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Preface
Pressurized pipes may be endangered by failure due to excessive hydraulic transients, the

so-called waterhammer. These pressure waves are strongly affected by fluid-structure interac-

tion (FSI), unsteady skin friction, dry friction or pipe-wall viscoelasticity. With his research

project Dr. David Ferras made a significant contribution towards the improvement of one-

dimensional (1D) waterhammer modelling in the time-domain by means of the well-known

method of characteristics. He identified, described and quantified the principal mechanic-

hydraulic relationships during hydraulic transients in pressurized pipe flows in view of bet-

ter design criteria and, consequently, reducing risk of failure. Dr. Ferras has given a new

perspective regarding the theoretical background of FSI 1D modelling by means of a novel

classification based on pipe degrees-of-freedom and suggesting an original standpoint for

tackling FSI problems.

Dr. Ferras produced new extensive series of experimental data acquired from several pipe rigs,

with different pipe materials and geometries which constitute relevant benchmark data for

validating numerical models. The coil ‘breathing’ effect was highlighted by the candidate as

the cause of a systematic reduction of the waterhammer wave amplitude which has never

been described in literature before. He developed a new model considering fluid-structure

interaction mechanisms, unsteady skin friction and dry friction. He has demonstrated the

importance of unsteady skin friction when the pipe is fully anchored and the role of dry friction

when the pipe is free to move. In a second approach, Dr. Ferras added internal conditions to

the numerical model allowing the description of the pipe anchoring and thrust blocks taking

into account their resistance to movement due to the inertia and the dry friction. A novel

model was proposed which was proven to be reliable, efficient and accurate in the description

of hydraulic transients in straight pipelines for different anchoring conditions.

We would like to thank the members of the jury, Prof. Bruno Brunone from the University of

Perugia, Italy and Dr. Christophe Nicolet from Power Vision Engineering Sàrl, Switzerland

as well as Prof. François Avellan from Laboratory of Hydraulic Machinery of EPFL for their

helpful suggestions. Finally, we also thank gratefully the Portuguese Foundation for Science

and Technology (FTC) for their financial support under project SFRH/BD/51932/2012 in the

frame of joint PhD initiative between IST and EPFL.

Prof. Dr. Anton Schleiss Prof. Dr. Dídia Covas

Lausanne, October 14, 2016 T. D.
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Abstract
The aim of the present research is to identify, describe and quantify the principal mechanic-

hydraulic relationships during hydraulic transients in pressurized pipe flows in view of improv-

ing pipe design and reduce pipe and system failure. Phenomena affecting the transient wave,

such as fluid-structure interaction, unsteady skin friction, dry friction or pipe-wall viscoelas-

ticity are analysed from both the experimental and numerical standpoints. The main goal is

the improvement of one-dimensional (1D) waterhammer modelling in the time-domain by

means of the well-known method of characteristics approach.

Experimental work is presented for three different experimental facilities: a straight copper

pipe, a coil copper pipe and a coil polyethylene pipe. The analysis of the experimental data

highlights differences in the response of each system in terms of wave shape, damping, and

dispersion. The straight copper pipe behaviour is highly dependent on the pipe supports

and anchoring; the coil copper pipe to the deformation in the radial direction; while the

polyethylene facility to the pipe-wall viscoelasticity.

In a second stage, the research focuses on the numerical modelling of hydraulic transients in

pipe coils. The analysis is based on the experimental data collected in the coil copper pipe

facility. First, a structural analysis is carried out for static conditions and then for dynamic.

A four-equation model is implemented incorporating the main interacting mechanisms:

Poisson, friction and junction coupling. The model is successfully validated for different flow

rates showing a good performance of the dynamics of the coil behaviour during hydraulic

transients.

Finally, the research focuses on the straight copper pipe facility, for which the simplicity of the

set-up allows deepening on the basic modelling assumptions in fluid-structure interaction.

First, friction coupling is assessed using the basic four-equation model and unsteady skin

friction and dry friction are incorporated in the solver. The analysis shows the dissipative effect

of dry friction phenomenon, which complements that of skin friction. In a second approach

junction coupling is tackled and the resistance to movement due to inertia and dry friction

of the pipe anchor blocks is analysed. Numerical results successfully reproduce laboratory

measurements for realistic values of calibration parameters.

The work successfully identifies, describes and quantifies different physical phenomena

related with FSI by means of experimental modelling and valid numerical reproduction of

experimental results. Experimental modelling approaches are developed and data is made

available for benchmark testing of numerical tools considering facilities with different set-up

geometries and materials. A new standpoint based on pipe-degrees-of-freedom is suggested
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Abstract

for facing FSI problems, the structural behaviour of pipe coils is successfully described and

FSI in straight pipelines is analysed focusing on both junction and friction coupling. A new set

of numerical solvers are developed, presented and thoroughly discussed, which can be readily

used for the design of new industrial piping systems or the safety assessment of existing piping

facilities.

Key words: hydraulic transients; waterhammer; fluid-structure interaction; experimental data;

straight pipelines; stress-strain analysis; membrane theory of shells of revolution; junction

coupling; Poisson coupling; friction coupling; viscoelasticity; hysteresis; dry friction; skin

friction; stick-slip instability.
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Résumé
Le but de la présente recherche est de identifier, décrire et quantifier les principales relations

mécaniques-hydrauliques lors des transitoires hydrauliques dans les écoulements sous pres-

sion dans le but d’améliorer la conception des tubes et réduire la défaillance du système. Les

phénomènes affectant l’onde transitoire tels que les interactions fluide-structure, la frotte-

ment superficiel instationnaire, le frottement sec ou la viscoélasticité de la paroi du tube sont

analysés de manière expérimentale et numérique. L’objectif principal est l’amélioration de la

modélisation 1D du coup de bélier dans le domaine temporel au moyen de la méthode des

caractéristiques.

Une revue de la littérature sur l’interaction fluide-structure des coups de bélier est présentée.

Les mécanismes d’amortissement qui affectent l’onde transitoire sont examinés, y compris

le frottement superficiel, le frottement sec et de structure. Enfin, un aperçu des principales

applications industrielles de l’interaction fluide-structure est fournie. L’analyse montre le

manque général de FSI dans la modélisation des du coup de bélier 1D, l’absence de directives

pratiques indiquant pour quelles installations de tuyauterie FSI doivent être considérés lors

de la conception, ainsi que la non-disponibilité d’outils de modélisation FSI couvrant les

phénomènes physiques les plus importants. La viscoélasticité de la paroi du tube, le frottement

superficiel instationnaire et le frottement du Coulomb sont des phénomènes à inclure dans

les solveurs IFS. En plus, le besoin d’outils plus précis pour la description et la conception des

blocs d’ancrage est mis en évidence.

Des essais expérimentaux effectués au Laboratoire de l’Hydraulique et de l’Environnement de

l’Instituto Superior Técnico (LHE/IST), Lisbonne, Portugal, sont présentés pour trois installa-

tions expérimentales différentes : un tuyau droit en cuivre, un tuyau en bobine en cuivre et un

tuyau en bobine en polyéthylène. L’analyse des données expérimentales met en évidence les

différences dans la réponse de chaque système en termes de forme d’onde, d’amortissement,

et la dispersion. Le comportement de tuyau droite de cuivre est fortement dépendant des

supports et les conditions d’ancrage en raison de l’interaction fluide-structure qui se produit

lorsque la conduite est autorisée à se déplacer dans la direction longitudinale. L’interaction

fluide-structure a également un rôle important dans le tuyau en bobine en cuivre, qui est

autorisée à se déformer dans la direction radiale. Enfin, l’effet dominant dans l’installation en

polyéthylène est le comportement viscoélasticité de la paroi du tube, où la réponse retardée

de la déformation du matériau (hystérésis) augmente l’amortissement de l’onde transitoire.

Dans une deuxième étape, la recherche se concentre sur la modélisation numérique des

transitoires hydrauliques en bobines. L’analyse est basée sur les données expérimentales
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recueillies dans l’installation de tuyaux en bobine de cuivre. Tout d’abord, une analyse de

déformation-contrainte est effectuée afin de comprendre les déplacements de la bobine dans

des conditions statiques pour des chargements de pression interne. Ensuite, une analyse

dynamique est effectuée dans le but de coupler l’écoulement de la conduite transitoire avec

le mouvement axial du tuyau tout en négligeant l’inertie radiale, la flexion et la torsion du

système de tuyauterie. Par conséquent, un modèle à quatre équations est mis en œuvre

en incorporant les mécanismes de interaction principaux : Poisson, friction et jonction. Le

modèle est validé avec succès pour différents débits montrant une bonne performance de la

dynamique du comportement de la bobine lors des transitoires hydrauliques.

Enfin, la recherche se concentre sur l’installation de tuyau droit de cuivre, pour lequel la

simplicité de la mise en place permet d’approfondir sur les hypothèses de modélisation

de base en interaction fluide-structure. Tout d’abord, le couplage de friction est évalué en

utilisant le modèle de base à quatre équation et friction superficiel variable et de frottement

du Coulomb sont incorporés dans le code. L’analyse montre l’effet dissipatif du phénomène

de frottement du Coulomb, qui complète celle de la friction superficiel. Dans un second

approche couplage de jonction est abordée et la résistance au mouvement en raison de

l’inertie et de frottement du Coulomb des blocs d’ancrage de tuyauterie est analysé. Les

résultats numériques reproduisent avec succès des mesures de laboratoire pour des valeurs

réalistes des paramètres d’étalonnage.

La thèse, avec succès, identifie, décrit et quantifie les différents phénomènes physiques liés à

FSI au moyen de la modélisation expérimentale et de reproduction numérique valide de résul-

tats expérimentaux. Approches de modélisation expérimentales novatrices sont développées

et les données sont mises à disposition pour les tests d’évaluation des outils numériques en

tenant compte des installations avec différentes géométries et matériaux. Une nouvelle série

de solveurs numériques sont développés, présenté et discuté à fond, qui peut être facilement

utilisé pour la conception de nouveaux systèmes de tuyauterie industrielle ou l’évaluation des

installations de tuyauterie existantes de sécurité.

Mots clefs : transitoires hydrauliques; coup de bélier ; interaction fluide-structure; données

expérimentales ; conduites droites ; analyse de contrainte-déformation; théorie de coque;

couplage de jonction; couplage Poisson; couplage de friction; viscoélasticité ; hystérèse;

frottement du Coulomb ; friction superficiel ; stick-slip instabilité.
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Resumo
O objetivo do presente estudo é identificar, descrever e quantificar as relações mecânico-

hidráulicas principais durante transientes hidráulicos em sistemas pressurizados com o

objetivo de melhorar a concepção de tubulação e falha no sistema. Fenômenos que afetam

a onda transiente como a interação fluido-estrutura (FSI), o atrito superficial variável, a

fricção de Coulomb ou a viscoelasticidade da parede de tubo são analisados do ponto de vista

experimental e numérico. O objectivo principal é a melhoria da modelação 1D do golpe de

aríete no domínio do tempo, por meio do método das características.

Uma extensa revisão do estado de arte sobre interação fluido-estrutura em sistemas em

pressão é apresentado. Mecanismos de amortecimento que afectam a onda transitória são

bem revistas, incluindo o atrito superficial, a fricção de Coulomb e o amortecimento estrutural.

Finalmente uma visão sobre as principais aplicações industriais de interação fluido-estrutura

é apresentada. A análise observa a falta geral de FSI no modelo 1D de golpe de aríete, a

falta de orientações práticas, indicando, para que as instalações de tubulação deve FSI ser

considerados durante o projeto, bem como a indisponibilidade de ferramentas de modelagem

FSI cobrindo os fenômenos físicos mais importante. A viscoelasticidade da parede de tubo,

o atrito superficial variável e a fricção de Coulomb são fenômenos a serem incluídos no

modelo FSI. Também a necessidade de ferramentas mais precisas para o o desenvolvimento e

definição de ancoragens e suportes da tubulação é evidenciado.

O trabalho experimental foi realizado no Laboratório de Hidráulica e Recursos Hídricos e

Ambientais do Instituto Superior Técnico (LHE/IST), Lisboa, Portugal, contando com três

instalações experimentais diferentes: tubagem rectilineade cobre, tubo bobinado de cobre

e tubo bobinado de polietileno. A análise dos dados experimentais evidencia diferenças na

resposta de cada sistema em termos de forma de onda, de amortecimento e de dispersão. O

comportamento da tubagem rectilinea é altamente dependente dos suportes e das condições

de ancoragem, devido à interacção fluido-estrutura que ocorre quando o tubo se desloca na

direcção longitudinal. A interacção fluido-estrutura tem também um papel importante no

tubo bobinado de cobre, quando este permite deformação na direcção radial. Finalmente,

o efeito dominante na unidade de polietileno é o comportamento viscoelástico da parede

do tubo, em que a resposta retardada da deformação do material (histerese) aumenta o

amortecimento da onda transitória.

Numa segunda fase, a investigação centra-se na modelagem numérica de transientes hidráuli-

cos em tubos bobinados. A análise baseia-se nos dados experimentais recolhidos na instalação

de tubo bobinado de cobre. Em primeiro lugar uma análise de tensão-deformação é levada
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a cabo de modo a compreender os deslocamentos da bobina em condições estáticas para

cargas de pressão interna. Desta forma, uma análise dinâmica é realizada para o acoplamento

do fluido com o movimento axial da parede de tubo, negligenciando a inércia radial, flexão

e torção do sistema de tubulação. Consequentemente, um modelo de quatro equações é

implementado incorporando os principais mecanismos de acomplamento: Poisson, fricção e

junção. O modelo é validado com êxito, para diferentes caudais iniciais, mostrando um bom

desempenho da dinâmica do comportamento da bobina durante transientes hidráulicos.

Finalmente, a investigação centra-se na instalação rectilínea de cobre, para o qual a simpli-

cidade da configuração permite aprofundar sobre as premissas de modelagem básicas da

interacção-fluido-estrutura. Em primeiro lugar, o acoplamento de fricção é avaliado usando

o modelo de base de quatro equações, incorporando o atrito superficial variável e a fricção

de Coulomb. A análise mostra o efeito da dissipação do fenômeno de fricção de Coulomb

que complementa o atrito superficial. Em segundo, o acoplamento da junção é abordado e a

resistência ao movimento devido à inércia e à fricção de Coulomb dos blocos de ancoragem

da tubulação são analisados. Os resultados numéricos reproduzem com sucesso as medições

do laboratório para valores realistas de parâmetros de calibração.

A tese, com sucesso, identifica, descreve e quantifica diferentes fenómenos físicos relacionados

com FSI por meio de modelagem experimental e reprodução numérico válido de resultados

experimentais. Inovadoras abordagens de modelagem experimentais são desenvolvidos e

os dados são disponibilizados para teste de desempenho de ferramentas numéricas consi-

derando instalações com diferentes geometrias e materiais. Um novo conjunto de codigos

numéricos são desenvolvidos, apresentado e amplamente discutido, o que pode ser facil-

mente utilizado para a concepção de novos sistemas de tubulação industrial ou a avaliação da

segurança de instalações de tubagens existentes.

Palavras-chave: transientes hidráulicos; golpe de aríete; interação fluido-estrutura; dados

experimentais; análise tensão-deformação; teoria de membrana; acomplamento de junção;

acoplamento de Poisson; acoplamento de fricção; viscoelasticidade; histerese; fricção de

Coulomb; atrito superficial; instabilidade de deslizamento intermitente.
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Resumen
El objetivo de la presente investigación es identificar, describir y cuantificar las principales

relaciones mecánico-hidráulicas durante flujos transitorios a presión a fin de mejorar el

diseño de sistemas de tuberías y reducir roturas y accidentes. Factores que afectan la onda

transitoria, como interacción fluido-estructura, fricción fluido-sólido, fricción sólido-sólido

o viscoelasticidad de la pared de la tubería son analizados desde ambos puntos de vista,

experimental y numérico. El objetivo final es la mejora de modelos unidimensionales (1D) de

golpe de ariete basados en el conocido método de las características.

El trabajo presenta una extensiva revisión de literatura en el campo de interacción fluido-

estructura en modelos unidimensionales de golpe de ariete. Los efectos de amortiguación

de onda son también revisados, incluyendo fricción fluido-sólido o histéresis de la tubería.

Finalmente, las principales aplicaciones industriales de interacción fluido-estructura son

descritas. En general, el análisis realza el desuso en un contexto FSI de las conocidas herra-

mientas de modelaje comúnmente aplicadas en el modelo clásico de golpe de ariete, la falta

de guías de diseño y dimensionamiento indicando cuando FSI debe de ser considerado, así

como la falta de disponibilidad de modelos de simulación que cubran los fenómenos físicos

más importantes. La viscoelasticidad de la pared de tubería, fricción fluido-sólido y fricción

sólido-sólido son factores que deberían de estar incluidos en códigos FSI y los criterios para

su consideración y evaluación deberían de estar clarificados. La necesidad de herramientas

más fiables y precisas para el diseño de los soportes y fijaciones de las tuberías es también

realzada.

El análisis experimental, llevado a cabo en el Laboratorio de Hidráulica y medio-ambiente

del Instituto Superior Técnico (LHE/IST), Lisboa, Portugal, es presentado para tres distintas

instalaciones experimentales: una tubería de cobre recta, una tubería de cobre en bobina

y una tubería de polietileno también en bobina. El análisis subraya las diferencias en la

respuesta de cada uno de los sistemas en términos de forma, amortiguación y dispersión

de onda. El comportamiento de la tubería de cobre recta depende, en gran medida, de los

soportes y las condiciones de fijación del sistema debido a la interacción fluido-estructura que

ocurre por el movimiento axial de la tubería. Interacción fluido-estructura tiene también un

impacto importante en la tubería de cobre en bobina, la cual se deforma en la dirección radial.

Finalmente, el efecto dominante en la instalación de polietileno es la viscoelasticidad de la

pared de tubería, puesto que la respuesta retardada de la deformación de la pared (histéresis)

causa un incremento de la amortiguación de la onda transitoria.

En una segunda fase, la investigación se centra en el desarrollo del modelo numérico en
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tuberías en bobina. El análisis se basa en datos experimentales recogidos en la instalación de

cobre. Primero el comportamiento estructural del sistema es analizado para cargas estáticas

de presión interna. Luego, un análisis dinámico estudia la interacción entre el flujo de la

tubería y los desplazamientos axiales de esta, despreciando la inercia radial, la flexión y la

torsión del sistema. Un modelo de cuatro-ecuaciones es implementado incorporando los tres

mecanismos básicos de interacción: Poisson, fricción e interacción de juntas. El modelo es

validado con éxito para diferentes condiciones iniciales, ofreciendo, en todos los casos, una

buena representación del comportamiento dinámico de la instalación durante transitorios

hidráulicos.

Finalmente el trabajo se centra en la tubería de cobre recta, su simplicidad geométrica per-

mite profundizar en las simplificaciones básicas de simulación numérica de interacción

fluido-estructura. Primero la interacción por fricción es estudiada usando el código básico

de cuatro-ecuaciones con fricción variable fluido-sólido y fricción sólido-sólido de Coulomb.

El análisis destaca la importancia de tener presente los dos fenómenos disipadores. En una

segunda fase, la interacción por junta es analizada y la resistencia al movimiento por inercia y

fricción de los bloques de anclaje es considerada. Los resultados numéricos reproducen con

precisión las mediciones experimentales para valores realísticos de los parámetros del modelo.

El presente trabajo identifica, describe y cuantifica con éxito los diferentes fenómenos físicos

relacionados con FSI por medio de experimentos de laboratorio y modelación numérica.

Novedosos enfoques de experimentación y los datos resultantes quedan disponibles como

referencia para la verificación y validación de herramientas de simulación numérica, teniendo

en consideración instalaciones con distintos materiales de tuberías, geometrías y configura-

ciones. Nuevos códigos de modelación han sido desarrollados, presentados y analizados. Su

uso queda disponible para el diseño de nuevos sistemas de tuberías o para la evaluación y

diagnosis de instalaciones existentes.

Palabras clave: transitorios hidráulicos; golpe de ariete; interacción fluido-estructura; datos

experimentales; tuberías rectas; análisis de tensiones y deformaciones; teoría de membrana;

interacción por junta; interacción por Poisson; interacción por fricción; viscoelasticidad; his-

téresis; fricción de Coulomb; fricción superficial; inestabilidad de deslizamiento intermitente.
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1 General introduction

1.1 Research scope

As a product of several sciences, waterhammer theory is multidisciplinary. The description of

pressurized transient flow in closed conduits is its main focus, hence the dominant discipline is

hydraulics. Nonetheless, its essence is not complete without the standpoint of other disciplines

such as structural mechanics, material science or acoustics. This research deals mainly with

two sciences: fluid dynamics and structural mechanics. Fluid-structure interaction (FSI)

in one-dimensional (1D) pressurized transient flow in the time-domain is the ground-base

in which the present work is developed. Issues like unsteady skin friction, dry friction and

pipe-wall viscoelastic behaviour are deeply analysed.

1.2 Historical background

Scientific theories in normal science are the result of a step-wise aggregation of research

contributions, like pieces of a puzzle that are added to solve preconceived problems (Kuhn,

2012). The hindered pieces of the waterhammer theory puzzle may be unfolded by explaining

those preconceived solutions that at each stage were envisaged. The ultimate solution is a

numerical model which is a theory itself or, in other words, ‘a collection of signs that serve as

a sign’ (Abbott, 1993). The 1D FSI model, as a self-standing theory, is capable of outputting

those historically targeted solutions.

Consider the most elementary hypothetical case of a reservoir-pipe-valve system composed of

a frictionless straight pipe of infinite length with frequent expansion joints, rigid, thin-walled

and containing incompressible fluid for which a steady flow is interrupted by an instantaneous

valve closure. In such set-up the pressure wave speed would be infinite and any flow change

at any section of the pipe would represent an instantaneous infinite change of momentum all

throughout the infinite length of the pipe. Hence, no transients would be physically feasible,

as there were no valves nor pipe elements capable of resisting such an infinite momentum.

Add, to this initial set-up, some more realistic assumptions that will unfold, one by one, the
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puzzling of the historical background on 1D waterhammer and fluid-structure interaction

research:

1. Compressible fluid: the waterhammer wave cellerity is finite, equal to the fluid acoustic

wave speed in unconfined media, and Newton-Laplace equation (Newton, 1686; La-

grange, 1788; Laplace et al., 1829) can be applied for its computation. The wave length

is infinite (as the pipeline is infinite) and the wave amplitude is proportional to the wave

celerity and can be computed by Joukowsky equation (Von Kries, 1883; Frizell, 1898;

Allievi, 1902; Joukowsky, 1904).

2. Elastic pipe-wall: the distensibility of the pipe-wall slows down the wave propagation

speed, which can be computed by Helmholtz-Korteweg equation (Korteweg, 1878;

Halliwell, 1963). The wave length is infinite and its amplitude can be computed by

Joukowsky equation.

3. Pipe of finite length: the waterhammer wave propagates back and forth throughout

the pipe according to the boundary conditions. To describe such oscillating flow a

two-equation model to solve mass and momentum conservation in the fluid is at least

required (Braun, 1909, 1910; Allievi, 1902, 1913).

4. Wave dissipation: assumptions such as skin friction, dry friction or hysteretic damping

must be added and the waterhammer wave dampens towards a final steady state. The

most common approach is the insertion of quasi-steady skin friction which can be

computed by Darcy-Weisbach friction formula (Streeter & Wylie, 1978; Chaudhry, 2014).

5. No expansion joints: the fluid interacts with the axial movement of the pipe. A four-

equation model to solve mass and momentum conservation in the fluid and in the

structure is at least required. Skalak (1955); Bürmann (1979); Wiggert et al. (1985a);

Tijsseling (2003), amongst others, contributed to the development of such models.

6. The pipe has an elbow: in-plane shear and bending occurs during the waterhammer

wave and an eight-equation model is at least required for its description(Valentin et al.,

1979; Hu & Phillips, 1981).

7. The pipe has two out-of-plane elbows: there is shear and bending in two planes and

additionally torsion in the cross-sectional plane, hence a fourteen-equation model is at

least required (Wilkinson, 1977; Wiggert et al., 1985a; Wiggert, 1986; Wiggert et al., 1987).

8. Thick-walled pipe: radial inertia of the pipe-wall must be taken into account and

a sixteen-equation model is required. Walker & Phillips (1977) proposed a model to

account for radial inertia.

This sequence of assumptions, which emulates the main historical milestones of waterhammer

research, can be applied, one by one, to a state-of-the-art sixteen-equation model, revealing
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the background lying beneath the model. A more detailed state-of-the-art review is presented

in Chapter 2.

Nowadays, 1D waterhammer researchers are mainly focused on the improvement of the

description of physical phenomena affecting the transient wave taking as basis the classical

waterhammer solver. However, 1D FSI represents an extension of the classical theory, and

some of the developments carried out for the classical theory have not been transferred yet to

the state-of-the-art 1D FSI framework.

The present work aims at contributing to 1D FSI knowledge, first, by providing and inter-

preting experimental evidence, then carrying out numerical modelling developments and

confirmation, and finally by developing add-ons for the basic four-equation FSI solver.

1.3 Aims and objectives

The aim of the present research is to identify, describe and quantify the principal mechanic-

hydraulic relationships during hydraulic transients in pressurized pipe flows in view of improv-

ing pipe design and reduce pipe and system failure. Phenomena affecting the transient wave,

such as fluid-structure interaction, unsteady skin friction, dry friction or pipe-wall viscoelas-

ticity are analysed from both the experimental and numerical standpoints. The main goal is

the improvement of one-dimensional (1D) waterhammer modelling in the time-domain by

means of the well-known method of characteristics approach.

The targeted objectives can be summarized in the following points:

• To identify and evaluate from the experimental standpoint FSI, pipe-wall viscoelasticity,

and unsteady skin friction using pressure and strain measurements from different pipe

rigs.

• To assess, describe and understand, by means of a static stress-strain analysis, the

behaviour of pipe coils under inner pressure loads.

• To incorporate the achieved stress-strain relations in a dynamic analysis based on a FSI

solver.

• To assess different approaches for implementing numerically friction coupling in four-

equation models applied in straight pipes.

• To incorporate in the four-equation solver internal conditions (i.e. junction coupling)

aiming at simulating the behaviour of pipe anchoring supports.
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1.4 Methodology

The research focuses on the description of the propagation of transient waves, therefore,

all the assessments presented hereby, either empirical or numerical, are approached in the

time-domain. Numerical models based on the method of characteristics (MOC) are developed,

the implementations are verified by means of benchmark problems and model validation by

experimental data acquired in different experimental set-ups. Three experimental facilities,

assembled at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico

(LHE/IST), Lisbon, Portugal, have been used for the experimental data collection: (i) a straight

copper pipe, which is tested for different supporting set-ups; (ii) a coil copper pipe, whose

response in transient conditions is strongly affected by the coil geometry; and (iii) a coil

polyethylene pipe, that allows the study of the pipe-wall viscoelasticity.

For the numerical work first a stress-strain analysis is carried out with the goal to understand

the structural behaviour of pipe coils in static conditions. Then FSI is approached and dynamic

interactions between the fluid and the structure are considered by means of a four-equation

model. Once FSI implementations are verified, add-ons considering the main dissipation

phenomena are included and finally validated by empirical observations. The same four-

equation solver is used for the description of the straight copper pipe, for which friction and

junction coupling are assessed aiming at describing the effect of pipe supports and anchoring

blocks.

1.5 Organization of the report

First an extensive review of the main developments in 1D fluid-structure interaction anal-

yses in the time-domain is provided in Chapter 2. In the review the background theory is

presented and the gaps of the current state-of-knowledge all identified. Additionally, the main

engineering applications of waterhammer developments related with FSI are reported. In

Chapter 3 the experimental data collected from the three different pipe rigs are presented.

Pressure and strain measurements are analysed and fluid-structure interaction, unsteady skin

friction and pipe-wall rheological behaviour effects are discussed for the three pipe systems.

Chapter 4 deals with the fluid-structure interaction occurring in coils. It is subdivided in two

main sections: firstly, a stress-strain analysis targets the study of the static structural behaviour

coil pipes; and, secondly, a FSI analysis shows the dynamic behaviour of coils during hydraulic

transients. Chapter 5 deepens on the fluid-structure interaction in straight pipelines. This

chapter is also subdivided in two sections, the first deals with friction coupling considering

unsteady skin friction and dry friction; the second focuses on the junction coupling and

the resistance to movement of thrust and anchor blocks. Finally, conclusions highlighting

the main contributions of each chapter are reported and the outlook for future research is

introduced.

A collection of appendices complete the subjects presented in each chapter. In Appendix A
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the fundamental transient equations in pipe systems are introduced and the governing equa-

tions, used in the present dissertation, are derived. Appendix B develops the compatibility

equations for the implementation of the four-equation model. Implementations are verified

in Appendix C by means of benchmark problems. Appendix D describes an upgrade of the

four-equation model based on a friction coupling that considers skin and dry dissipation

effects. Appendix E presents an extended version of the well known Joukowsky formula. The

new formula takes into account the additional pressure rise caused when a straight pipe is

allowed to move in the longitudinal direction. Finally, in Appendix F additional experimental

data from the straight copper pipe facility, complementing the one shown in Chapters 3, 4

and 5, is presented for broader flow rates and pipe anchoring conditions.

Therefore, as depicted in Fig. 1.1 the presented research work can be divided in two main

parts: experimental and numerical analysis. The first part is oriented to the experimental

identification and evaluation of the targeted wave damping phenomena by means of three

different experimental facilities. The goal of the second part is the numerical simulation of

those phenomena by means of different modelling approaches.

Figure 1.1 – Summary of the main research work.

Chapter 3 and sections 4.2, 4.3, 5.2 and 5.3 have been prepared as scientific publications.

Nevertheless they have been arranged in a way to avoid repetitions.
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2 State-of-the-Art Review

2.1 Introduction

The first scientific contributions in the field of fluid-structure interaction in transient pipe

flow took place in the 19th century when authors like Korteweg (1878) or Helmholtz (1882)

realized about the need of considering both interacting mechanisms fluid compressibility and

pipe-wall distensibility. Classical waterhammer theory is also based on this principle. Since

then, many researchers have added their contributions in a step-wise manner, building up

and shaping the theory of hydraulic transients in pipe flow. From this main body of knowledge,

subtheories improving the basic assumptions are added, such as unsteady friction, pipe-wall

viscoelasticity or cavitation.

Fluid-structure interaction (FSI) should not be understood as an add-on complement of

the basic classical waterhammer model. FSI is a self-sustaining theory. Each FSI model is

an approach to tackle the original principle of considering waterhammer waves as result of

the effect between fluid and pipe behaviours. Skalak (1955) presented a milestone paper

entitled ‘An extension of the theory of waterhammer’. The basis of FSI was established, pipe vi-

bration modes were described and basic formulation for straight pipes was presented. Skalak’s

paper triggered the FSI research in the two-way coupling between fluid dynamics and struc-

tural mechanics. Contributions such as Wilkinson (1977), Walker & Phillips (1977), Valentin

et al. (1979), Wiggert et al. (1985a), Wiggert (1986), Joung & Shin (1987), Bürmann & Thielen

(1988a), Wiggert & Tijsseling (2001) and Tijsseling (2003) developed and completed the theory

for all the basic degrees-of-freedom of pipe-systems.

Some historical reviews on hydraulic transients in pipe flow are given by Wood (1970), Thor-

ley (1976), Anderson (1976), Tijsseling & Anderson (2004) and Tijsseling & Anderson (2004).

The developments in waterhammer research before the 20th century are well summarized

in Boulanger (1913). Also Lambossy (1950) and Stecki & Davis (1986) presented in-depth re-

views that served, at that time, as vision papers. More recently, Ghidaoui et al. (2005) presented

a complete state-of-the-art review focusing on both historic and most recent research and

practice and tackling most of the waterhammer research topics. Surveys more specific in the
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field of fluid-structure interaction are given by Wiggert (1986), Tijsseling (1996) and Wiggert &

Tijsseling (2001). For the present research, the author has found a very valuable groundwork

in the latter two publications. Since Wiggert & Tijsseling (2001), no other review papers have

been published on fluid-structure interaction. The aim of the current chapter is to report most

significant contributions carried out in waterhammer research related to fluid-structure inter-

action in 1D hydraulic transients modelling, giving emphasis on the time-domain analyses

and focusing on most recent research.

The chapter starts with the basic definitions and background theory that frame the research of

FSI in waterhammer modelling. Also the basic wave damping phenomena are briefly reviewed

and the most noteworthy contributions are reported. A review on the experimental research is

provided, presenting the main empirical achievements that contributed on the extension of

FSI theory. Numerical research is also overviewed following a physically-based classification of

pipe degrees-of-freedom. Finally, some insights of engineering applications of fluid-structure

interaction developments in pipe flow are pointed out.

2.2 Definitions and basic concepts

2.2.1 Transient pipe-flow

Transient flow is the intermediate-stage flow, when the flow conditions are changed from

one steady-state condition to another steady-state (Chaudhry, 2014). This definition includes

no-flow and steady flow, in which the initial and the final steady states are equal.

The unsteadiness of the flow depends on: (1) the time scale of the transient event, which is

the time lag between the initial and the final steady states; (2) the time scale of the system

response, related to the period of the system vibration; (3) the time scale of the transient

excitation, which refers to the duration of the disturbance that causes the transient event.

Seven types of pipe-flow are distinguished in Tijsseling & Vardy (2004) depending on the three

previous time scales:

• No-flow: static laws are considered for the no-flow conditions (i.e. V (t) = 0). The

representative time scale is t =∞.

• Steady flow: similar conditions stand for steady flow in which velocity is a constant

value during all the considered period (i.e., V (t ) = k). The representative time scale is as

well t =∞.

• Quasi-steady flow: velocity varies slowly enough to assume the conditions are identical

to those of a steady flow with the same instantaneous mean velocity. Representative

time scale: 2D/( f V ) ¿ t <∞.

• Rigid column: in this type of flow inertia significantly impedes changes in velocity,
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but compressibility of the fluid can be ignored. The velocity along the pipe can be

assumed uniform (as long as the pipe cross-section is constant). Representative time

scale: t ∼ 2D/( f V ).

• Waterhammer and 1D-FSI: for highly accelerated flow, fluid compressibility may not

be negligible and non-uniformity of the flow velocity along the pipe must be considered.

These conditions occur for representative time scales of t . L/ah , where ah is the wave

speed of the hammer wave and L the representative length scale which frequently

corresponds to the distance between extreme boundaries or the pipe length.

• 2D-FSI: the flow is assumed axisymetric and radial inertia of the fluid and the pipe-wall

are taken into account. The characteristic time scale is t = D/ah . This time scale is very

low, that is why radial inertia is frequently neglected.

• 3D-FSI: this is the most general case, 3D Navier-Stokes equations for the fluid and shell

equations for the structure are required. The characteristic time scale is the lowest:

t = e/ah .

2.2.2 Fluid-structure interaction:

Fluid-structure interaction (FSI) in pipe systems consists of the transfer of momentum and

forces in both ways, between the pipe-wall and the contained fluid during unsteady flow (Wig-

gert, 1986). Hence, both the fluid and the structure transmit an effect upon one another (v.i.

Fig. 2.1).

From the modelling standpoint, fluid-structure interaction is a multiphysics coupling between

the laws that describe fluid dynamics and structural mechanics. Pipe systems experience

severe dynamic forces during a waterhammer event, when these forces make the system move,

significant FSI may occur, so that liquid and pipe systems cannot be separately treated in a

theoretical analysis: interaction mechanisms have to be taken into account (Tijsseling, 1996).

Moreover, this is a fundamentally interactive process, thus explaining why an uncoupled

analysis (where fluid force histories are used as input data in a structural dynamics code for

the pipes, without coupling back) may give erroneous results (Tijsseling & Vardy, 2004).
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Figure 2.1 – Sources of excitation and interaction between liquid and piping (Wiggert &
Tijsseling, 2001).

In a broader sense, fluid-structure interaction embraces any form of transfer of energy, one

upon another, between the fluid and the structure. In common engineering problems, this

transferred energy is typically either kinetic or heat. The former is termed mechanical fluid-

structure interaction and the latter thermal fluid-structure interaction. Heat exchange effect

in transient pipe flow is barely significant, processes are assumed isothermic, and FSI analyses

are mainly focused on the momentum exchange between the fluid and the pipe structure.

Two different approaches may be followed to account for the momentum transfer into the

structure (Giannopapa, 2004): considering either the structure moves as a rigid solid or by the

propagation of a local excitation/deformation of the solid. In the first no transient event is

considered propagating throughout the solid, the structure element moves as a rigid body

and its effect over the fluid is analysed. In the second, the modes of vibration of the structure

element are excited and their respective transients are taken into account and coupled with

the fluid transient. The present review is focused on the second.

Finally, FSI analyses may be further classified according to the dimensions and the degrees-

of-freedom with which the pipe system is allowed to move. Normally, in 1D waterhammer

research the classification criteria is based on the modes of vibration of the pipe, which is

quite convenient for frequency-domain approaches. However, for time-domain analyses a

classification based on the pipe degrees-of-freedom seems more physically intuitive. The

latter is the classification criterion used hereby (v.i. Fig. 2.2).
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Figure 2.2 – Classification of fluid-structure interaction phenomena.

2.2.3 Degrees-of-freedom in fluid-filled pipes

Degrees-of-freedom (DOF) are the number of independent coordinates or parameters that

describe the position or configuration of a mechanical system at any time (Sinha, 2010).

Systems with finite number of degrees-of-freedom are called discrete systems, and those

with infinite degrees-of-freedom are called continuous systems. Pipe systems are continuous

systems which can be treated as discrete systems for numerical modelling purposes.

Pipes are svelte elements, therefore, a 1D approach assuming the fluid pressure propagates

axially during hydraulic transients seems to be reasonable. However, transient pressures

transmit forces over the pipe wall that make the piping system move in a 3D space. The

basic degrees-of-freedom for a rigid body in a 3D space are three for translation (i.e. heaving,

swaying and surging) and three for rotation (i.e. pitching, yawing, rolling). An infinitesimal

control volume of pipe-segment (like in Fig. 2.3) will have the six basic degrees-of-freedom.
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The pipe control-volume is a hollowed cylinder, therefore axisymmetric vibration due to

hoop strain must be as well considered, adding another degree-of-freedom. Additionally, the

infinitesimal control volume of the 1D inner fluid accounts for another degree-of-freedom.

Henceforth, in the present 1D FSI analysis eight degrees-of-freedom compose the infinitesimal

control volume of a pipe system.

In each degree-of-freedom momentum and mass conservation laws are applied giving as result

a set of 16 partial differential equations (cf. Appendix A), with time and space coordinates

as independent variables, aiming to solve two basic dependent variables related with the

loading and the movement in each degree-of-freedom (i.e., load and deformation relation).

Depending on the pipe geometry, axial, shear, bending and torsional forces and displacements

alternate throughout the pipe. A schematic of such displacements is shown in Fig. 2.3.

Figure 2.3 – Spatial reference system and signs convention in a straight pipe element

FSI models in 1D waterhammer analyses can be classified following the pipe degrees-of-

freedom they are aimed to describe (v.s., Fig. 2.3):

• 1-DOF (fluid): only the axial fluid transient event is described.

• 2-DOF (breathing): radial inertia of the fluid and the pipe is taken into account.

• 3-DOF (surging): refers to the axial movement of the pipe.

• 4-DOF (swaying): includes the effect of lateral displacement of the pipe.

• 5-DOF (heaving): includes the effect of vertical displacement of the pipe.

• 6-DOF (yawing): includes the rotation of the pipe on the x̂z plane.
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• 7-DOF (pitching): includes the rotation of the pipe on the ŷ z plane.

• 8-DOF (rolling): includes the rotation of the pipe on the x̂ y plane.

The fundamental mass and momentum conservation equations for the eight degrees-of-

freedom of the pipe systems and the respective wave propagation speeds were presented

in Walker & Phillips (1977) and Wiggert et al. (1987), and in the present document can be

found in Appendix A.

2.2.4 Vibration modes in fluid-filled pipes

The modes of vibration of a physical system are determined by the degrees-of-freedom of

that system. Depending on its configuration, a pipe system allowed to move in one degree-

of-freedom might present more than one vibration modes. In a mode of vibration the overall

system experiences simple-harmonic-motion, and the characteristic frequency of this simple-

harmonic-motion is called natural frequency. When a physical system is excited, only those

modes of vibration whose natural frequencies are lower than the half of the duration of the

source of excitation are properly excited. Any vibration of the system can be decomposed into

its basic modes of vibration, which are also called natural modes or mode shapes, each mode

of vibration has a specific shape. This is the reason why a classification of numerical models

based on vibration modes is convenient in frequency-domain analyses.

2.2.5 Coupling mechanisms and modelling approaches

There are three basic kinds of coupling mechanisms (Tijsseling, 1996): (i) Poisson coupling

describes the interaction between the axial motion of the pipe-wall and the pressure in the

fluid occurring by means of the Poisson effect; (ii) friction coupling arises from the shear

stress between the pipe-wall and the fluid; (iii) and junction coupling results from unbalanced

local forces and by changes in the fluid momentum that occur in pipe bends, T-junctions or

cross-section changes.

Two main approaches can be followed for solving FSI problems: analysis in the time-domain

and in the frequency-domain. In the first, the dependent variables are directly assessed with

respect the independent variable time; whereas in the second, with respect to frequency.

In time-domain analyses the Method of Characteristics (MOC), the Finite Element Method

(FEM), the Finite Difference Method (FDM) or the Finite Volume Method (FVM) are discretiza-

tion methods used to solve the governing differential equations. In the frequency-domain,

Harmonic, Fourier, or Laplace analyses are used to replace the time variable in the governing

equations by a frequency parameter, and then the partial differential equations are trans-

formed into a set of ordinary differential equations which can be analytically integrated and

solved.
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Figure 2.4 – Numerical approaches used in waterhammer research for FSI problems.

In the time-domain approach, either a single or multiple numerical methods can be used for

the description of the different degrees-of-freedom of the pipe. The method of characteristics

(MOC) and the finite-element method (FEM), or a combination of both, are the most com-

mon numerical methods used for solving the one-dimensional basic equations (Tijsseling,

1996). One single integrating approach, such as MOC-MOC or FEM-FEM, is convenient as

all the information flows into the same numerical scheme (Wiggert & Tijsseling, 2001). Other

combinations are not that common in one-dimensional analyses; FVM is rather used for 3D

simulations.

2.2.6 Classification of vibration and damping

The vibration of physical systems can be classified according to different criteria(Dwivedy,

n.d.):

• For a system vibrating on its own the resulting vibration is called free vibration. If it is

subjected to an external force then it is called forced vibration.

• If damping is present, the ensuing vibration is called damped vibration, otherwise, it is

called undamped vibration. It can be also called under-damped, critically-damped or

over-damped depending on the damping ratio of the system. In the cases of critical and

over-damping there is no oscillation of the system.

• If the basic components of a vibratory system (i.e. the spring, the mass and the damper)

behave linearly, the resulting vibration is known as linear vibration. Principle of su-

perposition is valid in this case. Nonlinear vibration occurs when one, or more basic

components of the vibratory system are not linear.
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• If the value of excitation can be predicted at any given time, then it is called deterministic

vibration. If not, then the resulting vibration is called random vibration.

Several physical phenomena affect the waterhammer waveform, timing and damping, such as

unsteady friction, cavitation (including column separation and trapped air pockets), a number

of fluid–structure interaction (FSI) effects, viscoelastic behaviour of the pipe-wall material,

leakages and blockages (Bergant et al., 2008a). Amongst these, damping may be attributed to

three main sources:

• skin friction damping, which is related to skin friction between the fluid and the pipe-

wall, either steady or unsteady;

• dry friction damping caused by the dry friction between the moving pipe structure and

its surroundings;

• and structural or hysteretic damping, which is associated with the pipe-wall rheological

behaviour and movement.

Pipe systems subjected to waterhammer transients are free-damped-deterministic vibrating

systems with multiple modes of vibration, coupled or uncoupled, according to the degrees-

of-freedom of the conduit and exposed to skin friction, dry friction and structural/hysteretic

damping. All these damping mechanisms convert hydraulic transients into aperiodic and

non-linear phenomena difficult to describe. In Section 2.3 the fundamentals of wave damping

mechanisms are further developed and a review assessment provided.

2.2.7 Classic waterhammer theory

The classic waterhammer theory is the product of accumulation of scientific achievements

in a well defined framework, starting by Newton (1686) and Lagrange (1788), with stud-

ies on the acoustic wave speed in air; passing by Helmholtz (1882) and Korteweg (1878),

who established waterhammer wave celerity formulae based on the criterion that hydraulic

transients in pipe flow are dominated by fluid compressibility and pipe-wall distensibility;

Menabrea (1858) (Anderson, 1976) whose work is attributed to be the first contribution in

waterhammer; and Von Kries (1883) and Joukowsky (1904) who developed the equation for

the waterhammer wave amplitude; and finishing by Braun (1909, 1910) and Allievi (1902,

1913), who presented the fundamental equations in which the waterhammer theory is based.

Authors such as Michaud (1878), Jouguet et al. (1914) or Mendiluce (1987) contributed to the

development of rigid column theory, which is ignoring the compressibility of the fluid and

elasticity of the pipe-wall.
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Waterhammer wave celerity: The Newton-Laplace equation corresponds to the speed of

sound for a compressible fluid in an infinite medium (unconfined fluid):

a1 =
√

K

ρ f
(2.1)

However, a waterhammer wave is the result of a combination of several degrees-of-freedom

of the pipe system, each one with its own propagation speed. Helmholtz (1882) was the first

who suggested that the speed of propagation of waterhammer waves not only depends on the

acoustic speed in the fluid but also on the pipe-wall deformability.

In parallel, Young (1808), Webber (1866), Resal (1876) and Moens (1998) contributed to the

development of Eq. 2.2, which is also called the Moens-Korteweg equation and represents the

speed of propagation of a waterhammer wave for an incompressible fluid. This equation is

valid for rubber hoses and blood vessels, where the pipe-wall distensibility dominates over the

fluid compressibility during the propagation of a disturbance.

aMK =
√

Ee

ρ f D
(2.2)

Korteweg (1878), in order to calculate the waterhammer wave celerity considering both

fluid compressibility and pipe-wall distensibility, combined Eqs. 2.1 and 2.2 obtaining the

Helmholtz-Korteweg equation:

aHK =
√

K

ρ f
(
1+ DK

eE

) (2.3)

which is equivalent to

1

a2
HK

= 1

a2
1

+ 1

a2
MK

(2.4)

The three travelling time scales derived from Eqs. 2.1, 2.2, and 2.3 follow, therefore, a Pythagorean

relation: for a rigid pipe of finite length containing incompressible fluid, the time scale of the

system response is 0 (Tijsseling & Vardy, 2004); for an elastic pipe with compressible fluid, the

square of the resultant waterhammer travelling time scale is the summation of the squares of

the time scales due to pipe distensibility and fluid compressibility.

A more general expression of the previous Eq. 2.4 can be found in Anderson & Johnson (1990):

1

a2
HK

= ∂ρ f

∂p
+ ρ f

A

∂A

∂p
(2.5)

Hence, any pressure-excited pipe degree-of-freedom affecting the cross-sectional area affects,

as well, the waterhammer wave celerity. If the pipe-wall is fully rigid (only 1-DOF considered),

16



2.2. Definitions and basic concepts

the waterhammer wave speed is the same as that of Eq. 2.1, which is the sound in unconfined

water (Frizell, 1898). If the radial deformation of the pipe is considered (2-DOF), then the wave

speed is reduced according to Eq. 2.3. If the cross-sectional area is additionally affected by the

Poisson effect, the 3-DOF has to be considered. And so on for any pipe degree-of-freedom

affecting the pipe cross-section. For instance, Anderson & Johnson (1990) derived a wave

celerity equation considering the vibrating mode caused by an elliptic conduit.

Finally, Halliwell (1963) presented the pressure wave celerity formulae most commonly used

in the classic waterhammer theory:

ah =
√

K

ρ f
[
1+ K

E ψ
] (2.6)

where ψ is a coefficient that depends on the pipe-wall setting (i.e. thin or thick-walled) and

on the anchoring conditions: (a) pipe anchored against longitudinal movement through-

out its length; (b) anchored against longitudinal movement at the upper end; (c) conduit

with frequent expansion joints. Quasi-static conditions of the structure deformation are as-

sumed in the derivation of ψ coefficients. Values of ψ can be found in Streeter & Wylie (1978)

and Chaudhry (2014).

Fluid-structure interaction, therefore, considerably affects the waterhammer wave celerity

in fluid-filled conduits. An example of this can be found in Hachem & Schleiss (2011), where

a review of the wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels

is made. In this review the authors point out the significant difference in wave speed values

due to the fluid-structure interaction and its dependence to the stiffness of the steel liner and

penstock.

Waterhammer wave amplitude: To understand the historical evolution of the well known

Joukowsky equation, which relates pressure variation with confined liquid column velocity

changes, its analogous formulation have to be first traced in solid mechanics. Young (1808)

and Clebsch (1883) developed Eq. 2.7, which is essentially the same expression for longitudinal

waves in solid bars.

∆σz =−ρp a3∆V (2.7)

In shock waves theory, Rankine (1870) generalized the previous expression to any substance,

whether gaseous, liquid or solid (Anderson, 2000; Tijsseling & Anderson, 2004). Finally, Von Kries

(1883), Joukowsky (1904), Frizell (1898) and Allievi (1902) adapted the formula for pressurized

conduits.

∆p = ρ f ah∆V (2.8)
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Eq. 2.8 has been extensively used in pipe system design due to the easy applicability and good

accuracy for estimating maximum pressures for fast hydraulic transients. However, in the

context of fluid-structure interaction, the pressure rise computed by Eq. 2.8 may underestimate

maximum transient pressures influenced by several FSI phenomena. For instance, Wood

(1969) experimentally observed significantly higher pressures than the Joukowsky’s, claiming

FSI as the cause. Tijsseling & Heinsbroek (1999) measured pressure rises up to 100% higher

than Joukowsky’s pressure rise caused by FSI. Jones & Wood (1972) derived Joukowsky-like

expressions in order to account for 3-DOF FSI effects in the computation of maximum pressure

rise.

2.3 Damping mechanisms

2.3.1 Skin friction

Skin friction equally, but oppositely, affects the 1-DOF and the 3-DOF of a pipe system by

means of the shear stress occurring between fluid and the pipe-wall. Friction coupling is the

mechanism that describes this action-reaction relation in FSI models. The pipe structure is

not very sensitive to friction coupling in comparison to other coupling mechanisms, such as

junction or Poisson coupling. Though, in the fluid skin friction plays an important role for

the pressure wave damping, which, in classic waterhammer theory, is regarded as the only

wave dissipating mechanism. In waterhammer literature, skin friction losses are frequently

decomposed in steady and unsteady friction losses.

h f = h fs +h fu (2.9)

Steady skin friction

Quasi-steady conditions are frequently assumed for skin friction computation (Wylie et al.,

1993; Chaudhry, 2014). The flow is assumed to be steady at any instant, enabling the ap-

plication of steady formulae, such as Darcy-Weisbach equation, for the wall shear stress

computation.

τ(t ) = 1

8
ρ f f V (t )|V (t )| (2.10)

The use of steady-state wall shear relations in unsteady problems is satisfactory for very slow

transients, so slow that they do not properly belong to the waterhammer regime (Ghidaoui

et al., 2005). Discrepancies between experimental data and numerical output frequently arise

when computations assume quasi-steady skin friction in fast transient events (Vardy & Hwang,

1991; Axworthy et al., 2000; Silva-Araya & Chaudhry, 1997; Brunone et al., 1995; Ramos et al.,

2004; Bergant et al., 2008a).
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Unsteady skin friction

Friction has frequently a non-linear behaviour in physical systems. The relation between the

parameters defining the unsteadiness of friction has motivated research on waterhammer

during the last decades. Fast transients have a strong 2D nature of the flow field (Brunone

et al., 1995, 2000). Consequently, a dimension-reduction problem must be added to the

already mentioned intrinsic non-linear problem of the friction. The unsteady term in Eq. 2.9

is aimed to represent the unsteady friction losses caused by flow reversal and strong velocity

gradients close to the pipe-wall caused by the transient flow conditions (Ghidaoui et al., 2005).

Szymanski (1930) is one of the first researchers addressing unsteady friction, clearly explaining

the underlying physics with rigorous mathematics (Urbanowicz & Tijsseling, 2015).

Unsteady friction in 1D pipe flow models is one of the factors that generates dissipation,

dispersion and shape-change of the pressure wave. Its importance depends on the system

considered and the operating conditions. In most of the laboratory waterhammer test rigs

made of metal pipes, unsteady friction dominates over steady friction (Bergant et al., 2008a),

in particular for fast transients.

Unsteady friction models can be classified, according to their basic modelling assumptions,

into four categories: (i) based on instantaneous mean flow velocity (Hino et al., 1977; Brekke,

1984; Cocchi, 1988); (ii) based on instantaneous mean flow velocity and instantaneous lo-

cal acceleration (Daily et al., 1955; Carstens & Roller, 1959; Safwat & Van der Polder, 1973;

Kurokawa et al., 1986; Shuy & Apelt, 1987; Golia, 1990; Kompare et al., 1995); (iii) based on

instantaneous mean flow velocity, instantaneous local acceleration and instantaneous convec-

tive acceleration (Brunone et al., 1991; Vitkovsky et al., 2000; Ramos et al., 2004); and finally,

(iv) unsteady friction models based on instantaneous mean flow velocity and weights of past

velocity changes (convolution based models) (Zielke, 1968; Trikha, 1975; Kagawa et al., 1983;

Schohl, 1993; Vardy & Brown, 1996, 1995, 2003, 2004; Zarzycki, 1997, 2000).

An extensive review of unsteady friction models is presented in Bergant et al. (2001) and a

comparison is carried out between Brunone’s model, which is based on instantaneous local

and convective acceleration, and Zielke’s model, which is based on weights of past velocity

changes. Soares et al. (2012) also compares an instantaneous acceleration model (Vítkovský)

and a convolution based model (Vardy-Brown) for cavitating transient flow (v.i. Fig. 2.5).

Martins et al. (2015b, 2016) proved that the transient wall shear stress during waterhammer

events in pipe flow has a strong dependence on the flow time history and the local velocity

variation, suggesting that this should be the basis for unsteady friction models. Hence, the

research pointed out that models based on past velocity changes are more faithful to reality.

Ghidaoui et al. (2002), based on two different turbulence models, also supported the assump-

tions taken in weighting function unsteady friction models. Wall shear stresses computed

from numerical output using different 1D unsteady friction models are compared with CFD

output, proving the better performance of convolution based models.
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Figure 2.5 – Comparison between quasi-steady friction (classic elastic model), Vítkovský and
Vardy-Brown models during a hydraulic transient caused by a pump trip (Soares et al., 2012).

Szymkiewicz & Mitosek (2005, 2007) proposed a modified finite element method for the

solution of the two-equation model. Numerical output was compared with measurements

concluding that the dissipation observed in the real waterhammer wave cannot be described

only focusing on the skin friction source term of the momentum equation. These authors

claimed that the waterhammer equations should include another additional mechanism of

physical dissipation.

With the aim to analyse the effect of unsteady friction on FSI models, in the present research

friction coupling is implemented considering Brunone (Brunone et al., 1995) and Trikha

(Trikha, 1975) unsteady friction formulations, which, as mentioned, belong to two different

families of approaches.

Brunone’s unsteady friction model

With the idea that during fast transients both, local and convective accelerations are correlated

to friction forces, Brunone et al. (1991) proposed a single expression to calculate the unsteady

component that requires an empirical coefficient k:

h fu =
k

2g

(
∂V

∂t
−ah

∂V

∂x

)
(2.11)
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In the present study the k coefficient is computed as suggested by Bergant et al. (2001):

k =
p

C?

2
(2.12)

where the Vardy’s shear decay coefficient C? is given by (Vardy & Brown, 1995):

C? = 0.00476 (2.13)

for laminar flow, and

C? = 7.41

Re log 14.3
Re0.05

(2.14)

for turbulent flow.

By means of this method the k coefficient is computed as function of the Reynolds number

and there is no need for calibration.

Trikah’s unsteady friction model

The weighting-function models take into account the 2D nature of the velocity profile that

causes the frequency-dependent attenuation and dispersion of the hydraulic transient. The

first model of this kind was proposed by Zielke (1968), who developed an analytical solution

for unsteady friction for laminar flows, where the unsteady head loss term is the convolution

of the past fluid accelerations with a weighting function (full convolution method) described

by:

h f u(t )exact = 16ν

g D2

(
∂V

∂t
∗W

)
(t ) (2.15)

where ∗ indicates convolution and W the weighting function. The convolution in Zielke’s

model is approximated using the rectangular rule and the acceleration term is approximated

using a central difference. However, this scheme is very expensive from the computational

point of view. Trikha (1975) simplified this computation reducing the weighting function to

the summation of three exponential terms and eliminating the need for convolution with an

approximate recursive relationship:

h f u(t )app. = 16ν

g D2

n∑
k=1

Yk (t ) (2.16)

where, Yk is a function that represents the exponential terms:

Yk (t +∆t ) = mk [V (t +∆t )−V (t )]+e−nk∆τt Yk (t ); (2.17)
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n = the number of exponential terms (n = 3 in the case of Trikha formulation); τt = is the

dimensionless time step, τt = 4ν∆t
D2 ; nk and mk = coefficients of the exponential summation,

nk = (26.4, 200, 8000) and mk = (1, 8.1, 40).

2.3.2 Hysteretic damping

The ratio between stress and strain, the Young’s modulus of elasticity, is an intrinsic property

of the pipe material that is affected by its molecular structure, temperature, material ageing

and stress-strain history (Jones & Ashby, 2005; Ward & Sweeney, 2012). The dependence on

stress-strain history is an important damping phenomenon during hydraulic transients in

plastic pipes, which present a strong non-elastic pipe-wall rheological behaviour (Covas, 2003).

Experimental evidence has certainly shown that the elastic assumption for plastic pipes can

lead to the underestimation of the pressure wave damping effect (Fox & Merckx, 1973; MeiBner

& Franke, 1977; Williams, 1977; Sharp & Theng, 1987; Mitosek & Roszkowski, 1998; Pezzinga &

Scandura, 1995; Covas et al., 2004c,d; Soares et al., 2008).

Several authors proposed mathematical models to describe the viscoelasticity of pipe-wall

during hydraulic transients (Gally et al., 1979; Rieutford & Blanchard, 1979; Rieutord, 1982;

Franke, 1983; Suo & Wylie, 1990; Covas et al., 2002; Covas, 2003; Covas et al., 2004a, 2005;

Keramat & Tijsseling, 2012; Duan et al., 2009). Either frequency or time-domain approaches

can be followed to describe the effect of the viscoelastic pipe-wall behaviour in hydraulic

transients.

Due to its time-dependency, pipe-wall viscoelasticity can be described in the frequency-

domain in terms of angular frequency. Freitas Rachid et al. (1994) and Freitas Rachid &

Costa Mattos (1995) pointed out the importance of considering a variable wave speed for

hydraulic transient analysis in plastic pipes. The modulus of elasticity of the pipe material

used in the wave speed computation is replaced by the inverse of the creep function, J (Covas

et al., 2004c). MeiBner & Franke (1977) and Franke (1983) studied the damping of steady-

oscillatory flows in PVC and steel pipes, deriving wave speed and damping formulae. Rieutord

(1982) proposed a ‘one Kelvin-Voigt element model’ to describe creep and included it in

the wave speed formula. For flexible hydraulic hoses, Yu & Kojima (1998) used two Kelvin-

Voigt elements connected in series. Suo & Wylie (1990) modelled pipe-wall viscoelasticity

in both oscillatory and non-periodic flows. Covas et al. (2004c, 2005) compared the results

of this approach with experimental data (v.i. Fig. 2.6). Additionally, unsteady friction was

incorporated in the solver, pointing out the importance of considering simultaneously both

phenomena and the difficulty to distinguish them.

Viscoelastic models in time-domain approach incorporate an additional term to the mass

balance equation of the fluid. The rheological viscoelastic behaviour of the pipe wall in the

classic waterhammer equations is divided in two parts, an instantaneous elastic response

(included in the elastic wave speed) and a retarded-viscoelastic response due to the creep

of the viscoelastic material added to the mass balance equation. This formulation has been

22



2.3. Damping mechanisms

Figure 2.6 – Comparison of classic waterhammer model with adding first unsteady friction
and then both unsteady friction plus pipe-wall viscoelasticity vs. experimental observations at
the downstream pipe-end during a waterhammer event (Covas et al., 2005).

proposed by Gally et al. (1979) and Rieutord (1982). Rachid et al. (1992, 1991) and Rachid &

Mattos (1994) extended the development of the general constitutive theory and implemented

several types of non-elastic rheological behaviour. Metal at elevated temperatures or when

subjected to fast loading-rates presents a hysteretic behaviour. Anelasticity is the term used to

describe the hysteretic elastic behaviour of metals. The analysis of structural and atomistic

features responsible for anelasticity has shown that metallic atoms are capable of moving

relative to one another in much the same way that long polymer chains (Courtney, 1990). This

phenomenon, which has not been studied yet in the field of hydraulic transients, can cause

damping of the waterhammer wave in metallic pipes in a similar manner as viscoelasticity in

plastic pipes, though with lower intensity.

Duan et al. (2009) assessed a quasi-2D waterhammer model taking into account unsteady

friction and viscoelasticity and compared the model output with experimental data from Covas

et al. (2004c). He concluded that the viscoelastic effect is more severe for low frequencies

whereas unsteady friction is more intense for high frequencies of the wave oscillation. FSI

and pipe-wall viscoelasticity were combined in Weijde (1985), Stuckenbruck & Wiggert (1986)

and Keramat & Tijsseling (2012). The latter is provably the most complete analysis. A four-

equation model was implemented including Poisson coupling, column separation and pipe-

wall viscoelastic behaviour based on Soares et al. (2008), which included the latter two.

Rachid & Stuckenbruck (1989) modelled viscoelastic pipe behaviour coupled and uncoupled

with fluid-structure interaction in a four-equation model. Rachid & Costa Mattos (1998)

included Poisson coupling in the computations and Rachid & Mattos (1999) presented a
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parametric study. Structural damping was theoretically and experimentally studied by Budny

et al. (1991), Budny et al. (1990) and Jelev (1989). Williams (1977) combined FSI effects with

pipe-wall viscoelasticity by carrying out tests in steel, ABS and PVC for different FSI config-

urations. Tijsseling & Vardy (1996b) and Hachem & Schleiss (2012) analysed the hysteretic

damping caused by a short plastic pipe segment embedded in a metallic pipe rig. With differ-

ent experimental configurations both reached similar conclusions, stating that the vibration

could be adapted and modified in function of the segment material and geometry. In the field

of biomechanics, pipe-wall viscoelastic behaviour is also considered an important effect for

the description of the physiological flow in veins and arteries (Rutten, 1998).

The viscoelastic behaviour of pipe walls has a dissipative and dispersive effect in the pressure

wave, similar to unsteady friction losses. Although the viscoelastic behaviour of polymers is

well-known, this behaviour tends to be forgotten in hydraulic transient analyses of plastic

pipes (Covas et al., 2005). Furthermore, in these set-ups the damping of the waterhammer

wave is higher due to viscoelasticity than to unsteady friction (Ramos et al., 2004; Soares

et al., 2008). In Soares et al. (2009) unsteady friction losses, pipe-wall viscoelasticity and wave

speed variation due to the formation of localised gas cavities were assumed to be described

by the creep function. The effects of unsteady friction and pipe-wall viscoelasticity are hard

to distinguish (Covas et al., 2004b) and, to the knowledge of the authors, unsteady friction

effect has never been separately assessed in a two-mode FSI model. Due to FSI, the pipe-wall

vibrates axially at a different rate than the fluid, hence, the relative velocity between both (Vr )

must be considered for skin shear stress assessment. The higher the Mach number (Vr /ah) is,

the greater the wall shear stress effects become (Ghidaoui et al., 2005). Therefore, unsteady

friction effects may be increased when fluid-structure interaction is important.

2.3.3 Dry damping

In the implementation of a four-equation model a major question may arise: is there move-

ment in the pipe supports? Anchorages of pipelines aim to avoid the pipe-wall movement

essentially by means of dry friction. However, pipe supports are never entirely stiff or entirely

inert when loaded by impacts (Tijsseling, 1997). Thus, infinitesimal movements occur. In a

system where the pipe is allowed to move, not only skin friction but also dry friction dissipation

between the pipe-wall and its supports occur during fast hydraulic transients (Feeny et al.,

1998). This additional dissipation may affect all the pipe degrees-of-freedom involving the

pipe-wall movement. Dry friction is proportional to the normal force, hence, for a high normal

force, important energy might be dissipated from the structure to its supports/surroundings.

Furthermore, in this context, it is crucial to define the stick-slip transitions.

For dry friction computation, the Coulomb’s law is usually applied (Eq. 2.18), and it is assumed

that the friction force Fd f is proportional to the normal force N acting between the surfaces

and opposite to the pipe-wall movement:

Fd f =−µFN si g n(U ) (2.18)
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in which µ is the friction coefficient, si g n() is a function that returns 1 or -1 according to the

pipe-wall movement direction and N is the normal force corresponding to the weight of the

pipe segment filled with water:

FN = [ρp Ap +ρ f A f ] ·∆z · g (2.19)

The friction coefficient increases from 0 until a maximum value is reached when the move-

ment is imminent, and then it drops to a relatively constant value during motion for low

velocities (Weaver Jr et al., 1990).

Approximate values are given for Coulomb’s friction coefficient for different materials, either

for the static and the kinematic coefficients in Davis (1997). The static friction coefficient is

used to conduct the stick-slip condition (Capone et al., 1993) that balances the resultant force

from axial stress in the pipe-wall section with the resultant force from dry friction.

Tijsseling & Vardy (1996a) included Coulomb’s dry friction in a four-equation model with the

goal to describe the behaviour of pipe racks, proposing a quantitative guideline equation

aiming at assessing when dry friction forces may be relevant during hydraulic transients. As

it can be observed in Fig. 2.7, the pipe-wall axial movement is clearly affected by the pipe

rack and, although not that evident, as consequence fluid pressure is also affected. Hence,

the dry friction occurring between the pipe and the supports affects, somewhat, the pressure

transient wave amplitude.
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Figure 2.7 – Measured axial pipe velocity (a), and measured pressures at two different pipe
locations (b,c) for a water-filled pipe excited by a steel rod impact (Tijsseling & Vardy, 1996a).

2.4 The most relevant experimental work programmes

2.4.1 Introduction and summary table

This section focuses on those experimental programmes that served waterhammer researchers

to develop and validate their fluid-structure interaction models. Some of the presented

publications form part of bigger projects that included both experimental and numerical

research. The description of the laboratory pipe-rigs and the aim of their empirical outcome

is explained hereby.

The fluid-structure interaction is difficult to isolate and frequently undesired FSI’s occur

in experimental facilities even when the target is the analysis of different phenomena. For

instance, Holmboe & Rouleau (1967) decided to embed the pipe in concrete in order to avoid

FSI in the pipe-rig, aiming to study frequency dependent wall shear stress. The following

table 2.1 a summary of the main experimental research work related with fluid-structure
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interaction in pipe transient flow is depicted organized by research institutes, authors and

dates.

Table 2.1 – Summary table of the most relevant experimental work in the research of fluid-
structure interaction in hydraulic transients.

Research centre Citations Facility description and purpose

City University London, U.K. Thorley (1969)

Aluminium alloy straight pipe.

Experimental evidence of

precursor waves is depicted.

University of Dundee, U.K.

Vardy & Fan (1986)

Vardy & Fan (1987)

Vardy & Fan (1989)

Fan (1989)

Fan & Vardy (1994)

Vardy et al. (1996)

Suspended pipe rigs excited

by the impact of a solid rod

aiming at isolating FSI effects.

University of Karlsruhe, Germany

Bürmann (1975)

Bürmann (1979)

Bürmann & Thielen (1988c)

Bürmann et al. (1985)

Bürmann et al. (1986b)

Bürmann et al. (1987)

Bürmann et al. (1986a)

Bürmann & Thielen (1988a)

Physical data from diverse

case-studies:

subterranean salt cavern,

water-main bridge and

tank-ship loading line.

The aim was the development and

validation of a four-equation model.

Delft Hydraulics, The Netherlands

Weijde (1985)

Kruisbrink & Heinsbroek (1992)

Heinsbroek & Kruisbrink (1993)

Complex apparatus hold by

suspension wires and specially

designed for FSI tests.

Used for the development and

verification of the FLUSTRIN code.

Michigan State University, U.S.A.

Wiggert (1983)

Wiggert et al. (1985b)

Wiggert et al. (1987)

Lesmez et al. (1990)

U-bend and multi-plane copper

pipe aiming at validating a

fourteen-equation model.

Stanford Research Institute, U.S.A.

Regetz (1960)

Blade et al. (1962)

A-Moneim & Chang (1978)

A-Moneim & Chang (1979)

Straight pipe extensively equipped

with pressure and strain gauges

in order to analyse pipe flexure

during the transient events

generated by a pulse gun.

University of Berkeley, U.S.A.
Krause et al. (1977)

Barez et al. (1979)

Conduit excited by firing steel

spheres onto the pipe ends with the

goal to study axial stress waves.

In the University of Kentucky, U.S.A.
Wood (1968)

Wood (1969)

Rigidly supported straight pipe

terminated by a spring-mass device.

Data used for model validation.

University of Guanajuato, Mexico.
Simão et al. (2015c)

Simão et al. (2015b)

Pipe-rig assembled by concentric

elbows aiming at validation

of a CFD model.
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2.4.2 Research in the U.K.

Thorley (1969) focused on the experimental analysis of tensile waves in the pipe-wall. He

described the phenomenon of precursor waves and, in an aluminium alloy straight pipe, he

was the first to observe precursor waves (v.i. Fig. 2.8), which are, at the same time, the evidence

of Poisson coupling effect.

Figure 2.8 – Facility set-up used by Thorley (1969) (a); and measured precursor wave in different
sections of the pipe (b).

In the University of Dundee, U.K., Vardy & Fan (1986, 1987, 1989) and Fan (1989) carried

out experimental tests where FSI effects were specially well isolated by means of suspended
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pipe rigs which were excited by the impact of a solid rod. Fan & Vardy (1994) and Vardy et al.

(1996) extended the work in the same experimental facility by including elbows and T-pieces

(v.i. Fig. 2.9 and 2.10). The tests were free of cavitation and other undesired dissipating

phenomena. By means of striking the structure (and not the fluid) clean and steep wave fronts

were achieved. This led to easily identifiable reflections and in general a good isolation of the

targeted FSI mechanism, making these tests a good instrument for verification purposes. In

combination with their numerical developments, they showed how FSI coupling changes the

natural vibrating frequencies, which cannot be described in uncoupled approaches.

Figure 2.9 – Single pipe axial impact experiment set-up (a); and T-piece pipe impact experiment
set-up (b) (Vardy et al., 1996)
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Figure 2.10 – Pressures and strains time series in the single pipe axial impact experiment
(a) and in the T-piece pipe impact experiment (b). Solid lines correspond to experimental
measurements and dashed lines to numerical output (Vardy et al., 1996).
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2.4.3 Research in Germany

In the University of Karlsruhe, Germany, interesting experimental programmes were carried

out aiming at collecting physical data from particular pipe systems. Bürmann (1975, 1979)

and Bürmann & Thielen (1988c) presented a series of tests carried out in a vertical pipe line

located in a subterranean salt cavern (v.i. Fig. 2.11). In Bürmann et al. (1985, 1986b, 1987)

measurements were shown from a water-main bridge, and in Bürmann et al. (1986a) and Bür-

mann & Thielen (1988a) from a loading line between tanks and ships. These measurements

were used to develop and validate the four-equation model that was first presented in Skalak

(1955).

Figure 2.11 – Vertical pipe line located in a subterranean salt cavern for de-brining under direct
circulation (Bürmann, 1975).

2.4.4 Research in The Netherlands

Weijde (1985) carried out experiments in a PVC pipe containing a U-shaped section at the

laboratory of Delft Hydraulics, The Netherlands. He concluded that classic waterhammer

theory was not accurate enough to describe the behaviour of the pipe-rig and, consequently,

the FLUSTRIN project was launched. A complex apparatus (Fig. 2.12) hold by suspension wires

and specially designed for FSI tests was assembled at Delft Hydraulics laboratory and used

for the development and verification of the FLUSTRIN code, which is based on a MOC-FEM

approach. In this framework Kruisbrink & Heinsbroek (1992) and Heinsbroek & Kruisbrink

(1993) carried out a series of numerical benchmark tests (cf. Figs. 2.16 and 2.20) which

have been frequently used to verify FSI codes. They confirmed that classic and uncoupled

calculations render unreliable results and emphasized the need of accounting for FSI effects.
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Figure 2.12 – FSI experimental set-up at Delft Hydraulics (Kruisbrink & Heinsbroek, 1992)

2.4.5 Research in the U.S.A.

Wiggert (1983) compiled the FSI research work carried out at Michigan State University, U.S.A.,

in the time and frequency-domain using, respectively, the MOC and the component-synthesis

method for four-equation model solutions. Experimental data were used for the verification

of the methods. In Wiggert et al. (1985b, 1987) a fourteen-equation solver was proposed

and results compared with measurements in a multi-plane copper pipe (v.i. Fig. 2.13). A

good fitting with measurements was obtained but the analysis concluded that further model

developments were necessary. Lesmez et al. (1990) extended the work using an experimental

set-up consisting of a copper pipe containing a U-bend free to move in an in-plane fashion.
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Figure 2.13 – Experimental set-up (a) and pressure measurements (b) next to the downstream
valve and at the bend-C (Wiggert et al., 1987).

At the Stanford Research Institute, U.S.A., Regetz (1960) investigated pressure and velocity

fluctuations in a straight pipe filled with rocket fuel. His experimental apparatus allowed for

axial pipe motion. Blade et al. (1962) extended the work by adding an elbow in the experimental

pipe rig. Also A-Moneim & Chang (1978, 1979) followed the same line of research. As it can be

observed in Fig. 2.14, the experimental facility consisted, first, of a straight pipe extensively

equipped with pressure and strain gauges. Later on, an elbow was added in order to analyse

pipe flexure during the transient events. The system was excited by a calibrated pulse gun.
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Figure 2.14 – Experimental straight pipe rig used in A-Moneim & Chang (1978) (a); and pipe
equipped with an elbow used in A-Moneim & Chang (1979) (b).

In the University of California, Berkeley, U.S.A., Krause et al. (1977) studied axial stress waves

in a closed conduit which was excited by firing steel spheres onto the tub ends. Barez et al.

(1979) extended the work, experimentally and numerically.

In the University of Kentucky, U.S.A., Wood (1968, 1969) carried out experiments in a rigidly

supported straight pipe terminated by a spring-mass device. Collected data were used for

model development and validation in the time-domain. In Wood & Chao (1971) the work was

extended by adding elbows and branches in the experimental set-up, concluding that if the

elbows are anchored and do not, these do not affect much the transient wave and, when they

move, their effect is considerable.
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2.4.6 Research in Mexico

In the University of Guanajuato, Mexico, Simão et al. (2015c,b) collected data from a pipe-

rig assembled by concentric elbows of 90◦ (v.i. Fig. 2.15). The apparatus was equipped

with pressure transducers and accelerometers. Waterhammer tests were carried out by a

downstream valve manoeuvre. The aim of the experimental data collection was the validation

of a numerical model which coupled CFD software for the fluid with FEM for the structure.

The model was as well compared with a modified MOC approach which included damping

coefficients to account for structural damping. The work highlighted the importance of

integrated analyses including the description of both fluid and structure behaviours.

Figure 2.15 – Experimental set-up (a); and fluid pressure and pipe-wall acceleration measure-
ments (b) in the x, y, z coordinates Simão et al. (2015c).
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2.4.7 Research in other regions

Williams (1977) carried out experiments in steel, ABS and PVC pipes. The axial stress waves

effect was depicted and the damping was attributed to FSI. In Davidson & Samsury (1969)

and Davidson & Samsury (1972) fluid-structure interaction was analysed, respectively, in

straight and curved pipes. Budny et al. (1990); Brown & Tentarelli (2001b) and Fan (1989)

gave experimental evidence of Bourdon coupling (cf. Fig. 2.21). While, Gregory & Paidoussis

(1966) and Jendrzejczyk & Chen (1985) focused their experimental research on describing the

buckling and flutter effects in pipe systems.

2.5 Numerical research

2.5.1 One degree-of-freedom models

Two-equation model:

The classic waterhammer model (two-equation model) is a sophisticated version of the basic

1-DOF system (cf. Appendix A, Eqs. A.1 and A.2). Although the bulk modulus of compressibility

and a finite acoustic wave speed are considered in the fluid, in terms of density variation the

fluid is assumed to be incompressible and pressure changes are related to velocity changes

somewhat by embedding fluid compressibility and pipe-wall extensibility into the wave

celerity value, which is regarded as a constant parameter and is defined by Eq. 2.6.

On the one hand, the fundamental equations of classic waterhammer theory (i.e. mass and

momentum conservation) can be derived from Navier-Stokes equations (Ghidaoui, 2004) or

by directly applying the Reynolds Transport Theorem (Chaudhry, 2014) to a control volume of

the pipe system. On the other hand, they can be also reached from the system of equations

presented in Section 2.2, as, somewhat, classic theory considers a combination of the first two

degrees-of-freedom. The fundamental momentum conservation equation is directly the one

presented in 1-DOF (Eq. A.1). For mass conservation (continuity equation), the cross-sectional

area of the control volume is assumed to vary and this variation is related to the fluid inner

pressure by applying a quasi-static assumption in the 2-DOF. Establishing elastic stress-strain

relations, and rearranging the system of equations composed of 1 and 2-DOF the continuity

equation Eq. 2.21 is reached (cf. Appendix A).

The following system of PDE’s (Eq. 2.21 and Eq. 2.20) represents the fundamental conservation

equations of classic waterhammer theory.

∂V

∂t
+ 1

ρ f

∂p

∂z
= 0 (2.20)

∂V

∂z
+ 1

ρ f ah

∂p

∂t
= 0 (2.21)
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where ah corresponds to the waterhammer wave celerity, which can be experimentally deter-

mined or theoretically computed by means of Eq. 2.5.

Usually the system of Eqs. 2.20 and 2.21 is solved by means of the Method of Characteristics

(MOC), which is the most popular and extensively used method for waterhammer analysis

thanks to its easy programming, computational efficiency and accuracy of the results (Vardy &

Tijsseling, 2015).

CFD software

Computational-Fluid-Dynamics (CFD) refers to those models that solve the Navier-Stokes

equations for a 3D fluid domain. Several numerical methods may be approached to solve

the equations, such as k − ε , Reynolds stress, SAS, DES, LES, etc. The former are the most

suitable for parietal flows Anderson et al. (2001). Although the equations and the dimensions

of the fluid domain are different in CFD models than in the proposed classification of Sec-

tion 2.2, they are frequently used to yield information for the 1-DOF models, either for model

development, verification or validation (Martins et al., 2016). However, CFD models are still

demanding both in computational time, pre-and post-processing time, as well as on input

data, making their use for practical engineering purposes rarely justified.

In order to adapt CFD models for 1-DOF modelling, an important assumption has to be

applied. If the pipe is rigid and does not deform, the hydraulic transient wave propagates

at the acoustic speed in water (Eq. 2.1). To correct this, the bulk modulus of compressibility

should be adapted (Martins et al., 2016) in function of the a realistic wave celerity:

K? = ρ f a2
h (2.22)

CFD software is being used in research on transient flows to assess unsteady skin friction mod-

els. Vardy & Hwang (1993) developed a weighting function unsteady friction model by means

of using output data from a CFD model. In Ghidaoui et al. (2002) two different turbulence

models were implemented and analysed for both quasi-steady and axisymmetric assumptions,

suggestions for unsteady friction modelling were reported. Riedelmeier et al. (2014) compared

skin friction rates in 1D and 3D for a pipe section with a 90◦ bend. Chung & Wang (2015) used

direct numerical simulations (DNS) and identified a three-stage development of the mean

wall shear stress for turbulent pipe flow at a constant acceleration rate. Martins et al. (2015b,

2016) has shown that the transient wall shear stress during waterhammer events in pipe flow

has a strong dependence on the flow time history and the local velocity variation.

Simulation of multi-phase flow in pipes is also a stream where CFD models are contributing.

Zhou et al. (2011),Zhou et al. (2013), Martins et al. (2015a) and Martins (2016) analysed the

effect of entrapped and dissolved air during pipe flow transients. A state-of-the-art review in

multi-phase transients in pipe flow for both 1D and 3D approaches is given by Tiselj (2015).
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2.5.2 Models with up to three degrees-of-freedom

Four-equation models

The historical development of four-equation models can be traced back from Korteweg (1878)

who already pointed out the need of considering axial stress waves. Gromeka (1883) and Lamb

(1898), qualitatively, took into account pipe axial inertia and Poisson coupling in their analyses.

Skalak (1955), who extended Lamb’s work, presented the four basic fundamental equations

and introduced the concept of precursor waves. Bürmann (1979), Thielen & Burmann (1980)

and Bürmann & Thielen (1988b) presented a simplified version of Skalak’s equations which

represent the well-know four-equation system used in the standard four-equation models.

Skalak’s paper was revisited and analysed in Tijsseling et al. (2008).

For the description of pressure waves in pipe systems two or four-equation models are suffi-

cient (Tijsseling, 1996). Four-equation models consider the combination of classic theory with

the 3-DOF equations. Hence, four fundamental equations, two for the fluid and two for the

pipe axial movement, are to be solved. The right-hand-side terms of the continuity equations

of the 1-DOF and 3-DOF systems must be adapted in order to describe the Poisson coupling

in terms of the dependent variables of the four-equation model (i.e., respectively, σz and p).

This derivation is explained in the Appendix A for which Eqs. 2.24 and 2.26 are obtained.

∂V

∂t
+ 1

ρ f

∂p

∂z
= 0 (2.23)

∂V

∂z
+ 1

ρ f a2
h

∂p

∂t
= 2ν

E

∂σz

∂t
(2.24)

∂Uz

∂t
− 1

ρP

∂σz

∂z
= 0 (2.25)

∂Uz

∂z
− 1

ρp a2
3

∂σz

∂t
=− rν

eE

∂p

∂t
(2.26)

Several numerical methods can be used to solve the previous system of equations, either

integrating both the fluid and the structure in the same numerical scheme (e.g., MOC-MOC)

or by a combination between different schemes (e.g., MOC-FEM). In Vardy & Alsarraj (1989)

and Vardy & Alsarraj (1991) the Method of Characteristics for both the fluid and the structure

(i.e., MOC-MOC) was shown to have useful advantages. Schwarz (1978) used a FDM scheme in

his four-equation model as a simplified version of a six-equation model which was solved by

MOC. Ellis (1980) modelled fluid and axial stress waves in conduits by means of MOC, taking
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into account only junction coupling (ignoring Poisson coupling). Kojima & Shinada (1988)

also used a FDM approach which was validated by tests on a thin-walled straight pipe for

Poisson coupling as well as junction coupling in a closed-free pipe end.

Wiggert et al. (1985a), Elansary & Contractor (1990), Elansary et al. (1994), Budny et al. (1991)

and Elansary & Contractor (1994) explained how to solve the four-equation system considering

Poisson coupling. They presented the characteristic equations from MOC transformation

and how to integrate them into the same characteristic grid using time-line interpolations

as explained in Goldberg & Benjamin Wylie (1983). The MOC transformation that allows

hyperbolic partial differential equation systems to be converted to a set of ordinary differential

equations was based on Forsythe et al. (1960). Zhang et al. (1994) used a FEM scheme for

both, the fluid and the structure. In Bouabdallah & Massouh (1997) and Ghodhbani & Hadj-

Taïeb (2013), time interpolation and wave adjustment methods are compared for MOC-MOC

solutions. (Wiggert, 1983) used an hybrid MOC-FEM approach, MOC for the fluid and FEM

for the structure. A FVM approach was presented in Gale & Tiselj (2005) to solve the four-

equation model, which was successfully validated using the Delft Hydraulics Benchmark

Problem A (Lavooij & Tijsseling, 1991; Tijsseling & Lavooij, 1990). In Lavooij & Tijsseling (1991)

both approaches MOC-MOC and MOC-FEM are compared, concluding that for straight pipe

problems the MOC procedure is more accurate and efficient.

The Delft Hydraulics Benchmark Problem A (20 m long, steel pipe, 0.4 m diameter) is a good

approach for the verification of four-equation numerical codes (v.i. Fig. 2.16). In Li et al. (2003)

and Tijsseling (2003), a theoretical development of an exact solution for the four-equation

system by means of a recursion was presented. The drawback of the method is its exponential

computational effort for longer simulation periods. Recently, in Loh & Tijsseling (2014),

the computation for the exact solution was parellalized in order to increase computational

efficiency and applicability. The analysis suggested to keep the scope of exact solutions to

generate test cases and benchmark solutions for more conventional numerical methods.

Tijsseling (1997) has demonstrated the Poisson coupling beat, which is a phenomenon that

arises from resonance between 1-DOF and 3-DOF (v.i. 2.17). Poisson coupling beat was already

numerically observed by Wiggert (1986). So far, there is no experimental evidence about it as

damping mechanisms tend to hide the oscillating resonance between the pipe-wall and the

fluid vibrations.
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Figure 2.16 – Model set-up (a); and comparison between two-equation and four-equation
models (b) for the Delft Hydraulics Benchmark Problem A, considering an anchored (top) or
non-anchored valve (bottom) (Tijsseling, 2003).

Figure 2.17 – Numerical evidence of the Poisson coupling beat (Tijsseling, 1997).

Six-equation models

Six-equation models aim at describing the 1,2,3-DOF’s. As in the four-equation model, similar

numerical schemes can be used for solving the six-equation system. However, the right-

hand-sides of the three continuity equations are not expressed in differential terms. When

integrating a first or second-order approximation can be applied.

Walker & Phillips (1977) was the first proposing, and solving by MOC, the six-equation model.

These authors have compared results from the frequency and time-domains and carried out
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its validation using experimental data collected from a water-filled copper pipe excited by

hammering the pipe-end (v.i. Fig. 2.18).

With a similar MOC numerical scheme Schwarz (1978) solved the equations and compared

them to a four-equation model solved by FDM, the effect of Poisson coupling in each case was

also analysed. Kellner et al. (1983) extended the work of Walker & Phillips (1977) by proposing

an added fluid mass term and solving the equations by a MOC-FEM approach. Gorman et al.

(2000) used a MOC-FDM scheme in their numerical analysis, the effect of initial axial tensional

stress was included in their derivation.

Figure 2.18 – Frequency and time-domain solutions of a six-equation model (Walker & Phillips,
1977).

From the six-equation system, Tijsseling (2007) derived a four-equation model which included

correction terms and factors accounting for the wall thickness. The model was validated with

exact solutions in the time-domain (Li et al., 2003; Tijsseling, 2003). The authors concluded

that a transient description of the 2-DOF is only important for very thick pipes (r /e < 2).

2.5.3 Models for more than three degree-of-freedom

Eight-equation model

According to the classification given in Subsection 2.2.3, eight-equation models solve the

system of equations for either 1,3,4,6-DOF’s or 1,3,5,7-DOF’s. Hence, these kind of models are

used to describe in-plane axial, torsional and flexural pipe displacements respectively in the

x̂z or ŷ z. Radial inertia is nested into the celerity of the 1-DOF as in the classic waterhammer

theory.
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Valentin et al. (1979) presented an eight-equation model for curved pipes for 1,3,4,6-DOF’s.

Hu & Phillips (1981) solved the same equations using MOC method and validated results using

experimental data. Radial inertia was included in Joung & Shin (1987) solving a nine-equation

model. Tijsseling et al. (1994, 1996) and Tijsseling & Heinsbroek (1999) used a MOC-MOC

scheme in combination with cavitation, which was modelled by means of a lumped parameter

model. In Gale & Tiselj (2006) a FVM method was used to solve the eight-equation model,

which was tested for different set-ups (v.i. Fig. 2.19). In his analysis, Gale & Tiselj (2005)

highlighted that a two-phase flow fluid model is needed for simulations of more universal FSI

problems in pipelines.

Figure 2.19 – Pipe rig set-up (a) and numerical output (b) for: a free moving valve (black dashed
line), anchored (red solid line) and for classic waterhammer model (purple doted line) (Gale &
Tiselj, 2006).

Fourteen-equation model

The fourteen-equation model includes the degrees-of-freedom presented at Section 2.2 except

the 2-DOF corresponding to the radial inertia of the pipe system, which is nested into the

celerity of the 1-DOF like in the classic waterhammer theory.

Important work has been carried out for solving the fourteen-equation models in the frequency

domain, to mention some: Wilkinson (1979), Kuiken (1988), Lesmez et al. (1990), Tentarelli

(1990), De Jong (1994). Hatfield & Wiggert (1991) presented the component-synthesis method,

which is an hybrid technique between frequency and time-domain. Time-domain solutions

can be obtained from frequency domain analyses, however, Hatfield & Wiggert (1983) con-

cluded that the time-domain solutions derived from frequency-domain are difficult and

impractical.

Wilkinson (1977) introduced the fourteen-equation model in the time-domain, which was

finally implemented by Wiggert et al. (1985a), Wiggert (1986) and Wiggert et al. (1987) with

MOC approach, either in the fluid and in the structure. This method was used as well in
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Obradovi’c (1990), who simulated an accident. Tijsseling & Lavooij (1990) and Lavooij &

Tijsseling (1989) implemented a code which solved the fourteen-equation system by means of

a MOC-FEM scheme. The output was compared with a MOC-MOC when applied to a single

straight pipe, corresponding to the Delft Hydraulics Benchmark Problem A (Lavooij, 1987).

Coupled and uncoupled Poisson effect solutions were compared (v.i. Fig. 2.20) for the Delft

Hydraulics Benchmark Problem F (Lavooij, 1987). Experimental measurements were used in

this comparison and a guideline was provided suggesting when FSI is important. The same

computer code was used by Kruisbrink (1990), Lavooij & Tijsseling (1991) and Heinsbroek

(1997) with similar purposes of comparing with other modelling assumptions and using ex-

perimental tests for validation. Heinsbroek (1997) suggested that for four-equation modelling

a MOC-MOC approach is more convenient, while for higher degrees-of-freedom a MOC-FEM

scheme is preferable as higher grid resolution is required. Bettinali et al. (1991) presented

a similar MOC-FEM code with differences on the implementation on the Poisson coupling

mechanism.

The Delft Hydraulics Benchmark Problem F is a good approach for the verification of fourteen-

equation numerical codes (v.i. Fig. 2.20).
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Figure 2.20 – Set-up of the Delft Hydraulics Benchmark Problem F (a); and numerical output
(b) for: Poisson and junction coupling (solid line), only junction coupling (dashed line) and
for classic waterhammer model (dash-doted line) (Tijsseling & Lavooij, 1990).
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Other FSI mechanisms

In curved pipes of non-circular cross-section an additional coupling mechanism, called Bour-

don coupling, affects the pipe behaviour. This mechanism consists of the change of ovality

of the pipe cross-section in function of the internal pressure loading. In Clark & Reissner

(1950) and Reissner et al. (1952) the Bourdon tube deformation mechanism is explained and

a methodology based on the Boltzmann superposition principle to describe stress-strain

states in Bourdon tubes is presented. Bathe & Almeida (1980, 1982) studied Bourdon phe-

nomena by means of a FEM approach. Bourdon effect was first dynamically coupled with

the fluid response in Tentarelli (1990). The work was extended in Brown & Tentarelli (2001b)

and Tentarelli & Brown (2001), experimental measurements were used for validation of the

numerical output in the frequency domain (v.i. Fig. 2.21).

Figure 2.21 – Experimental set-up (a) and output in the frequency-domain (b) for Bourdon
coupling analysis (Brown & Tentarelli, 2001b).

Other FSI mechanisms, not that common in regular engineering practices, are the buckling and

flutter induced by centrifugal and Coriolis forces. Authors that have contributed on this matter

are: Housner (1952), Gregory & Paidoussis (1966), Paidoussis & Issid (1974) and Paidoussis &

Laithier (1976).
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2.5.4 Coupling between different software

A different coupling approach consists of setting up an interaction between two different

software, which is one specific for the fluid and another for the structure. In each time-step

output information is transferred in both directions. There are contributions proposing

methodologies to carry out this data transfer, such as Ware & Williamson (1982). However, the

main challenge of this approach is the requirement of a huge computational effort (Belytschko

et al., 1986).

A-Moneim & Chang (1978) coupled a FDM software for the fluid and a FEM for the structure

with the goal to simulate an interesting experimental research carried out at the Stanford

Research Institute (SRI). Other authors who tried to simulate the same validating experi-

ments are Romander et al. (1980) or Kulak (1982, 1985) who coupled FEM-FEM software.

Also Erath et al. (1998) and Erath et al. (1999) used a FDM code for the fluid with a FEM for

the structure with the goal to simulate field measurements from a pump shut-down and

a closing valve from the nuclear power plant KRB II (Gundremmingen, Germany). Bieten-

beck et al. (1985) and Mueller (1987) applied a MOC-FEM coupling aiming at describing

the response of an experimental facility located at the Karlsruhe Nuclear Research Centre

(KfK—Kernforschungszentrum Karlsruhe).

In Casadei et al. (2001) FEM and FVM are compared for the fluid domain simulation and

coupling techniques are proposed. In Simão et al. (2015a,b) the traditional MOC approach

for the fluid is compared with a CFD k −ε model, both are coupled with a FEM model for the

structure.

2.6 Engineering applications

2.6.1 FSI consideration in codes and standards

In Moussou et al. (2004) several industrial cases of FSI generated by internal flows are analysed.

The paper highlights the complexity of FSI problems and the need for guidelines and rules

in international Codes and Standards. The following table 2.2 provides some of the Codes

and Standards belonging to those engineering fields that frequently require waterhammer

analyses. Certainly, none of the Standards consider any kind of FSI coupling.

Table 2.2 – Table of Codes and Standards in industries where waterhammer analyses are
frequent.

Industry Application International standards

Hydropower energy penstocks ASME-B31, DIN-19704-1

Nuclear/thermal energy cooling systems ASME-BPV, NS-G-1.9

Oil/Gas transportation oil/gas mains ASME-B31, ISO-13628

Water distribution water pipes ANSI/ASSE-1010, PDI-WH 201

Aerospace fuel pipes ISO/FDIS-8575, NASA-STD-8719
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2.6.2 Anchor and support forces

Fluid-structure interaction and specially the behaviour of pipe supports have a direct appli-

cability in engineering pipe systems, such as hydropower systems, long oil and gas pipes,

cooling systems of nuclear, thermal plants or any fluid distribution system in industrial com-

pounds. However, only few authors investigated anchor and support behaviour in the context

of waterhammer theory. Frequently, studies are based on qualitative discussions focused on

post-accident analyses and mitigation measures case-by-case oriented. An example is Almeida

& Pinto (1986) where recommendations for design criteria, operating rules and post accident

analyses were given. Also Hamilton & Taylor (1996a,b) and Locher et al. (2000) presented

qualitative discussions of the performance of different industrial piping systems, giving in-

sights of pipe supports behaviour. The last one highlighted the case-by-case dependency

of fluid-structure interaction and the high computational demand of including anchoring

analyses, stating that the scope of such studies should be justifiable only for very critical

systems, such as nuclear power plants.

Bürmann & Thielen (1988b) collected data from a firewater facility pipeline and carried out

numerical analyses by means of MOC. Heinsbroek & Tijsseling (1994) studied the effect of

support rigidity of pipe systems and discussed for what rigidity of the supports FSI becomes

a dominant effect. In the analysis they applied both classic waterhammer theory and a

MOC-FEM approach by means of FLUSTRIN code (Lavooij & Tijsseling, 1989; Kruisbrink &

Heinsbroek, 1992). The simulated facility corresponded to the one from Delft Hydraulics

laboratory (cf. Fig. 2.12). Fig. 2.22 shows the pressure histories computed by Heinsbroek &

Tijsseling (1994) for different support rigidities at the downstream section of the pipe rig;

classic and extended waterhammer theories are compared. The different responses of the

system for each set-up point out the high sensitivity to the bend support rigidities when these

are considered. The study concluded that classic theory computations are reliable for rigidly

supported pipes but highly inaccurate for set-ups allowing pipe movement, underestimating

overpressures.
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Figure 2.22 – System response to waterhammer tests varying bend rigidities. Pressure output
at the downstream valve from classic and extended models (Heinsbroek & Tijsseling, 1994).

Tijsseling & Vardy (1996a) studied the effect of a pipe-rack considering the dry friction occur-

ring between the rack and the pipe-wall (cf. Subsection 2.3.3). Recommendations were given

in order to assess when dry friction must be considered. Different anchoring conditions were

assessed in Simão et al. (2015c) using CFD software, which was validated by means of experi-

mental data. The analysis pointed out the need of CFD simulations for the proper description

of pipe supports behaviour. In Zanganeh et al. (2015) the aim was the simulation of hydraulic

transients in a straight pipe anchored with axial supports using a MOC-FEM approach. Both

pipe-wall and supports had a viscoelastic behaviour. The study concluded that the viscoelastic
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supports significantly reduce displacements and stresses in the pipe and eliminate the high

frequency fluctuations produced due to FSI. In Wu & Shih (2001) and Yang et al. (2004) a

multi-span pipe system, with middle rigid constraints was analysed in the frequency-domain

using the transfer matrix method, concluding that the middle rigid constraints have a much

larger effect than the Poisson coupling. These type of multi-span pipes with middle rigid

constraints set-ups are common in engineering practices and, so far, only a limited number of

investigations has been carried out addressing this issue, specially in the time-domain.

2.6.3 Vibration damping and noise reduction

Tijsseling & Vardy (1996b) carried out experimental waterhammer tests on a steel pipe contain-

ing a short segment of ABS. MOC was successfully used to reproduce experiments and they

concluded that the vibration could be adapted and modified in function of the segment mate-

rial and geometry. Hachem & Schleiss (2012) reached a similar conclusion in an aluminium

pipe set-up with a short segment of PVC. The analysis was carried out in the frequency-domain.

Related with the previous subsection, Koo & Park (1998) proposed a methodology to reduce

vibrations by the installation of intermediate supports.

Pipe vibration may induce audible noise and FSI analyses are required for the assessment of

such noise. Moser et al. (1986) investigated the vibrating modes that produce sound. Kwong

& Edge (1996) and Kwong & Edge (1998) carried out experimental analyses and developed

a technique to reduce noise generation by the specific positioning of pipe clamps. De Jong

(1994) suggested that for the full description of sound generation in pipe-systems, seven

degrees-of-freedom are required. This statement was verified in Janssens et al. (1999). In Chen

(2012) a pump-induced fluid-born noise is carried out by means of a distributed-parameter

transfer-matrix model in the frequency-domain. It was claimed that the method could be used

as well for structure-born noise as long as fluid-structure interaction was taken into account.

2.6.4 Earthquake engineering

Waterhammer waves can be produced by earthquake excitation on a pipe system. Fluid-

structure interaction or soil-pipe interaction may be one of the potential damaging factors

during earthquakes, specially for relatively low pressure and large diameter pipelines (Young

& Hunter, 1979). Some authors have studied this kind of transients coupled with FSI. Hara

(1988) analysed a Z-shaped piping system subjected to a one-directional seismic excitation. A

numerical analysis of a 3D pipe system was carried out in Hatfield & Wiggert (1990) . It was

found that assuming the piping to be rigid produced an upper-bound estimate of pressure,

but assuming the liquid to be incompressible resulted in underestimating the displacement of

the piping. Coupled and uncoupled analyses applied to a single straight pipe were compared

in Bettinali et al. (1991), who also concluded that coupled analyses accurately predicted lower

wave amplitudes.
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2.6.5 Aerospace engineering

Strong fluid transients occur in the filling up process of propulsion feedlines of satellites and

launchers. In the experimental works of Regetz (1960), Blade et al. (1962), A-Moneim & Chang

(1978) and A-Moneim & Chang (1979) (cf. Fig. 2.14) different configurations rocked fuel-filled

pipe rigs were tested. An overview of the main concerns experienced in the aerospace com-

munity with respect to fluid-hammer is reported in (Steelant, 2015) . The study remarks the

need of detailed investigation in fluid-structure interaction in combination with thermal heat

transfer during fluid-hammer waves in satellites or launchers. Bombardieri et al. (2014) also

highlights the importance of FSI in the filling of a pipelines during the start up of the propul-

sion systems of spacecrafts, claiming that more experimental research should be focused on

this line.

2.6.6 Biomechanics

The disciplines of hydraulic transients and physiological flows share a good basis of the classic

waterhammer theory as long as the assumptions of liquids with relatively low compressibility

contained in thin-walled elastic cylindrical tubes are considered (Anderson & Johnson, 1990).

Studies such as Lambossy (1950), McDonald (1974), Nakoryakov et al. (1976), Anderson &

Johnson (1990) and Nichols et al. (2011) were focused on adapting classic waterhammer to

the main factors that affect physiological flows. For instance, in Anderson & Johnson (1990),

Helmholtz-Korteweg equation (Eq. 2.3) was reviewed in order to include pipe cross-section

ovality effects. The study concluded that even for a low ovality of the pipe cross-section

there may be significant reductions of the wave velocity due to bending-induced changes

in the tube cross-section. Anderson & Johnson (1990) analysis serves also in the field of

hydraulic transients for pipe bends and coils where the pipe cross-section is as well elliptic (cf.

Section 2.5.3).

Nowadays, computational-fluid-dynamics tools are used to model the complexity of haemody-

namics. Not just the pipe-wall viscoelasticity and the elliptic pipe cross-section, but the inner

fluid defies as well classic waterhammer theory assumptions as blood is a non-Newtonian

fluid, presenting shear-thinning, viscoelasticity and thixotropy. Wathen et al. (2009) presents

a review of modern modelling approaches for haemodynamical flows. In Janela et al. (2010)

a comparison of different physiological assumptions is carried out by means of a FEM-FEM

approach. Newtonian and non-Newtonian assumptions are considered with fluid-structure

interaction, highlighting their differences and the importance of good modelling criteria. More

specific to blood flow diseases diagnoses, Simão et al. (2016a) also used CFD tools, including

FSI, for modelling a vein blockage induced by a deep venous thrombosis and the occurrence

of reverse flow in human veins.
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2.7 Accidents and post-accident analyses related with FSI

FSI may generate overpressures higher than the provided by Joukowsky’s equation and not only

caused by waterhammer waves, but also by turbulence-induced vibrations, cavitation-induced

vibrations or vortex shedding with lock-in. These phenomena are poorly understood (Moussou

et al., 2004), and are rarely taken into consideration in engineering designs, leading to accidents

and service disruption of important infrastructure with large social relevance (e.g. industrial

compounds, water and wastewater treatment plants, thermal plants, nuclear power plants,

hydropower plants, hospitals).

Jaeger et al. (1948) reviewed a number of the most serious accidents due to waterhammer in

pressure conduits. Many of the failures described were related to vibration, resonance and

auto-oscillation (Bergant et al., 2004). The Table 2.3 summarizes some of the accidents caused

by strong hydraulic transients.

Normally accidents in hydraulic facilities are associated not only to a single phenomenon

but to a series of enchained events that make the system collapse. Although not all the

accidents listed in Table 2.3 were caused by FSI, in many cases it is indirectly involved and its

understanding is crucial in post-accident analyses, such as in Almeida & Pinto (1986); Wang

et al. (1989); Obradovi’c (1990); Simão et al. (2016b).
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Table 2.3 – Summary table of historical accidents in pressurized pipe systems.

Location Facility Citation Description

Oigawa, Japan Penstock Bonin (1960)

A waterhammer wave, caused by a

fast valve-closure, split the penstock

open and produced the pipe

collapse upstream.

Big Creek, U.S.A. Penstock Trenkle (1979)
Burst turbine inlet valve caused

by a fast closure.

Azambuja, Portugal Pump station Chaudhry (2014)
Collapse of water column separation

causing the burst of the pump casing.

Lütschinen, Switzerland Penstock Chaudhry (2014)

Penstock failure during draining

due to the buckling produced by

a frozen vent at the upstream end.

Arequipa, Peru Penstock Chaudhry (2014)

The clogging of the control system

of a valve resulted in buckling and

the failure of the welding seams

of the penstock due to fatigue.

Ok, Papua New Guinea Power house Chaudhry (2014)

The draft tube access doors were

damaged and the power house

flooded due to column separation

in the system.

Lisbon, Portugal Water main Simão et al. (2016b)

Rupture of concrete support blocks

during the slow closure of an

isolation valve installed in a large

suction pipe

New York, U.S.A. Steam pipe Veccio et al. (2015)

Condensation-induced-waterhammer

caused the rupture of the

steam pipe.

Lapino, Poland Penstock Adamkowski (2001)

Burst of the penstock caused

by a rapid cut-off and low quality

of the facility

Chernobyl, Ukraine Nuclear reactor Wang et al. (1989)

Fuel pin failure, fuel-coolant

interaction and fluid-structure

interaction were involved in the

failure of the nuclear reactor

New York, U.S.A Nuclear reactor Meserve (1987)

Circumferential weld failure in

one of the feedwater lines due to a

steam generator waterhammer.

2.8 Motivation and gaps of knowledge

During this assessment several gaps of the state-of-the-art on FSI in 1D waterhammer theory

have been identified. On the one hand, waterhammer research has provided supplemen-

tary upgrades to the basic two-equation model (classic waterhammer model) that are used

as add-ons to suit the modelling purposes. On the other hand, the basic theory of FSI in

1D waterhammer seems quite consolidated, although improvements on the numerical ap-

proaches are still a focus of research. The author believes that all the knowledge around
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classic waterhammer theory has not been transferred yet to the FSI models. The main idea to

understand the need of this transfer of knowledge, from the classic model to the FSI models,

is to perceive the last ones as sovereign theories that can hold themselves other subtheories.

For instance, unsteady friction or viscoelastic models represent these kind of subtheories that

have been designed to suit and upgrade the classic waterhammer model, but have not been

adapted yet for the FSI models. Hence, not much research has been carried out so far, neither

experimentally nor numerically, to understanding and distinguish unsteady friction, pipe-wall

viscoelasticity or dry friction in the different FSI contexts.

The unsteadiness of skin friction has motivated waterhammer researchers during decades.

As explained in Subsection 2.3.1, several theories for unsteady friction computation, based

on varied assumptions, have been developed and are still under development for the classic

two-equation model, but not for models including higher pipe degrees-of-freedom.

The effects of unsteady friction and pipe-wall viscoelasticity are hard to distinguish and,

additionally, when combined with FSI, new interactions arise: the pipe-wall rheological

behaviour affects the response of the movement of the pipe and this, at the same time affects

the shear stress between the pipe-wall and the fluid. Only few researchers included pipe-wall

viscoelasticity in FSI software, and, to the knowledge of the author, none included unsteady

friction. The distinction of both phenomena, pipe-wall viscoelasticity and unsteady friction,

in a FSI platform is appealing, challenging and novel.

Fluid-structure interaction offers a very suitable mean for the inclusion of a well known, but

novel in waterhammer research, dissipation phenomena: dry friction. As pointed out in

Subsection 2.3.3 very few research has been done in this subject. Movement of the pipe-

wall is an output variable of FSI models. Using this output information, Coulomb’s friction

computation can be implemented either distributed throughout the pipe (friction coupling),

or at the supports of the pipe (junction coupling). The last one, in combination with the

description of thrust and anchoring blocks, could significantly upgrade simulation outcomes.

Anchor or thrust blocks are frequently used in straight pipelines to restrict and to avoid these

movements so that the piping structure is stable and reliable. Anchor blocks absorb the

axial stresses of the pipe-wall and transmit them to the surrounding ground by means of dry

friction. Although its remarked engineering applicability, not much research has been carried

out with respect to the understanding of pipe supports behaviour, neither experimentally nor

numerically. Four-equation models are a convenient base for the representation of a straight

pipe with middle anchors and thrust blocks, which can be embedded as internal conditions in

the solver code. Moreover, the inclusion of Coulomb’s dry friction into thrust blocks, allowing

their movement conditioned to stick-slip criteria would enhance quantitative analyses of

anchor and support forces.

All the proposed developments must be supported by reproducible and self-consistent em-

pirical evidence. Structural damping, or pipe-wall visco-elasticity, can be assessed by the

comparison of measured strain and pressure time histories in different pipe locations and
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different set-ups. Dry friction and unsteady friction can be indirectly analysed by pressure his-

tory envelopes and wave amplitude decay ratios from different anchoring set-ups, allowing or

constraining pipe-wall movements. These experiments would complement the development

and validation of implementations describing pipe anchors and thrust blocks behaviours.
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The present chapter is based on the following scientific publication:

• D. Ferras, P. Manso, D. Covas, A.J. Schleiss. Experimental distinction of damping mecha-

nisms during hydraulic transients in pipe flow. Accepted for publication at the Journal of

Fluids and Structures (June 2016).

The work presented hereafter is original and was performed by the first author. The interpreta-

tion and discussion of results was carried out with the collaboration of the co-authors.

3.1 Introduction

The fundamental equations of classic waterhammer theory, i.e. mass and momentum conser-

vation, can be derived from Navier-Stokes equations (Ghidaoui, 2004) or by directly applying

the Reynolds Transport Theorem (Chaudhry, 2014) to a control volume of the pipe system. In

their development, though, several mechanisms that may significantly affect pressure wave-

forms are neglected, such as unsteady friction (UF), cavitation (including column separation

and trapped air pockets), a number of fluid-structure interaction (FSI) effects, viscoelasticity

(VE) of the pipe-wall material, leakages and blockages. Depending on the field of work, and

for each application, engineers should attempt to identify and to evaluate the influence of

these mechanisms in order to decide whether to include or to neglect them. Firstly, these

phenomena are not commonly included in standard waterhammer software packages and

when they are, they often require the specification of blind parameters which the user is not

sensitive to. Secondly, these effects tend to be often ‘hidden’ in real systems being therefore

forgotten (Bergant et al., 2008a,b). Consequently, the expertise of the modeller becomes

crucial when add-ons are to be included into the classic waterhammer model.

The referred mechanisms have been largely studied by focusing on single phenomena. Though,

several examples can be found in literature combining different mechanisms either in exper-

imental or numerical analyses, such as: experiments in plastic and metallic pipes (Krause
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et al., 1977; Williams, 1977); development of numerical models incorporating both FSI and

VE (Weijde, 1985; Walker & Phillips, 1977; Stuckenbruck & Wiggert, 1986); analysis of FSI and

cavitation (Tijsseling, 1993; Tijsseling et al., 1996; Tijsseling, 1996); analysis of VE in combina-

tion with UF (Covas et al., 2004b); analysis of longitudinal stiffness heterogeneity by means of

the combination of aluminium and PVC pipe reaches in an experimental set-up (Hachem &

Schleiss, 2012); and analysis of FSI, column separation and UF in a viscoelastic pipe (Keramat

& Tijsseling, 2012).

The purpose of the present research is to give experimental insight in the distinction and

identification of the three phenomena that frequently affect the transient pressure wave,

namely fluid-structure interaction, pipe-wall viscoelasticity and unsteady friction. These

phenomena lead to increased damping and dispersion of the pressure transient wave. The

aim is to highlight the features, from an empirical standpoint, in which way each mechanism

affects the wave attenuation, shape and timing.

Experimental tests were carried out in three pipe rigs. The three experimental facilities,

assembled at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico

(LHE/IST), Lisbon, Portugal, consist of: (i) a straight copper pipe, which is tested for different

supporting set-ups; (ii) a coil copper pipe, whose response in transient conditions is strongly

affected by the coil geometry; and (iii) a coil polyethylene pipe, clearly showing the dominant

effect of the pipe-wall viscoelasticity.

The key innovative features of this chapter are: (i) the comparison of different pressure traces

collected in pipe-rigs with different supporting conditions (moving or anchored pipe end),

geometrical configurations (straight and coil) and pipe materials (metal and plastic), under

similar initial conditions, complemented with (ii) the physically-based discussion, supported

by bibliographic references, of different phenomena affecting and dominating waterhammer

in each case. Finally, (iii) transient pressure measurements are complemented with axial and

circumferential strain measurements to better understand the phenomena and to support

conclusions.

The experimental evidence presented is used to develop, calibrate and validate numerical

models to simulate hydraulic transients in the time-domain, including fluid-structure inter-

action, pipe-wall viscoelasticity and unsteady friction. The value and novelty of the actual

research focus lies on the benefits of an integral assessment of the empirical distinction

between different damping mechanisms affecting waterhammer tests carried out in varied

experimental facilities.

56



3.2. Experimental data collection

3.2 Experimental data collection

3.2.1 Straight copper pipe

A straight copper pipe (SCP) rig was assembled at LHE/IST. The system is composed of a

15.49 m pipe, with an inner diameter D = 0.020 m and pipe-wall thickness e = 0.0010 m.

Young’s modulus of elasticity and Poisson ratio of the copper material were experimentally

determined by measuring stress-strain states over a pipe sample for the experimental range

of pressures. The obtained experimental values were the Young’s modulus of elasticity E =
105 GPa and the Poisson ratio ν= 0.33. At the upstream end, there is a storage tank followed

by a pump and an air vessel, and at the downstream end, there is a ball valve pneumatically

operated that allows the generation of fast transient events (i.e., tv < 1/2 T ). The upstream air

vessel has a volume of 60 l and its aim is to guarantee a constant pressure level at the upper

pipe-end during the tests. The ball valve together with the actuator mechanisms and the

supporting system have a mass of mv = 6 kg . Downstream the valve there is a hose conveying

the water to the water-tank, thus closing the pipe system circuit.

Three pressure transducers (WIKA S-10) were installed at the upstream, midstream and

downstream positions of the pipe (PT1, PT2 and PT3). Strain gauges (TML FLA-2-11) disposed

in the axial (SG1 and SG3) and circumferential (SG2 and SG4) directions were installed at the

midstream and the downstream end of the pipe. The initial discharge was measured for steady

state conditions by a rotameter located downstream of the valve. The sampling frequency

was set to 1200 Hz after preliminary tests, in order to measure the FSI response of the pipe

system during the waterhammer events, and 2400 Hz for wave celerity estimation (explained

in Subsection 3.3.1). Fig. 3.1 shows an schematic of the experimental set-up, with the location

of the pressure transducers and strain gauges, and pictures of a general view of the facility and

details of the downstream valve and pipe supports are shown in Fig. 3.2.

Figure 3.1 – Simplified schematic of the straight copper pipe set-up.
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Figure 3.2 – View of the straight copper pipe set-up (a); detail of downstream valve (b); and
detail of pipe support (c).

Two supporting configurations have been analysed (Fig. 3.3): a) the conduit anchored against

longitudinal movement at both downstream and upstream ends; and b) the conduit only

anchored against longitudinal movement at the upstream end. Rigidly fixed stainless steel

clamps are used for the pipe anchoring. Table 3.1 summarizes the tests carried out in these

experimental set-ups, displaying the initial flow velocity and Reynolds number, the initial

piezometric head and the maximum and minimum piezometric heads measured immediately

upstream of the valve. Figs. 3.4 and 3.5 depict the transient pressure traces at the downstream

and the midstream pipe locations corresponding to the tests carried out in the straight copper

pipe.

Figure 3.3 – Supporting configurations of the SCP facility with (a) valve anchored and (b) valve
released.

Table 3.1 – Characteristics of the straight copper pipe (SCP) selected tests.

Test ID V0 (m/s) Re0 H0 (m) Hmax (m) Hmi n (m) Valve

SCP01 0.26 5276 43.65 77.25 10.66 fixed

SCP02 0.36 7253 42.39 88.67 -2.95 fixed

SCP03 0.41 8206 42.87 94.88 -8.67 fixed

SCP04 0.26 5276 44.16 83.17 5.97 released

SCP05 0.36 7253 42.27 94.69 -8.34 released

SCP06 0.41 8206 42.55 100.04 -9.95 released
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Figure 3.4 – Pressure data acquired at the straight copper pipe for an anchored downstream
end: (a) at the downstream end (PT3); and (b) at the midstream section (PT2).
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Figure 3.5 – Pressure data acquired at the straight copper pipe for an non-anchored down-
stream end: (a) at the downstream end (PT3); and (b) at the midstream section (PT2).

3.2.2 Coil copper pipe

The coil copper pipe (CCP), also assembled at LHE/IST, has an inner diameter D = 0.020 m, a

pipe-wall thickness e = 0.0010 m and a pipe length, L = 105 m. The torus radius R is 0.45 m,

thirty-six rings compose the entire coil and its total height is 1 m. Each coil ring is fixed by

4 anchoring points disposed every 90◦ and with rubber supports. Similarly to the straight

copper pipe facility, the value of Young’s modulus of elasticity is E = 105 GPa and Poisson ratio

ν= 0.33. Three pressure transducers (WIKA S-10) were located at the upstream, midstream

and downstream positions of the pipe (PT1, PT2 and PT3). As depicted in Fig. 3.7, strain
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gauges (TML FLA-2-11) disposed in the axial and circumferential directions (SG-1, SG-2 and

SG-3) were installed in the midstream location. The sampling frequency was 1000 Hz. The

upstream and downstream conditions are similar to the ones in the SCP: there is a tank, a

pump and an air vessel at the upstream end and a ball valve to generate the transient events

at the downstream end. The upstream air vessel has a volume of 60 l, assuring a constant

pressure level at the upper pipe-end during the tests. Fig. 3.6 shows a schematic and an overall

view of the facility.

Figure 3.6 – Schematic and photograph of the coil copper pipe facility.

Figure 3.7 – Detail of the assembled strain-gauges.

Table 3.2 shows a summary of a set of tests carried out in this experimental set-up according to

the initial flow velocity, Reynolds number and the initial piezometric head at the downstream

boundary before the valve closure, and maximum and minimum piezometric heads measured

during the tests. Transient events were generated by a manual ball valve closure.
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Table 3.2 – Characteristics of the coil copper pipe (CCP) selected tests.

Test ID V0 (m/s) Re0 H0 (m) Hmax (m) Hmi n (m)

CCP01 0.09 1765 40.71 49.56 32.18

CCP02 0.18 3530 39.62 57.94 23.02

CCP03 0.35 7059 38.31 74.39 5.18

Fig. 3.8 depicts the transient tests carried out in the coil copper pipe with transient pressures

measured at the downstream and the midstream pipe locations.

Figure 3.8 – Measured pressure data for the tests carried out at the coil copper pipe: (a) at the
downstream end (PT3); and (b) at the midstream section (PT2).
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3.2.3 Coil polyethylene pipe

The coil polyethylene pipe (CPP), assembled at LHE/IST, is composed of two irregular pipe

coils of high density polyethylene (HDPE), with a total length L = 203 m, an inner diameter,

D = 0.043 m, a pipe-wall thickness e = 0.0030 m and an average torus diameter R = 0.70 m.

The coil structure is fixed by four braces disposed every 90◦, linking the coil rings up and

fixing them to the floor. The Young’s modulus of elasticity and the wave speed were previously

assessed for this set-up by Soares et al. (2009), who used an inverse method to estimate a

Young’s modulus of E = 1.42 GPa and a wave speed of a = 315 m/s. The nominal Poisson ratio

for polyethylene is ν = 0.43. An air vessel of a volume of 1000 l is connected in line at the

upstream end and a manual ball valve allows the generation of transient events. Downstream

the valve there is a tank collecting the water and closing the pipe system circuit. Two pressure

transducers (WIKA S-10) were located at the midstream and downstream positions of the pipe

(PT1 and PT2). Strain gauges (TML FLA-2-11) were disposed in the midstream section, in

the axial and circumferential directions (SG1 and SG2). The sampling frequency was 50 Hz.

Fig. 3.9 shows a schematic and an overall view of the facility.

Figure 3.9 – Schematic and view of the coil polyethylene pipe facility.

Table 3.3 shows a summary of the tests carried out in the experimental set-up according to

the initial flow velocity, Reynolds number and the initial piezometric head before the valve

closure, and maximum and minimum piezometric heads measured at the valve during the

assessed transient events.

Table 3.3 – Characteristics of the coil polyethylene pipe (CPP) selected tests.

Test ID V0 (m/s) Re0 H0 (m) Hmax (m) Hmi n (m)

CPP01 0.19 8664 31.08 36.21 27.31

CPP02 0.33 14440 30.09 38.56 24.43

CPP03 0.39 17324 30.50 40.01 24.33

Fig. 3.10 depicts the transient pressures at the downstream and midstream pipe sections

measured during the tests carried out at the PE pipe coil.
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Figure 3.10 – Measured pressure data of the tests carried out at the coil PE pipe (PT2): (a) at
the downstream end; and (b) at the midstream section (PT1).

3.3 Experimental analysis

3.3.1 Pressure data analysis

The figures presented in the Section 3.2 have already shown how differently transient events

propagate throughout the three experimental set-ups, generated for similar steady state

conditions (i.e., similar initial velocities though different Re numbers) following fast valve

manoeuvres. Differences of piezometric heads and time scales between the transient events

measured in each rig hinder a straightforward comparison. To facilitate the comparison

between system responses in terms of amplitude, dispersion and shape of the transient wave,

dimensionless pressure traces have been prepared as described hereafter.

Observed transient pressure wave periods and amplitudes are mainly associated with two
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main characteristics of the pipe system - the wave celerity, a, and the pipe length, L - and with

the flow conditions - the initial steady state velocity, V0 (Korteweg, 1878; Joukowsky, 1904).

The pressure wave period (T ), in a reservoir-pipe-valve system, depends on the ratio between

pipe length and wave celerity (Eq. 3.1) and is, therefore, independent of the initial conditions;

it results from the combination of the pipe system characteristics (i.e. pipe elasticity, inner

diameter, wall thickness and constraint conditions) with the fluid compressibility.

T = 4L

ah
(3.1)

The pressure wave amplitude for fast hydraulic transients, described by the Eq. 3.2 (Von Kries,

1883; Joukowsky, 1904), depends not only on the pipe and fluid physical properties, but also

on the initial flow conditions, being proportional to the product between the velocity variation

∆V the wave celerity ah and fluid density ρ f .

∆p =−ρ f ah∆V or ∆HJK =−ah∆V

g
(3.2)

Figures 3.11 and 3.12 depict the dimensionless plots of transient pressure traces for selected

tests from each facility at the downstream and midstream pipe sections, respectively. The

tests were selected with the aim to analyse transient flow free of cavitation but with sufficient

pressure variation to depict the piping structural behaviour. These have been drawn by

plotting a dimensionless hydraulic head (h) consisting of the difference between the transient

and the initial pressure head and dividing by the maximum pressure wave amplitude like

shown in Eq. 3.3:

h = H −H0

∆HJK
(3.3)

The time axis is made dimensionless using the wave periods computed by Eq. 3.1 and also

presented in Table 3.4. Wave celerity values have been experimentally estimated by comparing

the time lag between pressure measurements at the downstream and midstream pipe positions

with sampling frequencies of up to 2400 Hz. Presented wave celerity and period values

correspond to averages from all the runs carried out for each facility with different initial

velocities; discrepancies between computed values for a given set of experimental runs are

lower than 1%.
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Table 3.4 – Main properties of the selected tests.

Test ID ah (m/s) T (s) V0 (m/s) ∆HJK (m) tval ve (s)

SCP02 1239 0.049 0.36 45.9 0.003

SCP05 1239 0.049 0.36 45.9 0.003

CCP03 1193 0.384 0.35 36.5 0.025

CPP03 315 2.88 0.40 12.7 0.050

Figs. 3.11 and 3.12 show different attenuation, shape and phase shift of transient pressure

responses for each experimental set-up at both downstream and midstream pipe locations.

These features are analysed in the following paragraphs.

Figure 3.11 – Dimensionless transient pressures in the four assessed set-ups at the down-
stream pipe section. a) SCP02 test (anchored valve), b) SCP05 test (non-anchored valve), c)
CCP03 test and d) CPP03 test.
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Figure 3.12 – Dimensionless transient pressures in the four assessed set-ups at the midstream
pipe section. a) SCP02 test (anchored valve), b) SCP05 test (non-anchored valve), c) CCP03
test and d) CPP03 test.

Wave dissipation

The straight copper pipe set-up with anchored downstream end (SCP01, SCP02, SCP03) is

the one with the lowest transient pressure wave damping. This is due to three main reasons.

First, friction losses are less important in this pipe system due to its small length (ca. 15 m) in

comparison with the other two pipe coils (copper coil L = 105 m and PE coil L = 203 m); the

less the pressure wave travels, the lower the frictional damping is during the transient event per

wave cycle. Second, the pipe has a linear elastic behaviour, deforming almost instantaneously

with pressure changes, without a retarded response, unlike the PE pipe. Third, the downstream

valve is well-fixed to the supporting anchors.

Much higher damping exhibits the same facility but with the released valve set-up (i.e. the

downstream pipe end is free to move). The dimensionless damping after 10 wave cycles is of

similar order of magnitude to the coil copper pipe facility, which has much longer wave length
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(cf. Figs. 3.11-b and -c). The reason of such high damping is associated with the pipe-wall

deformation and movement in the axial direction at the downstream end. In the released valve

tests there is much higher transfer of momentum from the fluid to the pipe-wall than in the

ones with fixed valve, and this higher momentum is dissipated through shear between the

pipe and its supports. In addition, the vibration of the pipe also increases the shear between

the inner fluid and the pipe-wall, increasing as well the momentum dissipation.

In the copper pipe coil, the first pressure peak is 15 to 20% lower than the Joukowsky maximum

wave amplitude (see Figs. 3.11-c and 3.12-c), which, in the dimensionless plot, corresponds to

the unit. The main reason for this reduction is the characteristic FSI occurring in the pipe coil:

during the transient propagation, coil rings have a ‘breathing effect’ as they expand axially

for positive pressures increasing the pipe inner volume and, consequently, attenuating the

pressure peaks, and vice-versa for negative pressures; this attenuation is particularly evident

in the first pressure rise. This phenomenon has been comprehensively analysed by Ferràs et al.

(2014, 2015a).

In the coil PE pipe, wave damping is the most significant of all tested set-ups (e.g. pressure

peaks are more than halved already after the second cycle). According to previous research

(Covas et al., 2004c, 2005) wave dissipation in PE pipes is dominated by the viscoelastic

behaviour of the pipe wall characterised by an instantaneous elastic response followed by a

retarded viscous response. Other effects like fluid-structure interaction and unsteady friction

although existing, have minor contributions.

Fig. 3.13 shows the pressure time-series at the downstream section for the tests SCP02, SCP05,

CCP03 and CPP03 with the time-envelops of extreme envelops and regression curves of the

maximum envelops. The waterhammer waves of the tests SCP02 and CCP03 (respectively

Fig. 3.13-a and Fig. 3.13-c) present a linear damping, steeper in the case of the CCP03 because

of the longer length of the pipe. In SCP05 test, the damping is only linear after the fifth

wave cycle. This is because at the beginning of the transient the pipe has a considerable

movement and FSI is dominant. After some waves cycles the oscillating loading cannot

overcome dry friction, the pipe stops moving and a similar linear damping as the one in SCP02

occurs. In CPP03 test (Fig. 3.13-d), there is a major damping during the whole pressure history,

described by a logarithmic law, viscoelasticity of the polyethylene material is the cause of such

a damping, significantly higher than the one created by unsteady friction, with a linear trend.

This behaviour has already been observed by Ramos et al. (2004). The characteristics of the

damping laws are summarized in Table 3.5.
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Figure 3.13 – Dimensionless transient pressures, time-envelopes and regression curves (dashed
lines) in the four assessed set-ups at the downstream pipe section. a) SCP02 test (anchored
valve), b) SCP05 test (non-anchored valve), c) CCP03 test and d) CPP03 test.

Table 3.5 – Characteristics of the damping laws in the four assessed set-ups

Test ID regression law trend

SCP02 y = 1.045−0.026x linear

SCP05 y = 0.658−0.034x linear after 5 cycles

CCP03 y = 0.897−0.053x linear

CPP03 y =−0.147−0.555 l og (x) logarithmic

Wave shape

The waterhammer wave in the straight copper pipe with fixed valve is the closest to the

theoretical ‘squared’ wave described by the classic waterhammer theory. However, a clear

development smoothing the wave peaks can be observed in the first pressure rise and, af-

terwards, during the wave propagation. The rounded slope in the first pressure rise is due
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to the closure manoeuvre of the ball valve, the subsequent smoothing is caused by both FSI

and UF. Although the pipe is well anchored at its extreme ends, in between supports the pipe

is allowed to displace due to the elastic deformation in the circumferential direction and its

respective axial deformation due to the Poisson effect. During the transient loading, the fluid

pressure generates circumferential stresses in the pipe-wall which, at the same time, induce

axial strain due to Poisson effect. This phenomenon is known as Poisson coupling, as it causes

transient axial stresses throughout the pipe coupled with the transient fluid pressure. Poisson

coupling was first analysed by Skalak (1955) and, later, extensively studied by Tijsseling (1996,

1997, 2003); Lavooij & Tijsseling (1991); Elansary et al. (1994). UF is added to this effect and is

visible after several pressure cycles (Fig. 3.11-a).

On the other side, for exactly the same initial flow rates, a different transient wave shape is

observed in the same facility with the released valve set-up. When the pipe is released at the

downstream end, the free valve is excited by the transient pressure generating axial stress

waves throughout the pipe. The first pressure peak shows three main stages (Figs. 3.11-b

and 3.14): Stage-1 in which the pressure is lower than the expected pressure rise; Stage-2 with

higher pressure; and, finally, Stage-3 with a pressure drop. This characteristic wave shape

change is described, from a numerical standpoint in Bergant et al. (2008b). The coupling

mechanism is known as junction coupling and is normally generated due to unbalanced

pressure forces acting at singular points of the pipe, such as unrestrained dead-ends, elbows

and tees (Tijsseling, 1996). This phenomenon dominates the transient response over UF,

whose effect is hardly noticeable in the first pressure cycles.

Figure 3.14 – First pressure peak corresponding to SCP05 test at the downstream section.
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In the coil copper pipe, a different wave shape is observed (Figs. 3.11-c and 3.12-c), which is

associated to two phenomena. The first is friction (steady and unsteady) that, as explained,

is more evident in the coil system due to a higher length and a larger inertia of the water

column, as unsteady friction depends on the time history of the velocity profile. Contribu-

tions analysing the flow time history dependency of unsteady skin friction can be found, for

instance, in Zielke (1968); Vardy & Brown (2003, 2004); Martins et al. (2016, 2015b). The second

phenomenon is the coil rings movement that directly induces FSI, despite the existing four

fixing supports at 90◦ spacing. The FSI behaviour in pipe coils has been analysed in Ferràs

et al. (2014, 2015a).

Regarding the PE pipe, an evident shape change is noticed, both in the first pressure peak

and throughout the wave propagation (Figs. 3.11-d and 3.12-d). The pressure rise in the first

peak is associated to the line packing effect, which is more evident in the PE pipe; this effect

is dependent on the head losses gradient during the initial steady state, which is higher in

the test carried out in this pipe. The wave shape changes during its propagation are herein

associated with a retarded response of the HDPE material which has a viscoelastic rheological

behaviour (Covas et al., 2004c, 2005). Additionally, a relatively faster reaction to the valve

manoeuvre is observed (see detail in Fig. 3.15-b), as the slope of the first pressure rise is steeper

in the polyethylene case.

Figure 3.15 – (a) Dimensionless pressure time series at the downstream pipe-end; and (b)
detail of the valve manoeuvres of the selected tests.

Wave delay

Regarding the wave timing, a smooth delay can be observed in the tests carried out in the

straight copper pipe with released valve in comparison to the tests with fixed valve (see

Fig. 3.16). The reason is associated to the dispersive effect of junction coupling, which leads to
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two different periodic phenomena oscillating and interacting at different frequencies, with

the ultimate effect of an increase of the overall dissipation when the valve is released.

Figure 3.16 – Dimensionless pressure time series at the downstream pipe-end for tests SCP02
(anchored end) and SCP05 (released end).

The coil copper system also presents a time delay with regard to the straight copper pipe tests

(see Fig. 3.17), which suggests that both steady and unsteady friction affect the pressure signal

more than in the straight copper pipe. The reason is the higher pipe length of the coil copper

pipe in comparison with the straight copper pipe.

Figure 3.17 – Dimensionless pressure time series at the downstream pipe-end for tests SCP02
and CCP03.
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Regarding the polyethylene set-up, the reason of such delay is mainly attributed to the retarded

response of the pipe-wall (see Fig. 3.18). In viscoelastic pipes, maximum or minimum pressure

fluctuations are rapidly attenuated and the overall transient pressure wave is delayed in time

due to the retarded deformation of the pipe-wall (Covas et al., 2004c).

Figure 3.18 – Dimensionless pressure time series at the downstream pipe-end for tests SCP02
and CPP03.

3.3.2 Strain data analysis

The collected strain data allows the analysis of the circumferential and axial strains in a sim-

ilar manner as in the previous Subsection 3.3.1. Hence, the approach followed to compare

the collected strain data consisted, as well, of normalizing measurements by means of the

waterhammer wave amplitude and period. Although in the pipe system exists several pipe

vibration modes, the first mode is the dominant, therefore the periods used to get dimension-

less time scales are the fluid ones (see Table 3.4). On the other side, the strain signal has been

normalized by the theoretical maximum circumferential strain (Eq. 3.4) resulting from hoop

stress in pipes due to inner pressure loads, both in straight and coil pipes (Ferràs et al., 2014),

using as input the pressure wave amplitudes from Table 3.4. Both circumferential and axial

strain signals have been normalized using the same values with the goal to get comparable

time-series.

∆εθ =
σθ

E
= 1

E

D∆p

2e
(3.4)

Fig. 3.19 presents the dimensionless strain data collected in the four assessed set-ups, at the

midstream pipe sections, depicting very different pipe behaviours.
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Figure 3.19 – Dimensionless transient circumferential strain (solid lines) and axial strain
(dotted lines) at the midstream pipe sections for: a) SCP02 (anchored end), b) SCP05 (released
end), c) CCP03 and d) CPP03.

In the straight copper pipe facility, strain measurements significantly differ according to the

different supporting conditions. In the first case (Fig. 3.19-a), due to the Poisson effect, axial

strain presents a phase shift of π with respect to the circumferential strain. Nonetheless, the

Poisson relation is not fulfilled (εz 6= −νεθ), this is because of the generation of axial stress

waves following the pressure wave propagation. The Poisson effect induces a first positive

axial strain spike (precursor wave) before the first circumferential strain rise (see detail in

Fig.3.20). Precursor waves were first theoretically studied by Skalak (1955) and experimentally

observed, indirectly from pressure measurements, by Thorley (1969).
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Figure 3.20 – Precursor stress waves during the tests SCP02 (a) and SCP05 (b). Solid lines:
circumferential strain; and dashed lines: axial strain.

In Fig.3.20 (right) a clear precursor wave can also be observed in the SCP with released valve

set-up; moreover, three axial strain sub-peaks (Fig.3.21) can be distinguished during the first

half period, these sub-peaks result from the first axial stress wave, the first impact propagating

back and forth throughout the system. After the first wave period, axial and circumferential

strains are affected by the dispersion from the interaction of the two pipe vibrating modes.

Figure 3.21 – Axial strain sub-peaks observed in the straight copper pipe facility for a free valve.
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The strain measurements obtained in the coil copper facility (Fig.3.19-c) have been corrected

according to Ferràs et al. (2014), who proposed a methodology for assessing axial and circum-

ferential strains in oval pipes. Both axial and circumferential strains are in phase, following the

pattern of the inner pressure wave. It is interesting to point out that, specially during the first

wave period, positive axial strain values are lower than negative strain values and vice verse for

circumferential strains. The coil supports partially constrain the expansion of the coil rings so

the pipe-wall is not fully free to deform and develop in the axial direction. Circumferential

strain is inversely affected due to the Poisson effect.

Finally, axial strain does not show sensitivity to waterhammer excitation in the coil PE pipe

(Fig. 3.19-d), nonetheless the circumferential strain clearly follows the pressure wave pattern.

Fig. 3.22 depicts axial and circumferential strains for the different tests carried out in the

PE facility, being the axial strain almost null for all the tests and showing that the PE is not

influenced by the Poisson effect. As shown in Fig. 3.9, the strain gauges were installed in the

straight section between the two coils. It cannot be excluded at this stage that FSI may occur

between the two coils cancelling the Poisson effect.

Figure 3.22 – Circumferential (solid lines) and axial (dashed lines) strains measured in the coil
PE pipe facility for the different tests carried out.
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3.4 Discussion of results

3.4.1 Fluid structure interaction

FSI according to pipe anchoring conditions

The most notable FSI effect can be observed from the comparison between the tests carried

out in the straight copper pipe with anchored and released valve (Figs. 3.11-a and -b). Just the

fact of setting an anchored or non-anchored valve significantly changes the system response.

Fig. 3.11-a shows that the measured pressure during the first wave cycle resembles the expected

‘squared’ wave shape and magnitude of classic theory, being very close to the Joukowsky

pressure rise. Nonetheless, the wave shape develops in a characteristic shape typical of

Poisson coupling by damping the tail of the pressure peaks and troughs.

Different behaviour can be observed in Fig. 3.11-b. The inertial valve system in this case is

released and, consequently, at the downstream boundary there is an imbalance of forces

between fluid inner pressure and pipe-wall stresses that makes the valve move (junction

coupling). The valve movement generates a characteristic wave shape subdividing the first

pressure peak into three stages (cf. Fig. 3.14) (Ferràs et al., 2015a): Stage-1 in which the pressure

is lower than the expected in classic theory; Stage-2 with higher pressure and; finally, Stage-3

with a pressure drop. The first pressure rise is reduced by the movement of the valve in the

downstream direction after the first pressure surge. Afterwards, as the solid axial stress wave

travels approximately three times faster than the fluid pressure wave, at around one third

of the pressure peak, there is an increase of pressure resulting from the negative axial stress

which is pulling the pipe upwards, producing a ‘pumping’ effect. Finally, the axial stress wave,

which travels faster than the main pressure wave, bounces back pushing again the valve and

producing the last pressure drop over the pressure surge.

Appendix E deepens on the effect of valve movement, where new formulae are presented with

the aim of correcting the Joukowsky equation and better predicting the expected maximum

pressure rise in a straight pipe with a non-anchored downstream end. Eq. 3.5 is derived from

this analysis.

∆Hmax =ΨJK
ahV0

g
(3.5)

where ΨJK is a correcting factor for Joukowsky overpressure and is defined in Table E.1. The

result of applying Eq. 3.5 to SCP05 test is depicted in Fig. 3.23, where the grey solid line

corresponds to Joukowsky pressure (Eq. 3.2 of classic theory) and black dashed line is the

predicted maximum pressure rise by means of Eq. 3.5. The maximum overpressure (∆Hmax )

observed in the SCP05 test is 10% higher than Joukowsky overpressure. This is accurately

predicted by the Joukowsky correction factor (Ψ) presented in Table E.1.

77



Chapter 3. Experimental work

Figure 3.23 – Corrected Joukowsky overpressure for the test SCP05.

It is also important to highlight the higher wave damping observed in the test SCP05, where the

valve is released, in comparison with SCP02, where the valve is fixed (cf. Fig. 3.16). FSI does not

introduce a direct wave damping, though, there are additional frictional losses through shear

between the fluid and the pipe-wall and between the pipe-wall and the structure supports. UF

is significantly affected by the different vibrating frequency of the pipe-wall axial stress wave

and the fluid pressure wave.

FSI according to pipe geometry

The coil copper pipe facility also presents a characteristic FSI behaviour which was analysed

in Ferràs et al. (2015a). The ‘breathing’ effect of the coil introduces a systematic wave ampli-

tude reduction. In steady conditions an analogy can be established between a coil pipe and a

straight pipe with a moving end for the computation of axial stresses due to inner pressure

loads (Ferràs et al., 2014). However, in transient conditions, axial stress waves are originated

in the coil rings when these are excited by the inner pressure load, hence the origin and con-

sequent propagation of the axial stress waves significantly differs from the FSI phenomenon

occurring in the straight copper pipe with released end.

A similar wave amplitude reduction is observed also in the polyethylene facility. However, it is

more likely that such attenuation is dominated by the viscoelasticity of the pipe-wall material

rather than FSI, as further discussed in Subsection 3.4.2.
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3.4.2 Pipe-wall rheological behaviour

Collected strain data allows the analysis of the rheology and of the structural displacements

of the pipe systems during the transient tests. Fig. 3.24 depicts measured pressures versus

measured circumferential and axial strains for the selected transient tests of Table 3.4. The

theoretical circumferential strain expected from a linear-elastic pipe-wall behaviour given by

Eq. 3.4 is also shown in dashed line.

Figure 3.24 – Measured pressures vs. measured axial (grey solid line) and circumferential
(black solid line) strains during the transient tests carried out at a) SCP02 (fixed valve set-up),
b) SCP05 (released valve set-up), c) CCP03 and d) CPP03.

Loading-unloading behaviours significantly depend on the valve anchoring conditions. In the
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case of the straight copper pipe with anchored valve (Fig. 3.24-a), a clear pattern is observed:

the loading-unloading slope of circumferential strain is quite close to the theoretical linear-

elastic behaviour and the axial strain is opposed to the circumferential strain due to Poisson

effect. However, loading paths significantly differ from unloading ones, specially in the case of

axial measurements. The reason is the FSI interaction occurring due to Poisson coupling as it

has a direct effect on the axial direction and an indirect effect on the circumferential. For a non-

anchored downstream pipe-end more erratic loading-unloading lines are observed: (Fig. 3.24-

b) axial strain measurements for such anchored conditions are affected by junction coupling

at the valve section and, consequently, the vibrating pipe produces a breathing-pumping

effect. This effect can be observed through the horizontal spikes of the loading-unloading

curves in the circumferential direction of (Fig. 3.24-b).

The coil copper facility shows a clear linear-elastic behaviour of the pipe-wall material, as the

measurements in the stress-strain space are presented in a straight line (Fig. 3.24-c).

Finally, for the polyethylene facility (Fig. 3.24-d), different loading-unloading paths can be

distinguished (see Fig. 3.25) in the strain-pressure plot, typical of the hysteresis of the PE pipe-

wall material (Covas et al., 2004c, 2005). Also, axial strain measurements in the polyethylene

facility show low sensitivity to the transient inner pressure, as depicted by the almost vertical

loading-unloading curves.

Figure 3.25 – Measured pressures vs. circumferential strains during the transient test CPP03.

The ratio between stress and strain (Eq. 3.4), the Young’s modulus of elasticity, is an intrinsic
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property of the pipe material that is affected by its molecular structure, temperature, stress-

strain history and material aging (Jones & Ashby, 2005; Ward & Sweeney, 2012). In this context,

the main slope of the trend-lines fitted to collected data in the circumferential direction (dot

lines in Fig. 3.24) give some insight about the Young’s modulus of the respective pipes. For

instance, the slope of the straight copper pipe (Fig. 3.24-a) is quite close to the theoretical

linear-elastic behaviour for a Young’s modulus of the copper material E = 105 GPa. However,

the slope of stress-strain is not related to the rheological behaviour of the pipe material but also

to the anchoring conditions: in Fig. 3.24-b, circumferential strain presents a higher slope which

means the pipe has a stiffer response. This effect is actually produced due to the influence of

FSI and junction coupling in this particular anchoring set-up: for positive pressures the pipe

is axially stretched and through the Poisson effect this positive axial strain produces a negative

circumferential strain reducing the radial expansion of the pipe; and vice versa for negative

pressures. On the other side, experiments in the copper and PE coil pipes follow clearly the

expected trend of the theoretical Young’s modulus of elasticity.

3.5 Overview and concluding summary

This chapter summarises physical observations of transient pressures in three different experi-

mental set-ups: a straight copper pipe (SCP) with anchored and non-anchored downstream

pipe-end, a coil copper pipe (CCP) and a coil polyethylene pipe (CPP). Hydraulic transient

tests were generated by fast downstream valve closures for different initial steady state con-

ditions. Both transient pressures and circumferential and axial strains were measured at the

downstream and at the midstream pipe positions.

Two main dissipating phenomena have been identified which affect the attenuation, shape and

timing of the pressure wave, namely, fluid-structure interaction and pipe-wall viscoelasticity.

Unsteady friction is certainly always present but its effect could not be isolated in the first

pressure cycles. For similar initial steady state conditions the experimental set-ups present

very different mechanical behaviours.

Different system responses have been compared by means of dimensionless plots of pressure

and strain. Experimental pressure and strain measurements in the straight copper pipe with

anchored valve are the least affected by the dissipating phenomena, being the closest to the

theoretical waterhammer waves expected from classic theory, and with UF the dominant

damping mechanism. Releasing the pipe end generates an important wave shape change,

higher pressure peaks and higher wave damping. The coil copper pipe, with a similar damping

rate, shows a systematic wave amplitude reduction.

Fluid-structure interaction has been identified as being the dominant dissipating phenomenon

in straight and coil copper pipes. Formulae have been developed (Appendix E) to more ac-

curately predict the Joukowsky overpressure taking into account FSI. On the other side, the

pipe rheological behaviour has been analysed by means of strain-pressure plots. The copper

facilities (SCP and CCP) present a clear linear-elastic behaviour; the PE facility (CPP) presents
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different loading and unloading paths across the strain-pressure space, indicating a retarded

response (hysteresis) between the inner pressure loading and the circumferential strain re-

sponse. This viscoelastic behaviour of the polyethylene material is the dominant damping

mechanism in the CPP piping system.

Table 3.6 qualitatively summarizes the relative importance of the analysed damping mecha-

nisms during hydraulic transients in the different experimental set-ups.

Table 3.6 – Summary of the qualitative importance of damping mechanisms in the analysed
experimental set-ups.

Set-up ID FSI-supports FSI-coil UF VE

SCPanchor ed + – +++ –

SCPr eleased +++ – + –

CCP – +++ + –

CPP – + + +++

Note: +++ strong effect; + medium effect; – low effect.

In polyethylene pipes the structural damping produced by the viscoelasticity of the pipe-wall

is crucial and it has to be included in those waterhammer analyses aiming for an accurate

model output of the entire pressure time-series. Nonetheless, pipe-wall viscoelasticity does

not increase maximum pressures, hence the use of the classic waterhammer model for the

design of plastic pipes does not imply a threat on the reliability of the pipe system. Similar

phenomena occurs in coil pipes, where the fluid-structure interaction implies the reduction

of the wave amplitude. Damping rates though are much lower in the metallic pipe, where

the pipe-wall presents an elastic behaviour. The fluid-structure interaction occurring in the

straight copper pipe has shown to be highly dependent on the anchoring conditions, specially

at the valve section. The pressure loads might be significantly underestimated if the classic

waterhammer model, or Joukowsky equation, is used in the design of straight pipe lines

without considering the fluid-structure interaction and the structural behaviour of the pipe

supports. For instance, in the test SCP05 (free valve) classic waterhammer theory showed a

10% of underestimation of the maximum pressure rise, and this could be worsen for different

mass valve configurations. The proposed Eq. 3.5 aims at correcting such discrepancy.
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4 Fluid-structure interaction in coils

The present chapter is based on the following scientific publications:

• D. Ferras, D. Covas, A.J. Schleiss. Stress-strain analysis of a toric pipe for inner pressure

loads. Journal of Fluids and Structures, 51:68-84, 2014.

• D. Ferras, P. Manso, D. Covas, A.J. Schleiss. Comparison of conceptual models for fuid-

structure interaction in pipe coils during hydraulic transients. Submitted at the Journal

of Hydraulic Research (July 2014).

The work presented hereafter is original and was performed by the first author. The interpreta-

tion and discussion of results was carried out with the collaboration of the co-authors.

4.1 Introduction

The aim of the present chapter is to achieve a better understanding of the stress-strain states

of a coil pipe during hydraulic transient events. Classic theory of waterhammer assumes that

the pipe does not move and that the circumferential deformation is incorporated, together

with pipe deformability and fluid (liquid) compressibility, in the elastic wave speed. However,

several physical phenomena not taken into account in classic waterhammer theory affect

transient pressure wave attenuation, shape and timing (Bergant et al., 2008a,b). One of these

effects, Fluid-Structure Interaction analysis (FSI), can be important depending on the set up

of the piping system. Consequently, a FSI analysis has to be carried out in order to determine

the effect of the structural inertia over the transient pressure wave. Pipe systems experience

severe dynamic forces during waterhammer events. When these forces make the system move,

significant FSI may occur, so that liquid and pipe systems cannot be treated separately and

interaction mechanisms must be taken into account (Tijsseling, 2007). Recommendations

by means of some dimensionless parameters and with the aim to analyse when FSI must be

taken into account are drown in Tijsseling (1996).

Pipe coils have many industrial engineering applications, being typically used in most heat
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exchange systems, like cooling systems in power plants, industrial and commercial refrigera-

tors, solar water heaters or radiators for automotive industry. Although work has been done

in the experimental characterization of the transient flow occurring in pipe coils (Brito et al.,

2014), according to the knowledge of the authors, the incorporation of the pipe coil behaviour

in hydraulic transient analyses through FSI has never been carried out.

The current chapter gives thereby a novel contribution for the numerical and experimental

investigation of pipe coil behaviour during hydraulic transients. First a static analysis is carried

out with the goal to understand the stress-strain states for inner pressure loads. Then the coil

system is assessed for dynamic conditions allowing the characterization of the fluid-structure

interaction (FSI) phenomena, which is the two-way coupling occurring between the pipe

structure and the inner pressurized fluid.

4.2 Stress-strain analysis

4.2.1 Introduction and background theory

A stress-strain analysis is a first step for FSI, the goal is to determine the pipe deformation equa-

tions. Torsion, bending, shear and axial stresses and strains are the structural responses that a

piping system may experience during waterhammer events. In classic waterhammer theory

the effect of pipe-wall distensibility is implicitly included in the wave celerity (Chaudhry, 2014).

Although radial expansion of the pipe-wall is taken into account, axial strains are not con-

sidered in classic waterhammer theory. Skalak (1955) extended classic waterhammer theory

aiming to include axial stress and movement of the pipe. Circumferential strain in straight

pipes is described by the following relation and included in the conservation equations:

εθ =
1

E

pr

e
(4.1)

where εθ is the circumferential strain, E the Young’s modulus of elasticity of the pipe, p the

inner pipe pressure, r the pipe radius, and e the pipe-wall thickness.

However, in coil systems, the structural behaviour considerably differs from that of a straight

pipe, either in axial and circumferential directions, due to the toroid geometry and the cross-

section shape, which becomes oval when the pipe is curved. Consequently, when classic

waterhammer theory is applied in coil pipes discrepancies generally arise changing the wave

shape and overshooting computed pressures during peak transitions. Anderson & Johnson

(1990) analysed the effect of tube ovalling on pressure wave propagation speed in the context of

physiological flows, reaching to the conclusion that transient pressure waves are very sensitive

to the eccentricity of an ovalled cross-section.

A toroid can be described as a surface of revolution, i.e. by rotation a plane curve through

360° over a straight line (axis of revolution) in the plane of the curve. A coil pipe can be
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4.2. Stress-strain analysis

geometrically defined in the same manner but adding a constant slope in the direction of the

axis of revolution, and the number of coil rings will depend on the angle of rotation. Therefore,

the helical system of a coil can be considered as a composition of toroids and described as

a thin shell of revolution. Membrane theory of shells of revolution is a suitable approach to

solve circumferential and axial strains in an axisymmetrically loaded torus. However, in a

torus with ovalled or elliptic cross-section, when it is pressurized, loads are not axisymmetric

and bending moments are generated. Membrane theory of shells of revolution assumes that

no bending moments, twisting moments and transverse shearing forces that exist in the shell

(Zingoni, 1997). Bending theory of shells must be applied to account for bending effects and

to describe the complete state of stress and strains. However, such theory is more general and,

consequently, its main equations are more difficult to be solved for complex geometries.

Clark & Reissner (1950) proposed a methodology based on the Boltzmann superposition

principle to describe stress-strain states in Bourdon tubes. Such approach consisted essentially

of the computation of axial and circumferential strains using the thin-walled assumption and

describing the bending effects using the thick-walled assumption and applying bending theory.

In the context of hydraulic transients, Brown & Tentarelli (2001b) and Brown & Tentarelli

(2001a) carried out FSI coupling in order to account for the Bourdon effect during water-

hammer events. The structural constraint conditions of the pipe coil, though, do not comply

with the Bourdon tube theory, as Bourdon tube is a disconnected torus with closed ends,

while the pipe coil analysed must be considered as a connected torus. However, a similar

approach can be applied in order to determine its stress-strain states, combining thin and

thick-walled assumptions by the Boltzmann superposition principle as a function of the

applied loads. The current research approaches the stress-strain states problem in pipe coils

by computing circumferential and axial strains using membrane theory of shells of revolution

and the bending effects by applying an inverse approach based on thick-walled assumption.

4.2.2 Data collection

The experimental data used in the present stress-strain analysis was acquired from the copper

coil pipe rig (CCP) assembled at the Laboratory of Hydraulics and Environment of Instituto

Superior Técnico (LHE/IST), Lisbon, Portugal, and described in the Subsection 3.2.2.

When the pipe is bended to get the curved shape of the pipe coil, the cross-section is changed

from circular to slightly elliptic (as shown in Subsections 4.2.3 and 4.2.4). This ellipticity of the

cross-section has important consequences in the structural behaviour of the system.

Two different kinds of experiments were carried out in the coil facility. Firstly, circumferential

and axial strains were measured for different quasi-steady pressure loads, and secondly dy-

namic loading was applied by producing waterhammer events for different flow rates. The

results presented in Subsection 4.2.4 correspond to a steady pressure test of 6×105 Pa and

results in Subsection 4.2.5 correspond to a waterhammer wave produced for an initial flow

rate of 1.4×10−4 m3/s. Fig. 4.1 shows the measurements obtained for static pressure tests,
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Chapter 4. Fluid-structure interaction in coils

namely axial and circumferential strains of the pipe-wall, and fluid pressures.

Figure 4.1 – Strain and pressure measurements: (a) circumferential strain test and (b) axial
strain test. ◦ strain at top side (SG-1 and SG-4); ¦ strain at outer side (SG-2 and SG-5); ∗ strain
at bottom side (SG-6); • strain at inner side (SG-3 and SG-7). Pressure measurements in dashed
lines (PT-2).

4.2.3 Model development

Membrane theory of shells of revolution: stress-strain models

A shell of revolution is a three-dimensional structure bounded primarily by two arbitrary

curved surfaces a relatively small distance apart (Seide, 1975). In the present section the

membrane theory of shells of revolution, assuming thin wall and axisymmetrical load, has

been considered for the computation of axial and circumferential stresses. Nonetheless, the

membrane theory of shells of revolution assumes momentless shells, thus, this theory does

not consider the bending of the cross-section.
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4.2. Stress-strain analysis

Figure 4.2 – Element of the axisymmetrically loaded shell of revolution

The starting point to derive stress-strain models is the general solution of the membrane

theory of shells of revolution for axisymmetric loads (Zingoni, 1997), which outcome is an

expression for axial and circumferential stresses:

Nθ =
1

r2 sin2θ

[∫
r1r2(pr cosθ−pθ sinθ)sinθ dθ+ j

]
(4.2)

Nφ = r2pr − r2

r1
Nθ (4.3)

where Nθ is the circumferential unit force and Nφ the axial unit force; pr is the load applied

in the normal direction of the shell midsurface, pθ the load in the tangential direction of the

shell midsurface; r1 and r2 correspond to different radii of curvature (see Fig 4.2); θ and φ

are respectively the angles corresponding to the parallel and meridional directions; and j is a

constant of integration to be obtained from appropriate boundary conditions.

Adapting the general solution with regard to the coil geometry, two stress-strain models, one

for the torus with elliptic cross-section (elliptic torus model) and the other for the circular

cross-section (circular torus model), were implemented following the development explained

in Zingoni (1997).

Torus with elliptic cross-section: After determining the radius of curvature r1 and r2 for an

elliptic cross-section, and introducing them in Eq. 4.2, the definite integral can be solved fixing

a finite j constant for θ = 0 and θ =π, for which sinθ = 0. Expressing the unitary force in terms
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of stress, the expression obtained for circumferential stress is:

σθ =
pa2

e
√

a2 sin2θ+b2 cos2θ

R
√

a2 sin2θ+b2 cos2θ+ a2

2 sinθ

R
√

a2 sin2θ+b2 cos2θ+a2 sinθ

 (4.4)

where σθ is the circumferential stress, p the inner pressure, e the pipe-wall thickness, a the

minor semi-axis length of the elliptic cross-section, b the major semi-axis length and R is the

torus radius from the centre of the toroid to the pipe axis.

Substituting the previous Eq. 4.4 into Eq. 4.3 and rearranging terms the expression for axial

stress is obtained:

σz = pa2

eb2

[
R

(
b2 −a2

a2

)
sinθ+ b2 − 1

2 (a2 sin2θ+b2 cos2θ)√
a2 sin2θ+b2 cos2θ

]
(4.5)

For R >> a & b, the term
[(

b2−a2

a2

)
sinθ

]
in Eq. 4.5 becomes very sensitive to ellipse eccentricity.

This high sensitivity and the uncertainty associated to the accuracy of the measurement of the

ellipticity are the main reasons why eccentricity value is calibrated in an a posteriori analysis

from axial strain measurements.

Torus with circular cross-section: Circular torus equations are straightforwardly derived by

simplifying Eq. 4.4 and 4.5 for a = b = r , resulting the following expression for circumferential

over the outer surface

σθ =
pr

e

(
R + r

2 sinθ

R + r sinθ

)
(4.6)

and over the inner surface the circumferential stress is

σθ =
pr

e

(
R − r

2 sinθ

R − r sinθ

)
(4.7)

σz = pr

2e
(4.8)

For R >> r , Eqs. 4.6 and 4.7 can be further simplified, cancelling the second term and reaching

the expression for straight pipes (Eq. 4.1) used in classic waterhammer theory. For instance, in

the case of the copper coil facility analysed where R = 0.5 m and r = 0.02 m the circumferential

stress at θ =π/2 will be σθ = pr
e · (0.981). Hence, applying straight pipe equation for circum-

ferential stress only, a 2% error will be produced as much in the most unfavourable location

within the cross-section. Eq. 4.8 shows that axial stress is independent of the coil radius R and

of the position angle θ. Hence, contrary to an elliptic torus, axial stress is constant along the

pipe wall for the circular cross-section, like a straight pipe with closed ends.
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4.2. Stress-strain analysis

Once stresses are computed by the previous equations, either using elliptic torus or circular

torus assumptions, strains can be obtained by Hooke’s law for isotropic elastic materials:

εθ =
1

E
(σθ−νσz ) (4.9)

εz = 1

E
(σz −νσθ) (4.10)

where εθ and εz are the circumferential and axial strains, respectively, and ν is the Poisson

ratio.

Cross-sectional bending analysis: inverse method

Membrane theory of shells of revolution assumes thin-walled shells, that is no bending mo-

ments are transmitted along the shell. However, due to the elliptic geometry of the pipe

cross-section, when the fluid pressure changes, radial loads are not balanced in the coil (they

are not axisymmetric any more) as its projection on the minor axis of the ellipse will not be

equal to the projection on the major axis (see Fig. 4.3). This unbalance of forces generates

bending moments that for positive pressures will tend to reduce the eccentricity of the ellipse

and vice versa for negative pressures. Hence, in the case of positive pressures, the outer

fibres of the upper and lower generatrices of the cross-section will be compressed and the

outer fibres of the lateral generatrices stretched. For negative pressures, the effect will be the

opposite.

Figure 4.3 – Schematics of radial loads balance in (a) an elliptic cross-section and (b) detail of
stresses over the upper generatrice
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Strain-gauges measurements give information from these outer fibres, so the real measure-

ments will be actually a combination of circumferential strain (obtained by membrane theory

of shells of revolution) plus the extra deformation at the outer fibres due to bending. Therefore,

the effect of bending can be analysed by an inverse method from computed circumferen-

tial strains in the central fibres of the pipe-wall and measured strains in the circumferential

direction at the external fibres.

The assessment of this bending effect has two goals: firstly, it will allow the comparison

between measured and computed circumferential strains, and secondly, it will provide in-

formation about the cross-sectional shape change, which is important for fluid-structure

coupling during hydraulic transients in coils.

Derivation of the bending moment M : The pressurized elliptic cross-section is a hyper-

estatic system, i.e. internal forces such as the bending moment M(θ) cannot be obtained

explicitly from the static equilibrium equations. Therefore, M(θ) can only be obtained numer-

ically. The derivation carried out is based on Fig. 4.4:

Figure 4.4 – Schematic for bending moment M(θ) derivation

Applying equilibrium of moments at point (θ+dθ) and assuming some simplifications the

following expression can be obtained:

M(θ+dθ) = M(θ)−σ(θ) [r (θ)− r (θ+dθ)]+P
(dθr (θ))2

2
(4.11)

By rearranging terms in the previous equation, it yields:

M(θ+dθ)−M(θ)

dθ
=−σ(θ)

r (θ)− r (θ+dθ)

dθ
+P

(dθr (θ))2

2dθ
(4.12)

that is

d M(θ)

dθ
=σ(θ)

dr (θ)

dθ
+P

dθr (θ)2

2
(4.13)
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4.2. Stress-strain analysis

As the elliptic cross-section is a closed system, Eq. 4.13 has to be solved by imposing some

internal conditions. From measurements and applying the inverse approach explained in the

previous section, bending moments can be obtained at convenient points of the cross-section

and, then, be used as internal conditions. Though, as the inverse method must be applied in

any case, the implementation of the stress-strain models was carried out by using the inverse

approach all over the cross-section.

Centrifugal force throughout the coil pipe

Another effect that may contradict the axi-symmetrical loading assumption is the inertial

force generated by the rotation of the flow along the coil. The centrifugal force produced by an

infinitesimal control-volume of the fluid on the coil may be defined as:

d Nθ = ρd∀V 2

R
= ρA f

d x

R
V 2 = ρA f dφV 2 (4.14)

where Nθ is the centrifugal force, ρ is the fluid density, d∀ is the volume of the control-volume,

V is the average flow velocity and A f the fluid cross-sectional area.

Applying the balance of forces shown in Fig. 4.5 between the axial stress of the pipe-wall and

the centrifugal force Nθ:

d Nθ = 2Nφ sin
dφ

2
≈ Nφdφ (4.15)

Figure 4.5 – Balance of forces of a control volume, pipe-wall stress forces versus centrifugal
force

By combining Eqs. 4.14 and 4.15, the following expression can be obtained for the axial unit

force due to centrifugal effect:

Nz = ρA f V 2 (4.16)
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which, in terms of stress, is

σzc =
Nz

As
= ρ A f

As
V 2 = ρ πr 2

e2πr
V 2 = ρ r

2e
V 2 (4.17)

where As is the solid cross-sectional area.

The ratio between the axial stress due to the fluid centrifugal force σzc (Eq. 4.17) and the axial

stress due to inner pressure σzp (Eq. 4.8) is:

σzc

σzp

= ρV 2

p
(4.18)

Considering maximum effects during waterhammer events, pmax can be computed using

Joukowsky expression (p = ρaV ). Substituting in Eq. 4.18:

σzcmax

σzpmax

= V

a
(4.19)

where a is the waterhammer wave speed. In most engineering applications a >> V , so the

non-dimensional number presented in Eq. 4.19 will be very low (in the case of the copper

facility ≈ 10−4) and, consequently, the axial stress due to inertia of the fluid flow throughout

the coil can be neglected.

4.2.4 Model application

Forward approach for circumferential and axial strains

Torus with elliptic cross-section: States of stresses and strains were computed by Eqs. 4.4,

4.5, 4.9 and 4.10 for the static loading test for a pressure of 6×105 Pa (i.e., 60 mH2O) and

obtained results are shown in Fig. 4.6.
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4.2. Stress-strain analysis

Figure 4.6 – Measured versus computed circumferential and axial strains using elliptic torus.
◦ measured strain at top side; ¦ measured strain at outer side; ∗ measured strain at bottom
side; • measured strain at inner side. Computed strain at top side in solid line (SG-1 and SG-4);
computed strain at outer side in dashed line (SG-2 and SG-5); computed strain at bottom side
in dash-dot line (SG-6); and computed strain at inner side in dotted line (SG-3 and SG-7).

After adjusting ellipse eccentricity
√

b2−a2

b2 = 0.094, a good agreement between the computed

axial strains and the measurements is obtained. The consistency between the different posi-

tions in the cross-section strengthens the reliability of membrane theory of shells of revolution

in regard to axial strains. Nevertheless, circumferential strain results do not present the same

accuracy, as major discrepancies arise between circumferential strains in the different posi-

tions of the cross-section. The main reason of such discrepancies is the bending effect over
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the cross-sectional plane due to non-axisymmetry of loads (Fig. 4.3), which at this stage has

not been taken into account.

Torus with circular cross-section: Stress-strain states were also solved by applying the

model of the torus with circular cross-section and for the same pressure loads as in the

previous section. Deformations were computed by using Eqs. 4.6, 4.7, 4.8, 4.9 and 4.10 and the

results are presented in Fig. 4.7.

Figure 4.7 – Measured versus computed circumferential and axial strains for a circular torus.
◦ measured strain at top side; ¦ measured strain at outer side; ∗ measured strain at bottom
side; • measured strain at inner side. Computed strain at top side in solid line (SG-1 and SG-4);
computed strain at outer side in dashed line (SG-2 and SG-5); computed strain at bottom side
in dash-dot line (SG-6); and computed strain at inner side in dotted line (SG-3 and SG-7).
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4.2. Stress-strain analysis

In Fig. 4.7 it can be seen that both circumferential and axial computed strains from a circular

torus hardly vary with their relative position in the cross-section (see all dashed lines over-

lapped). This is in agreement with the assumption that R >> r , indicating that circumferential

strains computed by classic theory do not vary much in comparison to the model for a circular

torus. However, as in the case of elliptic torus, discrepancies with measurements are evident.

On the other side, axial strains are constant over the cross-section, and their magnitude is

close to the measured axial strain in the top and in the bottom sides of the cross-section.

In general, the circular torus model can describe quite well average circumferential and axial

strains. However, the capacity of elliptic torus to adjust a posteriori elliptic eccentricity of the

pipe cross-section and its reliability shown in axial strains (Fig. 4.6) justify a good basis to

carry out the bending analysis of the cross-section. The analysis will allow the correction of

circumferential strains at the outer fibres of the pipe-wall.

It should be highlighted that the differences between measurements and computed circum-

ferential strains by the membrane theory of shells of revolution, either considering elliptic

or circular cross-section, are coherent with the phenomena explained in Subsection 4.2.3.

The bending of the cross-section when pressure is increased produces a compression of the

external fibres of the top side of the cross-section and stretches the external fibres in the

lateral sides. Hence, computed results overestimate circumferential strains in the top side and

underestimate circumferential strains in the lateral sides in comparison to measurements.

Inverse approach for bending effects

The inverse approach is used to correct the bending effect not described by the previous

models. First of all, the relation between strains and the focal distance (from this point on dF ,

i.e. distance between the two foci of the ellipse; cf. Fig.4.3) is determined. After a geometrical

development, the deformation at any point of the external side of the pipe wall has to be

analytically found for any change in ellipse eccentricity. Fig. 4.8 shows the deformation from

circumferential cross-section (i.e. dF = 0) to any dF up to a maximum value of dF = 6.77 mm.

The relation between dF and strains at the external sides of the pipe wall for the upper and

lateral generatrices of the cross-section is presented in Fig. 4.9. Although the general law is

not linear, as the experimental strains are located in a very small range, the expression can be

approximated to a linear relationship.
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Figure 4.8 – Circumferential strains over the cross-section when focal distance dF is changed

Figure 4.9 – Circumferential strains as a function of focal distance dF

In a second stage, as time-series relating pressures and strains could be obtained from mea-

surements, with the combination of the previous relations depicted in Fig. 4.9, an empirical

relation between pressure and dF could be found (Fig. 4.10).
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4.2. Stress-strain analysis

Figure 4.10 – Empirical laws relating pressure p and focal distance dF

In Fig. 4.10 three empirical relationships between pressure p and the focal distance dF are

shown: the solid red line represents this relation obtained according to strains measured on

the top side of the cross-section, the blue dash line according to strains measured on the

lateral side and the black dash-dot line represents the average line obtained between the

previous relationships. The relationship between dF and p should be equal over the whole

cross-section, consequently, the solid and dashed lines, ideally, should be overlapping. This

graph allows the validation of the method: the closer the solid and dash lines are, the more

accurate the method is. Notice that before this stage no calibration had been carried out,

only ellipse eccentricity had been initially adjusted in order to get the best fitting for axial

strains. This small discrepancy over the solid and dash lines is due to uncertainty arisen from

strain measurements, experimental Young’s modulus, ellipse eccentricity and other possible

secondary effects, like torsion and shear along the coil due to its structural constraints. A

better fitting of both lines could be achieved calibrating the mentioned parameters. Notwith-

standing, obtained linear laws are quite similar, therefore for the purpose of the analysis both

relationships are considered accurate enough and the dash-dot interpolated line will be used

in next steps as the relationship between pressure and focal distance (Eq. 4.20). No further

calibration is applied.

dF [m] = 0.00194−6.27 ·10−10 ∗p[Pa] (4.20)

Eq. 4.20 allows, therefore, the estimation of ‘an average’ focal distance of elliptic cross-section

for all pressures within the experimental pressures range. Consequently, the volume change

in the coil due to cross-section shape change can be analysed, and circumferential strains

computed from membrane theory of shells of revolution can be corrected. Fig. 4.11 presents

the strains computed and corrected with this approach (elliptic torus with bending effect),

the previous strains obtained with the basic models (elliptic and circular torus) and the
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experimental data.

Figure 4.11 – Circumferential strains corrected and not corrected versus experimental data:
a) in the outer side, b) in the inner side, and c) in the top side of the pipe. ◦ measured data;
output from elliptic torus model in doted lines; from circular torus model in dashed lines; and
from elliptic torus model taking into account bending effect in solid lines.
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4.2. Stress-strain analysis

Fig. 4.11 shows that once circumferential strains are corrected by taking into account the

bending effect, there is good agreement between measured and computed strains, particularly

in the inner and outer sides of the cross-section. Discrepancies are observed in the top position

of the cross-section where computed strains seem to be more sensitive to the inaccuracy

of the method already depicted in the Fig. 4.10. However, the overall performance of the

model after the bending correction is quite satisfactory, allowing the assessment of pipe-wall

displacements for the analysed range of static loadings.

4.2.5 Model validation

Dynamic loading tests were carried out in order to assess whether the calibrated stress-

strain model can accurately describe pipe-wall displacements during hydraulic transients.

A hydraulic transient is characterized by fast loading-unloading cycles over the pipe wall.

Consequently, other physical phenomena such as non-elastic behaviour of the copper material

may arise, which are not taken into account in a static analysis.

For this purpose, once the stress-strain model was defined, strains were computed from mea-

sured pressure during a hydraulic transient test and compared with measurements. Axial

strains were determined by using the elliptic model developed by membrane theory of shells

of revolution approach (Eq. 4.5). Circumferential strains were computed by the superposi-

tion of membrane theory (Eq. 4.4) and the correction for the bending effect presented in

Subsection 4.2.4.

A hydraulic transient was generated by the fast closure of a valve (in 0.1 s) located at the

downstream end of the pipe and for an initial discharge of 1.4×10−4 m3/s. With a frequency

of data sampling of 100 H z the measured wave speed was 1120 m/s. Fig. 4.12 presents the

numerical results versus measurements of circumferential and axial strains on the outer side

of the coil cross-section.
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Figure 4.12 – Circumferential (top) and axial (down) strains (in µm/m) in the outer side of
the cross-section during transient test at the middle section of the pipe and detail of the first
peaks (right). Measured data in grey solid lines and computed data in black dashed lines.

Strains computed in the circumferential direction have a Mean Squared Error equal to 2.1 µm
m ,

while strains in axial direction have 0.25 µm
m . The stress-strain model has a better performance

in the axial direction because the computed strains in this direction have not to be corrected,

since assumptions from membrane theory of shells of revolution are consistent with the

physical phenomena. This is because bending is only occurring over the cross-sectional

plane, and not over the horizontal plane. However, strains in the circumferential direction are

affected by the bending of the elliptic cross-section (Fig. 4.3), and therefore uncertainty arises

from the introduced correction.
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Simplification of pipe stress-strain equations for FSI coupling

In FSI implementation for the analysed coil pipe system, membrane theory of shells of revolu-

tion have to be applied for circumferential and axial strains computation, while the bending

effect has to be considered by the empirical relationship from Fig. 4.10. Coupling will be

performed for 1D hydraulic transient equations. Hence, for the sake of FSI implementation,

the stress-strain equations are simplified with the aim to consider only averaged values over

the entire cross-section.

Simplification for circumferential stress: The circumferential stress equation for elliptic

torus can be simplified by assuming quasi-circular cross-section (a ' b ' r ) and quasi-straight

pipe (R >> r ). Hence, substituting a and b by r in Eq. 4.4:

σθ1 =
pr 2

e
√

r 2 sin2θ+ r 2 cos2θ︸ ︷︷ ︸
r

R
√

r 2 sin2θ+ r 2 cos2θ+ r 2

2 sinθ

R
√

r 2 sin2θ+ r 2 cos2θ+ r 2 sinθ

=

= pr

e

Rr + r 2

2 sinθ

Rr + r 2 sinθ︸ ︷︷ ︸
1 f or R>>r

σθ1 =
pr

e
(4.21)

obtaining the same expression corresponding to circumferential stress in straight pipes used

in classic waterhammer theory.

Simplification for axial stress: Though, regarding axial stress the term R
(

b2−a2

a2

)
sinθ from

Eq. 4.5 can not be simplified. Using the same assumptions, as for the quasi-straight pipe

assumption (R >> r ) the term tends to ±∞ while for the quasi-circular section assumption

(a ' b) it will tend to 0, thus the term is undefined. Hence, substituting in the other terms a

and b by r it yields:
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σθ =
p

er

R

eccentr i ci t y︷ ︸︸ ︷(
b2 −a2

a2

)
sinθ+ r 2 − 1

2

r 2︷ ︸︸ ︷
(r 2 sin2θ+ r 2 cos2θ)√

r 2 sin2θ+ r 2 cos2θ︸ ︷︷ ︸
r



σθ =
pr

2e
+ pR

e

(
b2 −a2

a2 sinθ

)
(4.22)

The first term of the obtained Eq. 4.22 is equivalent to the axial stress for circular torus, which

actually is the result of the structural constraint of closed torus (same expression would be

obtained for a straight pipe with frequent expansion joints and closed ends). The second

term is composed of the product of two factors. The first factor (pR/e) is equivalent to an

average circumferential stress computed over the horizontal plane instead of the vertical (R

instead of r ). The last factor can be seen as a term dependent on the eccentricity of the elliptic

cross-section and the position angle θ. Hence, axial stress, with an averaged value of σz = pr
2e

varies, depending on the position over the cross-section, according to the product of the

equivalent average circumferential stress over the horizontal plane multiplied by the ellipse

eccentricity and projected over the horizontal plane. Accordingly, for FSI, averaged axial stress

can be described by:

σz = pr

2e
(4.23)

which is the same expression as for torus with circular cross-section (see Eq. 4.8)

Simplification for bending effect: As mentioned before, axial and circumferential stresses

can be simplified to average values using reasonable assumptions according to the geometry

of the coil system. To get average strain values from the bending effect, a different approach

has to be chosen. The aim is to represent the increase of cross-section area when ellipticity

is changed due to pressure changes. For this purpose, an equivalent radial expansion of

the cross-section can be assumed and related with the dF −P expression determined in

Subsection 4.2.4.

First of all, dF must be related to the ellipse area for a fixed ellipse perimeter, secondly, the

ellipse area can be related to an equivalent radius for a circular section and, finally, the

empirical dF −P law can be embedded.

The ellipse properties are defined as follows:
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dF = 2
√

b2 −a2

Ael l i pse =πab

Pel l i pse = 2π

√
b2 +a2

2
(4.24)

For known values of dF and of the initial perimeter (P0), the previous system of equations can

be simplified obtaining the following expression:

Ael l i pse =π
√(

P0

2π

)4

− 1

4

(
dF

2

)4

(4.25)

Assuming the equivalent area for a circular section, the previous expression can be expressed

in terms of radius:

r = 4

√(
P0

2π

)4

− 1

4

(
dF

2

)4

(4.26)

Eq. 4.26 can be further simplified applying a linearisation via Taylor series1 with a centre point

at dF corresponding, in the case of the dynamic test, to the initial steady state before closing

the valve:

r = 0.01−1.0567×10−4 ·dF (4.27)

In terms of circumferential strain:

εθ2 =
0.01−1.0567×10−4 ·dF

r0
−1 (4.28)

1 Taylor series:

f (x) =
∞∑

n=0

f (n)(a)

n!
(x −a)n

and for the analysed case:

f (dF ) = f (dF0 )+ f ′(dF0 )

1!
(dF −dF0 )+ f ′′(dF0 )

2!
(dF −dF0 )2 + f ′′′(dF0 )

3!
(dF −dF0 )3 + ·· ·
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Finally, substituting the empirical expression found for dF (Eq. 4.20) in Eq. 4.28, it yields:

εθ2 =−6.169×10−7 +6.626×10−12 ·p (4.29)

Simplified strain equations: Applying Hooke’s law for isotropic materials (Eqs. 4.9 and 4.10)

and the Boltzman superposition principle for circumferential strains, the final simplified

equations, in terms of strain, are:

εz = 1

E

( pr

2e
−νpr

e

)
(4.30)

εθ =
1

E

( pr

e
−νpr

2e

)
−6.169×10−7 +6.626×10−12p (4.31)

Fluid wave celerity in a coil pipe: The fluid wave celerity inside of a coil with no anchorages

can be obtained by deriving the basic conservation waterhammer equations, starting by

Reynolds Transport Theorem and applying the specific stress-strain equations for a coil pipe.

Developing the mass conservation equation as explained at Chaudhry (2014) and with the

update of the new circumferential strain equation (Eq. 4.31), the expression reached is:

∂V

∂z
+

(
1

K
+ (2−ν)

r

Ee
+1.3252 ·10−11

)
d p

d t
= 0 (4.32)

where K is the bulk modulus of elasticity of the fluid and z represents space in the axial

direction.

and with the following definition

1

ρ f ah
=

(
1

K
+ (2−ν)

r

Ee
+1.3252 ·10−11

)
(4.33)

the fluid wave celerity can be obtained:

ah =
√[(

1

K
+ (2−ν)

r

Ee
+1.3252 ·10−11

)
ρ f

]−1

(4.34)

It should be highlighted that, in the previous Eq. 4.34, the constant value associated to the

bending effect (1.3252 ·10−11 m
Pa·s ) is specific of this case study and cannot be generalized for

other pipe systems with different sizes, coil radii and pipe materials. The remaining terms can
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be generalized to any pipe coil.

Finally substituting values according to the coil parameters the wave celerity obtained is

1261 m/s, while omitting the cross-sectional bending term the wave celerity would be 1274.5 m/s.

For instance, for a rigid conduit, the celerity is 1480 m/s, for an elastic straight thin-walled

pipe anchored against longitudinal movement in its upper end, a = 1292 m/s and, finally,

allowing the movement in both boundaries, the celerity is 1260 m/s.

4.2.6 Validation of the simplified equations

4.2.7 Pipe displacements using the elliptic torus model and the simplified equa-
tions

In order to assess the effect of circumferential, axial and bending deformations in the context

of hydraulic transients, pipe-wall displacements were first computed from the stress-strain

model for the static pressure test. Fig. 4.13 depicts such displacements either over the cross-

sectional and horizontal planes of the torus for a static pressure of 6×105 Pa. For the sake of

visual representation, strains have been amplified by a scale factor of 10 in regard to bending,

100 for circumferential strains and 10000 for axial strains.

Figure 4.13 – Computed displacements of the pipe wall over the coil cross-section (left) and in
the horizontal plane(right)

The total deformation of the pipe section and pipe length for the pressurized system has been
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computed in order to get an idea of the magnitude of circumferential and axial strain effects

and also the cross-sectional shape change due to bending. The computation has been carried

out for both, elliptic torus before and after simplification. Eqs. 4.35, 4.36 and 4.37 describe the

volume variation either by circumferential, axial and bending deformations:

∆Vθ = L ·
θ=2π∫
θ=0

εthet a(θ) ·
1

k2
(θ)

dθ (4.35)

∆Vz = L · ε̄z |cs (4.36)

∆VdF = L ·
π

√(
P0

2π

)4

− 1

4

(
dF

2

)4

− A0

 (4.37)

where ∆Vθ is the volume change due to circumferential strain, ∆Vz due to axial strain, and

∆VdF due to bending effect, k is the curvature of the ellipse which is dependent on the angle θ,

L is the total pipe length, P0 is the initial perimeter of the cross-section and A0 the initial area.

Results of the application of previous equations are shown in Table 4.1:

Table 4.1 – Volume change for a steady pressure of 6×105 Pa (i.e. 60m)

Non-simplified equations Simplified equations error
∆Vθ 3.24×10−6 3.11×10−6 -4%
∆Vz 3.60×10−7 3.16×10−7 -12%
∆VdF 1.64×10−7 2.19×10−7 33%
tot al∆V 3.76×10−6 3.70×10−6 -3%

In both cases, approximately 85% of the total volume variation when the pipe is pressurized

corresponds to circumferential expansion of the conduit, 8−10% to the axial deformation

and 4−6% to the bending of the cross-section. The volume variation inside the pipe is more

sensitive to circumferential strain effect than to axial strain or bending effects, even though,

these minor effects cannot be neglected. The simplified equations give similar results in

comparison to the original elliptic torus equations.

Range of application

The first criterion to determine the range of application of the presented equations is the

consideration of the limit between thin and thick pipe-wall. In the current study, Goldberg

et al. (1974) criteria are assumed, in which thin and thick pipe-wall theories were compared for
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4.2. Stress-strain analysis

circular cylinders submitted to inner pressure loads, concluding that for ratios r
e > 10 results

using thin-walled assumption were satisfactory.

In the simplification of the equations in Subsection 4.2.5, two extra assumptions are taken:

quasi-circular cross-section and quasi-straight pipe. As it was shown in Fig. 4.7, the circular

torus assumption presents good average values of axial strains, while the quasi-straight pipe

assumption only affects distribution of circumferential stresses over the cross-section, but not

its average value. Therefore, in the context of 1D hydraulic transient modelling, where only

averaged strain values are concerned, the elliptic eccentricity of the cross-section does not

represent any constraint in regard to the range of validity of the proposed equations for axial

and circumferential strains.

Additionally, the bending analysis carried out is only valid for the coil system analysed. The

empirical relation between dF and P (Eq. 4.20) must be redefined if structural conditions

are changed. The presented equation for equivalent circumferential strain due to bending

(Eq. 4.29) is valid only for the tested range of pressures (approx. 0 to 106 Pa), as the linearisation

via Taylor series is centred in dF corresponding to a non-pressurized system; consequently,

the greater the amplitude of pressure range is, the greater the error will be.

4.2.8 Research outcome

Two stress strain models based on the theory of shells of revolution are presented to describe

the stress-strain relationships in the cross-section of a coil pipe. A semi-empiric bending

analysis has been carried out in order to improve the accuracy of the models.

Membrane theory of shells of revolution applied to an elliptic torus has been proven to be a

good approach for the axial strain description but inaccurate with regard to circumferential

strain. The main reason is that circumferential strains are strongly affected by a common sin-

gularity of coil pipes: the cross-section is slightly elliptic and bending moments are generated

over the cross-sectional plane. In order to assess the bending effect and correct circumferen-

tial strains, a semi-empiric method has been proposed to determine an empiric law relating

the ellipse focal distance with pipe inner pressure. The method enables the assessment of

cross-sectional shape change and the correction of circumferential strains. The effect of the

centrifugal force produced by the rotating flow within the coil has been also assessed, con-

cluding that its effect is negligible in comparison to the inner pressure effect. Validation has

been carried out for dynamic loading with the aim to ensure the final purpose of the research,

FSI during hydraulic transients. Finally, for the sake of FSI implementation, a simplification of

the proposed model is presented.

Displacement volumes have been computed for the static pressure concluding that the impact

of the three effects (circumferential, axial and bending strains) are important to describe

hydraulic transients in pipe-coils and they should be distinguished for FSI assessment. Cir-

cumferential and axial strains have to be described by Eqs. 4.4, 4.5, 4.9 and 4.10. Displacements
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due to bending (i.e. cross-sectional shape change) can be directly obtained from the empirical

law relating ellipse focal distance with pressure depicted in Eq. 4.20. The simplified version

of the equations for FSI implementation is given in Eqs. 4.31 and 4.30. The range of validity

of these equations, according to the membrane theory of shells of revolution, is subjected

to thin-wall criteria (i.e. r
e > 10), while the presented bending analysis, due to its empirical

nature, is only valid for the test facility and range of pressures assessed.

4.3 Fluid-structure interaction

4.3.1 Introduction and background theory

The present section focuses on the analysis of hydraulic transient flow in coil pipe systems.

The aim is the characterization of the fluid-structure interaction (FSI) phenomena occurring

between the pipe structure and the inner pressurized fluid. Three interaction mechanisms

are analysed: the shear-stresses generated between the fluid and the pipe-wall, the axial

movement of the pipe induced by its radial deformation during pressure surges and the pipe

movement generated by an imbalance of forces at junctions and boundaries.

Although FSI occurs in any structure, it is important to have the right criteria in order to

decide when and which FSI effects are actually relevant. For this purpose, the main FSI

dimensionless parameters are (Tijsseling, 1996): the Poisson ratio of the pipe material (ν), the

ratio between the pipe radius and the pipe-wall thickness ( r
e ), ratio between the solid and

the fluid densities (
ρp

ρ f
) and the ratio between the pipe Young’s modulus and the fluid bulk

modulus ( E
K ). Also Tijsseling (1996) stated that FSI may be of importance when fluid and

solid wave celerities are of the same order of magnitude, provided that the transient excitation

is sufficiently rapid. Therefore, the ratio between fluid pressure wave and solid stress wave

celerities ( ah
a3

) must be considered as well. In the specific case of coil systems the ratio between

coil radius and pipe radius ( R
r ) and the ratio between flow velocity and fluid wave celerity ( V0

ah
)

have to be also taken into account (Ferràs et al., 2014).

Fluid-structure interaction is a complex problem that is highly dependent on the pipe layout.

Generalization is not presently possible, and FSI calculations have to be treated on a case-

by-case basis (Wiggert & Tijsseling, 2001). Pipe coils deform in a three-dimensional space

with several degrees-of-freedom: deformation in the circumferential and axial directions,

flexion in the cross-sectional plane and along the pipe axis, torsion, shear, etc. Hence, for a

full description of the FSI of a pipe coil during hydraulic transients a multi-mode model is

required.

Tentarelli (1990) carried out FSI coupling in order to account for the Bourdon effect during wa-

terhammer events, which occurs in curved fluid-filled tubes of non-circular cross-section (Ti-

jsseling, 1996). The structural constraint conditions of the pipe coil, though, do not comply

with the Bourdon tube theory, as Bourdon tube is a disconnected torus with closed ends,
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while the pipe coil analysed herein must be considered as a connected torus (Ferràs et al.,

2014). Also, Anderson & Johnson (1990) analysed the effect of tube ovalling on pressure wave

propagation speed in the context of physiological flows, though, Ferràs et al. (2014) showed

that, for the coil case of study, the slight ovallity of the cross-section is negligible.

Radial inertia, flexure and torsion are neglected in the present research and the fluid-structure

interaction in the coil system is described by a four-equation model. Such assumption is based

on a previous study (Ferràs et al., 2014) where stress-strain laws were derived for coils loaded

by static inner pressure. It could be shown that torsional and bending movements in a pipe coil

are negligible in comparison to axial or circumferential displacements. Moreover, Ferràs et al.

(2014) also concluded that the axial stress generated for the inner pressure load is equivalent

to the axial stress produced in a free moving straight pipe with closed ends. Additionally

the numerical solutions analysed include Brunone’s unsteady skin friction computation and

Coulomb’s dry friction.

The novelty of this study is the description, analysis and discussion of the FSI occurring in

pipe coils by three one-dimensional conceptual models using a four-equation solver: the first

model simplifies the problem to a straight pipe with a moving end; the second is an analogue

mechanical model composed of a straight pipe with moving side pipe segments describing

the independent movement of each ring; finally, a third model is similar to the second but

assuming the vibrating rings are fully damped at each time-step. Unsteady skin friction and

dry friction have been included in the last model as dissipating mechanisms.

4.3.2 Data collection

The downstream boundary of the copper coil pipe facility (CCP) is equipped with a spherical

valve that allows the generation of waterhammer events by a fast manual valve closure, with an

effective closing time tv = 0.025 s, much lower than the half of the experimental wave period

(T = 4L/ah = 0.35 s) for an experimental wave celerity ah = 1193 m/s.

Several dimensionless parameters indicate when FSI effects might be important as referred in

Subsection 4.3.1. The values of these parameters for the copper coil facility are presented in

Table 4.2:

Table 4.2 – Dimensionless parameters for the experimental facility

ν ah/a3 r /e ρp /ρ f E/K R/r V0/ah

0.33 0.368 10 8.96 47.95 50 0.00028

The pressure histories at the downstream and midstream pipe sections for the experimental

tests carried out in the coil facility are presented in Fig. 4.14.

Fig. 4.15 depicts measured piezometric head immediately upstream the valve in comparison

with the numerical results obtained by the classic waterhammer model for an initial flow rate
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Figure 4.14 – Measured hydraulic head at the downstream (a) and midstream (b) pipe positions
for the transient tests carried out in the experimental facility.

Q0 = 400 l/h. The wave amplitude is significantly overestimated by the classic model. The

present study tries to reduce this overestimation by assuming that its source is the structural

behaviour of the coil pipe system as well as the movement of the downstream end valve.

Figure 4.15 – Measured hydraulic head at the downstream boundary in comparison with the
classic waterhammer theory solution for a fast hydraulic transient generated after an initial
discharge Q0 = 400 l/h.
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4.3.3 Model development

Characteristic grid in a four-equation model

The set of partial differential (Eqs. A.47) are transformed to ordinary differential equations

(compatibility equations) by applying the method of characteristics (MOC). Resulting equa-

tions can be easily integrated over a characteristic grid.

However, in a four-equation model two different waves propagate with different celerities

over the same characteristic grid: fluid pressure wave and solid stress wave. Two main ap-

proaches can be used: wave celerity adjustment in order to keep Courant numbers equal

to one by achieving a ratio between celerities of integer numbers, as suggested by Schwarz

(1978), Wiggert (1986) or Bergant et al. (2008b); or by applying either temporal or spatial

interpolation over the grid, as followed, for example, by Fan (1989), Elansary & Contractor

(1990), Bouabdallah & Massouh (1997) or Ghodhbani & Hadj-Taïeb (2013). Tijsseling (2003)

proposed a third approach, namely the resolution of an exact solution by means of a math-

ematical recursion. Methods based on interpolations introduce numerical dispersion and

diffusion, while the exact solution is feasible only for verification and validation, since for large

simulation times it is time consuming. The method applied herein is based on the celerities

adjustment, though, special attention was given on validation, as this method introduces

phase shift in the transient pressure wave.

For instance, when computing the theoretical wave celerities in the copper facility (see char-

acteristics in Table 4.2), the celerities obtained are 3423 m/s for the solid stress wave and

1261 m/s for the fluid pressure wave. To adjust the characteristic lines in the numerical grid two

different integer numbers ratio were tested
a?f
a?s

= 1
3 (being a?f = 1141 m/s for a?s = 3423 m/s)

and a more accurate
a?h
a?p

= 4
11 (being a?h = 1245 m/s for a?p = 3423 m/s). Inevitably such

adjustment leads to a small phase error resulting from the adjusted fluid wave celerity. To

minimize the error with respect to the theoretical wave celerity the ratio retained for the model

application was
a?h
a?p

= 4
11 .

Fluid and solid densities were corrected according to the modified celerities applying the

following equations (Lavooij & Tijsseling, 1991):

ρ?p = k1

(a?h
2 +a?p

2)+
√

(a?h
2 +a?p

2)2 −4(1+k1
k3
k2

a?h
2a?p

2)

2(1+k1
k3
k2

)a?h
2a?p

2
(4.38)

ρ?p = k2

(a?h
2 +a?p

2)−
√

(a?h
2 +a?p

2)2 −4(1+k1
k3
k2

a?h
2a?p

2)

2a?h
2a?p

2 (4.39)
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where ρ?f is the adjusted fluid density and ρ?p the adjusted solid density, a?h and a?p the

modified wave celerities, and ki are parameters given by: k1 = ( 1
K f

+ 2R
e

(1−ν2)
E )−1, k2 = E and

k3 = 2ν2 R
e .

The adjustment of wave speeds allows calculations to lie in the grid points. However, in

the boundaries and in their vicinities, temporal or spatial interpolations are unavoidable.

Temporal interpolations were carried out herein as shown in Fig 4.16.

Figure 4.16 – Scheme of the characteristic lines for the wave celerities adjustment
a?h
a?p

= 4
11 .

Boundary conditions and junction coupling

For a reservoir-pipe-system, the boundary conditions for the fixed infinite reservoir at the

upstream boundary arep
[
0, j

]= pr es

Uz
[
0, j

]= 0
(4.40)

while for a fixed valve at the downstream boundary they are
Uz

[
l , j

]= 0

V
[
l , j

]= τ(t )

√
∆p
ρ f g

(4.41)
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where τ(t ) is a function describing the valve closure, the coefficients in the squared brackets

correspond to space and time coordinate, 0 stands for the upstream boundary and l for the

downstream boundary, j for the time-step, and pr es is the pressure in the reservoir.

For a boundary condition of a moving valve, the balance of forces must take into account the

movement of the valve. Hence, the second law of Newton is applied, describing the rate of

change of momentum at the valve as the unbalance of forces over the valve between the fluid

pressure and the pipe-wall stress:

∆p A f −σz [l , j ]Ap = mvU̇z [l , j ] (4.42)

The resulting movement of the pipe induces an axial stress wave that propagates throughout

the pipe (junction coupling). Nevertheless, assuming static conditions, Ferràs et al. (2014)

showed that the axial stress in a toroidal pipe due to inner pressure is equivalent to the axial

stress of a non-anchored straight pipe with closed ends, beingσz [l , j ] = pr
2e , which corresponds

to Equation 4.42 considering a massless valve. However, in dynamic conditions, the inertia of

the moving element must be taken into account. By rearranging Equation 4.42 and considering

the change of flow rate due to valve closure, the following boundary conditions are obtained:
σz

[
l , j

]= A f ∆p
Ap

− mv
Ap

U̇z [l , j ]

V
[
l , j

]−Uz
[
l , j

]= τ(t )

√
∆p
ρ f g

(4.43)

The implemented four-equation solver is successfully verified at Appendix C by means of Delft

Hydraulics FSI benchmark problems from Tijsseling & Lavooij (1990) and Lavooij & Tijsseling

(1989).

4.3.4 Modelling approaches

Modelling assumptions

The coil pipe system, when pressurized, increases the fluid volume due to both the axial

and the circumferential deformation of the pipe-wall. Conversely, for negative pressures,

the pipe reduces its fluid volume. In coil-pipes, due to the axial deformation, this effect is

stronger than in straight pipes with anchored boundaries. The consequent response of such

“breathing" effect of the coil over the hydraulic transient wave is a smoothing of the pressure

peaks, resulting on a reduction of the wave amplitude.

Axial strains of a pipe coil for inner pressure loads in static conditions can be assumed to

be equivalent to the ones of a straight pipe with closed ends, though, with a modified wave

celerity (Ferràs et al., 2014). In the cited paper also the additional axial stress produced by

the centrifugal force of the rotating inner fluid throughout the coil was assessed concluding

that it is neglegible for the given ratio between the torus radius and the pipe radius (R/r )
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(Ferràs et al., 2014). Also the curvature in the coil pipe affects the velocity profile and conse-

quently the friction losses. Based on Blasius formulation Di Liberto et al. (2013) proposed a

formula to compute Darcy friction factor taking into account the curvature in serpentine pipes

( f = 0.304Re−0.25 + 0.029
p

r /R). As in the copper coil facility 0.304Re−0.25 >> 0.029
p

r /R,

the additional friction losses due to the pipe curvature can be neglected and friction factor

computed by Blasius formulation for both facilities. In the present study the interaction

between the pipe and the supporting structure is as well neglected, i.e. there is no transfer of

momentum or friction between the pipe-wall and the pipe-supports.

Three models have been developed for describing the pipe coil behaviour. Basic assumptions

for model conceptualization and discretization are depicted in Table 4.3.

Table 4.3 – Main modelling assumptions for the simulation of the coil system.

Model parameter Model-1 Model-2 Model-3
Solver four-equation two and four-equation two-equation adjusted
Geometry Single straight pipe Multi-pipe system Single straight pipe
Moving elements Valve Coil rings –
Celerities ratio (ah/a3) 4/11 4/11 –
Modified fluid celerity (a∗

h ) 1245 m/s 1245 m/s 1141 m/s
Modified solid celerity (a∗

3 ) 3423 m/s 3423 m/s –
Time-step (dt) 0.0025 s 0.0025 s 0.0025
Space-step (dx) 2.83 m 2.83 m 2.83 m

Model-1: straight pipe with moving valve

Model-1 corresponds to a four-equation model presented in Subsection 4.2.3, in the present

section it is used to describe the transient pressures in the coil copper facility. A reservoir-pipe-

valve system with a free moving valve was considered, describing the “breathing" effect of the

coil through the axial deformation of the straight pipe.

Model-1 has the following characteristics: pipe length of L = 105 m, pipe inner diameter

D = 2 cm, pipe-wall thickness e = 1 mm, modulus of elasticity E = 105 GPa, fluid bulk

modulus K = 2,19 GPa, fluid density ρ f = 1000 kg /m3, solid density ρp = 8960 kg /m3,

Poisson ratio ν = 0.33, initial flow velocity V0 = 0.354 m/s and initial Darcy friction factor

f = 0.035 (smooth wall pipe). Brunone’s unsteady friction computation has been taken into

account during the transient state using a reynolds dependent decay coefficient k.

Fig. 4.17 depicts the model results for a moving massless valve in comparison with the classic

waterhammer solution.

Piezometric head obtained by the four-equation model, although being smoothed due to

the non-instantaneous closure of the valve, is subdivided into three stages (see Fig. 4.17b):

Stage-1 in which the pressure is lower than the classic two-equation model; Stage-2 with higher

pressure and; finally, Stage-3 with a pressure decrease. The first pressure drop is caused by the
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Figure 4.17 – Results of Model-1: a) simulated piezometric head at the pipe downstream end
for a free moving massless valve versus results of classic waterhammer solver; b) detail of the
first peak. Notice that the pressure traces corresponding to the classic model with steady and
unsteady friction are almost overlapped.

movement of the valve in the downstream direction after the first pressure surge. Afterwards,

as the solid axial stress wave travels approximately 3 times faster than the fluid pressure wave,

at around one third of the pressure peak there is an increase of pressure resulting from the

negative axial stress which is pulling the pipe upwards, producing this “pumping" effect.

Finally, the axial stress wave bounces back pushing again the valve and producing the last

pressure drop over the pressure surge. Unsteady friction hardly affect pressure traces in the

one-mode model (as shown in Fig. 4.17), and the transient is highly dominated by FSI.

In order to assess the effect of the moving valve, a sensitivity analysis has been carried out for

the valve mass (mv ). A set of 100 simulations from mv = 0 kg until mv = 1000 kg was carried

out.

The range of possible solutions of the four-equation model for a free moving valve of variable

mass are shown in Fig. 4.18. The bold dashed line indicates the solution for the minimum valve

mass threshold modelled, which is equal to the already presented massless valve solution.

The dotted line depicts the output for the maximum valve mass threshold modelled, which is

mv = 1000 kg . As the mass valve increases, results tend to the solution of Poisson coupling

with a fixed valve. It is interesting to point out that, due to the dispersion effect of the mass

valve, the maximum pressure peak does not occur for an infinite mass valve (fixed valve) nor

for a massless valve, but for a solution in-between.

In order to determine the best simulation, the Mean Squared Error (MSE) was computed for

the first pressure peak (within the time slot 0.2 to 0.5 s, see Fig. 4.18-b) as a function of the mass

valve variation. The lowest MSE corresponds to a valve mass mv = 121 kg , which does not
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correspond to the valve actual weight (as the valve is quite small, weighting 300 g r ), however

it represents the valve constraints as the valve and the pipe at the downstream end are fixed to

a metal frame (not rigidly anchored).

Figure 4.18 – Feasible solution region of Model-1 output for a free moving valve with variable
mass (a); and Mean Square Error (MSE) values computed for the first pressure peak taking as
reference experimental observations (b).

Model-2: analogue mechanical model

In order to better describe the observed structural behaviour of the pipe coil during the

transient pressure wave propagation, an analogue mechanical model was build using the

four-equation FSI model. The approach applies the concept that the rings of the coil vibrate

independently from each other according to their inner pressure load in each time-step.
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To describe these independent vibrating rings two sorts of models were combined: 1) a main

two equation model representing a straight pipe with a total length of L = 105 m, discretized

by 38 nodes with each inner node representing a coil ring; and 2) 36 four-equation sub-models

describing the rings behaviour. These FSI sub-models were build as straight pipes of length

equal to the ring perimeter (i.e., 2.83 m) and with closed free moving ends. The valve in the

main pipe is fixed. The model is schematically shown in Fig. 4.19.

Figure 4.19 – Model-2: independent vibrating rings described by FSI sub-models which assume
straight pipes with closed free moving ends.

The coupling is carried out by considering the centre node of the ring models as the inner

node of the main system. In each time-step, the pressure of the rings is equal to the pressure

of the entire submodels, consequently the free moving ends stretch or shrink the pipes and

describe such ring behaviour. This effect produces an increase or decrease of pressure which

is transferred to the main pipe. The effect of the moving closed ends can be calibrated by

adding inertia to the pipe boundaries (i.e. varying the mass of the extreme ends of the pipe

segments representing the coil rings). Finally, velocity must be recomputed in each time-step

and each node of the main system.

A calibration sequence is carried out in Model-2 by a three steps procedure. First, the overall

mass of the coil rings is analysed considering the mass is homogeneously distributed through-

out the coil. Then a sensitivity analysis allows the understanding of the effect of the mass

distribution on the coil rings. Finally a manual calibration was carried out with the goal to fix

the best mass distribution.

Sensitivity analysis: First, a set of simulations was carried out by equally varying the mass

of all rings, from mr = 0 kg to mr = 40 kg with the aim of assessing the sensitivity of model

output to the rings inertia. For this set of simulations Fig. 4.20 show the solution band for the

varying mass in the rings. As it can be observed, the proposed mechanical model allows a good

adjustment of the pressure peaks by considering the independent expansion and contraction

of the rings. The simulation with the best fitting to measurements (i.e. lowest MSE) was

selected from the sequence presented above. The calibration process consisted of distributing
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a varying mass throughout the coil rings in order to get the best fitting for the first pressure

peak. For this purpose, in a second step, a sensitivity analysis of the mass distribution in the

rings was carried out (Fig. 4.20-b). The analysis consisted of a set of simulations by enabling

the free movement of massless rings throughout the coil except one fixed ring. Each ring was

assessed. A total of 36 simulations was carried out. The output allowed the analysis of the

effect of the fixed ring over the pressure output. Fig. 4.21 depicts hydraulic head during the

first peak for the mentioned set of simulations.

Figure 4.20 – Model-2 output considering a varying mass of the rings in comparison with
measured pressure data at the downstream end (a); and Mean Square Error (MSE) values as
a function of ring mass variation computed for the first pressure peak taking as reference
experimental observations (b).
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Figure 4.21 – Model-2 output (a) of the first pressure peak for a set of simulations by allowing
the free movement of the rings except one. The position of the fixed ring is changed in each
simulation (1 = upstream ring; 36 = downstream ring). Mean Squared Error (b) computed
taking as reference the massless rings solution.

The sensitivity of the model to the mass ring distribution is shown in Fig. 4.21-b presenting

the computed MSE by taking as reference the solution of massless rings throughout the coil.

Thereby, the lower MSE is, the closer the model output is to the massless rings solution, and

consequently, the lower is the sensitivity of the model to the fixed ring.

Calibration: Fig. 4.21-b depicts the closer to the upstream boundary the rings are, the less

sensitive is the model to the ring movement. Finally, taking into account this sensitivity

analysis and based on the best ring mass of Fig 4.20-b (i.e. 2.9 kg ), a manual calibration was
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carried out by distributing the mass over the rings with the purpose to get the best fit for the

first pressure peak. Fig. 4.22 shows the distribution of mass over the rings after calibration.

Calibrated mass rings aim to describe different supporting stiffness and the consequent

independent movement.

Figure 4.22 – Mass distribution of the rings throughout the coil after calibration.

As it can be seen in Fig. 4.23, results from the simulation with homogeneous mass load are

quite accurate in regard to the wave amplitude and phase, however this simulation does not

describe the wave shape, being quite similar to the classic theory.

On the other hand, the model calibration by distributing the mass loads allows a very good

fitting in the first pressure peak. However, the achieved wave shape remains quite stable over

the propagated pressure peaks.

Figure 4.23 – Model-2 output after calibration, either with homogeneous rings mass or dis-
tributed, and in comparison with measured pressure data at the downstream end.
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Model-3: 1-mode adjusted model

A third model has been developed considering that the vibration of the coil rings is highly

damped by the dry friction between the pipe and its supports, their viscoelastic behaviour,

and the transfer of momentum between the pipe and its supporting structure. As defined

by Chaudhry (2014): “a transient-state is that intermediate-stage when the conditions are

change from one steady-state condition to another steady-state”. In the coil pipe system the

transient flow is coupled with the transient vibration of the rings. The first vibrates at a

frequency of 2.7 Hz while the latest at 272.4 Hz. Considering this higher vibration of the

coil rings and the aforementioned damping mechanisms it is legitimate to assume that at

the vibration of the coil rings fully develop their final steady-state at each fluid wave cycle.

Therefore, in Model-3 implementation the pipe rings deform following the inner pressure

loading by means of a quasi-steady assumption and applying stress-strain relations. At each

time-step, the two-mode vibration of the coil rings is assumed to reach the final stead-state.

According to Model-2, the final steady-state of the second pipe vibrating mode corresponds to

null flow and pipe-wall movement. Hence, to compute the pressure variation caused by the

coil breathing effect, the following conditions are imposed for the second oscillation mode, at

every node and time-step:

V j
i = 0 (4.44)

Uz
j
i = 0 (4.45)

A third condition is added to the model, coming from the stress-strains relations given by the

balance of forces of inner pressure, axial stress and dry friction at the pipe supports. The model

domain is discretized in 36 nodes, each node represents a coil ring and the pipe supports are

embedded at each node. Fig 4.24 depicts the balance of forces carried out at each node.

Figure 4.24 – Schematic of Model-3: (a) general overview and (b) detail of balance of forces
carried out at the end of the pipe-segments.
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From this balance the axial stress in the coil rings is obtained as a function of the inner pressure

increment:

σz
j
i =

A f

Ap
(p j

i −p j−1
i )− µ · g ·mr

Ap
(4.46)

Substituting Eqs. 4.44, 4.45 and 4.46 into the compatibility equations of the two-mode solver,

the updated pressure is obtained by means of the following implicit equation:
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(4.47)

where the term Cn f is known and depends on the values of the dependent variables at the

previous time-step (Lavooij & Tijsseling, 1991). After few iterations the correction of pressure

due to the breathing effect of the coil rings, at every node and for each time-step, is obtained

by means of Eq. 4.47.

The setting up of the model consists of fixing the mass of the coil rings, which is calculated ac-

cording to pipe geometry and material densities, and assumming variable Coulomb’s static (µs)

and kinetic (µs) dry friction coefficients. These coefficients represent the anchoring conditions

of the coil rings. The coil rings are allowed to move if the static dry friction force is exceeded;

when this happens, the pressure at a node is corrected using Eq. 4.47 and considering the

kinetic Coulomb’s coefficient.

Fig. 4.25 depicts a sensitivity analysis carried out by modifying, homogeneously, the dry

friction coefficient, and considering it constant at every dead-end node.
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Figure 4.25 – Model-3 output (a) for a set of simulations varying the Coulomb’s dry friction
coefficient. (b) Mean Squared Error computed taking as reference the measurements.

Finally, a manual calibration by adjusting, node by node, static and kinetic dry friction coeffi-

cients is carried out. Fig. 4.26 depicts the value of the calibrated parameters along the pipe and

Fig. 4.27 shows the respective model output. Note that node-1 is the closest to the upstream

and node 35 to the downstream. As expected, calibrated coefficients closer to the downstream

boundary are higher as transient pressures increase to downstream and consequently, the

breathing effect of the coil and dry friction are higher as well. The sensitivity of the model

to the friction coefficient values located from midsection to upstream is very low, hence the
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linear variation is not representative of any law in the dry friction distribution.

Figure 4.26 – Distribution of Coulomb’s friction coefficients, kinematic and static, along the
pipe rig.

Figure 4.27 – Model-3 output after calibration (according Fig 4.26) v.s. experimental data at
the downstream end section.

As result of the simplification of the model and the inclusion of dry friction dissipation an

accurate fitting can be observed in Fig. 4.27. The coil breathing effect is well described, not

only by the systematic reduction of the wave amplitude but also by the wave shape during the

transient event.
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4.3.5 Results discussion

The three implemented models, assumming different modelling assumptions, lead as well

to different numerical results. Figs. 4.28 and 4.29 show the results of the best simulations

of the three models respectively at the downstream and midstream pipe sections. The best

simulation of Model-1 corresponds to a valve mass of mv = 121 kg , with a MSE = 127.31 m2

at the downstream section and for the simulation period of 1.5 s. The best simulation of

Model-2, with a MSE = 32.73 m2, corresponds to the mass distribution over rings presented

in Fig. 4.22 (total mass of 100.8 kg over the entire coil). Both mass values are of the same

order of magnitude and are in accordance with the real mass of the coil system, which is

95 kg; this represents actually the real inertia that both models aim to simulate. Finally, the

best simulation of Model-3 corresponds to the real mass of the system with the calibrated

Coulomb’s dry friction coefficients of Fig. 4.26. The much lower MSE of Model-3 suggests its

modelling assumptions are more faithful to the physics of the real system.

Figure 4.28 – Pressure outputs at the downstream section of the pipe from the best simulations
of Model-1 and Model-2 in comparison with measurements. Computed MSE are shown for
both models.
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Figure 4.29 – Pressure outputs at the middle section of the pipe from the best simulations of
Model-1 and Model-2 in comparison with measurements. Computed MSE are shown for both
models.

Although Model-1 enables the description of the pressure variation according to pipe-wall

axial deformation, the model does not describe with accuracy the shape of the pressure

wave. Consequently, the mean squared error is quite high in comparison to Model-2 for both

measuring points. Model-2 presents very good agreement with measured data for the first

pressure peak, since the distributed mass of the rings allows an accurate calibration of the

pressure wave shape. However, the calibrated wave shape in the first pressure peak does

not evolve according to the observed propagation of the transient event. Finally, thanks to

the incorporation of dry friction dissipation, the computed waterhammer wave of Model-3

evolves in terms of shape and damping showing a very good fitting to measurements.

The main difference between Model-1 and Model-2 is on how junction coupling is considered.

In Model-1 the junction coupling is focused on the balance of forces over the valve (boundary

condition). In Model-2, junction coupling results from the balance of forces in each coil ring

(internal conditions). In the experimental coil system, the moving elements are the rings

and not the valve, hence Model-2 is more faithful to the real phenomenon. However, the

mechanical model proposed does not entirely solve the FSI problem, as variables related to

the structure are only partially solved in the pipe segments representing the coil rings and

unsteady friction and dry friction are not taken into account. Model-3, corresponds to a

simplification of Model-2, where, additionally unsteady skin and dry friction dissipation have

been included. Unsteady skin friction does not significantly affect the transient wave (see

Fig. 4.17)

Finally, in order to validate and to show the reliability of Model-3, different time-series are
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displayed in Figs. 4.30 and 4.31, where a consistent fitting between observations and numerical

output can be observed for different initial discharges and along the waterhammer wave

propagation, on space and time. The values of the calibrated dry friction coefficients were

adjusted proportionally to the initial discharge, as consequence of the variability of the normal

anchoring force against the pipe-supports.

Figure 4.30 – Pressure outputs for initial discharges Q0 = 100 l /h, Q0 = 200 l /h and Q0 = 400 l /h
at the downstream section of the pipe from the selected solution of Model-2 in comparison
with measurements.

Figure 4.31 – Pressure outputs for initial discharges Q0 = 100 l /h, Q0 = 200 l /h and Q0 = 400 l /h
at the middle section of the pipe from the selected solution of Model-2 in comparison with
measurements.
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4.3.6 Research outcome

A mathematical model that describes the fluid-structure interaction occurring in a coil pipe

system during hydraulic transient events has been developed. The followed approach is

based on the implementation of a four-equation model, which takes into account the effect

of axial stress waves throughout the pipe-wall. The research novelty is the identification and

description of the FSI phenomenon occurring in pipe-coils systems.

After the implementation of a basic FSI four-equation model and its verification by means of

the Delft Hydraulics benchmark Problem A (Tijsseling & Lavooij, 1990; Lavooij & Tijsseling,

1989), three models were built up with the goal to adapt to the coil singularities. Model-1

simplifies the coil pipe system to a straight pipe with a moving valve at its downstream end. In

Model-2 the independent vibrating rings are described by assuming an analogue mechanical

model. In Model-3, only the first vibration mode of the pipe is solved and pressures are

corrected by adding internal conditions that take into account the movement of the pipe and

the dry fiction against the pipe supports. The main difference between Model-1 and Model-2

is how junction coupling is considered. Model-3 considers additional dissipating phenomena,

namely unsteady skin friction and dry friction.

In Model-1, the generation of axial stress waves due to junction coupling is localized in the

valve, while in Model-2 is rather distributed throughout the ring bends. In a static analysis

this fact does not make any difference as both models would return equal stresses for equal

pressure loads. The present study shows that when fluid variables are dynamically interacted

with solid variables, the source of the axial stress wave does matter. Contrarily to Model-1

where the valve mass was object of calibration, in Model-2 it is the mass of each indivdual

ring that is calibrated. Detailed calibration is also allowed in Model-3 by means of dry friction

adjustment. Instead of the system inertia, in Model-3 dry friction dissipation occurring

between the pipe-wall and the pipe supports is taken into account.

The three models confirm the hypothesis that the cause of the discrepancy between the

experimental measurements and the output from the classic waterhammer model, stated

in Subsection 4.2.2, stems from the interaction between the fluid and the coil structural

behaviour. As shown, this can be corrected by means of a four-equation model, which covers

the coupling of the fluid pressure wave with the solid axial stress wave, hence describing the

“breathing" effect of the coil due to the longitudinal movement of the pipe-wall. Model-1 is a

good first approximation to tackle the FSI problem. However, it does not allow an accurate

description of all the physical phenomenon. Model-2, using the analogue mechanical model,

attempts to describe the movement of the coil rings that are not rigidly fixed. This behaviour

is case-dependent and must be calibrated based on collected data. The same comment stands

for Model-3. The inclusion of dry friction dissipation allows a much greater accuracy during

the wave propagation, and, after calibration, Model-3 shows a good performance and it allows

a more precise description of the dynamics of the FSI occurring in the coil facility. Model-3

has been successfully validated for three different experimental tests at different initial flow
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rates. The model output showed a good agreement with the experimental observations, either

on time and space.

4.4 Overview and concluding summary

In a first stage, a stress-strain analysis is carried out aiming at the description of the static

structural behaviour of a coil pipe system exposed to inner pressure loads. For this purpose

theory of shells of revolution is applied and effects such as the ellipticity of the pipe cross-

section or the centrifugal force generated by a steady flow in the coil pipe are considered.

Finally the stress-strain model is applied for dynamic waterhammer tests giving accurate

results for a quasi-static uncoupled approach. This first stress-strain analysis concludes that

the static deformations of the pipe coil system are equivalent to those of a straight pipe with

closed ends. Hence, according to the classification presented at Section 2.2, the pipe response

can be described by focusing on the 3-DOF.

In a second stage, a 1D waterhammer model describing the fluid-structure interaction in pipe

coils is developed. Based on the conclusions from the stress-strain analysis three conceptual

models engined by a four-equation solver are used. The different models are compared with

experimental data concluding that the dynamic response of the coil system differs from that

of a straight pipe. The independent vibrating coil rings must be considered, converting FSI in

coils a case-dependent problem difficult to be approached by a general solution.

Finally, a 1-DOF model adjusted to account for the pipe-wall movement is proposed. Internal

conditions, considering a quasi-steady pipe-wall deformation of the coil rings, are applied

accordingly to the stress-strain analysis. Unsteady skin friction and dry friction dissipation

were also included, allowing a much greater accuracy during the wave propagation. The

model was successfully validated for different flow rates showing a good performance of the

dynamics of the coil behaviour during hydraulic transients.
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5 Fluid-structure interaction in straight
pipelines

The present chapter is based on the following scientific publications:

• D. Ferras, P. Manso, D. Covas, A.J. Schleiss. Fluid-structure interaction in straight

pipelines: friction coupling mechanisms. Accepted for publication at the Journal of

Computers and Structures (June 2016)

• D. Ferras, P. Manso, D. Covas, A.J. Schleiss. Fluid-structure interaction in straight

pipelines anchored against longitudinal movement. Submitted at the Journal of Sound

and Vibration (March 2016)

The work presented hereafter is original and was performed by the first author. The interpreta-

tion and discussion of results was carried out with the collaboration of the co-authors.

5.1 Introduction

In straight pipelines all the interaction mechanisms between the fluid and the structure

(i.e. Poisson, junction and friction coupling) act alongside the pipe axial direction. Hence,

1,2,3-DOF’s are the main degrees-of-freedom excited in straight pipelines during waterham-

mer waves. For thin pipe-wall conduits, where the inertia of the pipe 2-DOF is negligible a

four-equation model is sufficient for accurately describing hydraulic transients in straight

pipelines. However, depending on the pipe configuration, reactions like the pipe anchoring,

valve movement or dry friction between the pipe-wall and the outer surrounding may affect

the waterhammer wave shape, damping and timing. In the present chapter these effects are

analysed by the incorporation of several add-ons in the basic four-equation solver. Experi-

mental validation is carried out by collected data from the experimental set-up described in

Subsection 3.2.1.

A first approach is carried out by considering no anchors along the pipe-rig and friction

coupling is analysed. Both dissipation mechanisms unsteady skin friction and dry friction are
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considered and two different experimental set-ups are assessed: (a) the conduit anchored in

both pipe-ends; and (b) the downstream pipe-end is free to move. The aim of this first stage is

to learn the importance of the different friction mechanisms in the dissipation of hydraulic

transients in straight pipelines.

A second assessment is performed aiming at describing the behaviour of the pipe supports

and their effect in the transient wave. For this purpose internal conditions are added in the

four-equation solver. These internal conditions represent the pipe supports and they are

defined by considering the inertia and the dry friction of the anchoring block, which is their

resistance to movement. Hence, junction coupling is applied at each anchoring node by means

of a balance of forces in the second law of Newton. For model validation three basic anchoring

configurations are assessed: (a) the conduit anchored in both pipe-ends; (b) the downstream

pipe-end is free to move; and (c) the conduit is anchored in the midstream section. After this

second stage, the goal is to achieve a four-equation model capable of describing with accuracy

the behaviour of the straight pipelines most common engineering practices.

5.2 Friction coupling mechanisms

5.2.1 Introduction and background theory

Fluid-structure interaction (FSI) in pressurized hydraulic transients analyses is frequently

approached by considering the first two pipe vibration modes (i.e., pressure wave propaga-

tion in the fluid and axial stress wave propagation in the pipe-wall). For the description of

pressure waves in pipe systems, one-mode or two-mode solutions are sufficient (Tijsseling,

1996). Two-mode models can be implemented either by using MOC-FEM procedure (i.e., the

method of characteristics for the fluid and finite element method for the structure) (Wiggert,

1983) or MOC procedure (i.e., the method of characteristics for both the fluid and the struc-

ture) (Wiggert et al., 1985a). Lavooij & Tijsseling (1991) applied the two approaches to solve

the four basic conservation equations in the time domain, concluding that for straight pipe

problems the MOC procedure is more accurate. Thus, a four-equation model represents a

suited tool to describe the ideal reservoir-pipe-valve system in its basic FSI configurations,

namely either considering an anchored or non-anchored downstream valve.

Several authors combined FSI with other wave dissipating phenomena, such as: FSI and pipe-

wall viscoelasticity (Weijde, 1985; Walker & Phillips, 1977; Stuckenbruck & Wiggert, 1986); FSI

and cavitation (Tijsseling, 1993; Tijsseling et al., 1996; Tijsseling, 1996); and the most complete

including FSI, column separation and unsteady friction (UF) in a viscoelastic pipe (Keramat &

Tijsseling, 2012). However, the effects of unsteady friction and pipe-wall viscoelasticity are

hard to distinguish (Covas et al., 2004b) and, to the knowledge of the authors, unsteady friction

effect has never been separately assessed in a two-mode FSI model. Due to FSI, the pipe-wall

vibrates axially at a different rate than the fluid, hence, the relative velocity between both (Vr )

must be considered for skin shear stress assessment. The higher the Mach number (Vr /ah) is,
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the greater the wall shear stress effects are (Ghidaoui et al., 2005). Therefore, unsteady friction

effects may be increased when fluid-structure interaction is important.

Besides, in the implementation of a four-equation model a major question may arise: Is

there movement in the pipe supports? Anchorages of pipelines aim to avoid the pipe-wall

movement essentially by means of dry friction (Feeny et al., 1998). However, from Newton

principles, when a system is loaded, null deformation/displacement by means of only resis-

tance is not possible. Pipe supports are never entirely stiff or entirely inert when loaded by

impacts (Tijsseling, 1997). Thus, movement occurs. Dry friction is proportional to the normal

force, hence, for a high normal force, important energy might be dissipated from the structure

to its supports/surroundings. Furthermore, in this context, it is crucial to define with good

criteria the stick-slip transitions.

Tijsseling & Vardy (1996a) included Coulomb’s dry friction in a four-equation model with the

goal to describe the behaviour of pipe racks, proposing a quantitative guideline equation

aiming at assessing when dry friction forces may be relevant during hydraulic transients. In

the present work dry friction is approached differently not at a single point but distributed

all throughout the pipeline. For this purpose, a new right-hand-side term in the momentum

equation of the pipe-wall axial movement was incorporated.

This research aims at assessing firstly the effect of different skin friction models during hy-

draulic transients in a FSI 4-equation solver. For this purpose, three skin friction models are

assessed: (i) quasi-steady friction; (ii) Brunone’s unsteady friction formulation, which is based

on instantaneous local and convective accelerations; and (iii) Trikha’s unsteady friction model,

which is based on weights of past velocity changes. Secondly, dry friction is implemented, nest-

ing its computation into the friction coupling mechanism, and its dissipation effect over the

transient wave is assessed. The theoretical background of these implementations is explained

in Chapter 2 and the respective Appendices A to D.

The aim of this section is the assessment of different friction dissipation assumptions in a FSI

two-mode model. A four-equation solver is implemented including the three basic coupling

mechanisms: Poisson, junction and friction coupling; and the last one nests the skin friction

models (i.e. quasi-steady, Brunone’s and Trikha’s) and the dry friction model (i.e. Coulomb’s

friction). The innovation of this research is the incorporation of dry friction computation

in the fundamental equations of the two-mode (four-equation) waterhammer model. This

implies a modification of the pipe-wall momentum equation in the axial direction. The effect

of dry friction is compared with skin friction and results are assessed by means of experimental

data in a straight copper pipe rig.

5.2.2 Experimental data collection

The experimental data used in the present study was acquired from the straight copper pipe

rig (SCP) assembled at the Laboratory of Hydraulics and Environment of Instituto Superior
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Técnico (LHE/IST), Lisbon, Portugal, and described in the Subsection 3.2.1. Two supporting

configurations have been analysed: (a) the conduit anchored against longitudinal movement

at both downstream and upstream ends; and (b) the conduit only anchored against longitu-

dinal movement at the upstream end. Throughout the pipe there were no anchorages nor

supports; the pipe layed directly over the floor of the laboratory.

Table 5.1 summarizes the tests carried out in these experimental configurations, displaying

the initial flow velocity and Reynolds number, the initial piezometric head and the maximum

and minimum piezometric heads measured immediately upstream the valve.

Table 5.1 – Characteristics of the experimental tests.

Test ID V0 (m/s) Re0 H0 (m) Hmax (m) Hmi n (m) Valve

SCP01 0.26 5276 43.65 77.25 10.66 fixed

SCP02 0.36 7253 42.39 88.67 -2.95 fixed

SCP03 0.41 8206 42.87 94.88 -8.67 fixed

SCP04 0.26 5276 44.16 83.17 5.97 released

SCP05 0.36 7253 42.27 94.69 -8.34 released

SCP06 0.41 8206 42.55 100.04 -9.95 released

Figs. 5.1-a and 5.1-b depict the transient pressure traces at the downstream section for both

anchoring conditions. Figs. 5.2-a and 5.2-b depict the transient circumferential and axial strain

traces, respectively, at the downstream pipe section for both anchoring conditions. As it can

be observed, strain and pressure traces present a similaar response during the waterhammer

wave being in pressure and circumferential strains in phase, and axial strains following the

expected behaviour according to Poisson effect. Either in terms of pressure (Fig. 5.1) or strain,

(Fig. 5.2), the system response is very different when the downstream pipe-end is released,

presenting greater maximum pressures and a noticeable wave shape change.
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Figure 5.1 – Pressure data acquired at the downstream end (PT3) of the straight copper pipe
for an anchored (a) and for a non-anchored (b) downstream end.
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Figure 5.2 – Circumferential (solid lines) and axial (dashed lines) strain data acquired at the
downstream section of the straight copper pipe for an anchored (a) and for a non-anchored (b)
downstream end.

5.2.3 Numerical model development

Fundamental equations

The following set of equations (Eqs. 5.1 to 5.4) is based on Lavooij & Tijsseling (1991) four

fundamental conservation equations with the momentum equation (Eq. 5.3) of the pipe-wall

in the axial direction adapted in order to include dry friction (v.i. ?). Their derivation is
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presented in Appendices A and D.

∂V

∂t
+ 1

ρ f

∂p

∂z
=− f

4r
(Vr )|Vr | (5.1)

∂V

∂z
+ 1

ρ f a2
h

∂p

∂t
= 2ν

E

∂σ

∂t
(5.2)

∂U

∂t
− 1

ρp

∂σ

∂z
= ρ f A f

ρp Ap

f

4r
Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ si g n(U )︸ ︷︷ ︸
?

(5.3)

∂U

∂z
− 1

ρp a2
p

∂σ

∂t
=− rν

eE

∂p

∂t
(5.4)

It is the right-hand-side terms of Eqs. 5.1 to 5.4 that make the system of equations nonlinear.

The right-hand-side term of the fluid continuity equation (Eq. 5.2) describes the interaction

with the pipe-wall by means of Poisson coupling mechanism. Similarly, the right-hand-side

of the pipe-wall continuity equation (Eq. 5.4) describes the interaction with the fluid. On the

other side, the right-hand-side terms of the momentum equations (Eqs. 5.1 and 5.3) represent

the friction losses. Skin friction loss affects oppositely the fluid and the pipe-wall, while dry

friction (v.s. ?) only affects the pipe-wall momentum equation, as this occurs between the

pipe and the outer surrounding.

Compatibility equations

Eqs. 5.1, 5.2, 5.3 and 5.4 represent a linear hyperbolic system of four first-order partial differ-

ential equations. Due to its hyperbolic nature, the system can be converted into a set of four

ordinary differential equations (Eqs. 5.5) by the MOC method (Forsythe et al., 1960; Lavooij &

Tijsseling, 1991). The derivation of the compatibility equations is explained in Appendices B

and D. The ξ coefficients are presented in Table B.3, while the SF f and DFs coefficients cor-

respond, respectively, to the skin and the dry friction losses terms and they can be found in

Table D.2.
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
ξ fV ξ fp ξ fU −ξ fσ

ξ fV −ξ fp ξ fU ξ fσ

−ξsV −ξsp ξsU −ξsσ

−ξsV ξsp ξsU ξsσ

 d

d t


V

p

U

σ

=


SF f +DF f

SF f +DF f

SFs +DFs

SFs +DFs

 (5.5)

The compatibility equations are only valid along the characteristic lines with slopes: ±1/a f

for the characteristics associated with the fluid, and ±1/as for the characteristics associated

with the pipe-wall. Fig. 5.3 depicts the adopted numerical scheme at the interior nodes and

the domain boundaries, where: ‘P ’ represents the space and time coordinates in the grid

where the computation is carried out, ‘A’ represents the information source brought by the

positive characteristic line in the pipe-wall, ‘B ’ the information source brought by the positive

characteristic line in the fluid, ‘C ’ the information source brought by the negative characteristic

line in the fluid and ‘D’ the information source brought by the negative characteristic line

in the pipe-wall. Notice that time interpolations are necessary in the nodes close to the

extreme-end boundaries.

Figure 5.3 – Numerical scheme of the four-equation model. Characteristic lines at different
sections of the pipe.
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The previous ordinary differential equations (Eqs. 5.5) can be integrated according to the

schemes presented in Fig. 5.3

ξ fV

∫ P
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d t
+ξ fp

∫ P
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d p

d t
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D
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(5.10)

reaching the following discrete linear explicit system of equations:

ξ fV VP +ξ fp pP +ξ fU UP −ξ fσσP +C p f = 0 (5.11)

ξ fV VP −ξ fp pP +ξ fU UP +ξ fσσP +C n f = 0 (5.12)

−ξsV VP −ξsp pP +ξsU UP −ξsσσP +C ps = 0 (5.13)

−ξsV VP +ξsp pP +ξsU UP +ξsσσP +C ns = 0 (5.14)

where Eqs. 5.11 and 5.12 correspond to the positive and negative characteristic equations

of the fluid pressure wave and Eqs. 5.13 and 5.14 correspond to the positive and negative

characteristic equations of the axial stress wave. The values C p f , C n f , C ps and C ns enclose

the information from the previous time-step:

C p f =−ξ fV VB −ξ fp pB −ξ fU UB +ξ fσσB +SF fB +DF fB (5.15)

C n f =−ξ fV VC +ξ fp pC −ξ fU UC −ξ fσσC +SF fC +DF fC (5.16)

C ps = ξsV VA +ξsp p A −ξsU UA +ξsσσA +SFsA +DFsA (5.17)

C ns = ξsV VD −ξsp pD −ξsU UD −ξsσσD +SFsD +DFsD (5.18)

Interior nodes

From the linear system of equations (Eqs. 5.11, 5.12, 5.13 and 5.14) the following expressions

are obtained determining the dependent variables along the interior nodes:

pP =−
C p f −C n f

ξ fσ
− C ps−C ns

ξsσ

2
(
ξ fp

ξ fσ
+ ξsp

ξsσ

) (5.19)
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VP =−
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2
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) (5.20)

σP =
C p f −C n f

ξ fp
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ξsp

2
(
ξ fσ

ξ fp
+ ξsσ

ξsp

) (5.21)

UP =−
C p f +C n f

ξ fV
+ C ps+C ns

ξsV

2
(
ξ fU
ξ fV

+ ξsU
ξsV

) (5.22)

Boundary conditions

Upstream reservoir: As shown in Fig. 5.3-a only the negative characteristic lines reach the

upstream boundary. The boundary condition for a constant level reservoir in the upstream

pipe-end is given by:

pP = pr es (5.23)

UP = 0 (5.24)

Substituting the Eqs. 5.23 and 5.24 into Eqs. 5.12 and 5.14 expressions for VP and σP are

obtained.

VP =

(
ξ fp

ξ fσ
+ ξsp

ξsσ

)
pr es − C n f

ξ fσ
+ C ns

ξsσ

ξ fV
ξ fσ

+ ξsV
ξsσ

(5.25)

σP =

(
ξ fp

ξ fV
− ξsp

ξsV

)
pr es − C n f

ξ fV
− C ns

ξsV

ξ fσ

ξ fV
+ ξsσ
ξsV

(5.26)

Downstream valve: A solution is derived for a non-instantaneous valve closure, with a non-

anchored pipe-end and taking into account the valve inertia. As shown in Fig. 5.3-b only the

positive characteristic lines reach the downstream boundary. The boundary conditions for
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such assumptions are expressed in Eqs. 5.27 and 5.28, where the first determines the discharge

rate through the valve and the second the balance of forces at the valve section by means of

Newton’s second law of motion.

VP = τ(t )

√
∆p

ρ f g
+UP (5.27)

σP = 1

Ap

(
A f (1−τ(t ))(pP −p0)−mv

∆U

∆t

)
(5.28)

A non-linear dependency arises between the valve displacement and the valve closure, yet, it is

a second degree relation. Substituting the Eqs. 5.27 and 5.28 into Eqs. 5.11 and 5.13 expressions

for pP and UP are obtained.

pP =
(
−b∗+

√
b∗2 −4a∗c∗

2a∗

)2

+p0 (5.29)
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(5.30)

For the anchored valve condition a very high fictitious mass value is considered so the down-

stream section becomes motionless.

Notice that, as it can be inferred from Figs. 5.3-a and 5.3-c, temporal interpolation have to be

carried out at the nodes located in the vicinity of the computational domain boundaries as a

consequence of the leaps adopted in the numerical scheme.
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5.2.4 Model testing

Introduction

The implemented model describes three physical phenomena occurring during hydraulic

transients in pipe-flow: fluid-structure interaction, skin friction and dry friction. To ensure

and verify the implemented code outputs according with the modelling assumptions, the

three phenomena are assessed one at a time by deactivating their functionality in the code;

afterwards they are combined two at a time. Table 5.2 summarizes how this verification tests

have been carried out according to the combination of each one of the modelled phenomena.

The geometry of the simulated pipe corresponds to the experimental facility described in

Subsection 5.2.2.

Table 5.2 – Summary of simulations carried out for model verification. (3) activated mecha-
nism, (–) deactivated mechanism.

Fluid-structure interaction Skin friction Dry friction
Test ID

Poisson coupling Junction coupling Steady Brunone Trikha Coulomb

Cl-1 – – – – – –

FSI-1 3 – – – – –

FSI-2 – 3 – – – –

SF-1 – – 3 – – –

SF-2 – – – 3 – –

SF-3 – – – – 3 –

DF-1 – – – – – 3

DF-2 3 – – – – 3

DF-3 – 3 – – – 3

Note: Cl = classic model; FSI = fluid-structure interaction; SF = skin friction; DF = dry friction.

Thereafter, in the following subsections fluid-structure interaction, skin friction models and

Coulomb’s dry friction are separately verified and assessed. The aim is not only to show the

right performance of the implemented code but also the sensitivity of the numerical output to

each phenomenon in terms of wave shape, timing and damping.

Fluid-structure interaction verification

With skin and dry friction deactivated a verification of the fluid-structure interaction was

carried out for the two basic configurations: anchored (FSI-1) and non-anchored (FSI-2) pipe-

ends. The first allows the assessment of Poisson coupling, as the Poisson’s effect throughout

the pipe-wall generates axial displacements. The second allows the assessment of Junction

coupling due to the valve movement. Figures 5.4-a and 5.4-b depict the numerical outputs

from these simulations. Both show the effect of the axial stress waves propagating at a celerity

three times faster than the waterhammer wave.
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Figure 5.4 – Frictionless four-equation FSI model output for (a) anchored and (b) non-
anchored downstream pipe-end vs. classic theory. Simulation period of 0.3 s

The apparent amplification of the transient pressure of Fig. 5.4 can be further analysed by

longer simulation periods. For this purpose simulation periods of 3 s were launched. Results

are shown in Fig. 5.5.

Figure 5.5 – Frictionless four-equation FSI model output for (a) anchored and (b) non-
anchored downstream pipe-ends vs. Joukowsky overpressure. Simulation period of 3 s.

Fig.5.5-a depicts a phenomenon called the Poisson-coupling beat, which was already doc-

umented and described by Tijsseling (1997). The phenomenon is not present for a non-

anchored pipe end as shown in Fig. 5.5-b. Comparing with Joukowsky overpressure (∆HJK =
ah∆V /g ) both simulations show that FSI does not introduce directly damping into the pipe

system and the maximum pressure may be much higher than Joukowsky overpressure.

Skin friction verification

The verification of the skin friction models was carried out by activating and deactivating

Poisson coupling, according to Table B.3, the different skin friction computations once at a

time: (i) quasi-steady friction (SF-1), (ii) Brunone’s unsteady friction (SF-2), and (iii) Trikha’s
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unsteady friction (SF-3).

Fig. 5.6 compares both unsteady friction models with quasi-steady friction at the downstream

end of the pipe; Joukowsky overpressure (∆HJK ) is also presented in this figure. Brunone’s

unsteady friction model introduces a higher damping and delay on the transient wave, while

Trikha’s model affects rather the wave shape.

Figure 5.6 – Quasi-steady friction (SF-1) vs. (a) Brunone’s (SF-2) and (b) Trikha’s (SF-3) unsteady
friction. The horizontal dashed line represents Joukowsky overpressure.

To analyse the overall dissipation effect of skin friction in the pipe system, a longer simula-

tion period of 3 s was run. Figure 5.7 shows the output for the three different skin friction

models. Unsteady friction models significantly increase the pressure wave damping, specially

Brunone’s model with the k coefficient calculated according to Eq. 2.12. A small phase shift is

also observed in the pressure wave.

Figure 5.7 – Quasi-steady friction (SF-1) vs. Brunone’s (SF-2) and Trikha’s (SF-3) unsteady
friction models. Simulation period of 3 s.
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Dry friction models verification

Decoupling Poisson effect as depicted in Table B.3 allows cutting out the interaction between

the pressure wave in the fluid and the axial stress wave in the pipe-wall, yet the system is still

composed of four equations: the two classic mass and momentum conservation equations of

waterhammer theory and the beam equations for the pipe axial vibration.

In the real system dry friction directly affects the momentum dissipation of the pipe-wall and

indirectly the fluid, and vice versa. Hence, in order to isolate, and simplify, the assessment

of the dry friction phenomenon a different transient simulation is performed. FSI and skin

friction are deactivated, fluid density is set to ρ f = 0, and only the structure is excited (DF-1),

so the pipe vibrates unaffected by the inner fluid (as if it was empty) but affected by the dry

friction between the pipe-wall and the outer media (i.e. pipe supports). As explained in

Subsection 2.3.3, the Coulomb’s dry friction coefficient value used corresponds to the one

for copper sliding over cast iron, which is µk = 0.29. In this analysis no stick-slip condition is

considered. Notice that in this set-up the normal force N is reduced as only the mass of the

pipe-wall affects dry friction computation. The transient is generated by hammering the pipe

at the upstream boundary, which is set fixed after the impact while the downstream boundary

is free to move. Fig. 5.8 shows the output of this simulation compared with the Young solution

(∆σ= ρp a3∆U ), which is equivalent to Joukowsky’s expression but for axial stress transients.

A linear decrease in the wave amplitude can be observed in Fig. 5.8. Unlike the traditional

logarithmic decrement associated to viscous dissipation, dry dissipation involves a rather

linear damping (Feeny & Liang, 1996).

Figure 5.8 – Axial stress of a vibrating fluid-emptied conduit excited by hammering and
damped by dry friction. The horizontal dashed line represent Rankine axial stress rise.
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The effect of dry friction on pressure head for a fluid-filled conduit is depicted in Fig.5.9 for the

two anchoring conditions. In both simulations the dry friction dissipation affects the pressure

transient wave in a similar manner, by smoothing the edges of the stepped transitions caused

by the pipe-wall axial movement. This effect is much more evident when the valve is released,

as pipe-wall displacements are higher.

Figure 5.9 – Four-equation FSI model output for (a) anchored and (b) non-anchored down-
stream pipe-ends; for a frictionless systems (FSI-1,2) and taking into account only dry friction
(DF-1,2).

5.2.5 Model application

Simulation of combined effects

In the present analysis the experimental tests presented in Subsection 5.2.2 are simulated using

the numerical model developed. Fluid-structure interaction is considered in the numerical

simulations and the main input parameters are presented in Table 5.3.

Table 5.3 – Input parameters for the simulation of combined effects.

Parameters for pipe system:

L (m) D (m) e (m) mv (kg ) tv (s)
15.49 0.02 0.001 6 0.003

Parameters for fluid and pipe-wall materials:

ρ f (kg m−3) ρp (kg m−3) E (Pa) K (Pa) g (ms−2) ν µs µk
1000 7900 1.17 ·1011 2.2 ·109 9.81 0.33 1.05 0.29

Wave celerities and domain discretization:

ah (ms−2) a3 (ms−2) ∆x (m) ∆t (s)
1239 3717 0.304 2.45 ·10−4
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A preliminary analysis has been carried out to identify which of the two UF models described

better the observed dynamic behaviour combined with FSI effects. The simulations consider-

ing anchored (a) and non-anchored (b) pipe-ends are depicted in Fig. 5.10. Both Brunone’s

(blue lines) and Trikha’s (red lines) unsteady skin friction losses are analysed and dry friction

omitted. Results are compared with pressure measurements (black lines) at the downstream

end section for a simulation period of 3 s. First, the overall wave dissipation is underestimated

in both simulations, with Brunone’s results being slightly closer to measurements in terms

of damping and wave timing. Second, in the first 10 pressure wave cycles UF has hardly any

effect being indifferent the use on any of the models.

Figure 5.10 – Numerical output considering Brunone’s and Trikha’s unsteady friction vs. mea-
surements for: (a) test SCP03 with anchored pipe-end; and (b) test SCP06 with non-anchored
pipe-end. Output form the downstream end section. Dry friction is not considered.

A similar analysis has been carried out combining dry friction with FSI effects and using

Brunone’s unsteady friction model; results are presented in Fig. 5.11. A much higher damping

effect due to dry friction can be observed in the released set-up, specially for a long simulation

period. The reason is the higher energy dissipation caused by the higher axial pipe-wall

displacements in the released set-up. Coulomb’s dry friction is a force affecting the momentum

of the pipe-wall. Dry friction force times pipe-wall displacement is the energy dissipated by

the pipe system to its surroundings.
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Figure 5.11 – Experimental measurements vs. numerical output considering Brunone’s un-
steady and including and excluding dry friction for: (a) test SCP03 with anchored pipe-end;
and (b) test SCP06 with non-anchored pipe-end. Output form the downstream end section.

In Fig. 5.12 the numerical output, considering the combination of the three phenomena, is

compared with the experimental data for all the assessed discharges and for (a) anchored

pipe-end and (b) non-anchored pipe-end. Skin friction losses are computed using Brunone’s

model and dry friction by Coulomb’s law. The simulation period of 0.15 s allows the assessment

of the wave shape. As it can be observed, during the first wave cycles FSI is the dominant

effect, specially in the case of the released set-up.

Figure 5.12 – Numerical output (solid lines) considering FSI, Brunone’s unsteady friction and
dry friction vs. experimental measurements (dashed lines) for the tests SCP01 and SCP04
(black), SCP02 and SCP05 (dark grey), SCP03 and SCP06 (light grey). (a) for anchored pipe-end,
(b) for non-anchored pipe-end. Pressure history at the downstream pipe-end.

Discussion of results

The results shown in Subsection 5.2.5 enable the analysis of the reliability of the modelling

assumptions concerning fluid-structure interaction, skin friction and dry friction. Notice the

coherent pattern followed by all the assessed time series (v.s. Fig. 5.12): for the different initial
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flow velocities (0.26, 0.36, and 0.41 m/s), and for both anchoring set-ups (fixed and moving

downstream valve).

The accurate fitting of the first pressure cycle, either in the tests with anchored pipe-end

(Fig. 5.12-a) or, specially, in the ones with non-anchored pipe-end (Fig. 5.12-b), indicate the

good performance of the four-equation model in describing the pipe system structural be-

haviour and its rebound on the pressure transient wave. Hence the rightness of the hypothesis

of considering the pipe-wall axial vibration is confirmed, being FSI dominant over UF and DF

at the beginning of the transient. However, as the wave propagates (second and third wave

cycles) the numerical output, in the case of non-anchored pipe-end, tends to detach from the

measured data revealing that modelling assumptions can be further improved.

Moreover, the long term simulations (v.s. Fig. 5.10) show that Brunone’s unsteady friction

computation outputs slightly higher wave damping as compared with the experimental tests.

However, if dry friction is not considered in the numerical model, such damping is even further

from the one observed in the real pipe system. When dry friction is included (v.s. Fig. 5.11) the

wave damping rate is improved, yet remains insufficient in the set-up with anchored pipe-end

and overestimated in the released pipe-end.

Anchoring conditions are deeper analysed in the following Fig. 5.13 for the tests SCP03 (an-

chored pipe-end) and SCP06 (non-anchored pipe-end), revealing the different FSI behaviour

dependent on the anchoring conditions for longer simulation periods.
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Figure 5.13 – Numerical output (solid lines) considering FSI, Brunone’s unsteady and
Coulomb’s dry friction losses vs. experimental measurements (dashed lines) for: (a) test
SCP03, with anchored downstream end; and (b) test SCP06, with non-anchored downstream
end.

Junction coupling at the downstream pipe-end section plays a very important role in the

system response (e.g. Fig. 5.13-b). The evident wave shape change is a result from the interac-

tion between the two first pipe vibration modes, related with the fluid pressure and the axial

pipe movement. This characteristic wave shape change due to the pipe vibration mode for a

released downstream valve was described by Bergant et al. (2008b) from a numerical point of

view and by Ferràs et al. (2015b) from an experimental standpoint.

In addition, in the case of a non-anchored pipe-end a clear wave delay can be observed with

respect to the anchored set-up (cp. Fig. 5.13-a and 5.13-b). This wave delay occurs due to the

vibration of the pipe when this is released, and it can be observed straight from the comparison

of experimental time series. However, after some wave cycles (t ' 0.4), numerical output tends

to overestimate this delay (cp. time series SCP06, solid and dashed lines from Fig. 5.13-b).

FSI does not directly affect the wave dissipation; momentum is tranferred from the fluid to

the structure but also the other way around. Hence it is by means of dry friction that the
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momentum transferred to the structure is finally dissipated. Consequently, the reason why the

numerical output mismatches wave dissipation and phase after some wave cycles lies in the

dry friction modelling, specially in the stick-slip condition, which is distributed throughout the

pipe and is not treated differently at the valve section. The valve is heavier and, consequently,

dry friction losses should be higher and the stick-slip effect more intensive. In the case

of the released pipe-end set-up, dry friction is underestimated in the first wave cycles and

subsequently overestimated during further propagation. FSI should be diminished according

to stick-slip condition in a way that junction coupling would be dominant only during the

firsts oscillations. Additionally, the hose connected downstream the valve could affect as well

the experimental pipe rig behaviour, increasing the inertia of the pipe downstream end.

With regard to skin friction head losses, Fig. 5.10 depicts the numerical output considering

Brunone’s and Trikha’s unsteady friction model in comparison with measurements from

the test SCP03 (anchored pipe-end) and SCP06 (non-anchored pipe-end). Both unsteady

friction models are in agreement as they offer a pretty similar wave damping. In terms of wave

timing, Brunone’s adds more wave delay than Trikha’s. In the case of anchored pipe-end this

delay matches with good accuracy the wave propagation. In the test SCP03 fluid-structure

interaction is highly constrained and unsteady skin friction rather isolated as being the only

damping mechanisms. Observing a zoom between t = 1 s and t = 1.5 s, depicted in Fig. 5.14,

Brunone’s model seems to be more faithful to the real system behaviour than Trikha’s.

Figure 5.14 – Numerical output for Brunone’s and Trikha’s friction losses vs. experimental
measurements for the test with anchored downstream end (SCP03). Time window between
t = 1 s and t = 1.5 s.

With regard to dry friction, Fig. 5.11 confronts the numerical output either including or ex-

cluding dry friction losses. For anchored pipe-end, the dry friction affects the wave shape (v.i.

Fig.5.15-a) and the additional damping adjusts and develops in a closer manner to the real

wave, though, this is still underestimated for the fixed valve set-up, as lower momentum is

transferred from the fluid to the structure. On the contrary, in the case of a non-anchored

pipe-end the effect of Coulomb friction is much more evident, where the dry dissipation
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fully dampens the wave in a long term simulation (v.i. Fig. 5.15-b). At this stage the model

overestimates wave damping because it fails on describing the stick-slip phenomenon. The

reason is that the implemented distributed dry friction does not allow to locally adjust dry

friction dissipation at the valve section. It is also important to highlight that in both anchor-

ing conditions dry friction does not directly influence the wave timing but only shape and

amplitude.

Figure 5.15 – Experimental measurements (black lines) vs. numerical output considering
Brunone’s friction losses and with (blue lines) or without (red lines) dry friction for the tests:
SCP03, with anchored downstream end (a); and SCP06, with non-anchored downstream end
(b). Time window between t = 1 s and t = 1.5 s.

An adjustment of the static dry friction coefficient would either enhance the output for the

anchored valve set-up (Fig.5.15-a) and worsen the non-anchored one (Fig.5.15-b), or the other

way around. This is a sign that stick-slip condition merits further improvement by means of

imposing null pipe movement when stick condition is true. Though, this would involve the

implementation of internal conditions and describing dry friction as junction coupling rather

than friction coupling, which is out of the scope of the present research.

5.2.6 Research outcome

The present section is based on the implementation of a 1D four-equation MOC solver. Exper-

imental data collected from a straight copper pipe-rig are used for the model validation of the

main modelling assumptions in terms of wave shape, timing and damping. Fluid-structure

interaction, skin friction and dry friction are the main phenomena to be assessed. Essentially,

the implemented FSI code includes three coupling mechanisms: Poisson, junction and friction

coupling. The last one nests the skin friction models (i.e. quasi-steady, Brunone’s and Trikha’s)

and the dry friction model (i.e. Coulomb’s friction).

Two different experimental set-ups are assessed: (i) anchored downstream pipe-end, and

(ii) non-anchored downstream pipe-end. In both cases the pipe is lying over the floor of the

laboratory. In the first set-up Poisson coupling dominates the FSI physical phenomenon (cf.
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Fig. 5.12-a), while in the second set-up junction coupling at the downstream valve section

strongly affects the transient wave (cf. Fig. 5.12-b). Numerical results satisfactorily fit measured

pressure head at the downstream section for the first wave cycle, when FSI phenomenon is

dominant. However, numerical output tends to detach for a long term simulation, specially

in the set-up for a non-anchored downstream pipe-end (cf. Fig. 5.13). Skin and dry friction

dissipation are the dominant damping phenomena in the long term simulation.

Unsteady friction effects are rather isolated in the anchored set-up as less momentum is

transferred to the structure and consequently FSI and dry friction effects are much lower. For

this set-up Brunone’s unsteady friction model gives a better performance in the account of

both wave timing and damping (cf. Fig. 5.10). However, without the incorporation of dry

friction, a clear additional wave damping is missing.

The implementation of Coulomb’s dry friction model aims at describing this additional wave

damping. Dry friction arises from the shear between the pipe-wall and its surroundings.

Consequently, its effect is strongly related with the FSI occurring during the transient event.

The higher momentum is transferred to the pipe-wall, the greater the effect of dry friction is

(c.p. Figs. 5.11-a and 5.11-b). The inclusion of dry friction allowed a clear improvement of

the numerical model output, proving the importance of considering such phenomenon in

hydraulic transient analyses. Nonetheless, the present approach of nesting the Coulomb model

in the FSI friction coupling does not allow for a fully satisfactory description of the observed

pressure signal (Fig. 5.13 and 5.15), specially in the case of released downstream pipe-end. The

dry friction dissipation occurring at the valve section is crucial for the accurate description of

the pipe system behaviour, and this should be treated differently for two main reasons. First,

the valve section is heavier and pipe-wall displacements are higher than any other section,

hence kinematic dry friction dissipation is greater at the downstream section. Second, fluid-

structure interaction effect is more intensive at the downstream end, and consequently more

sensitive to stick-slip condition.

At this stage of research the authors conclude that a more satisfactory means to represent

junction coupling merits being investigated. In fact, assumptions on dry friction computation

need a further upgrade as, in the present work, Coulomb’s model was nested in the FSI friction

coupling but not considered in junction coupling. Junction coupling arises from a balance

of forces at pipe junctions, tees, elbows, boundaries, etc. Dry friction force can be as well

considered in such a balance. Using this approach stick-slip condition could be as well

improved by imposing null pipe-wall movement when stick criterion is met.

5.3 Pipelines anchored against longitudinal movement

5.3.1 Introduction and background theory

In simple reservoir-pipe-valve systems, FSI occurs mainly due to the Poisson effect and the

movement of the downstream valve. These mechanisms excite the second pipe vibration
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mode, which is the corresponding to the axial movement of the pipe. Anchor or thrust blocks

are frequently used in straight pipelines to restrict and to avoid these movements so that the

piping structure is stable and reliable. Anchor blocks absorb the axial stresses of the pipe-wall,

which are transmitted to the surrounding ground by means of dry friction (Feeny et al., 1998).

The present research aims at describing the behaviour of straight pipelines fixed to anchor

blocks by means of a four-equation model.

A four-equation model solved by the Method of Characteristics (MOC) represents a suitable

tool to describe FSI in straight pipes (Tijsseling, 1996; Wiggert, 1983; Wiggert et al., 1985a;

Lavooij & Tijsseling, 1991). However, to the knowledge of the authors, hardly any work has been

carried out to describe the pipe supporting conditions, often not well defined (Tijsseling &

Vardy, 1996a). A fluid-structure interaction analysis for anchor blocks taking into account the

block inertia and the dry friction with the surrounding ground would fill this gap in literature.

From one side, Heinsbroek & Tijsseling Heinsbroek & Tijsseling (1994) worked on the as-

sessment of the influence of the pipe-supports stiffness, concluding that the stiffness of the

supports affects waterhammer pressure amplitude and phase, and pointed out to the need

of more detailed analyses. Tijsseling & Vardy Tijsseling & Vardy (1996a) investigated the ef-

fect of pipe racks on waterhammer waves considering the dry friction occurring between

the pipe-wall and the rack; accurate numerical results were compared with measurements;

quantitative criteria to asses when dry friction forces are relevant during hydraulic transients

were proposed. On the other side, Lavooij & Tijsseling Lavooij & Tijsseling (1991) analysed

the effect of the inertia of a downstream moving valve during a waterhammer event. An

anchor block located at the downstream pipe-end would behave in a very similar manner to

a moving valve but likely with a heavier mass. Yang & Zhang Yang et al. (2004) analysed in

the frequency domain the effect of rigid constraints in multi-span pipes, concluding that the

junction coupling has a larger effect on the transient wave than the Poisson coupling.

The novelty of the present study consists of the development and validation of a four-equation

model capable of accurately describing anchor blocks behaviour located at any section of

the pipe, moving rigidly with the pipe-wall, taking into account the block inertia and the dry

friction between the blocks and the ground. For model validation, experimental waterhammer

tests were carried out in a straight copper pipe-rig for three different basic set-ups consisting

of, alternatively, releasing or anchoring the downstream valve or a midstream anchor block.

Additionally, a sequence of tests was run in which the pipe supports were systematically

released from the downstream to the upstream end.

5.3.2 Experimental data collection

For the present study different supporting configurations of the SCP pipe rig have been anal-

ysed (v.i. Fig.5.16): (a) setup-1 where the conduit is anchored against longitudinal movement

at both downstream and upstream ends; (b) setup-2 where the conduit is only anchored

against longitudinal movement at the upstream end; and (c) setup-3 where the conduit is
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anchored against longitudinal movement at the midstream and the upstream sections.

Figure 5.16 – Different tested configurations: (a) setup-1 where the conduit is anchored at
both pipe ends; (b) setup-2 where the conduit is only anchored at the upstream end; and (c)
setup-3 where the conduit is anchored at the midstream and upstream sections of the pipe.

The experimental tests carried out for the three different set-ups and for an initial discharge of

Q = 300 l/h are depicted in Fig 5.17.

Figure 5.17 – Waterhammer tests carried out for a conduit anchored at the upstream and
downstream pipe-ends (setup-1); anchored only at the upstream end (setup-2); and anchored
at the upstream and midstream pipe sections (setup-3), for Q = 300 l/h.

Additionally, a set of tests was carried out consisting of first fixing the facility against longitu-

dinal movement all throughout the pipe and then, sequentially, releasing the supports one

by one, from the downstream valve to the upstream end reservoir, and carrying out water-
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hammer tests one at a time. Fig 5.18 shows the results of these tests for an initial discharge of

Q = 426 l/h.

Figure 5.18 – Set of waterhammer tests consisting of releasing one support at a time, from the
downstream to the upstream pipe-end, starting from a fully anchored pipe against longitudinal
movement, for Q = 426 l/h and 23 tests in total.

5.3.3 Numerical model development

Numerical scheme

By assuming that the ratio between the wave celerity in the fluid and in the pipe-wall can be

expressed by the ratio of two natural numbers (ah/a3 ≈N f /Ns), leaps can be applied in both

characteristic lines and these can be fitted in a regular grid (Tijsseling & Lavooij, 1990; Lavooij

& Tijsseling, 1991).

Fig. 5.19 depicts the adopted numerical scheme at the interior nodes and the domain bound-

aries, where: ‘P ’ represents the space and time coordinates in the grid where the computation

is carried out, ‘A’ represents the information source brought by the positive characteristic line

in the pipe-wall, ‘B ’ the information source brought by the positive characteristic line in the

fluid, ‘C ’ the information source brought by the negative characteristic line in the fluid and ‘D’

the information source brought by the negative characteristic line in the pipe-wall.
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Figure 5.19 – Numerical scheme of the four-equation model. Characteristic lines at different
sections of the pipe: (a) at the interior nodes; (b) at the upstream boundary; and (c) at the
downstream boundary.

After the MOC transformation the set of partial differential equations (Eqs. A.47) can be

expressed in terms of compatibility equations by means of time integration, using pP , VP , σP

and UP as dependent variables. The ξ coefficients are presented in Table B.3.

ξ fV VP +ξ fp pP +ξ fU UP −ξ fσσP +C p f = 0 (5.31)

ξ fV VP −ξ fp pP +ξ fU UP +ξ fσσP +C n f = 0 (5.32)

−ξsV VP −ξsp pP +ξsU UP −ξsσσP +C ps = 0 (5.33)

−ξsV VP +ξsp pP +ξsU UP +ξsσσP +C ns = 0 (5.34)

where Eqs. (5.31) and (5.32) correspond to the positive and negative characteristic equations

of the fluid pressure wave and Eqs. (5.33) and (5.34) correspond to the positive and negative

characteristic equations of the axial stress wave. The values C p f , C n f , C ps and C ns enclose

the information from the previous time-step:
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C p f =−ξ fV VB −ξ fp pB −ξ fU UB +ξ fσσB +SF fB (5.35)

C n f =−ξ fV VC +ξ fp pC −ξ fU UC −ξ fσσC +SF fC (5.36)

C ps = ξsV VA +ξsp p A −ξsU UA +ξsσσA +SFsA (5.37)

C ns = ξsV VD −ξsp pD −ξsU UD −ξsσσD +SFsD (5.38)

where SF terms correspond to the skin friction losses which in the current research have been

computed using Brunonone’s unsteady skin friction model (cf. Table D.2).

Interior nodes

The dependent variables along the interior nodes are obtained from sorting out the linear

system of equations, Eqs. (5.31, (5.32), (5.33) and (5.34), and are defined as follows:

pP =−
C p f −C n f

ξ fσ
− C ps−C ns

ξsσ

2
(
ξ fp

ξ fσ
+ ξsp

ξsσ

) (5.39)

VP =−
C p f +C n f

ξ fU
− C ps+C ns

ξsU

2
(
ξ fV
ξ fU

+ ξsV
ξsU

) (5.40)

σP =
C p f −C n f

ξ fp
+ C ps−C ns

ξsp

2
(
ξ fσ

ξ fp
+ ξsσ

ξsp

) (5.41)

UP =−
C p f +C n f

ξ fV
+ C ps+C ns

ξsV

2
(
ξ fU
ξ fV

+ ξsU
ξsV

) (5.42)

Boundary conditions

Upstream reservoir: Only the negative characteristic lines reach the upstream boundary

as shown in Fig. 5.19. The boundary condition for a constant level reservoir in the upstream
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pipe-end is given by:

pP = pr es (5.43)

UP = 0 (5.44)

Substituting the Eqs. (5.43) and (5.44) into Eqs. (5.32) and (5.34) expressions for VP and σP are

obtained.

VP =

(
ξ fp

ξ fσ
+ ξsp

ξsσ

)
pr es − C n f

ξ fσ
+ C ns

ξsσ

ξ fV
ξ fσ

+ ξsV
ξsσ

(5.45)

σP =

(
ξ fp

ξ fV
− ξsp

ξsV

)
pr es − C n f

ξ fV
− C ns

ξsV

ξ fσ

ξ fV
+ ξsσ
ξsV

(5.46)

Downstream valve: A solution is derived for a non-anchored downstream valve taking into

account the valve inertia and the dry friction between the valve and the supporting structure.

Only the positive characteristic lines reach the downstream boundary as shown in Fig. 5.19.

The boundary conditions for such assumptions are expressed in Eqs. (5.47) and (5.48), where

the first determines a closed valve and the second the balance of forces at the valve section by

means of Newton’s second law of motion.

VP =UP (5.47)

σP = 1

As

(
A f (1−τ(t ))(pP −p0)−µFN si g n(U )−M v

∆U

∆t

)
(5.48)

Substituting the Eqs. (5.47) and (5.48) into Eqs. (5.31) and (5.33) expressions for pP and UP are

obtained.

pP =

− A f
Ap

p0ξ fσ+ mv
Ap∆t Up−1ξ fσ−ξ fσ

µFN
Ap

si g n(U )−C p f

ξ fV + mv
Ap∆t ξ fσ+ξ fU

− − A f
Ap

p0ξsσ+ mv
Ap∆t Up−1ξsσ−ξsσ

µFN
Ap

si g n(U )−C ps

−ξsV + mv
Ap∆t ξsσ+ξsU

ξ fp −
A f
Ap
ξ fσ

ξ fV + mv
Ap∆t ξ fσ+ξ fU

− −ξsp −
A f
Ap
ξsσ

−ξsV + mv
Ap∆t ξsσ+ξsU

(5.49)
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UP =

− A f
Ap

p0ξ fσ+ mv
Ap∆t Up−1ξ fσ−ξ fσ

µFN
Ap

si g n(U )−C p f

ξ fp −
A f
Ap
ξ fσ

− − A f
Ap

p0ξsσ+ mv
Ap∆t Up−1ξsσ−ξsσ

µFN
Ap

si g n(U )−C ps

−ξsp −
A f
Ap
ξsσ

ξ fV + mv
Ap∆t ξ fσ+ξ fU

ξ fp −
A f
Ap
ξ fσ

− −ξsV + mv
Ap∆t ξsσξsU

−ξsp −
A f
Ap
ξsσ

(5.50)

As consequence of the leaps adopted in the numerical scheme (v.s. Fig. 5.19), time-line

interpolations have to be carried out at the nodes located in the vicinity of the computational

domain boundaries.

Internal conditions, anchor blocks

The usual approach in FSI junction coupling consists of splitting the pipe into segments

and then establishing relations (boundary conditions) between these segments (Wiggert &

Tijsseling, 2001). In this subsection, a general solution is derived that allows conducting

junction coupling of anchor blocks as internal conditions, without the need of dividing the

pipe in segments.

For this purpose, special attention is focused on how the anchor blocks affect the characteristic

lines in the numerical scheme. The blocks are considered non-deformable and moving jointly

with the pipe-wall. Fig 5.20 depicts these assumptions both in the nodes containing anchor

blocks and in their vicinities. The vicinity is defined as a group of computational nodes to the

side of the anchor block node for which computations are made with a particular set-up.

Figure 5.20 – Numerical scheme of the four-equation model. Characteristic lines at (a) anchor
block nodes and (b) in their vicinity. The dashed and continuous lines represent characteristic
lines in the pipe-wall and in the fluid, respectively.

As shown in Fig. 5.20 characteristic lines in fluid are not disrupted. Time-line interpolation

of the variables must be carried out at the anchor block node and the normal equations for

inner nodes are applied, Eqs. (5.39) to (5.42), to solve the dependent variables of the system at
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the vicinity nodes. Space discretization has to be fine enough to get sufficient computational

nodes between pipe supports but coarse enough to avoid numerical diffusion as consequence

of too intensive time-line interpolation in their vicinities.

However, the resistance of the anchor block to move produces a discontinuity on the axial

stresses in the pipe-wall, which become different upstream and downstream (i.e. left and right

sides) of the anchor block. Therefore, an imbalance of forces occurs. Fig. 5.21 depicts the

forces acting at the anchor block, including: the dry friction force (Fd f ), the weight (FW ), the

normal force (FN ) and the force due to the axial stress in the pipe-wall at the left (FσL ) and at

the right of the pipe segment (FσR ).

Figure 5.21 – Balance of forces at anchor blocks.

The internal conditions at the nodes containing anchor blocks are defined in Eqs. (5.51)

to (5.54).

pL = pR (5.51)

V L =V R (5.52)

σL 6=σR (5.53)

U L =U R (5.54)

The second law of Newton can be applied using the balance of forces at the anchor block from

Fig. 5.21:

FσR −FσL −Fd f = mbU̇ (5.55)

which is the same as:(
σR

P −σL
P

)
Ap −µg mb si g n(U ) = mb

∆UP

∆t
(5.56)
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On the other hand, the positive characteristic lines in the pipe-wall reach the left side of the

anchor block but do not go through it, while in the right side only the negative characteristic

lines reach the block. Hence, using respectively the positive and negative characteristic lines

in the pipe-wall, left and right axial stresses can be expressed in function of the remaining

dependent variables, as shown in Eqs. (5.57) and (5.58).

σL
P =

−ξsp pP −ξsV VP +ξsU UP +C ps

ξsσ
(5.57)

σR
P =

−ξsp pP +ξsV VP −ξsU UP −C ns

ξsσ
(5.58)

Substituting Eqs. (5.57) and (5.58) into Eq. (5.56) the displacement of the anchor block U can

be expressed in function of flow variables (e.g., flow velocity V ):

UP =
2ξsV VP

ξsσ
− C ps+C ns

ξsσ
+ mbUP−1

Ap∆t − gµmb
Ap

si g n(U )

mb
Ap∆t +

2ξsU
ξsσ

(5.59)

The characteristic lines in the fluid, both positive and negative, go through and reach the centre

of the block, hence characteristic equations of the fluid are valid inside the block and allow

to express the flow velocity V in function of the block (or pipe-wall) velocity U . Combining

Eqs. (5.32) and (5.31) the following expression is obtained:

2ξ fV VP +2ξ fU UP +C p f +C n f = 0 (5.60)

and substituting Eq. (5.59) into Eq. (5.60) the solution for the flow velocity V is obtained.

VP =
−C p f −C n f −2ξ fU

mbUP−1
Ap∆t −gµ

mb
Ap

si g n(U )−C ps+C ns
ξsσ

mb
Ap∆t +

2ξsU
ξsσ

2ξ fV +2ξ fU

2ξsV
ξsσ

mb
Ap∆t +

2ξsU
ξsσ

(5.61)

Once VP is obtained by Eq. (5.61), UP can be calculated by applying Eq. (5.59), and the

remaining dependent variables (i.e. p and σ) are calculated by means of Eqs. (5.32) and (5.31).
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5.3.4 Model testing

Modal analysis for an empty pipe

If the fluid density is negligible compared to the pipe-wall density (empty pipe assumption)

and the mass of the pipe-wall is negligible compared to the mass of the anchor blocks, the

piping system can be described as mass-spring systems. If, additionally, the anchor blocks

displacement is very small compared to the space discretization of the numerical scheme, this

analogy can be described by the method of characteristics (Vardy & Fan, 1986, 1987). Hence,

the implemented model can be tested in a way to verify if it enables the description of such

mass-spring systems.

For this purpose, simulations have been carried out for different pipe set-ups considering

single and multiple degrees-of-freedom. The piping system modelled corresponds to the

one described in section 5.3.2 but frictionless, without fluid and incorporating heavy anchor

blocks (with Ma = 1000 kg ). The system is excited by imposing initial velocities at the anchor

block of U = 1 m/s. (v.i. Figs. 5.22 and 5.23). The number of degrees-of-freedom depends on

the number of anchor blocks throughout the pipe, or what is the same, the number of masses

in the mass-spring system (Sinha, 2010).

Single degree-of-freedom: There is only one natural mode of oscillation for a one degree-

of-freedom of a pipe system with one anchor block. A simple harmonic oscillator, like the

one depicted in Fig. 5.22, vibrates at a frequency f r = 1
2π

√
4s

Ma
, where s stands for the ‘spring’

constant and it is directly proportional to the area of the pipe-wall cross section, to the Young’s

modulus of elasticity, and inversely proportional to its length. This is the case of a pipe

anchored at both ends with an anchor block located at the middle section. Fig. 5.22 shows a

scheme of the pipe-block-pipe system under the imposed initial conditions and the respective

output from the 4-equation model, showing the resultant natural frequency for a Young’s

modulus of elasticity E = 105 GPa and s = 4E As/L = 518047 kg /s2.

Figure 5.22 – Pipe-block system for one degree-of-freedom. (a) schematic of the modelled
system; (b) velocity of the anchor block U .
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Multiple degree-of-freedom: Multiple degree-of-freedom systems have more than one nat-

ural vibration mode with more than one resonance frequency. The example analysed consists

of a 3-DOF system with three identical anchor blocks connected with four identical pipe seg-

ments. The system has, therefore, three distinct natural vibration modes that can be observed

depending on the initial conditions. Fig. 5.23 presents the second natural vibration mode

of this system, for which the initial velocities of the anchor blocks are opposite at the outer

blocks and zero at the one in the middle. At this vibration mode the central block does not

move (i.e. a node), and the outer ones have a symmetrical behaviour. The natural frequency

of this vibration mode is f r = 1
2π

√
8s

Ma
, as the aligned ‘springs’ are two times stiffer because

four times shorter than the basic system.

Figure 5.23 – Pipe-block system for three degrees of freedom and second vibration mode: (a)
schematic of the modelled system; (b) velocity of the anchor block U .

Modal analysis for a fluid-filled pipe

A similar analysis to the one in the previous subsection is carried out for a fluid-filled conduit.

The fluid density is set up to the water density ρ f = 1000 kg /m3 and the fluid elasticity

K = 2.2 GPa so the numerical model not only describes the transient vibrating pipe but also its

interaction with the contained fluid. Due to the high weight of the anchor blocks with respect

to the pipe, the transient is dominated by their movement and the interaction is rather from

the structure to the fluid, and not the other way around. So the analysis essentially depicts the

dominant effect of different pipe vibrating modes on the fluid.

Single-degree-of-freedom: In this simulation two fixed reservoirs at both ends with con-

stant pressure levels and an anchor block in the middle are considered. Like previously, the

system is excited by imposing an initial pipe-wall velocity at the anchor-block of U = 1 m/s.

Figure 5.24 depicts the transient velocities at the anchor block section, both of the pipe-wall U

and of the fluid V . As it can be seen in Fig. 5.24 the initial longitudinal motion of the anchor

block generates an opposite movement in the fluid. Both fluid and pipe-wall oscillate in phase,

however the flow velocities remain negative during the whole transient event; the anchor

block movement is pumping the fluid from one reservoir to another.
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Figure 5.24 – Pipe-block-pipe fluid-filled system for one degree of freedom: (a) velocity of the
anchor block U .; and (b) velocity of the fluid V at the anchor block section.

The pumping effect depicted in Fig. 5.24 can be explained by Poisson coupling, which is

the interacting mechanisms that transforms the motion of the block to flow change. The

vibrating block, with such a heavy mass, generates important oscillating pipe-wall axial defor-

mations, oppositely in both sides of the block, and launching axial stress waves that propagate

throughout the pipe. These axial deformations, by means of Poisson effect (Poisson coupling),

induce circumferential deformations that affect the fluid flow. The result is a strong oscillating

negative flow velocity pumping the fluid from one reservoir to the other.

This effect is similar and could be considered as special case of the Liebau effect, which is

object of study in the field of physiological flows and is defined as (Borzi & Propst, 2003): the

occurrence of valveless pumping through the application of a periodic force at a place which

lies asymmetric with respect to the system configuration. Although the anchor block is located

symmetrically, the asymmetry in the case presented hereby lies on the opposite signs of the

axial stress waves released in both sides of the anchor block. The flow direction of a Liebau

pump is dependent to the frequency of the forced oscillation, while in the phenomenon de-

scribed hereby the flow direction depends on the initial conditions (i.e. U0). To the knowledge

of the authors a Liebau pump based on Poisson coupling has never been described and may

be object of further research.

Multiple-degrees-of-freedom: Fig. 5.25 shows, for the fluid-filled 3-DOF set-up, a very simi-

lar behaviour regarding the piping structure and a symmetrical behaviour as well regarding

the fluid. Flow velocity at the central block section is 0, while antiphase oscillating velocities

are observed at the outer blocks’ sections.
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Figure 5.25 – Fluid-filled system for three degrees-of-freedom and second vibration mode: (a)
velocity of the anchor block U .; and (b) velocity of the fluid V at the anchor block section.

The vibration mode corresponding to the fluid can be seen in Fig. 5.25-b. Due to the symmet-

rical transient flow generated by the movement of the structure, the pipe could be split in two

identical symmetrical reservoir-pipe-block-pipe-valve systems, with anchored valves. The

resultant transients due to the block movements would be exactly the same. From this stand-

point it is straightforward to figure out, from classic waterhammer theory, that the frequency

of both transient flows is f r = a f

4L/2 ≈ 43 H z.

The following spectral density plot (v.i. Fig. 5.26) confirms the aforementioned statement,

where the two dominant frequencies, corresponding to the fluid and the pipe-wall, can be

clearly depicted from flow velocity V output data.

Figure 5.26 – Spectral density plot corresponding to flow velocity output data V from the three
degrees-of-freedom set-up.
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5.3.5 Model application

Sensitivity analysis

A sensitivity analysis is carried out with the aim to assess how the output is affected by model

parameters associated to the resistance of movement of the valve and the anchor blocks

due to both inertial and dry friction forces. The numerical model is set up according to the

geometry and characteristics of the facility described in Subsection 5.3.2 and kinetic dry

friction coefficient µk , valve mass and anchor block mass are modified for a wide range of

values. Brunone’s unsteady friction model is applied for skin friction computation. All the

tests are carried out for an initial discharge of Q0 = 426 l/h. Table 5.4 presents a summary of

the sensitivity analysis to valve and anchor blocks inertia and dry friction.

Table 5.4 – Tests carried out for the sensitivity analysis.

Phenomenon parameter values simulations Valve anchorage

Valve inertia mv 0−12000 kg 100 released

Blocks inertia mb 0−12000 kg 100 released and fixed

Dry friction at valve µk 0−3.3 100 released

Dry friction at blocks µk 0−10 100 released and fixed

Sensitivity to valve inertia: With the aim to analyse the sensitivity of the system to the valve

inertia, a set of 100 simulations was carried out varying the valve mass from 0 to 12000 kg.

During these simulations the valve is released and no dry friction is considered between the

valve and its supports. No pipe supports or anchor blocks are considered throughout the pipe,

which is free to move in the longitudinal direction. The model output from this analysis is

depicted in Fig. 5.27, showing the range of possible solutions of the four-equation model for a

frictionless moving valve of variable mass.

Figure 5.27 – Transient pressures at the downstream pipe-end for a variable valve mass.
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The bold dashed line of Fig. 5.27 indicates the solution for a massless valve, while the solid line

depicts the output for the maximum valve mass threshold modelled, which can be considered

equivalent to the results for an infinite valve mass or fixed valve. Between this range the

progress of model output can be observed according to the mass valve variation. The bold

dotted line corresponds to a 6 kg valve mass, which is actually the real mass of the system

described in Subsection 5.3.2.

Sensitivity to anchor block inertia: The same kind of analysis is carried out for an anchor

block located at the midstream section of the pipe. A number of 100 simulations was launched

varying the mass of the anchor block from 0 to 12000 kg. Two different anchoring conditions

are assessed: (a) fixing the valve and (b) letting the valve free to move, massless and frictionless.

The model output from this analysis is depicted in Fig. 5.28, showing the range of possible

solutions of the four-equation model for a frictionless moving anchor block of variable mass

at the midstream section of the pipe.

Figure 5.28 – Transient pressures at the downstream pipe-end for the varying mass of an
anchor block located at the midstream section of the pipe: (a) the conduit is anchored at both
pipe-ends; and (b) the conduit is only anchored at the upstream pipe-end.
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The bold dashed line of Fig. 5.28 indicates the solution for a massless anchor block, while

the solid line depicts the output for the maximum mass threshold modelled, which can be

considered equivalent to the results for an infinite mass or a fixed anchor block. Between this

range the progress of model output can be observed according to the mass variation. The

dashed line of Fig. 5.28-a is equivalent to the solid line of Fig. 5.27; and the dashed line of

Fig. 5.28-b is equivalent to the dashed line of Fig. 5.27.

Sensitivity to dry friction at the valve: Dry friction at the valve section is analysed by first

fixing the valve mass to mv = 6 kg , which is the real valve mass of the studied piping system,

and then varying the Coulomb’s friction coefficient µ from 0 to 3.33. No pipe supports or

anchor blocks are considered throughout the pipe, which is free to move in the longitudinal

direction. The model output from this analysis is depicted in Fig. 5.29, showing the range

of possible solutions of the four-equation model for the 6 kg moving valve varying the dry

friction.

Figure 5.29 – Transient pressures at the downstream pipe-end for the series of simulations
varying the dry friction coefficient for a 6 kg mass valve.

The bold dashed line of Fig. 5.29 indicates the solution for a frictionless valve, while the solid

line depicts the output for the maximum valve friction threshold modelled, which is equivalent

to the results for an almost fixed valve. Between this range the progress of model output can be

observed according to the dry friction variation. The bold dotted line corresponds to the value

µk = 0.29, which is actually the corresponding value for copper sliding over cast iron (Davis,

1997).

Dry friction at anchor blocks: Dry friction at the anchor block section is analysed by first

fixing the mass to mb = 1 kg , which is the corresponding mass of the pipe segment associated
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to the pipe support, and then varying the Coulomb’s friction coefficient µ from 0 to 10. Two

different anchoring conditions are assessed: (a) fixing the valve and (b) letting the valve free to

move, massless and frictionless. The model output from this analysis is depicted in Fig. 5.30,

showing the range of possible solutions of the four-equation model for the varying dry friction.

Figure 5.30 – Transient pressures at the downstream pipe-end for the series of simulations
varying the dry friction coefficient at the midstream section of the pipe: (a) the conduit is
anchored at both pipe-ends; (b) the conduit is anchored only at the upstream end.

The bold dashed lines of Fig. 5.30 indicate the solution for a frictionless anchor block, while

the solid lines depict the output for the maximum dry friction threshold modelled, which is

equivalent to the results for an almost fixed anchor block. Between this range the progress of

model output can be observed according to the dry friction variation. Notice the similarities

between the thresholds of Fig. 5.28 and Fig. 5.30.

In general, the system shows a greater sensitivity to the phenomena assessed (i.e. inertia
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5.3. Pipelines anchored against longitudinal movement

and dry friction) at the downstream valve section rather than at the inner anchor block. The

parameter governing the inertia of the valve or anchor blocks is the mass (i.e. mv and mb),

while the parameters governing dry friction are the static Coulomb’s friction coefficient µs

and the kinematic Coulomb’s friction coefficient µk . In the present sensitivity analysis no

distinction between both dry friction coefficients has been done as the goal is the assessment

of the overall sensitivity to dry friction. The sensitivity of the numerical model seems to be

similar for both inertia and dry friction either at anchor blocks or at the valve.

It is important to highlight that the output resulting from this sensitivity analysis correspond

to numerical output that does not have to be especially realistic. For instance, cavitation is not

object of study and is not simulated in this assessment, hence the pressure histories presented

in Fig. 5.27, 5.28, 5.29 or 5.30 may present values below vapour pressure.

Simulation of the straight copper pipe facility

The straight copper pipe facility described in Subsection 5.3.2 is simulated using the developed

four-equation model for the tested configurations. The input parameters of the model are

presented in Table 5.5.

Table 5.5 – Input parameters

Parameters for pipe system:

L (m) D (m) e (m) mv (kg ) mb (kg ) tv (s)
15.49 0.02 0.001 6 1 0.003

Parameters for fluid and pipe-wall materials:

ρ f (kg m−3) ρs (kg m−3) E (GPa) K (GPa) ν µs µk
1000 7900 105 2.2 0.33 1.05 0.29

Wave celerities and domain discretization:

ah (ms−2) a3 (ms−2) d z (m) d t (s)
1239 3717 0.286 2.22 ·10−4

Setup-1: In this test the conduit is anchored against longitudinal movement at both down-

stream and upstream ends. Fig. 5.31 depicts the comparison of numerical results with experi-

mental data. In the first pressure cycles (v.s. Fig. 5.31-b), the numerical model seems to be

quite accurate regarding to wave shape and timing. However, experimental observations show

a higher damping than the numerical results (Fig. 5.31-a). In this setup, the valve is assumed

not to move. Although the numerical model is capable of representing dry friction and inertia

of the supports, their structural behaviour is not actually described (bending, torsion, etc.),

so the valve could actually move. As depicted in the previous subsection, the waterhammer

wave is very sensitive to the valve movement, hence a minor movement on the valve can be
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the reason of the discrepancies observed in the wave damping between measurements and

numerical output.

Figure 5.31 – Numerical pressure output vs. pressure measurements for a waterhammer test
carried out in a conduit anchored against longitudinal movement at both pipe-ends.

Setup-2: For this set-up the conduit is only anchored against longitudinal movement at the

upstream end. Numerical results vs. experimental data are shown in Fig. 5.32. Very good

matching between measurements and numerical output can be observed regarding wave

shape, timing and damping. The implemented four-equation model is capable of describing

with accuracy the anchoring conditions of Setup-2 for realistic values of valve mass and

Coulomb’s dry friction coefficients (µs and µk ). The stick-slip phenomenon is well described

as a transition in the wave damping, due to a change from slip to stick state, can be clearly

observed in both pressure traces at around t = 0.3 s (v.s. Fig. 5.32-a). Also the FSI induced by

the valve movement is well represented as the wave shape and timing are accurate in the first

pressure cycles (v.s. Fig. 5.32-b).

Figure 5.32 – Numerical pressure output vs. pressure measurements for a waterhammer
test carried out in a conduit anchored against longitudinal movement only at the upstream
pipe-end.

Setup-3: Finally, the system is tested for the conduit anchored against longitudinal move-

ment at the midstream and upstream sections of the pipe. Numerical results vs. experimental
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data are depicted in Fig. 5.33. Anchoring conditions in this setup are also well described by the

numerical model. A similar damping transition due to the stick-slip phenomenon can be also

observed at around t = 0.3 s. Clearly, the major damping mechanism during the first pressure

cycles in both setup-2 and 3 is the dry friction induced by the downstream valve movement.

Figure 5.33 – Numerical pressure output vs. pressure measurements for a waterhammer test
carried out in a conduit anchored against longitudinal movement at the midstream section.

Tests releasing the pipe: Finally, a set of runs was carried out with the goal to simulate the

experimental tests where the pipe was released in a stepwise manner: first being fully anchored

against longitudinal movement at all supports, then releasing sequentially the pipe supports

one by one, from the downstream to the upstream (cf. Fig. 5.18). Ten (10) pipe supports

homogeneously distributed throughout the conduit, including the downstream section were

considered. A total of ten (10) tests were carried out. Fig. 5.34 depicts the experimental data vs.

the numerical output corresponding to the mentioned sequence of tests.

Fig. 5.34 shows in general:

• similar pressure wave shapes starting from the initial (fully-anchored) set-up, namely in

terms of wave amplitudes and frequencies;

• similar pressure signal reaction to the sequential release of the anchor blocks, character-

ized by an amplification of the initial parts of the pressure wave crests and troughs;

• different amplitudes of second-order perturbations on the initial parts of the pressure

wave crest and troughs, which are in the numerical output approximately double from

those in the experimental output.
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Figure 5.34 – Transient pressures at the downstream pipe-end. Measurements (a) vs. numerical
pressure output (b) for a set of waterhammer tests consisting on releasing, one support at a
time and from downstream to upstream, a fully anchored pipe against longitudinal movement.

5.3.6 Research outcome

A four-equation model was implemented with the goal to describe and investigate the effect

of anchor blocks on straight pipelines during hydraulic transients. Inertia of the blocks and

the dry friction occurring in the interface between the pipe and the supports were taken into

account by means of junction coupling at the anchor blocks sections. In these sections the

characteristic lines traveling in the pipe-wall are cut off, while the ones travelling in the fluid

are allowed to go through.

The model was tested by establishing an analogy between pipe-block systems and spring-mass

systems and then performing a modal analysis allowing some basic degrees-of-freedom. This

assessment was first carried out for a fluid-empty conduit and then for a fluid-filled conduit.
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For the fluid-empty conduit analysis the model describes successfully the expected vibration

modes according to the basic theory of coupled harmonic oscillators. For the fluid-filled

conduit, unexpected results were achieved, such as a pumping effect of a 1-DOF bi-anchored

pipe where an anchor block located at the midstream is excited by a certain initial velocity.

Once the model was verified, a sensitivity analysis was carried for the basic parameters

concerning inertia and dry friction at the valve section and at the anchor block located at the

midstream section. This analysis showed that both inertia and dry friction similarly affect the

waterhammer wave, more significantly at the downstream pipe section than at the midstream

pipe section.

Finally, the numerical model was used to reproduce experimental waterhammer tests carried

out for some specific set-ups: setup-1 where the conduit is anchored at both pipe ends; setup-

2 where the conduit is only anchored at the upstream end; and setup-3 where the conduit

is anchored at the midstream and upstream sections of the pipe. The results show that the

numerical model tends to underestimate the wave damping for setup-1, likely due to the

non-perfect anchoring of the downstream valve. For setup-2 and 3, the model is very accurate

in terms of wave shape, timing and damping. Moreover, it is capable of describing a transition

in the wave damping produced by the slip-stick condition, which in the model is conducted

by Coulomb’s dry friction static and kinematic coefficients.

Additionally, a series of waterhammer tests was carried out consisting of releasing an initially

fully anchored pipe, support by support, from the downstream to the upstream end. The

numerical model seems to satisfactorily describe the progression of the behaviour of the pipe

when it is being released.

The overall outcome of this research gives a valuable insight on the importance of considering

the fluid-structure interaction of anchor blocks caused by their resistance to movement, which

is their inertia and dry friction. The developed numerical model offers a practical tool allowing

the consideration of these effects in daily engineering practice.

5.4 Overview and concluding summary

The chapter approaches the description of hydraulic transients in straight pipelines first

focusing on the friction coupling mechanisms and then on the junction coupling by means of

the inclusion of internal conditions with the purpose to represent the effect of pipe supports

behaviour. The starting point is the basic four-equation model where add-ons are added to

account for unsteady skin friction, dry friction, and the anchoring nodes. The models have

been successfully validated by means of experimental tests carried out in the SCP pipe rig (cf.

Subsection 3.2.1).

The first part of the chapter, which focuses on friction coupling mechanisms, concludes that

the inclusion of unsteady skin friction in a four-equation model does not differ much from
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the overall skin friction dissipation computed by the traditional quasi-steady assumption.

With regard to the dry friction dissipation the computation is distributed throughout the pipe,

sidestepping the analysis of dry friction in sections that merit a special treatment, which is

the case of the downstream end section. When the valve is free to move its heavier mass and

momentum produce a higher dry dissipation that cannot be computed by means of friction

coupling but by junction coupling. Consequently, at this stage the four-equation model tends

to underestimate dry friction and, therefore, the overall waterhammer wave damping.

The second part of the chapter aims at solving this problem by means of considering the

dry friction in the junction coupling mechanism. A complete sensitivity analysis is carried

out depicting the influence of the inertia and dry friction of the downstream valve and the

anchoring blocks along the pipe. The model was successfully validated for several anchoring

set-ups, showing accurate output in terms of wave shape, timing and damping. The overall

work shows the importance of taking into account the pipe supports behaviour and the dry

friction dissipation. A powerful tool, with a strong applicability potential in daily engineering

practices, has been developed considering these effects, showing a high accuracy on the

description of hydraulic transients in straight pipelines.
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6 General conclusions and future re-
search

6.1 Research overview

Hydraulic transients in liquid filled conduits have been studied focusing the analysis on the

fluid-structure interaction occurring in straight and coil pipes and on the main wave dissipat-

ing phenomena. In Chapter 2 an extensive state-of-the-art review is presented highlighting

the detachment existing between the upgrades developed for the 1D classic waterhammer

model and those for the 1D FSI models. An experimental analysis focused on fluid structure

interaction and other wave damping phenomena, such as unsteady skin friction, dry friction

and pipe-wall viscoelasticity, is presented in Chapter 3. Chapter 4 addresses the specific

FSI occurring in pipe coils due to the structure geometry, while the aim of Chapter 5 is the

improvement of the FSI modelling of straight pipes, first tackling friction coupling and then

junction coupling. The present research is oriented, therefore, to the development of a 1D FSI

model for which dissipating phenomena, namely unsteady skin friction and Coulomb’s dry

friction, are included. Additionally, a robust and accurate novel approach for the modelling of

anchor and thrust blocks in straight pipelines is presented.

6.2 Main scientific outcome

Degrees-of-freedom as standpoint for FSI analysis: A new perspective is provided with

respect to the theoretical background of FSI 1D modelling by means of a novel classification

based on pipe degrees-of-freedom. Governing equations, both for the traditional two-equation

model and the more complex four-equation model, are derived by combining the fundamental

equations of each DOF and following the basic assumptions stated in literature (cf. A). The

main scientific contribution of this part of the work is an original standpoint that the author

suggests for tackling FSI problems

FSI evidence in multiple pipe rigs: In a second stage, extensive series of experimental data

acquired from several pipe rigs, with different pipe materials and geometries, are presented.
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The analysis allows the identification and evaluation of waterhammer wave damping phenom-

ena, namely fluid-structure interaction, pipe-wall viscoelasticity or unsteady skin friction. The

understanding of these physical phenomena is crucial for the development, implementation

and validation, of waterhammer software. Chapter 3 provides, therefore, valuable and reliable

experimental data for waterhammer researchers validating developed solvers.

Pipe coil mechanical breathing effect description: Pipe coils are very convenient in hy-

draulic laboratories, as they allow long pipes in reduced spaces, however the coil behaviour

under transient conditions is not fully understood yet. In Chapter 3 a coil ‘breathing’ effect

is pointed out as the cause of a systematic reduction of the waterhammer wave amplitude.

To the knowledge of the author, this effect has never been described in literature. The FSI

study presented in Chapter 4 finds out the adequate modelling assumptions for a successful

simulation of the FSI occurring in pipe coils, bringing insight in the understanding of the

behaviour of these pipe systems. The analysis is based on the coil copper facility, where

the mechanical breathing effect is more evident from experimental observations. In the coil

polyethylene facility, though, the phenomenon is hindered by the pipe-wall viscoelasticity,

which is clearly the dominant damping effect.

FSI friction coupling in straight pipelines: Fluid-structure interaction mechanisms, un-

steady skin friction and dry friction are used for the model development. First, the work

focuses on the friction coupling, where unsteady skin friction and dry friction are imple-

mented and computed distributed throughout the pipe length. The outcome of this study

highlights the importance of considering unsteady skin friction when the pipe is fully anchored

and the role of dry friction when this is allowed to move.

FSI junction coupling in straight pipelines: In a second approach, internal conditions are

added in the model allowing the description of the pipe anchoring and thrust blocks taking

into account their resistance to movement due to the inertia and the dry friction. The model

is successfully validated and stick-slip criterion is pointed out to be crucial for achieving

accurate model output. The research contribution of this part of the work is a reliable, efficient

and accurate model that allows the description of hydraulic transients in straight pipelines for

different anchoring conditions.

6.3 Engineering applications and future research

Several points can be highlighted with regard to the applicability of the presented research

work. Nowadays, pipe designs are not only focused on maximum loads but the overall transient

wave propagation has to be taken into account. For this purpose, the main wave dissipating

phenomena have to be identified and well-described. The present research, with the inclusion

of unsteady skin friction and dry friction into 1D FSI models, represents a step forward
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in numerical modelling. With respect to pipe coils, they have many industrial engineering

applications, being typically used in most heat exchange systems, like cooling systems in power

plants, industrial and commercial refrigerators, solar water heaters or radiators for automotive

industry. Moreover, coils are very convenient systems for waterhammer research applications

as they allow a very long pipe in a quite reduced space. In Chapter 4, a detailed study of the

pipe coils behaviour, first static and then dynamic, is carried out pointing out some specific

FSI features of the coil systems. As highlighted in the state-of-the-art review (cf. Section 2.6),

not much research has been done for the description of anchors and pipe supports behaviour

during hydraulic transients in pipe systems. Nonetheless, these elements are crucial for the

right design of pipelines, guaranteeing their stability and reliability for fast transient events

such as pump trip-off or emergency valve manoeuvres. In Section 5.3, a complete FSI model

for straight pipelines anchored against longitudinal movement is presented offering a cutting-

edge tool for practical engineering purposes. The four-equation model allows simulating

different scenarios for pipelines (e.g. pipe completely constrained to axial movement or

allowed to move for different pipe support stiffness or dry friction with its surrounding), then

obtain the maximum and minimum envelopes for all scenarios and, accordingly, design the

surge protection measures for the worse scenario. Henceforth recommendations for designing

pipelines systems considering FSI can be elaborated by means of the proposed numerical

model.

Hysteric damping is a dominant wave dissipation mechanism in plastic pipes. However,

pipe-wall viscoelastic behaviour is not so far included in the FSI solvers. The author believes

such implementation would bring an interesting insight in hydraulic transients research.

A 1D waterhammer model combining fluid-structure interaction, pipe-wall viscoelasticity,

unsteady skin friction and dry friction could be validated with the experimental data presented

in Chapter 3 and, accordingly, further experiments could be carried out for straight plastic

pipelines. The work would offer a complete tool for holistic analyses of the main dissipation

mechanisms of waterhammer waves in plastic pipes and new benchmark problems could be

proposed based on the upgraded model.

In a further stage, and based on the model proposed in Chapter 5 the rheological behaviour

of the supports could be as well analysed. This scientific contribution would bring useful

industrial applications in diverse fields, such as vibration damping and noise reduction,

earthquake engineering or biomechanics where hysteretic damping takes an important role.
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A Derivation of governing equations

A.1 Governing equations

The equations of the system (Eqs. A.1 to A.16) presented hereby correspond to the momentum

and continuity conservation equations of a pipe-system with eight degrees-of-freedom, like

in the control volume depicted in Fig. 2.3. Eqs. A.1 to A.6 and their associate characteristic

equations can be found in Walker & Phillips (1977); Eqs. A.7 to A.16 in Wiggert et al. (1987).

1-DOF (fluid):

∂V

∂t
+ 1

ρ f

∂p

∂z
= 0 (A.1)

1

K

∂p

∂t
+ ∂V

∂z
=−2

r
W (A.2)

2-DOF (breathing):(
ρp r e +ρ f

r 2

2

)
∂W

∂t
= r p −eσθ (A.3)

∂σθ

∂t
−Eν

∂Uz

∂z
= E

W

rm
(A.4)
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3-DOF (surging):

∂Uz

∂t
− 1

ρp

∂σz

∂z
= 0 (A.5)

σz
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∂Uz
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W

rm
(A.6)

4-DOF (swaying):

−
(
ρp + A f

Ap
ρ f

)
∂Ux

∂t
+ ∂σx

∂z
= 0 (A.7)

∂σx

∂t
−G

∂Ux

∂z
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5-DOF (heaving):

−
(
ρp + A f

Ap
ρ f

)
∂Uy

∂t
+ ∂σy

∂z
= 0 (A.9)

∂σy

∂t
−G

∂Uy

∂z
=−GRx (A.10)

6-DOF (yawing):

− (
ρp Ip +ρ f I f

) ∂Ry

∂t
+ ∂My

∂z
=−σx Ap (A.11)

∂My

∂t
−E Ip

∂Ry

∂z
= 0 (A.12)

7-DOF (pitching):

− (
ρp Ip +ρ f I f

) ∂Rx

∂t
+ ∂Mx

∂z
=σy Ap (A.13)

∂Mx

∂t
−E Ip

∂Rx

∂z
= 0 (A.14)
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8-DOF (rolling):

−ρp J
∂Rz

∂t
+ ∂Mz

∂z
= 0 (A.15)

∂Mz

∂t
−G J

∂Rz

∂z
= 0 (A.16)

The flow-types defined in Tijsseling & Vardy (2004) and explained in Subsection 2.2.1 concern-

ing no-flow, static/steady, quasi-steady and rigid column flows are mere asymptotic extreme

cases of the more general transient flow. Therefore, applying the proper simplifying assump-

tions governing equations can be derived from the system Eqs. A.1 to A.16 for each flow-type,

both for the fluid and the structure.

All the degrees-of-freedom are distinguished in the previous system of equations, hence the

analysis of waves celerities can be reduced to the essential wave propagating speeds in each

degree-of-freedom. The following formulae (Eqs. A.17 to A.22) define the wave celerities for

each wave type considered:

a1 =
√

K

ρ f
(A.17)

a2 =
√

G

ρp
(A.18)

a3 =
√

E

ρp
(A.19)

a4,5 =
√

G Ap

ρp Ap +ρ f A f
(A.20)

a6,7 =
√

E Ip

ρp Ip +ρ f I f
(A.21)

a8 =
√

G

ρp
(A.22)

Where,
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• a1 represents the velocity of the fluid wave in an infinite medium without boundaries,

which is the speed of the sound in the fluid and, therefore, corresponds to the 1-DOF;

• a2 the velocity of the pipe breathing wave propagating in the z coordinate by means of

axisymmetric shear stress and is associated with the 2-DOF;

• a3 the velocity of the pipe surging wave, which is the speed of the sound in the pipe-wall

and it propagates in the 3-DOF;

• a4,5 the velocity of the pipe swaying and heaving waves, hence associated respectively

with the 4-DOF and 5-DOF;

• a6,7 the velocity of the pipe yawing wave and pitching waves, hence associated respec-

tively with the 6-DOF and 7-DOF;

• a8 the velocity of the pipe rolling wave, hence associated with the 8-DOF.

Notice that, due to the pipe axisymmetry, shear and bending wave celerities are equal in both

planes.

The advantage of considering the system of equations Eqs. A.1 to A.16 is that there is no

need of considering the abstract concept of elastic wave celerity from classic waterhammer

theory. The definition and historical development of the waterhammer wave speed is given in

Subsection 2.2.7. An in-depth critical analysis of the different interpretations of wave speed in

both time and frequency-domains is given in Tijsseling & Vardy (2015).

A.2 Derivation of the governing equations for the classic waterham-

mer theory

In the classic waterhammer theory, only 1-DOF is described and the distensibility of the pipe

in the radial coordinate is taken into account neglecting the radial inertia of the pipe-wall

and the fluid and assuming a quasi-steady linear-elastic circumferential deformation of the

pipe-wall.

From the one side, if inertial terms (∂W /∂t ) are neglected in the momentum equation of the

2-DOF, Eq. A.3 becomes the well-known hoop stress formula:

σθ =
r p

e
(A.23)

Applying time partial derivative to both sides of Eq. A.23 and expanding differential terms

∂σθ

∂t
= p

e

∂r

∂t
+ r

e

∂p

∂t
(A.24)
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the left-hand-side of Eq. A.24 can be written in terms of circumferential strain

E
∂εθ

∂t
= p

e

∂r

∂t
+ r

e

∂p

∂t
(A.25)

and knowing that εθ = ∂r /r

E
∂εθ

∂t
= pr

e

∂εθ

∂t
+ r

e

∂p

∂t
(A.26)

Rearranging Eq. A.26 and considering pr
e << E

∂εθ

∂t
= r

eE

∂p

∂t
(A.27)

From the other side, the classic waterhammer theory does not consider any axial movement

of the pipe. Hence, in Eq. A.4 ∂Uz /∂z = 0 and becomes

∂σθ

∂t
= E

W

rm
(A.28)

which in terms of circumferential strain is

∂εθ

∂t
= W

rm
(A.29)

Combining Eq. A.27 with Eq. A.29 an expression for the radial velocity of the pipe-wall, in

function of the inner pressure, is obtained:

W = r 2

eE

∂p

∂t
(A.30)

Substituting Eq. A.30 into the right-hand-side of the continuity equation of the 1-DOF,

1

K

∂p

∂t
+ ∂V

∂z
=− 2r

eE

∂p

∂t
(A.31)

rearranging Eq. A.31

∂V

∂z
+

(
1

K
+ D

eE

)
∂p

∂t
= 0 (A.32)

Finally, defining the elastic wave celerity as

ah =
√

K

ρ f
(
1+ DK

eE

) (A.33)
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Appendix A. Derivation of governing equations

the continuity equation Eq. A.34 for classic waterhammer theory is reached:

∂V

∂z
+ 1

ρ f a2
h

∂p

∂t
= 0 (A.34)

The fundamental system of equations of the classic waterhammer theory, neglecting damping

mechanisms, is therefore composed by Eqs. A.1 and A.34. Forming the following system of

equations A.35:

two-equation model


∂V
∂t + 1

ρ f

∂p
∂z = 0

∂V
∂z + 1

ρ f a2
h

∂p
∂t = 0

(A.35)

If the acoustic wave celerity in the fluid is considered (a1 =
√

K
ρ f

), Eq. A.1 and Eq. A.34 are

equivalent. Hence, the only difference between 1-DOF wave propagation and classic water-

hammer theory is determined by how the elastic wave celerity is defined. In the first, rigid

pipe is assumed, while in the second the distensibility of the pipe is taken into account.

A.3 Derivation of the governing equations for the four-equation model

The four-equation model describes the 1-DOF (fluid) and 3DOF (surging) of the pipe system

and takes into account the 2-DOF (breathing) in a similar manner as the classic waterhammer

theory.

A.3.1 Continuity in 1-DOF

Subtracting to the 2-DOF continuity equation Poisson ratio times the 3-DOF continuity equa-

tion (i.e. Eq. A.4 −ν Eq.A.6) the following expression is obtained:

∂σθ

∂t
−ν∂σz

∂t
= (1−ν2)E

W

r
(A.36)

Notice that, dividing both sides of Eq. A.36 by E , the left-hand-side is actually the local time

rate of change of the circumferential strain. Hoop stress can be written in terms of pressure
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A.3. Derivation of the governing equations for the four-equation model

according to Eq. A.23, which is also valid in the present derivation.

1

e

∂pr

∂t
−ν∂σz

∂t
= (1−ν2)E

W

r
(A.37)

expanding the differential term

p

e

∂r

∂t
+ r

e

∂p

∂t
−ν∂σz

∂t
= (1−ν2)E

W

r
(A.38)

considering p
e
∂r
∂t is negligible and rearranging Eq. A.38

W =
r 2

e
∂p
∂t − rν∂σz

∂t

(1−ν2)E
(A.39)

Substituting Eq. A.39 into Eq. A.2

1

K

∂p

∂t
+ ∂V

∂z
=− D

e(1−ν2)E

∂p

∂t
+ 2ν

(1−ν2)E

∂σz

∂t
(A.40)

neglecting second-order Poisson ratio terms and rearranging

∂V

∂z
+

(
1

K
+ D

eE

)
∂p

∂t
= 2ν

E

∂σz

∂t
(A.41)

Finally, applying the definition of elastic wave celerity from Eq. A.33, the continuity equation

(Eq. A.42) for the 1-DOF of a four-equation model is obtained:

∂V

∂z
+ 1

ρ f a2
h

∂p

∂t
= 2ν

E

∂σz

∂t
(A.42)

A.3.2 Continuity in 3-DOF

Substituting Eq. A.39 into Eq. A.6

∂σz

∂t
−E

∂Uz

∂z
=

νr
e
∂p
∂t −ν2 ∂σz

∂t

(1−ν2)
(A.43)

neglecting second order Poisson ratio terms and rearranging the continuity equation (Eq. A.43)

∂Uz

∂z
− 1

E

σz

∂t
=−νr

eE

∂p

∂t
(A.44)
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Appendix A. Derivation of governing equations

Finally, defining the acoustic wave speed in the pipe-wall as

a3 =
√

E

ρp
(A.45)

and substituting Eq. A.45 into Eq. A.44 the continuity equation of the pipe-wall (Eq. A.46) for

the four-equation model is obtained:

∂Uz

∂z
− 1

ρp a2
3

σz

∂t
=−νr

eE

∂p

∂t
(A.46)

The four fundamental equations of a four-equation model are composed, therefore, of Eq. A.1,

A.42, A.5 and A.46. Forming the following system of equations A.47:

four-equation model



∂V
∂t + 1

ρ f

∂p
∂z = 0

∂V
∂z + 1

ρ f a2
h

∂p
∂t = 2ν

E
∂σz

∂t

 1-DOF

∂Uz

∂t − 1
ρp

∂σz

∂z = 0

∂Uz

∂z − 1
ρp a2

3

σz

∂t =−νr
eE

∂p
∂t

 3-DOF

(A.47)

188



B MOC transformation for four-
equation models

B.1 Introduction

The present appendix aims at explaining the MOC transformation, which consists of trans-

forming the hyperbolic partial differential equations of the four-equation model (Eq. A.47) to

a set of ordinary differential equations. The development is based on Forsythe et al. (1960)

and Tijsseling (1993). First the system of equations is introduced in a general matricial form

and then a transformation matrix is derived. During the development, the elements of the

original matrices are kept as coefficients aiming at reaching general compatibility equations

that will allow the straightforward conversion of any four-equation like system from PDE’s to

ODE’s. At the end of the appendix this algebraic model is applied to the Poisson-uncoupled

and Poisson-coupled four-equation models.

B.2 System of equations

The fundamental set of equations for the four-equation model (Eqs. A.47) is presented in

this subsection in matricial form. For practical purposes the factors multiplying the differ-

ential terms are kept as general coefficients which value is substituted at the very end of the

development.

A
∂y

∂t
+B

∂y

∂z
= r (B.1)

y =
(

V p Uz σz

)T
(B.2)
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Appendix B. MOC transformation for four-equation models

r =
(

r1 r2 r3 r4

)T
(B.3)

A =


α11 0 0 0

0 α22 0 α24

0 0 α33 0

0 α42 0 α44

 (B.4)

B =


0 β12 0 0

β21 0 0 0

0 0 0 β34

0 0 β43 0

 (B.5)

B.3 Transformation matrix

Hyperbolic systems can be transformed by means of multiplication by a regular matrix

T A
∂y

∂t
+T B

∂y

∂x
= Tr (B.6)

For square matrices with distinct real eigenvalues there is a matrix S such that

S−1 A−1BS =Λ (B.7)

where Λ is

Λ=


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

 (B.8)

The T matrix is chosen as

T = S−1 A−1 (B.9)

and substituting Eq. B.9 into Eq. B.7 leads to the condition

T B =ΛT A (B.10)
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B.3. Transformation matrix

Hence, substituting Eqs. B.4, B.5 and B.8 into Eq. B.10:


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44




0 β12 0 0

β21 0 0 0

0 0 0 β34

0 0 β43 0

=


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44




α11 0 0 0

0 α22 0 α24

0 0 α33 0

0 α42 0 α44

 (B.11)

which is


t12β21 t11β12 t14β43 t13β34

t22β21 t21β12 t24β43 t23β34

t32β21 t31β12 t34β43 t33β34

t42β21 t41β12 t44β43 t43β34

=


λ1t11α11 λ1(t12α22 + t14α42) λ1t13α33 λ1(t12α24 + t14α44)

λ2t21α11 λ2(t22α22 + t24α42) λ2t23α33 λ2(t22α24 + t24α44)

λ3t31α11 λ3(t32α22 + t34α42) λ3t33α33 λ3(t32α24 + t34α44)

λ4t41α11 λ4(t42α22 + t44α42) λ4t43α33 λ4(t42α24 + t44α44)

 (B.12)

Eq. B.12 is a system composed by sixteen equations with sixteen unknowns ti j . Let’s consider

row i :

ti 2β21 =λi ti 1α11

ti 1β12 =λi (ti 2α22 + ti 4α42)

ti 4β43 =λi ti 3α33

ti 3β34 =λi (ti 2α24 + ti 4α44) (B.13)
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Appendix B. MOC transformation for four-equation models

or what is the same


−λiα11 β21 0 0

β12 −λiα22 0 −λiα42

0 0 −λiα33 β43

0 −λiα24 β34 −λiα44




ti 1

ti 2

ti 3

ti 4

=


0

0

0

0

 (B.14)

The system B.14 can be written in matrix notation

(B −λi A)T ti = 0 (B.15)

If the matrix (B −λi A)T is regular, Eq. B.15 has only the trivial solution ti = 0, which leads to a

singular matrix T . To obtain a regular matrix T, (B −λi A)T has to be singular. Hence

|B −λi A| = 0 (B.16)

and the equations of the system B.14 are dependent so one of them can be omitted. The

second equation of the system B.14 is omitted if i = 1 or i = 2, and the fort equation is omitted

if i = 3 or i = 4.

For i = 1 and i = 2 the eigenvector ti is calculated as follows:

−λi ti 1α11 + ti 2β21 = 0

−λi ti 3α33 + ti 4β43 = 0

−λi ti 2α24 + ti 3β34 −λi ti 4α44 = 0 (B.17)

or

ti 1 = ti 2β21

λiα11

ti 3 = ti 4β43

λiα33

ti 4 = λi ti 2α24
β43β34

λiα33
−λiα44

(B.18)

and taking ti 2 =λi
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B.3. Transformation matrix

ti 1 = β21

α11

ti 2 =λi

ti 3 = λiβ43α24
β43β34

λi
−λiα33α44

ti 4 =
λ2

i α24

β43β34

λiα33
−λiα44

(B.19)

For i = 3 and i = 4 the eigenvector ti is calculated as follows:

−λi ti 1α11 + ti 2β21 = 0

ti 1β12 −λi ti 2α22 −λi ti 4α42 = 0

−λi ti 3α33 + ti 4β43 = 0 (B.20)

or

ti 1 = λi ti 4α42β21

β12β21 −λ2
i α22α11

ti 2 = λi ti 4α42
β12β21

λiα11
−λiα22

ti 3 = ti 4β43

λiα33
(B.21)

and taking ti 4 =λi

ti 1 =
λ2

i α42β21

β12β21 −λ2
i α22α11

ti 2 =
λ2

i α42

β12β21

λiα11
−λiα22

ti 3 = β43

α33

ti 4 =λi (B.22)
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Appendix B. MOC transformation for four-equation models

And finally joining the eigenvectors in matricial form, which is Eqs. B.19 for i = 1,2; and

Eqs. B.22 for i = 3,4 yields:

T =



β21

α11
λ1

λ1β43α24
β43β34
λ1

−λ1α33α44

λ2
1α24

β43β34
λ1α33

−λ1α44

β21

α11
λ2

λ2β43α24
β43β34
λ2

−λ2α33α44

λ2
2α24

β43β34
λ2α33

−λ2α44

λ2
3α42β21

β12β21−λ2
3α22α11

λ2
3α42

β12β21
λ3α11

−λ3α22

β43

α33
λ3

λ2
4α42β21

β12β21−λ2
4α22α11

λ2
4α42

β12β21
λ4α11

−λ4α22

β43

α33
λ4


(B.23)

B.4 Compatibility equations

Introducing the vector

v = T Ay (B.24)

Eq. B.1 becomes

∂v

∂t
+Λ∂v

∂x
= Tr (B.25)

which can be written as a set of four uncoupled equations:

∂vi

∂t
+λi

∂vi

∂x
= (Tr )i ; i = 1,2,3,4 (B.26)

Each of the Eqs. B.26 transforms into an ordinary differential equation

d v1

d t
= (Tr )i ; i = 1,2,3,4 (B.27)

when it is considered along a line in the x–t plane having the characteristic direction

d z

d t
=λi ; i = 1,2,3,4 (B.28)

The Eqs. B.27 are known as the compatibility equations along the characteristic lines with

slopes λ−1
i in the x–t plane.

Finally, substituting Eqs. B.23 and B.4 into Eq. B.24 and Eqs. B.23, B.3 and B.24 into Eq. B.27.
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B.5. Application to the standard four-equation model



β21 λ1α22 + λ2
1α24α42

β43β34
λ1α33

−λ1α44

λ1β43α24α33
β43β34
λ1

−λ1α33α44
λ1α24 + λ2

1α24α44
β43β34
λ1α33

−λ1α44

β21 λ2α22 + λ2
2α24α42

β43β34
λ2α33

−λ2α44

λ2β43α24α33
β43β34
λ2

−λ2α33α44
λ2α24 + λ2

2α24α44
β43β34
λ2α33

−λ2α44

λ2
3α42β21α11

β12β21−λ2
3α22α11

λ2
3α42α22

β12β21
λ3α11

−λ3α22
+λ3α42 β43

λ2
3α42α24

β12β21
λ3α11

−λ3α22
+λ3α44

λ2
4α42β21α11

β12β21−λ2
4α22α11

λ2
4α42α22

β12β21
λ4α11

−λ4α22
+λ4α42 β43

λ2
4α42α24

β12β21
λ4α11

−λ4α22
+λ4α44



d

d t



V

p

Uz

σz


=



r1
β21

α11
+ r2λ1 + r3

λ1β43α24
β43β34
λ1

−λ1α33α44
+ r4

λ2
1α24

β43β34
λ1α33

−λ1α44

r1
β21

α11
+ r2λ2 + r3

λ2β43α24
β43β34
λ2

−λ2α33α44
+ r4

λ2
2α24

β43β34
λ2α33

−λ2α44

r1
λ2

3α42β21

β12β21−λ2
3α22α11

+ r2
λ2

3α42
β12β21
λ3α11

−λ3α22
+ r3

β43

α33
+ r4λ3

r1
λ2

4α42β21

β12β21−λ2
4α22α11

+ r2
λ2

4α42
β12β21
λ4α11

−λ4α22
+ r3

β43

α33
+ r4λ4


(B.29)

B.5 Application to the standard four-equation model

B.5.1 Poisson-uncoupled four-equation model

System coefficients

For the basic Poisson-uncoupled four-equation model solving the system of equations Eq. A.35,

and including steady friction dissipation, the coefficients are:

Table B.1 – Coefficients for factor matrices A and B and right-hand-side vector r

Matrix A Matrix B Vector r

α11 = 1 β12 = 1
ρ f

r1 =− f
4r Vr |Vr |

α22 = 1
ρ f a2

h
β21 = 1 r2 = 0

α24 = 0 β34 =− 1
ρp

r3 = ρ f

ρp

A f

Ap

f
4r Vr |Vr |

α33 = 1 β43 = 1 r4 = 0

α42 = 0 – –

α44 =− 1
ρp a2

3
– –

195



Appendix B. MOC transformation for four-equation models

Eigenvalues

The characteristic equation of the system B.1 is:

|B −λA| = 0 (B.30)

Substituting the values from Eqs. B.4, B.5 into B.30

B −λA =


−λα11 β12 0 0

β21 −λα22 0 −λα24

0 0 −λα33 β34

0 −λα42 β43 −λα44

 (B.31)

which determinant is

|B−λA| =λ4α11α33 (α22α44 −α24α42)−λ2(α11α22β34β43+α33α44β12β21)+β12β21β34β43

(B.32)

and assigning the coefficient values of table B.1 into Eq. B.32

|B −λA| = λ2

ρ f a2
hρp

(
λ2

a2
3

−1

)
+ 1

ρ f ρp

(
λ2

a2
h

+1

)
(B.33)

Hence, for the Poisson-uncoupled four-equation model, the solutions of the characteristic

equation are:

λ1 =+ah ; λ2 =−ah ; λ3 =+a3 ; λ4 =−a3 (B.34)

Compatibility equations

Substituting Eq. B.34 and the values of table B.1 into Eq. B.29, the compatibility equations for

the basic Poisson-uncoupled four-equation model are:
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B.5. Application to the standard four-equation model



1 1
ρ f ah

0 0

1 − 1
ρ f ah

0 0

0 0 1 − 1
ρp a3

0 0 1 1
ρp a3


d

d t



V

p

Uz

σz


=



− f
4r Vr |Vr |

− f
4r Vr |Vr |

ρ f

ρs

A f

Ap

f
4r Vr |Vr |

ρ f

ρs

A f

Ap

f
4r Vr |Vr |


(B.35)

Notice that, neglecting the RHS terms of the system B.35, the first two equations correspond the

ones of classic waterhammer theory (Eq. A.35), while the last two equations to the uncoupled

axial pipe movement equations (Eq. A.5 and A.6)

B.5.2 Poisson-coupled four-equation model

System coefficients

For the basic four-equation model solving the system of equations Eq. A.47, and including

steady friction dissipation, the coefficients are:

Table B.2 – Coefficients for factor matrices A and B and right-hand-side vector r

Matrix A Matrix B Vector r

α11 = 1 β12 = 1
ρ f

r1 =− f
4r Vr |Vr |

α22 = 1
ρ f a2

h
β21 = 1 r2 = 0

α24 =−2ν
E β34 =− 1

ρp
r3 = ρ f

ρp

A f

Ap

f
4r Vr |Vr |

α33 = 1 β43 = 1 r4 = 0

α42 = νr
eE – –

α44 =− 1
ρp a2

3
– –

Eigenvalues

Following the same development as the one presented in Subsection B.5.1 and substituting

the values of table B.2 into Eq. B.32

|B −λA| = λ2

ρ f a2
hρp

(
λ2

a2
3

−1

)
+ 1

ρ f ρp

(
λ2

a2
h

+1

)
+ λ42ν2r

eE 2 (B.36)

Neglecting second-order Poisson ratio terms (Forsythe et al., 1960; Tijsseling, 1993) the so-
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Appendix B. MOC transformation for four-equation models

lutions of the characteristic equations for Poisson-coupled four-equation model are as well

λ1 =+ah ; λ2 =−ah ; λ3 =+a3 ; λ4 =−a3 (B.37)

If second-order Poisson ratio terms are not neglected

λ1 =

√√√√√√1

2

(
a2

h +a2
3 +

2ν2ρ f r a2
h

ρp e

)2

−
√√√√(

a2
h +a2

3 +
2ν2ρ f r a2

h

ρp e

)4

−4a2
h a2

3



λ2 =−

√√√√√√1

2

(
a2

h +a2
3 +

2ν2ρ f r a2
h

ρp e

)2

−
√√√√(

a2
h +a2

3 +
2ν2ρ f r a2

h

ρp e

)4

−4a2
h a2

3



λ3 =

√√√√√√1

2

(
a2

h +a2
3 +

2ν2ρ f r a2
h

ρp e

)2

+
√√√√(

a2
h +a2

3 +
2ν2ρ f r a2

h

ρp e

)4

−4a2
h a2

3



λ4 =−

√√√√√√1

2

(
a2

h +a2
3 +

2ν2ρ f r a2
h

ρp e

)2

+
√√√√(

a2
h +a2

3 +
2ν2ρ f r a2

h

ρp e

)4

−4a2
h a2

3


(B.38)

Compatibility equations

Substituting the eigenvalues Eq. B.37 and the values of table B.2 into Eq. B.29, the compatibility

equations for the basic Poisson-coupled four-equation model are:
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B.6. Summary table



1 1
ρ f ah

+ a2
h

2ν2r
eE2

1
ρp ah

− ah
ρp a2

3

ah
2ν
E

1
ρp ah

− ah
ρp a2

3

− ah 2ν
E −

a2
h

2ν
Eρp a2

3
1

ρp ah
− ah
ρp a2

3

1 − 1
ρ f ah

− a2
h

2ν2r
eE2

1
ρp ah

− ah
ρp a2

3

ah
2ν
E

1
ρp ah

− ah
ρp a2

3

ah 2ν
E +

a2
h

2ν
Eρp a2

3
1

ρp ah
− ah
ρp a2

3

a2
3
νr
eE

1
ρ f

− a2
3

ρ f a2
h

a3
νr
eE +

a2
3

νr
eEρ f a2

h
1

ρ f a3
− a3
ρ f a2

h

1 − 1
ρp a3

− a2
3

2ν2r
eE2

1
ρ f a3

− a3
ρ f a2

h

a2
3
νr
eE

1
ρ f

− a2
3

ρ f a2
h

−a3
νr
eE −

a2
3

νr
eEρ f a2

h
1

ρ f a3
− a3
ρ f a2

h

1 1
ρp a3

+ a2
3

2ν2r
eE2

1
ρ f a3

− a3
ρ f a2

h



d

d t



V

p

Uz

σz


=



ρ f

ρp

A f

Ap

f
4r Vr |Vr |

(
a f

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr |

ρ f

ρp

A f

Ap

f
4r Vr |Vr |

(
a f

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr |

ρ f

ρp

A f

Ap

f
4r Vr |Vr |− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h



ρ f

ρp

A f

Ap

f
4r Vr |Vr |− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h




(B.39)

B.6 Summary table

For the sake of implementation the previous systems (Eqs. B.35 and B.39) are simplified to the

system Eq. B.40 by means of the coefficients presented in table B.3.


ξ fV ξ fp ξ fU −ξ fσ

ξ fV −ξ fp ξ fU ξ fσ

ξsV ξsp ξsU −ξsσ

ξsV −ξsp ξsU ξsσ




V

p

U

σ

=


SF f

SF f

SFs

SFs

 (B.40)
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Appendix B. MOC transformation for four-equation models

Table B.3 – Compatibility equations coefficients for FSI four-equation model Poisson-
uncoupled and Poisson-coupled.

Poisson-uncoupled

ξ fV = 1 ξsV = 0

ξ fp = 1
ρ f ah

ξsp = 0

ξ fU = 0 ξsU = 1

ξ fσ = 0 ξsσ = 1
ρp a3

SF f =− f
4r Vr |Vr |

SFs = ρ f

ρp

A f

Ap

f
4r Vr |Vr |

Poisson-coupled

ξ fV = 1 ξsV = a2
3
νr
eE

1
ρ f

− a2
3

ρ f a2
h

ξ fp = 1
ρ f ah

+ a2
h

2ν2r
eE2

1
ρp ah

− ah
ρp a2

3

ξsp = a3
νr
eE +

a2
3

νr
eEρ f a2

h
1

ρ f a3
− a3
ρ f a2

h

ξ fU = ah
2ν
E

1
ρp ah

− ah
ρp a2

3

ξsU = 1

ξ fσ = ah 2ν
E −

a2
h

2ν
Eρp a2

3
1

ρp ah
+ ah
ρp a2

3

ξsσ = 1
ρp a3

+ a2
3

2ν2r
eE2

1
ρ f a3

− a3
ρ f a2

h

SF f = ρ f

ρp

A f

Ap

f
4r Vr |Vr |

(
ah

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr |

SFs = ρ f

ρp

A f

Ap

f
4r Vr |Vr |− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h


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C Verification of the four-equation
model

A verification of the basic implementation of the four-equation model was carried out by

means of the simulation of the well known Delft Hydraulics FSI benchmark problems from

Tijsseling & Lavooij (1990) and Lavooij & Tijsseling (1989). From their set of FSI problems,

Problem A is the most suitable for the verification of the developed four-equation model. It

consists of a reservoir-pipe-valve system with length L = 20 m, inner radius r = 398.5 mm,

pipe-wall thickness e = 8 mm, Young’s modulus E = 210 GPa, solid density ρp = 7900 kg /m3,

Poisson ratio ν= 0.30, bulk modulus K = 2.1 GPa, fluid density ρ f = 1000 kg /m3 and initial

flow velocity V0 = 1 m/s. The valve is closed in one time-step, and both boundary conditions

fixed and free moving valve are analysed.

Corresponding wave speeds are ah = 1024.7 m/s and a3 = 5280.5 m/s, giving a ratio of ah/a3 =
0.194. Like in Tijsseling (2003), two different simulations have been carried out: the first

simulation approximating the ratio between celerities to 1/5 = 0.2, and a second simulation

considering a more accurate ratio of 13/67 = 0.194. Figures C.1 show the output of both

simulations, for a fixed and for a moving downstream boundary, as well as the Joukowsky

solution (∆p = ρ f ah∆V ).
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Appendix C. Verification of the four-equation model

Figure C.1 – Delft Hydraulics benchmark Problem A with (a) fixed boundaries and (b) with a
free moving valve.

In the first case, the ratio
a?h
a?3

= 1
5 allows no interpolations at the boundaries for the charac-

teristic lines corresponding to the fluid pressure wave propagation. However, the coarser

the adjustment of the wave speed is, the greater the phase shift error becomes. For a ratio
a?h
a?3

= 13
67 , the wave speed remains almost with the same value, though, the interpolations at

the boundaries are more intensive and, consequently, numerical diffusion and dispersion

increase.

When simulating a frictionless system, results reveal two different phenomena: the Poisson
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coupling beat, described in Tijsseling (1997), for a system with ν= 0.3 and fixed boundaries

(Fig. C.2a); and also a different kind of beat produced in junction coupling, when a massless

valve is allowed to move in a Poisson-uncoupled simulation (Fig. C.2b).

Figure C.2 – Delft Hydraulics benchmark Problem A: (a) pressure output for ν= 0.3 and fixed
valve (Poisson coupling beat); (b) pressure output for Poisson-uncoupled and a free moving
valve.

Both beats presented in Fig. C.2 have a quite different structural behaviour and different effect

on the fluid wave. Comparing the two graphs, the pressure variation amplitude in a fixed

valve with Poisson coupling is higher with regard to pressure values but lower with regard
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Appendix C. Verification of the four-equation model

to axial stress values. Furthermore, deft observers may notice a 90◦ phase shift between the

axial stress wave and the fluid pressure wave, while in the case of free moving valve there is no

apparent shift. The reason lies in the boundary condition imposed in the free moving valve,

which balances the forces of the pressure over the valve with the axial stress of the pipe-wall,

thus establishing a direct relation between both variables.
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D Dry friction implementation in a
four-equation model

D.1 Modification of the momentum conservation equation of the

pipe-wall

In order to include dry friction dissipation in the physical system the fundamental conserva-

tion equations must be adapted. Dry friction affects the momentum conservation equation

of the pipe axial movement as depicted in Fig. D.1. In the present appendix the momentum

conservation equation of the pipe axial movement is derived.

Similarly to waterhammer fundamental conservation equations derivation (Chaudhry, 2014),

beams equation for axial stress waves can be developed from the Reynolds Transport Theorem:

dBs y s

d t
= d

d t

∫
cv

βρp d∀+ [
βρp Ap (U −W )

]
2 −

[
βρp Ap (U −W )

]
1 (D.1)

Where the subscripts after the square brackets indicate the control volume boundary sections,

W their respective velocities, B is the extensive property of the system, which in this case is

the pipe-wall momentum (M = msU ), and β is the intensive property:

β= lim
∆m→0

U
∆m

∆m
=U (D.2)

From the second law of Newton we know that:

d M

d t
=∑

F (D.3)

and substituting Eq. D.2 and D.3 into Eq. D.1

d

d t

∫
cv

Uρp d∀+ [
ρp Ap (U −W )U

]
2 −

[
ρp Ap (U −W )U

]
1 =

∑
F (D.4)
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Appendix D. Dry friction implementation in a four-equation model

Applying Leibnitz’s rule of integration and defining d z1
d t =W1 and d z2

d t =W2

z2∫
z1

∂

∂t
(ρp ApU )d z+(ρp ApU )2W2−(ρp ApU )1W1+

[
ρp Ap (U −W )U

]
2−

[
ρp Ap (U −W )U

]
1 =

∑
F

(D.5)

Applying the mean-value theorem to Eq. D.5

∂

∂t
(ρp ApU )∆z + (ρp ApU 2)2 − (ρp ApU 2)1 =

∑
F (D.6)

dividing Eq. D.6 by ∆z and and letting ∆z approach 0

∂

∂t
(ρp ApU )+ ∂

∂z
(ρp ApU 2) = lim

∆z→0

∑
F

∆z
(D.7)

and expanding the differential terms in the following manner

U

[
∂

∂t
(ρp Ap )+ ∂

∂z
(ρp ApU )

]
+ρp Ap

∂U

∂t
+ρp ApU

∂U

∂z
= lim
∆z→0

∑
F

∆z
(D.8)

The term in square brackets of Eq. D.8 is actually the mass conservation equation (Chaudhry,

2014), hence its value is 0 and taking the total derivative of the remaining terms Eq. D.8

becomes

ρp Ap
dU

d t
= lim
∆z→0

∑
F

∆z
(D.9)

Notice that Eq. D.9 is nothing but the second law of Newton applied in an infinitesimal system.

At this point the balance of forces acting on the system may be incorporated in Eq. D.9. Fig. D.1

depicts this balance of forces acting in the axial direction of the pipe.

Figure D.1 – Schematic of forces acting in the pipe-wall in the axial direction.
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D.1. Modification of the momentum conservation equation of the pipe-wall

The forces acting on the control volume in the axial direction of the pipe are:

Fσ1 =σ1 Ap

Fσ2 =σ2 Ap

Fw = (x2 −x1)ρp Ap g sinΘ

Fτw s = τw sπD(z2 − z1)

Fd f = (z2 − z1)(ρp Ap +ρ f A f )g cosΘµ si g n(U ) (D.10)

where Fd f is the Coulomb’s dry friction force, Fτw s is the skin friction force andΘ is the angle

of the pipe respect the horizontal plane.

Let’s consider a horizontal pipe. The balance of forces is then

∑
F =−σ1 Ap +σ2 Ap +τw sπD(z2 − z1)+ (z2 − z1)(ρp Ap +ρ f A f )gµ si g n(U ) (D.11)

dividing by ∆z and letting ∆z approach 0

lim
∆z→0

∑
F

∆z
= Ap

∂σ

∂z
+τw sπD + (ρp Ap +ρ f A f )gµ si g n(U ) (D.12)

Assuming quasi-steady skin friction the shear stress between the fluid and the pipe-wall can

be computed by means of Darcy-Weisbach equation

τw s = 1

8
f ρ f Vr |Vr | (D.13)

Substituting Eq. D.13 into Eq. D.12

lim
∆z→0

∑
F

∆z
= Ap

∂σ

∂z
+ f ρ f A f

4r
Vr |Vr |+ (ρp Ap +ρ f A f )gµ si g n(U ) (D.14)

and substituting Eq D.14 into Eq. D.9 and dividing by ρp Ap

dU

d t
− 1

ρp

∂σ

∂z
= ρ f A f

ρp Ap

f

4r
Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ si g n(U ) (D.15)

Finally expanding the total derivative in Eq. D.15 and neglecting its convective acceleration

term, which is much smaller in most engineering applications, the momentum conservation

equation Eq. D.16 for the pipe-wall axial movement is obtained:

∂U

∂t
− 1

ρp

∂σ

∂z
= ρ f A f

ρp Ap

f

4r
Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ si g n(U ) (D.16)
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D.2 MOC transformation

D.2.1 System coefficients

Following the same MOC transformation development as the one presented in Appendix B, for

the four-equation model solving the system of equations Eq. A.47, and including dry friction

dissipation in the pipe momentum equation (Eq. D.16), the coefficients are:

Table D.1 – Coefficients for factor matrices A and B and right-hand-side vector r

Matrix A Matrix B Vector r

α11 = 1 β12 = 1
ρ f

r1 =− f
4r Vr |Vr |

α22 = 1
ρ f a2

h
β21 = 1 r2 = 0

α24 =−2ν
E β34 =− 1

ρp
r3 = ρ f

ρp

A f

Ap

f
4r Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ sign(U )

α33 = 1 β43 = 1 r4 = 0

α42 = νr
eE – –

α44 =− 1
ρp a2

3
– –

D.2.2 Eigenvalues

In the Appendix B the solution of the characteristic equation |B −λA| = 0 is derived reaching

the following four distinct real roots:

λ1 =+ah ; λ2 =−ah ; λ3 =+a3 ; λ4 =−a3 (D.17)

D.2.3 Compatibility equations

Substituting the eigenvalues Eq. D.17 and the coefficient values from table D.1 into Eq. B.29,

the compatibility equations for the modified four-equation model are:
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D.2. MOC transformation



1 1
ρ f ah

+ a2
h

2ν2r
eE2

1
ρp ah

− ah
ρp a2

3

ah
2ν
E

1
ρp ah

− ah
ρp a2

3

− ah 2ν
E −

a2
h

2ν
Eρp a2

3
1

ρp ah
− ah
ρp a2

3

1 − 1
ρ f ah

− a2
h

2ν2r
eE2

1
ρp ah

− ah
ρp a2

3

ah
2ν
E

1
ρp ah

− ah
ρp a2

3

ah 2ν
E +

a2
h

2ν
Eρp a2

3
1

ρp ah
− ah
ρp a2

3

a2
3
νr
eE

1
ρ f

− a2
3

ρ f a2
h

a3
νr
eE +

a2
3

νr
eEρ f a2

h
1

ρ f a3
− a3
ρ f a2

h

1 − 1
ρp a3

− a2
3

2ν2r
eE2

1
ρ f a3

− a3
ρ f a2

h

a2
3
νr
eE

1
ρ f

− a2
3

ρ f a2
h

−a3
νr
eE −

a2
3

νr
eEρ f a2

h
1

ρ f a3
− a3
ρ f a2

h

1 1
ρp a3

+ a2
3

2ν2r
eE2

1
ρ f a3

− a3
ρ f a2

h



d

d t



V

p

Uz

σz


=



(
ρ f

ρp

A f

Ap

f
4r Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ sign(U )

)(
ah

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr |

(
ρ f

ρp

A f

Ap

f
4r Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ sign(U )

)(
ah

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr |

ρ f

ρp

A f

Ap

f
4r Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ sign(U )− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h



ρ f

ρp

A f

Ap

f
4r Vr |Vr |+

(
1+ ρ f A f

ρp Ap

)
g µ sign(U )− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h




(D.18)

which for the sake of implementation, using the summary table B.3, the system D.18 is pre-

sented in the following form:


ξ fV ξ fp ξ fU −ξ fσ

ξ fV −ξ fp ξ fU ξ fσ

−ξsV −ξsp ξsU −ξsσ

−ξsV ξsp ξsU ξsσ

 d

d t


V

p

U

σ

=


SF f +DF f

SF f +DF f

SFs +DFs

SFs +DFs

 (D.19)

Therefore, the LHS terms of the Poisson-coupled four-equation system remain with equal

coefficients as the ones presented in the summary table B.3 and the RHS terms, in function of
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Appendix D. Dry friction implementation in a four-equation model

the dissipative phenomena are presented in the Table D.2.

Table D.2 – Compatibility equations coefficients for FSI, skin friction and dry friction terms.

Skin friction

Frictionless

SF f = 0 SFs = 0

Steady friction

SF f = ρ f

ρp

A f

Ap

f
4r Vr |Vr |

(
ah

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr | SFs = ρ f

ρp

A f

Ap

f
4r Vr |Vr |− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h


Brunone unsteady friction

f = fs + fu

fu = Kb
D

V r j
i |V r j

i |
V r j

i −V r j−1
i

d t −ah
V r j

i −V r j
i−1

d x

SF f = ρ f

ρp

A f

Ap

f
4r Vr |Vr |

(
ah

2ν
E

1
ρp ah

− ah
ρp a2

3

)
− f

4r Vr |Vr | SFs = ρ f

ρp

A f

Ap

f
4r Vr |Vr |− f

4r Vr |Vr |
 a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h


Trikha unsteady friction

mk = (1, 8.1, 40)

nk = (26.4, 200, 8000)

Yk j
i w

= mkw (V r j
i −V r j−1

i )+e−nkw dτt Yk j−1
i w

SF f =
(

d t16µ
D2

∑
Yk j

i w
+ f

4r V r j
i |V r j

i |d t
)(

ρ f

ρp

A f

Ap

ah
2ν
E

1
ρp ah

− ah
ρp a2

3

−1

)

SFs =
(

d t16µ
D2

∑
Yk j

i w
+ f

4r V r j
i |V r j

i |d t
)ρ f

ρp

A f

Ap
− a2

3
νr
eE

1
ρ f

− a2
3

ρ f a2
h



Dry friction

Frictionless

DF f = 0 DFs = 0

Coulomb’s friction

DF f =
(
1+ ρ f A f

ρp Ap

)
g µ sign(U )

(
ah

2ν
E

1
ρp ah

− ah
ρp a2

3

)
DFs =

(
1+ ρ f A f

ρp Ap

)
g µ sign(U )
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E Extended Joukowsky equation

E.1 Introduction

Young, Rankine and Joukowsky formulations (Young, 1808; Rankine, 1870; Joukowsky, 1904)

offer a very useful tool for designing purposes, as they allow an easy computation of the

maximum loading during a transient event, either in solids (maximum axial stress) or fluids

(maximum inner pressure). Eqs. E.1 and E.2 show these expressions:

∆σ= ρp ap∆U (E.1)

∆p =−ρ f ah∆V (E.2)

Young (Eq. E.1) and Joukowsky (Eq. E.2) formulae were derived assuming continuous and

homogeneous media. However, in a fluid-filled conduit the maximum pressure is frequently

influenced by the interaction between the fluid and the pipe structure. Jones & Wood (1972)

and Wilkinson (1979) derived Joukowsky like expressions modified in order to account for pipe

axial movement effect. In their development, though, spring-mass systems were considered

for the downstream valve movement. In the present appendix, a derivation of alternative

formulae to Joukowsky is presented. The development takes into account the 1-DOF and the 2-

DOF of the pipe system, and the starting point is the fundamental equations of a four-equation

FSI model.
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Appendix E. Extended Joukowsky equation

E.2 Governing equations

The starting point is the four fundamental conservation equations (Eqs. A.47). Skalak (1955)

introduced a solution of a 1-D four-equation non-dispersive model. Joukowsky formula can be

derived by means of the method of characteristics from the fluid momentum and continuity

equations and by neglecting the RHS terms. Similarly, Young formula can be as well derived by

means of the method of characteristics from the pipe momentum and continuity equations

and by neglecting the RHS terms.

As explained in the Appendices B and D the compatibility equations, Eqs. B.39,are only valid

along the characteristic lines with slopes: 1/ah and −1/ah for the fluid characteristics, and

1/a3 and −1/a3 for the pipe-wall characteristics. The present study focuses on the fluid

pressure rise at the downstream boundary. At this location only the positive characteristic

equations yield information from previous time history. Rewriting the positive characteristic

equations according to the coefficients of table B.3, it yields

ξ fp

d p

d t
+ξ fV

dV

d t
+ξ fσ

dσ

d t
+ξ fU

dU

d t
= 0 (E.3)

ξsp

d p

d t
+ξsV

dV

d t
+ξsσ

dσ

d t
+ξsU

dU

d t
= 0 (E.4)

Eqs. E.3 and E.4 can be solved by integration according to the characteristic grid of Fig. E.1

and following the positive characteristic lines, for the fluid and for the structure

ξ fp

∫ P1

B0

d p

d t
+ξ fV

∫ P1

B0

dV

d t
+ξ fσ

∫ P1

B0

dσ

d t
+ξ fU

∫ P1

B0

dU

d t
= 0 (E.5)

and

ξsp

∫ P1

A0

d p

d t
+ξsV

∫ P1

A0

dV

d t
+ξsσ

∫ P1

A0

dσ

d t
+ξsU

∫ P1

A0

dU

d t
= 0 (E.6)
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E.3. Pressure rise in a conduit only anchored at the upstream end

Figure E.1 – Characteristic grid for a four-equation model at the downstream boundary.

Assuming spatially uniform variables during the initial steady state (level 0 in Fig. E.1) Eqs. E.5

and E.6 can be expressed as

ξ fp∆p +ξ fV ∆V +ξ fσ∆σ+ξ fU∆U = 0 (E.7)

and

ξsp∆p +ξsV ∆V +ξsσ∆σ+ξsU∆U = 0 (E.8)

being ∆ the increment of a dependent variable between a certain time-step and the corre-

sponding previous one. Notice that for a known ∆V and ν= 0, Eq. E.7 becomes Eq. E.2 and,

similarly, for a known ∆U and ν= 0, Eq. E.8 becomes Eq. E.1.

E.3 Pressure rise in a conduit only anchored at the upstream end

E.3.1 Pressure rise in a conduit only anchored at the upstream end

First pressure rise

The boundary conditions at the downstream pipe end for a non-anchored valve taking into

account the valve inertia by means of second law of Newton are

∆V1 =∆U1 −V0 (E.9)
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and

∆σ1 =
A f

Ap
∆p1 − mv

Ap

∆U1

tv
(E.10)

where ∆p1 and ∆U1 can be determined by substituting Eqs. E.9 and E.10 into Eqs. E.7 and E.8

obtaining Eqs. E.11 and E.12:

∆p1 =Ψp1ρ f ahV0 or H1 =Ψp1

ahV0

g
(E.11)

and

∆U1 =ΨU1V0 (E.12)

where Ψp1 and ΨU1 are defined in table E.1. Notice that when limmv→∞ and limν→0 Ψp1 → 1

and Eq. E.11 tends to Eq. E.2.

Second pressure rise

Eq. E.11 is analogue to Joukowsky formula (Eq. E.2) when the interaction with the piping

structure is taken into account for a conduit only anchored in the upstream pipe end. However

the pressure rise obtained by Eq. E.11 is not the maximum. Usually, the axial stress wave

propagates faster than the pressure wave, hence, during the first pressure peak the stress wave

pushes back and forth the downstream pipe-end producing a breathing/pumping effect. To

compute the maximum pressure during the first pressure peak a second pressure rise, due to

the pumping effect of the second vibrating mode, must be taken into account when the stress

wave becomes negative next to the downstream pipe end.

The boundary conditions at the downstream pipe end at the stage of the second pressure rise

are

∆V2 =∆U2 (E.13)

and

∆σ2 =−2σ1 (E.14)

and substituting Eqs. E.13 and E.14 into Eqs. E.7 and E.8 Eqs. E.15 and E.16 are obtained:

∆p2 =Ψp2σ1 (E.15)

and

∆U2 =ΨU2σ1 (E.16)
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E.4. Application and validation of the equations

where Ψp2 and ΨU2 are defined in table E.1. Notice that Eq. E.16 tends to Young axial stress

rise (Eq. E.1) for limν→0.

Finally, adding the second pressure rise (i.e. result of Eq. E.15) to the result of the first pressure

rise from Eq. E.11, the maximum overpressure during the first pressure peak is obtained

(Eq. E.17):

pmax =ΨJKρ f ahV0 or Hmax =ΨJK
ahV0

g
(E.17)

whereΨJk is defined in table E.1. For limmv→∞ and limν→0 notice thatΨp1 → 1 andΨp2 → 0

hence Eq. E.17 becomes Joukowsky expression (Eq. E.2).

E.4 Application and validation of the equations

Assuming a mass valve of mv = 10 kg and a manoeuvre time of tv = 0.003 s respective pressure

surges where computed applying Eqs. E.2, E.11 and E.15 for the tests carried out in the straight

copper pipe facility with the set-up of a non-anchored valve. This calibrated mass valve

accounts as well for the downstream hose and connection elements. As depicted in Fig. E.2

the proposed equations show an improved accuracy compared to Joukowsky equation.

Figure E.2 – Comparison of pressure rise output from Eq. E.2 (grey dotted line), Eq. E.11 (black
dotted line) and Eq. E.17 (black dashed line). a) corresponds to the test SCP04, b) to SCP05
and c) to SCP06 (cf. Chapter 3).
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Table E.1 – Coefficients for extended Joukowsky equation

First pressure rise coefficients

Ψp1 = 1
a f ρ f

ξ fV
ξ fV

−ξ fσ
mv

Ap tv
+ξ fU

− ξsV
ξ

sV −ξsσ
mv

Ap tv
+ξsV

ξ fp +ξ fσ

A f
Ap

ξ fV
−ξ fσ

mv
Ap tv

+ξ fU

−
ξsp +ξsσ

A f
Ap

ξsV −ξsσ
mv

Ap tv
+ξsU

ΨU1 =

ξ fV

ξ fp +ξ fσ

A f
Ap

− ξsV

ξsp +ξsσ
A f
Ap

ξ fV
−ξ fσ

mv
Ap tv

+ξ fU

ξ fp +ξ fσ

A f
Ap

−
ξsV −ξsσ

mv
Ap tv

+ξsU

ξsp +ξsσ
A f
Ap

Second pressure rise coefficients

Ψp2 = 2

ξ fσ
ξ fV

+ξ fU
− ξsσ
ξsV +ξsU

ξ fp
ξ fV

+ξ fU
− ξsp
ξsV +ξsU

ΨU2 = 2

ξ fσ
ξ fp

− ξsσ
ξsp

ξ fV
+ξ fU
ξ fp

− ξsV +ξsU
ξsp

Joukowsky correction factor ΨJk = a f ρ f Ψp1+
(
a f ρ f

A f
Ap
Ψp1− mv

Ap tv
ΨU1

)
Ψp2

a f ρ f
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F Experimental work in the Straight
Copper Pipe facility

F.1 Introduction

An extensive experimental programme was carried out at the Straight Copper Pipe facility

(SCP) aiming at identifying and distinguishing several features of fluid-structure interaction

in straight pipes. The focus was mainly on the influence of pipe supports, skin friction and

dry friction dissipation during hydraulic transients. The experimental data presented hereby

complements, therefore, the reported in Chapters 3, 4 and 5.

Four different pipe set-ups were tested: the downstream pipe end is anchored (SCP1); the

pipe is released and there are no anchors all throughout the pipe (SCP2); the pipe is anchored

only in the midstream section (SCP3); the pipe is anchored in the midstream and downstream

sections (SCP4). The set-ups were subjected to five different waterhammer waves according

to different initial steady states. Tests with sampling frequency at 1200 Hz are presented to

show in accuracy the first wave cycles and at 600 Hz to show the overall wave damping.

F.2 Summary test tables

Table F.1 – Summary table for SCP1 tests.

Test ID frequency (Hz) test duration (s) anchoring points V0 (m/s)

SC P111 1200 0.15 downstream 0.26

SC P112 600 4.00 downstream 0.26

SC P121 1200 0.15 downstream 0.36

SC P122 600 4.00 downstream 0.36

SC P131 1200 0.15 downstream 0.41

SC P132 600 4.00 downstream 0.41

SC P141 1200 0.15 downstream 0.53

SC P142 600 4.00 downstream 0.53

SC P151 1200 0.15 downstream 0.77

SC P152 600 4.00 downstream 0.77
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Appendix F. Experimental work in the Straight Copper Pipe facility

Table F.2 – Summary table for SCP2 tests.

Test ID frequency (Hz) test duration (s) anchoring points V0 (m/s)

SC P211 1200 0.15 no anchors 0.26

SC P212 600 4.00 no anchors 0.26

SC P221 1200 0.15 no anchors 0.36

SC P222 600 4.00 no anchors 0.36

SC P231 1200 0.15 no anchors 0.41

SC P232 600 4.00 no anchors 0.41

SC P241 1200 0.15 no anchors 0.53

SC P242 600 4.00 no anchors 0.53

SC P251 1200 0.15 no anchors 0.77

SC P252 600 4.00 no anchors 0.77

Table F.3 – Summary table for SCP3 tests.

Test ID frequency (Hz) test duration (s) anchoring points V0 (m/s)

SC P311 1200 0.15 midstream 0.26

SC P312 600 4.00 midstream 0.26

SC P321 1200 0.15 midstream 0.36

SC P322 600 4.00 midstream 0.36

SC P331 1200 0.15 midstream 0.41

SC P332 600 4.00 midstream 0.41

SC P341 1200 0.15 midstream 0.53

SC P342 600 4.00 midstream 0.53

SC P351 1200 0.15 midstream 0.77

SC P352 600 4.00 midstream 0.77

Table F.4 – Summary table for SCP4 tests.

Test ID frequency (Hz) test duration (s) anchoring points V0 (m/s)

SC P411 1200 0.15 mid and downstream 0.26

SC P412 600 4.00 mid and downstream 0.26

SC P421 1200 0.15 mid and downstream 0.36

SC P422 600 4.00 mid and downstream 0.36

SC P431 1200 0.15 mid and downstream 0.41

SC P432 600 4.00 mid and downstream 0.41

SC P441 1200 0.15 mid and downstream 0.53

SC P442 600 4.00 mid and downstream 0.53

SC P451 1200 0.15 mid and downstream 0.77

SC P452 600 4.00 mid and downstream 0.77
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F.3. Experimental tests

F.3 Experimental tests

F.3.1 Tests with anchored downstream end (SCP1)

SCP11:

Figure F.1 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.2 – Pressure signal at the downstream pipe end.
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Appendix F. Experimental work in the Straight Copper Pipe facility

SCP12:

Figure F.3 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.4 – Pressure signal at the downstream pipe end.
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F.3. Experimental tests

SCP13:

Figure F.5 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.6 – Pressure signal at the downstream pipe end.

221



Appendix F. Experimental work in the Straight Copper Pipe facility

SCP14:

Figure F.7 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.8 – Pressure signal at the downstream pipe end.
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F.3. Experimental tests

SCP15:

Figure F.9 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.10 – Pressure signal at the downstream pipe end.
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F.3.2 Tests with no anchors throughout the pipe (SCP2)

SCP21:

Figure F.11 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.12 – Pressure signal at the downstream pipe end.
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SCP22:

Figure F.13 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.14 – Pressure signal at the downstream pipe end.
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SCP23:

Figure F.15 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.16 – Pressure signal at the downstream pipe end.
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F.3. Experimental tests

SCP24:

Figure F.17 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.18 – Pressure signal at the downstream pipe end.
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SCP25:

Figure F.19 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.20 – Pressure signal at the downstream pipe end.
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F.3.3 Tests with pipe midstream section anchored (SCP3)

SCP31:

Figure F.21 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the
downstream pipe section in the circumferential (solid line) and in the axial (dashed line)
directions.

Figure F.22 – Pressure signal at the downstream pipe end.
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SCP32:

Figure F.23 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.24 – Pressure signal at the downstream pipe end.
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SCP33:

Figure F.25 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.26 – Pressure signal at the downstream pipe end.
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SCP34:

Figure F.27 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.28 – Pressure signal at the downstream pipe end.
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SCP35:

Figure F.29 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.30 – Pressure signal at the downstream pipe end.
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F.3.4 Tests with pipe midstream and downstream sections anchored (SCP4)

SCP41:

Figure F.31 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.32 – Pressure signal at the downstream pipe end.
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SCP42:

Figure F.33 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.34 – Pressure signal at the downstream pipe end.
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SCP43:

Figure F.35 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.36 – Pressure signal at the downstream pipe end.
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SCP44:

Figure F.37 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.38 – Pressure signal at the downstream pipe end.
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SCP45:

Figure F.39 – (a) Pressure signal at the downstream pipe end; (b) measured strains at the down-
stream pipe section in the circumferential (solid line) and in the axial (dashed line) directions;
(c) pressure signal at the midstream pipe section; (d) measured strains at the midstream pipe
section in the circumferential (solid line) and in the axial (dashed line) directions.

Figure F.40 – Pressure signal at the downstream pipe end.
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