al., 2013; Liu et al., 2012; Hawkins

et al., 2010), which suggests these aerosols are secondary. Processed 1 contains

roughly equal mass fractions of alkane (35%), alcohol (29%), and carboxylic acid

(36%). It has the highest OM:OC and O:C ratios (2.5 and 1.0, respectively)

amongst all factors, indicating it is heavily oxidized likely due to its formation600

in later generations (Jimenez et al., 2009; Aiken et al., 2008). Processed 2 con-

tains a relatively large mass fraction of alkane (57%) with the remaining 43% of

organic mass taken up by carboxylic acid. The large alkane mass fraction indi-

cates that fossil fuel emissions captured in Processed 2 factor likely underwent

less atmospheric processing than those found in Processed 1 (Frossard et al.,605

2014). Further, OM:OC and O:C ratios are lower for Processed 2 (1.7 and 0.4,

respectively), suggesting lower oxygenated content in the less aged air masses.

The oxidation state and aging of two secondary aerosol factors are consistent

with previous studies on elemental ratios (Canagaratna et al., 2015; Aiken et al.,

2008) where two secondary organic aerosol (SOA) components were reported:610

more oxidized SOA had OM:OC between 2.3 and 2.5 and less oxidized SOA

had OM:OC between 1.8 and 2.0. Also interesting is a relatively substantial
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carboxylic acid contribution to OM (> 35% in both factors), which had been

attributed to urban combustion sources (Russell et al., 2011). Hydrocarbon

factor is dominated by alkane (81% of organic mass) with minor fractions of615

carboxylic acid (11%) and alcohol functional groups (8%). The large fraction

of alkane and small oxygen content (OM:OC of 1.4) suggest some or most of

the emissions originate from primary aerosol sources (Aiken et al., 2008). The

prominent feature of this factor is a pair of alkane peaks (at around 2900 and

2850 cm�1) associated with repeated methylene groups in long-chain hydrocar-620

bons (Coates, 2000; Pavia et al., 2008). Repeating methylene units are derived

from burning of vegetative detritus during forest fires (Hawkins and Russell,

2010), residential wood burning (Russell et al., 2011), and primary anthro-

pogenic combustion (Liu et al., 2012).

Hydroxyl factor features broad organic hydroxyl absorption in the range625

between 3700 and 3300 cm�1. The alcohol makes up the majority of organic

mass (53%) with the rest being taken up by alkane (43%). Initial hypotheses

regarding the origin of sources contributing to Hydroxyl factor can be inferred

on the basis of the type of compounds where hydroxyl functional groups can be

frequently found. First, hydroxyl groups may have originated from saccharides630

emitted from bubble bursting in surface seawater (Russell et al., 2011). The

relatively high hydroxyl fraction in the PMF factor is consistent with the 80%

carbohydrate fraction of total dissolved organic carbon at the ocean surface

(Aluwihare et al., 1997). Additionally, the profile, functional group composi-

tion, and O:C ratio of 0.9 are very similar to those in marine PMF factors635

reported from previous shipboard and ground-based campaigns in coastal loca-

tions (Frossard et al., 2014; Bahadur et al., 2010; Russell et al., 2011). Yet, since

primary marine biogenic sources are typically confined to coastal and marine

regions, hydroxyl groups at continental sites may have been derived from alter-

native sources. Thus, the second likely origin of OH groups are mineral dust640

particles which had been found to be coated with organic OH (Takahama et al.,

2013a; Hawkins et al., 2010). The substantial alcohol mass fraction is consistent

with reported OM containing dust particles resuspended by vegetative detritus
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(Ahlm et al., 2013) and with the composition of lignin and other carbohydrates

in vegetative material (Bianchi et al., 1993). The shape and functional group645

composition of Hydroxyl factor in Figure 7 D is also consistent with Vegetative

Detritus factor identified in organic aerosol source apportionment study at Bak-

ersfield in 2010 (Liu et al., 2012). Finally, Hydroxyl profile shows signatures of

methylene peaks attributable to biomass burning or potentially anthropogenic

influences.650

3.5. Site-specific sources

We focus on Phoenix, Trapper Creek, and Olympic and discuss remaining

sites (Mesa Verde, Proctor Maple, and St Marks) only cursorily due to a lack of

available literature on year-long aerosol characterization in these regions. Figure

8 presents the time series of PMF factors contributing to OM during 2011,655

Table 4 summarizes attributed site-specific sources together with their seasonal

dominance, and Figure 9 presents the seasonal averages of those sources.

3.5.1. Phoenix

As the only urban site in our dataset, Phoenix shows the highest organic

aerosol concentrations, with yearly average of 1.69 µgm�3 in 2011. The site660

exhibits a distinct organic carbon seasonal cycle, which peaks in winter (2.2

µgm�3 ) and shows its minimum in summer (1.3 µgm�3 ), driven by seasonal

meteorological and urban emissions variations. Phoenix is a city of 1.5 million

people located in a larger metropolitan area with a total population of over 4.5

million. It is located in the central Arizona desert, a subtropical desert biome665

with extremely low annual precipitation (Table 1), high levels of solar radiation,

and large di↵erences between the annual lowest and highest temperatures. Air-

flows in the Phoenix metropolitan area are a↵ected by local topography. The

site is located in a broad valley at an altitude of 348 meters and surrounded

by mountain ranges from north, east, and south. The mountains adjacent to670

the urban area rise to 900 meters above the valley leading to winter inversion

layers, which trap locally-produced organics. Low inversion layers in winter and
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minimal atmospheric transport has also been identified to be responsible for

unusually high PM2.5 events in winter months (Brown et al., 2007).

In Figure 8 we see throughout the year OM composition in Phoenix is dom-675

inated by Hydrocarbon factor, which accounts for up to 90% of OM in winter.

Figure 11 summarizes the magnitudes of seasonal correlations between Hydro-

carbon factor and relevant tracer concentrations (EC, Br, Zn, Cu, Fe, Mn, Cr, K,

and Cl), which point to evidence of a mixture of natural and anthropogenic ur-

ban sources. First, in winter the factor is highly correlated with EC (r=0.96), K680

(r=0.92), Br (r=0.75), and Cl (r=0.85) suggesting a strong influence of residen-

tial wood burning emissions originating from a a variety of biomass combustion

appliances, such as open fireplaces or wood and pellet stoves. A previous work

by Rau (1989) examining the composition of residential wood burning emissions

reported that wood smoke particles had 20% to 60% carbon content (primarily685

elemental carbon) and high levels of K (11%) and Cl (3%). Residential wood

combustion is evident only in winter as Cl, often used as an indicator for wood

smoke particles (Khalil and Rasmussen, 2003), shows no correlations in remain-

ing seasons. In 2011 there were 21 days (7 in January, 6 in February, and 8 in

December) when minimum temperature in Phoenix reached below 0 degrees C,690

which suggests wood burning during the nighttime or even daytime, particularly

during the holiday season between Christmas and New Year’s Day. This is con-

sistent with previous source apportionment studies, which identified residential

wood burning as a major contributor to winter particulate matter in Phoenix

area (Brown et al., 2007; Ramadan et al., 2000; Zielinska et al., 1998). Second,695

the factor is correlated with biomass burning tracers K (0.41 < r < 0.92) and

Br (0.48 < r < 0.75) throughout the year, indicating the influence of forest fires

and agricultural burning. In a previous Phoenix air quality (Ramadan et al.,

2000) spanning two years (1996-1998) temporal profiles of biomass burning ac-

tivities showed presence in all seasons but minor peaks in months of January700

and July. Third, year-round correlations with EC (0.52 < r < 0.96), Zn (0.43

< r < 0.73), and Cu (0.50 < r < 0.90) are associated with tra�c emissions

which include emissions from both motor vehicles and heavy-duty diesel trucks.
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Specifically, Zn, Cu, and Cr are tracers associated with vehicle exhausts, tire

and brake abrasion, oil combustion (Viana et al., 2008). Transportation-related705

emissions are important contributors to urban OC in all seasons because the

Phoenix sampling site (Supersite) is located in a densely-populated area within

2 miles of a major freeway. In Figure S11 we look at daily measured concentra-

tions of Zn and Cu, two main markers of vehicle exhaust emissions. Zn and Cu

show maximum from October to February and minimum during summer. The710

winter peaks are consistent with a reported influx of visitors in fall and win-

ter seasons (Brown et al., 2007). Higher rates of visitation are associated with

higher rates of anthropogenic activities, such as driving and residence heating,

and therefore a rise in locally-generated fossil fuel emissions is conceivable.

Hydroxyl factor is the second largest contributor of organic aerosol in Phoenix,715

accounting for 28% of OM in summer. Its correlations with major dust tracers,

such as Si (0.8 < r < 0.94), Al (0.90 < r < 0.94), Mg (0.78 < r < 0.90), Ca

(0.85 < r < 0.90), and Ti (0.79 < r < 0.91), confirm the presence of mineral

dust, which is expected given the arid desert climate. In Figure 10 we notice

concentrations of mineral dust elements follow a temperature trend: they peak720

in summer season and gradually decrease until winter. Therefore, likely sources

of summertime dust in Phoenix area include resuspended dust from roads, con-

struction sites, and other unpaved areas (Ramadan et al., 2000).

Finally, the remaining 10% of OM is attributed to Processed 1 and Pro-

cessed 2 factors. Both processed factors are correlated with S (0.78 < r < 0.80725

in Processed 1 and 0.60 < r < 0.65 in Processed 2) and thus are associated

with sulfur dioxide emissions from coal-fired power plants located southwest of

Phoenix in Arizona, New Mexico, and Mexico (Brown et al., 2007; Ramadan

et al., 2000). Organic contribution from Processed 1 factor appears relatively

stable throughout the year (around 0.13 µgm�3 ) suggesting that more pro-730

cessed or transported fossil fuel emissions are independent of photochemical

activity. Organic contribution from Processed 2 factor shows minor peaks in

winter providing some evidence of fresher, locally-produced fossil fuel emissions

trapped in the inversion.

27



3.5.2. Trapper Creek735

Trapper Creek has the lowest OM concentration from all 6 sites in our

dataset; around 10 times less than Phoenix. Trapper Creek is also the only

site in our study located in polar latitudes (north of 60 degrees) with distinct

meteorological features, which include low levels of solar radiation, below- or

near-zero mean temperatures throughout all seasons but summer, and low lev-740

els of precipitation (Table 1). The Arctic meteorology can influence seasonal

sources, transport, and photochemical processing of OM, which ranges from 0.18

µgm�3 in fall and winter to 0.25 µgm�3 in summer (Figure 9). Observed OM

concentrations at Trapper Creek peak in spring and early summer, contributing

to a phenomenon commonly termed ”Arctic haze” (Quinn et al., 2007). From745

November through April OM composition is dominated by Hydroxyl factor (Fig-

ure 8). Since aerosol concentrations are relatively very low and correlations with

marine and mineral dust tracers are not conclusive, we examine seasonal tracer

concentrations in Figure 10 to infer plausible Hydroxyl factor sources. In winter

the factor represents marine aerosol source due to elevated Na concentrations.750

The ratio of Na and Si (the main mineral dust tracer) in winter (8:1) is simi-

lar to that in Olympic where Hydroxyl factor was identified as marine aerosol.

In remaining seasons observed Na concentrations are a factor of 2-5 lower and

proportionate to Si concentrations. Therefore, Hydroxyl factor most likely rep-

resents a mixture of oceanic and mineral dust sources. Si concentrations show755

a sharp maximum in spring (1.4 µgm�3 ). This is consistent with a previous

long-term seasonal aerosol distribution study (Breider et al., 2014), which de-

termined dust aerosol at Trapper Creek peaks in spring with major dust sources

being the Sahara and the Taklaman and Gobi deserts. Additionally, in winter

and spring we find the Arctic OM in Hydroxyl factor is mildly correlated with760

Fe, Mn, and Zn (0.47 < r < 0.78), indicating the presence of emissions from iron

and steel industries and oil burning. This finding agrees with previous works

(Frossard et al., 2014; Shaw et al., 2010), which report that international emis-

sions from shipping lanes through the Bering Strait and oil industry contribute
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to the Arctic haze during springtime. From May to October OM composition in765

Trapper Creek is dominated by Hydrocarbon factor predominantly via episodic

incidence, e.g. during events on May 30, July 17, or July 23, 2011 (Figure

8). The factor correlation with EC, K, and Br (0.4 < r < 0.7) indicates that

emissions from biomass burning events account for the mass in this factor. A

previous study by Shaw et al. (2010) characterizing a year-long aerosol composi-770

tion in Barrow in northern Alaska reported that boreal forest fires in continental

Alaska and central Siberia (west of Anadyr) were important sources of haze. In

2008 wildfire emissions from as far as Kazakhstan were known to a↵ect Alaska

air quality (Warneke et al., 2009). However, this long-range transport of biomass

burning emissions in summer and early fall is the only source strongly a↵ecting775

what is otherwise classified as pristine air masses (Hamilton et al., 2014). In

winter Hydrocarbon factor is absent due to extensive snow and ice coverage, low

solar radiation, and minimal biogenic activity in polar biomes. The remaining

major fraction of Arctic OM throughout the year is accounted for by Processed

1 factor, which is highly correlated with S and sulfate (0.8 < r < 1.0). The OM780

contribution from Processed 1 factor shows a spring maximum (0.11 µgm�3 ),

when it accounts for 42% of springtime OM, and gradually decreases through-

out summer, fall, and winter. The factor seasonality is consistent with Trapper

Creek sulfate aerosol concentrations (Breider et al., 2014), which were also the

highest in spring months in 2008. In Alaska sources contributing to the pro-785

cessed factor are likely to originate from two source classes: i) anthropogenic

and ii) natural (Breider et al., 2014). Anthropogenic sources include fossil fuel

burning and smelting of sulphide ores in power plants in northeast Asia (Bar-

rie, 1986; Polissar et al., 2001a). Natural sources include volcanic activities in

Alaska Peninsula and Aleutian Islands. Specifically, volcanic emissions from790

Aniakchak, Okmok, and Cleveland volcanos, all of which were active in 2011

(McGimsey et al., 2014), may have contributed to elevated spring and summer

masses in Processed 1 factor. Finally, Processed 2 factor accounts for around

12% of OM in spring. Mild correlations with Mn (r = 0.51), Fe (r = 0.46), Zn (r

= 0.54), S (r = 0.52), and sulfate (r = 0.56) suggest regional diesel combustion795
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emissions from power generators, trucks, cruise ships, and fishing boats.

3.5.3. Olympic

Referring to Figure 8, OM at Olympic site shows little seasonal cycle with

organic concentrations usually less than 1.0 µgm�3 . In September and October

OM was dominated by several high-pollution days causing concentrations to800

reach up to 4.0 µgm�3 at the northwestern rural site. However, overall OM

levels remained even throughout the whole year, suggesting influx of very stable

organic sources which composition is independent of photochemical activity and

precipitation. Although the Olympic site is in a national park, its air quality

is a↵ected by emissions from industrial regions along the Seattle metropolitan805

area and marine vessel tra�c in the Strait of Juan De Fuca, both of which are

less than 80 kilometers away from the park.

Unlike the rest of the sites, here Processed 1 and Hydrocarbon factors were

highly correlated in time (r = 0.76, 0.59, 0.69, and 0.77 in winter, spring, sum-

mer, and fall, respectively), indicating they are associated with the same source810

but vary in their respective composition. We combined the 2 correlated factors

into 1 factor called Processed Hydrocarbon (mass of the combined factor equals

the sum of factor masses used in combination; Figure S12), leaving us with 3

linearly-independent factors (Hydroxyl, Processed Hydrocarbon, and Processed

2). The 3 factors explain the same fraction of OM variance as the 4 original815

factors in Figure 7 prior to their factor recombination. The combined g-score

from Processed Hydrocarbon factor was used to infer correlations with source

markers. The concept of factor combination was also used in previous organic

aerosol characterization studies. For instance, Schwartz et al. (2010) reported

a “summed biogenic factor” of two factors that represent di↵erent types of bio-820

genic volatile organic compounds and processing, while Hawkins and Russell

(2010) combine two minor factors that explain a small portion of the mass to a

single one.

Figure 8 shows that Processed Hydrocarbon factor accounts for the majority

of local OM, ranging from 69% in winter to 89% in summer. Year-round corre-825
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lations with EC (r=0.76), S (r=0.9), Br (r=0.65), K (r=0.64), V (r=0.78), Ni

(r=0.76), Fe (r=0.72), Mn (r=0.37), Si (r=0.68), Al (r=0.59), and Ti (r=0.68),

summarized in Figure S13, imply mixed source combustion from regional anthro-

pogenic and natural sources. First, the presence of substantial concentrations of

V and Ni and their correlations at Olympic represent processed emissions from830

residual oil burning by large industrial sources and marine vessels at the Port of

Seattle and greater metropolitan area (Wu et al., 2007). Ni and V are the two

most abundant elements in petroleum (Barwise, 1990) and are therefore used

as markers for the oil extraction and refinery operations. The contribution of

oil combustion from marine transportation sources, such as ferries or container835

ships, is consistent with previous study by Kotchenruther (2013), who examined

monthly average particulate matter attributed to marine vessels using residual

fuel oil for 14 monitoring sites in the U.S. Pacific Northwest between 2007 and

2010. The authors found at Olympic marine vessel emissions showed a sea-

sonal cycle with lower impacts in winter months and higher impacts in summer840

months which is similar to a trend identified in our study in Figure 9. Third,

correlations with EC, K, and Br indicate the presence of vegetative burning

emissions (including residential wood and wildfire burning). While the residen-

tial wood burning emissions may be higher during the heating season, which

runs from October until February (Liu et al., 2003), the biomass burning emis-845

sions from forest fires tend be more prevalent in summer. In their IMPROVE

speciation study, Malm et al. (2004) reports wild and prescribed fire seasons in

late summer and early fall in the northwestern United States are responsible a

pronounced increase in local OM concentrations. Additionally, the analysis from

the aerosol measurement campaign at the Peak of Whistler Mountain, British850

Columbia, in 2009 confirmed that the mean OM concentration in summer is sig-

nificantly higher than that in spring due to emissions from extensive local fire

episodes (Takahama et al., 2011). Finally, correlations with Fe, Mn, EC, and S

reveal emissions from diesel fuels used to operate commercial, transit, and pas-

senger vehicles. Fe, Mn, and S in combination represent diesel exhaust tracers855

Calvo et al. (2013) and higher concentrations of sulfate and ammonium indi-
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cate more processed tail-pipe emissions from diesel vehicles (Wu et al., 2007).

Main origins of diesel emissions are Seattle area freeways and highways, such

as the Interstate-5 corridor, which support a large percentage of diesel truck

tra�c (Kim and Hopke, 2008). Additional contributors include diesel-powered860

locomotives and marine and port activities at Seattle and Tacoma ports.

The remaining OM at Olympic ranging from approximately 31% in winter to

5% in summer is accounted for by Hydroxyl factor. Its year-round correlations

with Na (r=0.64) and elevated Na concentrations in Figure 10 (Na levels are

consistently an order of magnitude higher than those of mineral dust markers)865

suggest the origin is marine aerosol. Na concentrations peak in fall, which

corresponds to a season with high precipitation in the Pacific Northwest.

3.5.4. Remaining sites: Mesa Verde, Proctor Maple, and St Marks

All 3 sites (Mesa Verde, Proctor Maple, and St Marks) show a similar sea-

sonal trend where organics peak in summer and decrease through fall and winter.870

Organic composition at Proctor Maple, a site located along the eastern seaboard,

is nearly two times Mesa Verde, which can be an indication of year-long local

fossil fuel emissions along the East Coast. OM at Mesa Verde is dominated by

Hydrocarbon factor in summer when it accounts for 68% of local OM. Its cor-

relation with EC, Zn, and Cu indicates motor vehicle emission source, similar875

to Phoenix. The high summer concentration of hydrocarbon source in Figure

10 may correspond to increased tra�c during the holiday season. Other minor

seasonal sources may include forest fires or agriculture waste burning. Hydroxyl

is the second major contributor to OM at Mesa Verde where it makes up over

60% of OM in spring and 20% in remaining seasons. Throughout the year hy-880

droxyl is correlated with major mineral dust tracers: Si (r=0.9), Al (r=0.9),

and Ti (r=0.88), and diesel combustion tracers: Fe (r=0.93), Zn (r=0.68), and

Mn (r=0.61). Figure 10 confirms elevated concentrations of Si, Al, and Ti,

and ratio high ratio of Si:Na (10:1). The abundance profiles of mineral dust

elements in Mesa Verde are similar to those in Phoenix where mineral dust was885

also identified as the major contributor to Hydroxyl factor. Presence of Fe, Zn,
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and Mn imply major sources of dust aerosols in Mesa Verde include fugitive

dust and paved road dust resuspended by motor vehicles. Similarly, geological

dust from paved and unpaved roads and open land was previously identified as

one of the main contributors to PM2.5 in Colorado (Watson et al., 2001).890

Both Proctor Maple and St Mark exhibit distinct seasonal pattern where

organic aerosol concentrations peak in summer. Their OM is dominated by

Hydrocarbon factor, which accounts for 58% and 64% of the average annual

OM. At Proctor Maple, Hydrocarbon factor is correlated with EC (r=0.73),

K (r=0.71), and Br (r=0.67), which indicated wood smoke and motor vehi-895

cle emissions. In an earlier study on source apportionment at Underhill, VT

(another monitoring site located < 20 km away from Proctor Maple), poten-

tial source contribution function (PSCF) revealed a strong local contribution

from residential wood combustion in northern New England and southwest-

ern Quebec (Polissar et al., 2001b). The contributions from the woodsmoke900

were present throughout the year but showed the highest concentrations during

winter season. Our two combustion factors, Processed 1 and Processed 2, are

correlated with S (r=0.85), Se (r=0.66), Zn (r=0.53), Ni (r=0.55), Cr (r=0.69),

V (r=0.40), and Ti (r=0.44), which have been associated with emissions from

coal-fired power plants, oil combustion sources, and smelters (Song et al., 2001).905

Figures 8 suggests their contributions are steady throughout the year, which is

consistent with the fact that the East Coast region relies on the use of heavy

oil as fuel for power generation and heating all-year around. The PSCF from

(Polissar et al., 2001b) identified large potential source areas in upstate New

York, Pennsylvania, and other midwestern states towards the coal combustion910

emissions at Underhill and areas along the East Coast and Mid-Atlantic states

towards the oil combustion emissions. Similar to Olympic, at Proctor Maple

we also observe correlations between two PMF factors, where Hydrocarbon and

Processed 2 are correlated in summer (r=0.61). Lower correlations during the

remaining seasons (0.21 < r < 0.54) indicate that the two factors did not co-915

vary over time to that extent. However, during summer, the combined factor

is associated with summertime biogenic emissions as well as secondary aerosol
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production from Processed 2 combustion. Photochemistry has been known to

enhance the sulfate production in the Northeast (Lioy et al., 1977), which could

also be one of the reasons behind higher concentrations of the OM apportioned920

to the original Processed 2 during summer and its correlation with Hydrocar-

bon factor. As a result, this combined factor is labeled as “polluted biogenic”

factor (Figure S14). Its factor profile is consistent with biogenic PMF factor

identified during a field experiment at Appledore Island, New Hampshire, in

2004 (Bahadur et al., 2010).925

At St Marks Hydrocarbon factor is correlated with only EC (r=0.71), K

(r=0.44), and Br (r=0.60). Hydrocarbon emissions gradually increase from win-

ter and peak in summer, which coincides with magnitudes and seasonal cycles

of fire-related activities and terrestrial biogenic emissions. Prescribed burning

is one of the largest contributor to aerosols in the Southeastern United States930

(Brewer and Moore, 2009). The region performs more then 50,000 prescribed

fire treatments every year (Kobziar et al., 2015) with the goals to restore ecosys-

tem and reduce wildfire hazard. The wildland activity, prescribed burning, and

agricultural burning pick up in winter and spring (Zhang et al., 2010; Morris

et al., 2006) which agrees with episodic events measured in St Marks in our935

study (Figure 9). While controlled prescribed fires are confined and smaller in

scale than wildfires, prescribed fire emissions typically lead to a 50% increase in

mean OC and EC concentrations in St Marks area (Zeng et al., 2008). Finally,

summertime OC levels from Hydrocarbon factor can be enhanced by biogenic

vegetation emissions from certain vegetation types, notably oaks. A study by940

Tanner and Zielinska (1994) identified biogenic hydrocarbons emitted from oak

trees to be significant contributors to volatile organic compounds between July

and August, providing potential biogenic precursors for formation of biogenic

organic aerosols. The remaining OM (34%) at St Marks is attributed to two

secondary aerosol factors, Processed 1 and Processed 2. Their stable presence945

throughout the year and correlations with S (r=0.84), Mn (r=0.64), and Zn

(r=0.54) are linked to emissions from electric generating utilities and industrial

activity (Brewer and Moore, 2009; Blanchard et al., 2013).
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3.6. OM uncertainty

Uncertainties in PMF solutions can arise from random errors and rotational950

ambiguity (Paatero et al., 2014; Brown et al., 2015). In this work, we focus

on characterizing the variations within our selected class of solutions, thereby

focusing on a limited number of rotations that have similar interpretations to

those presented in this work. To examine the variability associated with result-

ing OM apportioned to Hydrocarbon, Hydroxyl, Processed 1, and Processed 2955

factors at each site, we use all 73 PMF solutions belonging to the first (“ac-

cepted”) configuration (Figure S8). In our uncertainty calculation, we discard

the second and third configurations (Figures S9a and S9b) for the reasons men-

tioned in Section 3.3. Therefore, we calculate the mean annual OM averaged

over these 73 solutions apportioned to each factor at each site. Table 4 reports960

site-by-site mean annual OM estimates with their standard deviation, expressed

in mass units and as a percentage. 4-factor PMF solutions with distinct seed and

FPEAK parameters yield quite uniform OM results, as no standard deviation

is > 5% of the total OM measured at the site. These estimates do not represent

the overall uncertainty of solving the di�cult inverse problem, but those due965

to the range of numerical realizations generated by PMF for the solution class

selected for study in this work.

4. Conclusions

To facilitate future source analysis in light of available long-term speciated

aerosol records, this work establishes a method for systematic interpretation970

of multi-site, multi-season source apportionment of OM with FT-IR measure-

ments. Our results from this six-site reference study for 2011 IMPROVE mon-

itoring network samples demonstrate that composition and sources of organic

aerosols vary throughout the seasons. Four factor components (Processed 1,

Processed 2, Hydrocarbon, and Hydroxyl) that explain the major variations in975

OM were observed across all sites and seasons, and were attributed to a common

set of sources.
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Phoenix experienced the highest organic aerosol loadings, up to 2.2 µgm�3 in

winter. Its visibility impairment is dominated by emissions from local anthro-

pogenic activities, such as residential wood burning, motor vehicle and truck980

tra�c, and construction. OM in Trapper Creek was dominated by natural

sources and anthropogenic sources not readily controllable by the local jurisdic-

tion, including sea spray aerosol, volcanic activity, natural wildland fires, and

international emissions from shipping lanes and power plant operations. The

OM composition at Olympic is directly reflected by its location close to the Port985

of Seattle and greater metropolitan area. Port, industrial, and commercial ac-

tivities are the major contributors to local visibility impairment. The emission

sources range from mobile sources (including road vehicles, marine engines, lo-

comotive engines, and engines from construction equipment), to industrial point

sources and area sources (including local wood burning). The organic aerosol990

concentrations at remaining sites (Mesa Verde, Proctor Maple, and St Marks)

show similar seasonal cycle, where highest OM concentrations occur in summer

(or early spring in St Marks). Mobile sources, biomass burning, and natural

vegetative emissions are important at Mesa Verde and Proctor Maple, while at

St Marks emissions from prescribed fires and agricultural clearing are the most995

significant contributor to visibility impairment.

One of the important avenues for future research include extending multi-

site source apportionment studies to di↵erent years or di↵erent networks (eg,

CSN or SEARCH) to generalize man-made and natural contributions to existing

air pollution and visibility impairments. Uniform cluster memberships confirm1000

the potential for inclusion of sites that had been previously unexamined or

unmonitored. The main steps for factor solution selection include i) select the

number of factors, ii) sample over a wider seed range to select the final solution

profile based on chemical consistency and a frequentist or consensus selection

approach (after having enumerated a wide range of possible solutions). In our1005

case, the two criteria converged to the same estimate.

Compared to single-site organic aerosol studies, such as those previously

reported in intensive, short-term field campaigns (Russell et al., 2011), the
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multi-site analysis presents several unique aspects. The first one is the origin

of multiple factor-source associations, as depicted in Figure 1. When samples1010

from multiple sites and multiple seasons are aggregated in a single analysis, one

factor can be attributed to multiple sources that occur in di↵erent places or

at di↵erent times. For instance, in Phoenix Hydrocarbon factor encapsulated

wood burning and tra�c emissions (mixed source combustion B) while in St

Marks it represented mostly emissions from agricultural and biomass burning1015

activities. Similarly, Hydroxyl factor is attributed to either marine or mineral

dust aerosol production depending on the location. The multiple factor-source

correspondence provides evidence for the similarity in chemical formation, prop-

erties, and functional group composition of various anthropogenic and biogenic

sources, such as the backbone of alkane hydrocarbon precursor. Second, OA1020

sources at several locations were attributed to factors with high co-variation

in time (eg, Processed 1 and Hydrocarbon at Olympic during all seasons and

Processed 2 and Hydrocarbon at Proctor Maple during summer). The former

suggests similarities in chemical formation and atmospheric processing of sec-

ondary OA and hydrocarbon compounds that occurred during their transport1025

from the origin to the measurement site at Olympic. The latter implies the role

of photochemistry in co-incident production and processing of biogenic and less

oxygenated fossil fuel combustion aerosols at Proctor Maple. Third, the factor

analysis identified two fossil fuel combustion factors with low correlation in time

and associations with di↵erent combustion markers at each site. Their relative1030

contributions to the local OM varied substantially amongst all sites; 9.5 - 33.5%

for Processed 1 and 4.2 - 22.1 % for Processed 2, suggesting that the yields of

secondary organic aerosol formation are specific to the given location.

On the whole, multi- and single-site factor analyses may provide qualitatively

similar factor components. In the exploratory stage of our work, we performed1035

the PMF analysis using samples from Olympic site only, which generated fac-

tor solutions with similar chemical profiles. For instance, a 4-factor solution

from Olympic measurements also resolved two anthropogenic combustions fac-

tors, one hydroxyl factor, and one hydrocarbon-like factor. A brief summary is
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included in Supporting Information in Figure S10. The convergence of multi-1040

site and single-site factor profiles confirms the robustness of our results and

supports the findings of Liu et al. (2009) who also arrived at similar chemi-

cal profiles from “combined” and “individual” PMF analyses. Studies focusing

on individual sites can additionally incorporate meteorological back-trajectory

analyses (e.g., Seibert and Frank, 2004; Pekney et al., 2006; Stein et al., 2015)1045

to further confirm sources impacting specific regions.

Finally, it is worth recognizing that 24-hour integrated FT-IR measurements

in this study may obfuscate distinctions among individual sources of the existing

aerosols at a very fine level, especially if they are chemically similar or if there

are insu�cient variations in source strengths across days. For example, obtain-1050

ing statistically resolvable components of di↵erent fuel types (such as diesel,

gasoline, ship, or motor oil) or burning emissions (such as wildfires, agricultural

burning, or home wood burning) may be challenging since their chemical pro-

files are largely composed of long-chain alkane hydrocarbons. Discriminating

features in spectra [e.g., that distinguish among fuel types (Guzman-Morales1055

et al., 2014) or terrestrial emissions (Corrigan et al., 2013)] are not specifically

targeted in this current inverse modeling strategy, but could be given higher

weight or investigated in a supervised learning framework. The assumption of

static source profiles can further be relaxed to obtain profiles “localized” in time

(e.g., Baltensperger, 2016). Conversely, additional constraints can be placed on1060

the constancy of seasonal profiles associated with each factor in three-way fac-

tor analyses (e.g., Tucker, 1966; Harshman and Lundy, 1994; de Juan et al.,

1998; Hopke et al., 1998; Ulbrich et al., 2012) to further explore interpretations

possible in such network measurements. This work establishes a base case inter-

pretation against which results obtained by such approaches can be compared.1065
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Figure 1: An interpretation of multi-site organic aerosol source apportionment results using

FT-IR spectra
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Figure 3: Fitted linear models to correlate reference concentration from di↵erent functional

groups (A-F) from laboratory standards to measured absorbance. Colors and shapes in dat-

apoints denote specific compound types.
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Figure 6: Factors from 162 solutions generated by varying seed, rotational parameter, and

number of factors grouped into one of 8 clusters. Gray, horizontal panels along the top denote

the number of factor-clusters generated by hierarchical clustering. Gray, vertical panels on

the right denote the number of factors used in our PMF analyses.

66



wave.1579

A) Processed 1

wave.1579

B) Processed 2

wave.1579

C) Hydrocarbon

3500 3000 2500 2000 1500

wave.1579

D) Hydroxyl

Wavenumber (cm−1)

Ab
so

rb
an

ce

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.00

0.01

0.02

0.03

0.04

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0.00
0.02
0.04
0.06
0.08
0.10
0.12

M
as

s 
co

nt
rib

ut
io

n 
(µ

g/
m

3 )

OM NH4
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acid, and alcohol, respectively). Right: Bar charts show factor compositions in terms of

organic mass (OM) content and inorganic ammounium (colors mapping to functional groups

as specified above).

67



M
esa Verde

O
lym

pic
Phoenix

Proctor M
aple

St M
arks

Trapper C
reek

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 

0

1

2

3

0

1

2

3

4

0

2

4

0

1

2

3

4

5

0

2

4

6

0.0

0.5

1.0

1.5

Date

O
M

 (µ
g/

m
3 )

Factor

Hydroxyl

Processed 2

Hydrocarbon

Processed 1

Processed Hydrocarbon = {Processed 1 + Hydrocarbon}

Polluted Biogenic = {Hydrocarbon + Processed 2}

Figure 8: PMF factors contributing to organic mass during 2011.

68



M
esa Verde

O
lym

pic
Phoenix

Proctor M
aple

St M
arks

Trapper C
reek

DJF MAM JJA SON

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

2.0

0.00
0.25
0.50
0.75
1.00
1.25

0.0

0.5

1.0

1.5

0.0

0.1

0.2

Season

O
M

 (µ
g/

m
3 )

Sources:
Marine aerosol

Mixed source combustion A

Mineral dust

Mixed source combustion B

Biomass burning

Fossil fuel combustion (less aged)

Fossil fuel combustion (aged)

Mixed source combustion C

Traffic emissions

Vegetation and combustion

Figure 9: Seasonal averages of site-specific sources contributing to OM.

69



0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.00

0.02

0.04

0.0

0.1

0.2

0.3

0.00

0.02

0.04

0.06

M
esa Verde

O
lym

pic
Phoenix

Proctor M
aple

St M
arks

Trapper C
reek

DJF MAM JJA SON
Season

M
ea

n 
co

nc
en

re
at

io
n 

(µ
g/

m
3 )

Tracer
Al
Ca
Fe
K
Na
Si

Figure 10: Average seasonal selected ion concentrations. Al, Ca, Fe, K, and Si are main

mineral dust tracers whereas Na represents the main marine tracer.

70



0.85

0.92

0.47

0.41

0.51

0.9

0.73

0.73

0.75

0.96

0.27

0.76

0.52

0.69

0.71

0.5

0.64

0.54

0.65

0.8

0.1

0.51

0.39

0.16

0.28

0.65

0.44

0.31

0.71

0.51

0.03

0.41

0.29

−0.05

0.15

0.67

0.48

0.55

0.48

0.9

Br

Cl

Cr

Cu

EC

Fe

K

Mn

Pb

Zn

DJF MAM JJA SON

Tr
ac
er

−1.0

−0.5

0.0

0.5

1.0

Pearson
Correlation

Figure 11: Pearson correlation coe�cients (r) between selected ion seasonal concentrations

measured at Phoenix site and strength of Hydrocarbon factor. The color spectrum denotes

the magnitude of the correlation coe�cient.

71



Supplemental Information 
 
 
 

 
 
Figure S1: Spectral profiles from all 616 samples assigned to 8 clusters. 
 
 



 
 
Figure S2: Relationship between Q/Qexp and the number of PMF factors based on varying 
FPEAK and seed values 

 
 

 
 
Figure S3: Explained variation as a function of the number of factors, FPEAK, and seed 
parameters. FPEAK varies from -1.6 to 1.6 and seed assumes values of 1, 10, and 100. 
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Figure S4: Percentage recovery of FT-IR samples across wavenumbers. 
 
 
 
 
 

 
 
Figure S5: Black line represents mean εj and shaded areas denote one standard deviation. 
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Figure S6: Pair-wise correlations of g-scores for each of the 126 solution. The gray, horizontal 
panels indicate the different seed values (1, 10, and 100) and the gray, vertical panels along the 
right represents groups with different number of factors (ranging from 3 to 8). The classification 
of symbols corresponds to the pairwise membership in factor-clusters (Figure 6 of main text). 
 
 



 
 
Figure S7. Classes of solutions obtained by grouping factor-clusters shown in Figure 6 of the 
main text. The solution class label (shown in the legend on the right) is an index of eight numbers 
indicating the number of factor profiles belonging to each of the eight factor clusters. For 
instance, (1, 0, 1, 1, 1, 0, 0, 0) is a solution for which its factor profiles belong to factor-clusters 1, 
3, 4, and 5. 
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Figure S8: PMF solution class generated when number of factors = {4}, seed = {3, 5, 10, 15, 20, 
30, 75, 100}, FPEAK = {-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6}, and also when seed  = {1} with 
FPEAK = {-1.6}. 
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Figure S9a: PMF solution class generated when number of factors = {4}, seed = {1, 50}, FPEAK 
= {-1.2, -0.8, -0.4, 0, 0.4}, and also when seed {50} with FPEAK = {-1.6}. 
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Figure S9b: PMF solution class generated when number of factors = {4}, seed = {1, 50}, FPEAK 
= {0.8, 1.2, 1.6}. 
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Figure S10: Factors from 105 solutions obtained from Olympic site measurements. Solutions 
were generated by varying seed {1, 10, 100}, rotational parameter {-0.8, -0.4, 0, 0.4, 0.8, 1.2, 
1.6}, and number of factors {3, 4, 5, 6, 7} grouped into one of 7 clusters. Orange, horizontal 
panels along the top denote the number of factor-clusters generated by hierarchical clustering. 
Green, vertical panels on the left denote the number of factors used in our PMF analyses. The 3-
factor solutions contains profiles in clusters 1 and 2 all the time, while profile in cluster 3 appears 
roughly 70% of the time and profile in cluster 4 appears the remaining 30% of the time. The 4-
factor solution looks very similar to the solution presented in the main test except for 
Hydrocarbon profile, which occurs as the solution in either cluster 4 or 5, but not both. However, 
solutions in both cluster 4 & 5 do contain excess carbonyl, which we could not reconstruct from 
our ambient FT-IR measurements. Apart from differences in Hydrocarbon factors, the rest of the 
factors (Hydroxyl, Processed 1, and Processed 2) are contained in our multi-site result. 
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Figure S11: Daily measured concentrations of Zn and Cu at Phoenix site during 2011. 

 
 
 

 
 
Figure S12: Processed Hydrocarbon factor profile. 
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Figure S13: Pearson correlation coefficients (r) between selected ion annual concentrations 
measured at Olympic site and strength of Processed Hydrocarbon factor. The color spectrum 
denotes the magnitude of the correlation coefficient. 
 
 
 
 
 

 
 

Figure S14: Polluted Biogenic factor profile. 
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