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Chapter 1

Introduction

The heart is the organ in charge of the distribution of oxygen and nutrients to all the parts of
the body, allowing cells to produce energy and, ultimately, to work so that all the basic physio-
logical activities of the body are guaranteed [18]. The study of the mechanisms that regulate the
functioning of the heart has always been a crucial area of medical research; this is especially true
today, as around 30% of deaths in the world are still due to cardiovascular diseases. Many of these
pathological cases are caused by an incorrect contraction of the heart. Hence, in order to explain
heart failures, it is important to understand how heart contractions are generated and propagated.
During the lifetime of an average human being, the heart beats about 2.5 billion times and pumps
in total 200.000 tons of blood into the circulatory system [34]. Each heart beat is characterized by
a complex electrical excitation of the cardiac tissue starting from the sinoatrial node and propa-
gating to the other regions of the organ. This process can be accurately described by mathematical
equations; their numerical simulation presents difficulties that are due to the complexity of the
models, which comes from the intrinsic multi-scale nature of the problem and the characteristic
space-time behavior of the solution.

This project focuses on the simulation of the electric processes characterizing the heart by using
Isogeometric Analysis for the spatial approximation of PDEs. It is related to [24, 25], where the
Monodomain model [7,34] has been applied for generating wavefronts on the left atrium. While in
that case the focus had been on the performance of Isogeometric Analysis in terms of accuracy and
computational cost, the goal of this thesis is to address realistic simulations involving both atria
and complete models for the simulation of the cellular activity and the cardiac tissue. In particular,
the Bidomain model [5, 6, 7, 8, 15, 32, 35] is used for the description of the macroscopic behavior
and we consider its coupling with two ionic models describing the microscopic phenomena: the
Roger-McCulloch model [7,15,34] and the model by Courtemanche, Ramirez and Nattel [10]. The
Roger-McCulloch model is used to study the properties of the Bidomain equations and of Isogeo-
metric Analysis on simple geometries. We focus on the convergence of the velocity of the wavefront
with respect to the element size of the mesh and on the dispersion due to the spatial discretization.
The more involved model by Courtemanche, Ramirez and Nattel is used to simulate the propaga-
tion of the electrical signal in the atria. We first focus on the simulation of the electrocardiology
on the right atrium. Then, we perform a simulation involving both atria in which the electrical
signal is passed from the right to the left atrium via four connection points. Finally, we discuss an
application of the Bidomain model, namely the simulation of atrial fibrillation. This is a type of
arrhythmia in which the atrial contraction is disorganized and leads to incorrect pumping of the
blood into the ventricles.

The thesis is structured as follows. Chapters 2 and 3 are review chapters. Chapter 2 provides
an overview of some concepts of heart physiology, the focus being on cardiac electrophysiology.
Then, it describes the mathematical equations modeling the phenomena. Chapter 3 is entirely
centered on the Isogeometric Analysis. It provides the reader with the main ideas that form the
basis of the method and the theory underlying the design of geometries. We present, as example
of geometry generation, the same surface representation of the right atrium that is used in the
numerical simulations of Chapter 5. Then, IGA is presented in a non-rigorous fashion by analyzing
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a simple case of heat diffusion. In Chapters 4 and 5 simulations using the Bidomain equations are
performed. Chapter 4 is about the discretization of the equations presented in Chapter 2 and the
solution of test problems on simple geometries. Here, we focus on some aspects of the method itself,
such as the convergence of the solution or the numerical dispersion introduced by the discretization.
In Chapter 5, the Bidomain equations coupled with the ionic model by Courtemanche, Ramirez and
Nattel are solved on surface representations of the atria. We also discuss strategies for simulating
the atrial fibrillation by using the Bidomain model. Finally, in Chapter 6 conclusions follow.
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Chapter 2

Mathematical models for

Electrocardiology

This chapter aims at presenting the mathematical model that will be used in this thesis for the
numerical simulation of the electrical activity of the heart – specifically the atria – namely the
Bidomain model [5, 6, 7, 8, 15, 32, 35]. Before recalling the derivation and technical details of the
equations, we provide the reader with an introduction to the anatomy and physiology of the
heart (which is not intended to be exhaustive), with particular attention to the mechanism of
action potential formation. We refer primarly to [7, 18, 28] for this part. We will move then to the
mathematics of the problem, starting from the equations of the electrical activity at the cellular level
(the microscopic model) and then moving to the modeling of the cardiac tissue (the macroscopic
model).

2.1 Principles of heart anatomy and physiology

The heart is a double pump whose purpose is to provide the body with oxygenated blood and, at
the same time, to remove the waste products of the cellular reactions. It consists of four different
spaces, two atria, the left atrium (LA) and the right atrium (RA), and two ventricles, the left
and the right ventricle. Atria and ventricles differ in the thickness of the cardiac tissue, which is
about three times thicker in the case of ventricles. The atrioventricular septum separates atria from
ventricles and let blood flow from the former to the latter through the tricuspid valve in the right
part and through the mitral valve in the left part of the heart. Non-oxygenated blood enters the
RA through the superior and inferior venae cavae and gets pumped first into the right ventricle,
then through the pulmonary valve and into the pulmonary circulation, where it is oxygenated by
the lungs. The pulmonary veins let the flow coming from the lungs enter the left part of the heart,
from which the blood is pumped again into the aorta and to the systemic circulation of the body.
We refer the reader to Fig. 2.1 (left) for a schematic representation of the heart.

2.1.1 The conduction system of the heart

The function of the heart is to pump blood into the circulatory system of the body; this is achieved
with the synchronized contraction of atria and ventricles. In the cardiac tissue, the contraction is
triggered by an electrical stimulus that originates in the sinoatrial node (SAN), located on the
RA close to the superior vena cava. The SAN is often called the natural pacemaker of the heart,
because its cells are able to excite themselves autonomously. The frequency of the stimulation is
influenced by the parasympathetic nervous system and hormonal factors, and in normal health
and stress conditions the rate is around 60-80 beats per minute. The signal is then trasmitted to
the surrounding cells of the RA and reaches the other chambers of the heart thanks to the cardiac
conduction system. As explained in [30], it is believed that the interatrial conduction happen at the
level of the Bachmann’s bundle (primary connection), the anterior septum, the posterior septum
and the coronary sinus musculature. These are muscular bundles that electrically connect the two
atria; their approximate location is shown in Fig. 2.1 (right). When the excitation front reaches

3



Figure 2.1: Scheme of the heart taken from [7] (on the left). Schematic representation of the
interatrial connections taken from [30] (on the right). The electrical stimulus can travel from the
RA to the LA via four connections: Bachmann’s bundle (BB), anterior septum (AS), posterior
septum (PS) and coronary sinus musculature (CSM). It is shown that, when the electrical stimulus
starts from the sinoatrial node – approximately located in correspondence the superior vena cava
(SVC) – the principal electrical connection is represented by the BB. The schematic representation
on the right shows also the position of the SVC, the inferior vena cava (IVC), the fossa ovalis (FO),
the left pulmonary veins (LPVs) and the right pulmonary veins (RPVs).

the atrioventricular node (AVN), at the base of the RA in correspondence of the intersection of the
interatrial septum and the interventricular septum, the signal is delayed by the slow conduction
velocity characterizing the cells located in this area, to allow the correct synchronization of the
contraction between the upper and lower part of the organ. The excitation is then propagated
through the bundle of His and the Purkinje network, that spread in a tree-like fashion and innervate
the myocardium of the ventricles. The left ventricle (the largest chamber of the heart) is stimulated
at the interventricular septum and starts contracting shortly in advance of the right one.

2.1.2 The cardiomyocytes

At the cellular level the heart is composed primarily by cardiomyocytes, i.e. tubular muscular cells
with a length of 50 ÷ 150 µm and a diameter of 10 ÷ 20 µm; these dimensions vary according
to many factors, such as the location of the tissue, development stage and possibly diseases. The
sarcolemma is a lipid membrane that encloses cardiomyocytes and separates the external and the
internal region; the latter contains liquid (sarcoplasm), organelles (like nuclei and mitochondrya),
myofibrils, sarcomeres and the sarcoplasmic reticulum.

The outer region and the sarcoplasm contain a variety of ions; the flow of these ions through
the sarcolemma happens via some channels, called ionic channels, where only the transit of specific
particles is permitted. The sarcolemma presents also invaginations called transverse tubules (T-
tubules), which are open to the external region and allow the passage of ions deep inside the internal
space. As we will see in the next section, such charged particles make the electric excitation of the
cell possible.

The structure of cardiac cells is shown in Fig. 2.2. Cardiomyocytes are composed by bundles of
myofibrils containing myofilaments. The basic contractile unit of the muscle cell is the sarcomere,
which is enclosed by z-discs, and its length varies between 1.6 µm and 2.2 µm in human cardiac
cells. The sarcomere is formed by thick filaments, composed mainly by myosin, and thin filaments,
composed mainly by actin. Moreover, thin filaments contain regulatory proteins called troponin-
T, troponin-I, and troponin-C; the latter serves as binding site for the Ca2+ during excitation-
contraction coupling (discussed in Section 2.1.4). The volume of thin and thick filaments represents
about half of the total cell volume.

Cardiomyocites are electrically connected in units (cardiac syncytia) where the stimulus to
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Figure 2.2: Cardiac cell structure (bottom figure: copyright of [18]).
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Figure 2.3: Evolution of the transmembrane potential vs time during the AP (taken from [7]). The
numbers 0− 4 correspond to the five phases of the AP.

contract is received and transmitted to adjacent cells. In particular, cardiomyocites are organized
in fibers and linked each other through intercalated discs, structures which include desmosomes and
the so called gap junctions. Desmosomes are protein complexes physically joining cells together.
Gap junctions are channels of the diameter of about 2 nm and a length of 2÷12 nm that allow the
transit of ions to adjacent cells. Gap junctions are mostly located along the longitudinal direction
of the fiber, but some of them also transversally. The different densities of gap junctions in the
longitudinal and transversal directions make the propagation of the electric stimulation anisotropic.

This peculiar organization of cardiac muscular cells differentiates them from normal myocytes
of skeletal or smooth muscle. While in the heart the electric signal is passed to adjacent cells,
the other types of muscular cells are singularly innervated, so that the electrical stimulation is
directly regulated by the nervous system. This also implies that, while typically the strength of
a contraction in a non-cardiac muscle can be varied by increasing or decreasing the number of
activated cells, this is not possible in the cardiac tissue.

2.1.3 The action potential of cardiac cells

With action potential (AP) we denote the sudden change of transmembrane potential – defined
as the difference between the internal and the external electrical potentials – occurring during
the electrical stimulation of cardiomyocytes. Following [7], we identify five phases of the AP (see
Fig. 2.3).

During phase 0 (depolarization), Na+ ionic channels of the sarcolemma open, allowing a free
flow of positive ions into the cell. Consequently, the transmembrane potential passes from a negative
resting value of −84 mV to positive values. We denote with phase 1 the rapid decrease of potential
due to an outward flow of K+ and Cl− ions, occurring after the inactivation of the Na+ channels.
Phase 2 is characterized by both an inward current – caused by the transit of Ca2+ – and an outward
current – caused by the transit of K+. This balance maintains the potential almost constant;
usually, we refer to this phase with the term “plateau”. The repolarization of the cell – phase 3
– is a consequence of the closing of the Ca2+ channels. At this stage, the outward current is still
due to the flow of K+ that causes the potential to return to negative values of −80/ − 85 mV.
During phase 4 the potential is kept at a constant value of −84 mV. Some of the K+ ionic channels
remain open, in order to guarantee the correct concentrations of ions outside and inside the cell.
The cardiomyocyte stays in the resting phase until the next electric stimulation.

Even though the general shape of the AP function does not vary significantly in different tissue
regions, we notice that some features, such as total duration, duration of the singular phases and
steepness of the depolarization and repolarization are characteristic for each part of the organ.
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Figure 2.4: Action of Ca2+ in the contraction process (image taken from [18]). The calcium ions
enter the cell through the L-type channels located on the sarcolemma and on the T-tubules and
trigger the ryanodine receptor (RyR) in the sarcoplasmic reticulum to release other Ca2+. The
cytoplasmic calcium binds to the troponin-C and causes the sliding of actin and myosin fibers
(cell contraction). At the end of the AP, some calcium ions are stored again in the sarcoplasmic
reticulum by the sarcoendoplasmic reticulum calcium ATPase (SERCA) and others are expelled
via the calcium pumps.

2.1.4 Excitation-contraction coupling

The intracellular calcium concentration is important for various reasons; most notably, it regulates
the contractions of the cardiac tissue and influences the pacemaking at the level of the sinoatrial
node [5]. We will therefore treat with particular care the evolution of the intracellular calcium
concentration in the numerical simulations in Chapter 5. The intracellular calcium concentration
increases during the first phases of the AP because of the flux of ions coming from the extracellu-
lar space via the specialized long lasting (L-type) channels and because of the subsequent release
– calcium-induced calcium release – of calcium from the terminal cisternae in the sarcoplasmic
reticulum. We remark that the increase in the intracellular calcium concentration is mostly due
to the release of ions from the sarcoplasmic reticulum; therefore, the in-flux of Ca2+ is sometimes
called trigger calcium [18]. The contraction of cardiomyocytes, which is called crossbridge mech-
anism, is initiated by this change of the intracellular calcium concentration, see [28]. When such
concentration increases, Ca2+ ions bind to troponin-C in the thin filaments, which leads to the
detachment of the troponin regulatory complex to the binding site in actin and to the binding of
the head of myosin to actin. Consequently, thin and thick filaments of the sarcomeres start sliding
past each other, the individual sarcomeres shorten, and the whole cell contracts.

As long as the cytosolic calcium concentration remains high enough, the contraction of the
cell continues. The Ca2+ intracellular concentration starts decreasing towards the last stages of
the action potential because of the ions leak through the calcium pump and the Na-Ca exchanger
and binding to cytosolic proteins (Ca2+ buffers) inside the sarcolemma. In this phase, some of the
free ions are also trapped by the so called sarcoendoplasmic reticulum calcium ATPase (SERCA),
which is an ATP-dependent calcium pump. At this point, calcium starts to dissociate from the
binding sites and the troponin complexes bind again to the actin fibers. The sarcomere returns
then to the initial length and the cell relaxes.

2.2 The microscopic model

We start the mathematical modeling of the electrocardiology by introducing some of the most
commonly used models for simulating the individual ionic currents. As discussed in [34], these
models may be divided into three categories: phenomenological models, first generation models,
and second generation models. Phenomenological models describe the AP from the perspective of
an external observer, without accounting for the underlying physiology. On the contrary, first and
second generation models attempt to include a description of the mechanisms of the cell; while the
former are based on simplified formulations to approximate the electrical behavior, the latter use
instead sophisticated techniques allowing to represent sub-cellular processes.
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In the following, we will only focus on phenomenological and second generations models. We
take as examples of the first class the FitzHug-Nagumo and the Roger-McCulloch models [7,15,34]
and, as example of the second class, a complex model proposed by Courtemanche, Rafael and
Nattel [10].

2.2.1 The Hodgkin-Huxley model

The Hodgkin-Huxley model [7,16] was first proposed in 1953 by Alan Lloyd Hodgkin and Andrew
Fielding Huxley – who received a Nobel Prize in Physiology ten years later for their work – to
simulate the propagation of action potentials in neurons of giant squids. Therefore, this model is not
immediately applicable to the simulation of cardiac electrical activity, but it is a good introductory
example to the modeling of action potentials.

As discussed in the previous section, the action potential characterizing the electrical activity of
cells is caused by the flow of ions through some specific channels. By modeling the sarcolemma as
a simple electrical system composed by a capacitor of capacitance Cm in parallel with a resistance,
we have

Cm
dv

dt
+ Iion(v,w) = Iapp, (2.1)

where v = ui − ue is the transmembrane potential (ui and ue being the electric potential inside
and outside the cell respectively), w is a vector of variables modeling the behavior of the ionic
channels, Iion is the current that passes through the resistance, and Iapp is some applied current.
This relation is motivated by empirical measurements carried out by Hodgkin and Huxley and it
is the simplest one able to model the behavior of the membrane [16]. Eq. (2.1) alone cannot be
used to describe the electrical action of the membrane, because it still depends on the unknown
ionic current Iion. To complete model (2.1), we need to take into account the ionic channels. For
simplicity, we start by considering the case of only one ionic species. Let us introduce φ(v), namely
the current-voltage relation of an open channel, and g(v, t), the proportion of open channels per
unit area; we assume these quantities to depend on the transmembrane potential. The function
φ(v) can be modeled by considering the limit case of an infinite tubular cell; see e.g [7]. If we
denote with gc the channel conductance and with vr some reference potential (resting potential),
the current-voltage relation can be expressed with sufficient accuracy as

φ(v) = gc(v − vr).

The proportion of open channels per unit area can be conveniently rewritten as

g(v, t) =
N(v, t)

Ntot

Ntot

S
= w(v, t)

Ntot

S
,

where S is the surface of the membrane, Ntot is the total number of channels, and N is the number
of open channels. The ratio w = N/Ntot ∈ [0, 1] is commonly referred to as gating variable. In
the following, for simplicity we omit the explicit dependence of w on v and t. By denoting with
Ḡc = Ntotgc/S the maximal channel conductance per unit area, we finally write

g(v, t)φ(v) = wḠc(v − vr) = Iion(v, w). (2.2)

We notice that the first equality in Eq. (2.2) is valid only under the assumption of long tubular
cells.

In order to go further, let us consider in addition to w the percentage of closed channels at time
t, say s(t) (simply s in the following). We assume that the transitions from s to w and from w to
s happen with rates α and β respectively. In general, α and β may depend on the transmembrane
potential. We have then:

⎧

⎨

⎩

dw

dt
= αs− βw,

s+ w = 1.

Hence,
dw

dt
= α(1− w)− βw =

w∞ − w

τw
,
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Figure 2.5: Transmembrane potential v (solid line) and recovery variable w (dashed line) computed
using the FHN model (left) and the Roger-McCulloch model (right). The external current Iapp(t) =
sin((t−t1)/(t2−t1)) has been applied from t1 = 50 ms to t2 = 60 ms. The values of the coefficients,
which were chosen following [34], are: a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1 and c3 = 1.0.

where we have introduced the equilibrium potential w∞ = α/(α + β) – we observe that when
w = w∞ the time derivative is zero – and the time constant τw = 1/(α+ β). By generalizing these
equations to the case of three ionic species, we finally get the Hodgkin-Huxley system:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Cm
dv

dt
+ Iion(v,m, n, h) = Iapp,

dm

dt
=

m∞ −m

τm
,

dn

dt
=

n∞ − n

τn
,

dh

dt
=

h∞ − h

τh
.

A further generalization of the expression of ionic current can be obtained by considering the
general case of N ionic channels and by introducing the concentrations of the species involved:

Iion(v,w, c) =
N
∑

k=1

Gk(v, c)
M
∏

j=1

w
pjk

j (v − vk(c)) + In(v,w, c),

where w = [w1, w2, . . . , wN ]T is the vector of gating variables, c = [c1, c2, . . . , cN ]T is the vector of
ionic concentrations, Gk and vk are conductance and reversal potential for the kth species, pjk are
integers and In is an additional current modeling time independent ionic fluxes.

2.2.2 The FitzHug-Nagumo and Roger-McCulloch models

To introduce the phenomenological models, we consider the general form of a reduced ionic
model [7]:

⎧

⎪
⎨

⎪
⎩

dv

dt
= f(v, w),

dw

dt
= g(v, w).

Different definitions of f(·, ·) and g(·, ·) give rise to models with different properties. For example,
the FitzHug-Nagumo model (FHN) [7, 15, 34] uses the following evolution laws for the potential
and the recovery variable:

f(v, w) = c1v(v − a)(v − 1)− c2w,

g(v, w) = v(v − c3w).
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Fig. 2.5 (left) shows the evolution in time of the transmembrane potential and the recovery variable.
We remark that the values are not physical, because during the action potential the potential goes
from values of about −85 mV to about 30 mV. Hence, it is necessary to scale v so that it fits the
proper range of values.

Even though the evolution of the membrane is similar to a real AP – if we consider that we
are only taking into account a simple model with one recovery variable – the main problem of the
FHN is that the repolarization of the cell overshoots the initial threshold of 0 V (−84 mV, if v is
rescaled), and then settle to the correct resting value.

The Roger-McCulloch model [7, 15, 34], which uses the relations:

f(v, w) = c1v(v − a)(v − 1)− c2vw,

g(v, w) = v(v − c3w),

is a (slight) modification of the FHN model that manages to overcome the above mentioned issue.
Fig. 2.5 (right) shows that, under the same electrical stimulation, the potential remains indeed
positive and the shape of the AP is more realistic. However, it appears that some of the features
of the AP depicted in Fig. 2.3 (such as the sharp peak or the long plateau) are still not captured.

2.2.3 The Courtemanche-Rafael-Nattel model

In order to achieve a better approximation of the AP we need to increase the number of variables
of the ionic model by introducing quantities representing the transit of different species through-
out the membrane and the associated currents. The literature on this topic is vast. Commonly
used models for the simulation of ventricular APs are the two Luo-Rudy models [20, 21] and the
Bueno-Orovio-Cherry-Fenton model [4]. In this thesis we focus on the mathematical description
proposed by Courtemanche, Rafael and Nattel [10] in 1998. This choice is driven by the fact that
the Courtemance-Rafael-Nattel model – which we will call CRN model in the following – is specif-
ically built to recreate the electrical activity of human atrial cells, and will be therefore used in
Chapter 5 for the numerical simulation on the atria. The accurate description of the cellular elec-
trical behavior comes at the cost of an increase of the complexity of the equations and the number
of variables involved, which consist of transmembrane potential, concentrations of 5 ionic species,
and 15 recovery variables. Simitev and Biktashev [33] attempted to reduce the number of variables
via an asymptotic approach and managed to obtain a model with only 3 variables, taking into
account uniquely the sodium current.

The overall ionic current in the CRN model is given by the composition of 12 currents modeling
different phenomena. We have

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca,

where: INa is the fast depolarizing Na+ current, IK1 is the time independent K+ current, Ito is
the transient outward K+ current, IKur is the ultrarapid delayed rectifier K+ current, IKr is the
rapid delayed outward rectifier K+ current, IKs is the slow delayed outward rectifier K+ current,
ICa,L is the L-Type Ca2+ current, Ip,Ca is the Ca2+ pump current, INaK is the Na+-K+ pump
current, INaCa is the Na+-Ca2+ exchanger current, and Ib,Na and Ib,Ca are background currents.
We refer the interested reader to Appendix A for the equations of the original paper [10], a detailed
description of each of the variables and currents involved and the values of the parameters.

Fig. 2.6 shows the evolution in time of the model subject to an external current of 1 ms in terms
of transmembrane potential v and the 5 concentrations taken into account by the model, namely
[Na+]i,[K+]i, [Ca2+]i, [Ca2+]rel and [Ca2+]up, where the subscripts i, up and rel refer respectively
to the intracellular space, release compartment and uptake compartment. [Ca2+]rel and [Ca2+]up
model the variation of calcium concentrations in the sarcoplasmic reticulum. It is evident that the
approximation of the AP is extremely accurate: the model manages to capture all the 5 phases of
the AP – see Fig. 2.3 – with detail. In particular, the sharp peak and the plateau are more realistic
if compared to the results of the FHN and Roger-McCulloch models shown in Fig. 2.5. Along with
the information concerning v, the model provides the evolution of the ionic concentrations of some
of the most important species to the activity of the myocytes. As explained in Section 2.1.4, the
intracellular Ca2+ concentration is strictly related to the mechanical reaction of the tissue to the
electrical stimulation.
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Figure 2.6: Transmembrane potential and concentrations for the CRN model. The system is stim-
ulated from t = 20 ms to t = 21 ms with a constant external current of 80 mA.
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Figure 2.7: Evolution of v and [Ca2+]i in a system modeled using the CRN equations and paced
with frequency 1 Hz for 15 heartbeats.

The response to multiple stimulations – in terms of transmembrane potential and intracellular
calcium concentration – of a cellular system described using the CRN model is depicted in Fig. 2.7.
In this example, the cell is paced with constant currents of 80 mA at 1 Hz for 15 s. It appears that,
while the maximum and minimum value of v remain almost constant for the whole duration of the
simulation, the resting value of [Ca2+]i shows a tendency to slightly increase from a starting value
of 0.1 µM before settling to a value of around 0.2 µM.

The results in Fig. 2.6 and Fig. 2.7 have been obtained with a timestep of ∆t = 5 × 10−3 ms
by solving the system with the backward Euler method. Such small timesteps are necessary to
obtain sufficiently accurate approximations of the system state and to ensure the stability of the
method because of the spike in the transmembrane potential. This means that, when combined
to the macroscopic description of the heart tissue (namely the Bidomain model), the CRN will
require particularly small timesteps to ensure a good quality of the solution and avoid instabilities.

2.3 The macroscopic model

In the previous sections we have seen how the electrical behaviour of the heart is originated by
events happening at the cellular scale. Even though understanding these dynamics is important for
a complete description of the heart, modeling macroscopic effects by taking into account every cell
of the tissue would be an unreasonable task. Hence, the domain Ω (the heart tissue) is considered
as a continuum media. In order to integrate into the model the cellular phenomena, Ω is considered
composed by two interpenetrating domains Ωi and Ωe representing the intracellular and extracel-
lular space respectively. We associate to each point x ∈ Rd two different values of intracellular and
extracellular potential ui and ue. This quantities have to be intended as average quantities over a
sufficiently small set of adjacent cells. See e.g. [35] for a detailed discussion of these assumptions.

Since the heart tissue is essentially electrically anisotropic – as it is formed by tubular cells with
different longitudinal and transversal properties – the local tissue conductivity in the intra- and
extracellular space can be described by the two tensors Di(x) and De(x). For each point x ∈ R, we
define an orthonormal basis al(x), at(x) and an(x), where al(x) is parallel to the fibers direction,
at(x) is perpendicular to al(x) but laying on the tangent plane to the muscular layer and an(x) is
normal to the tangent plane. Following [7], Di(x) and De(x) can be defined as

Di,e(x) = σi,e
l (x)al(x)a

T
l (x) + σi,e

t (x)at(x)a
T
t (x) + σi,e

n (x)an(x)a
T
n (x), (2.3)

where σi,e
l (x), σi,e

t (x) and σi,e
n (x) represent the local intra- and extracellular conductivities corre-

sponding to each of the vectors of the local basis. Moreover, similarly to what was done for the
Hodgkin-Huxley model, we introduce k recovery or gating variables w = {w1, w2, . . . , wk}, model-
ing the behavior of ionic channels, and m ionic concentrations variables z = {z1, z2, . . . , zm}. With
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this notation, we finally introduce the the parabolic-parabolic formulation (PP) of the Bidomain
equations:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
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⎪
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⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cm
∂v

∂t
−∇ · (Di∇ui) + χIion(v,w, z) = Isi in Ω× (0, T ),

−cm
∂v

∂t
−∇ · (De∇ue)− χIion(v,w,v) = Ise in Ω× (0, T ),

∂w

∂t
− F(v,w) = 0 in Ω× (0, T ),

∂z

∂t
−G(v,w, z) = 0 in Ω× (0, T ),

nTDi,e∇ui,e = 0 in ∂Ω× (0, T ),

v = v0, in Ω× {0},
w = w0, in Ω× {0},
z = z0, in Ω× {0},

(2.4)

where v = ui − ue is the transmembrane potential and cm = χCm, χ being the area of cell
membrane per tissue volume and Cm being the capacitance of the membrane, and v0, w0 and z0
are initial conditions on v, w and z respectively. The homogeneous Neumann boundary conditions
are motivated by the assumption of electrically isolated domain.
Eq. (2.4) consists of two of parabolic equations coupled with a number of ODEs depending on the
number of considered ionic species and gating variables. By summing the two PDEs, however, the
system can equivalently be rewritten in parabolic-elliptic formulation (PE) as
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⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cm
∂v

∂t
−∇ · (Di∇v)−∇ · (Di∇ue) + χIion(v,w, z) = Isi in Ω× (0, T ),

−∇ · (Di∇v)−∇ · ((Di +De)∇ue) = Ise + Isi in Ω× (0, T ),
∂w

∂t
− F(v,w) = 0 in Ω× (0, T ),

∂z

∂t
−G(v,w, z) = 0 in Ω× (0, T ),

nTDi∇(v + ue) = 0 in ∂Ω× (0, T ),

nT (Di +De)∇ue + nTDi∇v = 0 in ∂Ω× (0, T ),

v = v0, in Ω× {0},
w = w0, in Ω× {0},
z = z0, in Ω× {0},

(2.5)

where the first two equations are parabolic and elliptic respectively.

2.3.1 Derivation of the Bidomain equations

In this section, we follow [34] to derive the Bidomain equations under the assumption of no external
current.

Let us start by recalling some notions of electromagnetism. We consider a generic medium in a
region of space of dimensionality d where we define an electrical field E ∈ Rd and a magnetic field
B ∈ Rd. The relationship between the two is given by the Maxwell-Faraday equation

∇×E+
∂B

∂t
= 0. (2.6)

We introduce the notion of potential u ∈ R

u =

∫

Γ
E · dl, (2.7)

where Γ is a line connecting the point corresponding to zero potential x0 to the point of interest
x. If we assume the magnetic field to be static, Eq. (2.6) implies that E is a conservative vector
field. In this case, (2.7) becomes independent of the path and E can be expressed as the inverse of
the gradient of the potential, i.e

E = −∇u.
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Lastly, we define the current density J ∈ Rd as the electric current per area passing through a
transversal cross section, and we state that

J = σE = −σ∇u, (2.8)

if the medium is isotropic with constant conductivity σ.
Even though the electrical processes in the heart are “fast”, the time variations in the elec-

trical and magnetic fields may be considered negligible for values of physiological conductivities
(quasi-static assumption). Hence, Eq. (2.8) holds for the currents in the heart tissue. Moreover,
as mentioned in Section 2.3, when dealing with a continuous representation of the heart tissue
we assume that at each point of the domain two different values of potential ui and ue coexist.
Therefore, there exist two current densities Ji and Je

Ji,e = −Di,e∇ui,e,

where Di and De are the internal and external conductivity tensors defined in (2.3). Let us consider
a volume V enclosing a portion of the cardiac tissue. Because of the conservation of charges, we
have

∂

∂t

∫

V
qi,eds =

∫

V

∂qi,e
∂t

ds =

= −
∫

∂V
Ji,e · ndl+

∫

V
φi,eds = −

∫

V
∇ · Ji,eds+

∫

V
φi,eds. (2.9)

Here, n is the outward directed unit vector normal to ∂V , qi and qe represent the charge densities
and φi and φe take into account the transit of charges from the intra- to the extracellular space and
vice versa. Conservation of charges implies also that φi = −φe. We remark that first equality in
(2.9) is valid under assumptions over the regularity of qi and qe (continuity) and the last equality
follows from the divergence theorem. Since the control volume V is general, the terms under the
integrals in Eq. (2.9) must be equal point-wise in V . Hence, we have

∂qi,e
∂t

= −∇ · Ji,e + φi,e. (2.10)

The quantities φi and φe are strictly related to the ionic membrane currents Iion. In particular, we
assume that φi = −χIion and φe = χIion. The multiplication by the geometric term χ is needed
because Iion is defined as the current per unit area of the membrane. Hence, in order to find the
value of the current per unit volume, Iion must be multiplied by the ratio of membrane surface per
unit volume. The signs of the ionic currents come from the fact that we consider as positive the
currents going from the intra- to the extracellular space.

We now observe that, since the membrane is thin, accumulated charges from one side end up
attracting charges from the other side. In other words, in any point of the cardiac tissue the charges
in the extracellular and intracellular spaces must balance, i.e. qi + qe = 0. This implies that

∂

∂t
(qi + qe) = 0.

Therefore, by using Eq. (2.10), we find that

∂qi
∂t

+
∂qe
∂t

= −∇ · Ji −∇ · Je = 0.

This is equivalent to

∇ · (Di∇ui) +∇ · (De∇ue) = ∇ · (Di∇v) +∇ · ((De +Di)∇ue) = 0,

which we identify as the second equation in (2.5). We relate the quantity of charge separated by
the membrane to its capacitance cm using the equation

v =
1

2cm

(

qi − qe).
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By deriving on both sides and by using the fact that ∂qi/∂t = −∂qe/∂t, we find

cm
∂v

∂t
=
∂qi
∂t

.

By inserting this relation into Eq. (2.10) referred to the intracellular space we finally find

cm
∂v

∂t
+∇ · Ji + χIion = cm

∂v

∂t
−∇ · (Diui) + χIion =

= cm
∂v

∂t
−∇ · (Div)−∇ · (Diue) + χIion = 0,

which we identify with the first equation in (2.5).
Concerning the boundary conditions, we assume that the domain is electrically isolated, mean-

ing that nTJi = nTJe = 0. Hence

0 = nT (Di∇ui) = nTDi(∇v +∇ue)

0 = nT (De∇ue) = nTDe∇ue + nTDi∇ui = nT (Di +De)∇ue + nTDi∇v.

The ionic current Iion is assumed to be dependent on the recovery variablesw and concentration
variables c, introduced in the previous section. The actual expression of the ionic current and of
the evolution laws F and G in (2.4) and (2.5) varies according to the membrane model that is
chosen to complement the PDEs.

For the sake of clarity, we summarize here the assumptions that allow the derivation of the
Bidomain equations:

• Quasi-static assumption: the rate of change of electric and magnetic fields in the heart are
negligible. Hence, the electric field and (consequently) the current density are simply propor-
tional to the gradient of a potential.

• Charge conservation: the rate of change of charge of the two spaces in a control volume
enclosing no sources is only determined by the current entering the volume in the same space
and the ionic current passing from one space to the other.

• No charge accumulation: charge accumulation in one space attracts opposite charges from
the other side of the membrane.

• Ionic currents: the ionic currents are functions of recovery variables, ions concentrations
and the transmembrane potential. A membrane description must be used to complete the
bidomain model.

• Isolated heart tissue: we consider the region of heart tissue electrically isolated, meaning that
no currents exit the domain.

2.3.2 Well-posedness of the Bidomain equations

In this section, we recall some results about the uniqueness and existence of the solution of the
Bidomain equations as in [7]. We refer the interested reader to [3] for a complete discussion of
these topics. These results hold in the case of a single gating variable and without concentration
variables. In other words, the formulation of the Bidomain equations that we consider is simplified
as ⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cm
∂v

∂t
−∇ · (Di∇v)−∇ · (Di∇ue) + χIion(v, w) = Isi in Ω× (0, T ),

−∇ · (Di∇v)−∇ · ((Di +De)∇ue) = Ise + Isi in Ω× (0, T ),
∂w

∂t
− F (v, w) = 0 in Ω× (0, T ),

nTDi∇(v + ue) = 0 in ∂Ω× (0, T ),

nT (Di +De)∇ue + nTDi∇v = 0 in ∂Ω× (0, T ),

v = v0, in Ω× {0},
w = w0, in Ω× {0}.

(2.11)
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We start by defining the necessary functional spaces. Let Lp(Ω) be the set of p-integrable functions
and Hp(Ω) the Sobolev space of order p, i.e

Lp(Ω) = {v : Ω → R : ∥v∥Lp(Ω) < ∞},
Hp(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω) ∀α : |α| < p},

where

∥v∥Lp(Ω) =
(∫

Ω
|v(s)|pds

)1/p
,

α = (α1,α2, · · · ,αn) is a multi-index (composed by non-negative integers), |α| = α1+α2+ · · ·+αn

and

Dαv(x) =
∂|α|v(x)

∂xα1

1 xα2

2 · · · ∂xαn
n

.

We take V = H1(Ω), H = L2(Ω), U as the space of functions in V with null integral on the domain,
which we denote with U = V/R. Namely, we have that, if v ∈ V , then v −

∫

Ω v ∈ U . Moreover, let
D(0, T ) be the set of C∞ functions on R with compact support on (0, T ).

Let us consider the following hypotheses:

(H1) Ω has a Lipschitz boundary ∂Ω;

(H2) Di,e ∈ L∞(Ω) and the two tensors are continuous elliptic, meaning that there exist m ∈ R

and M ∈ R such that
m|ξ|2 ≤ ξTDi,eξ ≤ M |ξ|2 ∀ξ ∈ R

d;

(H3) Isi,e : [0,+∞) → V ′ and
∫

Ω[I
s
i (s, t) + Ise (s, t)]ds = 0 for almost every t > 0 (compatibility

condition);

(H4) There exist some p ≥ 2 (if d = 2) or p ∈ [2, 6] (if d = 3) such that the Sobolev embedding
V = H1(Ω) ⊂ Lp(Ω) holds;

(H5) Iion and F are affine with respect to w, meaning that

Iion(v, w) = I1ion(v) + I2ion(v)w, F (v, w) = F 1(v) + F 2w,

where I1ion, I
2
ion, F

1 : R → R are continuous functions and F 2 ∈ R;

(H6) There exist constants ci ≥ 0 (i = 1, · · · , 6) such that, for any v ∈ R

|I1ion(v)| ≤ c1 + c2|v|p−1,

|I2ion(v)| ≤ c3 + c4|v|p/2−1,

|F 1(v)| ≤ c5 + c6|v|p/2;

(H7) There exist constants a,λ > 0, b, c ≥ 0 such that for any v, w ∈ R

λvIion(v, w) + wF (v, w) ≥ a|v|p − b(λ|v|2 + |w|2)− c.

We are now ready to give the definition of weak solution of the Bidomain equations.

Definition 1 ( [3, Definition 26]) (Weak solution) Consider τ > 0 and the three functions
v : t ∈ [0, τ) → v(t) ∈ H, ue : t ∈ [0, τ) → ue(t) ∈ H, w : t ∈ [0, τ) → w(t) ∈ H. Given
(v0, w0) ∈ H × H, then (v, ue, w) is a weak solution to the Bidomain problem if and only if, for
any T ∈ (0, τ),

1. v : [0, T ] → H and w : [0, T ] → H are continuous, with v(0) = v0 and w(0) = w0 in H;

2. we have for a.e. t ∈ (0, τ) v(t) ∈ V , ue(t) ∈ V/R, and v ∈ L2(0, T ;V ) ∩ Lp(QT ), where
QT = (0, T )× Ω, and (v, ue, w) verifies in D′(0, T ):

cm
d

dt
(v(t), ṽ) +

∫

Ω
Di∇(v(t) + ue(t)) ·∇ṽds+ χ

∫

Ω
Iion(v(t), w(t))ṽds = ⟨Isi (t), ṽ⟩,

d

dt
(w(t), w̃) +

∫

Ω
F (u(t), w(t))w̃ds = 0,
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respectively for all ṽ ∈ V and for all w̃ ∈ H, and
∫

Ω
Di∇v(t) ·∇ũeds+

∫

Ω
(Di +De)∇ue(t) ·∇ũeds = ⟨Isi (t) + Ise (t), ũe⟩, ∀ũe ∈ V/R.

Theorem 1 ( [3, Theorem 30]) (Global existence of a weak solution) Suppose that Ω and Di,e

satisfy hypotheses H1 and H2 and Iion and F satisfy hypotheses H4-H7 for some value of p ≥ 2.
Let be given v0,w0 ∈ H and let Isi,e ∈ L2(R+;V ′) satisfy hypothesis H3. Then the system (2.11) has
a weak solution (u, ue, w) in the sense of Definition 1 with τ = +∞.

The next theorem ensures the uniqueness of the solution under the same hypotheses of Theorem 1
and an additional assumption over Iion and F . For every v, w ∈ R, we define the function G : R2 →
R2 as

G(v, w) =

[

µIion(v, w)
F (v, w)

]

, for some µ > 0.

Let z = (v, w) ∈ R2, Q(z) = [∇G(z)T + ∇G(z)]/2 be the symmetric part of ∇G. Let λ1(z) and
λ2(z) be its eigenvalues, with λ1(z) ≤ λ2(z).

Theorem 2 ( [3, Theorem 32]) If there exists c ∈ R such that, for all z = (v, w) ∈ R2,

λ2(z) ≥ λ1(z) ≥ C,

then the solution obtained in Theorem 1 is unique.

These theorems were used in [3] to show the well-posedness of the Bidomain equations coupled
with simple ionic models accounting for only one gating variable. Among them, we find the already
cited FHN and Roger-McCulloch models.

2.3.3 The Monodomain model: motivation and equations

Even though the Bidomain model provides an accurate description of the electrical activity of the
cardiac myocardium, there are a few practical problems that make large-scale numerical simulations
difficult. First of all, the sharpness of the transmembrane potential upstroke imposes constraints on
the maximum timestep that can be used. According to [7], a restriction on the timestep is ∆t ≤ 0.1
ms, while the phenomena we are interested in (such as the action potential) have time scales of
the order of hundreds of milliseconds. Moreover, mainly because of the homogeneous Neumann
conditions on the boundaries, the conditioning of the linear system arising from the discretization
of the equations tends to deteriorate the convergence of the numerical methods in 3D problems if
no special preconditioner is used. Some work in this direction has been done in [5] for simulations
of the Bidomain equations using the Isogeometric Analysis.

The Monodomain model derives from the Bidomain one after assuming that the intra- and ex-
tracellular media have the same anisotropy ratio (λ = σe

l /σ
i
l = σe

t /σ
i
t = σe

n/σ
i
n). The Monodomain

equations read
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cm
dv

dt
−∇ · (D∇v) + χIion(v,w, c) = Iapp in Ω× (0, T )

dw

dt
= R(v,w) in Ω× (0, T ),

dc

dt
= S(v,w, c) in Ω× (0, T ),

nTD∇v = 0 in ∂Ω× (0, T ),

v = v0, in ∂ × {0},
w = w0, in Ω× {0},
z = z0, in Ω× {0}.

These equations were used in [24, 25] to simulate the action potential on the same LA geometry
that will be used in the numerical simulation involving both atria in Chapter 5. In that case, the
Monodomain model was coupled to the Aliev-Panfilov [1] and the Mitchell-Schaeffer [23] reduced
models. The assumption of equal anisotropy ratio is unfortunately too restrictive to make the
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Monodomain model suitable in many applications [34]. Even with the support of empirical data it
is in fact difficult to specify the value λ such that the conductivities used in the simulations better
approximate the physical ones. Moreover, most physiological phenomena can not be simulated
when the anisotropy ratio is assumed to be constant across all directions. Therefore, even though
the Monodomain model is convenient both for numerical computations and analysis, the Bidomain
model is still the method of reference for realistic simulations in many occasions.
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Chapter 3

Isogeometric Analysis

In the Finite Element Method (FEM) differential problems are solved on polygonal or polyhedral
meshes. There are many examples of practical applications, however, in which the domain of
interest cannot be exactly represented by means of polygons or polyhedra. In such cases the mesh
generation is the typical intermediate step linking the geometry design to a suitable solution of
the Partial Differential Equation (PDE) defined on such geometry, i.e. the computational domain.

Mesh generation usually constitutes the most critical aspect of the workflow for two reasons. As
noted in [9], the first and most important problem is that meshing the geometry often introduces a
level of approximation. This is a particularly delicate matter when the geometry presents specific
features (e.g. curved surfaces) that are hardly preserved by the discretization. Secondly, the accu-
racy of the approximate solution heavily depends on the quality of the mesh. For this reason, the
mesh creation often ends up taking the large majority (on average around 80%, according to some
estimates [9]) of the total time of the problem solution. Isogeometric Analysis – often abbreviated
IGA – offers a valid alternative to the methods requiring mesh generation. The main idea of the
approach is to exploit the same basis functions for the geometry design and the construction of
the functional space of the solution. This allows to completely preserve the original geometry.

This chapter focuses on the main concepts of IGA and follows the order used in [9]. We start
by presenting the most commonly used basis functions, namely B-splines and NURBS. Then, we
analyze the method itself. As it will be clear, it is closely related to FEM.

3.1 B-splines and NURBS

3.1.1 Knot vectors and basis functions

Let us start by defining the fundamental terminology that will be used throughout this thesis.
We define knot vector Ξ = {ξ1, ξ2, · · · , ξN} a set of N non necessarily distinct knots ξi ∈ R.

We always assume that the individual knots are listed in increasing order, i.e. ξ1 ≤ ξ2 ≤ · · · ≤ ξN .
A knot span or element is defined as the interval [ξi, ξi+1], where ξi and ξi+1 are consecutive and
possibly coincident knots. Therefore, the interval [ξ1, ξN ] is divided into multiple knot spans. Our
goal is to define a set of basis functions over the interval [ξ1, ξN ] that will depend on the definition
of the knot vector. In order to do this, we introduce the quantities n and p, which represent
respectively the number of basis functions and the order of the piecewise polynomials that will
constitute them. We use the notation Ni,p to denote the ith basis function of order p. The number
of knots N must satisfy the relation

N = n+ p+ 1.

With these definitions, we introduce the basis functions of order zero as

Ni,0(s) = I[ξi,ξi+1)(s) 1 ≤ i ≤ n, (3.1)

where I[a,b) is the indicator function of the interval [a, b) (we use round brackets when the corre-
sponding extrema is not included in the interval). Higher order basis functions are obtained from
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Figure 3.1: Basis functions corresponding to the knot vector Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}. We have
p = 2, because the first and last knots are repeated three times, and n = p+Nel = 5.

(3.1) using the following Cox-de Boor recursion formula [11]:

Ni,p(s) =
ξ − ξi

ξi+p − ξi
Ni,p−1(s) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(s) 1 ≤ i ≤ n. (3.2)

Since we do not impose the constraint of unique knots, it is important to notice that (3.2) may
lose sense when two knots are coincident. In such cases, we assume 0/0 := 0.

Before analyzing the properties of these basis functions we have to introduce some character-
ization for the knot vectors. We define the knot vector Ξ = {ξ1, ξ2, · · · , ξN} as uniform if the
individual knots are equally spaced, even if they are repeated, and as open if the first and the last
knots are repeated p + 1 times, namely ξ1 = ξ2 = · · · = ξp+1 and ξN−p−1 = ξN−p = · · · = ξN .
From now on we will always consider open knot vectors. We observe that, in this case, we have
N = 2(p+ 1) +Nin, where Nin is the number of internal knots, and Nin = Nel − 1, where Nel is
the number of elements with positive or even zero length. Hence

N = 2p+Nel + 1 = n+ p+ 1,

which implies n = p+Nel. We have then that, given any open vector, p and n are determined by
the relations above; see Fig. 3.1. Let us now consider the properties of the basis functions.

• Support and regularity. Since Eq. (3.2) defines the generic function of order p as combi-
nation of polynomials of order p− 1 on the elements multiplied by polynomials of first order,
it follows that Ni,p is polynomial of order p on the elements. Moreover, the support of Ni,p

is the union of the supports of Ni,p−1 and Ni+1,p−1 and corresponds to p + 1 contiguous
elements. The basis functions inherit the regularity of polynomials inside the elements, i.e.
Ni,p ∈ C∞(∪N−1

i=1 (ξi, ξi+1)). In correspondence of the individual knot, the regularity of the
basis functions is subject to the multiplicity of the knot itself. In particular, the number of
continuous derivatives in ξi is p−mi, mi being the multiplicity of the knot (see Fig. 3.2).

• Partition of unity. The basis functions evaluated at the same point ξ̄ constitute a partition
of the unity for a fixed value of p, i.e.

n
∑

i=1

Ni,p(s̄) = 1, Ni,p(s̄) ∈ [0, 1].

Basis functions of dimension d > 1 are simply obtained as tensor product of d univariate basis
functions, non necessarily generated using the same knot vector. For example, if d = 2 and {Ni,p}ni=1

and {Mi,q}mi=1 are the two sets of basis functions, then

H(s, t) =
n
∑

i=1

m
∑

j=1

Ni,p(s)Mj,q(t). (3.3)
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Figure 3.2: Basis functions generated by Ξ = {0, 0, 0, 0, 1/3, 2/3, 2/3, 2/3, 1, 1, 1, 1}, with p = 3 and
n = 8. The basis is C0-continuous in correspondence of ξ = 2/3, because the multiplicity of the
point equals the order of the polynomials. We remark that the basis is interpolatory at the same
point.

The multi-dimensional basis functions share the basic properties of the univariate ones. We never
consider bases of dimensionality higher than three and we use the letters s = [s, t, w]T for denoting
the variables in the three parametric directions.

3.1.2 B-spline geometries

The basis functions we defined in the previous subsection can be used for creating geometrical
objects. A B-spline curve, for example, is a one-dimensional manifold which is defined as linear
combination of univariate basis functions and some two/three dimensional coefficients called control
points. More precisely, if {Ni,p}ni=1 is the set of basis functions generated by Ξ = {ξ1, ξ2, · · · , ξN},
{Bi}ni=1 ∈ Rd with d = 1, 2 or 3 is the set of control points, then the curve C : [ξ1, ξN ] → Rd with
d = 1, 2 or 3 is defined as

C(s) =
n
∑

i=1

Ni,p(s)Bi.

We similarly define a B-spline surface S : [ξ1, ξN ] × [η1, ηM ] → Rd with d = 2 or 3 by considering
the linear combination of two-dimensional basis functions computed as in (3.3) and control points,
thus finding

S(s, t) =
n
∑

i=1

m
∑

j=1

Ni,p(s)Mj,q(t)Bi,j .

Finally, we define a B-spline solid S : [ξ1, ξN ] × [η1, ηM ] × [ζ1, ζL] → R3 as a linear combination
of three dimensional basis functions, obtained as tensor product of three sets of univariate basis
functions, and the control points:

S(s, t, w) =
n
∑

i=1

m
∑

j=1

l
∑

k=1

Ni,p(s)Mj,q(t)Pk,r(w)Bi,j,k.

Curves, surfaces and solids inherit the properties of the basis that generated them. For example,
consider the case of Fig. 3.3 (left), where a curve has been created using the basis functions
depicted in Fig. 3.2. Such basis is interpolatory and C0-continuous at the parametric point s = 2/3.
As a consequence, the corresponding curve passes through the control point (1, 0.75), which also
represents a point of discontinuity for the tangent.

A crucial aspect of FEM simulations is the possibility of tuning the element size of the mesh
according to the requirements of the solution. The trade-off is between the accuracy of the solution
and the computation time. In the case of B-spline objects, the refinement procedure aims at
increasing the variety and quality of the basis without changing the parametrization. This is done
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Figure 3.3: Examples of a B-spline curve (left) and a B-spline surface (right). Control points are
marked with red dots.

by increasing the number of basis functions (h-refinement), increasing the order of the polynomials
(p-refinement) or both (k-refinement) [26]:

• h-refinement consists in adding new knots to the knot vector. More specifically, if Ξ =
{ξ1, ξ2, . . . , ξN} is the original knot vector, we create an extended knot vector Φ by adding
m internal knots to Ξ; we have then that Φ = {φ1 = ξ1,φ2, · · · ,φN+m = ξN}. In order to
maintain the parametrization of entities, the control points B = {B1,B2, . . . ,Bn} must be
transformed into B̄ = {B̄1, B̄2, . . . , B̄n+m} following the rule

B̄ = T pB,

where
T 0
ij = I[ξj ,ξj+1)(φi)

and

T q+1
ij =

φi+q − ξj
ξj+q − ξi

T q
ij +

ξj+q+1 − φi+q

ξj+q+1 − ξj+1
T q
i(j+1) q = 0, 1, · · · , p− 1.

• p-refinement consists in elevating the order p of the polynomials forming the basis. For this
reason, the procedure is sometimes called order elevation. In order to keep unchanged the
number of continuous derivatives across the knots, which, as we already mentioned, is equal
to p−mi, the multiplicity of each of the knots must be also increased.

• k-refinement is a combination of p-refinement and h-refinement. During k-refinement first the
order of the basis is elevated and then a new knot is inserted. We remark that h-refinement
and p-refinement are not commutative. Indeed, if we start with h-refinement and add a new
knot ξi with multiplicity mi = 1, and then elevate the order of the basis from p to p + 1,
the regularity of the basis in ξi is Cp−1. However, by inverting the order of the refinements,
the resulting basis would be Cp across ξi, because the multiplicity of the new knot would not
be incremented by the p-refinement. Therefore, in order to correctly apply k-refinement to a
knot vector, h-refinement must be executed after p-refinement.

3.1.3 NURBS

Even though the B-spline basis defined by (3.2) allows to create a large variety of geometries,
many very commonly used objects can not be designed using it. Most notably, circles and solids
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Figure 3.4: Views of the right atrium surface generated as a single patch using NURBS. Control
points are marked with red dots.

built using circular shapes are not exactly represented by polynomial bases. In order to include
also these cases we have to introduce the concept of Non-Uniform Rational B-Splines (NURBS).
NURBS entities are obtained through projection in Rd of B-spline objects living in Rd+1. From
the algebraic point of view, this means that we have to introduce a new basis for NURBS as

Rp
i (s) =

Ni,p(s)ωi

W (s)
,

where

W (s) =
n
∑

i

Ni,p(s)ωi

is called weighting function and {ωi}ni=1 are called weights. The NURBS curve can be then defined
as

C(s) =
n
∑

i

Rp
i (s)Bi.

It is now natural to extend this definition of basis also to manifolds of higher dimensions, thus
finding

Rp,q
i,j (s, t) =

Ni,p(s)Mj,q(t)ωi,j
∑n

a=1

∑m
b=1 Na,p(s)Mb,q(t)ωa,b

,

Rp,q,r
i,j,k (s, t, w) =

Ni,p(s)Mj,q(t)Lk,r(w)ωi,j,k
∑n

a=1

∑m
b=1

∑l
c=1 Na,p(s)Mb,q(t)Lc,r(w)ωa,b,c

.

3.1.4 Example: design of a simplified right atrium

In order to illustrate how the geometric concepts introduced in the previous sections can be used
to generate geometries, we provide as example the creation of the surface of an idealized right
atrium (RA) using quadratic NURBS, namely NURBS derived from a quadratic B-spline basis.
The same geometry, which is shown in Fig. 3.4, will be used in the Chapter 5 for solving the
Bidomain equations. We refer the reader to [24] for an example of geometry generation (in the
specific case, the left atrium) using the same approach. The geometry is created using a Matlab

package called GeoPDEs [12].
The basic strategy for generating the surface is to start with a simplified geometry, which can

be parametrized using a very small number of knots in the two parametric dimensions and to
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Figure 3.5: On the left, unit circle created using NURBS generated by the knot vector Ξ =
[0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1], with weights equal to 2−1/2 for knots corresponding to
corners and 1 elsewhere. The corresponding basis is shown on the right.

gradually add the more high level features. This is achieved by enriching our basis through knot
insertion, that gives us more freedom to modify the surface with precision without changing its
parametrization. Even though we would like to obtain a result as smooth as possible, sometimes
we are obliged to introduce double knots (e.g. for generating the tricuspid valve). The choice of
starting with a simple geometry comes from the fact that when the basis is poor and does not
have many repeated knots it is relatively easy to limit the lines with discontinuous derivatives
(remember that, as we consider bases with p = 2 in both parametric directions and the geometry
inherits the regularity properties of the basis, repeated knots in one parametric direction reflect in
discontinuous first derivatives along the parametric line corresponding to those knots). Therefore,
after reducing the continuity of the basis for a new feature, we have to take care of the critical
points and to try to restore the smoothness of the surface, before considering to increase its com-
plexity.

The RA is endowed with three openings for the blood flow: two inflow veins (superior and
inferior venae cavae) and the tricuspid valve, which separates the RA from the right ventricle. The
two veins are approximately coaxial. Moreover, the atrium has an auricle located at its right when
viewed from the posterior.

We aim at creating a simple geometry with two coaxial pipes (representing the veins) and a
central bulge. At this moment, we do not account for neither the valve nor the auricle. We start
with the two knot vectors

Ξ1 = [0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1],

Ξ2 = [0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1],

which correspond to the two parametric directions s and t. Our choice of knot vectors automatically
defines the number of control points that we have to place. In particular, we have n1 = 9 and n2 = 6,
hence n = 54. The first knot vector, Ξ1, can be used to create circles; Fig. 3.5 shows the location
of the control points and weights necessary to do so. Therefore, we identify the first parametric
direction as the radial direction and the second parametric direction as the longitudinal direction
(parallel to the axis of the pipes and the z axis). We place the control points Bi,j so that, for each
fixed value of j = 1, · · · , 6, the points are arranged as shown in Fig. 3.5 in planes perpendicular to
z at increasing heights. The radius of the circles are smaller for j = 1, 2 and j = 5, 6, because these
values correspond to the two venae. The result of this first step is shown in Fig. 3.6(a). We remark
that, at this point, the geometry potentially presents C0 lines in the t direction, which are smooth
because of the special disposition of the control points. To see why this is the case, consider the
circle, which is smooth even though its basis is C0-continuous across the internal knots because
each of the critical control points – i.e. where the curve passes through the control point – is aligned
with other two.
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Figure 3.6: RA geometry creation at different steps. Control points are marked with red dots.
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Figure 3.7: Views of the rendered atria (on the left). The LA geometry has been used in [24,25]. We
referred to other 3D models of the heart (as in [8,32]) for the positioning of the two atria. Radius
of the two venae (superior at the top, inferior at the bottom) and dimensions of the tricuspid valve
(on the right).

Now we want to open the tricuspid valve in the bulge. Before doing that, we adjust the shape
of the atrium and reduce the roundness of the central part by moving the control points without
altering the smoothness of the surface. The valve can be created only in the location where the
first and last point of each circle overlap, because moving the other control points would cause a
deformation without opening holes in the surface. In order to obtain a quasi-circular shape of the
valve, it is necessary to introduce two double knots and other single knots in the second parametric
direction. We also add two double knots 1/8 and 7/8 to the first parametric direction to have a
better control over the behavior of the geometry in the longitudinal direction. Fig. 3.6(b) shows
the result obtained after moving apart the central points of the joint.

Next, we need to increase the size of the valve so that it matches physiological values. Our
valve has approximately the right width but its height is too small. This problem can be solved
by moving the points at the right, left and bottom of the valve – we refer to Fig. 3.6(b) for the
positions of such points – towards the negative direction of the z axis. However, because of the
C0 lines that we introduced, this operation causes discontinuities in the result. The critical points
must be treated individually by trying to align the control points surrounding them; after doing
so, we get the result shown in Fig. 3.6(c).

As a final step, we want to attach the auricle to the RA. This is simply attained by moving
a line of control points to the left of the valve (from the frontal view) away from the body of the
atrium. We remark that such points must not correspond to a C0 line: in fact, since the surface
passes exactly through the control points defining C0 lines, moving those points would result in a
sharp auricle. Fig. 3.6(d) shows the the result we get after fixing all the regularity problems caused
by the auricle generation.

The geometry shown in Fig. 3.4 is obtained from 3.6(d) after minimal changes. For example,
the side of the atrium opposite to the valve has been modified so that the RA could be placed near
the left atrium geometry used in [24,25] without intersecting; see Fig. 3.7 (left).
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3.2 Solving PDEs using Isogeometric Analysis

The method that will be used for solving the Bidomain equations is the Galerkin’s method. Rather
than searching the solution in the classic FEM functional spaces, however, we will use the basis
functions used for the geometry creation for the search space. In order to define a functional space
on the geometry, we formalize the notation used in the previous sections. We introduce the map

ϕ(s) =
n
∑

i=1

N̂i(s)Bi : Ω̂ → Ω (3.4)

from the parameter domain Ω̂ ⊂ Rd1 to the geometry of interest Ω ⊂ Rd2 . We adopted the
hat notation to denote entities living in the parameter space. In the application of the Bidomain
equations to the atria, we have d1 = 2 and d2 = 3. Inspired by (3.4), we define a function û : Ω̂ → R

as linear combinations of the basis functions, i.e

û(s) =
n
∑

i=1

N̂i(s)ui,

where ui ∈ R are called control variables. We now transport the function û on Ω through

u = û ◦ϕ−1, (3.5)

which is legit because we assume the geometrical mapping to be invertible a.e. in Ω̂. Eq. (3.5) could
be also interpreted as

u(x) = û(ϕ−1(x)) =
n
∑

i=1

N̂i(ϕ
−1(x))ui =

n
∑

i=1

Ni(x)ui, (3.6)

where {Ni}ni=1 are the images through ϕ of the basis on the parametric space.
We remark that (3.6) is equivalent to u ∈ span{Ni}ni=1.

We choose to present the process of solution of PDEs in a non-rigorous fashion through a simple
parabolic example with known exact solution. See e.g. [27] for more details about the mathematical
treatment of this kind of equations.

3.2.1 Example: the heat equation

We consider the linear heat equation

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

∂u

∂t
(x, t)−D∆u(x, t) = f(x, t) in Ω× (0, T ),

u(x, t) = µ(x, t) on ΓD × (0, T ),

D∇u(x, t) · n(x) = γ(x, t) on ΓN × (0, T ),

u(x, 0) = u0(x) on Ω,

(3.7)

where Ω ⊂ Rd, Γ̄N ∪ Γ̄D = ∂Ω and ΓN ∩ ΓD = ∅, D ∈ R, T ∈ R+, u, f, µ, γ : Ω × (0, T ) → R,
u0 : Ω → R and n(x) is the outward directed unit vector normal to ∂Ω.

Weak formulation of the problem

Let us consider the set of test functions V = H1
ΓD

(Ω) = {v ∈ H1(Ω) : v(x) = 0 ∀x ∈ ΓD}.
For the sake of clarity, in the following we omit the explicit dependence of functions on space.

By multiplying the first equation in (3.7) by some v ∈ V and integrating on the whole domain,
we get

d

dt

∫

Ω
u(t)vds−D

∫

Ω
∆u(t)v(t)s =

∫

Ω
f(t)vds ∀t ∈ (0, T ). (3.8)
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We are allowed to take the time derivative out of the integral under the assumption of continuity
of ∂u/∂t. By using Green’s formula for the treatment of the diffusion term, we can write

∫

Ω
∆u(t)vds = −

∫

Ω
∇u(t)∇vds+

∫

ΓD

∇u(t) · nvdl
︸ ︷︷ ︸

=0

+

∫

ΓN

∇u(t) · nvdl

= −
∫

Ω
∇u(t)∇vds+

∫

ΓN

γ(t)vdl ∀t ∈ (0, T ).

(3.9)

We observe that the boundary term corresponding to ΓD in the last equation is zero because
v ∈ HΓD

(Ω). From (3.8) and (3.9) we then get

d

dt

∫

Ω
u(t)vds+D

∫

Ω
∇u(t)∇vds−D

∫

ΓN

γ(t)vdl =

∫

Ω
f(t)vds ∀t ∈ (0, T ).

It is important to notice that all the integrals in the last equation exist only if u(t) ∈ H1(Ω) and
γ(t) ∈ L2(ΓN ). In order to ensure the existence and uniqueness of the solution, however, we are
going to restrict the trial space to V = H1

ΓD
(Ω) ⊂ H1(Ω). We do so by writing u(t) = ũ(t) + g(t),

where g ∈ H1(Ω) is called lifting function and is such that g|ΓD
= µ(x, t). Moreover, we introduce

ũ0 = u0 − g(0). We are now ready to express problem (3.7) in weak formulation.

Find, ∀t ∈ (0, T ), ũ(t) ∈ V such that:

d

dt
(ũ(t), v) + a(ũ(t), v) = F t(v) ∀v ∈ V, (3.10)

where

(ũ(t), v) =

∫

Ω
ũ(t)vds,

a(ũ(t), v) = D

∫

Ω
∇ũ(t) ·∇vds,

F t(v) =

∫

Ω

[
(

f(t)− ∂g(t)

∂t

)

v −D∇g(t) ·∇v
]

ds+D

∫

ΓN

γ(t)vdl,

and ũ(0) = ũ0.

Numerical solution by Isogeometric Analysis

With the purpose of numerically solving problem (3.10), we want to lower the dimensionality of the
trial space V . In other words, we want to approximate V with Vh ⊂ V , where Vh can be described
using a finite number of basis functions. Now, the standard way to proceed would be to approximate
the geometry Ω via a computational mesh and use the lagrangian finite element basis functions
to characterize Vh. Instead, we choose to adopt the isogeometric concept. Let us suppose that we
have a geometrical mapping of the form (3.4). We therefore define a finite dimensional functional
space on Ω using (3.6). However, we can not simply identify Vh with span{Ni}ni=1 because of
the requirement u|ΓD

= 0 if u ∈ Vh. This problem is easily solved by considering only the basis
functions satisfying the Dirichlet boundary condition. Let us reorder without loss of generality
{Ni}ni=1 such that Ni|ΓD

= 0 if i ≤ nD, for some nD < n. We have then Vh = span{Ni}nD

i=1.

28



The semi-discrete formulation of problem (3.10) then reads:

Find, ∀t ∈ (0, T ), ũh(t) ∈ Vh such that:

d

dt
(ũh(t), vh) + a(ũh(t), vh) = F t(vh) ∀vh ∈ Vh, (3.11)

and ũh(0) = ũh,0 ∈ Vh, where ũh,0 is some suitable projection of the initial condition ũ0

onto Vh.

We remark that we need to build a suitable gh(t) such that uh(t) = ũh + gh(t) – which is the
approximate solution to the original problem – in order to compute F t(vh). To do this, we notice
that the lifting can be built considering only the basis functions that have non zero value on the
Dirichlet boundary, namely

gh(t) =
n
∑

i=nD

Nigi(t).

This way we ensure that gh(t) ∈ span = {Ni}ni=1 and that it can approximately satisfy the
boundary condition for some choice of gi(t) i = nD, . . . , n. We now notice that, as long as the knot
vectors forming the basis are open, in each of the boundary nodes the basis is interpolatory (i.e.
Ni(x) = 1, for each node x). Here, we define as nodes the image of the points of the cartesian
product of the knots in the parameter space. By defining the nodes as xi i = 1, · · · , n we then
write

gh(t) =
n
∑

i=nD

Niµ(xi, t),

where xi i = nD, · · · , n are the nodes laying on the Dirichlet boundary.
From the bilinearity of (·, ·) and a(·, ·) and the linearity of F t(·) it follows that ũh satisfies

Eq. (3.11) if and only if

d

dt
(ũh(t), Ni) + a(ũh(t), Ni) = F t(Ni) ∀i = 1, · · · , nD. (3.12)

Moreover, we rewrite the left hand-side by expanding ũh on the basis, thus finding

d

dt

( nD∑

j=1

Nj ũj(t), Ni

)

+ a
( nD∑

j=1

Nj ũj(t), Ni

)

=
nD∑

j=1

Mij
dũj

dt
(t) +

nD∑

j=1

Kij ũj(t),

where Mij = (Nj , Ni) and Kij = a(Nj , Ni). Hence, the set of nD equations (3.12) is equivalent to
the linear system

M
dũ

dt
(t) +Kũ(t) = Ft with ũ(0) = ũ0, (3.13)

where M ∈ RnD×nD and K ∈ RnD×nD are called respectively mass and stiffness matrices and
are such that (M)ij = Mij and (K)ij = Kij , ũ(t) = [ũ1(t) ũ2(t) · · · ũ(t)nD

]T is the vector of
time-dependent coefficients and Ft = [F t(N1) F t(N2) · · · F t(NnD

)]T .
Eq. (3.13) can be turned into fully discrete form by using a numerical scheme for the solution

of ODEs. For example, we choose the Backward Euler method, yielding

M
ũk+1 − ũk

∆t
= −Kũk+1 + Fk+1 k ≥ 0,

or equivalently
ũk+1 = (M +∆tK)−1(M ũk + Fk+1) k ≥ 0, (3.14)

with ũh(0) = ũh,0. By solving (3.14), we can reconstruct the solution ũh(t) as

ũh(t) =
nD∑

i=1

Niũi(t).
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Figure 3.8: On the left, solution of the heat equation at time t = 1 (blue solid line) compared to its
exact solution (red dashed line) We used the basis generated by Ξ = [0, 0, 0, 1/2, 1/2, 1, 1, 1] (shown
on the right). The non-dashed basis functions form a basis for Vh in the case of the considered
problem.

To see how the method behaves in practice, we consider the simple case d = 1 and ϕ(s) = s,
hence the case in which Ω̂ = Ω = (ξ1, ξN ) = (0, 1). We choose the following data: D = 1, T = 1,
ΓD = ξ1, ΓN = ξN , µ(ξ1, t) = γ(ξN , t) = 0,

f(x, t) = [π2 sin(πx)− α sin(πx) + πx)]e−αt,

u0(x) = sin(πx) + πx,

with α = 0.1. The exact solution of this problem reads

uex(x, t) = [sin(πx) + πx]e−αt.

As a first goal, we show that the solution inherits the regularity properties of the basis. Let us
consider

Ξ = [0, 0, 0, 1/2, 1/2, 1, 1, 1].

The corresponding basis, which is shown in Fig. 3.8 (right), is composed by piecewise quadratic
functions which are C1-continuous everywhere except in correspondence of the repeated knot 1/2.
Since our trial space Vh includes functions belonging to the span of the basis and satisfying the
Dirichlet boundary condition on the left boundary, we make use of only the non-dashed basis
functions in Fig. 3.8 (right).

Fig. 3.8 (left) shows the result obtained at the final time T = 1 using a timestep of ∆t =
0.01. We identify two main features of the solution. First, the solution appears qualitatively and
quantitatively accurate even with only two elements. In particular, for the relative L2(Ω) error we
find

erelL2 (T ) =
∥uh(T )− uex(T )∥L2(Ω)

∥uex(T )∥L2(Ω)
= 2.8× 10−3.

Secondly, the solution presents a discontinuity of the first derivative in x = 0.5, which derives
from the choice of the basis. This explains the need of limiting the number of knots with lower
continuity that we stressed out in Section 3.1.4 in the example of domain design: not only such
points reflect in a non smooth geometry which may appear unnatural and artificial, but they have
also consequences on the regularity of the solution to the problem that we are considering.

Finally, we want to compute the convergence of the error with respect to the element size
h. Since we are interested in the spatial convergence rather than the time convergence, we set
T = ∆t = 10−12, so that we compute only one step of the solution and the error in time is
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Figure 3.9: Convergence of the L2(Ω) and H1(Ω) error for the 1D heat equation with respect to
the element size h.

negligible if compared to the error in space. Fig. 3.9 shows the convergence of the error in L2(Ω)
and H1(Ω) norms. We find the following orders

eL2(T ) = ∥uh(T )− uex(T )∥L2(Ω) ≤ Chp+1,

eH1(T ) = ∥uh(T )− uex(T )∥H1(Ω) ≤ Chp,

which are in agreement with the expected ones from the theory [2].
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Chapter 4

Numerical approximation of the

Bidomain equations

This chapter deals with the solution of the Bidomain equations, presented in Chapter 2, using
IGA as discussed in Chapter 3. We start by deriving the weak formulation of the equations and
discretizing the problem, similarly to what has been done for the heat equation in Chapter 3. We
move then to some simple test problems to analyze the behavior and properties of the equations
in terms of the IGA approximation. In particular, our goal is to evaluate the effects of the isogeo-
metric discretization in terms of velocity and dispersion of the electric signal.

All the simulations presented in this chapter and in Chapter 5 were performed using a C++
library that is developed and maintained within the Chair of Modeling and Scientific Computing
(CMCS) at EPFL called isoglib. This is an efficient tool specifically designed for IGA simula-
tions with support to parallel computations on distributed memory systems. The geometries are
generated using the freeware GeoPDEs [12] and Matlab.

4.1 Discretization of the Bidomain equations

4.1.1 Weak formulation of the problem

In the following, we are going to use the letter w to refer to the vector containing all the gating and
concentration variables of the ionic model; we assume that the total number of components of w
is Nw. The evolution law for this variable can be written in the form of ODE as for the quantities
it represents, i.e.

∂w

∂t
− F(v,w) = 0. (4.1)

In order to write the variational formulation of the equations, we use the same functional spaces
introduced in Section 2.3.2, i.e. V = H1(Ω), H = L2(Ω) and U = V/R.

We start by considering the first equation of problem (2.5). By multiplying both sides by a
function ṽ ∈ V and integrating over Ω, we find, for all t ∈ (0, T ),

cm

(
∂v

∂t
, ṽ

)

−
∫

Ω
∇ · [Di∇(ue + v)]ṽds+ χ(Iion(v,w, c), ṽ) = (Isi , ṽ), (4.2)

where we used the notation (·, ·) for the usual scalar product in L2(Ω). In order to ensure the
existence of all the forms in (4.2), we require that v ∈ V , ∂v/∂t ∈ H and ue ∈ U ; actually, it would
be sufficient to impose u ∈ V , but the more restrictive condition u ∈ U is needed to ensure the
uniqueness of the extracellular potential. By applying the Green’s identity to the diffusion term,
we find

∫

Ω
∇ · [Di∇(ue + v)] ṽds = −

∫

Ω
[Di∇(ue + v)] ·∇ṽs+

∫

∂Ω
nT [Di∇(ue + v)]∇ṽdl

︸ ︷︷ ︸

=0

,
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where the last term is equal to zero because of the homogeneous Neumann conditions. We introduce
the bilinear form ai : V × V → R as

ai(φ,ψ) :=

∫

Ω
(Di∇φ) ·∇ψds,

for all φ,ψ ∈ V . Thus, we write (4.2) as

cm

(
∂v

∂t
, ṽ

)

+ ai(v, ṽ) + ai(ue, ṽ) + χ(Iion(v,w), ṽ) = (Isi , ṽ).

Let us consider the second equation of problem (2.5). We multiply both sides by ũe ∈ U , and then
integrate over the domain. After treating the diffusion terms as above, we find

∫

Ω
(Di∇v + (Di +De)∇ue) ·∇ũeds−

∫

∂Ω
nT [Di∇v + (Di +De)∇ue]ũedl

︸ ︷︷ ︸

=0

= (Isi + Ise , ũe). (4.3)

The last integral is, again, zero because of the homogeneous Neumann boundary conditions. By
introducing the bilinear form a : V × V → R defined as

a(φ,ψ) :=

∫

Ω
[(Di +De)∇φ] ·∇ψds,

for all φ,ψ ∈ V , Eq. (4.3) may be rewritten as

ai(v, ũe) + a(ue, ũe) = (Isi + Ise , ũe).

Eq. (4.1) can be treated by simply multiplying component-wise (Hadamard product) both sides
by w̃ ∈ [H]Nw , and integrating on the domain Ω, thus finding, for all t ∈ (0, T ),

(
∂w

∂t
, w̃

)

= (F(v,w), w̃), (4.4)

where we used the usual notation (·, ·) for the scalar product in [H]Nw . By requiring w ∈ [H]Nw

and ∂w/∂t ∈ [H]Nw we ensure the existence of all the integrals in Eq. (4.4).
We recall that, as explained in 2.3.2, a necessary condition to the well-posedness of the Bidomain

equations is the compatibility condition:

∫

Ω
(Isi + Ise )ds = 0. (4.5)

We finally express the weak formulation of the Bidomain equations:

Given v0 ∈ H, w0 ∈ [H]Nw , Isi,e ∈ L2(Ω × (0, T )) (satisfying the compatibility con-

dition (4.5)), F ∈ [L2(V, [H]Nw)]Nw , find v ∈ L2(0, T ;V ), ue ∈ L2(0, T ;U) and w ∈
[L2(0, T ; [H]Nw)]Nw such that ∂v/∂t ∈ L2(0, T ;V ) and ∂w/∂t ∈ [L2(0, T ; [H]Nw)]Nw ,
v(0) = v0 and w(0) = w0, and ∀t ∈ (0, T )

cm
d

dt
(v, ṽ) + ai(v, ṽ) + ai(ue, ṽ) + χ(Iion(v,w), ṽ) = (Isi , ṽ),

ai(v, ũe) + a(ue, ũe) = (Isi + Ise , ũe),

d

dt
(w, w̃) = (F(v,w), w̃),

(4.6)

for all ṽ ∈ V, ũe ∈ U, and w̃ ∈ [H]Nw .
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4.1.2 Space and time discretizations

Space discretization

The first problem that we have to solve in the variational formulation derived in the previous
section is the infinite dimensionality of the spaces we are using for the search of the solution. Let
us consider only the first two variational equations,

cm
d

dt
(v, ṽ) + ai(v, ṽ) + ai(ue, ṽ) + χ(Iion(v,w), ṽ) = (Isi , ṽ),

ai(v, ũe) + a(ue, ũe) = (Isi + Ise , ũe).
(4.7)

As discussed in Chapter 2, a possible approach for building a finite dimensional space of the solution
is to consider the space spanned by the basis functions used for the geometry generation. Let us
denote with Vh ⊂ V the finite dimensional approximation of V built using the basis functions
forming the geometry. Hence, we have that, for every gh ∈ Vh,

gh =
N
∑

i

Nigi,

where {Ni}Ni=1 are the basis functions and gi are the corresponding degrees of freedom.We introduce
for every t ∈ (0, T ) the approximations of v(t) and ue(t) in the space Vh, namely

vh(t) =
N
∑

i

Nivi(t),

uh
e (t) =

N
∑

i

Niui(t),

(4.8)

the vectors v(t) = [v1(t) · · · vN (t)]T , u(t) = [u1(t) · · · uN (t)]T and

z(t) =

[

v(t)
u(t)

]

and the following matrices:

(M)lm = (Nm, Nl),

(Ki)lm = ai(Nm, Nl),

(K)lm = a(Nm, Nl).

We will omit the explicit dependence of time for vh, uh
e , v,u and z in the following.

Let us now substitute v and ue in Eq. (4.7) with their approximation vh and uh
e and expand

on the basis following Eqs. (4.8). We observe that, if we choose vh ∈ Vh and uh
e ∈ Vh, (4.7) holds

for every ṽh ∈ Vh and ũe,h ∈ Vh if and only if it holds for every Ni with i = 1, · · · , Nw. Hence, for
the first equation in Eq. (4.7) we get

cm

N
∑

j=1

(Nj , Nk)
d

dt
vj +

N
∑

j=1

ai(Nj , Nk)vj +
N
∑

j=1

ai(Nj , Nk)uj + χ(Iion(v,w), Nk) = (Isi , Nk),

which must hold for all k = 1, · · · , N . With the notation introduced above, we write, for each
t ∈ (0, T ),

cmM
d

dt
v+Kiv+Kiu+ χIhion = Isi , (4.9)

with v(0) = v0, where (Ihion)j = (Iion(vh,w), Nj), (I
s
i )j = (Isi , Nj) and v0 = [v1,0 . . . vN,0]T is

chosen so that
∑N

i=1 Nivi,0 is a good approximation of the initial condition (for example, v0 could

be chosen to minimize the norm ∥v0−
∑N

i=1 Nivi,0∥L2(Ω)). For the time being, we just assume that

Ihion is given; we will focus on its actual computation later on in this section. Following the same
steps of the first equation in (4.7), the second equation becomes, for each t ∈ (0, T ),

Kiv+Ku = Isi + Ise, (4.10)
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where (Ise)j = (Ise , Nj). Eqs. (4.9) and (4.10) may compactly and conveniently be rewritten as

cm

[

M 0
0 0

]

︸ ︷︷ ︸

M

d

dt
z+

[

Ki Ki

Ki K

]

︸ ︷︷ ︸

K

z =

[

Isi − χIhion
Isi + Ise

]

︸ ︷︷ ︸

I

, (4.11)

where the entries 0 stand for matrices composed only by zeros and with suitable dimensions.
Eq. (4.11) is the semi-discrete formulation of the Bidomain model. It may also be rewritten in
form of ODE as

⎧

⎨

⎩

cmM d

dt
z = I −Kz = G(z) t ∈ (0, T ),

z(0) = z0,
(4.12)

where z0 = [vT
0 0T ]T .

Let us now address the discretization of the recovery and concentrations variables w. A possible
approach called nodal interpolation [25] would consist in making use of the same basis functions
{Ni}Ni=1 to construct a suitable approximation of [H]Nw and to approximate the third equation in
Eq. (4.6) by following the steps of the first two. We choose to follow another path called gaussian
integration [25]. Let us remark that the variable w contributes to (4.12) uniquely for the ionic
current term Ihion. This is computed as

(Ihion)j =

∫

Ω
Iion(vh,w)Njds. (4.13)

The standard strategy in finite element and IGA solvers to compute this kind of integrals is to
exploit the special structure of basis functions, which have compact and highly localized support
and are piecewise polynomial, and utilize a gaussian quadrature rule on each mesh element. This
approach is convenient because, due to the locality of the basis functions, only a very small number
of elements contributes to the value of the integrals. Let Ne be the number of elements forming
the geometry Ω, Kj be the jth element such that

⋃Ne

j=1 Kj = Ω, {xj
i}si=1 be the quadrature points

on the jth element and {ω}si=1 be the associated weights. In the case quadrature rules are used,
integral (4.13) can be approximated as

∫

Ω
Iion(vh,w)Njds =

Ne∑

j=1

∫

Kj

Iion(vh,w)Njds ≈
Ne∑

j=1

s
∑

i=1

Iion(vh(x
j
i ),w(xj

i ))Nj(x
j
i )ωi.

Therefore, we are not necessarily interested in projecting w onto a space based on the isogeometric
basis. What we actually need is the value of the recovery and concentration variables at the gaussian
quadrature points. We consider then the set of s × Ne vectors wj

i = w(xj
i ) for i = 1, · · · , s and

j = 1, · · · , Ne, representing the values of recovery and concentration variables at each quadrature
point. The evolution of wj

i can be computed through the ODE

⎧

⎨

⎩

d

dt
wj

i = F(vjh,i,w
j
i ) t ∈ (0, T ),

wj
i (0) = w0(x

j
i ),

(4.14)

for i = 1, · · · , s and j = 1, · · · , Ne, where vjh,i = vh(x
j
i ) is the interpolation of the approximate

solution vh in the Gauss point xj
i .

We emphasize that this technique for dealing with the recovery, concentration variables and
computation of the ionic current is not the only possible; we refer the reader to [25] for other
equally valid choices.

Time discretization

In order to derive the fully discrete form of the Bidomain equations we consider a decoupled semi
implicit scheme; see e.g. [6,7,15] for other examples of applications of this approach to the Bidomain
equations.
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We use backward differentiation formulae (BDFs) for the time integration [22]. Let us recall
that, given the initial value problem:

⎧

⎨

⎩

dy

dt
= f(t,y) for t ∈ (t0, T ),

y(t0) = y0,

with y ∈ Rn, y0 ∈ Rn and f : R×Rn → Rn, a timestep ∆t such that tk = t0+k∆t, the approximate
solution at the (k + 1)th timestep yk+1 computed using a BDF scheme of order q satisfies

q
∑

i=0

αiy
k+1−i = ∆tβf(t,yk+1) for k ≥ q − 1, (4.15)

where y0 = y0 and αi ∈ R for i = 0, . . . , q and β ∈ R (with α0 ̸= 0 and β ̸= 0 ) are coefficients
depending on the order of the method. We remark that equation (4.15) can always be expressed
in the form

α
yk+1 − yk+1

BDF

∆t
= f(t,yk+1) ≈ d

dt
y(tk+1), (4.16)

where α = α0/β and

yk+1
BDF = −

q
∑

i=1

αi

α
yk+1−i.

The method obtained by applying (4.16) is implicit and requires the solution of a potentially
non linear equation at each timestep. In order to decrease the computational cost, we may intro-
duce yk+1

ext : this is an approximation of yk+1 obtained as extrapolation using the values yj , with
j = k, . . . , k − (q − 1). We have then

α
yk+1 − yk+1

BDF

∆t
= f(t,yk+1

ext ),

which is an explicit method of order q.
Let ∆t be the timestep of the time discretization and tk = k∆t be the kth timestep. We denote

with vk and uk the values of v and u respectively at the kth timestep, and with wj,k
i the values of

w at the time instance tk in correspondence of the Gauss quadrature point xj
i . The computation

of the solution at time k+1 through the decoupled scheme, which is a first order splitting scheme,
follows these two steps:

1. Suppose to have vk+1
ext and wj,k+1

ext,i , namely the extrapolated values of v and wj
i at the time

instance k + 1. Then, the numerical solution of (4.14) can be computed with

α
wj,k+1

i −wj,k+1
BDF,i

∆t
= F(vj,k+1

h,i ,wj,k+1
ext,i ),

for all i = 1, . . . , s and j = 1, . . . , Ne, where s is the number of quadrature nodes for
element, Ne is the number of elements, and vj,k+1

h,i is computed from vk+1
ext by evaluating the

extrapolated solution in the Gauss points. Hence

wj,k+1
i = wj,k+1

BDF,i +
∆t

α
F(vj,k+1

h,i ,wj,k+1
exti ),

for all i = 1, . . . , s and j = 1, . . . , Ne.

2. Given wj,k+1
i for i = 1, . . . , s and j = 1, . . . , Ne, the values vk+1 and uk+1 are computed by

solving

cmMα
vk+1 − vk+1

BDF

∆t
+Ki(v

k+1 + uk+1) = Is,k+1
i − χIk+1

ion

Kiv
k+1 +Kuk+1 = Is,k+1

i + Is,k+1
e ,

where Ik+1
ion is computed using vk+1

ext and wj,k+1
i . We remark that, by using the extrapolated

transmembrane potential for the computation of the ionic current, we are linearizing the
problem.
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Material properties σi
l = 0.0023 Ω−1cm−1 σi

t = 0.00024 Ω−1cm−1

σe
l = 0.0015 Ω−1cm−1 σe

t = 0.001 Ω−1cm−1

cm = 1 mF cm−3

Roger-McCulloch parameters vth = 13 mV η1 = 4.4 ms−1

vp = 100 mV η2 = 0.012
G = 1.5 ms−1 η3 = 1

Table 4.1: Numerical values of the coefficients for the experiment on the rectangular slab, taken
from [15].

4.2 Numerical simulation on simple domains: some bench-

mark problems

We hereby present experiments on simple geometries with the purpose of analyzing the behavior
of the solution of the Bidomain equations and the properties of IGA. For the numerical integration
of the two potentials and the recovery variables we considered BDF schemes of order q = 2 with
∆t = 0.05 ms.

We remark that we use the notation Pa/Cb to denote piecewise polynomial bases of degree a
with Cb-continuity across the knots. For example, P1/C0 is the basis formed by piecewise linear
polynomials with C0-continuity across the knots, P2/C1 is the basis formed by piecewise quadratic
polynomials with C1-continuity across the knots, and so on.

4.2.1 Wavefront propagation on a rectangular slab

As a first experiment, we follow the lines of the preliminary study that was done in [25] for the
Monodomain equations. We apply a current to a rectangular domain Ω = (0, 16) cm × (0, 1) cm
with the purpose of generating a wavefront. We impose a current Isi = 100 mA for 1 ms to
the stripe (0, 0.2) cm × (0, 1) cm, and we consider Ise = −Isi so that the compatibility condition
∫

Ω Isi + Ise = 0 is satisfied. As ionic membrane model we adopt the Roger-McCulloch method,
presented in Section 2.2.2. We use the following definitions of f(v, w) and g(v, w) [15]:

f(v, w) = Gv

(

1− v

vth

)(

1− v

vp

)

+ η1vw,

g(v, w) = η2

(
v

vp
− η3w

)

.

The numerical values of the coefficients and of the tissue properties are presented in Table 4.1.
We assume that the fiber direction is parallel to the x axis. The simulations were performed from
t = 0 ms to t = 175 ms.

Fig. 4.2 shows the evolution of the wavefronts of v, ui and ue using P2/C1 basis functions.
For this simulation we used 65536 square mesh elements. It appears that after around 100 ms the
wavefront is fully developed; it keeps then moving with constant velocity from left to right with
little variations in shape. We observe that, because of the peak value vp = 100 mV in the Roger-
McCulloch membrane model, the transmembrane potential takes values in the interval [0, 100] mV,
which does not correspond to the physiological range.

The wavefront velocity appears to be highly dependent on the mesh. We assume that the “true”
wavefront velocity V can be computed with sufficient accuracy using P3/C2 basis functions with
a mesh of 65536 elements. Using this basis, we have V = 5.30191 · 10−2 cm/ms. This value is close
to e.g. the value of 5 · 10−2 cm/ms reported in [18] as typical wavefront velocity in the atria and
ventricles. Fig. 4.3 shows that when the element size h is large the velocity is overestimated. For
all the different bases that we considered the convergence appears to be monotone with respect to
the element size. Interestingly enough, high order polynomials behave poorly when h is high and
lead to worse approximations of the velocity than linear polynomials. However, under a certain
threshold value of h, high order polynomials start to give better estimates than linear polynomials.
Fig. 4.3 (left) could misleadingly be interpreted in the sense that the better approximation for the
velocity be given by cubic polynomials with discontinuous derivatives at the interfaces (P3/C0).
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Figure 4.1: 3D representation of the traveling wavefront for the transmembrane potential v, com-
puted using using P2/C1 basis functions and 1024× 64 = 65536 elements.
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Figure 4.2: Wavefront propagation of the transmembrane potential v (blue solid line), internal
potential ui (yellow dashed line) and external potential ue (dashed red line) in mV at different
time instances, using P2/C1 basis functions and 1024×64 = 65536 elements. Lengths are expressed
in cm.
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Figure 4.3: Convergence of wave velocity with respect to element size h (left) and number of degrees
of freedom (right).

However, we recall that the number of degrees of freedom in NURBS-based IGA follows the rule
Ndofs = Nel + p, where Nel is the number of internal elements (taking into account elements with
zero length) and p is the polynomial degree. In order to generate discontinuities by keeping the
number of elements the same, the multiplicity of internal nodes must be increased along each
parametric direction, leading to larger numbers of degrees of freedom.

As depicted in Fig. 4.4, the number of elements also influences the width of the wave front –
or in other words, the duration of the AP – which is much higher when h is large. Coarse meshes
lead to faster and larger wavefronts. We observe that, when the mesh is too coarse, the solution
presents oscillations in correspondence of the most critical parts of the AP, i.e. at the base and the
peak of the upstroke and at the end of the repolarization. This behavior is completely due to the
spatial approximation; in fact, the solutions computed with finer meshes do not present the same
problematics.
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Figure 4.4: Wavefront convergence with respect to the number of mesh elements, with P2/C1
B-splines basis functions.

4.2.2 Dispersion study on a square slab

We now address the problem of wavefront propagation under the aspect of the shape of the wave.
In other words, we want to study how the isogeometric approximation of the Bidomain equations
affects the dispersion of the solution, similarly to what was done in [13] for the elastic wave. In
order to do this, we set up a simple problem on a square Ω = (−4, 4) cm × (−4, 4) cm . We apply
an electrical stimulus Isi = 100 mA on a circle of radius r =

√
2 centered on the origin. Since the

stimulus is circular, we expect the exact solution to be circular as well. Moreover, as we expect
the solution to be axis symmetric, we perform the simulation only on the upper-right quarter
(0, 4) cm × (0, 4) cm . The numerical values of the physical parameters and of the coefficients
of the Roger-McCulloch model are the same as in the rectangular experiment in Section 4.2.1
except for the conductivities. In fact, since we want to understand how IGA introduces additional
anisotropy to the equations, we eliminate the anisotropy given by the conductivity tensor by setting
the conductivities in all directions equal to σ = 0.001 Ω−1cm−1. For the space discretization, we
consider square elements of size h = 1.56 · 10−2 cm. We remark that this choice is conditioned by
the insight that we gained on the numerical solution of the equations with the experiment on the
rectangular domain of Section 4.2.1: we choose an h small enough to ensure the behavior of the
polynomials that we would expect – i.e. linear polynomials performing worse than quadratic and
cubic polynomials with the same element size.

Fig. 4.5 shows that the solution obtained using P2/C1 basis functions exhibits indeed a circular
wavefront that maintains its shape throughout the whole simulation. This is also true when different
polynomials are used, as depicted in Fig. 4.6. We remark that the solution approximated using
P1/C0 basis functions travels faster than the ones computed using higher order polynomials, which
is consistent with what has been observed on the rectangle using elements of similar size. The
computed solutions are compared to circles having radius equal to the average distance of the
wavefronts to the origin of the axes rav. It appears that the wavefront tends to achieve the maximum
speed along the x and y axis, and minimum speed along the bisectors. This is a consequence of the
type of mesh adopted, which consisted of squares with edges parallel to the domain boundaries.
The dependence of the radius on the angle is also confirmed by Fig. 4.7, which shows the difference
between the angular position of the wavefront and the average radius for different values of the
normalized angle θ∗ = 2θ/π. It is evident that for values of θ∗ = 0 and θ∗ = 1 the velocities
reach maximum values for all the considered polynomials, while the minimum is always reached at
θ∗ = 1/2. We notice that, in order to keep the number of degrees of freedom almost constant, the
curves corresponding to discontinuous polynomials were obtained on meshes with larger element
size, and this explains the larger oscillations obtained using P2/C0 and P3/C0 basis functions. As
expected, higher order polynomials and higher continuity lead to smaller variations from the average
radius. We also conducted experiments with larger element sizes confirming the observation we
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(a) t = 20 ms (b) t = 40 ms

(c) t = 60 ms (d) t = 80 ms

Figure 4.5: Contour map of the transmembrane potential at different time instances for the exper-
iment on the square slab, obtained using P2/C1 basis functions. The actual simulation has been
conducted on the upper right quarter; here the results are displayed by exploiting the symmetry
of the solution. The tick black line separating the blue region from the red region corresponds to
the excitation front.

Figure 4.6: Wavefront position at time t = 80 ms with P1/C0, P2/C1 and P3/C2 basis functions.
The dashed line corresponds to the exact circles with radius given by the average distance of the
wavefront from the point (0,0), i.e. the center of the perturbation.
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Figure 4.8: Deformation vs time for different polynomial bases.

made in Section 4.2.1: for larger element sizes linear polynomials behaved better, as they provided
smaller dispersion of the wavefront.

Finally, we analyze how fast the shape of the wavefront changes. In order to do this, we introduce
the function

γ(t) =

√
√
√
√

Nwf∑

i=1

(xwf,i(t)− rav(t))2,

where xwf,i(t) for i = 1, . . . , Nwf are points localized in correspondence of the wavefront position at
time t. The function γ(t) provides a numerical estimate of the deformation of the wavefront shape
at each time. Fig. 4.8 shows the evolution of γ(t) for different bases: we observe that high order
polynomial bases ensure more circular wavefronts, but that the rate of change of the deformation –
i.e. the slope of the curves – is generally independent of the regularity of the basis for large times.
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Chapter 5

Numerical results on the atria

We move now to more significant applications of the Bidomain equations and we consider nu-
merical simulations on atrial geometries using the CRN model (see Section 2.2.3). We use surface
representations of the atria: this is a simplification that is motivated by the small thickness of
the cardiac tissue in the upper chambers of the heart. This simplification was also used in [32] to
simulate the whole electrical behavior of the heart in physiological and pathological conditions,
by coupling surface representations of the atria with tridimensional meshes of the ventricles. The
deformation of the atria due to the muscular contraction is not considered in this work.

As we saw in Chapter 2, the electrical stimulation of the heart starts from the sinoatrial node
(SAN), that is often called the natural pacemaker of the heart because of the ability of its cells
to excite themselves autonomsly. The excitation generates a wavefront whose propagation in the
myocardium is anisotropic because of the fibers orientation. In particular, the conduction velocity
in the longitudinal direction is higher because of the high density of gap junctions. Therefore, the
first step to perform realistic simulations is to create a vector field defined on the atrial geometries
representing the fiber orientation. As we will see in Section 5.1, this is done by solving a Laplace
problem on the atria and then identifying the fiber direction to the normalized gradient of the
solution as in [29].

The electrical excitation is propagated to the LA in four specific locations of the two atria
connected by muscular tissue: the Bachmann’s bundle, the anterior septum, the posterior septum,
and the coronary sinus musculature. We model the interaction of the two atria so that, when the
excitation front reaches the location of a particular connection on the RA, a current is triggered at
the corresponding connection point on the LA. For this reason, we consider the simulation of the
potential on the LA as completely dependent on the potential of the RA. This assumption allows
us to first consider in depth what happens on the RA when the signal is started from the SAN,
and then evaluate how the signal is propagated to the LA.

In the last part of this chapter we will briefly discuss about the application of this model to
the simulation of atrial fibrillation.

5.1 Fibers direction

The Bidomain equations require the definition of the fiber direction at each point of the domain
Ω = ΩRA ∪ΩLA. Here, we are going to arbitrarily assign a vector field to the atria by solving two
separate Laplace problems, which will provide us with scalar fields defined on the surfaces, and
taking the gradient of them; this approach was also followed in [29]. More precisely, let us consider
the following Laplace problem on, for example, the RA:

{

−∆u(x) = f(x) in ΩRA,

∇u(x) · n = h(x) on ∂ΩRA,
(5.1)

with h(x) = 0 on ∂ΩRA. For start, we remark that, as noted in [31], the well-posedness of this
problem is subject to the compatibility condition

∫

ΩRA

fds = −
∫

∂ΩRA

hdl.
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Figure 5.1: Fibers direction on the two atria.

We have to choose f(x) so that the this relation is satisfied. We choose to consider f(x) = 0
everywhere on the domain of the RA, except in two circles of equal radius, where f(x) is constant
and takes opposite values. We remark that problem (5.1) admits actually an infinite number of
solutions, because if ũ(x) satisfies the equation, then uC(x) = ũ(x) +C for all C ∈ R also satisfies
the equation. To ensure the uniqueness of the solution to the problem, we add the constraint of
null average on the domain, i.e.

1

|ΩRA|

∫

ΩRA

uds = 0.

Solving the Laplace problem on the RA and on the LA and considering the normalized gradient
of the solution leads in the vector field depicted in Fig. 5.1. We point out that, because of the
Neumann condition in the Laplace problem, the gradient of the solution and consequently the
fibers are tangent to the boundary.

For our simulations, we consider a simplified definition of the conductivity tensor that is easily
implementable given the vector field of fibers direction. We choose σi

l = 0.0023 Ω−1 cm−1, σe
l =

0.0015 Ω−1 cm−1, σi
t = 0.00024 Ω−1 cm−1 and σe

t = 0.001 Ω−1 cm−1. Then, we take

Di,e(x) =

⎡

⎣

σi,e
t 0 0
0 σi,e

t 0
0 0 σi,e

t

⎤

⎦+

⎡

⎣

(σi,e
l − σi,e

t )a1(x) 0 0
0 (σi,e

l − σi,e
t )a2(x) 0

0 0 (σi,e
l − σi,e

t )a3(x)

⎤

⎦ ,

where a(x) = [a1(x) a2(x) a3(x)]T is the fiber direction in the point x.

5.2 Electrocardiology on the right atrium

All the simulations presented in this chapter are performed with timestep ∆t = 0.01 ms. We
recall that such small timestep is needed to ensure a good approximation of the CRN solution, in
particular in correspondence of the action potential upstroke. We use BDF schemes of order q = 1
and q = 2 for the integration of w and v respectively. The order of the method for the recovery and
concentration variables is chosen to increase its stability. Moreover, we consider cm = 1 mF cm−3,
χ = 103 cm−1 the initial condition on v, gating variables and concentrations prescribed by the
CRN model and reported in Table A.2.
We consider the RA geometry with 78975 elements. The atrium is stimulated in correspondence
of the SAN for 1 ms with currents Isi = 100 mA and Ise = −Isi , in order to satisfy the compatibility
condition (4.5); the simulation is run for 500 ms.
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(a) t = 5 ms (b) t = 20 ms

(c) t = 50 ms (d) t = 100 ms

(e) t = 150 ms (f) t = 200 ms

(g) t = 300 ms (h) t = 400 ms

Figure 5.2: Transmembrane potential v evolution on the RA.
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(a) t = 5 ms (b) t = 20 ms

(c) t = 50 ms (d) t = 100 ms

(e) t = 150 ms (f) t = 200 ms

(g) t = 300 ms (h) t = 400 ms

Figure 5.3: Intracellular concentration of Ca2+ evolution on the RA .
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Figure 5.4: Action potential and variation of calcium concentration at a location close to the initial
stimulation (A), at the AV node (B) and at the inferior vena cava (C).

Figs. 5.2 and 5.3 show the evolution of v and [Ca2+]i on the RA. Fig. 5.4 shows the action
potential and calcium variation registered at three specific points of the chamber. The first point
is chosen to be close to the SAN, but at a distance sufficient to make the effects of the initial
stimulation negligible. The second point is placed at the location of the atrioventricular (AV) node.
The last point is close to the joint of the inferior vena cava, where the wavefront arrives at last.
We remark that in the physiology of the heart the AV node is not stimulated by the propagating
front of the myocardium but by some specific conduction channels. However, the interest in this
analysis is to verify how the wave shape changes during the propagation of the front. It appears
that the shape of the AP is generally preserved in the three locations; the CRN model, moreover,
guarantees a considerably more realistic result if considered with the ones obtained in Chapter 4
using the Roger-McCulloch method.

We know that the element size has dramatic consequences on the wavefront velocity, thanks
to the insight we got from the preliminary results on the rectangular slab in Section 4.2.1. Since
the activation of the LA is subject to the timing with which the front reaches the four connection
points, we aim at having a good resolution of the initial moments of the propagation. For this
reason, the mesh is thinner at the top of the RA. The non homogeneous size of the mesh elements
has consequences on the quality of the wavefront in certain regions of the atrium. As an example,
Fig. 5.5 shows the solution at t = 80 ms on the auricle, which is a region with particularly coarse
elements because of the way the parametrization of the surface was designed. The solution clearly
exhibits oscillations similar to the ones depicted in Fig. 4.4 for the coarse meshes. However, because
of the high computational cost of the simulation, it has not been possible to use sufficiently finer
meshes to completely eliminate them. The effects of the spatial discretization are also visible in
Fig. 5.4: we observe some oscillations immediately before the rapid depolarization of the cells in
correspondence of points B and C, which are in locations where the mesh is coarser than in the top
part of the atrium. Moreover, we remark that also the peak value of the transmembrane potential
is subject to variations which are still due to the non homogeneous size of elements of the geometry.
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Figure 5.5: Resolution of the wavefront of the transmembrane potential on the auricle at t = 80 ms.

(a) t = 40 ms (b) t = 60 ms (c) t = 80 ms

(d) t = 85 ms (e) t = 95 ms (f) t = 105 ms

Figure 5.6: Effect of the fibers orientation on the wavefront propagation. Dashed lines refer to high
velocity lines (H) and low velocity lines (L).
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Figure 5.7: Location of the sinoatrial node (SAN) and the interatrial connections: the Bachmann’s
bundle (BB), the anterior septum (AS), the posterior septum (PS), and the coronary sinus mus-
culature (CSM).

Since the calcium curve does not present sharp features, it can be appreciated how both the general
shape and the peak value remain constant at the three considered points. In all of the three cases,
the calcium concentration reaches the peak value of around 3×10−4 mM at the end of the plateau
phase of the action potential.

Because of the conductivity tensor, the wavefront propagation is indeed anisotropic and the
velocity of the wave depends obviously on the local orientation of the fibers and the direction of
propagation. Fig. 5.6 shows examples of high velocity lines, where the wavefront propagates in the
same direction of the fibers orientation, and low velocity lines, where the direction of propagation is
instead transversal. We remark that, since the fibers direction is always tangential to the boundaries
because of the homogeneous Neumann condition used in the Laplace problem, the excitation travels
fast in correspondence of the borders of the domain, see Fig. 5.6 (bottom).

5.3 Electrophysiology on both atria

The simulation on the RA, presented in the previous section, has been used to trigger the excitation
of the LA in the positions of the connection points depicted in Fig. 5.7. We referred to [30] for the
approximate position of the interatrial connection on the geometries. The results of the simulation
for v and [Ca2+]i on both atria is shown in Fig. 5.8 and 5.9 respectively.

The geometry of the LA consists of 60742 elements. The significantly different number of
elements forming the two atria is motivated by the need to have a good approximation of the
wavefront in the RA region where it activates the LA. In our model the LA is segregated from the
RA and the information transfer between the two is modeled via the generation of external currents.
In particular, the interaction between the two atria is such that, as soon as the transmembrane
potential reaches some threshold value (vth = 0 mV in our case) in a neighborhood of the four
connection points on the RA depicted in Fig. 5.7, a current of 100 mA for 1 ms is triggered in the
corresponding point on the LA.

Fig. 5.10 shows the activation pattern of the LA with the time at which each contact point is
activated by the RA. As in the case of the RA, we measure the action potential and variation of
calcium concentration at three points (see Fig. 5.11): near the Bachmann’s Bundle attachment,
in correspondence of a point between the anterior septum and the posterior septum where two
wavefronts meet – i.e. the wavefronts coming from the two interatrial connections, and at one of
the pulmonary veins, where the excitation front arrives at last. The wavefront maintains also in
this case its shape while traveling throughout the domain.
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(a) t = 20 ms (b) t = 40 ms

(c) t = 90 ms (d) t = 110 ms

(e) t = 200 ms (f) t = 270 ms

(g) t = 320 ms (h) t = 380 ms

Figure 5.8: Transmembrane potential v evolution on both atria from different viewpoints.
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(a) t = 20 ms (b) t = 40 ms

(c) t = 90 ms (d) t = 110 ms

(e) t = 200 ms (f) t = 270 ms

(g) t = 320 ms (h) t = 380 ms

Figure 5.9: Intracellular concentration of Ca2+ evolution on both atria from different viewpoints.
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Figure 5.10: Activation pattern of the LA. The stimulation starts at t = 34 ms at the Bachmann’s
Bundle, at t = 59 ms at the anterior septum, at t = 80 ms at the posterior septum and at t = 107
ms at the coronary sinus musculature.
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Figure 5.11: Action potential and variation of calcium concentration at a location close to the
Bachmann’s Bundle (A), in a point halfway between the anterior septum and the posterior septum
(B) and at one of the pulmonary veins (C).
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5.4 Simulating atrial fibrillation

We address the problem of simulating a pathological condition, called atrial fibrillation (AF),
consisting in an irregular excitation and contraction of the two atria. During AF episodes the
atrial rate of contractions reaches values of 400-600 heart beats per minute; fortunately, the AV
node manages to filter the electrical signals it receives [18] leading to a rate of 100-175 beats per
minute [14] in the ventricles, which is still critical but does not necessarily imply heart failures. The
factors leading to AF are not completely understood. It is believed that the disorganized electrical
excitation is due to signals originated not in the SAN, but probably close to the pulmonary veins
on the LA [18]. This uncertainty over the physiological causes of the AF makes the reproduction
of the phenomenon difficult. We identify two possible modifications to the physiological model
presented earlier in this chapter:

• Tissue parameters changes: as noted in [17, 36], chronic AF induces changes in the physical
characteristics of the tissue. These result in shorter APs and different values of the ionic
currents passing through the cellular membrane.

• Changes to the stimulation: since the main cause of the AF seems to be the incorrect stimu-
lation of the atria, the most intuitive way to obtain a pathological condition is to change the
way the excitation is initiated. As explained in [17], there are three main strategies (initiation
protocols) to trigger the AF. In the S1-S2-S3 protocol the stimulus is applied at three differ-
ent locations at different times. In the burst-pacing protocol high frequency stimulations are
applied to a single point. Lastly, in the ramp protocol a train of stimuli is applied to a single
point, with variable cycle length – i.e. temporal distance between two consecutive stimuli.

We here present the numerical results obtained by implementing some of the changes listed above.
In order to lower the computational time, we will always consider the LA geometry with 60742
elements.

5.4.1 Simulation with modified ionic model

The main idea of this simulation is the following: in the simulation on both atria, the left atrium is
stimulated at four different points – the interatrial connections – at four different times, determined
by the wavefront propagation on the RA. Therefore, the LA is already stimulated according to
the S1-S2-S3 protocol presented above, with the only difference being the number of stimulation
points (four instead of three). A possible way to induce AF is to stimulate the LA by using the
information provided by the coupled simulation to synchronize the activation time of each of the
connection points, and modify the ionic model such that the properties of the AP match the
pathological ones. We follow [36] for the modification of the CRN model: the currents Ito, IKur and
ICa,L are decreased by 65%, 49% and 65% respectively, while IK1 is increased by 110%. Modifying
this currents leads to an AP duration of around 200 ms.

A current of 100 mA for 1 ms is generated at t = 0 at the Bachmann’s Bundle, at t = 25
ms at the anterior septum, at t = 46 ms at the posterior septum and at t = 73 ms at the
coronary sinus musculature. We try to understand if some disordered behavior, like the formation
of rotors [19], is exhibited when two wavefronts collide. Fig. 5.12 shows the moment of the collision
of the wavefronts coming from the anterior and posterior septa together with the gradient of the
transmembrane potential. It appears that the merging of the two wavefronts happens smoothly.
Moreover, the gradient shows that vortexes do not form in the first times after the collision. This
holds true also for the collision of the other wavefronts and for the duration of the whole simulation,
which is run until T = 500 ms. Hence, this experiment did not lead to the insurgence of AF.

There are several possible reasons for which we did not manage to induce AF with this approach.
The S1-S2-S3 protocol is highly dependent on the timing and positioning of the three stimulations:
in the experiments presented in [17] the currents are located on the RA and with temporal lapse
between one another of the order of hundreds of milliseconds. Moreover, the simulation are ran for
several seconds; therefore, the total length of our simulation may have been too short to observe
the insurgence of the arrhythmia.
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(a) t = 63 ms (b) t = 66 ms

(c) t = 69 ms (d) t = 72 ms

Figure 5.12: Collision of wavefronts coming from the anterior and the posterior septa. The arrows
show the direction of the gradient of v.

5.4.2 Simulation with the burst-pacing protocol

For this simulation we follow the burst-pace protocol and pace the LA in correspondence of the
Bachmann’s Bundle at 20 Hz (the frequency of the pacing was chosen following [17]). In other
words, we stimulate every 50 ms the atrium with currents of 100 mA lasting for 1 ms; the total
duration of the experiment is T = 500 ms. We maintain the modified ionic model adopted in
Section 5.4.1.

We observe that our model manages to reproduce the cellular refractory period, i.e. the period of
time subsequent to the excitation of cardiac cells in which no other excitation is possible. In fact, the
stimulations immediately following the first one do not reflect in the generation of new wavefronts
but only in the local increase of the transmembrane potential, that reaches non-physiological values
of 75 mV; see Fig. 5.13. We find that the second stimulation that generates a wavefront occurs at
t = 250 ms, when the transmembrane potential in correspondence of the Bachmann’s Bundle has
reached the resting value. Interestingly enough, the third stimulation producing a wavefront occurs
at t = 400 ms, i.e. 150 ms after the generation of the previous wavefront. This is due to the fact
that, as shown in Fig. 5.14, the duration of the second AP and, consequently, the corresponding
refractory period are considerably lower than the first ones.

Unfortunately, for the whole simulation we did not observe the insurgence of AF. We found
evidence, however, of the shortening of the refractory period under continuous stimulation of the
tissue, meaning that the properties of the wavefront change heart beat by heart beat. This could
suggest that, as we supposed in Section 5.4.1, the temporal scales we are considering are not
sufficient to simulate this type of arrhythmia and that it would be beneficial to extend the total
duration of the experiment for several seconds.
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(a) t = 51 ms (b) t = 56 ms

(c) t = 60 ms (d) t = 70 ms

Figure 5.13: Stimulation of the Bachmann’s Bundle at t = 50 ms in the burst-pacing experiment.
The colors refer to the value of the transmembrane potential v. Since the tissue region surrounding
the site is still excited and in the refractory period, such stimulus does not generate a new wavefront.
We remark v reaches non physiological values of around 75 mV immediately after the stimulation.
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Figure 5.14: Action potential measured in the experiment regarding the burst-pacing protocol at
a point close to the Bachmann’s Bundle but not paced by the external stimulus.
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Chapter 6

Conclusions

In this project, we aimed at the realistic simulation of the excitation front in cardiac tissue in
the two atria using Isogeometric Analysis. The first step has been to setup experiments using the
Bidomain model coupled with the Roger-McCulloch model – which accounts for only one gating
variable – on simple domains. The purpose of these simulations has been twofold. First, they gave
insights on the expected behavior of the solution of the Bidomain equations and the properties of
the wavefront that is generated by electrically stimulating the tissue. Secondly, they were used to
verify the convergence of IGA under the aspect of velocity of propagation and dispersion of the
wavefront. In particular, we observed that coarse meshes lead to an overestimation of the velocity
and the duration of the action potential. We moved then to the simulation of the equations on
idealized atrial geometries generated by means of NURBS basis functions. In order to obtain
a more thorough description of the cellular phenomena, we considered a complex ionic model
introduced by Courtemanche, Ramirez and Nattel (CRN model) consisting of 15 gating variables
and concentrations of 5 ionic species. We coupled the excitation of the right atrium with the
stimulation of the left atrium yielding to realistic simulations of the propagation of the electric
signal over the atria. In our model, the left atrium is electrically stimulated when the wavefront
on the right counterpart reaches the location of four different points called interatrial connections.
We analyzed the simulations in terms of physiological relevance and quality of the solution. We
noticed that, as expected, the excitation spreads in an anisotropic fashion, which is a consequence
of the different longitudinal and transversal conduction velocities in cardiac fibers. Lastly, we tried
to use the Bidomain model to simulate atrial fibrillation on the left atrium. We performed two
simulations in which we varied some parameters in the ionic model and the stimulation. We could
not recreate the pathological conditions leading to the chaotic excitation of the atrium. However,
these experiments gave us a better understanding of the properties of the Bidomain equations
coupled with the CRN model, such as the shortening of the action potential and refractory period
due to continuous excitation of the cardiac tissue.

Future developments

In this Master Project we obtained meaningful simulations of the electrophysiological behavior of
the heart. We hereby propose some possible improvements and application of our work:

1. Smaller elements on the atria: the results we presented on the two atria exhibit oscillations
similar to the ones we found in the experiment on the rectangle using coarse meshes. As we
verified in Section 4.2.1, the main problem when solving the Bidomain equations with coarse
meshes is an overestimation of the conduction velocity. Therefore, reducing the element size
could significantly improve the accuracy of the solution especially under the aspect of the
activation time of the two atria.

2. Multiple hearbeats: the CRN ionic model with standard initial conditions does not start with
a stable condition, meaning that multiple excitations of the cells lead to a change in the
resting values of the single variables, as shown in Fig. 2.7. Therefore, we should consider
as “typical heart beat” a heart beat taking place after multiple excitations of the tissue.
Moreover, as we remarked in Section 5.4, extending the overall duration of the simulation
could be beneficial in simulating the atrial fibrillation.
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3. Improving the coupling the two atria: a possible improvement could consist of using physio-
logical data – such as typical delay in the activation times of the two atria – to get a better
coupling of the two chambers.

4. Coupling of the electrical and structural models : the evolution of the calcium concentration
provided by the ionic model could be used to determine the contraction of the heart and its
deformation.

5. Simulation of ablations : one of the possible therapies for dealing with atrial fibrillation is
the ablation of the cardiac tissue, i.e. the change of tissue properties due to burning wounds
accurately caused by the surgeon. The effects of ablations could be simulated by locally
setting the value of the conductivity tensor to zero [14].

6. Simulation of the propagation of the action potential in the whole heart : the strategy for
handing the interatrial connection could be used (with little modifications) also for simulating
the role of the atrioventricular node in the conduction of the signal from the right atrium to
the ventricles.
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Appendix A

The CRN equations

We hereby present the CRN model [10] as it is used for modeling the atrial electrophysiology in
this work. We remark that, differently from what has been done in the rest of this thesis, we here
denote the trasmembrane potential with the capital letter V , in order to avoid ambiguities with
the gating variable v. These equations differ from the ones that were first proposed in [10] for
the term Acap, a geometric factor taking into account the size of the cell. The term is needed to
adjust the units of some of the concentration variables, and we took inspiration from the article
by Luo-Rudy [21] for its computation. Acap is twice the area of membrane cell that takes part
to the passing of ions from the intra to the extracellular space and vice versa. In particular, it is
computed as

Acap = 2Ageo, (A.1)

where Ageo is the surface of the cell. Since the cardiac cell is assumed to be shaped as a cylinder
of length l = 100 µm and radius r = 8 µm, we have

Ageo = 2πr2 + 2πrL = 5.428× 10−5cm2.

In the following, we present the equations of the model, consisting of the expression of each
ionic current, the equilibrium potential of the species involved, and the evolution law of each of
the concentrations. The evolution law of the general recovery variable is computed as follows. Let
y = [y1, . . . , yNy

]T ∈ RNy be the vector of recovery variables, with Ny = 15. For the component
yi, the evolution equation may be written in the form

dyi
dt

=
yi,∞ − yi

τyi

,

yi(t = 0) = yi,0, (A.2)

where y∞ and τyi
are in general functions of V , y, and the ionic currents, and yi,0 is the initial

condition. The equations are organized in groups (bullet points). Each ionic current and the coef-
ficients for the computation of the recovery variables taking part to its computation are grouped
together. The constants of the model are reported in Table A.1 and the initial conditions of each
concentration and recovery variable are reported in Table A.2.
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Symbol Definition Value

R Gas Constant 8314.3 kJK−1 mol−1

T Temperature 310 K
F Faraday constant 96486.7 Cmol−1

Cm Membrane capacitance 100 pF
Vcell Cell volume 2.01×10−5 µL
Vi Intracellular volume 1.3668×10−5 µL
Acap Capacitative membrane area 1.0856×10−4 cm2

Vup SR uptake compartment volume 1109.52 µm3

Vrel SR release compartment volume 96.48 µm3

[K+]o Extracellular K+ concentration 5.4 mM
[Na+]o Extracellular Na+ concentration 140 mM
[Ca2+]o Extracellular Ca2+ concentration 1.8 mM
gNa Maximal INa conductance 7.8 nS pF−1

gK1 Maximal IK1 conductance 0.09 nS pF−1

gto Maximal Ito conductance 0.1652 nS pF−1

gKr Maximal IKr
conductance 0.0294 nS pF−1

gKs Maximal IKs
conductance 0.129 nS pF−1

gCa,L Maximal ICa,L conductance 0.1238 nS pF−1

gb,Ca Maximal Ib,Ca conductance 0.00113 nS pF−1

gb,Na Maximal Ib,Na conductance 0.000674 nS pF−1

INaK(max) Maximal INaK 0.60 pApF−1

INaCa(max) Maximal INaCa 1600 pApF−1

Ip,Ca(max) Maximal Ip,Ca 0.275 pApF−1

Iup(max) Maximal Iup 0.005 mMms−1

KQ10
Temperature scaling factor for IKur and 3
Ito kinetics

γ Voltage dependence parameter for INa,Ca 0.35
Km,Na(i) [Na+]i half-saturation constant for INaK 10 mM
Km,K(o) [K+]o half-saturation constant for INaK 1.5 mM
Km,Na [Na+]o half-saturation constant for INaCa 87.5 mM
ksat Saturation factor for INaCa 0.1
krel Maximal release rate for Irel 30 ms−1

kup [Ca2+]i half-saturation constant for Iup 0.00092 mM
[Ca2+]up(max) Maximal Ca2+ concentration in uptake 15 mM

compartment
[Cmdn]max Total calmodulin concentration in myoplasm 0.05 mM
[Trpn]max Total troponin concentration in myoplasm 0.07 mM
[Csqn]max Total calsequestrin concentraion in SR release 10 mM

compartment
Km,Cmdn [Ca2+]i half-saturation constant for calmodulin 0.00238 mM
Km,Trpn [Ca2+]i half saturation constant for troponin 0.0005 mM
Km,Csqn [Ca2+]rel half-saturation constant for Iup 0.8 mM

Table A.1: Parameters for the CRN model. All of them are taken from [10], except for Acap, which
was computed using (A.1).
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Variable Initial value

V -81.2 mV
h 0.965
d 1.37× 10−4

xr 3.29× 10−5

[Na+]i 11.2 mM
[K+]i 139 mM
[Ca2+]rel 1.49 mM
oi 0.999
ui 0.999
v 1.00
m 2.91×10−3

j 0.978
f 0.999
xs 1.87×10−2

[Ca2+]i 1.02×10−4 mM
[Ca2+]up 1.49 mM
oa 3.04×10−2

ua 4.96×10−3

fCa 7.75×10−1

u 0
w 0.999

Table A.2: Initial values for the CRN model, taken from [10].

• Ionic current:

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca.

• Equilibrium potential:

EX =
RT

zF
log

[X]o
[X]i

,

where X is either Na+, K+, Ca2+ and z is the corresponding valence (z = 1 for Na+ and
K+, z = 2 for Ca2+).

• Transmembrane potential:

dV

dt
= −Iion + Iapp

Cm
,

where Iapp is the external applied current.
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• Concentrations:

d[Na+]i
dt

= Acap
−3INaK − 3INaCa − Ib,Na − INa

FVi
,

d[K+]i
dt

= Acap
2INaK − IK1 − Ito − IKur − IKr − IKs − Ib,K

FVi
,

B1 = Acap
2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi
+

Vup(Iup,leak − Iup) + IrelVrel

Vi
,

B2 = 1 +
[Trpn]maxKm,Trpn

([Ca2+]i +Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

([Ca2+]i +Km,Cmdn)2
,

d[Ca2+]i
dt

=
B1

B2
,

d[Ca2+]up
dt

= Iup − Iup,leak − Itr
Vrel

Vup
,

d[Ca2+]rel
dt

=
(Itr − Irel)

1 +
[Csqn]maxKm,Csqn

([Ca2+]rel +Km,Csqn)2

.

• Fast Na+ current:
INa = gNam

3hj(V − ENa),

where m, h and j are recovery variables following (A.2) with

τx = (αx + βx)−1

x∞ = αxτx

}

for x = m,h, j,

αm =

⎧

⎨

⎩

0.32
V + 47.13

1− exp(−0.1(V + 47.13))
if V ̸= −47.13

3.2 if V = −47.13
,

βm = 0.08 exp(−V/11),

αh =

⎧

⎨

⎩

0.135 exp

(

−V + 80

6.8

)

if V < −40

0 if V ≥ −40.

βh =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

3.56 exp(0.079V ) + 3.1× 105 exp(0.35V ) if V < −40
1

0.13

(

1 + exp

(

−V + 10.66

11.1

)) if V ≥ −40

αj =

⎧

⎨

⎩

(−127140 exp(0.2444V )− 3.474× 10−5 exp(−0.04391V ))(V + 37.78)

1 + exp(0.311(V + 79.23))
if V < −40

0 if V ≥ −40

βj =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0.1212
exp(−0.01052V )

1 + exp(−0.1378(V + 40.14))
if V < −40

0.3
exp(−2.535× 10−7V )

1 + exp(−0.1(V + 32))
if V ≥ −40

.

• Time-Independent K+ current:

IK1 =
gK1(V − EK)

1 + exp(0.07(V + 80))
.

• Transient Outward K+ current:

Ito = gtoo
3
aoi(V − EK),
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where oa and oi are recovery variables following (A.2) with

τx = (αx + βx)
−1/KQ10 for x = oa, oi,

αoa =
0.65

exp
(

− V + 10

8.5

)

+ exp
(

− V − 30

59.0

) , βoa =
0.65

2.5 + exp
(V + 82

17.0

) ,

αoi =
1

18.53 + exp
(V + 113.7

10.95

) , βoi =
1

35.56 + exp
(

− V + 1.26

7.44

) ,

oa,∞ =
1

1 + exp
(

− V + 20.47

17.54

) , oi,∞ =
1

exp
(V + 43.1

5.3

) .

• Ultrarapid Delayed Rectifier K+ current:

IKur = gKuru
3
aui(V − EK),

where ua and ui are recovery variables following (A.2) with

τx = (αx + βx)
−1/KQ10 for x = ua, ui,

αua
=

0.65

exp
(

− v + 10

8.5

)

+ exp
(

− V − 30

59.0

) , βua
=

0.65

2.5 + exp
(V + 82

17.0

) ,

αui
=

1

21 + exp
(

− V − 185

28

) , βui
= exp

(V − 158

16

)

,

ua,∞ =
1

1 + exp
(

− V + 30.3

9.6

) , ui,∞ =
1

1 + exp
(V − 99.45

27.48

) ,

and

gKur = 0.005 +
0.05

1 + exp
(

− V − 15

13

) .

• Rapid Delayed Outward Rectifier K+ current:

IKr =
gKrxr(V − EK)

1 + exp
(V + 15

22.4

) ,

where xr is a recovery variable following (A.2) with

τxr
= (αxr

+ βxr
)−1, xr,∞ =

1

1 + exp
(

− V + 14.1

6.5

) ,

αxr
= 0.0003

V + 14.1

1− exp
(

− V + 14.1

5

) , βxr
= 7.3898× 10−5 V − 3.3328

exp
(V − 3.3328

5.1237

)

− 1
.

• Slow Delayed Outward Rectifier K+ current:

IKs = gKsx
2
s (V − EK),

where xs is a recovery variable following (A.2) with

τxs
= 0.5(αxs

+ βxs
)−1, xs,∞ =

1
√

1 + exp
(

− V − 19.9

12.7

)
,

αxs
= 4× 10−5 V − 19.9

1− exp
(

− V − 19.9

17

) , βxs
= 3.5× 10−5 V − 19.9

exp
(V − 19.9

9

)

− 1
.
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• L-Type Ca2+ current:

ICa,L = gCa,LdffCa(V − 65),

where d, f and fCa are recovery variables following (A.2) with

τd =
1− exp

(

− V + 10

6.24

)

0.035(V + 10)

(

1 + exp
(

− V + 10

6.24

)
) , d∞ =

1

1 + exp
(

− V + 10

8

) ,

τf =
9

0.0197 exp (−0.03372(V + 10)2) + 0.02
, f∞ =

1

1 + exp

(
V + 28

6.9

) ,

τfCa
= 2, fCa,∞ =

1

1 +
[Ca2

+

]i
0.00035

.

• Na+-K+ Pump current:

INaK = INaK(max)fNaK
1

1 +

√
(
Km,Na(i)

[Na+]i

)3

[K+]o
[K+]o +Km,K(o)

,

where

fNaK =
1

1 + 0.1245 exp
(

− 0.1
FV

RT

)

+ σ0.0365 exp
(

− FV

RT

) , σ =

(

exp

(
[Na+]o
67.3

− 1

))

/7.

• Na+ - Ca2+ Exchanger current:

INa,Ca =
C1

C2
,

where

C1 = INaCa(max)

(

exp

(
γFV

RT

)

[Na+]3i [Ca
2+]o − exp

(
(γ − 1)FV

RT

)

[Na+]3o[Ca
2+]i

)

,

C2 = (K3
m,Na + [Na+]3o)(Km,Ca + [Ca2+]o)

(

1 + ksat exp

(
(γ − 1)FV

RT

))

.

• Background currents:

Ib,Ca = gb,Ca(V − ECa),

Ib,Na = gb,Na(V − ENa).

• Ca2+ Pump current:

Ip,Ca = Ip,Ca(max)
[Ca2+]i

0.0005 + [Ca2+]i
.

• Ca2+ Release current from JSR:

Irel = krelu
2vw([Ca2+]rel − [Ca2+]i),
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where u, v and w are recovery variables following (A.2) with

τu = 8.0, u∞ =
1

1 + exp

(

−Fn − 3.4175× 10−13

13.67× 10−16

) ,

τv = 1.91 +
2.09

1 + exp

(

−Fn − 3.4175× 10−13

13.67× 10−16

) , v∞ = 1− 1

1 + exp

(

−Fn − 6.835× 10−14

13.67× 10−16

) ,

τw = 6.0

1− exp

(

−V − 7.9

5

)

(

1 + 0.3 exp

(

−V − 7.9

5

))

(V − 7.9)

, w∞ = 1− 1

1 + exp

(

−V − 40

17

) ,

Fn = 10−12VrelIrel −
5× 10−13

F
(ICa,L/2− INaCa/5).

• Transfer current from NSR to JSR:

Itr =
[Ca2+]up − [Ca2+]rel

180
.

• Ca2+ Uptake current by the NSR:

Iup =
Iup(max)

1 +
Kup

[Ca2+]i

.

• Ca2+ Leak current by the NSR:

Iup,leak =
[Ca2+]up

[Ca2+]up(max)

Iup(max).
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