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Preface

Pressurized pipes may be endangered by failure due to excessive hydraulic transients, the
so-called waterhammer. These pressure waves are strongly affected by fluid-structure interac-
tion (FSI), unsteady skin friction, dry friction or pipe-wall viscoelasticity. With his research
project Dr. David Ferras made a significant contribution towards the improvement of one-
dimensional (1D) waterhammer modelling in the time-domain by means of the well-known
method of characteristics. He identified, described and quantified the principal mechanic-
hydraulic relationships during hydraulic transients in pressurized pipe flows in view of bet-
ter design criteria and, consequently, reducing risk of failure. Dr. Ferras has given a new
perspective regarding the theoretical background of FSI 1D modelling by means of a novel
classification based on pipe degrees-of-freedom and suggesting an original standpoint for
tackling FSI problems.

Dr. Ferras produced new extensive series of experimental data acquired from several pipe rigs,
with different pipe materials and geometries which constitute relevant benchmark data for
validating numerical models. The coil ‘breathing’ effect was highlighted by the candidate as
the cause of a systematic reduction of the waterhammer wave amplitude which has never
been described in literature before. He developed a new model considering fluid-structure
interaction mechanisms, unsteady skin friction and dry friction. He has demonstrated the
importance of unsteady skin friction when the pipe is fully anchored and the role of dry friction
when the pipe is free to move. In a second approach, Dr. Ferras added internal conditions to
the numerical model allowing the description of the pipe anchoring and thrust blocks taking
into account their resistance to movement due to the inertia and the dry friction. A novel
model was proposed which was proven to be reliable, efficient and accurate in the description
of hydraulic transients in straight pipelines for different anchoring conditions.

We would like to thank the members of the jury, Prof. Bruno Brunone from the University of
Perugia, Italy and Dr. Christophe Nicolet from Power Vision Engineering Sarl, Switzerland
as well as Prof. Francois Avellan from Laboratory of Hydraulic Machinery of EPFL for their
helpful suggestions. Finally, we also thank gratefully the Portuguese Foundation for Science
and Technology (FTC) for their financial support under project SFRH/BD/51932/2012 in the
frame of joint PhD initiative between IST and EPFL.

Prof. Dr. Anton Schleiss Prof. Dr. Didia Covas
Lausanne, October 14, 2016 T. D.
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Abstract

The aim of the present research is to identify, describe and quantify the principal mechanic-
hydraulic relationships during hydraulic transients in pressurized pipe flows in view of improv-
ing pipe design and reduce pipe and system failure. Phenomena affecting the transient wave,
such as fluid-structure interaction, unsteady skin friction, dry friction or pipe-wall viscoelas-
ticity are analysed from both the experimental and numerical standpoints. The main goal is
the improvement of one-dimensional (1D) waterhammer modelling in the time-domain by
means of the well-known method of characteristics approach.

Experimental work is presented for three different experimental facilities: a straight copper
pipe, a coil copper pipe and a coil polyethylene pipe. The analysis of the experimental data
highlights differences in the response of each system in terms of wave shape, damping, and
dispersion. The straight copper pipe behaviour is highly dependent on the pipe supports
and anchoring; the coil copper pipe to the deformation in the radial direction; while the
polyethylene facility to the pipe-wall viscoelasticity.

In a second stage, the research focuses on the numerical modelling of hydraulic transients in
pipe coils. The analysis is based on the experimental data collected in the coil copper pipe
facility. First, a structural analysis is carried out for static conditions and then for dynamic.
A four-equation model is implemented incorporating the main interacting mechanismes:
Poisson, friction and junction coupling. The model is successfully validated for different flow
rates showing a good performance of the dynamics of the coil behaviour during hydraulic
transients.

Finally, the research focuses on the straight copper pipe facility, for which the simplicity of the
set-up allows deepening on the basic modelling assumptions in fluid-structure interaction.
First, friction coupling is assessed using the basic four-equation model and unsteady skin
friction and dry friction are incorporated in the solver. The analysis shows the dissipative effect
of dry friction phenomenon, which complements that of skin friction. In a second approach
junction coupling is tackled and the resistance to movement due to inertia and dry friction
of the pipe anchor blocks is analysed. Numerical results successfully reproduce laboratory
measurements for realistic values of calibration parameters.

The work successfully identifies, describes and quantifies different physical phenomena
related with FSI by means of experimental modelling and valid numerical reproduction of
experimental results. Experimental modelling approaches are developed and data is made
available for benchmark testing of numerical tools considering facilities with different set-up
geometries and materials. A new standpoint based on pipe-degrees-of-freedom is suggested
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Abstract

for facing FSI problems, the structural behaviour of pipe coils is successfully described and
FSI in straight pipelines is analysed focusing on both junction and friction coupling. A new set
of numerical solvers are developed, presented and thoroughly discussed, which can be readily
used for the design of new industrial piping systems or the safety assessment of existing piping
facilities.

Key words: hydraulic transients; waterhammer; fluid-structure interaction; experimental data;
straight pipelines; stress-strain analysis; membrane theory of shells of revolution; junction
coupling; Poisson coupling; friction coupling; viscoelasticity; hysteresis; dry friction; skin
friction; stick-slip instability.
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Résumé

Le but de la présente recherche est de identifier, décrire et quantifier les principales relations
mécaniques-hydrauliques lors des transitoires hydrauliques dans les écoulements sous pres-
sion dans le but d’améliorer la conception des tubes et réduire la défaillance du systeme. Les
phénomenes affectant 'onde transitoire tels que les interactions fluide-structure, la frotte-
ment superficiel instationnaire, le frottement sec ou la viscoélasticité de la paroi du tube sont
analysés de maniere expérimentale et numérique. L'objectif principal est 'amélioration de la
modélisation 1D du coup de bélier dans le domaine temporel au moyen de la méthode des
caractéristiques.

Une revue de la littérature sur 'interaction fluide-structure des coups de bélier est présentée.
Les mécanismes d’amortissement qui affectent '’onde transitoire sont examinés, y compris
le frottement superficiel, le frottement sec et de structure. Enfin, un apercu des principales
applications industrielles de I'interaction fluide-structure est fournie. L'analyse montre le
manque général de FSI dans la modélisation des du coup de bélier 1D, 'absence de directives
pratiques indiquant pour quelles installations de tuyauterie FSI doivent étre considérés lors
de la conception, ainsi que la non-disponibilité d’outils de modélisation FSI couvrant les
phénomenes physiques les plus importants. La viscoélasticité de la paroi du tube, le frottement
superficiel instationnaire et le frottement du Coulomb sont des phénomenes a inclure dans
les solveurs IFS. En plus, le besoin d’outils plus précis pour la description et la conception des
blocs d’ancrage est mis en évidence.

Des essais expérimentaux effectués au Laboratoire de 'Hydraulique et de I'Environnement de
I'Instituto Superior Técnico (LHE/IST), Lisbonne, Portugal, sont présentés pour trois installa-
tions expérimentales différentes : un tuyau droit en cuivre, un tuyau en bobine en cuivre et un
tuyau en bobine en polyéthyléne. L'analyse des données expérimentales met en évidence les
différences dans la réponse de chaque systéme en termes de forme d’onde, d’amortissement,
et la dispersion. Le comportement de tuyau droite de cuivre est fortement dépendant des
supports et les conditions d’ancrage en raison de I'interaction fluide-structure qui se produit
lorsque la conduite est autorisée a se déplacer dans la direction longitudinale. L'interaction
fluide-structure a également un role important dans le tuyau en bobine en cuivre, qui est
autorisée a se déformer dans la direction radiale. Enfin, I'’effet dominant dans l'installation en
polyéthylene est le comportement viscoélasticité de la paroi du tube, ou la réponse retardée
de la déformation du matériau (hystérésis) augmente I’amortissement de I’onde transitoire.

Dans une deuxiéme étape, la recherche se concentre sur la modélisation numérique des
transitoires hydrauliques en bobines. L'analyse est basée sur les données expérimentales
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Abstract

recueillies dans 'installation de tuyaux en bobine de cuivre. Tout d’abord, une analyse de
déformation-contrainte est effectuée afin de comprendre les déplacements de la bobine dans
des conditions statiques pour des chargements de pression interne. Ensuite, une analyse
dynamique est effectuée dans le but de coupler I'écoulement de la conduite transitoire avec
le mouvement axial du tuyau tout en négligeant 'inertie radiale, la flexion et la torsion du
systeme de tuyauterie. Par conséquent, un modele a quatre équations est mis en ceuvre
en incorporant les mécanismes de interaction principaux : Poisson, friction et jonction. Le
modele est validé avec succes pour différents débits montrant une bonne performance de la
dynamique du comportement de la bobine lors des transitoires hydrauliques.

Enfin, la recherche se concentre sur l'installation de tuyau droit de cuivre, pour lequel la
simplicité de la mise en place permet d’approfondir sur les hypothéses de modélisation
de base en interaction fluide-structure. Tout d’abord, le couplage de friction est évalué en
utilisant le modeéle de base a quatre équation et friction superficiel variable et de frottement
du Coulomb sont incorporés dans le code. Lanalyse montre I'effet dissipatif du phénomeéne
de frottement du Coulomb, qui complete celle de la friction superficiel. Dans un second
approche couplage de jonction est abordée et la résistance au mouvement en raison de
I'inertie et de frottement du Coulomb des blocs d’ancrage de tuyauterie est analysé. Les
résultats numériques reproduisent avec succes des mesures de laboratoire pour des valeurs
réalistes des parameétres d’étalonnage.

La these, avec succes, identifie, décrit et quantifie les différents phénomeénes physiques liés a
FSI au moyen de la modélisation expérimentale et de reproduction numérique valide de résul-
tats expérimentaux. Approches de modélisation expérimentales novatrices sont développées
et les données sont mises a disposition pour les tests d’évaluation des outils numériques en
tenant compte des installations avec différentes géométries et matériaux. Une nouvelle série
de solveurs numériques sont développés, présenté et discuté a fond, qui peut étre facilement
utilisé pour la conception de nouveaux systemes de tuyauterie industrielle ou I'’évaluation des
installations de tuyauterie existantes de sécurité.

Mots clefs : transitoires hydrauliques; coup de bélier; interaction fluide-structure ; données
expérimentales; conduites droites; analyse de contrainte-déformation; théorie de coque;
couplage de jonction; couplage Poisson; couplage de friction; viscoélasticité; hystérése;
frottement du Coulomb; friction superficiel; stick-slip instabilité.



Resumo

O objetivo do presente estudo é identificar, descrever e quantificar as relagdes mecanico-
hidréaulicas principais durante transientes hidrdulicos em sistemas pressurizados com o
objetivo de melhorar a concepc¢ao de tubulacao e falha no sistema. Fendmenos que afetam
a onda transiente como a interacdo fluido-estrutura (FSI), o atrito superficial varidvel, a
friccdo de Coulomb ou a viscoelasticidade da parede de tubo sdo analisados do ponto de vista
experimental e numérico. O objectivo principal é a melhoria da modelacdo 1D do golpe de
ariete no dominio do tempo, por meio do método das caracteristicas.

Uma extensa revisdo do estado de arte sobre interacdo fluido-estrutura em sistemas em
pressdo é apresentado. Mecanismos de amortecimento que afectam a onda transitéria sdo
bem revistas, incluindo o atrito superficial, a friccao de Coulomb e o amortecimento estrutural.
Finalmente uma visdo sobre as principais aplica¢des industriais de interacdo fluido-estrutura
é apresentada. A anélise observa a falta geral de FSI no modelo 1D de golpe de ariete, a
falta de orientacgdes préticas, indicando, para que as instalacdes de tubulacdo deve FSI ser
considerados durante o projeto, bem como a indisponibilidade de ferramentas de modelagem
FSI cobrindo os fendmenos fisicos mais importante. A viscoelasticidade da parede de tubo,
o atrito superficial varidvel e a friccdo de Coulomb sdo fendmenos a serem incluidos no
modelo FSI. Também a necessidade de ferramentas mais precisas para o o desenvolvimento e
definicao de ancoragens e suportes da tubulac¢ao é evidenciado.

O trabalho experimental foi realizado no Laboratério de Hidrdulica e Recursos Hidricos e
Ambientais do Instituto Superior Técnico (LHE/IST), Lisboa, Portugal, contando com trés
instalacOes experimentais diferentes: tubagem rectilineade cobre, tubo bobinado de cobre
e tubo bobinado de polietileno. A anélise dos dados experimentais evidencia diferencas na
resposta de cada sistema em termos de forma de onda, de amortecimento e de dispersdo. O
comportamento da tubagem rectilinea é altamente dependente dos suportes e das condi¢oes
de ancoragem, devido a interacg¢ao fluido-estrutura que ocorre quando o tubo se desloca na
direccdo longitudinal. A interaccao fluido-estrutura tem também um papel importante no
tubo bobinado de cobre, quando este permite deformacao na direccdo radial. Finalmente,
o efeito dominante na unidade de polietileno é o comportamento viscoeldstico da parede
do tubo, em que a resposta retardada da deformag¢dao do material (histerese) aumenta o
amortecimento da onda transitdria.

Numa segunda fase, a investigacao centra-se na modelagem numérica de transientes hidrauli-
cos em tubos bobinados. A andlise baseia-se nos dados experimentais recolhidos na instalacao
de tubo bobinado de cobre. Em primeiro lugar uma anélise de tensdao-deformacao é levada
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a cabo de modo a compreender os deslocamentos da bobina em condi¢des estaticas para
cargas de pressdo interna. Desta forma, uma andlise dindmica é realizada para o acoplamento
do fluido com o movimento axial da parede de tubo, negligenciando a inércia radial, flexdao
e torcao do sistema de tubulacdo. Consequentemente, um modelo de quatro equacoes é
implementado incorporando os principais mecanismos de acomplamento: Poisson, friccao e
juncdo. O modelo é validado com éxito, para diferentes caudais iniciais, mostrando um bom
desempenho da dindmica do comportamento da bobina durante transientes hidrdulicos.
Finalmente, a investigacdo centra-se na instalacao rectilinea de cobre, para o qual a simpli-
cidade da configuragdo permite aprofundar sobre as premissas de modelagem bésicas da
interaccao-fluido-estrutura. Em primeiro lugar, o acoplamento de friccado é avaliado usando
o modelo de base de quatro equacdes, incorporando o atrito superficial variavel e a friccao
de Coulomb. A andlise mostra o efeito da dissipacdo do fendmeno de friccao de Coulomb
que complementa o atrito superficial. Em segundo, o acoplamento da junc¢ado é abordado e a
resisténcia ao movimento devido a inércia e a friccao de Coulomb dos blocos de ancoragem
da tubulacao sdo analisados. Os resultados numéricos reproduzem com sucesso as medicoes
do laboratério para valores realistas de parametros de calibragao.

A tese, com sucesso, identifica, descreve e quantifica diferentes fenémenos fisicos relacionados
com FSI por meio de modelagem experimental e reprodugdo numérico valido de resultados
experimentais. Inovadoras abordagens de modelagem experimentais sao desenvolvidos e
os dados sao disponibilizados para teste de desempenho de ferramentas numéricas consi-
derando instalacdes com diferentes geometrias e materiais. Um novo conjunto de codigos
numéricos sdo desenvolvidos, apresentado e amplamente discutido, o que pode ser facil-
mente utilizado para a concep¢do de novos sistemas de tubulacao industrial ou a avaliacao da
seguranca de instalacGes de tubagens existentes.

Palavras-chave: transientes hidrdaulicos; golpe de ariete; interacao fluido-estrutura; dados
experimentais; andlise tensao-deformacao; teoria de membrana; acomplamento de juncao;
acoplamento de Poisson; acoplamento de friccdo; viscoelasticidade; histerese; friccdo de
Coulomb; atrito superficial; instabilidade de deslizamento intermitente.
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Resumen

El objetivo de la presente investigacion es identificar, describir y cuantificar las principales
relaciones mecédnico-hidrdulicas durante flujos transitorios a presion a fin de mejorar el
disefio de sistemas de tuberias y reducir roturas y accidentes. Factores que afectan la onda
transitoria, como interaccion fluido-estructura, fricciéon fluido-sélido, friccién s6lido-sé6lido
o viscoelasticidad de la pared de la tuberia son analizados desde ambos puntos de vista,
experimental y numérico. El objetivo final es la mejora de modelos unidimensionales (1D) de
golpe de ariete basados en el conocido método de las caracteristicas.

El trabajo presenta una extensiva revision de literatura en el campo de interacci6n fluido-
estructura en modelos unidimensionales de golpe de ariete. Los efectos de amortiguacién
de onda son también revisados, incluyendo fricciéon fluido-sélido o histéresis de la tuberia.
Finalmente, las principales aplicaciones industriales de interaccién fluido-estructura son
descritas. En general, el anélisis realza el desuso en un contexto FSI de las conocidas herra-
mientas de modelaje comtinmente aplicadas en el modelo clasico de golpe de ariete, la falta
de guias de disefio y dimensionamiento indicando cuando FSI debe de ser considerado, asi
como la falta de disponibilidad de modelos de simulacién que cubran los fenémenos fisicos
mds importantes. La viscoelasticidad de la pared de tuberia, friccién fluido-sélido y friccién
solido-sdlido son factores que deberian de estar incluidos en c6digos FSI y los criterios para
su consideracion y evaluacion deberian de estar clarificados. La necesidad de herramientas
més fiables y precisas para el disefio de los soportes y fijaciones de las tuberias es también
realzada.

El anélisis experimental, llevado a cabo en el Laboratorio de Hidrdulica y medio-ambiente
del Instituto Superior Técnico (LHE/IST), Lisboa, Portugal, es presentado para tres distintas
instalaciones experimentales: una tuberia de cobre recta, una tuberia de cobre en bobina
y una tuberia de polietileno también en bobina. El andlisis subraya las diferencias en la
respuesta de cada uno de los sistemas en términos de forma, amortiguaciéon y dispersiéon
de onda. El comportamiento de la tuberia de cobre recta depende, en gran medida, de los
soportes y las condiciones de fijacién del sistema debido a la interaccién fluido-estructura que
ocurre por el movimiento axial de la tuberia. Interacciéon fluido-estructura tiene también un
impacto importante en la tuberia de cobre en bobina, la cual se deforma en la direccion radial.
Finalmente, el efecto dominante en la instalacién de polietileno es la viscoelasticidad de la
pared de tuberia, puesto que la respuesta retardada de la deformacion de la pared (histéresis)
causa un incremento de la amortiguacion de la onda transitoria.

En una segunda fase, la investigacion se centra en el desarrollo del modelo numérico en
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tuberias en bobina. El anélisis se basa en datos experimentales recogidos en la instalacién de
cobre. Primero el comportamiento estructural del sistema es analizado para cargas estéticas
de presion interna. Luego, un andlisis dindmico estudia la interaccién entre el flujo de la
tuberia y los desplazamientos axiales de esta, despreciando la inercia radial, la flexién y la
torsion del sistema. Un modelo de cuatro-ecuaciones es implementado incorporando los tres
mecanismos bdsicos de interaccién: Poisson, friccion e interaccién de juntas. El modelo es
validado con éxito para diferentes condiciones iniciales, ofreciendo, en todos los casos, una
buena representacién del comportamiento dindmico de la instalacién durante transitorios
hidréulicos.

Finalmente el trabajo se centra en la tuberia de cobre recta, su simplicidad geométrica per-
mite profundizar en las simplificaciones bdasicas de simulacién numérica de interaccién
fluido-estructura. Primero la interaccién por friccidn es estudiada usando el c6digo basico
de cuatro-ecuaciones con friccién variable fluido-sélido y friccién sélido-sé6lido de Coulomb.
El andlisis destaca la importancia de tener presente los dos fenémenos disipadores. En una
segunda fase, la interaccién por junta es analizada y la resistencia al movimiento por inercia y
friccion de los bloques de anclaje es considerada. Los resultados numéricos reproducen con
precision las mediciones experimentales para valores realisticos de los pardmetros del modelo.
El presente trabajo identifica, describe y cuantifica con éxito los diferentes fendmenos fisicos
relacionados con FSI por medio de experimentos de laboratorio y modelacién numérica.
Novedosos enfoques de experimentacion y los datos resultantes quedan disponibles como
referencia para la verificacién y validacién de herramientas de simulacién numérica, teniendo
en consideracién instalaciones con distintos materiales de tuberias, geometrias y configura-
ciones. Nuevos cddigos de modelacion han sido desarrollados, presentados y analizados. Su
uso queda disponible para el disefio de nuevos sistemas de tuberias o para la evaluacién y
diagnosis de instalaciones existentes.

Palabras clave: transitorios hidraulicos; golpe de ariete; interaccion fluido-estructura; datos
experimentales; tuberias rectas; andlisis de tensiones y deformaciones; teoria de membrana;
interaccion por junta; interaccién por Poisson; interaccién por friccién; viscoelasticidad; his-
téresis; friccion de Coulomb; fricciéon superficial; inestabilidad de deslizamiento intermitente.
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1§ General introduction

1.1 Research scope

As a product of several sciences, waterhammer theory is multidisciplinary. The description of
pressurized transient flow in closed conduits is its main focus, hence the dominant discipline is
hydraulics. Nonetheless, its essence is not complete without the standpoint of other disciplines
such as structural mechanics, material science or acoustics. This research deals mainly with
two sciences: fluid dynamics and structural mechanics. Fluid-structure interaction (FSI)
in one-dimensional (1D) pressurized transient flow in the time-domain is the ground-base
in which the present work is developed. Issues like unsteady skin friction, dry friction and
pipe-wall viscoelastic behaviour are deeply analysed.

1.2 Historical background

Scientific theories in normal science are the result of a step-wise aggregation of research
contributions, like pieces of a puzzle that are added to solve preconceived problems (Kuhn,
2012). The hindered pieces of the waterhammer theory puzzle may be unfolded by explaining
those preconceived solutions that at each stage were envisaged. The ultimate solution is a
numerical model which is a theory itself or, in other words, ‘a collection of signs that serve as
asign’ (Abbott, 1993). The 1D FSI model, as a self-standing theory, is capable of outputting
those historically targeted solutions.

Consider the most elementary hypothetical case of a reservoir-pipe-valve system composed of
a frictionless straight pipe of infinite length with frequent expansion joints, rigid, thin-walled
and containing incompressible fluid for which a steady flow is interrupted by an instantaneous
valve closure. In such set-up the pressure wave speed would be infinite and any flow change
at any section of the pipe would represent an instantaneous infinite change of momentum all
throughout the infinite length of the pipe. Hence, no transients would be physically feasible,
as there were no valves nor pipe elements capable of resisting such an infinite momentum.
Add, to this initial set-up, some more realistic assumptions that will unfold, one by one, the
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puzzling of the historical background on 1D waterhammer and fluid-structure interaction
research:

1. Compressible fluid: the waterhammer wave cellerity is finite, equal to the fluid acoustic
wave speed in unconfined media, and Newton-Laplace equation (Newton, 1686; La-
grange, 1788; Laplace et al., 1829) can be applied for its computation. The wave length
is infinite (as the pipeline is infinite) and the wave amplitude is proportional to the wave
celerity and can be computed by Joukowsky equation (Von Kries, 1883; Frizell, 1898;
Allievi, 1902; Joukowsky, 1904).

2. Elastic pipe-wall: the distensibility of the pipe-wall slows down the wave propagation
speed, which can be computed by Helmholtz-Korteweg equation (Korteweg, 1878;
Halliwell, 1963). The wave length is infinite and its amplitude can be computed by
Joukowsky equation.

3. Pipe of finite length: the waterhammer wave propagates back and forth throughout
the pipe according to the boundary conditions. To describe such oscillating flow a
two-equation model to solve mass and momentum conservation in the fluid is at least
required (Braun, 1909, 1910; Allievi, 1902, 1913).

4. Wave dissipation: assumptions such as skin friction, dry friction or hysteretic damping
must be added and the waterhammer wave dampens towards a final steady state. The
most common approach is the insertion of quasi-steady skin friction which can be
computed by Darcy-Weisbach friction formula (Streeter & Wylie, 1978; Chaudhry, 2014).

5. No expansion joints: the fluid interacts with the axial movement of the pipe. A four-
equation model to solve mass and momentum conservation in the fluid and in the
structure is at least required. Skalak (1955); Biirmann (1979); Wiggert et al. (1985a);
Tijsseling (2003), amongst others, contributed to the development of such models.

6. The pipe has an elbow: in-plane shear and bending occurs during the waterhammer
wave and an eight-equation model is at least required for its description(Valentin et al.,
1979; Hu & Phillips, 1981).

7. The pipe has two out-of-plane elbows: there is shear and bending in two planes and
additionally torsion in the cross-sectional plane, hence a fourteen-equation model is at
least required (Wilkinson, 1977; Wiggert et al., 1985a; Wiggert, 1986; Wiggert et al., 1987).

8. Thick-walled pipe: radial inertia of the pipe-wall must be taken into account and
a sixteen-equation model is required. Walker & Phillips (1977) proposed a model to
account for radial inertia.

This sequence of assumptions, which emulates the main historical milestones of waterhammer
research, can be applied, one by one, to a state-of-the-art sixteen-equation model, revealing

2
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the background lying beneath the model. A more detailed state-of-the-art review is presented
in Chapter 2.

Nowadays, 1D waterhammer researchers are mainly focused on the improvement of the
description of physical phenomena affecting the transient wave taking as basis the classical
waterhammer solver. However, 1D FSI represents an extension of the classical theory, and
some of the developments carried out for the classical theory have not been transferred yet to
the state-of-the-art 1D FSI framework.

The present work aims at contributing to 1D FSI knowledge, first, by providing and inter-
preting experimental evidence, then carrying out numerical modelling developments and
confirmation, and finally by developing add-ons for the basic four-equation FSI solver.

1.3 Aims and objectives

The aim of the present research is to identify, describe and quantify the principal mechanic-
hydraulic relationships during hydraulic transients in pressurized pipe flows in view of improv-
ing pipe design and reduce pipe and system failure. Phenomena affecting the transient wave,
such as fluid-structure interaction, unsteady skin friction, dry friction or pipe-wall viscoelas-
ticity are analysed from both the experimental and numerical standpoints. The main goal is
the improvement of one-dimensional (1D) waterhammer modelling in the time-domain by
means of the well-known method of characteristics approach.

The targeted objectives can be summarized in the following points:

* To identify and evaluate from the experimental standpoint FSI, pipe-wall viscoelasticity,
and unsteady skin friction using pressure and strain measurements from different pipe
rigs.

* To assess, describe and understand, by means of a static stress-strain analysis, the
behaviour of pipe coils under inner pressure loads.

* To incorporate the achieved stress-strain relations in a dynamic analysis based on a FSI
solver.

* To assess different approaches for implementing numerically friction coupling in four-
equation models applied in straight pipes.

* To incorporate in the four-equation solver internal conditions (i.e. junction coupling)
aiming at simulating the behaviour of pipe anchoring supports.
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1.4 Methodology

The research focuses on the description of the propagation of transient waves, therefore,
all the assessments presented hereby, either empirical or numerical, are approached in the
time-domain. Numerical models based on the method of characteristics (MOC) are developed,
the implementations are verified by means of benchmark problems and model validation by
experimental data acquired in different experimental set-ups. Three experimental facilities,
assembled at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico
(LHE/IST), Lisbon, Portugal, have been used for the experimental data collection: (i) a straight
copper pipe, which is tested for different supporting set-ups; (ii) a coil copper pipe, whose
response in transient conditions is strongly affected by the coil geometry; and (iii) a coil
polyethylene pipe, that allows the study of the pipe-wall viscoelasticity.

For the numerical work first a stress-strain analysis is carried out with the goal to understand
the structural behaviour of pipe coils in static conditions. Then FSI is approached and dynamic
interactions between the fluid and the structure are considered by means of a four-equation
model. Once FSI implementations are verified, add-ons considering the main dissipation
phenomena are included and finally validated by empirical observations. The same four-
equation solver is used for the description of the straight copper pipe, for which friction and
junction coupling are assessed aiming at describing the effect of pipe supports and anchoring
blocks.

1.5 Organization of the report

First an extensive review of the main developments in 1D fluid-structure interaction anal-
yses in the time-domain is provided in Chapter 2. In the review the background theory is
presented and the gaps of the current state-of-knowledge all identified. Additionally, the main
engineering applications of waterhammer developments related with FSI are reported. In
Chapter 3 the experimental data collected from the three different pipe rigs are presented.
Pressure and strain measurements are analysed and fluid-structure interaction, unsteady skin
friction and pipe-wall rheological behaviour effects are discussed for the three pipe systems.
Chapter 4 deals with the fluid-structure interaction occurring in coils. It is subdivided in two
main sections: firstly, a stress-strain analysis targets the study of the static structural behaviour
coil pipes; and, secondly, a FSI analysis shows the dynamic behaviour of coils during hydraulic
transients. Chapter 5 deepens on the fluid-structure interaction in straight pipelines. This
chapter is also subdivided in two sections, the first deals with friction coupling considering
unsteady skin friction and dry friction; the second focuses on the junction coupling and
the resistance to movement of thrust and anchor blocks. Finally, conclusions highlighting
the main contributions of each chapter are reported and the outlook for future research is
introduced.

A collection of appendices complete the subjects presented in each chapter. In Appendix A



1.5. Organization of the report

the fundamental transient equations in pipe systems are introduced and the governing equa-
tions, used in the present dissertation, are derived. Appendix B develops the compatibility
equations for the implementation of the four-equation model. Implementations are verified
in Appendix C by means of benchmark problems. Appendix D describes an upgrade of the
four-equation model based on a friction coupling that considers skin and dry dissipation
effects. Appendix E presents an extended version of the well known Joukowsky formula. The
new formula takes into account the additional pressure rise caused when a straight pipe is
allowed to move in the longitudinal direction. Finally, in Appendix F additional experimental
data from the straight copper pipe facility, complementing the one shown in Chapters 3, 4
and 5, is presented for broader flow rates and pipe anchoring conditions.

Therefore, as depicted in Fig. 1.1 the presented research work can be divided in two main
parts: experimental and numerical analysis. The first part is oriented to the experimental
identification and evaluation of the targeted wave damping phenomena by means of three
different experimental facilities. The goal of the second part is the numerical simulation of
those phenomena by means of different modelling approaches.

Straight copper pipe (SCP)

Experimental
Coil copper pipe (CCP)

Analysis
(Chapter 3)
Coil polyethylene pipe (CPP)
Research - .
work FSlin coils Static analysis
(Chapter 4) Dynamic analysis
Numerical _
analysis -
FSlin straight Friction coupling
pipelines —
(Chapter 5) Junction coupling

—

Figure 1.1 — Summary of the main research work.

Chapter 3 and sections 4.2, 4.3, 5.2 and 5.3 have been prepared as scientific publications.
Nevertheless they have been arranged in a way to avoid repetitions.






P4 State-of-the-Art Review

2.1 Introduction

The first scientific contributions in the field of fluid-structure interaction in transient pipe
flow took place in the 19" century when authors like Korteweg (1878) or Helmholtz (1882)
realized about the need of considering both interacting mechanisms fluid compressibility and
pipe-wall distensibility. Classical waterhammer theory is also based on this principle. Since
then, many researchers have added their contributions in a step-wise manner, building up
and shaping the theory of hydraulic transients in pipe flow. From this main body of knowledge,
subtheories improving the basic assumptions are added, such as unsteady friction, pipe-wall
viscoelasticity or cavitation.

Fluid-structure interaction (FSI) should not be understood as an add-on complement of
the basic classical waterhammer model. FSI is a self-sustaining theory. Each FSI model is
an approach to tackle the original principle of considering waterhammer waves as result of
the effect between fluid and pipe behaviours. Skalak (1955) presented a milestone paper
entitled An extension of the theory of waterhammer’. The basis of FSI was established, pipe vi-
bration modes were described and basic formulation for straight pipes was presented. Skalak’s
paper triggered the FSI research in the two-way coupling between fluid dynamics and struc-
tural mechanics. Contributions such as Wilkinson (1977), Walker & Phillips (1977), Valentin
etal. (1979), Wiggert et al. (1985a), Wiggert (1986), Joung & Shin (1987), Biirmann & Thielen
(1988a), Wiggert & Tijsseling (2001) and Tijsseling (2003) developed and completed the theory
for all the basic degrees-of-freedom of pipe-systems.

Some historical reviews on hydraulic transients in pipe flow are given by Wood (1970), Thor-
ley (1976), Anderson (1976), Tijsseling & Anderson (2004) and Tijsseling & Anderson (2004).
The developments in waterhammer research before the 20'” century are well summarized
in Boulanger (1913). Also Lambossy (1950) and Stecki & Davis (1986) presented in-depth re-
views that served, at that time, as vision papers. More recently, Ghidaoui et al. (2005) presented
a complete state-of-the-art review focusing on both historic and most recent research and

practice and tackling most of the waterhammer research topics. Surveys more specific in the
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field of fluid-structure interaction are given by Wiggert (1986), Tijsseling (1996) and Wiggert &
Tijsseling (2001). For the present research, the author has found a very valuable groundwork
in the latter two publications. Since Wiggert & Tijsseling (2001), no other review papers have
been published on fluid-structure interaction. The aim of the current chapter is to report most
significant contributions carried out in waterhammer research related to fluid-structure inter-
action in 1D hydraulic transients modelling, giving emphasis on the time-domain analyses
and focusing on most recent research.

The chapter starts with the basic definitions and background theory that frame the research of
FSI in waterhammer modelling. Also the basic wave damping phenomena are briefly reviewed
and the most noteworthy contributions are reported. A review on the experimental research is
provided, presenting the main empirical achievements that contributed on the extension of
FSI theory. Numerical research is also overviewed following a physically-based classification of
pipe degrees-of-freedom. Finally, some insights of engineering applications of fluid-structure
interaction developments in pipe flow are pointed out.

2.2 Definitions and basic concepts

2.2.1 Transient pipe-flow

Transient flow is the intermediate-stage flow, when the flow conditions are changed from
one steady-state condition to another steady-state (Chaudhry, 2014). This definition includes
no-flow and steady flow, in which the initial and the final steady states are equal.

The unsteadiness of the flow depends on: (1) the time scale of the transient event, which is
the time lag between the initial and the final steady states; (2) the time scale of the system
response, related to the period of the system vibration; (3) the time scale of the transient
excitation, which refers to the duration of the disturbance that causes the transient event.

Seven types of pipe-flow are distinguished in Tijsseling & Vardy (2004) depending on the three
previous time scales:

¢ No-flow: static laws are considered for the no-flow conditions (i.e. V(¢) = 0). The
representative time scale is ¢ = co.

* Steady flow: similar conditions stand for steady flow in which velocity is a constant
value during all the considered period (i.e., V(t) = k). The representative time scale is as
well ¢ = co.

* Quasi-steady flow: velocity varies slowly enough to assume the conditions are identical
to those of a steady flow with the same instantaneous mean velocity. Representative
time scale: 2D/(fV) <« t < oo.

¢ Rigid column: in this type of flow inertia significantly impedes changes in velocity,
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but compressibility of the fluid can be ignored. The velocity along the pipe can be
assumed uniform (as long as the pipe cross-section is constant). Representative time
scale: t ~2D/(fV).

e Waterhammer and 1D-FSI: for highly accelerated flow, fluid compressibility may not
be negligible and non-uniformity of the flow velocity along the pipe must be considered.
These conditions occur for representative time scales of ¢t < L/ ay,, where ay, is the wave
speed of the hammer wave and L the representative length scale which frequently
corresponds to the distance between extreme boundaries or the pipe length.

e 2D-FSI: the flow is assumed axisymetric and radial inertia of the fluid and the pipe-wall
are taken into account. The characteristic time scale is ¢t = D/ ay,. This time scale is very
low, that is why radial inertia is frequently neglected.

* 3D-FSI: this is the most general case, 3D Navier-Stokes equations for the fluid and shell
equations for the structure are required. The characteristic time scale is the lowest:
t=elay.

2.2.2 Fluid-structure interaction:

Fluid-structure interaction (FSI) in pipe systems consists of the transfer of momentum and
forces in both ways, between the pipe-wall and the contained fluid during unsteady flow (Wig-
gert, 1986). Hence, both the fluid and the structure transmit an effect upon one another (v.i.
Fig. 2.1).

From the modelling standpoint, fluid-structure interaction is a multiphysics coupling between
the laws that describe fluid dynamics and structural mechanics. Pipe systems experience
severe dynamic forces during a waterhammer event, when these forces make the system move,
significant FSI may occur, so that liquid and pipe systems cannot be separately treated in a
theoretical analysis: interaction mechanisms have to be taken into account (Tijsseling, 1996).
Moreover, this is a fundamentally interactive process, thus explaining why an uncoupled
analysis (where fluid force histories are used as input data in a structural dynamics code for
the pipes, without coupling back) may give erroneous results (Tijsseling & Vardy, 2004).



Chapter 2. State-of-the-Art Review

Valve Pipe . Base
; Collision >
operation break motion
Fluid transient FS| Pipe motion

NI

Mechanical
equipment

Pump Turbulence Blast

Figure 2.1 — Sources of excitation and interaction between liquid and piping (Wiggert &
Tijsseling, 2001).

In a broader sense, fluid-structure interaction embraces any form of transfer of energy, one
upon another, between the fluid and the structure. In common engineering problems, this
transferred energy is typically either kinetic or heat. The former is termed mechanical fluid-
structure interaction and the latter thermal fluid-structure interaction. Heat exchange effect
in transient pipe flow is barely significant, processes are assumed isothermic, and FSI analyses
are mainly focused on the momentum exchange between the fluid and the pipe structure.

Two different approaches may be followed to account for the momentum transfer into the
structure (Giannopapa, 2004): considering either the structure moves as a rigid solid or by the
propagation of a local excitation/deformation of the solid. In the first no transient event is
considered propagating throughout the solid, the structure element moves as a rigid body
and its effect over the fluid is analysed. In the second, the modes of vibration of the structure
element are excited and their respective transients are taken into account and coupled with
the fluid transient. The present review is focused on the second.

Finally, FSI analyses may be further classified according to the dimensions and the degrees-
of-freedom with which the pipe system is allowed to move. Normally, in 1D waterhammer
research the classification criteria is based on the modes of vibration of the pipe, which is
quite convenient for frequency-domain approaches. However, for time-domain analyses a
classification based on the pipe degrees-of-freedom seems more physically intuitive. The
latter is the classification criterion used hereby (v.i. Fig. 2.2).

10
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Figure 2.2 — Classification of fluid-structure interaction phenomena.

2.2.3 Degrees-of-freedom in fluid-filled pipes

Degrees-of-freedom (DOF) are the number of independent coordinates or parameters that
describe the position or configuration of a mechanical system at any time (Sinha, 2010).
Systems with finite number of degrees-of-freedom are called discrete systems, and those
with infinite degrees-of-freedom are called continuous systems. Pipe systems are continuous
systems which can be treated as discrete systems for numerical modelling purposes.

Pipes are svelte elements, therefore, a 1D approach assuming the fluid pressure propagates
axially during hydraulic transients seems to be reasonable. However, transient pressures
transmit forces over the pipe wall that make the piping system move in a 3D space. The
basic degrees-of-freedom for a rigid body in a 3D space are three for translation (i.e. heaving,
swaying and surging) and three for rotation (i.e. pitching, yawing, rolling). An infinitesimal
control volume of pipe-segment (like in Fig. 2.3) will have the six basic degrees-of-freedom.

11
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The pipe control-volume is a hollowed cylinder, therefore axisymmetric vibration due to
hoop strain must be as well considered, adding another degree-of-freedom. Additionally, the
infinitesimal control volume of the 1D inner fluid accounts for another degree-of-freedom.
Henceforth, in the present 1D FSI analysis eight degrees-of-freedom compose the infinitesimal
control volume of a pipe system.

In each degree-of-freedom momentum and mass conservation laws are applied giving as result
a set of 16 partial differential equations (cf. Appendix A), with time and space coordinates
as independent variables, aiming to solve two basic dependent variables related with the
loading and the movement in each degree-of-freedom (i.e., load and deformation relation).
Depending on the pipe geometry, axial, shear, bending and torsional forces and displacements
alternate throughout the pipe. A schematic of such displacements is shown in Fig. 2.3.

Q Swaying

Yawing

Y A

‘ Heaving

Pitching

Surging
Rolling

Figure 2.3 — Spatial reference system and signs convention in a straight pipe element

FSI models in 1D waterhammer analyses can be classified following the pipe degrees-of-
freedom they are aimed to describe (v.s., Fig. 2.3):

1-DOF (fluid): only the axial fluid transient event is described.

2-DOF (breathing): radial inertia of the fluid and the pipe is taken into account.

3-DOF (surging): refers to the axial movement of the pipe.

4-DOF (swaying): includes the effect of lateral displacement of the pipe.

5-DOF (heaving): includes the effect of vertical displacement of the pipe.

6-DOF (yawing): includes the rotation of the pipe on the Xz plane.

12
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e 7-DOF (pitching): includes the rotation of the pipe on the yZ plane.

¢ 8-DOF (rolling): includes the rotation of the pipe on the Xy plane.

The fundamental mass and momentum conservation equations for the eight degrees-of-
freedom of the pipe systems and the respective wave propagation speeds were presented
in Walker & Phillips (1977) and Wiggert et al. (1987), and in the present document can be
found in Appendix A.

2.2.4 Vibration modes in fluid-filled pipes

The modes of vibration of a physical system are determined by the degrees-of-freedom of
that system. Depending on its configuration, a pipe system allowed to move in one degree-
of-freedom might present more than one vibration modes. In a mode of vibration the overall
system experiences simple-harmonic-motion, and the characteristic frequency of this simple-
harmonic-motion is called natural frequency. When a physical system is excited, only those
modes of vibration whose natural frequencies are lower than the half of the duration of the
source of excitation are properly excited. Any vibration of the system can be decomposed into
its basic modes of vibration, which are also called natural modes or mode shapes, each mode
of vibration has a specific shape. This is the reason why a classification of numerical models
based on vibration modes is convenient in frequency-domain analyses.

2.2.5 Coupling mechanisms and modelling approaches

There are three basic kinds of coupling mechanisms (Tijsseling, 1996): (i) Poisson coupling
describes the interaction between the axial motion of the pipe-wall and the pressure in the
fluid occurring by means of the Poisson effect; (ii) friction coupling arises from the shear
stress between the pipe-wall and the fluid; (iii) and junction coupling results from unbalanced
local forces and by changes in the fluid momentum that occur in pipe bends, T-junctions or
cross-section changes.

Two main approaches can be followed for solving FSI problems: analysis in the time-domain
and in the frequency-domain. In the first, the dependent variables are directly assessed with
respect the independent variable time; whereas in the second, with respect to frequency.
In time-domain analyses the Method of Characteristics (MOC), the Finite Element Method
(FEM), the Finite Difference Method (FDM) or the Finite Volume Method (FVM) are discretiza-
tion methods used to solve the governing differential equations. In the frequency-domain,
Harmonic, Fourier, or Laplace analyses are used to replace the time variable in the governing
equations by a frequency parameter, and then the partial differential equations are trans-
formed into a set of ordinary differential equations which can be analytically integrated and
solved.

13
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Figure 2.4 — Numerical approaches used in waterhammer research for FSI problems.

In the time-domain approach, either a single or multiple numerical methods can be used for
the description of the different degrees-of-freedom of the pipe. The method of characteristics
(MOC) and the finite-element method (FEM), or a combination of both, are the most com-
mon numerical methods used for solving the one-dimensional basic equations (Tijsseling,
1996). One single integrating approach, such as MOC-MOC or FEM-FEM, is convenient as
all the information flows into the same numerical scheme (Wiggert & Tijsseling, 2001). Other
combinations are not that common in one-dimensional analyses; FVM is rather used for 3D
simulations.

2.2.6 Classification of vibration and damping

The vibration of physical systems can be classified according to different criteria(Dwivedy,
n.d.):

* For a system vibrating on its own the resulting vibration is called free vibration. If it is
subjected to an external force then it is called forced vibration.

» If damping is present, the ensuing vibration is called damped vibration, otherwise, it is
called undamped vibration. It can be also called under-damped, critically-damped or
over-damped depending on the damping ratio of the system. In the cases of critical and
over-damping there is no oscillation of the system.

e If the basic components of a vibratory system (i.e. the spring, the mass and the damper)
behave linearly, the resulting vibration is known as linear vibration. Principle of su-
perposition is valid in this case. Nonlinear vibration occurs when one, or more basic
components of the vibratory system are not linear.

14
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* If the value of excitation can be predicted at any given time, then it is called deterministic
vibration. If not, then the resulting vibration is called random vibration.

Several physical phenomena affect the waterhammer waveform, timing and damping, such as
unsteady friction, cavitation (including column separation and trapped air pockets), a number
of fluid-structure interaction (FSI) effects, viscoelastic behaviour of the pipe-wall material,
leakages and blockages (Bergant et al., 2008a). Amongst these, damping may be attributed to
three main sources:

* skin friction damping, which is related to skin friction between the fluid and the pipe-
wall, either steady or unsteady;

e dry friction damping caused by the dry friction between the moving pipe structure and
its surroundings;

e and structural or hysteretic damping, which is associated with the pipe-wall rheological
behaviour and movement.

Pipe systems subjected to waterhammer transients are free-damped-deterministic vibrating
systems with multiple modes of vibration, coupled or uncoupled, according to the degrees-
of-freedom of the conduit and exposed to skin friction, dry friction and structural/hysteretic
damping. All these damping mechanisms convert hydraulic transients into aperiodic and
non-linear phenomena difficult to describe. In Section 2.3 the fundamentals of wave damping
mechanisms are further developed and a review assessment provided.

2.2.7 Classic waterhammer theory

The classic waterhammer theory is the product of accumulation of scientific achievements
in a well defined framework, starting by Newton (1686) and Lagrange (1788), with stud-
ies on the acoustic wave speed in air; passing by Helmholtz (1882) and Korteweg (1878),
who established waterhammer wave celerity formulae based on the criterion that hydraulic
transients in pipe flow are dominated by fluid compressibility and pipe-wall distensibility;
Menabrea (1858) (Anderson, 1976) whose work is attributed to be the first contribution in
waterhammer; and Von Kries (1883) and Joukowsky (1904) who developed the equation for
the waterhammer wave amplitude; and finishing by Braun (1909, 1910) and Allievi (1902,
1913), who presented the fundamental equations in which the waterhammer theory is based.
Authors such as Michaud (1878), Jouguet et al. (1914) or Mendiluce (1987) contributed to the
development of rigid column theory, which is ignoring the compressibility of the fluid and
elasticity of the pipe-wall.

15
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Waterhammer wave celerity: The Newton-Laplace equation corresponds to the speed of
sound for a compressible fluid in an infinite medium (unconfined fluid):

K
al = —_— (2.1)
bf
However, a waterhammer wave is the result of a combination of several degrees-of-freedom
of the pipe system, each one with its own propagation speed. Helmholtz (1882) was the first
who suggested that the speed of propagation of waterhammer waves not only depends on the
acoustic speed in the fluid but also on the pipe-wall deformability.

In parallel, Young (1808), Webber (1866), Resal (1876) and Moens (1998) contributed to the
development of Eq. 2.2, which is also called the Moens-Korteweg equation and represents the
speed of propagation of a waterhammer wave for an incompressible fluid. This equation is
valid for rubber hoses and blood vessels, where the pipe-wall distensibility dominates over the
fluid compressibility during the propagation of a disturbance.

E
Ak = || —— 2.2)
prD

Korteweg (1878), in order to calculate the waterhammer wave celerity considering both
fluid compressibility and pipe-wall distensibility, combined Egs. 2.1 and 2.2 obtaining the
Helmholtz-Korteweg equation:

K
AHK =\~ Dr\ (2.3)
pr(1+%5)

which is equivalent to

EE 2.4)
2 T 2 2 :
Apx 41 Ayg

The three travelling time scales derived from Egs. 2.1, 2.2, and 2.3 follow, therefore, a Pythagorean
relation: for a rigid pipe of finite length containing incompressible fluid, the time scale of the
system response is 0 (Tijsseling & Vardy, 2004); for an elastic pipe with compressible fluid, the
square of the resultant waterhammer travelling time scale is the summation of the squares of
the time scales due to pipe distensibility and fluid compressibility.

A more general expression of the previous Eq. 2.4 can be found in Anderson & Johnson (1990):

1 0 0A
as, Op AOdp

Hence, any pressure-excited pipe degree-of-freedom affecting the cross-sectional area affects,
as well, the waterhammer wave celerity. If the pipe-wall is fully rigid (only 1-DOF considered),
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the waterhammer wave speed is the same as that of Eq. 2.1, which is the sound in unconfined
water (Frizell, 1898). If the radial deformation of the pipe is considered (2-DOF), then the wave
speed is reduced according to Eq. 2.3. If the cross-sectional area is additionally affected by the
Poisson effect, the 3-DOF has to be considered. And so on for any pipe degree-of-freedom
affecting the pipe cross-section. For instance, Anderson & Johnson (1990) derived a wave
celerity equation considering the vibrating mode caused by an elliptic conduit.

Finally, Halliwell (1963) presented the pressure wave celerity formulae most commonly used
in the classic waterhammer theory:

K
ap= | ———— 2.6)
prli+gv]

where v is a coefficient that depends on the pipe-wall setting (i.e. thin or thick-walled) and
on the anchoring conditions: (a) pipe anchored against longitudinal movement through-
out its length; (b) anchored against longitudinal movement at the upper end; (c) conduit
with frequent expansion joints. Quasi-static conditions of the structure deformation are as-
sumed in the derivation of ¥ coefficients. Values of 1 can be found in Streeter & Wylie (1978)
and Chaudhry (2014).

Fluid-structure interaction, therefore, considerably affects the waterhammer wave celerity
in fluid-filled conduits. An example of this can be found in Hachem & Schleiss (2011), where
areview of the wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels
is made. In this review the authors point out the significant difference in wave speed values
due to the fluid-structure interaction and its dependence to the stiffness of the steel liner and
penstock.

Waterhammer wave amplitude: To understand the historical evolution of the well known
Joukowsky equation, which relates pressure variation with confined liquid column velocity
changes, its analogous formulation have to be first traced in solid mechanics. Young (1808)
and Clebsch (1883) developed Eq. 2.7, which is essentially the same expression for longitudinal
waves in solid bars.

Ao, :—ppagAV 2.7)
In shock waves theory, Rankine (1870) generalized the previous expression to any substance,
whether gaseous, liquid or solid (Anderson, 2000; Tijsseling & Anderson, 2004). Finally, Von Kries

(1883), Joukowsky (1904), Frizell (1898) and Allievi (1902) adapted the formula for pressurized
conduits.

Ap=pranAV (2.8)
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Eq. 2.8 has been extensively used in pipe system design due to the easy applicability and good
accuracy for estimating maximum pressures for fast hydraulic transients. However, in the
context of fluid-structure interaction, the pressure rise computed by Eq. 2.8 may underestimate
maximum transient pressures influenced by several FSI phenomena. For instance, Wood
(1969) experimentally observed significantly higher pressures than the Joukowsky’s, claiming
FSI as the cause. Tijsseling & Heinsbroek (1999) measured pressure rises up to 100% higher
than Joukowsky’s pressure rise caused by FSI. Jones & Wood (1972) derived Joukowsky-like
expressions in order to account for 3-DOF FSI effects in the computation of maximum pressure
rise.

2.3 Damping mechanisms

2.3.1 Skin friction

Skin friction equally, but oppositely, affects the 1-DOF and the 3-DOF of a pipe system by
means of the shear stress occurring between fluid and the pipe-wall. Friction coupling is the
mechanism that describes this action-reaction relation in FSI models. The pipe structure is
not very sensitive to friction coupling in comparison to other coupling mechanisms, such as
junction or Poisson coupling. Though, in the fluid skin friction plays an important role for
the pressure wave damping, which, in classic waterhammer theory, is regarded as the only
wave dissipating mechanism. In waterhammer literature, skin friction losses are frequently
decomposed in steady and unsteady friction losses.

hfzhﬂ+hfu 2.9)

Steady skin friction

Quasi-steady conditions are frequently assumed for skin friction computation (Wylie et al.,
1993; Chaudhry, 2014). The flow is assumed to be steady at any instant, enabling the ap-
plication of steady formulae, such as Darcy-Weisbach equation, for the wall shear stress
computation.

1
T(t)=§pffV(l‘)|V(t)| (2.10)

The use of steady-state wall shear relations in unsteady problems is satisfactory for very slow
transients, so slow that they do not properly belong to the waterhammer regime (Ghidaoui
et al., 2005). Discrepancies between experimental data and numerical output frequently arise
when computations assume quasi-steady skin friction in fast transient events (Vardy & Hwang,
1991; Axworthy et al., 2000; Silva-Araya & Chaudhry, 1997; Brunone et al., 1995; Ramos et al.,
2004; Bergant et al., 2008a).
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Unsteady skin friction

Friction has frequently a non-linear behaviour in physical systems. The relation between the
parameters defining the unsteadiness of friction has motivated research on waterhammer
during the last decades. Fast transients have a strong 2D nature of the flow field (Brunone
et al., 1995, 2000). Consequently, a dimension-reduction problem must be added to the
already mentioned intrinsic non-linear problem of the friction. The unsteady term in Eq. 2.9
is aimed to represent the unsteady friction losses caused by flow reversal and strong velocity
gradients close to the pipe-wall caused by the transient flow conditions (Ghidaoui et al., 2005).
Szymanski (1930) is one of the first researchers addressing unsteady friction, clearly explaining
the underlying physics with rigorous mathematics (Urbanowicz & Tijsseling, 2015).

Unsteady friction in 1D pipe flow models is one of the factors that generates dissipation,
dispersion and shape-change of the pressure wave. Its importance depends on the system
considered and the operating conditions. In most of the laboratory waterhammer test rigs
made of metal pipes, unsteady friction dominates over steady friction (Bergant et al., 2008a),
in particular for fast transients.

Unsteady friction models can be classified, according to their basic modelling assumptions,
into four categories: (i) based on instantaneous mean flow velocity (Hino er al., 1977; Brekke,
1984; Cocchi, 1988); (ii) based on instantaneous mean flow velocity and instantaneous lo-
cal acceleration (Daily et al., 1955; Carstens & Roller, 1959; Safwat & Van der Polder, 1973;
Kurokawa et al., 1986; Shuy & Apelt, 1987; Golia, 1990; Kompare et al., 1995); (iii) based on
instantaneous mean flow velocity, instantaneous local acceleration and instantaneous convec-
tive acceleration (Brunone et al., 1991; Vitkovsky et al., 2000; Ramos et al., 2004); and finally,
(iv) unsteady friction models based on instantaneous mean flow velocity and weights of past
velocity changes (convolution based models) (Zielke, 1968; Trikha, 1975; Kagawa et al., 1983;
Schohl, 1993; Vardy & Brown, 1996, 1995, 2003, 2004; Zarzycki, 1997, 2000).

An extensive review of unsteady friction models is presented in Bergant et al. (2001) and a
comparison is carried out between Brunone’s model, which is based on instantaneous local
and convective acceleration, and Zielke’s model, which is based on weights of past velocity
changes. Soares et al. (2012) also compares an instantaneous acceleration model (Vitkovsky)
and a convolution based model (Vardy-Brown) for cavitating transient flow (v.i. Fig. 2.5).

Martins et al. (2015b, 2016) proved that the transient wall shear stress during waterhammer
events in pipe flow has a strong dependence on the flow time history and the local velocity
variation, suggesting that this should be the basis for unsteady friction models. Hence, the
research pointed out that models based on past velocity changes are more faithful to reality.
Ghidaoui et al. (2002), based on two different turbulence models, also supported the assump-
tions taken in weighting function unsteady friction models. Wall shear stresses computed
from numerical output using different 1D unsteady friction models are compared with CFD
output, proving the better performance of convolution based models.
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Figure 2.5 — Comparison between quasi-steady friction (classic elastic model), Vitkovsky and
Vardy-Brown models during a hydraulic transient caused by a pump trip (Soares et al, 2012).

Szymkiewicz & Mitosek (2005, 2007) proposed a modified finite element method for the
solution of the two-equation model. Numerical output was compared with measurements
concluding that the dissipation observed in the real waterhammer wave cannot be described
only focusing on the skin friction source term of the momentum equation. These authors
claimed that the waterhammer equations should include another additional mechanism of

physical dissipation.
With the aim to analyse the effect of unsteady friction on FSI models, in the present research

friction coupling is implemented considering Brunone (Brunone et al., 1995) and Trikha
(Trikha, 1975) unsteady friction formulations, which, as mentioned, belong to two different

families of approaches.

Brunone’s unsteady friction model

With the idea that during fast transients both, local and convective accelerations are correlated
to friction forces, Brunone et al. (1991) proposed a single expression to calculate the unsteady

component that requires an empirical coefficient k:

k (oV ov
( ) (2.11)

=3¢\ o~ ox
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In the present study the k coefficient is computed as suggested by Bergant et al. (2001):

N /C*
k= (2.12)
2

where the Vardy’s shear decay coefficient C* is given by (Vardy & Brown, 1995):

C* =0.00476 (2.13)
for laminar flow, and

7.41
C*'=——+ (2.14)

for turbulent flow.

By means of this method the k coefficient is computed as function of the Reynolds number
and there is no need for calibration.

Trikah'’s unsteady friction model

The weighting-function models take into account the 2D nature of the velocity profile that
causes the frequency-dependent attenuation and dispersion of the hydraulic transient. The
first model of this kind was proposed by Zielke (1968), who developed an analytical solution
for unsteady friction for laminar flows, where the unsteady head loss term is the convolution
of the past fluid accelerations with a weighting function (full convolution method) described
by:

16v (OV

(5 w)m 2.15)

hfu(t)exuct =

where * indicates convolution and W the weighting function. The convolution in Zielke’s
model is approximated using the rectangular rule and the acceleration term is approximated
using a central difference. However, this scheme is very expensive from the computational
point of view. Trikha (1975) simplified this computation reducing the weighting function to
the summation of three exponential terms and eliminating the need for convolution with an
approximate recursive relationship:

16v &
hru(app. = Wk; Yi (1) (2.16)

where, Y} is a function that represents the exponential terms:

Yi(t+ A0 = mp[V(E+AD - V(D] +e ™7 Y.(0); 2.17)
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n = the number of exponential terms (n = 3 in the case of Trikha formulation); 7, = is the

dimensionless time step, 7; = %ét; ny and my = coefficients of the exponential summation,

ny = (26.4, 200, 8000) and my = (1, 8.1, 40).

2.3.2 Hysteretic damping

The ratio between stress and strain, the Young’s modulus of elasticity, is an intrinsic property
of the pipe material that is affected by its molecular structure, temperature, material ageing
and stress-strain history (Jones & Ashby, 2005; Ward & Sweeney, 2012). The dependence on
stress-strain history is an important damping phenomenon during hydraulic transients in
plastic pipes, which present a strong non-elastic pipe-wall rheological behaviour (Covas, 2003).
Experimental evidence has certainly shown that the elastic assumption for plastic pipes can
lead to the underestimation of the pressure wave damping effect (Fox & Merckx, 1973; MeiBner
& Franke, 1977; Williams, 1977; Sharp & Theng, 1987; Mitosek & Roszkowski, 1998; Pezzinga &
Scandura, 1995; Covas et al., 2004c,d; Soares et al., 2008).

Several authors proposed mathematical models to describe the viscoelasticity of pipe-wall
during hydraulic transients (Gally et al., 1979; Rieutford & Blanchard, 1979; Rieutord, 1982;
Franke, 1983; Suo & Wylie, 1990; Covas et al., 2002; Covas, 2003; Covas et al., 2004a, 2005;
Keramat & Tijsseling, 2012; Duan ef al., 2009). Either frequency or time-domain approaches
can be followed to describe the effect of the viscoelastic pipe-wall behaviour in hydraulic
transients.

Due to its time-dependency, pipe-wall viscoelasticity can be described in the frequency-
domain in terms of angular frequency. Freitas Rachid et al. (1994) and Freitas Rachid &
Costa Mattos (1995) pointed out the importance of considering a variable wave speed for
hydraulic transient analysis in plastic pipes. The modulus of elasticity of the pipe material
used in the wave speed computation is replaced by the inverse of the creep function, J (Covas
et al., 2004c). MeiBner & Franke (1977) and Franke (1983) studied the damping of steady-
oscillatory flows in PVC and steel pipes, deriving wave speed and damping formulae. Rieutord
(1982) proposed a ‘one Kelvin-Voigt element model’ to describe creep and included it in
the wave speed formula. For flexible hydraulic hoses, Yu & Kojima (1998) used two Kelvin-
Voigt elements connected in series. Suo & Wylie (1990) modelled pipe-wall viscoelasticity
in both oscillatory and non-periodic flows. Covas et al. (2004c, 2005) compared the results
of this approach with experimental data (v.i. Fig. 2.6). Additionally, unsteady friction was
incorporated in the solver, pointing out the importance of considering simultaneously both
phenomena and the difficulty to distinguish them.

Viscoelastic models in time-domain approach incorporate an additional term to the mass
balance equation of the fluid. The rheological viscoelastic behaviour of the pipe wall in the
classic waterhammer equations is divided in two parts, an instantaneous elastic response
(included in the elastic wave speed) and a retarded-viscoelastic response due to the creep
of the viscoelastic material added to the mass balance equation. This formulation has been

22



2.3. Damping mechanisms

49.6
Classic Waterhammer .
o - --".“’fo"l'h': ) F' '.(T " ] .
““—‘ nly Unsteady Friction (Trikha '
49.2- ; i ; /l
48.8/ L
E |
° 48.4- i
D !
= |
48.0/ ! !
476/ E | , L
N b I Unstéady Friction (Trikha) +
472 [ —— - Experimental Data Viscoelasticity
“0 2 4 6 8 10 12 14 16 18 20
time (s)

Figure 2.6 — Comparison of classic waterhammer model with adding first unsteady friction
and then both unsteady friction plus pipe-wall viscoelasticity vs. experimental observations at
the downstream pipe-end during a waterhammer event (Covas ef al., 2005).

proposed by Gally et al. (1979) and Rieutord (1982). Rachid et al. (1992, 1991) and Rachid &
Mattos (1994) extended the development of the general constitutive theory and implemented
several types of non-elastic rheological behaviour. Metal at elevated temperatures or when
subjected to fast loading-rates presents a hysteretic behaviour. Anelasticity is the term used to
describe the hysteretic elastic behaviour of metals. The analysis of structural and atomistic
features responsible for anelasticity has shown that metallic atoms are capable of moving
relative to one another in much the same way that long polymer chains (Courtney, 1990). This
phenomenon, which has not been studied yet in the field of hydraulic transients, can cause
damping of the waterhammer wave in metallic pipes in a similar manner as viscoelasticity in
plastic pipes, though with lower intensity.

Duan et al. (2009) assessed a quasi-2D waterhammer model taking into account unsteady
friction and viscoelasticity and compared the model output with experimental data from Covas
et al. (2004c). He concluded that the viscoelastic effect is more severe for low frequencies
whereas unsteady friction is more intense for high frequencies of the wave oscillation. FSI
and pipe-wall viscoelasticity were combined in Weijde (1985), Stuckenbruck & Wiggert (1986)
and Keramat & Tijsseling (2012). The latter is provably the most complete analysis. A four-
equation model was implemented including Poisson coupling, column separation and pipe-
wall viscoelastic behaviour based on Soares et al. (2008), which included the latter two.

Rachid & Stuckenbruck (1989) modelled viscoelastic pipe behaviour coupled and uncoupled
with fluid-structure interaction in a four-equation model. Rachid & Costa Mattos (1998)
included Poisson coupling in the computations and Rachid & Mattos (1999) presented a
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parametric study. Structural damping was theoretically and experimentally studied by Budny
etal. (1991), Budny et al. (1990) and Jelev (1989). Williams (1977) combined FSI effects with
pipe-wall viscoelasticity by carrying out tests in steel, ABS and PVC for different FSI config-
urations. Tijsseling & Vardy (1996b) and Hachem & Schleiss (2012) analysed the hysteretic
damping caused by a short plastic pipe segment embedded in a metallic pipe rig. With differ-
ent experimental configurations both reached similar conclusions, stating that the vibration
could be adapted and modified in function of the segment material and geometry. In the field
of biomechanics, pipe-wall viscoelastic behaviour is also considered an important effect for
the description of the physiological flow in veins and arteries (Rutten, 1998).

The viscoelastic behaviour of pipe walls has a dissipative and dispersive effect in the pressure
wave, similar to unsteady friction losses. Although the viscoelastic behaviour of polymers is
well-known, this behaviour tends to be forgotten in hydraulic transient analyses of plastic
pipes (Covas et al., 2005). Furthermore, in these set-ups the damping of the waterhammer
wave is higher due to viscoelasticity than to unsteady friction (Ramos et al., 2004; Soares
etal., 2008). In Soares et al. (2009) unsteady friction losses, pipe-wall viscoelasticity and wave
speed variation due to the formation of localised gas cavities were assumed to be described
by the creep function. The effects of unsteady friction and pipe-wall viscoelasticity are hard
to distinguish (Covas et al., 2004b) and, to the knowledge of the authors, unsteady friction
effect has never been separately assessed in a two-mode FSI model. Due to FSI, the pipe-wall
vibrates axially at a different rate than the fluid, hence, the relative velocity between both (V})
must be considered for skin shear stress assessment. The higher the Mach number (V}./ay,) is,
the greater the wall shear stress effects become (Ghidaoui et al., 2005). Therefore, unsteady
friction effects may be increased when fluid-structure interaction is important.

2.3.3 Drydamping

In the implementation of a four-equation model a major question may arise: is there move-
ment in the pipe supports? Anchorages of pipelines aim to avoid the pipe-wall movement
essentially by means of dry friction. However, pipe supports are never entirely stiff or entirely
inert when loaded by impacts (Tijsseling, 1997). Thus, infinitesimal movements occur. In a
system where the pipe is allowed to move, not only skin friction but also dry friction dissipation
between the pipe-wall and its supports occur during fast hydraulic transients (Feeny et al.,
1998). This additional dissipation may affect all the pipe degrees-of-freedom involving the
pipe-wall movement. Dry friction is proportional to the normal force, hence, for a high normal
force, important energy might be dissipated from the structure to its supports/surroundings.
Furthermore, in this context, it is crucial to define the stick-slip transitions.

For dry friction computation, the Coulomb’s law is usually applied (Eq. 2.18), and it is assumed
that the friction force Fy is proportional to the normal force N acting between the surfaces
and opposite to the pipe-wall movement:

Fdf =—uFysign(U) (2.18)
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in which p is the friction coefficient, sign() is a function that returns 1 or -1 according to the
pipe-wall movement direction and N is the normal force corresponding to the weight of the
pipe segment filled with water:

Fn=lppAp+psAsl-Az-g (2.19)

The friction coefficient increases from 0 until a maximum value is reached when the move-
ment is imminent, and then it drops to a relatively constant value during motion for low
velocities (Weaver Jr et al., 1990).

Approximate values are given for Coulomb’s friction coefficient for different materials, either
for the static and the kinematic coefficients in Davis (1997). The static friction coefficient is
used to conduct the stick-slip condition (Capone et al., 1993) that balances the resultant force
from axial stress in the pipe-wall section with the resultant force from dry friction.

Tijsseling & Vardy (1996a) included Coulomb’s dry friction in a four-equation model with the
goal to describe the behaviour of pipe racks, proposing a quantitative guideline equation
aiming at assessing when dry friction forces may be relevant during hydraulic transients. As
it can be observed in Fig. 2.7, the pipe-wall axial movement is clearly affected by the pipe
rack and, although not that evident, as consequence fluid pressure is also affected. Hence,
the dry friction occurring between the pipe and the supports affects, somewhat, the pressure
transient wave amplitude.
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Figure 2.7 — Measured axial pipe velocity (a), and measured pressures at two different pipe
locations (b,c) for a water-filled pipe excited by a steel rod impact (Tijsseling & Vardy, 1996a).

2.4 The most relevant experimental work programmes

2.4.1 Introduction and summary table

This section focuses on those experimental programmes that served waterhammer researchers
to develop and validate their fluid-structure interaction models. Some of the presented
publications form part of bigger projects that included both experimental and numerical
research. The description of the laboratory pipe-rigs and the aim of their empirical outcome

is explained hereby.

The fluid-structure interaction is difficult to isolate and frequently undesired FSI's occur
in experimental facilities even when the target is the analysis of different phenomena. For
instance, Holmboe & Rouleau (1967) decided to embed the pipe in concrete in order to avoid
FSI in the pipe-rig, aiming to study frequency dependent wall shear stress. The following
table 2.1 a summary of the main experimental research work related with fluid-structure
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interaction in pipe transient flow is depicted organized by research institutes, authors and

dates.

Table 2.1 — Summary table of the most relevant experimental work in the research of fluid-
structure interaction in hydraulic transients.

Research centre Citations Facility description and purpose
Aluminium alloy straight pipe.
City University London, U.K. Thorley (1969) Experimental evidence of

precursor waves is depicted.

University of Dundee, U.K.

Vardy & Fan (1986)
Vardy & Fan (1987)
Vardy & Fan (1989)
Fan (1989)

Fan & Vardy (1994)
Vardy et al. (1996)

Suspended pipe rigs excited
by the impact of a solid rod
aiming at isolating FSI effects.

University of Karlsruhe, Germany

Biirmann (1975)

Biirmann (1979)

Blirmann & Thielen (1988c¢)
Burmann et al. (1985)
Biirmann et al. (1986b)
Blirmann et al. (1987)
Blirmann et al. (1986a)
Blirmann & Thielen (1988a)

Physical data from diverse
case-studies:

subterranean salt cavern,
water-main bridge and

tank-ship loading line.

The aim was the development and
validation of a four-equation model.

Delft Hydraulics, The Netherlands

Weijde (1985)
Kruisbrink & Heinsbroek (1992)
Heinsbroek & Kruisbrink (1993)

Complex apparatus hold by
suspension wires and specially
designed for FSI tests.

Used for the development and
verification of the FLUSTRIN code.

Michigan State University, U.S.A.

Wiggert (1983)
Wiggert et al. (1985b)
Wiggert et al. (1987)
Lesmez et al. (1990)

U-bend and multi-plane copper
pipe aiming at validating a
fourteen-equation model.

Stanford Research Institute, U.S.A.

Regetz (1960)

Blade et al. (1962)
A-Moneim & Chang (1978)
A-Moneim & Chang (1979)

Straight pipe extensively equipped
with pressure and strain gauges

in order to analyse pipe flexure
during the transient events
generated by a pulse gun.

University of Berkeley, U.S.A.

Krause et al. (1977)
Barez et al. (1979)

Conduit excited by firing steel
spheres onto the pipe ends with the
goal to study axial stress waves.

In the University of Kentucky, U.S.A.

Wood (1968)
Wood (1969)

Rigidly supported straight pipe
terminated by a spring-mass device.
Data used for model validation.

University of Guanajuato, Mexico.

Simao et al. (2015c¢)
Simao et al. (2015b)

Pipe-rig assembled by concentric
elbows aiming at validation
of a CFD model.
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2.4.2 Research in the U.K.

Thorley (1969) focused on the experimental analysis of tensile waves in the pipe-wall. He
described the phenomenon of precursor waves and, in an aluminium alloy straight pipe, he
was the first to observe precursor waves (v.i. Fig. 2.8), which are, at the same time, the evidence
of Poisson coupling effect.
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Figure 2.8 — Facility set-up used by Thorley (1969) (a); and measured precursor wave in different
sections of the pipe (b).

In the University of Dundee, U.K,, Vardy & Fan (1986, 1987, 1989) and Fan (1989) carried
out experimental tests where FSI effects were specially well isolated by means of suspended
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pipe rigs which were excited by the impact of a solid rod. Fan & Vardy (1994) and Vardy et al.
(1996) extended the work in the same experimental facility by including elbows and T-pieces
(v.i. Fig. 2.9 and 2.10). The tests were free of cavitation and other undesired dissipating
phenomena. By means of striking the structure (and not the fluid) clean and steep wave fronts
were achieved. This led to easily identifiable reflections and in general a good isolation of the
targeted FSI mechanism, making these tests a good instrument for verification purposes. In
combination with their numerical developments, they showed how FSI coupling changes the
natural vibrating frequencies, which cannot be described in uncoupled approaches.
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Figure 2.9 - Single pipe axial impact experiment set-up (a); and T-piece pipe impact experiment
set-up (b) (Vardy et al., 1996)
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Figure 2.10 — Pressures and strains time series in the single pipe axial impact experiment
(a) and in the T-piece pipe impact experiment (b). Solid lines correspond to experimental
measurements and dashed lines to numerical output (Vardy et al., 1996).
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2.4.3 Research in Germany

In the University of Karlsruhe, Germany, interesting experimental programmes were carried
out aiming at collecting physical data from particular pipe systems. Biirmann (1975, 1979)
and Blirmann & Thielen (1988c) presented a series of tests carried out in a vertical pipe line
located in a subterranean salt cavern (v.i. Fig. 2.11). In Biirmann et al. (1985, 1986b, 1987)
measurements were shown from a water-main bridge, and in Biirmann et al. (1986a) and Biir-
mann & Thielen (1988a) from a loading line between tanks and ships. These measurements
were used to develop and validate the four-equation model that was first presented in Skalak
(1955).
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Figure 2.11 — Vertical pipe line located in a subterranean salt cavern for de-brining under direct
circulation (Biirmann, 1975).

2.4.4 Research in The Netherlands

Weijde (1985) carried out experiments in a PVC pipe containing a U-shaped section at the
laboratory of Delft Hydraulics, The Netherlands. He concluded that classic waterhammer
theory was not accurate enough to describe the behaviour of the pipe-rig and, consequently,
the FLUSTRIN project was launched. A complex apparatus (Fig. 2.12) hold by suspension wires
and specially designed for FSI tests was assembled at Delft Hydraulics laboratory and used
for the development and verification of the FLUSTRIN code, which is based on a MOC-FEM
approach. In this framework Kruisbrink & Heinsbroek (1992) and Heinsbroek & Kruisbrink
(1993) carried out a series of numerical benchmark tests (¢f. Figs. 2.16 and 2.20) which
have been frequently used to verify FSI codes. They confirmed that classic and uncoupled
calculations render unreliable results and emphasized the need of accounting for FSI effects.
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Figure 2.12 — FSI experimental set-up at Delft Hydraulics (Kruisbrink & Heinsbroek, 1992)

2.4.5 Research in the U.S.A.

Wiggert (1983) compiled the FSI research work carried out at Michigan State University, U.S.A.,
in the time and frequency-domain using, respectively, the MOC and the component-synthesis
method for four-equation model solutions. Experimental data were used for the verification
of the methods. In Wiggert et al. (1985b, 1987) a fourteen-equation solver was proposed
and results compared with measurements in a multi-plane copper pipe (v.i. Fig. 2.13). A
good fitting with measurements was obtained but the analysis concluded that further model
developments were necessary. Lesmez et al. (1990) extended the work using an experimental
set-up consisting of a copper pipe containing a U-bend free to move in an in-plane fashion.
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Figure 2.13 — Experimental set-up (a) and pressure measurements (b) next to the downstream
valve and at the bend-C (Wiggert et al., 1987).

At the Stanford Research Institute, U.S.A., Regetz (1960) investigated pressure and velocity
fluctuations in a straight pipe filled with rocket fuel. His experimental apparatus allowed for
axial pipe motion. Blade et al. (1962) extended the work by adding an elbow in the experimental
pipe rig. Also A-Moneim & Chang (1978, 1979) followed the same line of research. As it can be
observed in Fig. 2.14, the experimental facility consisted, first, of a straight pipe extensively
equipped with pressure and strain gauges. Later on, an elbow was added in order to analyse
pipe flexure during the transient events. The system was excited by a calibrated pulse gun.
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Figure 2.14 — Experimental straight pipe rig used in A-Moneim & Chang (1978) (a); and pipe
equipped with an elbow used in A-Moneim & Chang (1979) (b).

In the University of California, Berkeley, U.S.A., Krause et al. (1977) studied axial stress waves
in a closed conduit which was excited by firing steel spheres onto the tub ends. Barez et al.
(1979) extended the work, experimentally and numerically.

In the University of Kentucky, U.S.A., Wood (1968, 1969) carried out experiments in a rigidly
supported straight pipe terminated by a spring-mass device. Collected data were used for
model development and validation in the time-domain. In Wood & Chao (1971) the work was
extended by adding elbows and branches in the experimental set-up, concluding that if the
elbows are anchored and do not, these do not affect much the transient wave and, when they
move, their effect is considerable.
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2.4.6 Research in Mexico

In the University of Guanajuato, Mexico, Simao et al. (2015c,b) collected data from a pipe-
rig assembled by concentric elbows of 90° (v.i. Fig. 2.15). The apparatus was equipped
with pressure transducers and accelerometers. Waterhammer tests were carried out by a
downstream valve manoeuvre. The aim of the experimental data collection was the validation
of a numerical model which coupled CFD software for the fluid with FEM for the structure.
The model was as well compared with a modified MOC approach which included damping
coefficients to account for structural damping. The work highlighted the importance of
integrated analyses including the description of both fluid and structure behaviours.
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Figure 2.15 — Experimental set-up (a); and fluid pressure and pipe-wall acceleration measure-
ments (b) in the %, y, z coordinates Simao et al. (2015c).

35



Chapter 2. State-of-the-Art Review

2.4.7 Research in other regions

Williams (1977) carried out experiments in steel, ABS and PVC pipes. The axial stress waves
effect was depicted and the damping was attributed to FSI. In Davidson & Samsury (1969)
and Davidson & Samsury (1972) fluid-structure interaction was analysed, respectively, in
straight and curved pipes. Budny et al. (1990); Brown & Tentarelli (2001b) and Fan (1989)
gave experimental evidence of Bourdon coupling (cf. Fig. 2.21). While, Gregory & Paidoussis
(1966) and Jendrzejczyk & Chen (1985) focused their experimental research on describing the
buckling and flutter effects in pipe systems.

2.5 Numerical research

2.5.1 One degree-of-freedom models
Two-equation model:

The classic waterhammer model (two-equation model) is a sophisticated version of the basic
1-DOF system (cf. Appendix A, Egs. A.1 and A.2). Although the bulk modulus of compressibility
and a finite acoustic wave speed are considered in the fluid, in terms of density variation the
fluid is assumed to be incompressible and pressure changes are related to velocity changes
somewhat by embedding fluid compressibility and pipe-wall extensibility into the wave
celerity value, which is regarded as a constant parameter and is defined by Eq. 2.6.

On the one hand, the fundamental equations of classic waterhammer theory (i.e. mass and
momentum conservation) can be derived from Navier-Stokes equations (Ghidaoui, 2004) or
by directly applying the Reynolds Transport Theorem (Chaudhry, 2014) to a control volume of
the pipe system. On the other hand, they can be also reached from the system of equations
presented in Section 2.2, as, somewhat, classic theory considers a combination of the first two
degrees-of-freedom. The fundamental momentum conservation equation is directly the one
presented in 1-DOF (Eq. A.1). For mass conservation (continuity equation), the cross-sectional
area of the control volume is assumed to vary and this variation is related to the fluid inner
pressure by applying a quasi-static assumption in the 2-DOE Establishing elastic stress-strain
relations, and rearranging the system of equations composed of 1 and 2-DOF the continuity
equation Eq. 2.21 is reached (cf. Appendix A).

The following system of PDE’s (Eq. 2.21 and Eq. 2.20) represents the fundamental conservation
equations of classic waterhammer theory.

oV 1 9dp
T (2.20)
ot of 0z

ov 1 0

— 4 _p:()
0z pgray 0t

(2.21)
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where aj, corresponds to the waterhammer wave celerity, which can be experimentally deter-
mined or theoretically computed by means of Eq. 2.5.

Usually the system of Egs. 2.20 and 2.21 is solved by means of the Method of Characteristics
(MOC), which is the most popular and extensively used method for waterhammer analysis
thanks to its easy programming, computational efficiency and accuracy of the results (Vardy &
Tijsseling, 2015).

CFD software

Computational-Fluid-Dynamics (CFD) refers to those models that solve the Navier-Stokes
equations for a 3D fluid domain. Several numerical methods may be approached to solve
the equations, such as k — €, Reynolds stress, SAS, DES, LES, etc. The former are the most
suitable for parietal flows Anderson et al. (2001). Although the equations and the dimensions
of the fluid domain are different in CFD models than in the proposed classification of Sec-
tion 2.2, they are frequently used to yield information for the 1-DOF models, either for model
development, verification or validation (Martins et al., 2016). However, CFD models are still
demanding both in computational time, pre-and post-processing time, as well as on input
data, making their use for practical engineering purposes rarely justified.

In order to adapt CFD models for 1-DOF modelling, an important assumption has to be
applied. If the pipe is rigid and does not deform, the hydraulic transient wave propagates
at the acoustic speed in water (Eq. 2.1). To correct this, the bulk modulus of compressibility
should be adapted (Martins et al., 2016) in function of the a realistic wave celerity:

K*=p,d, (2.22)

CFD software is being used in research on transient flows to assess unsteady skin friction mod-
els. Vardy & Hwang (1993) developed a weighting function unsteady friction model by means
of using output data from a CFD model. In Ghidaoui et al. (2002) two different turbulence
models were implemented and analysed for both quasi-steady and axisymmetric assumptions,
suggestions for unsteady friction modelling were reported. Riedelmeier et al. (2014) compared
skin friction rates in 1D and 3D for a pipe section with a 90° bend. Chung & Wang (2015) used
direct numerical simulations (DNS) and identified a three-stage development of the mean
wall shear stress for turbulent pipe flow at a constant acceleration rate. Martins et al. (2015b,
2016) has shown that the transient wall shear stress during waterhammer events in pipe flow
has a strong dependence on the flow time history and the local velocity variation.

Simulation of multi-phase flow in pipes is also a stream where CFD models are contributing.
Zhou et al. (2011),Zhou et al. (2013), Martins et al. (2015a) and Martins (2016) analysed the
effect of entrapped and dissolved air during pipe flow transients. A state-of-the-art review in
multi-phase transients in pipe flow for both 1D and 3D approaches is given by Tiselj (2015).
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2.5.2 Models with up to three degrees-of-freedom

Four-equation models

The historical development of four-equation models can be traced back from Korteweg (1878)
who already pointed out the need of considering axial stress waves. Gromeka (1883) and Lamb
(1898), qualitatively, took into account pipe axial inertia and Poisson coupling in their analyses.
Skalak (1955), who extended Lamb’s work, presented the four basic fundamental equations
and introduced the concept of precursor waves. Biirmann (1979), Thielen & Burmann (1980)
and Biirmann & Thielen (1988b) presented a simplified version of Skalak’s equations which
represent the well-know four-equation system used in the standard four-equation models.
Skalak’s paper was revisited and analysed in Tijsseling et al. (2008).

For the description of pressure waves in pipe systems two or four-equation models are suffi-
cient (Tijsseling, 1996). Four-equation models consider the combination of classic theory with
the 3-DOF equations. Hence, four fundamental equations, two for the fluid and two for the
pipe axial movement, are to be solved. The right-hand-side terms of the continuity equations
of the 1-DOF and 3-DOF systems must be adapted in order to describe the Poisson coupling
in terms of the dependent variables of the four-equation model (i.e., respectively, o ; and p).
This derivation is explained in the Appendix A for which Egs. 2.24 and 2.26 are obtained.

oV 1 dp
oY 29 _ (2.23)
ot pof 0z
ov 1 0 2
ov., 1 9p_2vdo, (2.24)
0z pfai ot E ot
ou, 1 oo,

-— =0 2.25
ot pp 0z (2.23)
ou, 1 do, _ﬂ@_p (2.26)
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Several numerical methods can be used to solve the previous system of equations, either
integrating both the fluid and the structure in the same numerical scheme (e.g., MOC-MOC)
or by a combination between different schemes (e.g., MOC-FEM). In Vardy & Alsarraj (1989)
and Vardy & Alsarraj (1991) the Method of Characteristics for both the fluid and the structure
(i.e., MOC-MOC) was shown to have useful advantages. Schwarz (1978) used a FDM scheme in
his four-equation model as a simplified version of a six-equation model which was solved by
MOOC. Ellis (1980) modelled fluid and axial stress waves in conduits by means of MOC, taking
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into account only junction coupling (ignoring Poisson coupling). Kojima & Shinada (1988)
also used a FDM approach which was validated by tests on a thin-walled straight pipe for
Poisson coupling as well as junction coupling in a closed-free pipe end.

Wiggert et al. (1985a), Elansary & Contractor (1990), Elansary et al. (1994), Budny et al. (1991)
and Elansary & Contractor (1994) explained how to solve the four-equation system considering
Poisson coupling. They presented the characteristic equations from MOC transformation
and how to integrate them into the same characteristic grid using time-line interpolations
as explained in Goldberg & Benjamin Wylie (1983). The MOC transformation that allows
hyperbolic partial differential equation systems to be converted to a set of ordinary differential
equations was based on Forsythe et al. (1960). Zhang et al. (1994) used a FEM scheme for
both, the fluid and the structure. In Bouabdallah & Massouh (1997) and Ghodhbani & Hadj-
Taieb (2013), time interpolation and wave adjustment methods are compared for MOC-MOC
solutions. (Wiggert, 1983) used an hybrid MOC-FEM approach, MOC for the fluid and FEM
for the structure. A FVM approach was presented in Gale & Tiselj (2005) to solve the four-
equation model, which was successfully validated using the Delft Hydraulics Benchmark
Problem A (Lavooij & Tijsseling, 1991; Tijsseling & Lavooij, 1990). In Lavooij & Tijsseling (1991)
both approaches MOC-MOC and MOC-FEM are compared, concluding that for straight pipe
problems the MOC procedure is more accurate and efficient.

The Delft Hydraulics Benchmark Problem A (20 m long, steel pipe, 0.4 m diameter) is a good
approach for the verification of four-equation numerical codes (v.i. Fig. 2.16). In Li et al. (2003)
and Tijsseling (2003), a theoretical development of an exact solution for the four-equation
system by means of a recursion was presented. The drawback of the method is its exponential
computational effort for longer simulation periods. Recently, in Loh & Tijsseling (2014),
the computation for the exact solution was parellalized in order to increase computational
efficiency and applicability. The analysis suggested to keep the scope of exact solutions to
generate test cases and benchmark solutions for more conventional numerical methods.

Tijsseling (1997) has demonstrated the Poisson coupling beat, which is a phenomenon that
arises from resonance between 1-DOF and 3-DOF (v.i. 2.17). Poisson coupling beat was already
numerically observed by Wiggert (1986). So far, there is no experimental evidence about it as
damping mechanisms tend to hide the oscillating resonance between the pipe-wall and the
fluid vibrations.
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Figure 2.16 — Model set-up (a); and comparison between two-equation and four-equation

models (b) for the Delft Hydraulics Benchmark Problem A, considering an anchored (top) or
non-anchored valve (bottom) (Tijsseling, 2003).
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Figure 2.17 — Numerical evidence of the Poisson coupling beat (Tijsseling, 1997).

Six-equation models

Six-equation models aim at describing the 1,2,3-DOF’s. As in the four-equation model, similar
numerical schemes can be used for solving the six-equation system. However, the right-

hand-sides of the three continuity equations are not expressed in differential terms. When
integrating a first or second-order approximation can be applied.

Walker & Phillips (1977) was the first proposing, and solving by MOC, the six-equation model.
These authors have compared results from the frequency and time-domains and carried out
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its validation using experimental data collected from a water-filled copper pipe excited by
hammering the pipe-end (v.i. Fig. 2.18).

With a similar MOC numerical scheme Schwarz (1978) solved the equations and compared
them to a four-equation model solved by FDM, the effect of Poisson coupling in each case was
also analysed. Kellner et al. (1983) extended the work of Walker & Phillips (1977) by proposing
an added fluid mass term and solving the equations by a MOC-FEM approach. Gorman et al.
(2000) used a MOC-FDM scheme in their numerical analysis, the effect of initial axial tensional
stress was included in their derivation.
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fransform solution

e -----==--= Solufion by method
i of characteristics

Dimensionless velocity of impocted end, v{T,

0 5 10 15 20 25 30 35
Dimensionless time,

Figure 2.18 — Frequency and time-domain solutions of a six-equation model (Walker & Phillips,
1977).

From the six-equation system, Tijsseling (2007) derived a four-equation model which included
correction terms and factors accounting for the wall thickness. The model was validated with
exact solutions in the time-domain (Li et al., 2003; Tijsseling, 2003). The authors concluded
that a transient description of the 2-DOF is only important for very thick pipes (r/e < 2).

2.5.3 Models for more than three degree-of-freedom

Eight-equation model

According to the classification given in Subsection 2.2.3, eight-equation models solve the
system of equations for either 1,3,4,6-DOF’s or 1,3,5,7-DOF’s. Hence, these kind of models are
used to describe in-plane axial, torsional and flexural pipe displacements respectively in the
Xz or yz. Radial inertia is nested into the celerity of the 1-DOF as in the classic waterhammer
theory.
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Valentin et al. (1979) presented an eight-equation model for curved pipes for 1,3,4,6-DOF’s.
Hu & Phillips (1981) solved the same equations using MOC method and validated results using
experimental data. Radial inertia was included in Joung & Shin (1987) solving a nine-equation
model. Tijsseling et al. (1994, 1996) and Tijsseling & Heinsbroek (1999) used a MOC-MOC
scheme in combination with cavitation, which was modelled by means of a lumped parameter
model. In Gale & Tiselj (2006) a FVM method was used to solve the eight-equation model,
which was tested for different set-ups (v.i. Fig. 2.19). In his analysis, Gale & Tiselj (2005)
highlighted that a two-phase flow fluid model is needed for simulations of more universal FSI
problems in pipelines.

a) b)

2 5 -----Valve free
Valve clamped
= Na FSI

Pressure at valve [MPa]

Initial flow direction

0.06
Time [s]

Figure 2.19 - Pipe rig set-up (a) and numerical output (b) for: a free moving valve (black dashed
line), anchored (red solid line) and for classic waterhammer model (purple doted line) (Gale &
Tiselj, 2006).

Fourteen-equation model

The fourteen-equation model includes the degrees-of-freedom presented at Section 2.2 except
the 2-DOF corresponding to the radial inertia of the pipe system, which is nested into the
celerity of the 1-DOF like in the classic waterhammer theory.

Important work has been carried out for solving the fourteen-equation models in the frequency
domain, to mention some: Wilkinson (1979), Kuiken (1988), Lesmez et al. (1990), Tentarelli
(1990), De Jong (1994). Hatfield & Wiggert (1991) presented the component-synthesis method,
which is an hybrid technique between frequency and time-domain. Time-domain solutions
can be obtained from frequency domain analyses, however, Hatfield & Wiggert (1983) con-
cluded that the time-domain solutions derived from frequency-domain are difficult and
impractical.

Wilkinson (1977) introduced the fourteen-equation model in the time-domain, which was
finally implemented by Wiggert et al. (1985a), Wiggert (1986) and Wiggert et al. (1987) with
MOC approach, either in the fluid and in the structure. This method was used as well in
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Obradovi’'c (1990), who simulated an accident. Tijsseling & Lavooij (1990) and Lavooij &
Tijsseling (1989) implemented a code which solved the fourteen-equation system by means of
a MOC-FEM scheme. The output was compared with a MOC-MOC when applied to a single
straight pipe, corresponding to the Delft Hydraulics Benchmark Problem A (Lavooij, 1987).
Coupled and uncoupled Poisson effect solutions were compared (v.i. Fig. 2.20) for the Delft
Hydraulics Benchmark Problem F (Lavooij, 1987). Experimental measurements were used in
this comparison and a guideline was provided suggesting when FSI is important. The same
computer code was used by Kruisbrink (1990), Lavooij & Tijsseling (1991) and Heinsbroek
(1997) with similar purposes of comparing with other modelling assumptions and using ex-
perimental tests for validation. Heinsbroek (1997) suggested that for four-equation modelling
a MOC-MOC approach is more convenient, while for higher degrees-of-freedom a MOC-FEM
scheme is preferable as higher grid resolution is required. Bettinali et al. (1991) presented
a similar MOC-FEM code with differences on the implementation on the Poisson coupling
mechanism.

The Delft Hydraulics Benchmark Problem F is a good approach for the verification of fourteen-
equation numerical codes (v.i. Fig. 2.20).
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Figure 2.20 — Set-up of the Delft Hydraulics Benchmark Problem F (a); and numerical output
(b) for: Poisson and junction coupling (solid line), only junction coupling (dashed line) and
for classic waterhammer model (dash-doted line) (Tijsseling & Lavooij, 1990).
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Other FSI mechanisms

In curved pipes of non-circular cross-section an additional coupling mechanism, called Bour-
don coupling, affects the pipe behaviour. This mechanism consists of the change of ovality
of the pipe cross-section in function of the internal pressure loading. In Clark & Reissner
(1950) and Reissner et al. (1952) the Bourdon tube deformation mechanism is explained and
a methodology based on the Boltzmann superposition principle to describe stress-strain
states in Bourdon tubes is presented. Bathe & Almeida (1980, 1982) studied Bourdon phe-
nomena by means of a FEM approach. Bourdon effect was first dynamically coupled with
the fluid response in Tentarelli (1990). The work was extended in Brown & Tentarelli (2001b)
and Tentarelli & Brown (2001), experimental measurements were used for validation of the
numerical output in the frequency domain (v.i. Fig. 2.21).
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Figure 2.21 — Experimental set-up (a) and output in the frequency-domain (b) for Bourdon
coupling analysis (Brown & Tentarelli, 2001b).

Other FSI mechanisms, not that common in regular engineering practices, are the buckling and
flutter induced by centrifugal and Coriolis forces. Authors that have contributed on this matter

are: Housner (1952), Gregory & Paidoussis (1966), Paidoussis & Issid (1974) and Paidoussis &
Laithier (1976).
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2.5.4 Coupling between different software

A different coupling approach consists of setting up an interaction between two different
software, which is one specific for the fluid and another for the structure. In each time-step
output information is transferred in both directions. There are contributions proposing
methodologies to carry out this data transfer, such as Ware & Williamson (1982). However, the
main challenge of this approach is the requirement of a huge computational effort (Belytschko
etal., 1986).

A-Moneim & Chang (1978) coupled a FDM software for the fluid and a FEM for the structure
with the goal to simulate an interesting experimental research carried out at the Stanford
Research Institute (SRI). Other authors who tried to simulate the same validating experi-
ments are Romander et al. (1980) or Kulak (1982, 1985) who coupled FEM-FEM software.
Also Erath et al. (1998) and Erath et al. (1999) used a FDM code for the fluid with a FEM for
the structure with the goal to simulate field measurements from a pump shut-down and
a closing valve from the nuclear power plant KRB II (Gundremmingen, Germany). Bieten-
beck et al. (1985) and Mueller (1987) applied a MOC-FEM coupling aiming at describing
the response of an experimental facility located at the Karlsruhe Nuclear Research Centre
(KfK—Kernforschungszentrum Karlsruhe).

In Casadei et al. (2001) FEM and FVM are compared for the fluid domain simulation and
coupling techniques are proposed. In Simao et al. (2015a,b) the traditional MOC approach
for the fluid is compared with a CFD k — e model, both are coupled with a FEM model for the
structure.

2.6 Engineering applications

2.6.1 FSI consideration in codes and standards

In Moussou et al. (2004) several industrial cases of FSI generated by internal flows are analysed.
The paper highlights the complexity of FSI problems and the need for guidelines and rules
in international Codes and Standards. The following table 2.2 provides some of the Codes
and Standards belonging to those engineering fields that frequently require waterhammer
analyses. Certainly, none of the Standards consider any kind of FSI coupling.

Table 2.2 — Table of Codes and Standards in industries where waterhammer analyses are
frequent.

Industry Application International standards
Hydropower energy penstocks ASME-B31, DIN-19704-1
Nuclear/thermal energy | cooling systems | ASME-BPV, NS-G-1.9

Oil/Gas transportation oil/gas mains ASME-B31, ISO-13628

Water distribution water pipes ANSI/ASSE-1010, PDI-WH 201
Aerospace fuel pipes ISO/FDIS-8575, NASA-STD-8719
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2.6.2 Anchor and support forces

Fluid-structure interaction and specially the behaviour of pipe supports have a direct appli-
cability in engineering pipe systems, such as hydropower systems, long oil and gas pipes,
cooling systems of nuclear, thermal plants or any fluid distribution system in industrial com-
pounds. However, only few authors investigated anchor and support behaviour in the context
of waterhammer theory. Frequently, studies are based on qualitative discussions focused on
post-accident analyses and mitigation measures case-by-case oriented. An example is Almeida
& Pinto (1986) where recommendations for design criteria, operating rules and post accident
analyses were given. Also Hamilton & Taylor (1996a,b) and Locher et al. (2000) presented
qualitative discussions of the performance of different industrial piping systems, giving in-
sights of pipe supports behaviour. The last one highlighted the case-by-case dependency
of fluid-structure interaction and the high computational demand of including anchoring
analyses, stating that the scope of such studies should be justifiable only for very critical
systems, such as nuclear power plants.

Biirmann & Thielen (1988b) collected data from a firewater facility pipeline and carried out
numerical analyses by means of MOC. Heinsbroek & Tijsseling (1994) studied the effect of
support rigidity of pipe systems and discussed for what rigidity of the supports FSI becomes
a dominant effect. In the analysis they applied both classic waterhammer theory and a
MOC-FEM approach by means of FLUSTRIN code (Lavooij & Tijsseling, 1989; Kruisbrink &
Heinsbroek, 1992). The simulated facility corresponded to the one from Delft Hydraulics
laboratory (cf. Fig. 2.12). Fig. 2.22 shows the pressure histories computed by Heinsbroek &
Tijsseling (1994) for different support rigidities at the downstream section of the pipe rig;
classic and extended waterhammer theories are compared. The different responses of the
system for each set-up point out the high sensitivity to the bend support rigidities when these
are considered. The study concluded that classic theory computations are reliable for rigidly
supported pipes but highly inaccurate for set-ups allowing pipe movement, underestimating
overpressures.
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Figure 2.22 — System response to waterhammer tests varying bend rigidities. Pressure output
at the downstream valve from classic and extended models (Heinsbroek & Tijsseling, 1994).

Tijsseling & Vardy (1996a) studied the effect of a pipe-rack considering the dry friction occur-
ring between the rack and the pipe-wall (¢f. Subsection 2.3.3). Recommendations were given
in order to assess when dry friction must be considered. Different anchoring conditions were
assessed in Simao et al. (2015c¢) using CFD software, which was validated by means of experi-
mental data. The analysis pointed out the need of CFD simulations for the proper description
of pipe supports behaviour. In Zanganeh et al. (2015) the aim was the simulation of hydraulic
transients in a straight pipe anchored with axial supports using a MOC-FEM approach. Both
pipe-wall and supports had a viscoelastic behaviour. The study concluded that the viscoelastic
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supports significantly reduce displacements and stresses in the pipe and eliminate the high
frequency fluctuations produced due to FSI. In Wu & Shih (2001) and Yang et al. (2004) a
multi-span pipe system, with middle rigid constraints was analysed in the frequency-domain
using the transfer matrix method, concluding that the middle rigid constraints have a much
larger effect than the Poisson coupling. These type of multi-span pipes with middle rigid
constraints set-ups are common in engineering practices and, so far, only a limited number of
investigations has been carried out addressing this issue, specially in the time-domain.

2.6.3 Vibration damping and noise reduction

Tijsseling & Vardy (1996b) carried out experimental waterhammer tests on a steel pipe contain-
ing a short segment of ABS. MOC was successfully used to reproduce experiments and they
concluded that the vibration could be adapted and modified in function of the segment mate-
rial and geometry. Hachem & Schleiss (2012) reached a similar conclusion in an aluminium
pipe set-up with a short segment of PVC. The analysis was carried out in the frequency-domain.
Related with the previous subsection, Koo & Park (1998) proposed a methodology to reduce
vibrations by the installation of intermediate supports.

Pipe vibration may induce audible noise and FSI analyses are required for the assessment of
such noise. Moser et al. (1986) investigated the vibrating modes that produce sound. Kwong
& Edge (1996) and Kwong & Edge (1998) carried out experimental analyses and developed
a technique to reduce noise generation by the specific positioning of pipe clamps. De Jong
(1994) suggested that for the full description of sound generation in pipe-systems, seven
degrees-of-freedom are required. This statement was verified in Janssens et al. (1999). In Chen
(2012) a pump-induced fluid-born noise is carried out by means of a distributed-parameter
transfer-matrix model in the frequency-domain. It was claimed that the method could be used
as well for structure-born noise as long as fluid-structure interaction was taken into account.

2.6.4 Earthquake engineering

Waterhammer waves can be produced by earthquake excitation on a pipe system. Fluid-
structure interaction or soil-pipe interaction may be one of the potential damaging factors
during earthquakes, specially for relatively low pressure and large diameter pipelines (Young
& Hunter, 1979). Some authors have studied this kind of transients coupled with FSI. Hara
(1988) analysed a Z-shaped piping system subjected to a one-directional seismic excitation. A
numerical analysis of a 3D pipe system was carried out in Hatfield & Wiggert (1990) . It was
found that assuming the piping to be rigid produced an upper-bound estimate of pressure,
but assuming the liquid to be incompressible resulted in underestimating the displacement of
the piping. Coupled and uncoupled analyses applied to a single straight pipe were compared
in Bettinali et al. (1991), who also concluded that coupled analyses accurately predicted lower
wave amplitudes.
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2.6.5 Aerospace engineering

Strong fluid transients occur in the filling up process of propulsion feedlines of satellites and
launchers. In the experimental works of Regetz (1960), Blade et al. (1962), A-Moneim & Chang
(1978) and A-Moneim & Chang (1979) (cf. Fig. 2.14) different configurations rocked fuel-filled
pipe rigs were tested. An overview of the main concerns experienced in the aerospace com-
munity with respect to fluid-hammer is reported in (Steelant, 2015) . The study remarks the
need of detailed investigation in fluid-structure interaction in combination with thermal heat
transfer during fluid-hammer waves in satellites or launchers. Bombardieri et al. (2014) also
highlights the importance of FSI in the filling of a pipelines during the start up of the propul-
sion systems of spacecrafts, claiming that more experimental research should be focused on
this line.

2.6.6 Biomechanics

The disciplines of hydraulic transients and physiological flows share a good basis of the classic
waterhammer theory as long as the assumptions of liquids with relatively low compressibility
contained in thin-walled elastic cylindrical tubes are considered (Anderson & Johnson, 1990).
Studies such as Lambossy (1950), McDonald (1974), Nakoryakov et al. (1976), Anderson &
Johnson (1990) and Nichols et al. (2011) were focused on adapting classic waterhammer to
the main factors that affect physiological flows. For instance, in Anderson & Johnson (1990),
Helmholtz-Korteweg equation (Eq. 2.3) was reviewed in order to include pipe cross-section
ovality effects. The study concluded that even for a low ovality of the pipe cross-section
there may be significant reductions of the wave velocity due to bending-induced changes
in the tube cross-section. Anderson & Johnson (1990) analysis serves also in the field of
hydraulic transients for pipe bends and coils where the pipe cross-section is as well elliptic (cf.
Section 2.5.3).

Nowadays, computational-fluid-dynamics tools are used to model the complexity of haemody-
namics. Not just the pipe-wall viscoelasticity and the elliptic pipe cross-section, but the inner
fluid defies as well classic waterhammer theory assumptions as blood is a non-Newtonian
fluid, presenting shear-thinning, viscoelasticity and thixotropy. Wathen et al. (2009) presents
areview of modern modelling approaches for haemodynamical flows. In Janela et al. (2010)
a comparison of different physiological assumptions is carried out by means of a FEM-FEM
approach. Newtonian and non-Newtonian assumptions are considered with fluid-structure
interaction, highlighting their differences and the importance of good modelling criteria. More
specific to blood flow diseases diagnoses, Simao et al. (2016a) also used CFD tools, including
FSI, for modelling a vein blockage induced by a deep venous thrombosis and the occurrence
of reverse flow in human veins.
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2.7 Accidents and post-accident analyses related with FSI

FSImay generate overpressures higher than the provided by Joukowsky’s equation and not only
caused by waterhammer waves, but also by turbulence-induced vibrations, cavitation-induced
vibrations or vortex shedding with lock-in. These phenomena are poorly understood (Moussou
etal., 2004), and are rarely taken into consideration in engineering designs, leading to accidents
and service disruption of important infrastructure with large social relevance (e.g. industrial
compounds, water and wastewater treatment plants, thermal plants, nuclear power plants,
hydropower plants, hospitals).

Jaeger et al. (1948) reviewed a number of the most serious accidents due to waterhammer in
pressure conduits. Many of the failures described were related to vibration, resonance and
auto-oscillation (Bergant et al., 2004). The Table 2.3 summarizes some of the accidents caused
by strong hydraulic transients.

Normally accidents in hydraulic facilities are associated not only to a single phenomenon
but to a series of enchained events that make the system collapse. Although not all the
accidents listed in Table 2.3 were caused by FSI, in many cases it is indirectly involved and its
understanding is crucial in post-accident analyses, such as in Almeida & Pinto (1986); Wang
etal. (1989); Obradovi’'c (1990); Simao et al. (2016b).
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Table 2.3 - Summary table of historical accidents in pressurized pipe systems.

Location Facility Citation Description
A waterhammer wave, caused by a
fast valve-closure, split the penstock

Oigawa, Japan Penstock Bonin (1960) p . p
open and produced the pipe
collapse upstream.

. Burst turbine inlet valve caused
Big Creek, U.S.A. Penstock Trenkle (1979)

by a fast closure.

Azambuja, Portugal

Pump station

Chaudhry (2014)

Collapse of water column separation
causing the burst of the pump casing.

Liitschinen, Switzerland

Penstock

Chaudhry (2014)

Penstock failure during draining
due to the buckling produced by
a frozen vent at the upstream end.

Arequipa, Peru

Penstock

Chaudhry (2014)

The clogging of the control system
of a valve resulted in buckling and
the failure of the welding seams

of the penstock due to fatigue.

Ok, Papua New Guinea

Power house

Chaudhry (2014)

The draft tube access doors were
damaged and the power house
flooded due to column separation
in the system.

Lisbon, Portugal

Water main

Simao et al. (2016b)

Rupture of concrete support blocks
during the slow closure of an
isolation valve installed in a large
suction pipe

New York, U.S.A.

Steam pipe

Veccio et al. (2015)

Condensation-induced-waterhammer
caused the rupture of the
steam pipe.

Lapino, Poland

Penstock

Adamkowski (2001)

Burst of the penstock caused
by a rapid cut-off and low quality
of the facility

Chernobyl, Ukraine

Nuclear reactor

Wang et al. (1989)

Fuel pin failure, fuel-coolant
interaction and fluid-structure
interaction were involved in the
failure of the nuclear reactor

New York, U.S.A

Nuclear reactor

Meserve (1987)

Circumferential weld failure in
one of the feedwater lines due to a

steam generator waterhammer.

2.8 Motivation and gaps of knowledge

During this assessment several gaps of the state-of-the-art on FSI in 1D waterhammer theory

have been identified. On the one hand, waterhammer research has provided supplemen-

tary upgrades to the basic two-equation model (classic waterhammer model) that are used

as add-ons to suit the modelling purposes. On the other hand, the basic theory of FSI in

1D waterhammer seems quite consolidated, although improvements on the numerical ap-

proaches are still a focus of research. The author believes that all the knowledge around
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classic waterhammer theory has not been transferred yet to the FSI models. The main idea to
understand the need of this transfer of knowledge, from the classic model to the FSI models,
is to perceive the last ones as sovereign theories that can hold themselves other subtheories.
For instance, unsteady friction or viscoelastic models represent these kind of subtheories that
have been designed to suit and upgrade the classic waterhammer model, but have not been
adapted yet for the FSI models. Hence, not much research has been carried out so far, neither
experimentally nor numerically, to understanding and distinguish unsteady friction, pipe-wall
viscoelasticity or dry friction in the different FSI contexts.

The unsteadiness of skin friction has motivated waterhammer researchers during decades.
As explained in Subsection 2.3.1, several theories for unsteady friction computation, based
on varied assumptions, have been developed and are still under development for the classic
two-equation model, but not for models including higher pipe degrees-of-freedom.

The effects of unsteady friction and pipe-wall viscoelasticity are hard to distinguish and,
additionally, when combined with FSI, new interactions arise: the pipe-wall rheological
behaviour affects the response of the movement of the pipe and this, at the same time affects
the shear stress between the pipe-wall and the fluid. Only few researchers included pipe-wall
viscoelasticity in FSI software, and, to the knowledge of the author, none included unsteady
friction. The distinction of both phenomena, pipe-wall viscoelasticity and unsteady friction,
in a FSI platform is appealing, challenging and novel.

Fluid-structure interaction offers a very suitable mean for the inclusion of a well known, but
novel in waterhammer research, dissipation phenomena: dry friction. As pointed out in
Subsection 2.3.3 very few research has been done in this subject. Movement of the pipe-
wall is an output variable of FSI models. Using this output information, Coulomb’s friction
computation can be implemented either distributed throughout the pipe (friction coupling),
or at the supports of the pipe (junction coupling). The last one, in combination with the
description of thrust and anchoring blocks, could significantly upgrade simulation outcomes.

Anchor or thrust blocks are frequently used in straight pipelines to restrict and to avoid these
movements so that the piping structure is stable and reliable. Anchor blocks absorb the
axial stresses of the pipe-wall and transmit them to the surrounding ground by means of dry
friction. Although its remarked engineering applicability, not much research has been carried
out with respect to the understanding of pipe supports behaviour, neither experimentally nor
numerically. Four-equation models are a convenient base for the representation of a straight
pipe with middle anchors and thrust blocks, which can be embedded as internal conditions in
the solver code. Moreover, the inclusion of Coulomb’s dry friction into thrust blocks, allowing
their movement conditioned to stick-slip criteria would enhance quantitative analyses of
anchor and support forces.

All the proposed developments must be supported by reproducible and self-consistent em-
pirical evidence. Structural damping, or pipe-wall visco-elasticity, can be assessed by the
comparison of measured strain and pressure time histories in different pipe locations and
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different set-ups. Dry friction and unsteady friction can be indirectly analysed by pressure his-
tory envelopes and wave amplitude decay ratios from different anchoring set-ups, allowing or
constraining pipe-wall movements. These experiments would complement the development
and validation of implementations describing pipe anchors and thrust blocks behaviours.
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The present chapter is based on the following scientific publication:

* D. Ferras, P. Manso, D. Covas, A.J. Schleiss. Experimental distinction of damping mecha-
nisms during hydraulic transients in pipe flow. Accepted for publication at the Journal of
Fluids and Structures (June 2016).

The work presented hereafter is original and was performed by the first author. The interpreta-
tion and discussion of results was carried out with the collaboration of the co-authors.

3.1 Introduction

The fundamental equations of classic waterhammer theory, i.e. mass and momentum conser-
vation, can be derived from Navier-Stokes equations (Ghidaoui, 2004) or by directly applying
the Reynolds Transport Theorem (Chaudhry, 2014) to a control volume of the pipe system. In
their development, though, several mechanisms that may significantly affect pressure wave-
forms are neglected, such as unsteady friction (UF), cavitation (including column separation
and trapped air pockets), a number of fluid-structure interaction (FSI) effects, viscoelasticity
(VE) of the pipe-wall material, leakages and blockages. Depending on the field of work, and
for each application, engineers should attempt to identify and to evaluate the influence of
these mechanisms in order to decide whether to include or to neglect them. Firstly, these
phenomena are not commonly included in standard waterhammer software packages and
when they are, they often require the specification of blind parameters which the user is not
sensitive to. Secondly, these effects tend to be often ‘hidden’ in real systems being therefore
forgotten (Bergant ef al., 2008a,b). Consequently, the expertise of the modeller becomes
crucial when add-ons are to be included into the classic waterhammer model.

The referred mechanisms have been largely studied by focusing on single phenomena. Though,
several examples can be found in literature combining different mechanisms either in exper-
imental or numerical analyses, such as: experiments in plastic and metallic pipes (Krause
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etal., 1977; Williams, 1977); development of numerical models incorporating both FSI and
VE (Weijde, 1985; Walker & Phillips, 1977; Stuckenbruck & Wiggert, 1986); analysis of FSI and
cavitation (Tijsseling, 1993; Tijsseling et al., 1996; Tijsseling, 1996); analysis of VE in combina-
tion with UF (Covas et al., 2004b); analysis of longitudinal stiffness heterogeneity by means of
the combination of aluminium and PVC pipe reaches in an experimental set-up (Hachem &
Schleiss, 2012); and analysis of FSI, column separation and UF in a viscoelastic pipe (Keramat
& Tijsseling, 2012).

The purpose of the present research is to give experimental insight in the distinction and
identification of the three phenomena that frequently affect the transient pressure wave,
namely fluid-structure interaction, pipe-wall viscoelasticity and unsteady friction. These
phenomena lead to increased damping and dispersion of the pressure transient wave. The
aim is to highlight the features, from an empirical standpoint, in which way each mechanism
affects the wave attenuation, shape and timing.

Experimental tests were carried out in three pipe rigs. The three experimental facilities,
assembled at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico
(LHE/IST), Lisbon, Portugal, consist of: (i) a straight copper pipe, which is tested for different
supporting set-ups; (ii) a coil copper pipe, whose response in transient conditions is strongly
affected by the coil geometry; and (iii) a coil polyethylene pipe, clearly showing the dominant
effect of the pipe-wall viscoelasticity.

The key innovative features of this chapter are: (i) the comparison of different pressure traces
collected in pipe-rigs with different supporting conditions (moving or anchored pipe end),
geometrical configurations (straight and coil) and pipe materials (metal and plastic), under
similar initial conditions, complemented with (ii) the physically-based discussion, supported
by bibliographic references, of different phenomena affecting and dominating waterhammer
in each case. Finally, (iii) transient pressure measurements are complemented with axial and
circumferential strain measurements to better understand the phenomena and to support
conclusions.

The experimental evidence presented is used to develop, calibrate and validate numerical
models to simulate hydraulic transients in the time-domain, including fluid-structure inter-
action, pipe-wall viscoelasticity and unsteady friction. The value and novelty of the actual
research focus lies on the benefits of an integral assessment of the empirical distinction
between different damping mechanisms affecting waterhammer tests carried out in varied
experimental facilities.
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3.2 Experimental data collection

3.2.1 Straight copper pipe

A straight copper pipe (SCP) rig was assembled at LHE/IST. The system is composed of a
15.49 m pipe, with an inner diameter D = 0.020 m and pipe-wall thickness e = 0.0010 m.
Young’s modulus of elasticity and Poisson ratio of the copper material were experimentally
determined by measuring stress-strain states over a pipe sample for the experimental range
of pressures. The obtained experimental values were the Young’s modulus of elasticity E =
105 GPa and the Poisson ratio v = 0.33. At the upstream end, there is a storage tank followed
by a pump and an air vessel, and at the downstream end, there is a ball valve pneumatically
operated that allows the generation of fast transient events (i.e., t, < 1/2 T). The upstream air
vessel has a volume of 60 1 and its aim is to guarantee a constant pressure level at the upper
pipe-end during the tests. The ball valve together with the actuator mechanisms and the
supporting system have a mass of mv =6 kg. Downstream the valve there is a hose conveying
the water to the water-tank, thus closing the pipe system circuit.

Three pressure transducers (WIKA S-10) were installed at the upstream, midstream and
downstream positions of the pipe (PT1, PT2 and PT3). Strain gauges (TML FLA-2-11) disposed
in the axial (SG1 and SG3) and circumferential (SG2 and SG4) directions were installed at the
midstream and the downstream end of the pipe. The initial discharge was measured for steady
state conditions by a rotameter located downstream of the valve. The sampling frequency
was set to 1200 Hz after preliminary tests, in order to measure the FSI response of the pipe
system during the waterhammer events, and 2400 Hz for wave celerity estimation (explained
in Subsection 3.3.1). Fig. 3.1 shows an schematic of the experimental set-up, with the location
of the pressure transducers and strain gauges, and pictures of a general view of the facility and
details of the downstream valve and pipe supports are shown in Fig. 3.2.

5G-1,2 SG-3,4
PT1 PT2 PT3

Figure 3.1 - Simplified schematic of the straight copper pipe set-up.
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a) b c) ..

Figure 3.2 — View of the straight copper pipe set-up (a); detail of downstream valve (b); and
detail of pipe support (c).

Two supporting configurations have been analysed (Fig. 3.3): a) the conduit anchored against
longitudinal movement at both downstream and upstream ends; and b) the conduit only
anchored against longitudinal movement at the upstream end. Rigidly fixed stainless steel
clamps are used for the pipe anchoring. Table 3.1 summarizes the tests carried out in these
experimental set-ups, displaying the initial flow velocity and Reynolds number, the initial
piezometric head and the maximum and minimum piezometric heads measured immediately
upstream of the valve. Figs. 3.4 and 3.5 depict the transient pressure traces at the downstream
and the midstream pipe locations corresponding to the tests carried out in the straight copper

pipe.
(a) (b)

Tank i Valve Tank Valve

Figure 3.3 — Supporting configurations of the SCP facility with (a) valve anchored and (b) valve
released.

Table 3.1 — Characteristics of the straight copper pipe (SCP) selected tests.

TestID | Vo (m/s) | Rey | Hy (m) | Hypax (M) | Hyin (M) Valve
SCPO01 0.26 5276 | 43.65 77.25 10.66 fixed
SCP02 0.36 7253 | 42.39 88.67 -2.95 fixed
SCP03 0.41 8206 | 42.87 94.88 -8.67 fixed
SCP04 0.26 5276 | 44.16 83.17 5.97 released
SCP05 0.36 7253 | 42.27 94.69 -8.34 released
SCP06 0.41 8206 | 42.55 100.04 -9.95 released
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Figure 3.4 — Pressure data acquired at the straight copper pipe for an anchored downstream
end: (a) at the downstream end (PT3); and (b) at the midstream section (PT2).
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Figure 3.5 — Pressure data acquired at the straight copper pipe for an non-anchored down-
stream end: (a) at the downstream end (PT3); and (b) at the midstream section (PT2).

3.2.2 Coil copper pipe

The coil copper pipe (CCP), also assembled at LHE/IST, has an inner diameter D = 0.020 m, a
pipe-wall thickness e = 0.0010 m and a pipe length, L = 105 m. The torus radius R is 0.45 m,
thirty-six rings compose the entire coil and its total height is 1 m. Each coil ring is fixed by
4 anchoring points disposed every 90° and with rubber supports. Similarly to the straight
copper pipe facility, the value of Young’s modulus of elasticity is E = 105 GPa and Poisson ratio
v =0.33. Three pressure transducers (WIKA S-10) were located at the upstream, midstream
and downstream positions of the pipe (PT1, PT2 and PT3). As depicted in Fig. 3.7, strain
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gauges (TML FLA-2-11) disposed in the axial and circumferential directions (SG-1, SG-2 and
SG-3) were installed in the midstream location. The sampling frequency was 1000 Hz. The
upstream and downstream conditions are similar to the ones in the SCP: there is a tank, a
pump and an air vessel at the upstream end and a ball valve to generate the transient events
at the downstream end. The upstream air vessel has a volume of 60 1, assuring a constant

pressure level at the upper pipe-end during the tests. Fig. 3.6 shows a schematic and an overall
view of the facility.

PT-3

PT-2

5G-1,2,3

— PT-1 \ 0

Figure 3.6 — Schematic and photograph of the coil copper pipe facility.
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Figure 3.7 — Detail of the assembled strain-gauges.

Table 3.2 shows a summary of a set of tests carried out in this experimental set-up according to
the initial flow velocity, Reynolds number and the initial piezometric head at the downstream
boundary before the valve closure, and maximum and minimum piezometric heads measured
during the tests. Transient events were generated by a manual ball valve closure.
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Table 3.2 — Characteristics of the coil copper pipe (CCP) selected tests.

TestID | Vo (m/s) Reg Hy (m) | Hpax (M) | Hpin (M)
CCPO1 0.09 1765 | 40.71 49.56 32.18
CCP02 0.18 3530 | 39.62 57.94 23.02
CCPO03 0.35 7059 | 38.31 74.39 5.18

Fig. 3.8 depicts the transient tests carried out in the coil copper pipe with transient pressures
measured at the downstream and the midstream pipe locations.

(a)
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Figure 3.8 — Measured pressure data for the tests carried out at the coil copper pipe: (a) at the
downstream end (PT3); and (b) at the midstream section (PT2).
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3.2.3 Coil polyethylene pipe

The coil polyethylene pipe (CPP), assembled at LHE/IST, is composed of two irregular pipe
coils of high density polyethylene (HDPE), with a total length L = 203 m, an inner diameter,
D =0.043 m, a pipe-wall thickness e = 0.0030 m and an average torus diameter R = 0.70 m.
The coil structure is fixed by four braces disposed every 90°, linking the coil rings up and
fixing them to the floor. The Young’s modulus of elasticity and the wave speed were previously
assessed for this set-up by Soares et al. (2009), who used an inverse method to estimate a
Young’s modulus of E = 1.42 GPa and a wave speed of a = 315 m/s. The nominal Poisson ratio
for polyethylene is v = 0.43. An air vessel of a volume of 1000 I is connected in line at the
upstream end and a manual ball valve allows the generation of transient events. Downstream
the valve there is a tank collecting the water and closing the pipe system circuit. Two pressure
transducers (WIKA S-10) were located at the midstream and downstream positions of the pipe
(PT1 and PT2). Strain gauges (TML FLA-2-11) were disposed in the midstream section, in
the axial and circumferential directions (SG1 and SG2). The sampling frequency was 50 Hz.
Fig. 3.9 shows a schematic and an overall view of the facility.

Figure 3.9 — Schematic and view of the coil polyethylene pipe facility.

Table 3.3 shows a summary of the tests carried out in the experimental set-up according to
the initial flow velocity, Reynolds number and the initial piezometric head before the valve
closure, and maximum and minimum piezometric heads measured at the valve during the
assessed transient events.

Table 3.3 — Characteristics of the coil polyethylene pipe (CPP) selected tests.

TestID | Vy (m/s) Rey Hy (m) | Hpax (M) | Hyin (M)
CPPO1 0.19 8664 31.08 36.21 27.31
CPP02 0.33 14440 30.09 38.56 24.43
CPP03 0.39 17324 30.50 40.01 24.33

Fig. 3.10 depicts the transient pressures at the downstream and midstream pipe sections
measured during the tests carried out at the PE pipe coil.
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Figure 3.10 — Measured pressure data of the tests carried out at the coil PE pipe (PT2): (a) at
the downstream end; and (b) at the midstream section (PT1).

3.3 Experimental analysis

3.3.1 Pressure data analysis

The figures presented in the Section 3.2 have already shown how differently transient events
propagate throughout the three experimental set-ups, generated for similar steady state
conditions (i.e., similar initial velocities though different Re numbers) following fast valve
manoeuvres. Differences of piezometric heads and time scales between the transient events
measured in each rig hinder a straightforward comparison. To facilitate the comparison
between system responses in terms of amplitude, dispersion and shape of the transient wave,
dimensionless pressure traces have been prepared as described hereafter.

Observed transient pressure wave periods and amplitudes are mainly associated with two
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main characteristics of the pipe system - the wave celerity, a, and the pipe length, L - and with
the flow conditions - the initial steady state velocity, V) (Korteweg, 1878; Joukowsky, 1904).

The pressure wave period (T), in a reservoir-pipe-valve system, depends on the ratio between
pipe length and wave celerity (Eq. 3.1) and is, therefore, independent of the initial conditions;
it results from the combination of the pipe system characteristics (i.e. pipe elasticity, inner
diameter, wall thickness and constraint conditions) with the fluid compressibility.

4L
==

T (3.1)

The pressure wave amplitude for fast hydraulic transients, described by the Eq. 3.2 (Von Kries,
1883; Joukowsky, 1904), depends not only on the pipe and fluid physical properties, but also
on the initial flow conditions, being proportional to the product between the velocity variation
AV the wave celerity aj, and fluid density p ¢.

ahAV

Ap=-prapAV or AHjx=- (3.2)

Figures 3.11 and 3.12 depict the dimensionless plots of transient pressure traces for selected
tests from each facility at the downstream and midstream pipe sections, respectively. The
tests were selected with the aim to analyse transient flow free of cavitation but with sufficient
pressure variation to depict the piping structural behaviour. These have been drawn by
plotting a dimensionless hydraulic head (%) consisting of the difference between the transient
and the initial pressure head and dividing by the maximum pressure wave amplitude like
shown in Eq. 3.3:

_H-H,

h= Nk (3.3)

The time axis is made dimensionless using the wave periods computed by Eq. 3.1 and also
presented in Table 3.4. Wave celerity values have been experimentally estimated by comparing
the time lag between pressure measurements at the downstream and midstream pipe positions
with sampling frequencies of up to 2400 Hz. Presented wave celerity and period values
correspond to averages from all the runs carried out for each facility with different initial
velocities; discrepancies between computed values for a given set of experimental runs are
lower than 1%.
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Table 3.4 - Main properties of the selected tests.

TestID | ap (m/s) | T(s) | Vo(m/s) | AHjx (m) | tyaive (5)
SCP02 1239 0.049 0.36 45.9 0.003
SCP05 1239 0.049 0.36 45.9 0.003
CCPO3 1193 0.384 0.35 36.5 0.025
CPP0O3 315 2.88 0.40 12.7 0.050

Figs. 3.11 and 3.12 show different attenuation, shape and phase shift of transient pressure

responses for each experimental set-up at both downstream and midstream pipe locations.

These features are analysed in the following paragraphs.
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Figure 3.11 — Dimensionless transient pressures in the four assessed set-ups at the down-
stream pipe section. a) SCP02 test (anchored valve), b) SCP05 test (non-anchored valve), c)
CCPO03 test and d) CPPO3 test.
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Figure 3.12 — Dimensionless transient pressures in the four assessed set-ups at the midstream
pipe section. a) SCP02 test (anchored valve), b) SCP05 test (non-anchored valve), ¢c) CCP03
test and d) CPPO3 test.

Wave dissipation

The straight copper pipe set-up with anchored downstream end (SCP01, SCP02, SCP03) is
the one with the lowest transient pressure wave damping. This is due to three main reasons.
First, friction losses are less important in this pipe system due to its small length (ca. 15 m) in
comparison with the other two pipe coils (copper coil L = 105 m and PE coil L =203 m); the
less the pressure wave travels, the lower the frictional damping is during the transient event per
wave cycle. Second, the pipe has a linear elastic behaviour, deforming almost instantaneously
with pressure changes, without a retarded response, unlike the PE pipe. Third, the downstream
valve is well-fixed to the supporting anchors.

Much higher damping exhibits the same facility but with the released valve set-up (i.e. the
downstream pipe end is free to move). The dimensionless damping after 10 wave cycles is of
similar order of magnitude to the coil copper pipe facility, which has much longer wave length
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(cf. Figs. 3.11-b and -c). The reason of such high damping is associated with the pipe-wall
deformation and movement in the axial direction at the downstream end. In the released valve
tests there is much higher transfer of momentum from the fluid to the pipe-wall than in the
ones with fixed valve, and this higher momentum is dissipated through shear between the
pipe and its supports. In addition, the vibration of the pipe also increases the shear between
the inner fluid and the pipe-wall, increasing as well the momentum dissipation.

In the copper pipe coil, the first pressure peak is 15 to 20% lower than the Joukowsky maximum
wave amplitude (see Figs. 3.11-c and 3.12-c), which, in the dimensionless plot, corresponds to
the unit. The main reason for this reduction is the characteristic FSI occurring in the pipe coil:
during the transient propagation, coil rings have a ‘breathing effect’ as they expand axially
for positive pressures increasing the pipe inner volume and, consequently, attenuating the
pressure peaks, and vice-versa for negative pressures; this attenuation is particularly evident
in the first pressure rise. This phenomenon has been comprehensively analysed by Ferras et al.
(2014, 2015a).

In the coil PE pipe, wave damping is the most significant of all tested set-ups (e.g. pressure
peaks are more than halved already after the second cycle). According to previous research
(Covas et al., 2004c, 2005) wave dissipation in PE pipes is dominated by the viscoelastic
behaviour of the pipe wall characterised by an instantaneous elastic response followed by a
retarded viscous response. Other effects like fluid-structure interaction and unsteady friction
although existing, have minor contributions.

Fig. 3.13 shows the pressure time-series at the downstream section for the tests SCP02, SCP05,
CCP03 and CPP03 with the time-envelops of extreme envelops and regression curves of the
maximum envelops. The waterhammer waves of the tests SCP02 and CCP03 (respectively
Fig. 3.13-a and Fig. 3.13-c) present a linear damping, steeper in the case of the CCP03 because
of the longer length of the pipe. In SCP05 test, the damping is only linear after the fifth
wave cycle. This is because at the beginning of the transient the pipe has a considerable
movement and FSI is dominant. After some waves cycles the oscillating loading cannot
overcome dry friction, the pipe stops moving and a similar linear damping as the one in SCP02
occurs. In CPPO03 test (Fig. 3.13-d), there is a major damping during the whole pressure history,
described by a logarithmic law, viscoelasticity of the polyethylene material is the cause of such
a damping, significantly higher than the one created by unsteady friction, with a linear trend.
This behaviour has already been observed by Ramos et al. (2004). The characteristics of the
damping laws are summarized in Table 3.5.
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Figure 3.13 - Dimensionless transient pressures, time-envelopes and regression curves (dashed
lines) in the four assessed set-ups at the downstream pipe section. a) SCP02 test (anchored
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valve), b) SCP05 test (non-anchored valve), c) CCP03 test and d) CPPO03 test.

Table 3.5 — Characteristics of the damping laws in the four assessed set-ups

Test ID regression law trend

SCP02 y=1.045-0.026x linear
SCPO05 ¥ =0.658—-0.034x linear after 5 cycles
CCP03 ¥ =0.897-0.053x linear
CPP03 | y=-0.147-0.555 log(x) logarithmic

Wave shape

The waterhammer wave in the straight copper pipe with fixed valve is the closest to the
theoretical ‘squared’ wave described by the classic waterhammer theory. However, a clear
development smoothing the wave peaks can be observed in the first pressure rise and, af-
terwards, during the wave propagation. The rounded slope in the first pressure rise is due
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to the closure manoeuvre of the ball valve, the subsequent smoothing is caused by both FSI
and UE Although the pipe is well anchored at its extreme ends, in between supports the pipe
is allowed to displace due to the elastic deformation in the circumferential direction and its
respective axial deformation due to the Poisson effect. During the transient loading, the fluid
pressure generates circumferential stresses in the pipe-wall which, at the same time, induce
axial strain due to Poisson effect. This phenomenon is known as Poisson coupling, as it causes
transient axial stresses throughout the pipe coupled with the transient fluid pressure. Poisson
coupling was first analysed by Skalak (1955) and, later, extensively studied by Tijsseling (1996,
1997, 2003); Lavooij & Tijsseling (1991); Elansary et al. (1994). UF is added to this effect and is
visible after several pressure cycles (Fig. 3.11-a).

On the other side, for exactly the same initial flow rates, a different transient wave shape is
observed in the same facility with the released valve set-up. When the pipe is released at the
downstream end, the free valve is excited by the transient pressure generating axial stress
waves throughout the pipe. The first pressure peak shows three main stages (Figs. 3.11-b
and 3.14): Stage-1 in which the pressure is lower than the expected pressure rise; Stage-2 with
higher pressure; and, finally, Stage-3 with a pressure drop. This characteristic wave shape
change is described, from a numerical standpoint in Bergant et al. (2008b). The coupling
mechanism is known as junction coupling and is normally generated due to unbalanced
pressure forces acting at singular points of the pipe, such as unrestrained dead-ends, elbows
and tees (Tijsseling, 1996). This phenomenon dominates the transient response over UE,
whose effect is hardly noticeable in the first pressure cycles.

Stage-2,
EStage-1 3 !

1.0

Stage-3

0.5
|

H/H

0.0
|

-0.5

-1.0

T

Figure 3.14 — First pressure peak corresponding to SCP05 test at the downstream section.
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In the coil copper pipe, a different wave shape is observed (Figs. 3.11-c and 3.12-c), which is
associated to two phenomena. The first is friction (steady and unsteady) that, as explained,
is more evident in the coil system due to a higher length and a larger inertia of the water
column, as unsteady friction depends on the time history of the velocity profile. Contribu-
tions analysing the flow time history dependency of unsteady skin friction can be found, for
instance, in Zielke (1968); Vardy & Brown (2003, 2004); Martins et al. (2016, 2015b). The second
phenomenon is the coil rings movement that directly induces FSI, despite the existing four
fixing supports at 90° spacing. The FSI behaviour in pipe coils has been analysed in Ferras
etal. (2014, 2015a).

Regarding the PE pipe, an evident shape change is noticed, both in the first pressure peak
and throughout the wave propagation (Figs. 3.11-d and 3.12-d). The pressure rise in the first
peak is associated to the line packing effect, which is more evident in the PE pipe; this effect
is dependent on the head losses gradient during the initial steady state, which is higher in
the test carried out in this pipe. The wave shape changes during its propagation are herein
associated with a retarded response of the HDPE material which has a viscoelastic rheological
behaviour (Covas et al., 2004c, 2005). Additionally, a relatively faster reaction to the valve
manoeuvre is observed (see detail in Fig. 3.15-b), as the slope of the first pressure rise is steeper
in the polyethylene case.

(a) (b)
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Figure 3.15 - (a) Dimensionless pressure time series at the downstream pipe-end; and (b)
detail of the valve manoeuvres of the selected tests.

Wave delay

Regarding the wave timing, a smooth delay can be observed in the tests carried out in the
straight copper pipe with released valve in comparison to the tests with fixed valve (see
Fig. 3.16). The reason is associated to the dispersive effect of junction coupling, which leads to
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two different periodic phenomena oscillating and interacting at different frequencies, with
the ultimate effect of an increase of the overall dissipation when the valve is released.
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Figure 3.16 — Dimensionless pressure time series at the downstream pipe-end for tests SCP02
(anchored end) and SCP05 (released end).

The coil copper system also presents a time delay with regard to the straight copper pipe tests
(see Fig. 3.17), which suggests that both steady and unsteady friction affect the pressure signal
more than in the straight copper pipe. The reason is the higher pipe length of the coil copper
pipe in comparison with the straight copper pipe.
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Figure 3.17 — Dimensionless pressure time series at the downstream pipe-end for tests SCP02
and CCPO03.
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Regarding the polyethylene set-up, the reason of such delay is mainly attributed to the retarded
response of the pipe-wall (see Fig. 3.18). In viscoelastic pipes, maximum or minimum pressure
fluctuations are rapidly attenuated and the overall transient pressure wave is delayed in time
due to the retarded deformation of the pipe-wall (Covas et al., 2004c).
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Figure 3.18 — Dimensionless pressure time series at the downstream pipe-end for tests SCP02
and CPPO03.

3.3.2 Strain data analysis

The collected strain data allows the analysis of the circumferential and axial strains in a sim-
ilar manner as in the previous Subsection 3.3.1. Hence, the approach followed to compare
the collected strain data consisted, as well, of normalizing measurements by means of the
waterhammer wave amplitude and period. Although in the pipe system exists several pipe
vibration modes, the first mode is the dominant, therefore the periods used to get dimension-
less time scales are the fluid ones (see Table 3.4). On the other side, the strain signal has been
normalized by the theoretical maximum circumferential strain (Eq. 3.4) resulting from hoop
stress in pipes due to inner pressure loads, both in straight and coil pipes (Ferras et al., 2014),
using as input the pressure wave amplitudes from Table 3.4. Both circumferential and axial
strain signals have been normalized using the same values with the goal to get comparable
time-series.

Aeg=—2 == (3.4)

Fig. 3.19 presents the dimensionless strain data collected in the four assessed set-ups, at the
midstream pipe sections, depicting very different pipe behaviours.
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Figure 3.19 — Dimensionless transient circumferential strain (solid lines) and axial strain
(dotted lines) at the midstream pipe sections for: a) SCP02 (anchored end), b) SCP05 (released
end), c) CCP03 and d) CPP03.

In the straight copper pipe facility, strain measurements significantly differ according to the
different supporting conditions. In the first case (Fig. 3.19-a), due to the Poisson effect, axial
strain presents a phase shift of 7 with respect to the circumferential strain. Nonetheless, the
Poisson relation is not fulfilled (¢, # —veg), this is because of the generation of axial stress
waves following the pressure wave propagation. The Poisson effect induces a first positive
axial strain spike (precursor wave) before the first circumferential strain rise (see detail in
Fig.3.20). Precursor waves were first theoretically studied by Skalak (1955) and experimentally
observed, indirectly from pressure measurements, by Thorley (1969).
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Figure 3.20 — Precursor stress waves during the tests SCP02 (a) and SCPO05 (b). Solid lines:
circumferential strain; and dashed lines: axial strain.

In Fig.3.20 (right) a clear precursor wave can also be observed in the SCP with released valve
set-up; moreover, three axial strain sub-peaks (Fig.3.21) can be distinguished during the first
half period, these sub-peaks result from the first axial stress wave, the first impact propagating
back and forth throughout the system. After the first wave period, axial and circumferential
strains are affected by the dispersion from the interaction of the two pipe vibrating modes.
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Figure 3.21 — Axial strain sub-peaks observed in the straight copper pipe facility for a free valve.
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The strain measurements obtained in the coil copper facility (Fig.3.19-c) have been corrected
according to Ferras et al. (2014), who proposed a methodology for assessing axial and circum-
ferential strains in oval pipes. Both axial and circumferential strains are in phase, following the
pattern of the inner pressure wave. It is interesting to point out that, specially during the first
wave period, positive axial strain values are lower than negative strain values and vice verse for
circumferential strains. The coil supports partially constrain the expansion of the coil rings so
the pipe-wall is not fully free to deform and develop in the axial direction. Circumferential
strain is inversely affected due to the Poisson effect.

Finally, axial strain does not show sensitivity to waterhammer excitation in the coil PE pipe
(Fig. 3.19-d), nonetheless the circumferential strain clearly follows the pressure wave pattern.
Fig. 3.22 depicts axial and circumferential strains for the different tests carried out in the
PE facility, being the axial strain almost null for all the tests and showing that the PE is not
influenced by the Poisson effect. As shown in Fig. 3.9, the strain gauges were installed in the
straight section between the two coils. It cannot be excluded at this stage that FSI may occur
between the two coils cancelling the Poisson effect.
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Figure 3.22 - Circumferential (solid lines) and axial (dashed lines) strains measured in the coil
PE pipe facility for the different tests carried out.
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3.4 Discussion of results
3.4.1 Fluid structure interaction

FSI according to pipe anchoring conditions

The most notable FSI effect can be observed from the comparison between the tests carried
out in the straight copper pipe with anchored and released valve (Figs. 3.11-a and -b). Just the
fact of setting an anchored or non-anchored valve significantly changes the system response.
Fig. 3.11-a shows that the measured pressure during the first wave cycle resembles the expected
‘squared’ wave shape and magnitude of classic theory, being very close to the Joukowsky
pressure rise. Nonetheless, the wave shape develops in a characteristic shape typical of
Poisson coupling by damping the tail of the pressure peaks and troughs.

Different behaviour can be observed in Fig. 3.11-b. The inertial valve system in this case is
released and, consequently, at the downstream boundary there is an imbalance of forces
between fluid inner pressure and pipe-wall stresses that makes the valve move (junction
coupling). The valve movement generates a characteristic wave shape subdividing the first
pressure peak into three stages (cf. Fig. 3.14) (Ferras et al., 2015a): Stage-1 in which the pressure
is lower than the expected in classic theory; Stage-2 with higher pressure and; finally, Stage-3
with a pressure drop. The first pressure rise is reduced by the movement of the valve in the
downstream direction after the first pressure surge. Afterwards, as the solid axial stress wave
travels approximately three times faster than the fluid pressure wave, at around one third
of the pressure peak, there is an increase of pressure resulting from the negative axial stress
which is pulling the pipe upwards, producing a ‘pumping’ effect. Finally, the axial stress wave,
which travels faster than the main pressure wave, bounces back pushing again the valve and
producing the last pressure drop over the pressure surge.

Appendix E deepens on the effect of valve movement, where new formulae are presented with
the aim of correcting the Joukowsky equation and better predicting the expected maximum
pressure rise in a straight pipe with a non-anchored downstream end. Eq. 3.5 is derived from
this analysis.

ahV()
AHpax = \I"]K

(3.5)

where W is a correcting factor for Joukowsky overpressure and is defined in Table E.1. The
result of applying Eq. 3.5 to SCPO05 test is depicted in Fig. 3.23, where the grey solid line
corresponds to Joukowsky pressure (Eq. 3.2 of classic theory) and black dashed line is the
predicted maximum pressure rise by means of Eq. 3.5. The maximum overpressure (A Hy,4x)
observed in the SCPO05 test is 10% higher than Joukowsky overpressure. This is accurately
predicted by the Joukowsky correction factor (V) presented in Table E.1.
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Figure 3.23 — Corrected Joukowsky overpressure for the test SCP05.

It is also important to highlight the higher wave damping observed in the test SCP05, where the
valve is released, in comparison with SCP02, where the valve is fixed (cf. Fig. 3.16). FSI does not
introduce a direct wave damping, though, there are additional frictional losses through shear
between the fluid and the pipe-wall and between the pipe-wall and the structure supports. UF
is significantly affected by the different vibrating frequency of the pipe-wall axial stress wave
and the fluid pressure wave.

FSI according to pipe geometry

The coil copper pipe facility also presents a characteristic FSI behaviour which was analysed
in Ferras et al. (2015a). The ‘breathing’ effect of the coil introduces a systematic wave ampli-
tude reduction. In steady conditions an analogy can be established between a coil pipe and a
straight pipe with a moving end for the computation of axial stresses due to inner pressure
loads (Ferras et al., 2014). However, in transient conditions, axial stress waves are originated
in the coil rings when these are excited by the inner pressure load, hence the origin and con-
sequent propagation of the axial stress waves significantly differs from the FSI phenomenon
occurring in the straight copper pipe with released end.

A similar wave amplitude reduction is observed also in the polyethylene facility. However, it is
more likely that such attenuation is dominated by the viscoelasticity of the pipe-wall material
rather than FSI, as further discussed in Subsection 3.4.2.
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3.4.2 Pipe-wall rheological behaviour

Collected strain data allows the analysis of the rheology and of the structural displacements
of the pipe systems during the transient tests. Fig. 3.24 depicts measured pressures versus
measured circumferential and axial strains for the selected transient tests of Table 3.4. The
theoretical circumferential strain expected from a linear-elastic pipe-wall behaviour given by
Eq. 3.4 is also shown in dashed line.
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Figure 3.24 — Measured pressures vs. measured axial (grey solid line) and circumferential
(black solid line) strains during the transient tests carried out at a) SCP02 (fixed valve set-up),
b) SCPO05 (released valve set-up), c) CCP03 and d) CPP03.

Loading-unloading behaviours significantly depend on the valve anchoring conditions. In the
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case of the straight copper pipe with anchored valve (Fig. 3.24-a), a clear pattern is observed:
the loading-unloading slope of circumferential strain is quite close to the theoretical linear-
elastic behaviour and the axial strain is opposed to the circumferential strain due to Poisson
effect. However, loading paths significantly differ from unloading ones, specially in the case of
axial measurements. The reason is the FSI interaction occurring due to Poisson coupling as it
has a direct effect on the axial direction and an indirect effect on the circumferential. For a non-
anchored downstream pipe-end more erratic loading-unloading lines are observed: (Fig. 3.24-
b) axial strain measurements for such anchored conditions are affected by junction coupling
at the valve section and, consequently, the vibrating pipe produces a breathing-pumping
effect. This effect can be observed through the horizontal spikes of the loading-unloading
curves in the circumferential direction of (Fig. 3.24-b).

The coil copper facility shows a clear linear-elastic behaviour of the pipe-wall material, as the
measurements in the stress-strain space are presented in a straight line (Fig. 3.24-c).

Finally, for the polyethylene facility (Fig. 3.24-d), different loading-unloading paths can be
distinguished (see Fig. 3.25) in the strain-pressure plot, typical of the hysteresis of the PE pipe-
wall material (Covas et al., 2004c, 2005). Also, axial strain measurements in the polyethylene
facility show low sensitivity to the transient inner pressure, as depicted by the almost vertical
loading-unloading curves.
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Figure 3.25 — Measured pressures vs. circumferential strains during the transient test CPP03.

The ratio between stress and strain (Eq. 3.4), the Young’s modulus of elasticity, is an intrinsic
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property of the pipe material that is affected by its molecular structure, temperature, stress-
strain history and material aging (Jones & Ashby, 2005; Ward & Sweeney, 2012). In this context,
the main slope of the trend-lines fitted to collected data in the circumferential direction (dot
lines in Fig. 3.24) give some insight about the Young’s modulus of the respective pipes. For
instance, the slope of the straight copper pipe (Fig. 3.24-a) is quite close to the theoretical
linear-elastic behaviour for a Young’s modulus of the copper material E = 105 GPa. However,
the slope of stress-strain is not related to the rheological behaviour of the pipe material but also
to the anchoring conditions: in Fig. 3.24-b, circumferential strain presents a higher slope which
means the pipe has a stiffer response. This effect is actually produced due to the influence of
FSI and junction coupling in this particular anchoring set-up: for positive pressures the pipe
is axially stretched and through the Poisson effect this positive axial strain produces a negative
circumferential strain reducing the radial expansion of the pipe; and vice versa for negative
pressures. On the other side, experiments in the copper and PE coil pipes follow clearly the
expected trend of the theoretical Young’s modulus of elasticity.

3.5 Overview and concluding summary

This chapter summarises physical observations of transient pressures in three different experi-
mental set-ups: a straight copper pipe (SCP) with anchored and non-anchored downstream
pipe-end, a coil copper pipe (CCP) and a coil polyethylene pipe (CPP). Hydraulic transient
tests were generated by fast downstream valve closures for different initial steady state con-
ditions. Both transient pressures and circumferential and axial strains were measured at the
downstream and at the midstream pipe positions.

Two main dissipating phenomena have been identified which affect the attenuation, shape and
timing of the pressure wave, namely, fluid-structure interaction and pipe-wall viscoelasticity.
Unsteady friction is certainly always present but its effect could not be isolated in the first
pressure cycles. For similar initial steady state conditions the experimental set-ups present
very different mechanical behaviours.

Different system responses have been compared by means of dimensionless plots of pressure
and strain. Experimental pressure and strain measurements in the straight copper pipe with
anchored valve are the least affected by the dissipating phenomena, being the closest to the
theoretical waterhammer waves expected from classic theory, and with UF the dominant
damping mechanism. Releasing the pipe end generates an important wave shape change,
higher pressure peaks and higher wave damping. The coil copper pipe, with a similar damping
rate, shows a systematic wave amplitude reduction.

Fluid-structure interaction has been identified as being the dominant dissipating phenomenon
in straight and coil copper pipes. Formulae have been developed (Appendix E) to more ac-
curately predict the Joukowsky overpressure taking into account FSI. On the other side, the
pipe rheological behaviour has been analysed by means of strain-pressure plots. The copper
facilities (SCP and CCP) present a clear linear-elastic behaviour; the PE facility (CPP) presents
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different loading and unloading paths across the strain-pressure space, indicating a retarded
response (hysteresis) between the inner pressure loading and the circumferential strain re-
sponse. This viscoelastic behaviour of the polyethylene material is the dominant damping
mechanism in the CPP piping system.

Table 3.6 qualitatively summarizes the relative importance of the analysed damping mecha-
nisms during hydraulic transients in the different experimental set-ups.

Table 3.6 — Summary of the qualitative importance of damping mechanisms in the analysed
experimental set-ups.

Set-up ID FSI-supports | FSI-coil | UF | VE
SCPanchored + - +++ -
SCPrejeased +++ - + -
CCP - +++ + -
CPP - + + +++

Note: +++ strong effect; + medium effect; — low effect.

In polyethylene pipes the structural damping produced by the viscoelasticity of the pipe-wall
is crucial and it has to be included in those waterhammer analyses aiming for an accurate
model output of the entire pressure time-series. Nonetheless, pipe-wall viscoelasticity does
not increase maximum pressures, hence the use of the classic waterhammer model for the
design of plastic pipes does not imply a threat on the reliability of the pipe system. Similar
phenomena occurs in coil pipes, where the fluid-structure interaction implies the reduction
of the wave amplitude. Damping rates though are much lower in the metallic pipe, where
the pipe-wall presents an elastic behaviour. The fluid-structure interaction occurring in the
straight copper pipe has shown to be highly dependent on the anchoring conditions, specially
at the valve section. The pressure loads might be significantly underestimated if the classic
waterhammer model, or Joukowsky equation, is used in the design of straight pipe lines
without considering the fluid-structure interaction and the structural behaviour of the pipe
supports. For instance, in the test SCP05 (free valve) classic waterhammer theory showed a
10% of underestimation of the maximum pressure rise, and this could be worsen for different
mass valve configurations. The proposed Eq. 3.5 aims at correcting such discrepancy.
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The present chapter is based on the following scientific publications:

* D. Ferras, D. Covas, A.J. Schleiss. Stress-strain analysis of a toric pipe for inner pressure
loads. Journal of Fluids and Structures, 51:68-84, 2014.

e D. Ferras, P. Manso, D. Covas, A.]. Schleiss. Comparison of conceptual models for fuid-
structure interaction in pipe coils during hydraulic transients. Submitted at the Journal
of Hydraulic Research (July 2014).

The work presented hereafter is original and was performed by the first author. The interpreta-
tion and discussion of results was carried out with the collaboration of the co-authors.

4.1 Introduction

The aim of the present chapter is to achieve a better understanding of the stress-strain states
of a coil pipe during hydraulic transient events. Classic theory of waterhammer assumes that
the pipe does not move and that the circumferential deformation is incorporated, together
with pipe deformability and fluid (liquid) compressibility, in the elastic wave speed. However,
several physical phenomena not taken into account in classic waterhammer theory affect
transient pressure wave attenuation, shape and timing (Bergant et al., 2008a,b). One of these
effects, Fluid-Structure Interaction analysis (FSI), can be important depending on the set up
of the piping system. Consequently, a FSI analysis has to be carried out in order to determine
the effect of the structural inertia over the transient pressure wave. Pipe systems experience
severe dynamic forces during waterhammer events. When these forces make the system move,
significant FSI may occur, so that liquid and pipe systems cannot be treated separately and
interaction mechanisms must be taken into account (Tijsseling, 2007). Recommendations
by means of some dimensionless parameters and with the aim to analyse when FSI must be
taken into account are drown in Tijsseling (1996).

Pipe coils have many industrial engineering applications, being typically used in most heat
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exchange systems, like cooling systems in power plants, industrial and commercial refrigera-
tors, solar water heaters or radiators for automotive industry. Although work has been done
in the experimental characterization of the transient flow occurring in pipe coils (Brito et al.,
2014), according to the knowledge of the authors, the incorporation of the pipe coil behaviour
in hydraulic transient analyses through FSI has never been carried out.

The current chapter gives thereby a novel contribution for the numerical and experimental
investigation of pipe coil behaviour during hydraulic transients. First a static analysis is carried
out with the goal to understand the stress-strain states for inner pressure loads. Then the coil
system is assessed for dynamic conditions allowing the characterization of the fluid-structure
interaction (FSI) phenomena, which is the two-way coupling occurring between the pipe
structure and the inner pressurized fluid.

4.2 Stress-strain analysis

4.2.1 Introduction and background theory

A stress-strain analysis is a first step for FSI, the goal is to determine the pipe deformation equa-
tions. Torsion, bending, shear and axial stresses and strains are the structural responses that a
piping system may experience during waterhammer events. In classic waterhammer theory
the effect of pipe-wall distensibility is implicitly included in the wave celerity (Chaudhry, 2014).
Although radial expansion of the pipe-wall is taken into account, axial strains are not con-
sidered in classic waterhammer theory. Skalak (1955) extended classic waterhammer theory
aiming to include axial stress and movement of the pipe. Circumferential strain in straight
pipes is described by the following relation and included in the conservation equations:

1 pr
=_F 4.1
€0 E e (4.1)

where €y is the circumferential strain, E the Young’s modulus of elasticity of the pipe, p the
inner pipe pressure, r the pipe radius, and e the pipe-wall thickness.

However, in coil systems, the structural behaviour considerably differs from that of a straight
pipe, either in axial and circumferential directions, due to the toroid geometry and the cross-
section shape, which becomes oval when the pipe is curved. Consequently, when classic
waterhammer theory is applied in coil pipes discrepancies generally arise changing the wave
shape and overshooting computed pressures during peak transitions. Anderson & Johnson
(1990) analysed the effect of tube ovalling on pressure wave propagation speed in the context of
physiological flows, reaching to the conclusion that transient pressure waves are very sensitive
to the eccentricity of an ovalled cross-section.

A toroid can be described as a surface of revolution, i.e. by rotation a plane curve through
360° over a straight line (axis of revolution) in the plane of the curve. A coil pipe can be
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geometrically defined in the same manner but adding a constant slope in the direction of the
axis of revolution, and the number of coil rings will depend on the angle of rotation. Therefore,
the helical system of a coil can be considered as a composition of toroids and described as
a thin shell of revolution. Membrane theory of shells of revolution is a suitable approach to
solve circumferential and axial strains in an axisymmetrically loaded torus. However, in a
torus with ovalled or elliptic cross-section, when it is pressurized, loads are not axisymmetric
and bending moments are generated. Membrane theory of shells of revolution assumes that
no bending moments, twisting moments and transverse shearing forces that exist in the shell
(Zingoni, 1997). Bending theory of shells must be applied to account for bending effects and
to describe the complete state of stress and strains. However, such theory is more general and,
consequently, its main equations are more difficult to be solved for complex geometries.

Clark & Reissner (1950) proposed a methodology based on the Boltzmann superposition
principle to describe stress-strain states in Bourdon tubes. Such approach consisted essentially
of the computation of axial and circumferential strains using the thin-walled assumption and
describing the bending effects using the thick-walled assumption and applying bending theory.
In the context of hydraulic transients, Brown & Tentarelli (2001b) and Brown & Tentarelli
(2001a) carried out FSI coupling in order to account for the Bourdon effect during water-
hammer events. The structural constraint conditions of the pipe coil, though, do not comply
with the Bourdon tube theory, as Bourdon tube is a disconnected torus with closed ends,
while the pipe coil analysed must be considered as a connected torus. However, a similar
approach can be applied in order to determine its stress-strain states, combining thin and
thick-walled assumptions by the Boltzmann superposition principle as a function of the
applied loads. The current research approaches the stress-strain states problem in pipe coils
by computing circumferential and axial strains using membrane theory of shells of revolution
and the bending effects by applying an inverse approach based on thick-walled assumption.

4.2.2 Data collection

The experimental data used in the present stress-strain analysis was acquired from the copper
coil pipe rig (CCP) assembled at the Laboratory of Hydraulics and Environment of Instituto
Superior Técnico (LHE/IST), Lisbon, Portugal, and described in the Subsection 3.2.2.

When the pipe is bended to get the curved shape of the pipe coil, the cross-section is changed
from circular to slightly elliptic (as shown in Subsections 4.2.3 and 4.2.4). This ellipticity of the
cross-section has important consequences in the structural behaviour of the system.

Two different kinds of experiments were carried out in the coil facility. Firstly, circumferential
and axial strains were measured for different quasi-steady pressure loads, and secondly dy-
namic loading was applied by producing waterhammer events for different flow rates. The
results presented in Subsection 4.2.4 correspond to a steady pressure test of 6 x 10° Pa and
results in Subsection 4.2.5 correspond to a waterhammer wave produced for an initial flow
rate of 1.4 x 10~% m3/s. Fig. 4.1 shows the measurements obtained for static pressure tests,
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namely axial and circumferential strains of the pipe-wall, and fluid pressures.

a) Circumferential strain test b) Axial strain test

4e-05

0.00015

S |
v 9665904 oo
S 00 ©000%%0400%00000

3e-05
o

0.00010
2e-05

Strain (m/m)
Pressure (Pa)
Strain (m/m)
°
Pressure (Pa)

0.00005
2e+05 3e+05 4e+05 5e+05 6e+05

1e-05

0.00000

853234853

0
1e+05

W e * ot o2l
B T -2
e e T et H

0e+00

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

-0.00005
0e+00

Figure 4.1 — Strain and pressure measurements: (a) circumferential strain test and (b) axial
strain test. o strain at top side (SG-1 and SG-4); ¢ strain at outer side (SG-2 and SG-5); * strain
at bottom side (SG-6); ¢ strain at inner side (SG-3 and SG-7). Pressure measurements in dashed
lines (PT-2).

4.2.3 Model development
Membrane theory of shells of revolution: stress-strain models

A shell of revolution is a three-dimensional structure bounded primarily by two arbitrary
curved surfaces a relatively small distance apart (Seide, 1975). In the present section the
membrane theory of shells of revolution, assuming thin wall and axisymmetrical load, has
been considered for the computation of axial and circumferential stresses. Nonetheless, the
membrane theory of shells of revolution assumes momentless shells, thus, this theory does
not consider the bending of the cross-section.
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4.2. Stress-strain analysis

|5

Ng+dNg

Figure 4.2 — Element of the axisymmetrically loaded shell of revolution

The starting point to derive stress-strain models is the general solution of the membrane
theory of shells of revolution for axisymmetric loads (Zingoni, 1997), which outcome is an
expression for axial and circumferential stresses:

1
Ny = — frlrg(p, cosf — ppsinf)sinf dO + j 4.2)
rpsin“ 6@
r2
N(p =nrpr— r—Ng (4.3)
1

where Nj is the circumferential unit force and N the axial unit force; p; is the load applied
in the normal direction of the shell midsurface, py the load in the tangential direction of the
shell midsurface; r; and r, correspond to different radii of curvature (see Fig 4.2); § and ¢
are respectively the angles corresponding to the parallel and meridional directions; and j is a
constant of integration to be obtained from appropriate boundary conditions.

Adapting the general solution with regard to the coil geometry, two stress-strain models, one
for the torus with elliptic cross-section (elliptic torus model) and the other for the circular
cross-section (circular torus model), were implemented following the development explained
in Zingoni (1997).

Torus with elliptic cross-section: After determining the radius of curvature r; and r, for an
elliptic cross-section, and introducing them in Eq. 4.2, the definite integral can be solved fixing
a finite j constant for 8 = 0 and 6 = 7, for which sin@ = 0. Expressing the unitary force in terms
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of stress, the expression obtained for circumferential stress is:

- 2.
pa? RV a2sin®0 + b2 cos2 6 + < sin6
Og =

eV a?sin?0 + b2 cos26 | RV a2sin®0 + b2 cos2 + a2sin

(4.4)

where o0y is the circumferential stress, p the inner pressure, e the pipe-wall thickness, a the
minor semi-axis length of the elliptic cross-section, b the major semi-axis length and R is the
torus radius from the centre of the toroid to the pipe axis.

Substituting the previous Eq. 4.4 into Eq. 4.3 and rearranging terms the expression for axial
stress is obtained:
. b? - 3(a®sin? 6 + b* cos? 6)
) sinf + (4.5)
V a2 sin 0 + b2 cos? 0

_p@

O_Z -
eb?

b? - a?
( a?

For R >> a & b, the term [(bZ;Z“Z ) sinH] in Eq. 4.5 becomes very sensitive to ellipse eccentricity.
This high sensitivity and the uncertainty associated to the accuracy of the measurement of the
ellipticity are the main reasons why eccentricity value is calibrated in an a posteriori analysis

from axial strain measurements.

Torus with circular cross-section: Circular torus equations are straightforwardly derived by
simplifying Eq. 4.4 and 4.5 for a = b = r, resulting the following expression for circumferential
over the outer surface

pr R+§Sin9) 4.6)
op=—| —— .
0 e \R+rsinf
and over the inner surface the circumferential stress is
o
pr R- 5 Sll’l@)
og=—|———— 4.7
0 e ( R—-rsinf 4.0
r
o, =2 4.8)
2e

For R >> r, Egs. 4.6 and 4.7 can be further simplified, cancelling the second term and reaching
the expression for straight pipes (Eq. 4.1) used in classic waterhammer theory. For instance, in
the case of the copper coil facility analysed where R = 0.5 m and r = 0.02 m the circumferential
stress at @ = /2 willbe og = % -(0.981). Hence, applying straight pipe equation for circum-
ferential stress only, a 2% error will be produced as much in the most unfavourable location
within the cross-section. Eq. 4.8 shows that axial stress is independent of the coil radius R and
of the position angle 6. Hence, contrary to an elliptic torus, axial stress is constant along the
pipe wall for the circular cross-section, like a straight pipe with closed ends.
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4.2. Stress-strain analysis

Once stresses are computed by the previous equations, either using elliptic torus or circular
torus assumptions, strains can be obtained by Hooke’s law for isotropic elastic materials:

1
€p = E(Ue —V0,) (4.9)

1
€, = E(az—vag) (4.10)

where €g and €, are the circumferential and axial strains, respectively, and v is the Poisson
ratio.

Cross-sectional bending analysis: inverse method

Membrane theory of shells of revolution assumes thin-walled shells, that is no bending mo-
ments are transmitted along the shell. However, due to the elliptic geometry of the pipe
cross-section, when the fluid pressure changes, radial loads are not balanced in the coil (they
are not axisymmetric any more) as its projection on the minor axis of the ellipse will not be
equal to the projection on the major axis (see Fig. 4.3). This unbalance of forces generates
bending moments that for positive pressures will tend to reduce the eccentricity of the ellipse
and vice versa for negative pressures. Hence, in the case of positive pressures, the outer
fibres of the upper and lower generatrices of the cross-section will be compressed and the
outer fibres of the lateral generatrices stretched. For negative pressures, the effect will be the
opposite.

a) cross-section b) detail of stresses

Strain gauge

Figure 4.3 — Schematics of radial loads balance in (a) an elliptic cross-section and (b) detail of
stresses over the upper generatrice
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Strain-gauges measurements give information from these outer fibres, so the real measure-
ments will be actually a combination of circumferential strain (obtained by membrane theory
of shells of revolution) plus the extra deformation at the outer fibres due to bending. Therefore,
the effect of bending can be analysed by an inverse method from computed circumferen-
tial strains in the central fibres of the pipe-wall and measured strains in the circumferential
direction at the external fibres.

The assessment of this bending effect has two goals: firstly, it will allow the comparison
between measured and computed circumferential strains, and secondly, it will provide in-
formation about the cross-sectional shape change, which is important for fluid-structure
coupling during hydraulic transients in coils.

Derivation of the bending moment M: The pressurized elliptic cross-section is a hyper-
estatic system, i.e. internal forces such as the bending moment M(6) cannot be obtained
explicitly from the static equilibrium equations. Therefore, M (0) can only be obtained numer-
ically. The derivation carried out is based on Fig. 4.4:

T(0+d0)
}\‘N M(6+d8)
r{g+dg)
p
do
r(e) WM(GJ
o(e)

Figure 4.4 — Schematic for bending moment M(0) derivation

Applying equilibrium of moments at point (6 + d0) and assuming some simplifications the
following expression can be obtained:

2
M(9+d9):M(B)—G(Q)[r(Q)—r(9+d0)]+P@ (4.11)

By rearranging terms in the previous equation, it yields:

M@ +db)— M) r@ —r@+do) (dOr(0))?
=-0(0) +P

do do 2d0 (4.12)
that is

aM©)  dr@) _dor6)*
aw TP TP

(4.13)
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4.2. Stress-strain analysis

As the elliptic cross-section is a closed system, Eq. 4.13 has to be solved by imposing some
internal conditions. From measurements and applying the inverse approach explained in the
previous section, bending moments can be obtained at convenient points of the cross-section
and, then, be used as internal conditions. Though, as the inverse method must be applied in
any case, the implementation of the stress-strain models was carried out by using the inverse
approach all over the cross-section.

Centrifugal force throughout the coil pipe

Another effect that may contradict the axi-symmetrical loading assumption is the inertial
force generated by the rotation of the flow along the coil. The centrifugal force produced by an
infinitesimal control-volume of the fluid on the coil may be defined as:

V2
dNy = pdV? = pAf% VE=pArd¢pV? (4.14)

where Np is the centrifugal force, p is the fluid density, dV is the volume of the control-volume,
V is the average flow velocity and Ay the fluid cross-sectional area.

Applying the balance of forces shown in Fig. 4.5 between the axial stress of the pipe-wall and
the centrifugal force Ny:

dNp=2N, sin% ~ Npd¢ (4.15)

Figure 4.5 — Balance of forces of a control volume, pipe-wall stress forces versus centrifugal
force

By combining Eqgs. 4.14 and 4.15, the following expression can be obtained for the axial unit
force due to centrifugal effect:

N;=pAsV? (4.16)
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which, in terms of stress, is

N Ar o wr? )
O, =—=p—V=p——V°=p—V 4.17
=2, Pa" TPeanr’ P2 (4.17)
where Ay is the solid cross-sectional area.

The ratio between the axial stress due to the fluid centrifugal force o, (Eq. 4.17) and the axial
stress due to inner pressure o, (Eq. 4.8) is:

o, V?
_ v (4.18)
0z, p

Considering maximum effects during waterhammer events, p,,,x can be computed using
Joukowsky expression (p = paV). Substituting in Eq. 4.18:

Oz, 1%

—Zemax _ ¥ (4.19)

O-Zl’max a
where a is the waterhammer wave speed. In most engineering applications a >> V, so the
non-dimensional number presented in Eq. 4.19 will be very low (in the case of the copper
facility ~ 10*) and, consequently, the axial stress due to inertia of the fluid flow throughout
the coil can be neglected.

4.2.4 Model application

Forward approach for circumferential and axial strains

Torus with elliptic cross-section: States of stresses and strains were computed by Egs. 4.4,
4.5, 4.9 and 4.10 for the static loading test for a pressure of 6 x 10° Pa (i.e., 60 mH,0) and
obtained results are shown in Fig. 4.6.
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4.2. Stress-strain analysis

a) Circumferential strains
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b) Axial strains

40 60

strain(10°m/m)
20

0 10 20 30

time (s)

Figure 4.6 — Measured versus computed circumferential and axial strains using elliptic torus.
o measured strain at top side; ¢ measured strain at outer side; * measured strain at bottom
side; « measured strain at inner side. Computed strain at top side in solid line (SG-1 and SG-4);
computed strain at outer side in dashed line (SG-2 and SG-5); computed strain at bottom side
in dash-dot line (SG-6); and computed strain at inner side in dotted line (SG-3 and SG-7).

b2__a2
b2
axial strains and the measurements is obtained. The consistency between the different posi-
tions in the cross-section strengthens the reliability of membrane theory of shells of revolution

in regard to axial strains. Nevertheless, circumferential strain results do not present the same

After adjusting ellipse eccentricity =0.094, a good agreement between the computed

accuracy, as major discrepancies arise between circumferential strains in the different posi-
tions of the cross-section. The main reason of such discrepancies is the bending effect over
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the cross-sectional plane due to non-axisymmetry of loads (Fig. 4.3), which at this stage has
not been taken into account.

Torus with circular cross-section: Stress-strain states were also solved by applying the
model of the torus with circular cross-section and for the same pressure loads as in the
previous section. Deformations were computed by using Eqgs. 4.6, 4.7, 4.8, 4.9 and 4.10 and the
results are presented in Fig. 4.7.

a) Circumferential strains
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b) Axial strains
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Figure 4.7 — Measured versus computed circumferential and axial strains for a circular torus.
o measured strain at top side; ¢ measured strain at outer side; * measured strain at bottom
side; « measured strain at inner side. Computed strain at top side in solid line (SG-1 and SG-4);
computed strain at outer side in dashed line (SG-2 and SG-5); computed strain at bottom side
in dash-dot line (SG-6); and computed strain at inner side in dotted line (SG-3 and SG-7).
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4.2. Stress-strain analysis

In Fig. 4.7 it can be seen that both circumferential and axial computed strains from a circular
torus hardly vary with their relative position in the cross-section (see all dashed lines over-
lapped). This is in agreement with the assumption that R >> r, indicating that circumferential
strains computed by classic theory do not vary much in comparison to the model for a circular
torus. However, as in the case of elliptic torus, discrepancies with measurements are evident.
On the other side, axial strains are constant over the cross-section, and their magnitude is
close to the measured axial strain in the top and in the bottom sides of the cross-section.

In general, the circular torus model can describe quite well average circumferential and axial
strains. However, the capacity of elliptic torus to adjust a posteriori elliptic eccentricity of the
pipe cross-section and its reliability shown in axial strains (Fig. 4.6) justify a good basis to
carry out the bending analysis of the cross-section. The analysis will allow the correction of
circumferential strains at the outer fibres of the pipe-wall.

It should be highlighted that the differences between measurements and computed circum-
ferential strains by the membrane theory of shells of revolution, either considering elliptic
or circular cross-section, are coherent with the phenomena explained in Subsection 4.2.3.
The bending of the cross-section when pressure is increased produces a compression of the
external fibres of the top side of the cross-section and stretches the external fibres in the
lateral sides. Hence, computed results overestimate circumferential strains in the top side and
underestimate circumferential strains in the lateral sides in comparison to measurements.

Inverse approach for bending effects

The inverse approach is used to correct the bending effect not described by the previous
models. First of all, the relation between strains and the focal distance (from this point on dp,
i.e. distance between the two foci of the ellipse; cf. Fig.4.3) is determined. After a geometrical
development, the deformation at any point of the external side of the pipe wall has to be
analytically found for any change in ellipse eccentricity. Fig. 4.8 shows the deformation from
circumferential cross-section (i.e. dr = 0) to any dr up to a maximum value of dr = 6.77 mm.
The relation between dr and strains at the external sides of the pipe wall for the upper and
lateral generatrices of the cross-section is presented in Fig. 4.9. Although the general law is
not linear, as the experimental strains are located in a very small range, the expression can be
approximated to a linear relationship.
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Figure 4.8 — Circumferential strains over the cross-section when focal distance dr is changed
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Figure 4.9 — Circumferential strains as a function of focal distance dp

In a second stage, as time-series relating pressures and strains could be obtained from mea-
surements, with the combination of the previous relations depicted in Fig. 4.9, an empirical
relation between pressure and dr could be found (Fig. 4.10).
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Figure 4.10 — Empirical laws relating pressure p and focal distance dg

In Fig. 4.10 three empirical relationships between pressure p and the focal distance dr are
shown: the solid red line represents this relation obtained according to strains measured on
the top side of the cross-section, the blue dash line according to strains measured on the
lateral side and the black dash-dot line represents the average line obtained between the
previous relationships. The relationship between dr and p should be equal over the whole
cross-section, consequently, the solid and dashed lines, ideally, should be overlapping. This
graph allows the validation of the method: the closer the solid and dash lines are, the more
accurate the method is. Notice that before this stage no calibration had been carried out,
only ellipse eccentricity had been initially adjusted in order to get the best fitting for axial
strains. This small discrepancy over the solid and dash lines is due to uncertainty arisen from
strain measurements, experimental Young’s modulus, ellipse eccentricity and other possible
secondary effects, like torsion and shear along the coil due to its structural constraints. A
better fitting of both lines could be achieved calibrating the mentioned parameters. Notwith-
standing, obtained linear laws are quite similar, therefore for the purpose of the analysis both
relationships are considered accurate enough and the dash-dot interpolated line will be used
in next steps as the relationship between pressure and focal distance (Eq. 4.20). No further
calibration is applied.

dplm] =0.00194 - 6.27-10"'% « p[Pa] (4.20)

Eq. 4.20 allows, therefore, the estimation of ‘an average’ focal distance of elliptic cross-section
for all pressures within the experimental pressures range. Consequently, the volume change
in the coil due to cross-section shape change can be analysed, and circumferential strains
computed from membrane theory of shells of revolution can be corrected. Fig. 4.11 presents
the strains computed and corrected with this approach (elliptic torus with bending effect),
the previous strains obtained with the basic models (elliptic and circular torus) and the

97



Chapter 4. Fluid-structure interaction in coils

experimental data.
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Figure 4.11 - Circumferential strains corrected and not corrected versus experimental data:
a) in the outer side, b) in the inner side, and c) in the top side of the pipe. o measured data;
output from elliptic torus model in doted lines; from circular torus model in dashed lines; and
from elliptic torus model taking into account bending effect in solid lines.

98



4.2. Stress-strain analysis

Fig. 4.11 shows that once circumferential strains are corrected by taking into account the
bending effect, there is good agreement between measured and computed strains, particularly
in the inner and outer sides of the cross-section. Discrepancies are observed in the top position
of the cross-section where computed strains seem to be more sensitive to the inaccuracy
of the method already depicted in the Fig. 4.10. However, the overall performance of the
model after the bending correction is quite satisfactory, allowing the assessment of pipe-wall
displacements for the analysed range of static loadings.

4.2.5 Model validation

Dynamic loading tests were carried out in order to assess whether the calibrated stress-
strain model can accurately describe pipe-wall displacements during hydraulic transients.
A hydraulic transient is characterized by fast loading-unloading cycles over the pipe wall.
Consequently, other physical phenomena such as non-elastic behaviour of the copper material
may arise, which are not taken into account in a static analysis.

For this purpose, once the stress-strain model was defined, strains were computed from mea-
sured pressure during a hydraulic transient test and compared with measurements. Axial
strains were determined by using the elliptic model developed by membrane theory of shells
of revolution approach (Eq. 4.5). Circumferential strains were computed by the superposi-
tion of membrane theory (Eq. 4.4) and the correction for the bending effect presented in
Subsection 4.2.4.

A hydraulic transient was generated by the fast closure of a valve (in 0.1 s) located at the
downstream end of the pipe and for an initial discharge of 1.4 x 10~* m3/s. With a frequency
of data sampling of 100 Hz the measured wave speed was 1120 m/s. Fig. 4.12 presents the
numerical results versus measurements of circumferential and axial strains on the outer side
of the coil cross-section.
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Figure 4.12 — Circumferential (top) and axial (down) strains (in um/m) in the outer side of
the cross-section during transient test at the middle section of the pipe and detail of the first
peaks (right). Measured data in grey solid lines and computed data in black dashed lines.

Strains computed in the circumferential direction have a Mean Squared Error equal to 2.1 %,
while strains in axial direction have 0.25 % The stress-strain model has a better performance
in the axial direction because the computed strains in this direction have not to be corrected,
since assumptions from membrane theory of shells of revolution are consistent with the
physical phenomena. This is because bending is only occurring over the cross-sectional
plane, and not over the horizontal plane. However, strains in the circumferential direction are
affected by the bending of the elliptic cross-section (Fig. 4.3), and therefore uncertainty arises
from the introduced correction.
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4.2. Stress-strain analysis

Simplification of pipe stress-strain equations for FSI coupling

In FSI implementation for the analysed coil pipe system, membrane theory of shells of revolu-
tion have to be applied for circumferential and axial strains computation, while the bending
effect has to be considered by the empirical relationship from Fig. 4.10. Coupling will be
performed for 1D hydraulic transient equations. Hence, for the sake of FSI implementation,
the stress-strain equations are simplified with the aim to consider only averaged values over
the entire cross-section.

Simplification for circumferential stress: The circumferential stress equation for elliptic
torus can be simplified by assuming quasi-circular cross-section (a = b = r) and quasi-straight
pipe (R >> r). Hence, substituting a and b by r in Eq. 4.4:

. 2 .
pr? R\/rzsm29+r2cos26+%sm9
091 = =
e¥\/r2 sin0 + r2 cos? 6 RV r2sin26 + r2cos2 + r2sin@

~~
r

2,
pr Rr+%sin6
" e Rr+r?sinf
—_—

1 for R>>r

.
o9, = % (4.21)

obtaining the same expression corresponding to circumferential stress in straight pipes used
in classic waterhammer theory.

Simplification for axial stress: Though, regarding axial stress the term R (bZ;Z“Z ) sinf from
Eq. 4.5 can not be simplified. Using the same assumptions, as for the quasi-straight pipe
assumption (R >> r) the term tends to oo while for the quasi-circular section assumption
(a = b) it will tend to 0, thus the term is undefined. Hence, substituting in the other terms a

and b by r it yields:
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2

eccentricity r
,—H ~ % )
p b —a?\ r? =1 (r*sin®0 + r* cos® )
og=—|R|—5— sinf +
er a §/r2 sin?6 + r2 cos?6
r
r R(b*-a? .
og = pr + px ( 5 smH) (4.22)
2e e a

The first term of the obtained Eq. 4.22 is equivalent to the axial stress for circular torus, which
actually is the result of the structural constraint of closed torus (same expression would be
obtained for a straight pipe with frequent expansion joints and closed ends). The second
term is composed of the product of two factors. The first factor (pR/e) is equivalent to an
average circumferential stress computed over the horizontal plane instead of the vertical (R
instead of r). The last factor can be seen as a term dependent on the eccentricity of the elliptic
cross-section and the position angle 6. Hence, axial stress, with an averaged value of o, = %
varies, depending on the position over the cross-section, according to the product of the
equivalent average circumferential stress over the horizontal plane multiplied by the ellipse

eccentricity and projected over the horizontal plane. Accordingly, for FSI, averaged axial stress

can be described by:
0z= pr (4.23)
2e

which is the same expression as for torus with circular cross-section (see Eq. 4.8)

Simplification for bending effect: As mentioned before, axial and circumferential stresses
can be simplified to average values using reasonable assumptions according to the geometry
of the coil system. To get average strain values from the bending effect, a different approach
has to be chosen. The aim is to represent the increase of cross-section area when ellipticity
is changed due to pressure changes. For this purpose, an equivalent radial expansion of
the cross-section can be assumed and related with the dr — P expression determined in
Subsection 4.2.4.

First of all, dr must be related to the ellipse area for a fixed ellipse perimeter, secondly, the
ellipse area can be related to an equivalent radius for a circular section and, finally, the
empirical dr — P law can be embedded.

The ellipse properties are defined as follows:
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4.2. Stress-strain analysis

d}: =2V b%—a?
Aellipse = nab

b? + a?
2

Peiipse =27 (4.24)

For known values of dr and of the initial perimeter (Py), the previous system of equations can
be simplified obtaining the following expression:

A (—0 )4 —1 (—F)4 (4.25)
. :]‘[ —_— .
ellipse 2 a2\ 2

Assuming the equivalent area for a circular section, the previous expression can be expressed

in terms of radius:
Po\* 1(dr\*
r:d(z—O) _Z(TF) (4.26)
b4

Eq. 4.26 can be further simplified applying a linearisation via Taylor series' with a centre point
at dr corresponding, in the case of the dynamic test, to the initial steady state before closing

the valve:

r=0.01-1.0567 x 10~ - dg (4.27)

In terms of circumferential strain:

~0.01-1.0567 x 10~*- df

€6, - 1 (4.28)
0
1 Taylor series:
oo f(n)
f=73 %(x—a)"
n=0 :
and for the analysed case:
/(d ) //(d ) I//(d )
fdm) = Fidpy + L T (= dgy) + ! (= dgy)” + fTF"(dF ~d)*
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Chapter 4. Fluid-structure interaction in coils

Finally, substituting the empirical expression found for dr (Eq. 4.20) in Eq. 4.28, it yields:

€p, = —6.169x 107 +6.626 x 10712 p (4.29)

Simplified strain equations: Applying Hooke’s law for isotropic materials (Egs. 4.9 and 4.10)
and the Boltzman superposition principle for circumferential strains, the final simplified
equations, in terms of strain, are:

_ 1 pr pr

€= E (2_3 - V;) (430)
_lypr _pr 7 12

€ = E( : —Vze)—6.169>< 1077 +6.626 x 1072 (4.31)

Fluid wave celerity in a coil pipe: The fluid wave celerity inside of a coil with no anchorages
can be obtained by deriving the basic conservation waterhammer equations, starting by
Reynolds Transport Theorem and applying the specific stress-strain equations for a coil pipe.

Developing the mass conservation equation as explained at Chaudhry (2014) and with the
update of the new circumferential strain equation (Eq. 4.31), the expression reached is:

W (Lol +13052.10-1) %P = (4.32)
0z \K Ee dr )

where K is the bulk modulus of elasticity of the fluid and z represents space in the axial
direction.

and with the following definition

! :(l+(2—v)L+13252-10“) (4.33)
pran K Ee

the fluid wave celerity can be obtained:

o

It should be highlighted that, in the previous Eq. 4.34, the constant value associated to the
bending effect (1.3252-10~ ! p.—) is specific of this case study and cannot be generalized for

1 r -1
—+@2-v)—+1.3252.10"11 4.34
X ( V)Ee )Pf] (4.34)

other pipe systems with different sizes, coil radii and pipe materials. The remaining terms can
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4.2. Stress-strain analysis

be generalized to any pipe coil.

Finally substituting values according to the coil parameters the wave celerity obtained is
1261 m/ s, while omitting the cross-sectional bending term the wave celerity would be 1274.5 m/s.
For instance, for a rigid conduit, the celerity is 1480 m/s, for an elastic straight thin-walled
pipe anchored against longitudinal movement in its upper end, a = 1292 m/s and, finally,
allowing the movement in both boundaries, the celerity is 1260 m/s.

4.2.6 Validation of the simplified equations

4.2.7 Pipe displacements using the elliptic torus model and the simplified equa-
tions

In order to assess the effect of circumferential, axial and bending deformations in the context
of hydraulic transients, pipe-wall displacements were first computed from the stress-strain
model for the static pressure test. Fig. 4.13 depicts such displacements either over the cross-
sectional and horizontal planes of the torus for a static pressure of 6 x 10> Pa. For the sake of
visual representation, strains have been amplified by a scale factor of 10 in regard to bending,
100 for circumferential strains and 10000 for axial strains.

a) cross-sectional plane of the torus b) horizontal plane of the torus

----- Initial section

. e Initial torus
—— Pressurized section

—— Pressurized torus

Initial section area: 3.1416 cm”2 Initial coil length: 105 m

Pressurized section area: 3.1419 cm”2 Pressurized coil length: 105.0011 m

Figure 4.13 - Computed displacements of the pipe wall over the coil cross-section (left) and in
the horizontal plane(right)

The total deformation of the pipe section and pipe length for the pressurized system has been

105



Chapter 4. Fluid-structure interaction in coils

computed in order to get an idea of the magnitude of circumferential and axial strain effects
and also the cross-sectional shape change due to bending. The computation has been carried
out for both, elliptic torus before and after simplification. Egs. 4.35, 4.36 and 4.37 describe the
volume variation either by circumferential, axial and bending deformations:

0=2n
1
AVy=L- f €theray 77— 0 (4.35)
=0 ©)
AV, =L-6 (4.36)
AV, =L (P°)4 ! (dp)4 A (4.37)
= . jl' _— J— —_— —_ .
dr on) 4\ 2 0

where AVj is the volume change due to circumferential strain, AV, due to axial strain, and
AVy,. due to bending effect, k is the curvature of the ellipse which is dependent on the angle 0,
L is the total pipe length, Py is the initial perimeter of the cross-section and Ay the initial area.

Results of the application of previous equations are shown in Table 4.1:

Table 4.1 — Volume change for a steady pressure of 6 x 10° Pa (i.e. 60m)

Non-simplified equations | Simplified equations | error
AVp 3.24x107°8 3.11x1078 -4%
AV, 3.60x 1077 3.16x 1077 -12%
AVy, 1.64x1077 2.19x1077 33%
totalAV 3.76x107° 3.70x 1078 -3%

In both cases, approximately 85% of the total volume variation when the pipe is pressurized
corresponds to circumferential expansion of the conduit, 8 — 10% to the axial deformation
and 4 — 6% to the bending of the cross-section. The volume variation inside the pipe is more
sensitive to circumferential strain effect than to axial strain or bending effects, even though,
these minor effects cannot be neglected. The simplified equations give similar results in
comparison to the original elliptic torus equations.

Range of application

The first criterion to determine the range of application of the presented equations is the
consideration of the limit between thin and thick pipe-wall. In the current study, Goldberg
et al. (1974) criteria are assumed, in which thin and thick pipe-wall theories were compared for
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4.2. Stress-strain analysis

circular cylinders submitted to inner pressure loads, concluding that for ratios £ > 10 results
using thin-walled assumption were satisfactory.

In the simplification of the equations in Subsection 4.2.5, two extra assumptions are taken:
quasi-circular cross-section and quasi-straight pipe. As it was shown in Fig. 4.7, the circular
torus assumption presents good average values of axial strains, while the quasi-straight pipe
assumption only affects distribution of circumferential stresses over the cross-section, but not
its average value. Therefore, in the context of 1D hydraulic transient modelling, where only
averaged strain values are concerned, the elliptic eccentricity of the cross-section does not
represent any constraint in regard to the range of validity of the proposed equations for axial
and circumferential strains.

Additionally, the bending analysis carried out is only valid for the coil system analysed. The
empirical relation between dr and P (Eq. 4.20) must be redefined if structural conditions
are changed. The presented equation for equivalent circumferential strain due to bending
(Eq. 4.29) is valid only for the tested range of pressures (approx. 0 to 10° Pa), as the linearisation
via Taylor series is centred in dr corresponding to a non-pressurized system; consequently,
the greater the amplitude of pressure range is, the greater the error will be.

4.2.8 Research outcome

Two stress strain models based on the theory of shells of revolution are presented to describe
the stress-strain relationships in the cross-section of a coil pipe. A semi-empiric bending
analysis has been carried out in order to improve the accuracy of the models.

Membrane theory of shells of revolution applied to an elliptic torus has been proven to be a
good approach for the axial strain description but inaccurate with regard to circumferential
strain. The main reason is that circumferential strains are strongly affected by a common sin-
gularity of coil pipes: the cross-section is slightly elliptic and bending moments are generated
over the cross-sectional plane. In order to assess the bending effect and correct circumferen-
tial strains, a semi-empiric method has been proposed to determine an empiric law relating
the ellipse focal distance with pipe inner pressure. The method enables the assessment of
cross-sectional shape change and the correction of circumferential strains. The effect of the
centrifugal force produced by the rotating flow within the coil has been also assessed, con-
cluding that its effect is negligible in comparison to the inner pressure effect. Validation has
been carried out for dynamic loading with the aim to ensure the final purpose of the research,
FSI during hydraulic transients. Finally, for the sake of FSI implementation, a simplification of
the proposed model is presented.

Displacement volumes have been computed for the static pressure concluding that the impact
of the three effects (circumferential, axial and bending strains) are important to describe
hydraulic transients in pipe-coils and they should be distinguished for FSI assessment. Cir-
cumferential and axial strains have to be described by Egs. 4.4, 4.5, 4.9 and 4.10. Displacements
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due to bending (i.e. cross-sectional shape change) can be directly obtained from the empirical
law relating ellipse focal distance with pressure depicted in Eq. 4.20. The simplified version
of the equations for FSI implementation is given in Egs. 4.31 and 4.30. The range of validity
of these equations, according to the membrane theory of shells of revolution, is subjected
to thin-wall criteria (i.e. g > 10), while the presented bending analysis, due to its empirical
nature, is only valid for the test facility and range of pressures assessed.

4.3 Fluid-structure interaction

4.3.1 Introduction and background theory

The present section focuses on the analysis of hydraulic transient flow in coil pipe systems.
The aim is the characterization of the fluid-structure interaction (FSI) phenomena occurring
between the pipe structure and the inner pressurized fluid. Three interaction mechanisms
are analysed: the shear-stresses generated between the fluid and the pipe-wall, the axial
movement of the pipe induced by its radial deformation during pressure surges and the pipe
movement generated by an imbalance of forces at junctions and boundaries.

Although FSI occurs in any structure, it is important to have the right criteria in order to
decide when and which FSI effects are actually relevant. For this purpose, the main FSI
dimensionless parameters are (Tijsseling, 1996): the Poisson ratio of the pipe material (v), the
ratio between the pipe radius and the pipe-wall thickness (3), ratio between the solid and
the fluid densities (Z—?) and the ratio between the pipe Young’s modulus and the fluid bulk

modulus (IE(). Also Tijsseling (1996) stated that FSI may be of importance when fluid and
solid wave celerities are of the same order of magnitude, provided that the transient excitation
is sufficiently rapid. Therefore, the ratio between fluid pressure wave and solid stress wave
celerities (Z—’;) must be considered as well. In the specific case of coil systems the ratio between
coil radius and pipe radius (g) and the ratio between flow velocity and fluid wave celerity (%)
have to be also taken into account (Ferras et al., 2014).

Fluid-structure interaction is a complex problem that is highly dependent on the pipe layout.
Generalization is not presently possible, and FSI calculations have to be treated on a case-
by-case basis (Wiggert & Tijsseling, 2001). Pipe coils deform in a three-dimensional space
with several degrees-of-freedom: deformation in the circumferential and axial directions,
flexion in the cross-sectional plane and along the pipe axis, torsion, shear, etc. Hence, for a
full description of the FSI of a pipe coil during hydraulic transients a multi-mode model is
required.

Tentarelli (1990) carried out FSI coupling in order to account for the Bourdon effect during wa-
terhammer events, which occurs in curved fluid-filled tubes of non-circular cross-section (Ti-
jsseling, 1996). The structural constraint conditions of the pipe coil, though, do not comply
with the Bourdon tube theory, as Bourdon tube is a disconnected torus with closed ends,
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while the pipe coil analysed herein must be considered as a connected torus (Ferras et al.,
2014). Also, Anderson & Johnson (1990) analysed the effect of tube ovalling on pressure wave
propagation speed in the context of physiological flows, though, Ferras et al. (2014) showed
that, for the coil case of study, the slight ovallity of the cross-section is negligible.

Radial inertia, flexure and torsion are neglected in the present research and the fluid-structure
interaction in the coil system is described by a four-equation model. Such assumption is based
on a previous study (Ferras et al., 2014) where stress-strain laws were derived for coils loaded
by static inner pressure. It could be shown that torsional and bending movements in a pipe coil
are negligible in comparison to axial or circumferential displacements. Moreover, Ferras et al.
(2014) also concluded that the axial stress generated for the inner pressure load is equivalent
to the axial stress produced in a free moving straight pipe with closed ends. Additionally
the numerical solutions analysed include Brunone’s unsteady skin friction computation and
Coulomb’s dry friction.

The novelty of this study is the description, analysis and discussion of the FSI occurring in
pipe coils by three one-dimensional conceptual models using a four-equation solver: the first
model simplifies the problem to a straight pipe with a moving end; the second is an analogue
mechanical model composed of a straight pipe with moving side pipe segments describing
the independent movement of each ring; finally, a third model is similar to the second but
assuming the vibrating rings are fully damped at each time-step. Unsteady skin friction and
dry friction have been included in the last model as dissipating mechanisms.

4.3.2 Data collection

The downstream boundary of the copper coil pipe facility (CCP) is equipped with a spherical
valve that allows the generation of waterhammer events by a fast manual valve closure, with an
effective closing time ¢, = 0.025 s, much lower than the half of the experimental wave period
(T =4L/ay =0.35 s) for an experimental wave celerity a; = 1193 m/s.

Several dimensionless parameters indicate when FSI effects might be important as referred in
Subsection 4.3.1. The values of these parameters for the copper coil facility are presented in
Table 4.2:

Table 4.2 - Dimensionless parameters for the experimental facility

v aplaz | rie | pplpy | E/IK | RIt | Wlap
0.33 | 0.368 10 8.96 47.95 | 50 | 0.00028

The pressure histories at the downstream and midstream pipe sections for the experimental
tests carried out in the coil facility are presented in Fig. 4.14.

Fig. 4.15 depicts measured piezometric head immediately upstream the valve in comparison
with the numerical results obtained by the classic waterhammer model for an initial flow rate
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Figure 4.14 — Measured hydraulic head at the downstream (a) and midstream (b) pipe positions
for the transient tests carried out in the experimental facility.

Qo =400 I/ h. The wave amplitude is significantly overestimated by the classic model. The
present study tries to reduce this overestimation by assuming that its source is the structural
behaviour of the coil pipe system as well as the movement of the downstream end valve.
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Figure 4.15 — Measured hydraulic head at the downstream boundary in comparison with the
classic waterhammer theory solution for a fast hydraulic transient generated after an initial
discharge Qo =400 I/ h.
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4.3.3 Model development
Characteristic grid in a four-equation model

The set of partial differential (Egs. A.47) are transformed to ordinary differential equations
(compatibility equations) by applying the method of characteristics (MOC). Resulting equa-
tions can be easily integrated over a characteristic grid.

However, in a four-equation model two different waves propagate with different celerities
over the same characteristic grid: fluid pressure wave and solid stress wave. Two main ap-
proaches can be used: wave celerity adjustment in order to keep Courant numbers equal
to one by achieving a ratio between celerities of integer numbers, as suggested by Schwarz
(1978), Wiggert (1986) or Bergant et al. (2008b); or by applying either temporal or spatial
interpolation over the grid, as followed, for example, by Fan (1989), Elansary & Contractor
(1990), Bouabdallah & Massouh (1997) or Ghodhbani & Hadj-Taieb (2013). Tijsseling (2003)
proposed a third approach, namely the resolution of an exact solution by means of a math-
ematical recursion. Methods based on interpolations introduce numerical dispersion and
diffusion, while the exact solution is feasible only for verification and validation, since for large
simulation times it is time consuming. The method applied herein is based on the celerities
adjustment, though, special attention was given on validation, as this method introduces
phase shift in the transient pressure wave.

For instance, when computing the theoretical wave celerities in the copper facility (see char-
acteristics in Table 4.2), the celerities obtained are 3423 m/s for the solid stress wave and
1261 m/ s for the fluid pressure wave. To adjust the characteristic lines in the numerical grid two

a*
different integer numbers ratio were tested a—{ = % (being a]t =1141 m/s for a} = 3423 m/s)

and a more accurate % = % (being aZ = 1245 m/ s for a; = 3423 m/s). Inevitably such

adjustment leads to a small phase error resulting from the adjusted fluid wave celerity. To
minimize the error with respect to the theoretical wave celerity the ratio retained for the model
4 _ 4

*
icati G — 4
application was @ =1

Fluid and solid densities were corrected according to the modified celerities applying the
following equations (Lavooij & Tijsseling, 1991):

(a;2+a;2)+ (aZz+a§2)2—4(1+k1£—2a22a;2) (
4.38)

*
p,=ki
g 20+ ki )ay’ay’

(@’ +a®)—\J(@?*+a®?2 -4+ Ba?a*?
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where p]f is the adjusted fluid density and p}; the adjusted solid density, a; and a;, the
)
modified wave celerities, and k; are parameters given by: k; = (Klf + %%)‘1, ko = E and
_9.2R

k3 =2v re

The adjustment of wave speeds allows calculations to lie in the grid points. However, in
the boundaries and in their vicinities, temporal or spatial interpolations are unavoidable.
Temporal interpolations were carried out herein as shown in Fig 4.16.

Boundary

—— Characteristic lines in the fluid
BC,

---- Characteristic lines in the solid P2

time-stepps

space-steps

4

Figure 4.16 — Scheme of the characteristic lines for the wave celerities adjustment % =13-
p

Boundary conditions and junction coupling

For a reservoir-pipe-system, the boundary conditions for the fixed infinite reservoir at the

upstream boundary are

0) | = r
P71 =pres (4.40)
U;[o0,j]=0

while for a fixed valve at the downstream boundary they are

U;[L,j]=0
(4.41)
V(L j] =105k
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where 7(#) is a function describing the valve closure, the coefficients in the squared brackets
correspond to space and time coordinate, 0 stands for the upstream boundary and / for the
downstream boundary, j for the time-step, and p;.s is the pressure in the reservoir.

For a boundary condition of a moving valve, the balance of forces must take into account the
movement of the valve. Hence, the second law of Newton is applied, describing the rate of
change of momentum at the valve as the unbalance of forces over the valve between the fluid
pressure and the pipe-wall stress:

ApAf—o_ll, jlAp = myU.lL j] (4.42)

The resulting movement of the pipe induces an axial stress wave that propagates throughout
the pipe (junction coupling). Nevertheless, assuming static conditions, Ferras et al. (2014)

showed that the axial stress in a toroidal pipe due to inner pressure is equivalent to the axial
pr

Ev
to Equation 4.42 considering a massless valve. However, in dynamic conditions, the inertia of

stress of a non-anchored straight pipe with closed ends, being o[/, j] = 5, which corresponds
the moving element must be taken into account. By rearranging Equation 4.42 and considering
the change of flow rate due to valve closure, the following boundary conditions are obtained:
1 AgA Co
oz [Lj] =5 - 5 UL ]

(4.43)

VL= U (1 g) =105

The implemented four-equation solver is successfully verified at Appendix C by means of Delft
Hydraulics FSI benchmark problems from Tijsseling & Lavooij (1990) and Lavooij & Tijsseling
(1989).

4.3.4 Modelling approaches
Modelling assumptions

The coil pipe system, when pressurized, increases the fluid volume due to both the axial
and the circumferential deformation of the pipe-wall. Conversely, for negative pressures,
the pipe reduces its fluid volume. In coil-pipes, due to the axial deformation, this effect is
stronger than in straight pipes with anchored boundaries. The consequent response of such
“breathing" effect of the coil over the hydraulic transient wave is a smoothing of the pressure
peaks, resulting on a reduction of the wave amplitude.

Axial strains of a pipe coil for inner pressure loads in static conditions can be assumed to
be equivalent to the ones of a straight pipe with closed ends, though, with a modified wave
celerity (Ferras et al., 2014). In the cited paper also the additional axial stress produced by
the centrifugal force of the rotating inner fluid throughout the coil was assessed concluding
that it is neglegible for the given ratio between the torus radius and the pipe radius (R/r)
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(Ferras et al., 2014). Also the curvature in the coil pipe affects the velocity profile and conse-
quently the friction losses. Based on Blasius formulation Di Liberto et al. (2013) proposed a
formula to compute Darcy friction factor taking into account the curvature in serpentine pipes
(f = 0.304Re™%% +0.029v/7/R). As in the copper coil facility 0.304Re %?° >> 0.029v/7/R,
the additional friction losses due to the pipe curvature can be neglected and friction factor
computed by Blasius formulation for both facilities. In the present study the interaction
between the pipe and the supporting structure is as well neglected, i.e. there is no transfer of
momentum or friction between the pipe-wall and the pipe-supports.

Three models have been developed for describing the pipe coil behaviour. Basic assumptions
for model conceptualization and discretization are depicted in Table 4.3.

Table 4.3 — Main modelling assumptions for the simulation of the coil system.

Model parameter Model-1 Model-2 Model-3
Solver four-equation two and four-equation | two-equation adjusted
Geometry Single straight pipe Multi-pipe system Single straight pipe
Moving elements Valve Coil rings -
Celerities ratio (ay/ as) 4/11 4/11 -
Modified fluid celerity (a;) 1245 m/s 1245 m/s 1141 m/s
Modified solid celerity (a;) 3423 m/s 3423 m/s -
Time-step (dt) 0.0025 s 0.0025 s 0.0025
Space-step (dx) 2.83m 2.83m 2.83m

Model-1: straight pipe with moving valve

Model-1 corresponds to a four-equation model presented in Subsection 4.2.3, in the present
section it is used to describe the transient pressures in the coil copper facility. A reservoir-pipe-
valve system with a free moving valve was considered, describing the “breathing" effect of the
coil through the axial deformation of the straight pipe.

Model-1 has the following characteristics: pipe length of L = 105 m, pipe inner diameter
D =2 cm, pipe-wall thickness e = 1 mm, modulus of elasticity E = 105 GPa, fluid bulk
modulus K = 2,19 GPa, fluid density py = 1000 kg/m3, solid density pp = 8960 kg/m3,
Poisson ratio v = 0.33, initial flow velocity V = 0.354 m/s and initial Darcy friction factor
f =0.035 (smooth wall pipe). Brunone’s unsteady friction computation has been taken into
account during the transient state using a reynolds dependent decay coefficient k.

Fig. 4.17 depicts the model results for a moving massless valve in comparison with the classic
waterhammer solution.

Piezometric head obtained by the four-equation model, although being smoothed due to
the non-instantaneous closure of the valve, is subdivided into three stages (see Fig. 4.17b):
Stage-1 in which the pressure is lower than the classic two-equation model; Stage-2 with higher
pressure and; finally, Stage-3 with a pressure decrease. The first pressure drop is caused by the
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Figure 4.17 — Results of Model-1: a) simulated piezometric head at the pipe downstream end
for a free moving massless valve versus results of classic waterhammer solver; b) detail of the
first peak. Notice that the pressure traces corresponding to the classic model with steady and
unsteady friction are almost overlapped.

movement of the valve in the downstream direction after the first pressure surge. Afterwards,
as the solid axial stress wave travels approximately 3 times faster than the fluid pressure wave,
at around one third of the pressure peak there is an increase of pressure resulting from the
negative axial stress which is pulling the pipe upwards, producing this “pumping" effect.
Finally, the axial stress wave bounces back pushing again the valve and producing the last
pressure drop over the pressure surge. Unsteady friction hardly affect pressure traces in the
one-mode model (as shown in Fig. 4.17), and the transient is highly dominated by FSI.

In order to assess the effect of the moving valve, a sensitivity analysis has been carried out for
the valve mass (m,). A set of 100 simulations from m, = 0 kg until m, = 1000 kg was carried
out.

The range of possible solutions of the four-equation model for a free moving valve of variable
mass are shown in Fig. 4.18. The bold dashed line indicates the solution for the minimum valve
mass threshold modelled, which is equal to the already presented massless valve solution.
The dotted line depicts the output for the maximum valve mass threshold modelled, which is
m, = 1000 kg. As the mass valve increases, results tend to the solution of Poisson coupling
with a fixed valve. It is interesting to point out that, due to the dispersion effect of the mass
valve, the maximum pressure peak does not occur for an infinite mass valve (fixed valve) nor
for a massless valve, but for a solution in-between.

In order to determine the best simulation, the Mean Squared Error (MSE) was computed for
the first pressure peak (within the time slot 0.2 to 0.5 s, see Fig. 4.18-b) as a function of the mass
valve variation. The lowest MSE corresponds to a valve mass m, = 121 kg, which does not
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correspond to the valve actual weight (as the valve is quite small, weighting 300 gr), however
it represents the valve constraints as the valve and the pipe at the downstream end are fixed to
ametal frame (not rigidly anchored).
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Figure 4.18 — Feasible solution region of Model-1 output for a free moving valve with variable
mass (a); and Mean Square Error (MSE) values computed for the first pressure peak taking as
reference experimental observations (b).

Model-2: analogue mechanical model

In order to better describe the observed structural behaviour of the pipe coil during the
transient pressure wave propagation, an analogue mechanical model was build using the
four-equation FSI model. The approach applies the concept that the rings of the coil vibrate
independently from each other according to their inner pressure load in each time-step.
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To describe these independent vibrating rings two sorts of models were combined: 1) a main
two equation model representing a straight pipe with a total length of L = 105 m, discretized
by 38 nodes with each inner node representing a coil ring; and 2) 36 four-equation sub-models
describing the rings behaviour. These FSI sub-models were build as straight pipes of length
equal to the ring perimeter (i.e., 2.83 m) and with closed free moving ends. The valve in the
main pipe is fixed. The model is schematically shown in Fig. 4.19.

, 105m ,
T T

283 m

ERES2EREE R RRERLEEREERARERRRRRAN

Figure 4.19 - Model-2: independent vibrating rings described by FSI sub-models which assume
straight pipes with closed free moving ends.

The coupling is carried out by considering the centre node of the ring models as the inner
node of the main system. In each time-step, the pressure of the rings is equal to the pressure
of the entire submodels, consequently the free moving ends stretch or shrink the pipes and
describe such ring behaviour. This effect produces an increase or decrease of pressure which
is transferred to the main pipe. The effect of the moving closed ends can be calibrated by
adding inertia to the pipe boundaries (i.e. varying the mass of the extreme ends of the pipe
segments representing the coil rings). Finally, velocity must be recomputed in each time-step
and each node of the main system.

A calibration sequence is carried out in Model-2 by a three steps procedure. First, the overall
mass of the coil rings is analysed considering the mass is homogeneously distributed through-
out the coil. Then a sensitivity analysis allows the understanding of the effect of the mass
distribution on the coil rings. Finally a manual calibration was carried out with the goal to fix
the best mass distribution.

Sensitivity analysis: First, a set of simulations was carried out by equally varying the mass
of all rings, from m, = 0 kg to m, = 40 kg with the aim of assessing the sensitivity of model
output to the rings inertia. For this set of simulations Fig. 4.20 show the solution band for the
varying mass in the rings. As it can be observed, the proposed mechanical model allows a good
adjustment of the pressure peaks by considering the independent expansion and contraction
of the rings. The simulation with the best fitting to measurements (i.e. lowest MSE) was
selected from the sequence presented above. The calibration process consisted of distributing
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a varying mass throughout the coil rings in order to get the best fitting for the first pressure
peak. For this purpose, in a second step, a sensitivity analysis of the mass distribution in the
rings was carried out (Fig. 4.20-b). The analysis consisted of a set of simulations by enabling
the free movement of massless rings throughout the coil except one fixed ring. Each ring was
assessed. A total of 36 simulations was carried out. The output allowed the analysis of the
effect of the fixed ring over the pressure output. Fig. 4.21 depicts hydraulic head during the
first peak for the mentioned set of simulations.
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Figure 4.20 — Model-2 output considering a varying mass of the rings in comparison with
measured pressure data at the downstream end (a); and Mean Square Error (MSE) values as
a function of ring mass variation computed for the first pressure peak taking as reference
experimental observations (b).

118



4.3. Fluid-structure interaction

a)

80

Ring number

70

60

R8sz IzarenIs

Hydraulic head (m)
40 5

20 30
—
A

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Time (s)
b)
o
=]
@
— (=]
E o
w
(%]
=
<
o
S
o
o
[S)
0 5 10 15 20 25 30 35
upstream . downstream
ring number

Figure 4.21 — Model-2 output (a) of the first pressure peak for a set of simulations by allowing
the free movement of the rings except one. The position of the fixed ring is changed in each
simulation (1 = upstream ring; 36 = downstream ring). Mean Squared Error (b) computed
taking as reference the massless rings solution.

The sensitivity of the model to the mass ring distribution is shown in Fig. 4.21-b presenting
the computed MSE by taking as reference the solution of massless rings throughout the coil.
Thereby, the lower MSE is, the closer the model output is to the massless rings solution, and
consequently, the lower is the sensitivity of the model to the fixed ring.

Calibration: Fig. 4.21-b depicts the closer to the upstream boundary the rings are, the less
sensitive is the model to the ring movement. Finally, taking into account this sensitivity
analysis and based on the best ring mass of Fig 4.20-b (i.e. 2.9 kg), a manual calibration was
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carried out by distributing the mass over the rings with the purpose to get the best fit for the
first pressure peak. Fig. 4.22 shows the distribution of mass over the rings after calibration.
Calibrated mass rings aim to describe different supporting stiffness and the consequent
independent movement.

o
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Figure 4.22 — Mass distribution of the rings throughout the coil after calibration.

As it can be seen in Fig. 4.23, results from the simulation with homogeneous mass load are
quite accurate in regard to the wave amplitude and phase, however this simulation does not
describe the wave shape, being quite similar to the classic theory.

On the other hand, the model calibration by distributing the mass loads allows a very good
fitting in the first pressure peak. However, the achieved wave shape remains quite stable over
the propagated pressure peaks.
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Figure 4.23 — Model-2 output after calibration, either with homogeneous rings mass or dis-
tributed, and in comparison with measured pressure data at the downstream end.
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Model-3: 1-mode adjusted model

A third model has been developed considering that the vibration of the coil rings is highly
damped by the dry friction between the pipe and its supports, their viscoelastic behaviour,
and the transfer of momentum between the pipe and its supporting structure. As defined
by Chaudhry (2014): ‘a transient-state is that intermediate-stage when the conditions are
change from one steady-state condition to another steady-state”. In the coil pipe system the
transient flow is coupled with the transient vibration of the rings. The first vibrates at a
frequency of 2.7 Hz while the latest at 272.4 Hz. Considering this higher vibration of the
coil rings and the aforementioned damping mechanisms it is legitimate to assume that at
the vibration of the coil rings fully develop their final steady-state at each fluid wave cycle.
Therefore, in Model-3 implementation the pipe rings deform following the inner pressure
loading by means of a quasi-steady assumption and applying stress-strain relations. At each
time-step, the two-mode vibration of the coil rings is assumed to reach the final stead-state.

According to Model-2, the final steady-state of the second pipe vibrating mode corresponds to
null flow and pipe-wall movement. Hence, to compute the pressure variation caused by the
coil breathing effect, the following conditions are imposed for the second oscillation mode, at
every node and time-step:

vi=o0 (4.44)

1

U.]=0 (4.45)

A third condition is added to the model, coming from the stress-strains relations given by the
balance of forces of inner pressure, axial stress and dry friction at the pipe supports. The model
domain is discretized in 36 nodes, each node represents a coil ring and the pipe supports are
embedded at each node. Fig 4.24 depicts the balance of forces carried out at each node.

b)

a) z y
detail b) X Fx
y

Fdf —ye — Fp

Figure 4.24 — Schematic of Model-3: (a) general overview and (b) detail of balance of forces
carried out at the end of the pipe-segments.

121



Chapter 4. Fluid-structure interaction in coils

From this balance the axial stress in the coil rings is obtained as a function of the inner pressure
increment:

Ar
Ap

. . . . -m
o)=Ll -piH-EE T (4.46)

i Ap

Substituting Eqs. 4.44, 4.45 and 4.46 into the compatibility equations of the two-mode solver,
the updated pressure is obtained by means of the following implicit equation:
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where the term Cj,, is known and depends on the values of the dependent variables at the
previous time-step (Lavooij & Tijsseling, 1991). After few iterations the correction of pressure
due to the breathing effect of the coil rings, at every node and for each time-step, is obtained
by means of Eq. 4.47.

The setting up of the model consists of fixing the mass of the coil rings, which is calculated ac-
cording to pipe geometry and material densities, and assumming variable Coulomb'’s static (1)
and kinetic (i) dry friction coefficients. These coefficients represent the anchoring conditions
of the coil rings. The coil rings are allowed to move if the static dry friction force is exceeded;
when this happens, the pressure at a node is corrected using Eq. 4.47 and considering the
kinetic Coulomb’s coefficient.

Fig. 4.25 depicts a sensitivity analysis carried out by modifying, homogeneously, the dry
friction coefficient, and considering it constant at every dead-end node.
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Figure 4.25 — Model-3 output (a) for a set of simulations varying the Coulomb’s dry friction
coefficient. (b) Mean Squared Error computed taking as reference the measurements.

Finally, a manual calibration by adjusting, node by node, static and kinetic dry friction coeffi-
cients is carried out. Fig. 4.26 depicts the value of the calibrated parameters along the pipe and
Fig. 4.27 shows the respective model output. Note that node-1 is the closest to the upstream
and node 35 to the downstream. As expected, calibrated coefficients closer to the downstream
boundary are higher as transient pressures increase to downstream and consequently, the
breathing effect of the coil and dry friction are higher as well. The sensitivity of the model
to the friction coefficient values located from midsection to upstream is very low, hence the
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linear variation is not representative of any law in the dry friction distribution.
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Figure 4.26 — Distribution of Coulomb’s friction coefficients, kinematic and static, along the
pipe rig.
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Figure 4.27 — Model-3 output after calibration (according Fig 4.26) v.s. experimental data at
the downstream end section.

As result of the simplification of the model and the inclusion of dry friction dissipation an
accurate fitting can be observed in Fig. 4.27. The coil breathing effect is well described, not
only by the systematic reduction of the wave amplitude but also by the wave shape during the
transient event.
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4.3.5 Results discussion

The three implemented models, assumming different modelling assumptions, lead as well
to different numerical results. Figs. 4.28 and 4.29 show the results of the best simulations
of the three models respectively at the downstream and midstream pipe sections. The best
simulation of Model-1 corresponds to a valve mass of m, =121 kg, witha MSE =127.31 m?
at the downstream section and for the simulation period of 1.5 s. The best simulation of
Model-2, with a MSE = 32.73 m?, corresponds to the mass distribution over rings presented
in Fig. 4.22 (total mass of 100.8 kg over the entire coil). Both mass values are of the same
order of magnitude and are in accordance with the real mass of the coil system, which is
95 kg; this represents actually the real inertia that both models aim to simulate. Finally, the
best simulation of Model-3 corresponds to the real mass of the system with the calibrated
Coulomb’s dry friction coefficients of Fig. 4.26. The much lower MSE of Model-3 suggests its
modelling assumptions are more faithful to the physics of the real system.
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Figure 4.28 - Pressure outputs at the downstream section of the pipe from the best simulations
of Model-1 and Model-2 in comparison with measurements. Computed MSE are shown for
both models.
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Figure 4.29 — Pressure outputs at the middle section of the pipe from the best simulations of
Model-1 and Model-2 in comparison with measurements. Computed MSE are shown for both
models.

Although Model-1 enables the description of the pressure variation according to pipe-wall
axial deformation, the model does not describe with accuracy the shape of the pressure
wave. Consequently, the mean squared error is quite high in comparison to Model-2 for both
measuring points. Model-2 presents very good agreement with measured data for the first
pressure peak, since the distributed mass of the rings allows an accurate calibration of the
pressure wave shape. However, the calibrated wave shape in the first pressure peak does
not evolve according to the observed propagation of the transient event. Finally, thanks to
the incorporation of dry friction dissipation, the computed waterhammer wave of Model-3
evolves in terms of shape and damping showing a very good fitting to measurements.

The main difference between Model-1 and Model-2 is on how junction coupling is considered.
In Model-1 the junction coupling is focused on the balance of forces over the valve (boundary
condition). In Model-2, junction coupling results from the balance of forces in each coil ring
(internal conditions). In the experimental coil system, the moving elements are the rings
and not the valve, hence Model-2 is more faithful to the real phenomenon. However, the
mechanical model proposed does not entirely solve the FSI problem, as variables related to
the structure are only partially solved in the pipe segments representing the coil rings and
unsteady friction and dry friction are not taken into account. Model-3, corresponds to a
simplification of Model-2, where, additionally unsteady skin and dry friction dissipation have
been included. Unsteady skin friction does not significantly affect the transient wave (see
Fig. 4.17)

Finally, in order to validate and to show the reliability of Model-3, different time-series are
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displayed in Figs. 4.30 and 4.31, where a consistent fitting between observations and numerical

output can be observed for different initial discharges and along the waterhammer wave
propagation, on space and time. The values of the calibrated dry friction coefficients were
adjusted proportionally to the initial discharge, as consequence of the variability of the normal

anchoring force against the pipe-supports.
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Figure 4.30 — Pressure outputs for initial discharges Qp = 100 I/ h, Qo =200 !/hand Qy =4001/h
at the downstream section of the pipe from the selected solution of Model-2 in comparison

with measurements.
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Figure 4.31 — Pressure outputs for initial discharges Qp = 100 I/ h, Qo =200 !/hand Qy =4001/h
at the middle section of the pipe from the selected solution of Model-2 in comparison with

measurements.
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4.3.6 Research outcome

A mathematical model that describes the fluid-structure interaction occurring in a coil pipe
system during hydraulic transient events has been developed. The followed approach is
based on the implementation of a four-equation model, which takes into account the effect
of axial stress waves throughout the pipe-wall. The research novelty is the identification and
description of the FSI phenomenon occurring in pipe-coils systems.

After the implementation of a basic FSI four-equation model and its verification by means of
the Delft Hydraulics benchmark Problem A (Tijsseling & Lavooij, 1990; Lavooij & Tijsseling,
1989), three models were built up with the goal to adapt to the coil singularities. Model-1
simplifies the coil pipe system to a straight pipe with a moving valve at its downstream end. In
Model-2 the independent vibrating rings are described by assuming an analogue mechanical
model. In Model-3, only the first vibration mode of the pipe is solved and pressures are
corrected by adding internal conditions that take into account the movement of the pipe and
the dry fiction against the pipe supports. The main difference between Model-1 and Model-2
is how junction coupling is considered. Model-3 considers additional dissipating phenomena,
namely unsteady skin friction and dry friction.

In Model-1, the generation of axial stress waves due to junction coupling is localized in the
valve, while in Model-2 is rather distributed throughout the ring bends. In a static analysis
this fact does not make any difference as both models would return equal stresses for equal
pressure loads. The present study shows that when fluid variables are dynamically interacted
with solid variables, the source of the axial stress wave does matter. Contrarily to Model-1
where the valve mass was object of calibration, in Model-2 it is the mass of each indivdual
ring that is calibrated. Detailed calibration is also allowed in Model-3 by means of dry friction
adjustment. Instead of the system inertia, in Model-3 dry friction dissipation occurring
between the pipe-wall and the pipe supports is taken into account.

The three models confirm the hypothesis that the cause of the discrepancy between the
experimental measurements and the output from the classic waterhammer model, stated
in Subsection 4.2.2, stems from the interaction between the fluid and the coil structural
behaviour. As shown, this can be corrected by means of a four-equation model, which covers
the coupling of the fluid pressure wave with the solid axial stress wave, hence describing the
“breathing" effect of the coil due to the longitudinal movement of the pipe-wall. Model-1 is a
good first approximation to tackle the FSI problem. However, it does not allow an accurate
description of all the physical phenomenon. Model-2, using the analogue mechanical model,
attempts to describe the movement of the coil rings that are not rigidly fixed. This behaviour
is case-dependent and must be calibrated based on collected data. The same comment stands
for Model-3. The inclusion of dry friction dissipation allows a much greater accuracy during
the wave propagation, and, after calibration, Model-3 shows a good performance and it allows
a more precise description of the dynamics of the FSI occurring in the coil facility. Model-3
has been successfully validated for three different experimental tests at different initial flow
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rates. The model output showed a good agreement with the experimental observations, either
on time and space.

4.4 Overview and concluding summary

In a first stage, a stress-strain analysis is carried out aiming at the description of the static
structural behaviour of a coil pipe system exposed to inner pressure loads. For this purpose
theory of shells of revolution is applied and effects such as the ellipticity of the pipe cross-
section or the centrifugal force generated by a steady flow in the coil pipe are considered.
Finally the stress-strain model is applied for dynamic waterhammer tests giving accurate
results for a quasi-static uncoupled approach. This first stress-strain analysis concludes that
the static deformations of the pipe coil system are equivalent to those of a straight pipe with
closed ends. Hence, according to the classification presented at Section 2.2, the pipe response
can be described by focusing on the 3-DOE

In a second stage, a 1D waterhammer model describing the fluid-structure interaction in pipe
coils is developed. Based on the conclusions from the stress-strain analysis three conceptual
models engined by a four-equation solver are used. The different models are compared with
experimental data concluding that the dynamic response of the coil system differs from that
of a straight pipe. The independent vibrating coil rings must be considered, converting FSI in
coils a case-dependent problem difficult to be approached by a general solution.

Finally, a 1-DOF model adjusted to account for the pipe-wall movement is proposed. Internal
conditions, considering a quasi-steady pipe-wall deformation of the coil rings, are applied
accordingly to the stress-strain analysis. Unsteady skin friction and dry friction dissipation
were also included, allowing a much greater accuracy during the wave propagation. The
model was successfully validated for different flow rates showing a good performance of the
dynamics of the coil behaviour during hydraulic transients.

129






Fluid-structure interaction in straight
pipelines

The present chapter is based on the following scientific publications:

e D. Ferras, P. Manso, D. Covas, A.J. Schleiss. Fluid-structure interaction in straight
pipelines: friction coupling mechanisms. Accepted for publication at the Journal of
Computers and Structures (June 2016)

e D. Ferras, P Manso, D. Covas, A.J. Schleiss. Fluid-structure interaction in straight
pipelines anchored against longitudinal movement. Submitted at the Journal of Sound
and Vibration (March 2016)

The work presented hereafter is original and was performed by the first author. The interpreta-
tion and discussion of results was carried out with the collaboration of the co-authors.

5.1 Introduction

In straight pipelines all the interaction mechanisms between the fluid and the structure
(i.e. Poisson, junction and friction coupling) act alongside the pipe axial direction. Hence,
1,2,3-DOF’s are the main degrees-of-freedom excited in straight pipelines during waterham-
mer waves. For thin pipe-wall conduits, where the inertia of the pipe 2-DOF is negligible a
four-equation model is sufficient for accurately describing hydraulic transients in straight
pipelines. However, depending on the pipe configuration, reactions like the pipe anchoring,
valve movement or dry friction between the pipe-wall and the outer surrounding may affect
the waterhammer wave shape, damping and timing. In the present chapter these effects are
analysed by the incorporation of several add-ons in the basic four-equation solver. Experi-
mental validation is carried out by collected data from the experimental set-up described in
Subsection 3.2.1.

A first approach is carried out by considering no anchors along the pipe-rig and friction
coupling is analysed. Both dissipation mechanisms unsteady skin friction and dry friction are
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considered and two different experimental set-ups are assessed: (a) the conduit anchored in
both pipe-ends; and (b) the downstream pipe-end is free to move. The aim of this first stage is
to learn the importance of the different friction mechanisms in the dissipation of hydraulic
transients in straight pipelines.

A second assessment is performed aiming at describing the behaviour of the pipe supports
and their effect in the transient wave. For this purpose internal conditions are added in the
four-equation solver. These internal conditions represent the pipe supports and they are
defined by considering the inertia and the dry friction of the anchoring block, which is their
resistance to movement. Hence, junction coupling is applied at each anchoring node by means
of a balance of forces in the second law of Newton. For model validation three basic anchoring
configurations are assessed: (a) the conduit anchored in both pipe-ends; (b) the downstream
pipe-end is free to move; and (c) the conduit is anchored in the midstream section. After this
second stage, the goal is to achieve a four-equation model capable of describing with accuracy
the behaviour of the straight pipelines most common engineering practices.

5.2 Friction coupling mechanisms

5.2.1 Introduction and background theory

Fluid-structure interaction (FSI) in pressurized hydraulic transients analyses is frequently
approached by considering the first two pipe vibration modes (i.e., pressure wave propaga-
tion in the fluid and axial stress wave propagation in the pipe-wall). For the description of
pressure waves in pipe systems, one-mode or two-mode solutions are sufficient (Tijsseling,
1996). Two-mode models can be implemented either by using MOC-FEM procedure (i.e., the
method of characteristics for the fluid and finite element method for the structure) (Wiggert,
1983) or MOC procedure (i.e., the method of characteristics for both the fluid and the struc-
ture) (Wiggert et al., 1985a). Lavooij & Tijsseling (1991) applied the two approaches to solve
the four basic conservation equations in the time domain, concluding that for straight pipe
problems the MOC procedure is more accurate. Thus, a four-equation model represents a
suited tool to describe the ideal reservoir-pipe-valve system in its basic FSI configurations,
namely either considering an anchored or non-anchored downstream valve.

Several authors combined FSI with other wave dissipating phenomena, such as: FSI and pipe-
wall viscoelasticity (Weijde, 1985; Walker & Phillips, 1977; Stuckenbruck & Wiggert, 1986); FSI
and cavitation (Tijsseling, 1993; Tijsseling et al., 1996; Tijsseling, 1996); and the most complete
including FSI, column separation and unsteady friction (UF) in a viscoelastic pipe (Keramat &
Tijsseling, 2012). However, the effects of unsteady friction and pipe-wall viscoelasticity are
hard to distinguish (Covas et al., 2004b) and, to the knowledge of the authors, unsteady friction
effect has never been separately assessed in a two-mode FSI model. Due to FSI, the pipe-wall
vibrates axially at a different rate than the fluid, hence, the relative velocity between both (V})
must be considered for skin shear stress assessment. The higher the Mach number (V}./ ay,) is,
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the greater the wall shear stress effects are (Ghidaoui et al., 2005). Therefore, unsteady friction
effects may be increased when fluid-structure interaction is important.

Besides, in the implementation of a four-equation model a major question may arise: Is
there movement in the pipe supports? Anchorages of pipelines aim to avoid the pipe-wall
movement essentially by means of dry friction (Feeny et al., 1998). However, from Newton
principles, when a system is loaded, null deformation/displacement by means of only resis-
tance is not possible. Pipe supports are never entirely stiff or entirely inert when loaded by
impacts (Tijsseling, 1997). Thus, movement occurs. Dry friction is proportional to the normal
force, hence, for a high normal force, important energy might be dissipated from the structure
to its supports/surroundings. Furthermore, in this context, it is crucial to define with good
criteria the stick-slip transitions.

Tijsseling & Vardy (1996a) included Coulomb’s dry friction in a four-equation model with the
goal to describe the behaviour of pipe racks, proposing a quantitative guideline equation
aiming at assessing when dry friction forces may be relevant during hydraulic transients. In
the present work dry friction is approached differently not at a single point but distributed
all throughout the pipeline. For this purpose, a new right-hand-side term in the momentum
equation of the pipe-wall axial movement was incorporated.

This research aims at assessing firstly the effect of different skin friction models during hy-
draulic transients in a FSI 4-equation solver. For this purpose, three skin friction models are
assessed: (i) quasi-steady friction; (ii) Brunone’s unsteady friction formulation, which is based
on instantaneous local and convective accelerations; and (iii) Trikha’s unsteady friction model,
which is based on weights of past velocity changes. Secondly, dry friction is implemented, nest-
ing its computation into the friction coupling mechanism, and its dissipation effect over the
transient wave is assessed. The theoretical background of these implementations is explained
in Chapter 2 and the respective Appendices A to D.

The aim of this section is the assessment of different friction dissipation assumptions in a FSI
two-mode model. A four-equation solver is implemented including the three basic coupling
mechanisms: Poisson, junction and friction coupling; and the last one nests the skin friction
models (i.e. quasi-steady, Brunone’s and Trikha’s) and the dry friction model (i.e. Coulomb’s
friction). The innovation of this research is the incorporation of dry friction computation
in the fundamental equations of the two-mode (four-equation) waterhammer model. This
implies a modification of the pipe-wall momentum equation in the axial direction. The effect
of dry friction is compared with skin friction and results are assessed by means of experimental
data in a straight copper pipe rig.

5.2.2 Experimental data collection

The experimental data used in the present study was acquired from the straight copper pipe
rig (SCP) assembled at the Laboratory of Hydraulics and Environment of Instituto Superior
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Técnico (LHE/IST), Lisbon, Portugal, and described in the Subsection 3.2.1. Two supporting
configurations have been analysed: (a) the conduit anchored against longitudinal movement
at both downstream and upstream ends; and (b) the conduit only anchored against longitu-
dinal movement at the upstream end. Throughout the pipe there were no anchorages nor
supports; the pipe layed directly over the floor of the laboratory.

Table 5.1 summarizes the tests carried out in these experimental configurations, displaying
the initial flow velocity and Reynolds number, the initial piezometric head and the maximum
and minimum piezometric heads measured immediately upstream the valve.

Table 5.1 — Characteristics of the experimental tests.

TestID | Vo (m/s) | Rey | Hy (m) | Hyax (M) | Hypin (M) Valve
SCP01 0.26 5276 43.65 77.25 10.66 fixed
SCP02 0.36 7253 | 42.39 88.67 -2.95 fixed
SCP03 0.41 8206 42.87 94.88 -8.67 fixed
SCP04 0.26 5276 | 44.16 83.17 5.97 released
SCP05 0.36 7253 42.27 94.69 -8.34 released
SCP06 0.41 8206 42.55 100.04 -9.95 released

Figs. 5.1-a and 5.1-b depict the transient pressure traces at the downstream section for both
anchoring conditions. Figs. 5.2-a and 5.2-b depict the transient circumferential and axial strain
traces, respectively, at the downstream pipe section for both anchoring conditions. As it can
be observed, strain and pressure traces present a similaar response during the waterhammer
wave being in pressure and circumferential strains in phase, and axial strains following the
expected behaviour according to Poisson effect. Either in terms of pressure (Fig. 5.1) or strain,
(Fig. 5.2), the system response is very different when the downstream pipe-end is released,
presenting greater maximum pressures and a noticeable wave shape change.
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Figure 5.1 — Pressure data acquired at the downstream end (PT3) of the straight copper pipe
for an anchored (a) and for a non-anchored (b) downstream end.
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Figure 5.2 — Circumferential (solid lines) and axial (dashed lines) strain data acquired at the
downstream section of the straight copper pipe for an anchored (a) and for a non-anchored (b)

downstream end.

5.2.3 Numerical model development

Fundamental equations

The following set of equations (Egs. 5.1 to 5.4) is based on Lavooij & Tijsseling (1991) four
fundamental conservation equations with the momentum equation (Eq. 5.3) of the pipe-wall
in the axial direction adapted in order to include dry friction (v.i. x). Their derivation is
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presented in Appendices A and D.

oV 10 __ Ty 5.1)
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- = 5.2
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It is the right-hand-side terms of Egs. 5.1 to 5.4 that make the system of equations nonlinear.
The right-hand-side term of the fluid continuity equation (Eq. 5.2) describes the interaction
with the pipe-wall by means of Poisson coupling mechanism. Similarly, the right-hand-side
of the pipe-wall continuity equation (Eq. 5.4) describes the interaction with the fluid. On the
other side, the right-hand-side terms of the momentum equations (Egs. 5.1 and 5.3) represent
the friction losses. Skin friction loss affects oppositely the fluid and the pipe-wall, while dry
friction (v.s. %) only affects the pipe-wall momentum equation, as this occurs between the
pipe and the outer surrounding.

Compatibility equations

Egs. 5.1, 5.2, 5.3 and 5.4 represent a linear hyperbolic system of four first-order partial differ-
ential equations. Due to its hyperbolic nature, the system can be converted into a set of four
ordinary differential equations (Egs. 5.5) by the MOC method (Forsythe et al., 1960; Lavooij &
Tijsseling, 1991). The derivation of the compatibility equations is explained in Appendices B
and D. The ¢ coefficients are presented in Table B.3, while the SFy and DF; coefficients cor-
respond, respectively, to the skin and the dry friction losses terms and they can be found in
Table D.2.
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T R 4 SFy+ DFy
S =6k Sp S | 4| P || SEr+DEy (5.5)
—Esy _fs,, fsU -5, |dt| U SF+ DF;
_ésv fs,, fsu fs,f g SFg+ DF;

The compatibility equations are only valid along the characteristic lines with slopes: +1/ay
for the characteristics associated with the fluid, and +1/a; for the characteristics associated
with the pipe-wall. Fig. 5.3 depicts the adopted numerical scheme at the interior nodes and

<

the domain boundaries, where: ‘P’ represents the space and time coordinates in the grid
where the computation is carried out, ‘A’ represents the information source brought by the
positive characteristic line in the pipe-wall, ‘B’ the information source brought by the positive
characteristic line in the fluid, ‘C’ the information source brought by the negative characteristic
line in the fluid and ‘D’ the information source brought by the negative characteristic line
in the pipe-wall. Notice that time interpolations are necessary in the nodes close to the

extreme-end boundaries.

a) Interior nodes

space-steps

b) Upstream boundary c) Downstream boundary

N — negative characteristic line in the fluid —— positive characteristic line in the fluid
- =~ negative characteristic line in the pipe-wall — =~ positive characteristic line in the pipe-wall
AN

time-steps

Figure 5.3 — Numerical scheme of the four-equation model. Characteristic lines at different
sections of the pipe.
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The previous ordinary differential equations (Egs. 5.5) can be integrated according to the

schemes presented in Fig. 5.3

Pdv Pdp P du P do P
—_ = — = SFs+DF 5.6
) ar e ar o), ) a fB( 1 +DFy) (5.6)
Pdv Pdp Pdu P do P
—+ —_—= SFr+ DF 5.7
T Ml B ) a fc( 1 +DFy) (5.7)
P av Pdp PdU P do p
- - - - = SF;+ DF, 5.8
R R e - TS 5.8
Pav Pdp PdU P do
- —+ — 4+ SFs+ DF, 5.9
vaD dt fspD dt €SUD dt €SUD f( s s) ( )
(5.10)
reaching the following discrete linear explicit system of equations:
S Ve+sp,pp+&p,Up—Sp0p+Cpr=0 (5.11)
$r VP =S pp+&p,Up+p,0p+Cnp=0 (5.12)
_é-SVVP_ESppP+£SUUP_€SUUP+CPS:0 (5.13)
—$sy VP +¢s,pp+ &5, Up+&5,0p+Cng=0 (5.14)

where Egs. 5.11 and 5.12 correspond to the positive and negative characteristic equations
of the fluid pressure wave and Egs. 5.13 and 5.14 correspond to the positive and negative
characteristic equations of the axial stress wave. The values Cpr, Cny, Cps and Cn; enclose
the information from the previous time-step:

Cpr==SpVe—CfPe—Lf U+ 81,08+ SFy + Dy, (5.15)
Cny=-¢f,Ve+sp,pc—<f,Uc—&,0c+SFp + DEf, (5.16)
Cps=¢s,Va+{s,pa—EsyUa+¢s,04+SFs, + DF;, (5.17)
Cns=&s,Vp—§s,pp— 5, Up —&5,0p + SF, + DFy), (5.18)

Interior nodes

From the linear system of equations (Egs. 5.11, 5.12, 5.13 and 5.14) the following expressions
are obtained determining the dependent variables along the interior nodes:

Cpy=Cny _ Cps=Cns
pp=——2%= o (5.19)
(240
ff()' 5&0
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Boundary conditions

Upstream reservoir: As shown in Fig. 5.3-a only the negative characteristic lines reach the
upstream boundary. The boundary condition for a constant level reservoir in the upstream
pipe-end is given by:

Ppr = Pres (5.23)
Up=0 (5.24)

Substituting the Egs. 5.23 and 5.24 into Eqgs. 5.12 and 5.14 expressions for Vp and op are
obtained.

(“(fp Ssp ) Dres— Cny | Cng
res
VP _ St $so 4 $fo $so (5.25)
Siv + Ssy
Efg 6&7

(fﬁ _ 'ﬁ) Cny _ Cny
res

| Pres— s

opm &y &y : v Ssy (5.26)
ﬁ_kﬁ
ffv gs‘/

Downstream valve: A solution is derived for a non-instantaneous valve closure, with a non-
anchored pipe-end and taking into account the valve inertia. As shown in Fig. 5.3-b only the
positive characteristic lines reach the downstream boundary. The boundary conditions for
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such assumptions are expressed in Egs. 5.27 and 5.28, where the first determines the discharge
rate through the valve and the second the balance of forces at the valve section by means of
Newton'’s second law of motion.

A
Ve =1(0) | =L + Up (5.27)
prg

AU
op= A, (Af(l (1)) (pp — po) — My— A7 (5.28)

A non-linear dependency arises between the valve displacement and the valve closure, yet, it is
asecond degree relation. Substituting the Eqs. 5.27 and 5.28 into Eqgs. 5.11 and 5.13 expressions
for pp and Up are obtained.

(5.29)

2
—b* +Vb*?—4a*c*
pp= + Po

2a*

where

(1-7(2) Ar(1-1(1))
) &, - gfo—Tt &, fs,,f—”
a —
é‘fv +{fa ApAl’ + é-fU é‘SV _ésg ApAt - é-SU
T(t) T(l‘)

6fv+€f,,A At+€fU 6 fsgA At ésU
. (5];,[90 5foA At Up-1+Cpy 9(3;7’90 fsoA A Ur-1-Cps
c
¢ +£fUApAt+6fU Ssy 6SJA A7~ Ssu

and

Ar(1-1(1) v
(ffp_ffg_f T )(pp po) +<5, ;;)g*/pP_pO"'gfppO_fqu’:AtUP—l+Cpf
Up=- o (5.30)
St + S aar e

For the anchored valve condition a very high fictitious mass value is considered so the down-
stream section becomes motionless.

Notice that, as it can be inferred from Figs. 5.3-a and 5.3-c, temporal interpolation have to be
carried out at the nodes located in the vicinity of the computational domain boundaries as a
consequence of the leaps adopted in the numerical scheme.
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5.2.4 Model testing
Introduction

The implemented model describes three physical phenomena occurring during hydraulic
transients in pipe-flow: fluid-structure interaction, skin friction and dry friction. To ensure
and verify the implemented code outputs according with the modelling assumptions, the
three phenomena are assessed one at a time by deactivating their functionality in the code;
afterwards they are combined two at a time. Table 5.2 summarizes how this verification tests
have been carried out according to the combination of each one of the modelled phenomena.
The geometry of the simulated pipe corresponds to the experimental facility described in
Subsection 5.2.2.

Table 5.2 — Summary of simulations carried out for model verification. (v') activated mecha-
nism, (-) deactivated mechanism.

Fluid-structure interaction Skin friction Dry friction
Poisson coupling | Junction coupling | Steady | Brunone | Trikha Coulomb
Cl-1 - - -

FSI-1 v - - - - -
FSI-2 - v - - - -
SF-1 - - v - - -
SE-2 - - - v/ - -
SE-3 - - - - -
DF-1 - - - - - v/
DF-2 v/ - - - - v/
DF-3 - v/ - - - v/

Test ID

Note: Cl = classic model; FSI = fluid-structure interaction; SF = skin friction; DF = dry friction.

Thereafter, in the following subsections fluid-structure interaction, skin friction models and
Coulomb’s dry friction are separately verified and assessed. The aim is not only to show the
right performance of the implemented code but also the sensitivity of the numerical output to
each phenomenon in terms of wave shape, timing and damping.

Fluid-structure interaction verification

With skin and dry friction deactivated a verification of the fluid-structure interaction was
carried out for the two basic configurations: anchored (FSI-1) and non-anchored (FSI-2) pipe-
ends. The first allows the assessment of Poisson coupling, as the Poisson’s effect throughout
the pipe-wall generates axial displacements. The second allows the assessment of Junction
coupling due to the valve movement. Figures 5.4-a and 5.4-b depict the numerical outputs
from these simulations. Both show the effect of the axial stress waves propagating at a celerity
three times faster than the waterhammer wave.
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Figure 5.4 — Frictionless four-equation FSI model output for (a) anchored and (b) non-
anchored downstream pipe-end vs. classic theory. Simulation period of 0.3 s

The apparent amplification of the transient pressure of Fig. 5.4 can be further analysed by
longer simulation periods. For this purpose simulation periods of 3 s were launched. Results
are shown in Fig. 5.5.
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Figure 5.5 — Frictionless four-equation FSI model output for (a) anchored and (b) non-
anchored downstream pipe-ends vs. Joukowsky overpressure. Simulation period of 3 s.

Fig.5.5-a depicts a phenomenon called the Poisson-coupling beat, which was already doc-
umented and described by Tijsseling (1997). The phenomenon is not present for a non-
anchored pipe end as shown in Fig. 5.5-b. Comparing with Joukowsky overpressure (AHjx =
anpAV/g) both simulations show that FSI does not introduce directly damping into the pipe
system and the maximum pressure may be much higher than Joukowsky overpressure.

Skin friction verification

The verification of the skin friction models was carried out by activating and deactivating
Poisson coupling, according to Table B.3, the different skin friction computations once at a
time: (i) quasi-steady friction (SF-1), (ii) Brunone’s unsteady friction (SF-2), and (iii) Trikha’s
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unsteady friction (SF-3).

Fig. 5.6 compares both unsteady friction models with quasi-steady friction at the downstream
end of the pipe; Joukowsky overpressure (AHjk) is also presented in this figure. Brunone’s
unsteady friction model introduces a higher damping and delay on the transient wave, while
Trikha’'s model affects rather the wave shape.
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Figure 5.6 — Quasi-steady friction (SF-1) vs. (a) Brunone’s (SF-2) and (b) Trikha’s (SF-3) unsteady
friction. The horizontal dashed line represents Joukowsky overpressure.

To analyse the overall dissipation effect of skin friction in the pipe system, a longer simula-
tion period of 3 s was run. Figure 5.7 shows the output for the three different skin friction
models. Unsteady friction models significantly increase the pressure wave damping, specially
Brunone’s model with the k coefficient calculated according to Eq. 2.12. A small phase shift is
also observed in the pressure wave.
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Figure 5.7 — Quasi-steady friction (SF-1) vs. Brunone’s (SF-2) and Trikha's (SF-3) unsteady
friction models. Simulation period of 3 s.
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Dry friction models verification

Decoupling Poisson effect as depicted in Table B.3 allows cutting out the interaction between
the pressure wave in the fluid and the axial stress wave in the pipe-wall, yet the system is still
composed of four equations: the two classic mass and momentum conservation equations of
waterhammer theory and the beam equations for the pipe axial vibration.

In the real system dry friction directly affects the momentum dissipation of the pipe-wall and
indirectly the fluid, and vice versa. Hence, in order to isolate, and simplify, the assessment
of the dry friction phenomenon a different transient simulation is performed. FSI and skin
friction are deactivated, fluid density is set to p s = 0, and only the structure is excited (DF-1),
so the pipe vibrates unaffected by the inner fluid (as if it was empty) but affected by the dry
friction between the pipe-wall and the outer media (i.e. pipe supports). As explained in
Subsection 2.3.3, the Coulomb’s dry friction coefficient value used corresponds to the one
for copper sliding over cast iron, which is g = 0.29. In this analysis no stick-slip condition is
considered. Notice that in this set-up the normal force N is reduced as only the mass of the
pipe-wall affects dry friction computation. The transient is generated by hammering the pipe
at the upstream boundary, which is set fixed after the impact while the downstream boundary
is free to move. Fig. 5.8 shows the output of this simulation compared with the Young solution
(Ao = ppazAU), which is equivalent to Joukowsky’s expression but for axial stress transients.
A linear decrease in the wave amplitude can be observed in Fig. 5.8. Unlike the traditional
logarithmic decrement associated to viscous dissipation, dry dissipation involves a rather
linear damping (Feeny & Liang, 1996).
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Figure 5.8 — Axial stress of a vibrating fluid-emptied conduit excited by hammering and
damped by dry friction. The horizontal dashed line represent Rankine axial stress rise.
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The effect of dry friction on pressure head for a fluid-filled conduit is depicted in Fig.5.9 for the
two anchoring conditions. In both simulations the dry friction dissipation affects the pressure
transient wave in a similar manner, by smoothing the edges of the stepped transitions caused
by the pipe-wall axial movement. This effect is much more evident when the valve is released,
as pipe-wall displacements are higher.
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Figure 5.9 — Four-equation FSI model output for (a) anchored and (b) non-anchored down-
stream pipe-ends; for a frictionless systems (FSI-1,2) and taking into account only dry friction
(DF-1,2).

5.2.5 Model application
Simulation of combined effects

In the present analysis the experimental tests presented in Subsection 5.2.2 are simulated using
the numerical model developed. Fluid-structure interaction is considered in the numerical
simulations and the main input parameters are presented in Table 5.3.

Table 5.3 - Input parameters for the simulation of combined effects.

Parameters for pipe system:

L(m) D (m) e (m) my (kg) ty (s)
15.49 0.02 0.001 6 0.003

Parameters for fluid and pipe-wall materials:

pplgm™)  ppkgm™) E(Pa) K (Pa) gms™?) v Bs Mg
1000 7900 1.17-1011  2.2.10° 9.81 033 1.05 0.29

Wave celerities and domain discretization:

ayp (ms™2) ag (ms™2) Ax (m) At (s)
1239 3717 0.304 2.45-107%
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A preliminary analysis has been carried out to identify which of the two UF models described
better the observed dynamic behaviour combined with FSI effects. The simulations consider-
ing anchored (a) and non-anchored (b) pipe-ends are depicted in Fig. 5.10. Both Brunone’s
(blue lines) and Trikha’s (red lines) unsteady skin friction losses are analysed and dry friction
omitted. Results are compared with pressure measurements (black lines) at the downstream
end section for a simulation period of 3 s. First, the overall wave dissipation is underestimated
in both simulations, with Brunone’s results being slightly closer to measurements in terms
of damping and wave timing. Second, in the first 10 pressure wave cycles UF has hardly any
effect being indifferent the use on any of the models.
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Figure 5.10 — Numerical output considering Brunone’s and Trikha's unsteady friction vs. mea-
surements for: (a) test SCP03 with anchored pipe-end; and (b) test SCP06 with non-anchored
pipe-end. Output form the downstream end section. Dry friction is not considered.

A similar analysis has been carried out combining dry friction with FSI effects and using
Brunone’s unsteady friction model; results are presented in Fig. 5.11. A much higher damping
effect due to dry friction can be observed in the released set-up, specially for a long simulation
period. The reason is the higher energy dissipation caused by the higher axial pipe-wall
displacements in the released set-up. Coulomb’s dry friction is a force affecting the momentum
of the pipe-wall. Dry friction force times pipe-wall displacement is the energy dissipated by
the pipe system to its surroundings.
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Figure 5.11 — Experimental measurements vs. numerical output considering Brunone’s un-
steady and including and excluding dry friction for: (a) test SCP03 with anchored pipe-end;
and (b) test SCP06 with non-anchored pipe-end. Output form the downstream end section.

In Fig. 5.12 the numerical output, considering the combination of the three phenomena, is
compared with the experimental data for all the assessed discharges and for (a) anchored
pipe-end and (b) non-anchored pipe-end. Skin friction losses are computed using Brunone’s
model and dry friction by Coulomb’s law. The simulation period of 0.15 s allows the assessment
of the wave shape. As it can be observed, during the first wave cycles FSI is the dominant
effect, specially in the case of the released set-up.
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Figure 5.12 — Numerical output (solid lines) considering FSI, Brunone’s unsteady friction and
dry friction vs. experimental measurements (dashed lines) for the tests SCP01 and SCP04
(black), SCP02 and SCP05 (dark grey), SCP03 and SCP06 (light grey). (a) for anchored pipe-end,
(b) for non-anchored pipe-end. Pressure history at the downstream pipe-end.

Discussion of results

The results shown in Subsection 5.2.5 enable the analysis of the reliability of the modelling
assumptions concerning fluid-structure interaction, skin friction and dry friction. Notice the
coherent pattern followed by all the assessed time series (v.s. Fig. 5.12): for the different initial
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flow velocities (0.26, 0.36, and 0.41 m/s), and for both anchoring set-ups (fixed and moving
downstream valve).

The accurate fitting of the first pressure cycle, either in the tests with anchored pipe-end
(Fig. 5.12-a) or, specially, in the ones with non-anchored pipe-end (Fig. 5.12-b), indicate the
good performance of the four-equation model in describing the pipe system structural be-
haviour and its rebound on the pressure transient wave. Hence the rightness of the hypothesis
of considering the pipe-wall axial vibration is confirmed, being FSI dominant over UF and DF
at the beginning of the transient. However, as the wave propagates (second and third wave
cycles) the numerical output, in the case of non-anchored pipe-end, tends to detach from the
measured data revealing that modelling assumptions can be further improved.

Moreover, the long term simulations (v.s. Fig. 5.10) show that Brunone’s unsteady friction
computation outputs slightly higher wave damping as compared with the experimental tests.
However, if dry friction is not considered in the numerical model, such damping is even further
from the one observed in the real pipe system. When dry friction is included (v.s. Fig. 5.11) the
wave damping rate is improved, yet remains insufficient in the set-up with anchored pipe-end
and overestimated in the released pipe-end.

Anchoring conditions are deeper analysed in the following Fig. 5.13 for the tests SCP03 (an-
chored pipe-end) and SCP06 (non-anchored pipe-end), revealing the different FSI behaviour
dependent on the anchoring conditions for longer simulation periods.
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Figure 5.13 — Numerical output (solid lines) considering FSI, Brunone’s unsteady and
Coulomb’s dry friction losses vs. experimental measurements (dashed lines) for: (a) test
SCP03, with anchored downstream end; and (b) test SCP06, with non-anchored downstream
end.

Junction coupling at the downstream pipe-end section plays a very important role in the
system response (e.g. Fig. 5.13-b). The evident wave shape change is a result from the interac-
tion between the two first pipe vibration modes, related with the fluid pressure and the axial
pipe movement. This characteristic wave shape change due to the pipe vibration mode for a
released downstream valve was described by Bergant et al. (2008b) from a numerical point of
view and by Ferras et al. (2015b) from an experimental standpoint.

In addition, in the case of a non-anchored pipe-end a clear wave delay can be observed with
respect to the anchored set-up (cp. Fig. 5.13-a and 5.13-b). This wave delay occurs due to the
vibration of the pipe when this is released, and it can be observed straight from the comparison
of experimental time series. However, after some wave cycles (¢ £ 0.4), numerical output tends
to overestimate this delay (cp. time series SCP06, solid and dashed lines from Fig. 5.13-b).

FSI does not directly affect the wave dissipation; momentum is tranferred from the fluid to
the structure but also the other way around. Hence it is by means of dry friction that the
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momentum transferred to the structure is finally dissipated. Consequently, the reason why the
numerical output mismatches wave dissipation and phase after some wave cycles lies in the
dry friction modelling, specially in the stick-slip condition, which is distributed throughout the
pipe and is not treated differently at the valve section. The valve is heavier and, consequently,
dry friction losses should be higher and the stick-slip effect more intensive. In the case
of the released pipe-end set-up, dry friction is underestimated in the first wave cycles and
subsequently overestimated during further propagation. FSI should be diminished according
to stick-slip condition in a way that junction coupling would be dominant only during the
firsts oscillations. Additionally, the hose connected downstream the valve could affect as well
the experimental pipe rig behaviour, increasing the inertia of the pipe downstream end.

With regard to skin friction head losses, Fig. 5.10 depicts the numerical output considering
Brunone’s and Trikha's unsteady friction model in comparison with measurements from
the test SCP03 (anchored pipe-end) and SCP06 (non-anchored pipe-end). Both unsteady
friction models are in agreement as they offer a pretty similar wave damping. In terms of wave
timing, Brunone’s adds more wave delay than Trikha’s. In the case of anchored pipe-end this
delay matches with good accuracy the wave propagation. In the test SCP03 fluid-structure
interaction is highly constrained and unsteady skin friction rather isolated as being the only
damping mechanisms. Observing a zoom between t =1 s and ¢ = 1.5 s, depicted in Fig. 5.14,
Brunone’s model seems to be more faithful to the real system behaviour than Trikha’s.

—— Measurements —— Brunone's model —— Trikha's model

H (m)

Figure 5.14 — Numerical output for Brunone’s and Trikha’s friction losses vs. experimental
measurements for the test with anchored downstream end (SCP03). Time window between
t=1sandt=1.5s.

With regard to dry friction, Fig. 5.11 confronts the numerical output either including or ex-
cluding dry friction losses. For anchored pipe-end, the dry friction affects the wave shape (v.i.
Fig.5.15-a) and the additional damping adjusts and develops in a closer manner to the real
wave, though, this is still underestimated for the fixed valve set-up, as lower momentum is
transferred from the fluid to the structure. On the contrary, in the case of a non-anchored
pipe-end the effect of Coulomb friction is much more evident, where the dry dissipation
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fully dampens the wave in a long term simulation (v.i. Fig. 5.15-b). At this stage the model
overestimates wave damping because it fails on describing the stick-slip phenomenon. The
reason is that the implemented distributed dry friction does not allow to locally adjust dry
friction dissipation at the valve section. It is also important to highlight that in both anchor-
ing conditions dry friction does not directly influence the wave timing but only shape and

amplitude.
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Figure 5.15 — Experimental measurements (black lines) vs. numerical output considering
Brunone’s friction losses and with (blue lines) or without (red lines) dry friction for the tests:
SCP03, with anchored downstream end (a); and SCP06, with non-anchored downstream end
(b). Time window between t=1sand t = 1.5 s.

An adjustment of the static dry friction coefficient would either enhance the output for the
anchored valve set-up (Fig.5.15-a) and worsen the non-anchored one (Fig.5.15-b), or the other
way around. This is a sign that stick-slip condition merits further improvement by means of
imposing null pipe movement when stick condition is true. Though, this would involve the
implementation of internal conditions and describing dry friction as junction coupling rather
than friction coupling, which is out of the scope of the present research.

5.2.6 Research outcome

The present section is based on the implementation of a 1D four-equation MOC solver. Exper-
imental data collected from a straight copper pipe-rig are used for the model validation of the
main modelling assumptions in terms of wave shape, timing and damping. Fluid-structure
interaction, skin friction and dry friction are the main phenomena to be assessed. Essentially,
the implemented FSI code includes three coupling mechanisms: Poisson, junction and friction
coupling. The last one nests the skin friction models (i.e. quasi-steady, Brunone’s and Trikha’s)
and the dry friction model (i.e. Coulomb’s friction).

Two different experimental set-ups are assessed: (i) anchored downstream pipe-end, and
(ii) non-anchored downstream pipe-end. In both cases the pipe is lying over the floor of the
laboratory. In the first set-up Poisson coupling dominates the FSI physical phenomenon (cf.
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Fig. 5.12-a), while in the second set-up junction coupling at the downstream valve section
strongly affects the transient wave (cf. Fig. 5.12-b). Numerical results satisfactorily fit measured
pressure head at the downstream section for the first wave cycle, when FSI phenomenon is
dominant. However, numerical output tends to detach for a long term simulation, specially
in the set-up for a non-anchored downstream pipe-end (cf. Fig. 5.13). Skin and dry friction
dissipation are the dominant damping phenomena in the long term simulation.

Unsteady friction effects are rather isolated in the anchored set-up as less momentum is
transferred to the structure and consequently FSI and dry friction effects are much lower. For
this set-up Brunone’s unsteady friction model gives a better performance in the account of
both wave timing and damping (cf. Fig. 5.10). However, without the incorporation of dry
friction, a clear additional wave damping is missing.

The implementation of Coulomb’s dry friction model aims at describing this additional wave
damping. Dry friction arises from the shear between the pipe-wall and its surroundings.
Consequently, its effect is strongly related with the FSI occurring during the transient event.
The higher momentum is transferred to the pipe-wall, the greater the effect of dry friction is
(c.p. Figs. 5.11-a and 5.11-b). The inclusion of dry friction allowed a clear improvement of
the numerical model output, proving the importance of considering such phenomenon in
hydraulic transient analyses. Nonetheless, the present approach of nesting the Coulomb model
in the FSI friction coupling does not allow for a fully satisfactory description of the observed
pressure signal (Fig. 5.13 and 5.15), specially in the case of released downstream pipe-end. The
dry friction dissipation occurring at the valve section is crucial for the accurate description of
the pipe system behaviour, and this should be treated differently for two main reasons. First,
the valve section is heavier and pipe-wall displacements are higher than any other section,
hence kinematic dry friction dissipation is greater at the downstream section. Second, fluid-
structure interaction effect is more intensive at the downstream end, and consequently more
sensitive to stick-slip condition.

At this stage of research the authors conclude that a more satisfactory means to represent
junction coupling merits being investigated. In fact, assumptions on dry friction computation
need a further upgrade as, in the present work, Coulomb’s model was nested in the FSI friction
coupling but not considered in junction coupling. Junction coupling arises from a balance
of forces at pipe junctions, tees, elbows, boundaries, etc. Dry friction force can be as well
considered in such a balance. Using this approach stick-slip condition could be as well
improved by imposing null pipe-wall movement when stick criterion is met.

5.3 Pipelines anchored against longitudinal movement

5.3.1 Introduction and background theory

In simple reservoir-pipe-valve systems, FSI occurs mainly due to the Poisson effect and the
movement of the downstream valve. These mechanisms excite the second pipe vibration
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mode, which is the corresponding to the axial movement of the pipe. Anchor or thrust blocks
are frequently used in straight pipelines to restrict and to avoid these movements so that the
piping structure is stable and reliable. Anchor blocks absorb the axial stresses of the pipe-wall,
which are transmitted to the surrounding ground by means of dry friction (Feeny et al., 1998).
The present research aims at describing the behaviour of straight pipelines fixed to anchor
blocks by means of a four-equation model.

A four-equation model solved by the Method of Characteristics (MOC) represents a suitable
tool to describe FSI in straight pipes (Tijsseling, 1996; Wiggert, 1983; Wiggert et al., 1985a;
Lavooij & Tijsseling, 1991). However, to the knowledge of the authors, hardly any work has been
carried out to describe the pipe supporting conditions, often not well defined (Tijsseling &
Vardy, 1996a). A fluid-structure interaction analysis for anchor blocks taking into account the
block inertia and the dry friction with the surrounding ground would fill this gap in literature.

From one side, Heinsbroek & Tijsseling Heinsbroek & Tijsseling (1994) worked on the as-
sessment of the influence of the pipe-supports stiffness, concluding that the stiffness of the
supports affects waterhammer pressure amplitude and phase, and pointed out to the need
of more detailed analyses. Tijsseling & Vardy Tijsseling & Vardy (1996a) investigated the ef-
fect of pipe racks on waterhammer waves considering the dry friction occurring between
the pipe-wall and the rack; accurate numerical results were compared with measurements;
quantitative criteria to asses when dry friction forces are relevant during hydraulic transients
were proposed. On the other side, Lavooij & Tijsseling Lavooij & Tijsseling (1991) analysed
the effect of the inertia of a downstream moving valve during a waterhammer event. An
anchor block located at the downstream pipe-end would behave in a very similar manner to
a moving valve but likely with a heavier mass. Yang & Zhang Yang et al. (2004) analysed in
the frequency domain the effect of rigid constraints in multi-span pipes, concluding that the
junction coupling has a larger effect on the transient wave than the Poisson coupling.

The novelty of the present study consists of the development and validation of a four-equation
model capable of accurately describing anchor blocks behaviour located at any section of
the pipe, moving rigidly with the pipe-wall, taking into account the block inertia and the dry
friction between the blocks and the ground. For model validation, experimental waterhammer
tests were carried out in a straight copper pipe-rig for three different basic set-ups consisting
of, alternatively, releasing or anchoring the downstream valve or a midstream anchor block.
Additionally, a sequence of tests was run in which the pipe supports were systematically
released from the downstream to the upstream end.

5.3.2 Experimental data collection

For the present study different supporting configurations of the SCP pipe rig have been anal-
ysed (v.i. Fig.5.16): (a) setup-1 where the conduit is anchored against longitudinal movement
at both downstream and upstream ends; (b) setup-2 where the conduit is only anchored
against longitudinal movement at the upstream end; and (c) setup-3 where the conduit is
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anchored against longitudinal movement at the midstream and the upstream sections.
a)

Reservoir Valve

1 RRRRRRRRARRRARARRRARF

b)

g Reservoir Valve

1 RRRRRRRRARRRARRRARAR

c)

g Reservoir Anchorage Valve

Figure 5.16 — Different tested configurations: (a) setup-1 where the conduit is anchored at
both pipe ends; (b) setup-2 where the conduit is only anchored at the upstream end; and (c)
setup-3 where the conduit is anchored at the midstream and upstream sections of the pipe.

The experimental tests carried out for the three different set-ups and for an initial discharge of
Q =300 I/ h are depicted in Fig 5.17.
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Figure 5.17 — Waterhammer tests carried out for a conduit anchored at the upstream and
downstream pipe-ends (setup-1); anchored only at the upstream end (setup-2); and anchored
at the upstream and midstream pipe sections (setup-3), for Q =300 I/h.

Additionally, a set of tests was carried out consisting of first fixing the facility against longitu-
dinal movement all throughout the pipe and then, sequentially, releasing the supports one
by one, from the downstream valve to the upstream end reservoir, and carrying out water-
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hammer tests one at a time. Fig 5.18 shows the results of these tests for an initial discharge of
Q=4261/h.
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Figure 5.18 — Set of waterhammer tests consisting of releasing one support at a time, from the
downstream to the upstream pipe-end, starting from a fully anchored pipe against longitudinal
movement, for Q =426 [/h and 23 tests in total.

5.3.3 Numerical model development
Numerical scheme

By assuming that the ratio between the wave celerity in the fluid and in the pipe-wall can be
expressed by the ratio of two natural numbers (a,/as ~N¢/Nj), leaps can be applied in both
characteristic lines and these can be fitted in a regular grid (Tijsseling & Lavooij, 1990; Lavooij
& Tijsseling, 1991).

Fig. 5.19 depicts the adopted numerical scheme at the interior nodes and the domain bound-
aries, where: ‘P’ represents the space and time coordinates in the grid where the computation
is carried out, ‘A’ represents the information source brought by the positive characteristic line
in the pipe-wall, ‘B’ the information source brought by the positive characteristic line in the
fluid, ‘C’ the information source brought by the negative characteristic line in the fluid and ‘D’
the information source brought by the negative characteristic line in the pipe-wall.
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a) Interior nodes

space-steps

b) Upstream boundary c) Downstream boundary

N — negative characteristic line in the fluid —— positive characteristic line in the fluid
——- negative characteristic line in the pipe-wall - - - positive characteristic line in the pipe-wall
N

time-steps

Figure 5.19 - Numerical scheme of the four-equation model. Characteristic lines at different
sections of the pipe: (a) at the interior nodes; (b) at the upstream boundary; and (c) at the
downstream boundary.

After the MOC transformation the set of partial differential equations (Egs. A.47) can be
expressed in terms of compatibility equations by means of time integration, using pp, Vp, op
and Up as dependent variables. The ¢ coefficients are presented in Table B.3.

S Vp+&r,pp+Sp,Up—&r,0p+Cpr=0 (5.31)
S Ve—Cfppt+ep,Up+ifop+Cnp=0 (5.32)
—$sy VP —¢s,pp+ &5, Up—&5,0p+Cps =0 (5.33)
=y VP +8s,pp + 85, Up +&5,0p +Cns =0 (5.34)

where Egs. (5.31) and (5.32) correspond to the positive and negative characteristic equations
of the fluid pressure wave and Eqgs. (5.33) and (5.34) correspond to the positive and negative
characteristic equations of the axial stress wave. The values Cpr, Cny, Cps and Cn; enclose
the information from the previous time-step:
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Cpr=—C;Ve—Sr,pe—Cf,Up+{f,08+SFp,
Cnp=-8p Ve+Sp,pc—Cp,Uc—Ef,0c+SFg,
Cps=fsVVA+'fs,,PA—fsUUA+stUA+5FsA
Cns=&s,VD—¢5,PD—$syUp —¢s,0p + SF,,

(5.35)
(5.36)
(5.37)
(5.38)

where SF terms correspond to the skin friction losses which in the current research have been

computed using Brunonone’s unsteady skin friction model (cf. Table D.2).

Interior nodes

The dependent variables along the interior nodes are obtained from sorting out the linear

system of equations, Egs. (5.31, (5.32), (5.33) and (5.34), and are defined as follows:

Cps—Cny  Cps—Cny

p _ ‘ffg ES(]
p=—

()

fo Sso

Cps+Cny  Cps+Cny

Vp=— Sfy Ssy
(5

Sfy - sy

Cpr=Cny | Cps=Cny

3 $s
Op = i ef 3 ‘
s o S
2 (éfp + é’S;a )
Cpr+Cny | Cps+Cny
Sty Ssy
Up=- Gy L&
Ziony
Sfy - Ssy
Boundary conditions

(5.39)

(5.40)

(5.41)

(5.42)

Upstream reservoir: Only the negative characteristic lines reach the upstream boundary
as shown in Fig. 5.19. The boundary condition for a constant level reservoir in the upstream
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pipe-end is given by:

PP = Pres (5.43)
Up=0 (5.44)

Substituting the Egs. (5.43) and (5.44) into Egs. (5.32) and (5.34) expressions for Vp and o p are
obtained.

Vp = o +¢,S_V (5.45)
‘ffg 63,7

(‘*l _ ‘ﬁ) _ S _ Cn
res
e &y &y Sty Sy (5.46)
Sho oy b
ffv ’fsv

Downstream valve: A solution is derived for a non-anchored downstream valve taking into
account the valve inertia and the dry friction between the valve and the supporting structure.
Only the positive characteristic lines reach the downstream boundary as shown in Fig. 5.19.
The boundary conditions for such assumptions are expressed in Egs. (5.47) and (5.48), where
the first determines a closed valve and the second the balance of forces at the valve section by
means of Newton’s second law of motion.

Vp=Up (5.47)
1 . AU

op= o Af(l—r(t))(pp—po)—uFstgn(U)—MvA—t (5.48)
N

Substituting the Eqgs. (5.47) and (5.48) into Egs. (5.31) and (5.33) expressions for pp and Up are
obtained.

A Fn A FN .
~ 2 Pol s+ ki Up18so—E g (it signU)=Cpf =L pobis + 05 Up-18so—Es0 ) sign()=Cps

é—fv"'Ar;Zt{fa +ry _55V+%5&7 +Esy
pp = v . (5.49)
5]};‘@570 _ _ESp_TpESg
é_fV-'—z‘l"ZZt’EfU +£fU _ESV+AVZZt€SU +§SU
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A 7 A 7
0 Podfo g Up-a gy =E gy ol Sign(UD=Cpf =38 podisy + 08 Upr &y~ &, 51 sign(U)~Cps
A A
U éfp_ﬁéfg _fs‘n_ﬁfsa (5 50)
P= .
5fv+Ar;Zz£fo +py _53V+ArZZt€SGESU
A B Ar
Efp_fpffg _és,;_@fsa

As consequence of the leaps adopted in the numerical scheme (v.s. Fig. 5.19), time-line
interpolations have to be carried out at the nodes located in the vicinity of the computational
domain boundaries.

Internal conditions, anchor blocks

The usual approach in FSI junction coupling consists of splitting the pipe into segments
and then establishing relations (boundary conditions) between these segments (Wiggert &
Tijsseling, 2001). In this subsection, a general solution is derived that allows conducting
junction coupling of anchor blocks as internal conditions, without the need of dividing the
pipe in segments.

For this purpose, special attention is focused on how the anchor blocks affect the characteristic
lines in the numerical scheme. The blocks are considered non-deformable and moving jointly
with the pipe-wall. Fig 5.20 depicts these assumptions both in the nodes containing anchor
blocks and in their vicinities. The vicinity is defined as a group of computational nodes to the
side of the anchor block node for which computations are made with a particular set-up.

a) b)

time-steps

space-steps space-steps

Figure 5.20 - Numerical scheme of the four-equation model. Characteristic lines at (a) anchor
block nodes and (b) in their vicinity. The dashed and continuous lines represent characteristic
lines in the pipe-wall and in the fluid, respectively.

As shown in Fig. 5.20 characteristic lines in fluid are not disrupted. Time-line interpolation
of the variables must be carried out at the anchor block node and the normal equations for
inner nodes are applied, Eqgs. (5.39) to (5.42), to solve the dependent variables of the system at
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the vicinity nodes. Space discretization has to be fine enough to get sufficient computational
nodes between pipe supports but coarse enough to avoid numerical diffusion as consequence
of too intensive time-line interpolation in their vicinities.

However, the resistance of the anchor block to move produces a discontinuity on the axial
stresses in the pipe-wall, which become different upstream and downstream (i.e. left and right
sides) of the anchor block. Therefore, an imbalance of forces occurs. Fig. 5.21 depicts the
forces acting at the anchor block, including: the dry friction force (F 12l the weight (Fyy), the
normal force (Fp) and the force due to the axial stress in the pipe-wall at the left (F,z) and at
the right of the pipe segment (Fz).
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Figure 5.21 — Balance of forces at anchor blocks.

The internal conditions at the nodes containing anchor blocks are defined in Egs. (5.51)
to (5.54).

pt=pf (5.51)
vEi=yR (5.52)
ol #oF (5.53)
ut=ut (5.54)

The second law of Newton can be applied using the balance of forces at the anchor block from
Fig. 5.21:

Fyr = Fyr = Faqp = mpU (5.55)

which is the same as:

. AU
(Ug - af)) Ap—ugmy sign(U) = mbA_tP (5.56)
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On the other hand, the positive characteristic lines in the pipe-wall reach the left side of the
anchor block but do not go through it, while in the right side only the negative characteristic
lines reach the block. Hence, using respectively the positive and negative characteristic lines
in the pipe-wall, left and right axial stresses can be expressed in function of the remaining
dependent variables, as shown in Egs. (5.57) and (5.58).

_fs,, pp—<¢s, Vp+ ‘fsu Up +Cps

5.57
E (5.57)

L _
UP_

_és,, pp+ fsv Vp - EsU Up —Cny

(5.58)
Cso

R _
UP_

Substituting Egs. (5.57) and (5.58) into Eq. (5.56) the displacement of the anchor block U can
be expressed in function of flow variables (e.g., flow velocity V):

285, Vp  Cps+Cns | mypUp_ my -
Up = f T &, toaar —8K7,sign(U) (5.59)
P= myp ZESU '
ApAt [

The characteristic lines in the fluid, both positive and negative, go through and reach the centre
of the block, hence characteristic equations of the fluid are valid inside the block and allow
to express the flow velocity V in function of the block (or pipe-wall) velocity U. Combining
Egs. (5.32) and (5.31) the following expression is obtained:

foVVp+26fUUp+Cpf+Cl’lf=0 (5.60)

and substituting Eq. (5.59) into Eq. (5.60) the solution for the flow velocity V is obtained.

mpUp_y my .
—gu™ sign(U)
Apar 8Kz, signl
—Cpr—Cnp=2y, Ty
Apar t
25y
[
255, +28y, mp :%:U

ApAt " Ty

Cps+Cng
{so

Vp = (5.61)

Once Vp is obtained by Eq. (5.61), Up can be calculated by applying Eq. (5.59), and the
remaining dependent variables (i.e. p and o) are calculated by means of Egs. (5.32) and (5.31).
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5.3.4 Model testing
Modal analysis for an empty pipe

If the fluid density is negligible compared to the pipe-wall density (empty pipe assumption)
and the mass of the pipe-wall is negligible compared to the mass of the anchor blocks, the
piping system can be described as mass-spring systems. If, additionally, the anchor blocks
displacement is very small compared to the space discretization of the numerical scheme, this
analogy can be described by the method of characteristics (Vardy & Fan, 1986, 1987). Hence,
the implemented model can be tested in a way to verify if it enables the description of such
mass-spring systems.

For this purpose, simulations have been carried out for different pipe set-ups considering
single and multiple degrees-of-freedom. The piping system modelled corresponds to the
one described in section 5.3.2 but frictionless, without fluid and incorporating heavy anchor
blocks (with M, = 1000 kg). The system is excited by imposing initial velocities at the anchor
block of U =1 m/s. (v.i. Figs. 5.22 and 5.23). The number of degrees-of-freedom depends on
the number of anchor blocks throughout the pipe, or what is the same, the number of masses
in the mass-spring system (Sinha, 2010).

Single degree-of-freedom: There is only one natural mode of oscillation for a one degree-

of-freedom of a pipe system with one anchor block. A simple harmonic oscillator, like the
4s

mr
constant and it is directly proportional to the area of the pipe-wall cross section, to the Young’s
modulus of elasticity, and inversely proportional to its length. This is the case of a pipe

anchored at both ends with an anchor block located at the middle section. Fig. 5.22 shows a

one depicted in Fig. 5.22, vibrates at a frequency fr = ﬁ where s stands for the ‘spring’

scheme of the pipe-block-pipe system under the imposed initial conditions and the respective
output from the 4-equation model, showing the resultant natural frequency for a Young’s
modulus of elasticity E = 105 GPa and s = 4EAs/L = 518047 kg/ s°.
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Figure 5.22 — Pipe-block system for one degree-of-freedom. (a) schematic of the modelled
system; (b) velocity of the anchor block U.
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Multiple degree-of-freedom: Multiple degree-of-freedom systems have more than one nat-
ural vibration mode with more than one resonance frequency. The example analysed consists
of a 3-DOF system with three identical anchor blocks connected with four identical pipe seg-
ments. The system has, therefore, three distinct natural vibration modes that can be observed
depending on the initial conditions. Fig. 5.23 presents the second natural vibration mode
of this system, for which the initial velocities of the anchor blocks are opposite at the outer
blocks and zero at the one in the middle. At this vibration mode the central block does not
move (i.e. a node), and the outer ones have a symmetrical behaviour. The natural frequency
of this vibration mode is fr = % \/A%I:i , as the aligned ‘springs’ are two times stiffer because
four times shorter than the basic system.
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Figure 5.23 — Pipe-block system for three degrees of freedom and second vibration mode: (a)
schematic of the modelled system; (b) velocity of the anchor block U.

Modal analysis for a fluid-filled pipe

A similar analysis to the one in the previous subsection is carried out for a fluid-filled conduit.
The fluid density is set up to the water density py = 1000 kg/ m? and the fluid elasticity
K =2.2 GPaso the numerical model not only describes the transient vibrating pipe but also its
interaction with the contained fluid. Due to the high weight of the anchor blocks with respect
to the pipe, the transient is dominated by their movement and the interaction is rather from
the structure to the fluid, and not the other way around. So the analysis essentially depicts the
dominant effect of different pipe vibrating modes on the fluid.

Single-degree-of-freedom: In this simulation two fixed reservoirs at both ends with con-
stant pressure levels and an anchor block in the middle are considered. Like previously, the
system is excited by imposing an initial pipe-wall velocity at the anchor-block of U =1 m/s.
Figure 5.24 depicts the transient velocities at the anchor block section, both of the pipe-wall U
and of the fluid V. As it can be seen in Fig. 5.24 the initial longitudinal motion of the anchor
block generates an opposite movement in the fluid. Both fluid and pipe-wall oscillate in phase,
however the flow velocities remain negative during the whole transient event; the anchor
block movement is pumping the fluid from one reservoir to another.
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Figure 5.24 — Pipe-block-pipe fluid-filled system for one degree of freedom: (a) velocity of the
anchor block U.; and (b) velocity of the fluid V' at the anchor block section.

The pumping effect depicted in Fig. 5.24 can be explained by Poisson coupling, which is
the interacting mechanisms that transforms the motion of the block to flow change. The
vibrating block, with such a heavy mass, generates important oscillating pipe-wall axial defor-
mations, oppositely in both sides of the block, and launching axial stress waves that propagate
throughout the pipe. These axial deformations, by means of Poisson effect (Poisson coupling),
induce circumferential deformations that affect the fluid flow. The result is a strong oscillating
negative flow velocity pumping the fluid from one reservoir to the other.

This effect is similar and could be considered as special case of the Liebau effect, which is
object of study in the field of physiological flows and is defined as (Borzi & Propst, 2003): the
occurrence of valveless pumping through the application of a periodic force at a place which
lies asymmetric with respect to the system configuration. Although the anchor block is located
symmetrically, the asymmetry in the case presented hereby lies on the opposite signs of the
axial stress waves released in both sides of the anchor block. The flow direction of a Liebau
pump is dependent to the frequency of the forced oscillation, while in the phenomenon de-
scribed hereby the flow direction depends on the initial conditions (i.e. Up). To the knowledge
of the authors a Liebau pump based on Poisson coupling has never been described and may
be object of further research.

Multiple-degrees-of-freedom: Fig. 5.25 shows, for the fluid-filled 3-DOF set-up, a very simi-
lar behaviour regarding the piping structure and a symmetrical behaviour as well regarding
the fluid. Flow velocity at the central block section is 0, while antiphase oscillating velocities
are observed at the outer blocks’ sections.
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Figure 5.25 — Fluid-filled system for three degrees-of-freedom and second vibration mode: (a)
velocity of the anchor block U.; and (b) velocity of the fluid V at the anchor block section.

The vibration mode corresponding to the fluid can be seen in Fig. 5.25-b. Due to the symmet-
rical transient flow generated by the movement of the structure, the pipe could be split in two
identical symmetrical reservoir-pipe-block-pipe-valve systems, with anchored valves. The
resultant transients due to the block movements would be exactly the same. From this stand-
point it is straightforward to figure out, from classic waterhammer theory, that the frequency

of both transient flows is fr = 42% ~43 Hz.

The following spectral density plot (v.i. Fig. 5.26) confirms the aforementioned statement,
where the two dominant frequencies, corresponding to the fluid and the pipe-wall, can be
clearly depicted from flow velocity V output data.
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Figure 5.26 — Spectral density plot corresponding to flow velocity output data V from the three
degrees-of-freedom set-up.
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5.3. Pipelines anchored against longitudinal movement

5.3.5 Model application
Sensitivity analysis

A sensitivity analysis is carried out with the aim to assess how the output is affected by model
parameters associated to the resistance of movement of the valve and the anchor blocks
due to both inertial and dry friction forces. The numerical model is set up according to the
geometry and characteristics of the facility described in Subsection 5.3.2 and kinetic dry
friction coefficient pj, valve mass and anchor block mass are modified for a wide range of
values. Brunone’s unsteady friction model is applied for skin friction computation. All the
tests are carried out for an initial discharge of Qy = 426 [/ h. Table 5.4 presents a summary of
the sensitivity analysis to valve and anchor blocks inertia and dry friction.

Table 5.4 - Tests carried out for the sensitivity analysis.

Phenomenon parameter values simulations  Valve anchorage
Valve inertia my 0-12000 kg 100 released
Blocks inertia my, 0-12000 kg 100 released and fixed
Dry friction at valve i 0-3.3 100 released
Dry friction at blocks i 0-10 100 released and fixed

Sensitivity to valve inertia: With the aim to analyse the sensitivity of the system to the valve
inertia, a set of 100 simulations was carried out varying the valve mass from 0 to 12000 kg.
During these simulations the valve is released and no dry friction is considered between the
valve and its supports. No pipe supports or anchor blocks are considered throughout the pipe,
which is free to move in the longitudinal direction. The model output from this analysis is
depicted in Fig. 5.27, showing the range of possible solutions of the four-equation model for a
frictionless moving valve of variable mass.
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Figure 5.27 — Transient pressures at the downstream pipe-end for a variable valve mass.
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The bold dashed line of Fig. 5.27 indicates the solution for a massless valve, while the solid line
depicts the output for the maximum valve mass threshold modelled, which can be considered
equivalent to the results for an infinite valve mass or fixed valve. Between this range the
progress of model output can be observed according to the mass valve variation. The bold
dotted line corresponds to a 6 kg valve mass, which is actually the real mass of the system
described in Subsection 5.3.2.

Sensitivity to anchor block inertia: The same kind of analysis is carried out for an anchor
block located at the midstream section of the pipe. A number of 100 simulations was launched
varying the mass of the anchor block from 0 to 12000 kg. Two different anchoring conditions
are assessed: (a) fixing the valve and (b) letting the valve free to move, massless and frictionless.
The model output from this analysis is depicted in Fig. 5.28, showing the range of possible
solutions of the four-equation model for a frictionless moving anchor block of variable mass
at the midstream section of the pipe.
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Figure 5.28 — Transient pressures at the downstream pipe-end for the varying mass of an

anchor block located at the midstream section of the pipe: (a) the conduit is anchored at both
pipe-ends; and (b) the conduit is only anchored at the upstream pipe-end.
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5.3. Pipelines anchored against longitudinal movement

The bold dashed line of Fig. 5.28 indicates the solution for a massless anchor block, while
the solid line depicts the output for the maximum mass threshold modelled, which can be
considered equivalent to the results for an infinite mass or a fixed anchor block. Between this
range the progress of model output can be observed according to the mass variation. The
dashed line of Fig. 5.28-a is equivalent to the solid line of Fig. 5.27; and the dashed line of
Fig. 5.28-b is equivalent to the dashed line of Fig. 5.27.

Sensitivity to dry friction at the valve: Dry friction at the valve section is analysed by first
fixing the valve mass to m, = 6 kg, which is the real valve mass of the studied piping system,
and then varying the Coulomb’s friction coefficient u from 0 to 3.33. No pipe supports or
anchor blocks are considered throughout the pipe, which is free to move in the longitudinal
direction. The model output from this analysis is depicted in Fig. 5.29, showing the range
of possible solutions of the four-equation model for the 6 kg moving valve varying the dry
friction.
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Figure 5.29 — Transient pressures at the downstream pipe-end for the series of simulations
varying the dry friction coefficient for a 6 kg mass valve.

The bold dashed line of Fig. 5.29 indicates the solution for a frictionless valve, while the solid
line depicts the output for the maximum valve friction threshold modelled, which is equivalent
to the results for an almost fixed valve. Between this range the progress of model output can be
observed according to the dry friction variation. The bold dotted line corresponds to the value
Ux = 0.29, which is actually the corresponding value for copper sliding over cast iron (Davis,
1997).

Dry friction at anchor blocks: Dry friction at the anchor block section is analysed by first
fixing the mass to mj, = 1 kg, which is the corresponding mass of the pipe segment associated
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Chapter 5. Fluid-structure interaction in straight pipelines

to the pipe support, and then varying the Coulomb'’s friction coefficient y from 0 to 10. Two
different anchoring conditions are assessed: (a) fixing the valve and (b) letting the valve free to
move, massless and frictionless. The model output from this analysis is depicted in Fig. 5.30,
showing the range of possible solutions of the four-equation model for the varying dry friction.
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Figure 5.30 — Transient pressures at the downstream pipe-end for the series of simulations
varying the dry friction coefficient at the midstream section of the pipe: (a) the conduit is
anchored at both pipe-ends; (b) the conduit is anchored only at the upstream end.

The bold dashed lines of Fig. 5.30 indicate the solution for a frictionless anchor block, while
the solid lines depict the output for the maximum dry friction threshold modelled, which is
equivalent to the results for an almost fixed anchor block. Between this range the progress of
model output can be observed according to the dry friction variation. Notice the similarities
between the thresholds of Fig. 5.28 and Fig. 5.30.

In general, the system shows a greater sensitivity to the phenomena assessed (i.e. inertia
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5.3. Pipelines anchored against longitudinal movement

and dry friction) at the downstream valve section rather than at the inner anchor block. The
parameter governing the inertia of the valve or anchor blocks is the mass (i.e. m, and my),
while the parameters governing dry friction are the static Coulomb’s friction coefficient g
and the kinematic Coulomb’s friction coefficient yy. In the present sensitivity analysis no
distinction between both dry friction coefficients has been done as the goal is the assessment
of the overall sensitivity to dry friction. The sensitivity of the numerical model seems to be
similar for both inertia and dry friction either at anchor blocks or at the valve.

It is important to highlight that the output resulting from this sensitivity analysis correspond
to numerical output that does not have to be especially realistic. For instance, cavitation is not
object of study and is not simulated in this assessment, hence the pressure histories presented
in Fig. 5.27, 5.28, 5.29 or 5.30 may present values below vapour pressure.

Simulation of the straight copper pipe facility

The straight copper pipe facility described in Subsection 5.3.2 is simulated using the developed
four-equation model for the tested configurations. The input parameters of the model are
presented in Table 5.5.

Table 5.5 — Input parameters

Parameters for pipe system:

L (m) D (m) e (m) my (kg) my, (kg)  ty (s)
15.49 0.02 0.001 6 1 0.003

Parameters for fluid and pipe-wall materials:

pr (kgm™3) ps(kgm™3) E(GPa) K (GPa) v Us i
1000 7900 105 2.2 0.33 1.05 0.29

Wave celerities and domain discretization:

ay (ms’z) as (ms’z) dz (m) dt (s)

1239 3717 0.286 2.22.1074

Setup-1: In this test the conduit is anchored against longitudinal movement at both down-
stream and upstream ends. Fig. 5.31 depicts the comparison of numerical results with experi-
mental data. In the first pressure cycles (v.s. Fig. 5.31-b), the numerical model seems to be
quite accurate regarding to wave shape and timing. However, experimental observations show
a higher damping than the numerical results (Fig. 5.31-a). In this setup, the valve is assumed
not to move. Although the numerical model is capable of representing dry friction and inertia
of the supports, their structural behaviour is not actually described (bending, torsion, etc.),
so the valve could actually move. As depicted in the previous subsection, the waterhammer
wave is very sensitive to the valve movement, hence a minor movement on the valve can be
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the reason of the discrepancies observed in the wave damping between measurements and
numerical output.
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Figure 5.31 — Numerical pressure output vs. pressure measurements for a waterhammer test
carried out in a conduit anchored against longitudinal movement at both pipe-ends.

Setup-2: For this set-up the conduit is only anchored against longitudinal movement at the
upstream end. Numerical results vs. experimental data are shown in Fig. 5.32. Very good
matching between measurements and numerical output can be observed regarding wave
shape, timing and damping. The implemented four-equation model is capable of describing
with accuracy the anchoring conditions of Setup-2 for realistic values of valve mass and
Coulomb’s dry friction coefficients (us and py). The stick-slip phenomenon is well described
as a transition in the wave damping, due to a change from slip to stick state, can be clearly
observed in both pressure traces at around ¢ = 0.3 s (v.s. Fig. 5.32-a). Also the FSI induced by
the valve movement is well represented as the wave shape and timing are accurate in the first
pressure cycles (v.s. Fig. 5.32-b).
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Figure 5.32 — Numerical pressure output vs. pressure measurements for a waterhammer
test carried out in a conduit anchored against longitudinal movement only at the upstream
pipe-end.

Setup-3: Finally, the system is tested for the conduit anchored against longitudinal move-
ment at the midstream and upstream sections of the pipe. Numerical results vs. experimental
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5.3. Pipelines anchored against longitudinal movement

data are depicted in Fig. 5.33. Anchoring conditions in this setup are also well described by the
numerical model. A similar damping transition due to the stick-slip phenomenon can be also
observed at around ¢ = 0.3 s. Clearly, the major damping mechanism during the first pressure
cycles in both setup-2 and 3 is the dry friction induced by the downstream valve movement.
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Figure 5.33 — Numerical pressure output vs. pressure measurements for a waterhammer test
carried out in a conduit anchored against longitudinal movement at the midstream section.

Tests releasing the pipe: Finally, a set of runs was carried out with the goal to simulate the
experimental tests where the pipe was released in a stepwise manner: first<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>