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Abstract
Procedural shape grammars are powerful tools for the automatic generation of highly
detailed 3D content from a set of descriptive rules. It is easy to encode variations
in stochastic and parametric grammars, and an uncountable number of models can
be generated quickly. While shape grammars offer these advantages over manual 3D
modeling, they also suffer from certain drawbacks. We present three novel methods
that address some of the limitations of shape grammars. First, it is often difficult to
grasp the diversity of models defined by a given grammar. We propose a pipeline to
automatically generate, cluster, and select a set of representative preview images for a
grammar. The system is based on a new view attribute descriptor that measures how
suitable an image is in representing a model and that enables the comparison of different
models derived from the same grammar. Second, the default distribution of models
in a stochastic grammar is often undesirable. We introduce a framework that allows
users to design a new probability distribution for a grammar without editing the rules.
Gaussian process regression interpolates user preferences from a set of scored models over
an entire shape space. A symbol split operation enables the adaptation of the grammar
to generate models according to the learned distribution. Third, it is hard to combine
elements of two grammars to emerge new designs. We present design transformations
and grammar co-derivation to create new designs from existing ones. Algorithms for
fine-grained rule merging can generate a large space of design variations and can be
used to create animated transformation sequences between different procedural designs.
Our contributions to visualize, adapt, and transform grammars makes the procedural
modeling methodology more accessible to non-programmers.

Keywords: rule-based procedural modeling, shape grammar, best view, thumbnail
gallery, view attribute, pdf design, design transformation
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Zusammenfassung
Prozedurale Figur-Grammatiken (Shape Grammars) sind hilfreich, um automatisch
hochdetaillierte 3D Inhalte zu generieren. Mit stochastischen und parametrischen Gram-
matiken kann man einfach Variationen beschreiben und schnell viele Modelle erzeugen.
Zwar haben Figur-Grammatiken diese Vorteile gegenüber manueller 3D-Modellierung,
aber sie haben auch etliche Nachteile. Wir stellen drei neue Techniken vor, die einige
dieser Limitationen beheben. Erstens ist es oft schwierig, die Vielfalt der Modelle zu
verstehen, die in einer Grammatik definiert sind. Wir präsentieren eine Pipeline, die für
eine Grammatik automatisch eine Reihe repräsentativer Vorschaubilder erzeugt, gruppiert
und auswählt. Das System basiert auf einem neuen Deskriptor für Ansichtsattribute, der
misst, wie gut eine gewisse Ansicht ein Modell repräsentiert und der verschiedene Modelle
der gleichen Grammatik vergleichen kann. Zweitens entspricht die Wahrscheinlichkeits-
verteilung der Modelle einer stochastischen Grammatik häufig nicht den Wünschen des
Benutzers. Ein neues System von uns erlaubt es, neue Verteilungen für Grammatiken zu
gestalten ohne deren Regeln bearbeiten zu müssen. Der Benutzer bewertet eine Reihe
von Modellen und mittels Gauss-Prozess-Regression wird diese Benutzerpräferenz über
den ganzen Figurenraum interpoliert. Mit einer Symbol-Aufspaltungsoperation wird die
Grammatik so angepasst, dass neue Modelle gemäss der gelernten Verteilung generiert
werden. Drittens ist es nicht einfach, Elemente von zwei Grammatiken zu kombinieren,
um neue Designs zu kreieren. Mit Designtransformationen und Grammatik-Koderivation
können bestehende Designs zu neuen Designs vermischt werden. Wir präsentieren Algo-
rithmen, um Produktionsregeln stufenlos zu mischen. Damit kann man grosse Räume
von Designvariationen aufspannen und animierte Transformationssequenzen zwischen
prozeduralen Modellen erzeugen. Mit unseren Kontributionen zur Visualisierung, Adapti-
on und Transformation von Grammatiken können wir Nicht-Programmierern prozedurale
Modellierungstechniken näherbringen.

Stichwörter: regelbasierte prozedurale Modellierung, Figur-Grammatik, beste An-
sicht, Thumbnailgallerie, Ansichtsattribut, Verteilungs-Gestaltung, Designtransformation
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1 Introduction

The need for 3D content is ubiquitous nowadays. Highly detailed models are required in
various domains such as medical applications, urban planning, and the entertainment
industry. The demand for more models with more details is ever increasing. This, however,
leads to a significant overhead because 3D modeling is a non-trivial and time-consuming
task when done manually. Procedural modeling helps generate models faster, especially
when a large number of models of a certain type is needed. In computer graphics,
procedural modeling is an umbrella term for methods that encode the modeling process
in algorithmic procedures. This has been used to automate the generation of images,
3D models, textures, and even music. The most common procedurally generated 3D
contents are fractals, plants, city layouts, buildings, and terrains. Procedural modeling
has also been widely adopted by the industry in such products as speedtree1, CityEngine2,
Terragen3, or Houdini4 just to name a few.

When you need only one model, it might be faster to create it in a classical 3D
modeling tool because there is an overhead for authoring a procedural description of a
model. However, as the number of required models increases, one quickly reaches a point
where it becomes more efficient to use procedural modeling. For example, procedural
modeling pays off if one wants to generate a large enough variety of building models to
fill a virtual city. A benefit of the procedural description is that it can be parameterized
and/or randomized to generate different variations of a model. The procedures can then
generate any number of these variations at no extra cost. If one were to model these
buildings manually, the workload would increase with each additional building.

1speedtree: http://www.speedtree.com, accessed on 2017/02/28
2Esri CityEngine: http://www.esri.com/software/cityengine, accessed on 2017/02/28
3Terragen: http://planetside.co.uk, accessed on 2017/02/28
4SideFX Houdini: http://www.sidefx.com/products/houdini-fx, accessed on 2017/02/28
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Chapter 1. Introduction

Yet another advantage of the algorithmic description is that it can be encoded in a
very compact way. Gigabytes of geometric data for a 3D city can be compressed into a
few kilobytes for storing the procedures. Good examples are video games like No Man’s
Sky5 in which the player can explore an (almost) infinite universe of different unique
planets or kkrieger6 that stores a complete first-person shooter in just 96 kB.

Most procedural modeling techniques use sets of rules that describe how a coarse model
can be replaced gradually with more detailed components. Recursive application of rules
leads to more and more details. Rules are often defined with formal grammars, hence
terms like grammar-based or shape grammar are commonly used to name such procedural
modeling techniques. Chap. 2 presents a summary of these rule-based techniques that
this dissertation focuses on.

While rule-based and procedural techniques in general have many advantages, there are
also certain drawbacks. Some programming knowledge is necessary to write procedures or
rules to describe content. Traditional artists are often unfamiliar with programming while
many programmers lack the artistic sense. Further, it is hard to gain an understanding
of a procedural model when only given the rules and not their output. Especially for
procedural models with randomized components, i.e., with so-called stochastic rules that
offer several different solutions for the same task, it can be hard to visualize and control
the space of possible designs they span. These problems are hard in general and not only
for people without programming knowledge. Even experienced procedural modelers will
have difficulty with certain design goals because it is often not obvious how to encode a
procedural model.

In this dissertation we propose three novel algorithmic tools that overcome some of
the limitations of procedural modeling and that make shape grammars more accessible
to non-programmers. The following paragraphs give an overview of these three methods.

Visualizing Procedural Models It is hard to image what kind of models a shape
grammar can produce when only reading the rules. Once the grammar has several
parameters or stochastic rules, it becomes even harder to understand what the set of
possible models looks like. It could be a very narrow set of similar models, e.g., buildings
of a specific architectural style, or it could a wide set that spans a range of entirely
different types of objects.

5No Man’s Sky: www.no-mans-sky.com, accessed on 2017/02/28
6kkrieger: http://www.farb-rausch.de/prod.py?which=114, accessed on 2017/02/28
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a)

b)

c)

Figure 1.1: Teaser An overview of our three main contributions: a) A pipeline that
to automatically generates, groups, and selects a set of representative thumbnail images
for a grammar. b) A generic building grammar can create houses with mismatching
architectural elements. Our framework adapts the distribution of the models generated
by the grammar to avoid such undesired models. c) Design transformations allow fine-
grained merging of procedural models to emerge new designs. This can be used to smoothly
transform one design into another.

In Chap. 3 we present a pipeline that generates preview thumbnail galleries for given
grammars. It samples the space of possible models of the grammar, picks representative
models, and shows them from their best viewpoint. An example is shown in Fig. 1.1 a).
The pipeline is based on a descriptor developed to compare models and to also find their
best viewpoint. This is useful for grammar databases. Browsing and exploring such a
database is facilitated when each entry is annotated with a thumbnail gallery that shows
representative previews.

Adapting Stochastic Grammars With a grammar that has stochastic rules it is
possible that models get generated that are undesirable for a certain design goal. For
example, with a generic building grammar one might get a glass house with a mismatching
old red tile roof or a building that mixes an old style ground floor with modern style
upper floors.

17



Chapter 1. Introduction

Also with stochastic grammars, some designs might be more likely than others. The
probability distribution of a given grammar might be undesired. In Chap. 4 we propose
a method that allows changing the probability distribution of the models generated by
a grammar. By scoring sample models of the grammar, we can tell the system how
desired certain designs are. Using machine learning, our system learns a new probability
distribution and adapts the given grammar to the desired preferences.

For example, we might want to subdivide a city into distinct districts such financial,
residential, or industrial. Given a generic grammar that randomly combines elements
from several architectural styles, our system can learn distinct grammars, each one
adapted to its district (see Fig. 1.1 b)).

Transforming Rule-based Models Given two grammars, it is difficult to combine
elements of both to emerge new designs. A deep understanding of the grammar code is
necessary to merge different components into a new grammar, and this requires time.
Chapter Chap. 5 introduces design transformations that allow non-programmers to
generate a large variety of models from a small set of example grammars. Our system
achieves that by merging the outputs of the grammar rules at different levels of the
derivation process.

Additionally, with fine-grained control over the merging process, we have the possibility
to generate smooth animation sequences between different procedural designs such as in
Fig. 1.1 c).

1.1 Contributions

This dissertation is based on and uses parts of the following three publications written in
the course of my PhD:

1. Lienhard S., Specht M., Neubert B., Pauly M., Müller P.:
Thumbnail Galleries for Procedural Models.
Computer Graphics Forum (Eurographics) (2014). [LSN∗14]

2. Dang M., Lienhard S., Ceylan D., Neubert B., Wonka P., Pauly M.:
Interactive Design of Probability Density Functions for Shape Grammars.
ACM Trans. Graph. (Siggraph Asia) (2015). [DLC∗15]

18



1.2. Overview

3. Lienhard S., Lau C., Müller P., Wonka P., Pauly M.:
Design Transformations for Rule-based Procedural Modeling.
Computer Graphics Forum (Eurographics) (2017). [LLM∗17]

In summary, the contributions of this dissertation are:

• A descriptor for procedural models that allows finding the best viewpoint and
comparing models, which is used in a pipeline that clusters a grammar’s shape
space and that picks a set of representative preview thumbnails.

• A system that uses Gaussian process regression to learn a probability distribution
for a grammar from preference scores and that adapts the grammar to generate
models according to that probability distribution. My contribution focuses on
the design of the features used to compare two procedural models and on the
adaptation of a grammar to a target probability distribution.

• Algorithms for fine-grained rule merging that can generate a large space of design
variations and that can be used to create animated transformation sequences
between different procedural designs.

1.2 Overview

The remainder of this dissertation first provides a compact summary of rule-based
procedural modeling techniques (Chap. 2) before three main chapters explain how to
visualize grammars with thumbnail galleries (Chap. 3), how to adapt the probability
distribution of grammars to user preferences (Chap. 4), and how to enable gradual
transformations between two procedural designs (Chap. 5). More detailed descriptions
for some of the transformation results are provided in App. A. The dissertation is wrapped
up in a concise summary and an outlook into the future (Chap. 6).
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2 A Short History of Grammar-
based Procedural Modeling

Grammar-based or rule-based procedural modeling techniques have their roots in language
theory. Noam Chomsky pioneered that field and introduced formal grammars [Cho56].
Such a formal grammar G is a string rewriting system defined by a quadruple 〈NT , T, ω, P 〉
that consists of the set of non-terminal symbols NT , the set of terminal symbols T ,
the so-called axiom or start symbol ω ∈ NT , and the set of production rules P . Each
production rule is of the form:

(NT ∪ T )∗ NT (NT ∪ T )∗ → (NT ∪ T )∗.

The left-hand side or predecessor maps a string of symbols to a successor string on
the right-hand side. Starting from the axiom, strings can be derived by subsequent
application of production rules. A string that contains only terminal symbols is called a
sentence and cannot be derived any further. The language L(G) is defined as all sentences
that are reachable from the axiom.

Chomsky also proposed the Chomsky hierarchy [Cho56] to categorize different subsets
of formal grammars (Tab. 2.1). The types differ by constraints that they enforce on the

Type Name Production Rule Form

type 3 (left) regular A → a B and A → a and A → ε

type 2 context-free A → γ

type 1 context-sensitive α A β → α γ β

type 0 recursively enumerable α → β

Table 2.1: Chomsky Hierarchy Classification of different types of formal grammars.
A, B ∈ NT; a ∈ T ; ε is the empty string; and α, β, γ ∈ (NT ∪ T )∗.

21



Chapter 2. A Short History of Grammar-based Procedural Modeling

production rules. The lower the type, the more powerful and expressive the grammars are.
Each type x is a superset of all types higher than x. Type 0 includes all formal grammars.
Most commonly, procedural modeling in computer graphics uses context-free (type 2)
grammars. Less often, context-sensitive (type 1) grammars are used. The production
rules of these types always replace a single non-terminal symbol with a new string. The
derivation of a grammar creates a parse tree or derivation tree. The axiom is at the root
and the leaves represent the current string. Whenever a production rule is applied, the
successor symbols are added to the derivation tree as the predecessor’s children.

Many state-of-the-art procedural modeling systems have extended beyond using
formal grammars, but they still rely on production rules. They are strictly speaking not
grammar-based anymore, but the computer graphics community still refers to them as
such. Their advantages outweigh the fact that they violate the formal definition. We
summarize these techniques in the following.

2.1 Lindenmayer Systems

In 1968 the biologist Aristid Lindenmayer introduced L-systems [Lin68], a string rewriting
technique motivated by plant growth. Unlike formal grammars that apply production
rules sequentially, L-systems use a parallel replacement strategy that simultaneously
applies production rules to all non-terminals in a string. This idea reflects biological
growth where cells also may divide at the same time. Another difference is that most
L-systems can derive a string infinitely many times without ever reaching a sentence.
However, each intermediate string in the sequence is a valid stage of the growth.

It was only in 1986 that L-systems became popular in computer graphics when
Przemysław Prusinkiewicz used turtle graphics to produce visual interpretations of
the symbol strings [Pru86]. The turtle linearly steps through a string and executes
instructions for each symbol. For example, F advances the turtle forward while drawing
a line, + and − rotate the turtle to its left or right, [ pushes the turtle state onto a
stack while ] pops it from it, etc. With this methodology one can also draw fractals,
and L-systems also exist in context-sensitive form. The book The Algorithmic Beauty of
Plants [PL90] covers all L-system techniques in detail.

To create variations, stochastic or probabilistic L-systems define several production
rules for the same non-terminal symbol. Such stochastic production rules are annotated
with the probability of being selected. All the rule probabilities for a given non-terminal

22



2.2. Classical Shape Grammars

symbol have to sum up to 1 as shown in the example below.

F
0.4−−→ F [ − F ] F [ + F ] F

F
0.3−−→ F [ − F ]

F
0.3−−→ F [ + F ]

Another enhancement are parametric production rules that allow passing a list of
parameters to symbols. They are of the form:

predecessor(parameter1 , . . . , parametern) : condition → sucessor ,

where condition is an optional boolean expression. The production rule can only be
applied if the condition is met. The following is an example of a parametric production
rule.

F (t) : t > 0 → F (t − 1) [ − F (t − 1) ]

It is also common to define global grammar parameters (sometimes called attributes). In
Chap. 3 we use production rules that are parametric and stochastic. We rely exclusively
on stochastic grammars in Chap. 4, while the focus in Chap. 5 is on deterministic
grammars that can only generate unique derivations.

L-systems have been successfully extended to interact with their virtual environments,
e.g., open L-systems [PJM94, MP96] can query the availability of light and water during
leaf and root development, and they can avoid self collisions. The same mechanism
was used to generate road networks that are sensitive to geographic parameters and
to enforce geometric constraints [PM01]. Other extensions ease the progression from
silhouettes to details and use positional information such as turtle posture [PMKL01].
On the software side, cpfg [PHM00, PKMH00] used to be the de facto standard, but
more recently Python-based L-Py [BPC∗12] has appeared.

2.2 Classical Shape Grammars

Another milestone in procedural modeling is shape grammars, invented by George
Stiny [SG71, Sti75, Sti80]. Most notable is the Palladian grammar [SM78] that designs
ground plans for villas. Instead of operating on strings of symbols, shape grammars act
on arrangements of graphical primitives like lines, circles, or rectangles. Also production
rules have only a geometric representation that maps one set of shapes into another.
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Chapter 2. A Short History of Grammar-based Procedural Modeling

Shape grammars of this form are typically derived with a user in the loop since they are
not well suited for algorithmic evaluation; there are often an infinite number of ways in
which a given production rule can be applied. This is because shapes are not atomic, they
can be decomposed and reassembled into new shapes. For example, if the predecessor is a
simple line, it can be scaled arbitrarily and positioned anywhere on any line in the current
shape to match a subline of it. This highly ambiguous subshape matching problem is in
fact NP-hard [YKG∗09]. Existing computational methods resort to very simple shapes,
do not consider subshapes, or use graphs to represent shapes and subgraph matching to
identify the production rules, e.g., Grape [GE11].

Terry Knight presented an interesting extension that transforms shape grammars by
defining higher level transformation rules [Kni94]. These do not operate directly on the
current shape, but they are applied to the grammar’s production rules. Our work in
Chap. 5 is inspired by Knight’s book.

2.3 Modern Set Grammars

A simplification of shape grammars is set grammars [Sti82] where production rules act on
a set of labeled shapes rather than on graphical primitives. A labeled shape is an atomic
element of a set grammar which cannot be disassembled for rule matching. This allows for
writing production rules in text form with the labels as symbols. Grammars formulated
that way can handle complex 3D geometry. Procedural modeling literature unfortunately
never made a distinction between the terms set grammar and shape grammar. The latter
is used almost exclusively. We refer to the language of a modern shape set grammar,
i.e., all the models it can generate, as shape space. The derivation tree of such a grammar
is called shape tree.

CGA Shape Since set grammars avoid the computational limitations of shape grammars,
they gained popularity in computer graphics, mostly for architectural modeling. This
is also due to the invention of split grammars [WWSR03]. A split rule subdivides
a shape along an axis into a set of smaller shapes that are tightly aligned. This is
especially useful for dividing façades into smaller elements such as floors and window tiles.
The most well known split grammar derivative is CGA Shape (standing for Computer
Generated Architecture) [MWH∗06] by Müller and colleagues that eventually evolved
into the commercial software CityEngine. In CGA a shape has a list of geometric and
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non-geometric attributes. The most important ones are encoded by the scope, i.e., a
local coordinate frame and the shape’s size. Successors of CGA production rules consist
of terminal or non-terminal symbols, or of operations that modify shapes and their
attributes. Besides common operations for affine transformations, CGA further supports
roof generation, geometry splitting, occlusion testing, and instancing of asset meshes.
Unlike L-systems, CGA derives sequentially in breadth-first order, and it executes the
operations during the application of a production rule and not only in a post-process.
This is necessary for split rules and occlusion queries because they can only be evaluated
if the shape’s current state is known. The common modeling strategy first creates a
crude mass model that is refined by subsequent rule applications that add more and
more details. CGA/CityEngine has been used for digital cultural heritage [HMVG09],
and all our results in Chaps. 3 and 4 were created with it.

Derivatives and Extensions CGA-like grammars have been used to construct masonry
buildings and to optimize their stability by means of static analysis [WOD09]. Another
grammar language is the Generalized Grammar (G2) proposed by Krecklau et al. [KPK10].
With G2 it is possible to pass non-terminal symbols as parameters to productions rules.
This enables more generic rules, e.g., the non-terminal symbol for a window can be passed
to and used by a generic façade production rule. G2 can also transform shapes with
free-form deformations (FFD) [Sed86], an idea that was later on improved by Zmugg et
al. [ZTK∗13, ZTK∗14]. An extension to G2 facilitates the construction of interconnected
structures by defining attachment points and linking them together [KK11]. Thaller et
al. suggest to generalize scopes to arbitrary convex polyhedra [TKZ∗13]. More recent
advances lead to CGA++ [SM15], an enriched version of the CGA syntax that allows
querying the shape tree during runtime, adds elements of functional programming,
and provides synchronization primitives for more control over the derivation. Group
grammars [SP16] enable rules that operate on several shapes at once. Arrangements of
shapes can be relabeled into distinct patterns, and this is used to create tangle drawings.

Worth mentioning is also the Generative Modeling Language (GML) [Hav05]. Even
though it is not a proper grammar language, it follows the same methodology of refining
a model step-by-step by replacing parts of the model with more detailed subparts. GML
uses Euler operations [Bau72] to modify meshes, and is based on PostScript syntax which
makes it somewhat cumbersome to use. In general, procedural modeling systems have
to make a trade-off between their expressiveness and the complexity of their syntax.
Similar in that respect is also a framework by Leblanc et al. [LHP11] that never received
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much attention even though it supports some powerful shape editing operations such as
constructive solid geometry (CSG).

Interactive Rule-based Modeling Interactive techniques alleviate the authoring and
editing process of grammars. Instead of working on the text form, a user can directly
interact with the visualization of a grammar. Notable work in that area was done by
Lipp et al. [LWW08] with a system that makes it possible to select and modify specific
components of a rule-based model or to build one entirely from scratch by just clicking
and dragging with the mouse to select rules, to modify split sizes, etc. Follow-up projects
by Patow and colleagues also expose the dependencies of the production rules as a directed
acyclic graph (DAG) and let the user interact with it [RP12, Pat12, BBP13]. It has been
shown that several production rules can be grouped into high-level primitives together
with handles that let non-programmers adjust and combine them [KK12]. Kelly et al.
investigated the best placement of such interaction handles and dimensioning lines for
parametric grammars [KWM15]. A visual programming language (VPL) that generates
CGA grammars by building a graph of nodes that encapsulate basic CGA operations exists
too [SMBC13]. Guided procedural modeling [BŠMM11] embeds stochastic L-systems in
guides that communicate with each other, and the user can deform them.

GPU Grammars It is possible to parallelize the derivation process of grammars, allow-
ing the generation of entire cities or forests in a fraction of a second on massively parallel
graphics processing units (GPU). Lipp et al. provide a lock free parallel implementation
of L-systems [LWW10]. There are several projects that encode façade split grammars
in the pixel shader and evaluate it separately for every fragment on the GPU. Haegler
et al. [HWMA∗10] proofed the concept and showed that inserts and extrusions can be
ray-marched in screen space. This was improved by Marvie et al. [MGHS11] with exact
intersection calculations, and they used coverage polygons to render extrusions that reach
over the façade polygon (in screen space). Alternatively, geometry instantiation can be
used for extrusions [KBK13]. The first attempt at deriving entire buildings and cities
on the fly on the graphics card was presented by Marvie et al. [MBG∗12]. Thanks to
the dynamic GPU task scheduling algorithm Softshell by Steinberger et al. [SKK∗12],
PGA (parallel generation of architecture) [SKK∗14a, SKK∗14b] can derive and render
full cities at much higher performance.
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Graph Grammars Graph grammars (originally called web grammars) [PR69] introduce
a topological component. Instead of replacing non-terminal symbols, graph grammars
replace nodes or subgraphs of a graph. Similar in concept, but independently developed,
are Plex languages [Fed71]. They also connect and replace subgraphs at predefined
attachments points. Use cases are chemical molecules, logic diagrams, electrical circuits,
flowcharts, etc.

2.4 Grammar-based Inverse Procedural Modeling

Inverse procedural modeling is the process of finding a grammar that represents a given
3D model or image. It is a very difficult problem: there are often infinitely many ways in
which a certain model can be encoded by a grammar, and it is unclear which one to pick.
Applications of inverse procedural modeling are compression, i.e., finding a compact
grammar instead of explicitly storing a model, reconstruction from real world data, or
generation of variations by changing the parameters of the resulting grammar.

Known inverse techniques can broadly be grouped into three categories, whereof only
the methods in the first one really try to solve the full inverse problem and create a new
grammar from scratch. The other two categories either fit a generic template grammar
to the input data or they infer a stochastic grammar from several input exemplars using
Bayesian induction, but that requires structured and annotated input data. Generally, the
methods require strong prior knowledge of the input data to work well. For example, many
projects infer building façade grammars from images because their underlying regular
split structures facilitate the task. In the following, we describe the three categories.

From Scratch There are only few methods that generate new grammars from scratch.
The existing ones detect symmetries and similarities in the input model. Subparts that
are related by similarity transformations can be grouped together and described by
recursive production rules. This has been done for 2D vector drawings consisting of basic
primitive shapes such as lines, curves, triangles, etc. [ŠBM∗10]. For translations and
mirror symmetries only, Bokeloh et al. [BWS10] offer a solution that does the same in
3D using a voxel grid to find similarities.

As mentioned before, the same task for regular façades is often easier since they can be
described with a few split rules. Early approaches rely on the user to manually subdivide
and label images into semantic elements such as floors and windows that are then encoded
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with split rules [BA05, ARB07]. Newer methods do this automatically [MZWG07,
WYD∗14].

Template Fitting In the second category are methods that try to fit a generic, para-
metric grammar to some input data. This has been done in various forms for nicely
structured façades with a generic split grammar [TSK∗10, TKS∗11, STKP11, RKT∗12].
In 3D, the same approach works for Doric temples [MMWG11]. While such methods
work for very specific types of input data, they are very difficult to generalize, e.g., for
all buildings. Recently, machine learning techniques have been applied to match sketches
to parametric shape grammar snippets that define, e.g., windows, roofs, or building mass
models that can be combined to full grammars [NGDA∗16].

Related are also methods that work with stochastic grammars and that try to find a
specific derivation that optimizes a certain criteria. For example, Talton et al. [TLL∗11]
use Markov chain Monte Carlo (MCMC) to efficiently sample the shape space of an
L-system to find the one derivation that is contained within and fills a given 3D volume as
much as possible. Stochastic grammars are difficult to control, and volumetric high-level
descriptions provide an intuitive way to guide the derivation. Ritchie et al. show an
improved sampling technique that speeds up the convergence of the method [RMGH15].
Analogous, although not grammar-based, is the inverse procedural modeling approach by
Št’ava et al. [ŠPK∗14] that uses a tree distance metric together with MCMC to optimize
parameters of a sophisticated botanical tree model in order to generate more similar
trees.

Lau et al. [LOMI11] reduce 3D models of furniture to graphs and parse them with
simple Plex-like grammars. This way, they can decompose tables and cabinets into their
components and tell how to put them together.

Grammar Induction The last category borrows ideas from natural language processing.
Given a corpora of example sentences, Bayesian model merging can learn a simple
stochastic grammar that can generate the exemplars and also new sentences with similar
structure [SO94, Sto94]. In computer graphics, Talton et al. [TYK∗12] were the first to
apply this method to 3D models. First, trivial deterministic grammars are extracted
from a set of annotated scene graphs. Then, compatible production rules can be merged
together to make the grammar more general, or stochastic production rules can also be
split up again, resulting in a more specific grammar. These two operations in conjunction
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with MCMC allow sampling the space of possible grammars. A minimum description
length prior imposed on the grammar structure helps to find an optimal grammar that
trades off grammar compactness and the probability of generating the input examples.
In Chap. 4 we use a rule splitting operation similar to Talton’s to change probability
distributions of stochastic grammars. Bayesian grammar induction has of course also
been applied to façades [WRPG13, MG13].
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3 Thumbnail Galleries for
Procedural Models

Procedural modeling allows for the generation of innumerable variations of models from
parameterized, conditional or stochastic grammars. Due to the abstractness, complexity
and stochastic nature of grammars, it is often very difficult to have an understanding
of the diversity of the models that a given grammar defines. We address this problem
by presenting a novel system to automatically generate, cluster, rank, and select a
series of representative thumbnail images out of a grammar. We introduce a set of view
attributes that can be used to measure the suitability of an image to represent a model,
and allow for comparison of different models derived from the same grammar. To find
the best thumbnails, we exploit these view attributes on images of models obtained by
stochastically sampling the parameter space of the grammar. The resulting thumbnail
gallery gives a representative visual impression of the procedural modeling potential of
the grammar. Performance is discussed by means of a number of distinct examples and
compared to state-of-the-art approaches.

3.1 Introduction

Rendering and display capabilities are leading to an increasing demand for high quality 3D
models. Manually creating a large variety of detailed models is very tedious. Procedural
modeling methods help to reduce the manual effort required to define a model, while at
the same time providing an efficient way to describe and store a model. Moreover, once
a procedural description (i.e., a rule set or a grammar) of a model is obtained, one can
easily generate variations of the model by just manipulating a few rule parameters. The
diversity of models that can be represented procedurally is large and ranges from plants
and furniture, to buildings and up to whole city layouts.
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Figure 3.1: Diversity of Grammars Each row shows five potential outcomes of one
single grammar. A grammar can be stochastic (often with unpredictable design emergence
as shown in the top row) or parametric (often with numerous, hard-to-use parameter
sets) and produces geometry of arbitrary detail. A rule author is not restricted to a
specific content scope, e.g., a rule set can encode variations within a specific building style
(middle row) or variations of different building styles (bottom row). As a consequence,
the modeling potential of a grammar is difficult to predict, grasp, and represent.

However, one inherent problem of procedurally defined models is that without any
additional information, the induced changes of a single parameter are hard to predict
and might even have a global scope. In particular, small variations of one parameter
might completely change the appearance of a model, while changes of another parameter
might only affect details. Furthermore, because parameters are often not independent
and rules can be of stochastic nature and contain conditional decisions, it is hard to
oversee the vast variety of different models that can be produced from one grammar.
Fig. 3.1 visualizes this by means of three different grammars. For each grammar, five
models were generated by varying the grammar’s parameters. Note how the differences
in the Roman house in the second row are relatively subtle while the buildings in the
bottom row are completely different, both in types and numbers.

In order to overcome this problem, we propose a system that automatically generates
and arranges a series of thumbnail images into a gallery as illustrated in Fig. 3.2. Such a
thumbnail gallery captures the variety of potential designs to show the expressiveness of
a given grammar.
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Figure 3.2: Thumbnail Gallery Generation Pipeline In procedural modeling, a
grammar or rule set can produce a wide variety of 3D models (top). This chapter presents
a thumbnail gallery generation system which automatically samples a grammar, clusters
the resulting models into distinct groups (middle), and selects a representative image for
each group to visualize the diversity of the grammar (bottom).
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To define this set of representative images, we first generate a number of model
exemplars by stochastically sampling the grammar’s parameter space. We introduce a
set of view attributes that can be used both for finding an optimal view (intra-model
variation) and discriminate between different models (inter-model distance). These view
attributes can be computed efficiently in image space using programmable graphics
hardware. Amongst different views of the same model we chose the most representative
view that maximizes a scoring function based on these view attributes.

An adapted weighting scheme of our attributes allows to cluster the representative
images of different models. The clusters are ranked and their centers are used to finally
depict the model potential of the given grammar in a gallery.

The major contributions of this chapter are:

• A set of normalized view attributes that allow for both best view finding and
inter-model comparison.

• A system for automatically generating representative images from a procedural
grammar into a thumbnail gallery.

Compared to previous work, our view attributes permit finding better best-views. The
gallery generation system exploits the above-mentioned view attributes and opens up
the door for a number of more user-friendly procedural modeling applications.

3.2 Related Work

Rule-based procedural modeling was already discussed in detail in Chap. 2. For all
examples in this chapter we used CityEngine, but any procedural modeling system
could have been applied. We discuss the remaining related work corresponding to the
intermediate steps of our system: best view selection, image clustering, and model
retrieval.

Best View Selection Some viewpoints reveal and preserve more details of a given
model than others. A large body of related work deals with finding the best viewpoint
under certain assumptions. Vázquez et al. [VFSH01] define the viewpoint entropy of a
given view direction based on the relative area of the model’s projected polygonal faces,
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and they successfully apply this quality measure for molecule visualization [VFSL02].
Mesh saliency, introduced by Lee et al. [LVJ05] has the goal to include perception-based
metrics in the evaluation of the goodness of a view. A Gaussian-weighted average of mean
curvature across different scales is used as a surface feature descriptor and as a measure
of local importance, and assigned to each vertex of the mesh. Gooch et al. [GRMS01]
introduce a number of heuristics that aim at capturing aesthetic considerations for
scene composition. Podolak et al. [PSG∗06] select views that minimize symmetry to
avoid visual redundancy in the depicted objects. Secord et al. [SLF∗11] and Dutagaci et
al. [DCG10] evaluate a combination of different view attributes in a user study. While
these methods define the quality of a viewpoint with respect to a single model, Laga
[Lag10] focuses on finding views that maximally discriminate between different models
under the assumption that models belonging to the same class of shapes share the same
salient features. Unlike these methods, we exploit view-dependent information to compare
different models, and we use the semantic information contained in procedural models to
develop new image-based features.

Image Retrieval Clustering images for thumbnail generation requires a metric that
quantifies the similarities of different depictions of the grammar. Defining such a metric
is a challenging problem, and methods in this area can be grouped based on the features
they use to do so. Low level features, such as color [DMK∗01, MRF06] or texture and
patterns [LP96, HD03] are readily available, while high level features need to be carefully
extracted from images (see the survey by Liu et al. [LZLM07] for a detailed overview). In
contrast to these methods we are able to employ additional semantic information about
our 3D objects given the procedural definition.

3D Model Retrieval Our approach shares the objective to identify similar objects
within a group of models with 3D retrieval techniques (see the survey by Bustos et
al. [BKS∗05] for a detailed overview). A set of features is computed across a database
of models that is then used to implement a distance metric and allows for efficient
nearest neighbor queries. The features used for this purpose are mostly model driven,
and an important goal is to be view independent. In contrast, we actively strive for
discriminating features to identify most representative views.
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3.3 View Attributes

A view attribute is a scalar value that quantifies a certain property of a 3D model seen
from a given viewpoint and view direction. Examples are the visible surface, silhouette
length, or contrast in the observed image (exact definitions follow). In general we use
such view attributes to achieve two different goals:

1. We compare different views of a single model by ranking their view attributes to
find the best or most appealing view. To this end, a linear combination of view
attributes is used to assign a goodness score to each viewpoint (see Sec. 3.4.1 for
details) that we optimize for.

2. As a new contribution, we use the same view attributes to compare and distinguish
different models seen from a fixed viewpoint. This inter-model comparison is used
to cluster different variations of our procedural models into distinct groups.

Note that our approach is inherently different from classical 3D shape descriptors used
for object retrieval. We show that 2D view attributes that work well for best view finding
can also be used to compare different derivations of a procedural design seen from the
same viewpoint. This inter-model comparison approach is also faster than comparing
based on 3D descriptors.

The problem with most existing view attributes is that they are not suited for inter-
model comparison. For example, surface visibility, i.e., the ratio of the model’s visible to
its total surface [PB96], is a relative value and has no information about the real size of
objects. Also the linearity of many existing attributes is also not suited for clustering, it
often helps to look at attributes on a logarithmic scale as we will show.

Our scoring function is based on a combination of adapted existing and several new
view attributes that are specifically designed to work well for inter-model comparison.
In this section we present these view attributes grouped by the different aspects they
capture: geometry-based, aesthetic, and semantic view attributes.

To calculate the view attributes for a given viewpoint, the model is rendered only once
on the GPU and such information as normals, luminance, and color-coded information
about terminals (used for view attributes a2, a7, and a8 defined in the following) is stored.
We use a technique similar to G-buffers [ST90] inspired by Castello et al. [CSCF06]. All
proposed view attributes are computed using solely the stored 2D data and no further
analysis of the polygonal geometry is necessary, which allows for very fast evaluation
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for a number of different viewpoints. We only look at the geometry in a preprocessing
step that stores face and terminal area sizes in lookup tables and the color mapping
(color value to face or terminal index) for our color-coded buffers. This information is
reused every time we need to compute the view attributes from a new perspective. In our
application we want to see the full model as large as possible. To this end, the camera is
always placed at the distance where the model’s minimal bounding sphere fits tightly
into the frustum. We normalize all view attributes to lie in [0, 1].

3.3.1 Geometric View Attributes

a1 Pixel Count This view attribute is the ratio of projected area n (in pixels) of the
model on the screen to the overall image size [PB96]:

a1 =
4
π

n

width2 .

The idea is that the larger the projected area, the more you see of the object. Since our
model’s bounding sphere is fit into the view frustum, the projected area can never be
larger than a circle with diameter equal to the image side length.

a2 Surface The ratio of visible to total surface area seen from a specific viewpoint is
called surface visibility [PB96]. Maximizing this view attribute minimizes the amount of
occluded surface area. For our application, we define the surface view attribute as the
logarithm of base M = 106 of the visible surface area A in m2:

a2 = logM (A + 1) .

Due to the logarithm there is a higher resolution for lower values of model sizes and
a decreasingly lower resolution as the models get bigger. The choice of M leads to
attribute values in [0, 1] (unless we encounter models with visible surface larger than
106 m2, e.g., a fictional super skyscraper). Tab. 3.1 shows how a2 correlates to object
size. We increase A by one to be able to assess also small objects.
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Example Max Vis. Surf. a2

Furniture ≈ 1 m2 0.05
Vehicle ≈ 10 m2 0.17
Residential building ≈ 200 m2 0.38
Apartment building ≈ 1000 m2 0.5
Office building ≈ 10000 m2 0.67
High-rise ≈ 60000 m2 0.8
City block ≈ 300000 m2 0.91

Table 3.1: Surface View Attribute The table lists a2 for objects of different size seen
from one given point.

a3 Silhouette Length The longer the object’s silhouette is in the rendered image, the
more interesting details such as protrusions and concavities should be visible. To bring
this value into a reasonable range, we define the view attribute as:

a3 = log16

(
s

l

)
,

where s is the silhouette length in pixels, and l is the side length of the largest square
that could possibly be rendered (largest square that still fits into the projection of the
object’s bounding sphere). We choose 16 as base for the logarithm for the following
reason: A standard rectangular object results in an outline of s ≈ 4l. For this case, we
want a3 ≈ 0.5 which results in base 16. Furthermore, tests showed that the outline of
length s ≈ 16l (a3 ≈ 1) is an adequate limit for shapes of high complexity with many
concavities.

3.3.2 Aesthetic View Attributes

While the aesthetic properties of an image are highly subjective, there exist compositional
heuristics, e.g., the widely known rule of thirds [Smi97]. Our aesthetic view attributes
are based on such artistic guidelines.

a4 Contrast Higher contrast stands for a larger dynamic range and a visually appealing
image. We use root mean square contrast [Pel90] of the rendered image, because it can
be computed efficiently:

a4 =

√√√√ 1
n

n∑
i=0

(
Ii − I

)2
,
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where n is the number of pixels, Ii is the luminance at pixel i, and I is the average
luminance of all n pixels. We only consider the pixels that have been rasterized and
neglect the uniformly colored background.

Since the contrast depends on the lighting, we use the same lighting conditions for all
models. We use a standard three point lighting technique, where key, fill, and back light
are in fixed positions with respect to the camera and the scene center [Bir00].

a5 Normal Ratio One artistic composition rule states that the projections of front, side,
and top of an object should have relative areas of 4, 2, and 1 in an image [EB92, Arn54].
Gooch et al. [GRMS01] orient the object’s bounding box so that the projections of
its three visible sides fulfill that ratio (front and side dimensions can be exchanged).
Bounding boxes are only a rough approximation of the true geometry and we analyze
image space normals instead. They are grouped into the three categories: left (counting
towards the front), right (counting towards the side), and up. While it is possible to
compose these three variables into a scalar that quantifies the deviation from the desired
ratio, our experience has shown that the same value does not perform well for inter-model
comparison. Therefore, we decided to merely distinguish left from right pointing normals
and defined the normal ratio as:

a′
5 =

l

l + r
, a5 = 1 −

∣∣∣∣1 − 3
2

a′
5

∣∣∣∣ ,

where l and r are the number of pixels with normals pointing towards the left or the
right respectively. a5 is used for best view selection and a′

5 for inter-model comparison.
The optimal ratio l

r = 4
2 leads to a′

5 = 2
3 which maximizes a5 = 1.

a6 Form Most appealing are renderings for which the object covers a greater part of
the image. Degenerate objects, i.e., with very thin renderings are less favorable. The
form view attribute is a function of the ratio of the height and the width of the 2D axis
aligned bounding box (AABB) of the rendering:

a′
6 =

1
2

(
logl

(
h

w

)
+ 1

)
, a6 = 1 −

∣∣∣∣logl

(
h

w

)∣∣∣∣ ,

where h and w are the height and the width of the AABB. The base of the logarithm, l,
is the side length of the largest possible square (same l as in a3).
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For inter-model comparison we use a′
6, which allows to differentiate between flat,

square, and tall thin AABBs. a6 is used for best view selection. A square is best while
horizontally and vertically thin AABBs are equally unwanted. This view attribute is
similar to a1 for best view finding but it is useful for distinguishing thin tall from wide
flat objects.

3.3.3 Semantic View Attributes

The procedurally generated models we are working with are annotated with extra
information, e.g., the shape tree or correspondences between geometry and terminal
symbols. The following semantic view attributes exploit this extra information.

a7 Visible Terminal Types Every model is composed of terminal symbols that repre-
sent the model’s geometry. Seeing many terminals does not necessarily mean that one
obtains a lot of information, because many terminal shapes might be of the same type.
What matters most is the number of different terminal symbols that are visible. Most of
our examples contain between 2 and 100 terminals (e.g., the Petronas Towers in Fig. 3.6
only uses two terminal types called glass and metal). We define:

a7 = log100 Nt,

where Nt is the number of visible terminal symbols in the image. The logarithm maps
that count onto [0, 1] (assuming that there are not more than 100 terminals types).
Changes of Nt have more importance for situations with few visible terminal types.

a8 Terminal Entropy Viewpoint entropy [VFSH01, Váz03] is an adaptation of Shannon
entropy, and it is a measurement for the amount of information that one sees from a
given viewpoint. It uses as probability distribution the relative area of the projected
faces over the sphere: pi = fi

Atot
, with fi the projected area of face i and Atot the total

projected area of all visible faces (both in solid angles). Our view attribute measures
the entropy of visible terminal types. Terminal types provide a more semantic entity of
information than polygonal faces:

a8 = −
Nt∑
i=0

ti

Atot
log100

ti

Atot
,
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where ti is the projected area of terminal type i, and Atot is the total projected area of the
object. Both variables are again in solid angle. Nt is again the number of visible terminal
types. We use the same base for the logarithm as a7, with the same reasoning. Originally,
viewpoint entropy used a spherical camera, we use the extension to perspective frustum
cameras [VFSL02].

3.4 Thumbnail Gallery Generation

We introduce a system for the automatic creation of a thumbnail gallery for a given
grammar. The system is outlined in Alg. 3.1 and consists of the following steps:

1. The default model is procedurally generated in CityEngine (CE) using the default
values of the grammar’s parameters. This model is then used to calculate the best
viewpoint for the grammar (Sec. 3.4.1).

2. The grammar parameter space is stochastically sampled to generate model variations.
Each model is rendered from the previously found viewpoint to obtain its thumbnail
image and view attributes (Sec. 3.4.2).

3. The resulting list of view attributes is clustered into distinct groups, and for each
group a center is selected. The thumbnail images associated with these centers
define the final thumbnail gallery (Sec. 3.4.3).

4. For a comprehensible visualization, the selected representatives are sorted radially
around the default model in a reduced 2D space. The latter is obtained by applying
a principle component analysis (PCA) on the view attributes (Sec. 3.4.4).

3.4.1 Best View Selection

Once the default model has been created, we search for its best view by sampling a
number of viewpoints on a sphere placed around the model. The camera’s view direction
always points towards the center of the sphere. We discard viewpoints that lie below
the base plane of the model or look down too steeply. We found that good viewpoints
were located between 0°and 45°above ground [BTBV96]. The model is rendered from all
sample cameras and the view attributes are stored.
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Algorithm 3.1 System Overview
# compute best view for default model
default_model = CE.generate(grammar , grammar .default_params)
bestview = computeBestview(default_model, bestview_weights)

# sample grammar’s parameter space
〈thumbnail0, view_attrs0〉 = render(default_model, bestview)
for i = 1 to n_samples do

params = stochasticSample(grammar .param_ranges)
model = CE.generate(grammar , params)
〈thumbnaili, view_attrsi〉 = render(model, bestview)

# cluster view attributes and select thumbnails
clusters = calcClusters(view_attrs, cluster_weights, n_clusters)
for each cluster ∈ clusters do

if 0 /∈ cluster then # skip cluster with default_model
find i with view_attrsi∈cluster closest to center of cluster
add i to selection

# sort selected thumbnails and create gallery
view_attrs_2D = PCA(view_attrs, 2)
selection.sortRadial(view_attrs_2D∀i∈selection , view_attrs_2D0)
gallery = thumbnail0∪∀j∈selection

To increase stability, the view attributes are normalized to the [0, 1] range, i.e., for a
given view attribute, the lowest sampled value will be mapped to 0, the highest value
to 1, and in-between values are linearly interpolated. To rank the viewpoints, a score
is defined as a linear combination of the normalized view attributes. We empirically
determined the weights listed in the second column of Tab. 3.2. More sophisticated
schemes for automatically choosing weights, e.g., through semi-supervised learning, are
an interesting area of future work [KHS10]. For existing view attributes we started with
values that Secord et al. [SLF∗11] concluded from a user study.

View Attribute Best View Weights Clustering Weights

Pixel count (a1) 15 % 10 %
Surface (a2) 20 % 25 %
Silhouette (a3) 5 % 30 %
Contrast (a4) 2 % 2 %
Normal ratio (a5 or a′

5) 10 % 5 %
Form (a6 or a′

6) 3 % 3 %
Visible terminal types (a7) 25 % 5 %
Terminal entropy (a8) 20 % 20 %

Table 3.2: Best View and Clustering Weights The table lists the weights of the
view attributes for best view selection and for clustering. Note that normal ratio and
form use slightly different view attribute definitions for best view selection and clustering.
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Figure 3.3: View Attribute Graph Normalized view attributes are plotted for different
viewpoints for the Petronas Towers grammar. The final score (red) is a linear combination
with the weights in Tab. 3.2. Its peak and the corresponding thumbnail are highlighted.

The graph in Fig. 3.3 plots different viewpoints versus the normalized view attributes
and the final score. There are 32 viewpoints sampled on a ring π

8 above the horizon.
Note that the overall score is minimized when one tower is hidden behind the other one.

3.4.2 Stochastic Sampling of Rule Parameters

A grammar typically comes with several parameters to steer the generation of the
procedural 3D model. In CityEngine, grammars are encoded using the shape grammar
language CGA [MWH∗06], and continuous or discrete parameters can be defined as
shown on the left in Fig. 3.4. Note that every parameter needs to be initialized with a
default value. Authors can also define the range of meaningful values for parameters
using @Range annotations. In CityEngine, these ranges are used for constructing the
sliders in the user interface (Fig. 3.4 on the right) and for us they limit the space within
which we generate samples.

A grammar contains a start rule which is applied on an initial shape which is annotated
with @StartRule in CGA. But the initial shape is undefined and could be of arbitrary
form, dimension, or geometry. Thus, it could have a high impact on the generation,
e.g., a conditional rule might determine to build a high-rise building instead of a small
house based on the size of the initial shape. As a consequence, we extend CGA with the
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Chapter 3. Thumbnail Galleries for Procedural Models

# -----------------------------
# Rule Parameters
# -----------------------------

@Range(0, 4)
attr Nbr_of_left_lanes = 1

@Range(0, 4)
attr Nbr_of_right_lanes = 2

@Range(3, 5)
attr Lane_width = 3.7

attr Construct_median = false

@Range(0.5, 10)
attr Median_width = 2

...

# ----------------------------
# Rules
# ----------------------------

@StartShape(LineM)
@StartRule
Street -->
  alignScopeToAxes(y)
  split(x) { Crosswalk_width : Crosswalk(-1)
           | ~1              : Streetsides
           | Crosswalk_width : Crosswalk(1) }
  BridgeMain

...

Figure 3.4: Parameter Ranges and User Interface (left) CGA grammar excerpt
with parameter ranges and start rule. (right) User interface to control the many parameters
of the grammar.

@StartShape annotation to set one or many predefined initial shapes such as Point, Line,
Rect or Cube. In the example on the left of Fig. 3.4, the author uses @StartShape(LineM)
to define the default initial shape as a line (the letters S, M and L denote dimensions 10,
30 and 100 meters).

As described in Alg. 3.1, we now stochastically sample the grammar within its given
parameter ranges and initial shapes (by using CityEngine’s Python interface). For each
resulting model we render the thumbnail image and calculate the view attributes from
the best viewpoint found in Sec. 3.4.1. The reasons why we use only the best view of the
default model even though it might not be the best view when jointly considering all
models are twofold: 1) performance, i.e., calculating best views of more samples requires
additional processing time, and 2) since all initial shapes are similarly aligned, changing
the viewpoint for each sample only worsens the visual understanding of model differences.
As an alternative we also experimented with calculating the best view of every sample
and taking the one viewpoint that had the most support (every model sample would
give one vote to its best viewpoint). The results are similar but there is the drawback of
having to compute the view attributes for all viewpoints for all samples.
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Chapter 3. Thumbnail Galleries for Procedural Models

3.4.3 Clustering View Attributes

As a next step, the list of view attributes is clustered into a given number of groups.
Therefore we applied a slightly modified version of the k-means++ clustering algo-
rithm [AV07]. K-means++ chooses only the first initial clustering seed completely at
random and applies a distance-based probability heuristic to determine the remaining
initial cluster seeds. However, to make the clustering even more stable, we set the first
initial seed to the view attributes of the default model. This is justified by the fact that
most rule authors intuitively place the default model near the center of the design space.

The cluster distance function is a linear combination of the view attribute deltas.
Since our view attributes are typically well distributed in the [0, 1] range, the weights
reflect the importance of the corresponding view attributes for clustering. The weights
we use were determined empirically, they are listed in Tab. 3.2 on the right. They provide
visually appealing and representative clusters for arbitrary grammars. A cluster result is
shown on the left Fig. 3.5.

3.4.4 Thumbnail Gallery Creation

To illustrate a cluster, we select the sample nearest to its center. To arrange the selected
thumbnail images in a visually comprehensible way, we applied user interface principles
of Design Galleries [MAB∗97]. There, the current design is in the middle and suggested
variations are arranged around it in a manner that correlates to the editing distances. In
our case, the default model is the center and the selected thumbnails of the other clusters
are arranged around it as shown in Fig. 3.6.

The leftmost thumbnail column in Fig. 3.5 shows that the cluster size is not a well-
suited sorting criteria for the radial arrangement. The user wants to visually compare
similar thumbnails and is less interested in the cluster sizes. Therefore, we run PCA on
the view attributes to project the selected samples from their original eight-dimensional
space into a two-dimensional subspace spanned by the first two principal components.
Within this space, the representatives are sorted radially around the default model. This
is illustrated in Fig. 3.5 on the right.
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3.5. Results

Figure 3.6: Petronas Towers Thumbnail Gallery The result of the Petronas
Towers grammar. The thumbnail in the middle shows the default model and those around
it depict other representatives. The ordering is the same as in Fig. 3.5.

This arrangement is also the reason why we typically generate 14 clusters. If we
display the selected samples at third the size of the default model, we can fit exactly 13
thumbnails on the circle. Nonetheless, the number of clusters can be chosen by the user.

3.5 Results

3.5.1 Best View

To evaluate our best view method, we conducted a preliminary user study with 39
participants. The test data set contained 21 buildings, each rendered from the optimal
perspective according to our view attribute combination and according to the linear-5
combination suggested by Secord et al. [SLF∗11]. For our test set, both systems provide
the same thumbnails for five of the exemplars (different view directions indicated with
circles in Fig. 3.7). For the remaining models the subjects preferred our view direction
in 351 cases, 161 views according to Secord et al., and had no preference in 112 cases.
A significance test clearly rejects the hypothesis H0 (H0: no preference, H1: preference
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Chapter 3. Thumbnail Galleries for Procedural Models

Figure 3.7: Comparison with Secord et al. [SLF∗11] The results of Secord et al.’s
view attribute combination are shown on the left and ours on the right. Circles denote
differences between both methods, dashed circles stand for minor differences only. The
bar charts show the user preference counts: left is ours, middle is Secord et al., right is
no preference.

for the view direction obtained from our view attributes) within the p < 0.001 (one-
tailed) confidence interval. Focusing on the models for which the two viewing directions
considerably changed (more than 10 degrees, solid circles in Fig. 3.7) the subjects preferred
our suggestions even more clearly (in 225 cases compared to 84 cases for the alternative,
with 42 occasions of no preference).
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3.6. Discussion and Future Work

Grammar Model Generation Best View Attribute Calculation

Petronas Towers 334.00 s 0.43 s 64.34 s
Philadelphia 279.60 s 0.61 s 123.93 s
Paris 38.45 s 0.67 s 31.88 s
Procedural streets 113.27 s 0.35 s 111.08 s

Table 3.3: Measurements Running times for our system for different grammars using
200 samples. The best view selection algorithm considered 32 different viewpoints.

3.5.2 Clustering

Clustering behavior varies for different grammars. Generally, we observed that the
clusters stabilize when at least 200 samples are used. K-means++ proved to be the most
natural way to initialize clustering for our domain as we want the default model as the
global center. We also experimented with other clustering methods with worse results:
hierarchical clustering with dendrograms, spectral clustering, and mean shift clustering.

Fig. 3.8 shows thumbnail galleries for four different grammars: Philadelphia, Paris,
Zurich, and procedural streets. The running times for these grammars are listed in
Tab. 3.3. We used OpenGL and rendered the thumbnails at a resolution of 500 × 500
pixels on an Intel Core2 Duo 2.8 GHz Laptop with a Nvidia Quadro FX3700M graphics
card. Clustering was done with NumPy and took about 0.5 s for each grammar. The
times show that model generation is the most expensive part of the system. The attribute
computation varies between grammars (Philadelphia takes four times longer than Paris).
We believe that the reason for this is the increased number of lookup table reads (the
number depends on the number of terminals and faces in the model) in former example.

3.6 Discussion and Future Work

Thumbnail galleries provide a new visual tool for procedural modeling that can signif-
icantly simplify rule selection during the content creation process. Our experiments
demonstrate that the thumbnails automatically generated by our method yield good
visual representations of the model diversity of a grammar.

Our system also has some limitations which open areas for future research. We
currently fail to distinguish models that have a very similar overall shape that differs
only on lower-scale structural details. We believe that view attributes encoding the
silhouette (e.g., Fourier descriptors [ZR72]) or the shape of the 2D rendering (e.g., Zernike
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Chapter 3. Thumbnail Galleries for Procedural Models

Figure 3.8: Thumbnail Galleries The results for several grammars. Philadelphia
(top left), Paris (top right), Zurich (bottom left), procedural street (bottom right).

moments [KH90]) could remedy those shortcomings. Another problem are rule parameters
that change minor details, e.g., a building’s window width or the leaf shape of a tree.
Those changes are hard to spot from a perspective that features the full model. A
beneficial feature of the system would be to detect those shapes and present close-up
images. One could further investigate new color and texture based view attributes as our
system ignores this information almost entirely (color changes influence the luminance
images and have a minor effect on the contrast view attribute). Fig. 3.9 shows a problem
case where a grammar for futuristic high-rise buildings cannot be clustered properly.
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3.7. Conclusions

Figure 3.9: Clustering Problem All these high-rise buildings from the same grammar
were mistakingly placed in the same cluster because they have a similar overall shape
and size. Additional view attributes, encoding color and silhouette shape, could fix such
problems.

User-guided exploration of the procedural design space spanned by the grammar
similar to Design Galleries [MAB∗97] is also worth exploring: the user would repeatedly
select a model while the system automatically provides new suggestions of models close
to the selected one. A related question is if it is possible to reverse-engineer the influence
of rule parameters given the view attribute.

Our system currently just samples parameters which have an optional range annota-
tion. User-guided refinement could be used to detect sensible ranges for non-annotated
parameters. Also our sampling strategy could be improved with an adaptive approach.
Rather than sampling all parameters with the same probability we could detect the ones
which lead to large variations of the view attributes and sample them more densely.

3.7 Conclusions

We present a system that finds the best view of a procedural model and that generates a
thumbnail gallery depicting the design possibilities of a grammar. The best view selection
algorithm works well for arbitrary mesh topologies and outperforms existing methods.
Clustering in conjunction with our novel view attributes is a first step towards visualizing
the immense variety of models encoded in a procedural grammar. To the best of our
knowledge, we are the first to present such a system.
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4 Designing Probability Density
Functions for Shape Grammars

We introduce a novel framework that allows designing a probability density function
(pdf) for a shape space spanned by a stochastic grammar and that adapts the grammar
to generate new models according to the designed pdf. The user assigns preference scores
to a set of exemplar models sampled from the grammar. A kernel function that compares
the shape trees of two exemplar models is used in conjunction with Gaussian process
regression (GPR) and automatic relevance determination to interpolate the preference
scores over the entire shape space. In order to enable model generation according to a
pdf proportional to the learned preference function, the original grammar is changed
by applying split operations to relevant non-terminal symbols and by modifying the
rule probabilities. Our framework is compared to state-of-the-art exploratory modeling
techniques, and we evaluate it using different design tasks for buildings, furniture, trees,
and airplanes.

4.1 Introduction

In procedural modeling, a stochastic shape grammar defines a shape space containing a
variety of models of the same class, e.g., vegetation or architecture. Users of procedural
modeling tools such as CityEngine can be broadly divided into two groups: 1) non-
experts without programming experience coming from such fields as architecture, urban
planning, or arts, and 2) experts with a programming background, some with and some
without artistic talent. Authoring shape grammars is a non-trivial task as it requires
programmings skills. Hence, usually only expert users model new shape grammars from
scratch while non-experts mostly work with existing grammars, sometimes modifying
them slightly to meet their needs. Both groups are confronted with the common problem
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Chapter 4. Designing Probability Density Functions for Shape Grammars

Figure 4.1: Framework Overview (left) A selection of random models sampled from
a stochastic shape grammar for buildings. Even though one can physically build them,
they do not make sense architecturally: the styles of the ground floors, upper floors, and
the roofs mismatch. (right) Given user-provided preference scores, our framework learns a
new probability density function (pdf) and adapts the stochastic grammar to generate new
models (consistent in style) in proportion to the pdf. This design task (B1 in Tab. 4.2)
assigns a higher preference score to office buildings than to the two different types of
residential buildings.

that it is difficult to control the distribution of all the models in a shape space of a
grammar. The pdf of a grammar defines for each model how probable it is that it will
be generated. With our novel framework users can interactively design a new pdf for
an existing grammar. Our system works without requiring the user to understand or to
directly edit any of the grammar’s production rules. In the following we describe three
common procedural modeling design tasks that form the motivation for our framework.

In the first task, a non-expert user searches for just one interesting model within a
grammar’s shape space. The common solution is to naively keep regenerating sample
models with new random seeds until a suitable one is found. This will likely take a long
time, especially if the user is picky and if the shape space is large, covering a wide range
of variations. Building on existing exploratory modeling methods [MAB∗97, TGY∗09],
we enable interactive exploration of the shape space by designing a pdf that has a high
density near previously liked samples.

A second task might require the generation of many procedural models, e.g., enough
building models to fill a city. The user would like to have control over the distribution
of the size, color, or type of the buildings. While it can be trivial (for expert users) to
change the grammar directly to enforce a distribution for just one such parameter, it
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4.2. Related Work on Exploratory Modeling

becomes more difficult when several interdependent parameters are involved, e.g., when
residential buildings should be short while a high percentage of tall buildings should only
contain offices.

Third, when a procedural grammar is very general, i.e., has a wide range of variations,
it is very difficult to guarantee that all possible combinations of stochastic rules yield
meaningful models that correspond to the author’s intent. As the grammar becomes
more general, the overall quality of the models usually degrades because the number of
unwanted models increases. For example, a very generic plant grammar could generate
a tree with impossible branching angles because it combines a tree species rule with
an incompatible branching rule. Again, such constraints are hard to encode directly in
grammars, even for expert users. This is because the rules are context-free and do not
know any global context. The third task, similar to the second task, wants to modify
the likeliness of certain models; it wants to avoid undesirable models completely by
minimizing their probability. With our tool, such constraints can be enforced through
adaptation of the pdf and do not require grammar authors to write overly complicated
grammars. Fig. 4.1 shows an example combination of tasks two and three. It avoids
undesirable models and controls the distribution of the remaining ones.

To summarize, we present the following main contributions. On the application side,
we extend exploratory modeling to not only find specific models within a shape space but
also to designing a pdf over the entire shape space. On the technical side, we propose
a kernel function that, given two derivations from a stochastic grammar, can measure
how similar they are. We use function factorization and GPR (with automatic relevance
determination and a lasso regularizer) to actively learn a preference function from a
set of user-scored exemplar models. We further provide an algorithm that adapts a
grammar to generate models according to a learned target pdf, and we also show that
our learning algorithm converges faster than Talton et al.’s method for kernel density
estimation [TGY∗09].

4.2 Related Work on Exploratory Modeling

The foundations of shape grammars are described in Chap. 2. In this section we solely
give a concise overview of the most important design exploration methods. We have
recently seen several research efforts for exploratory modeling in the graphics community.
The first one was the concept of Design Galleries by Marks et al. [MAB∗97] enabling
navigation of parameter spaces, e.g., for light placement in rendering and for motion
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Chapter 4. Designing Probability Density Functions for Shape Grammars

control in animations.

Certain methods investigate the exploration of already existing, discrete spaces of
designs, e.g., of sets of websites [LSK∗10] or 3D models [KFLCO13]. Even crowdsourcing
has been used to learn and compare high-level descriptive attributes for designs [CKGF13,
OLAH14]. In another project, Averkiou et al. [AKZM14] embed shapes in low-dimensional
spaces that can be explored, and an inverse mapping is used to synthesize new shapes.

Usually design spaces are explored by showing the user samples that are similar
to other, previously liked samples. This applies to a wide range of generative models,
e.g., probabilistic [MSL∗11] or evolutionary [XZCOC12] ones. Sometimes the shape spaces
are constrained and the exploration needs to be interleaved with optimization steps to
guarantee valid or good models [UIM12, BYMW13]. This is often the case for free-from
surfaces in architectural modeling [YYPM11, DBD∗13]. Also, in Chap. 3 we presented a
strategy to create concise previews of shape spaces of procedural grammars [LSN∗14].

Other methods explore parametric models. For example, Brochu et al. [BBdF10]
use Bayesian optimization to navigate animation parameters, Shapira et al. [SSCO09]
recolor images based on Gaussian mixture models, and Koyama et al. [KSI14] learn
goodness values for samples via crowdsourcing and use radial basis functions to generate
new samples of interest by interpolation. Most similar to our framework is Talton et
al.’s [TGY∗09] method which uses kernel density estimation to learn the distribution
of desirable models from user input and map it into an explorable 2D space. For
parametric models it is straight-forward to generate new designs by directly sampling
from the distribution. We, on the other hand, work with grammars and have no explicit
parametrization of the shape space. We additionally have the challenge of adapting
grammars so that their output corresponds to a given pdf.

In comparison to all these methods, our project’s main focus is not on exploration
but on modeling the output of a generative process by means of a pdf. Exploring shape
spaces is possible with our framework, but more importantly it can also adapt their
probability distributions.
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4.3 Overview

4.3.1 Framework Overview

Our system takes a stochastic grammar as input. The default production rule probabilities
define a default pdf for the shape space. Deriving the grammar generates output models
that are distributed according to that default pdf. The objective of our framework is to
learn a new pdf from user-provided preference scores and to modify the grammar and its
rule probabilities to generate new models according to the new pdf.

Our system consists of three main parts: 1) a GPR module that learns a preference
function from models scored by the user (Sec. 4.4), 2) a grammar adaptation algorithm
that modifies the probability distribution of the grammar (Sec. 4.5), and 3) a graphical
user interface that iteratively refines a preference function by displaying sets of sample
models that the user can score on a scale of [0, 100] (Sec. 4.6).

4.3.2 Grammar Definitions

We work with stochastic, context-free shape grammars that are compatible with CityEngine.
Shapes have labels, either non-terminals ∈ NT or terminals ∈ T , and such attributes as
a scope, a mesh tightly enclosed by the scope, and a material specification. Throughout
this chapter, we use the toy grammar in Fig. 4.2 as an example to illustrate several
mechanisms. Random samples from the toy grammar’s default pdf are shown in Fig. 4.3.
We define a shape grammar slightly different than in Chap. 2, namely as:

G = 〈NT , T, ω, P, Θ〉,

where ω ∈ NT is the axiom. The production rules P are of the following form:

idi predecessor p−→ successor i

Each rule can apply only to a shapes labeled with predecessor , and it is used with probabil-
ity p. Every successor i is a procedure that applies shape operations (e.g., transformations,
splits, material assignments, etc.) to the predecessor shape and replaces it with a set
of child or successor shapes (childi1, . . . , childik), where the label of childij is ∈ NT ∪ T .
We will use the child index j ∈ [1, k] later on for identification of individual child shapes.
Rules are additionally enumerated with identifiers idi to distinguish stochastic choices.
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NT = { ω, Mass, Mesh, ColorMesh }
T = { TerminalMesh }

attr h1 = rand_uniform(1, 5)
attr h2 = rand_uniform(1, 5)

id1 ω
1−→ split(y) { h1 : Mass | h2 : Mass }

id2 Mass 0.3−−→ i(“box”) Mesh
id3 Mass 0.3−−→ i(“cylinder”) Mesh
id4 Mass 0.3−−→ i(“star”) Mesh
id5 Mesh 1−→ ColorMesh
id6 ColorMesh 0.3−−→ setColor(“brown”) TerminalMesh
id7 ColorMesh 0.3−−→ setColor(“blue”) TerminalMesh
id8 ColorMesh 0.3−−→ setColor(“turquoise”) TerminalMesh

Figure 4.2: Toy Grammar This very simple grammar generates two shapes that
are stacked on top of each other. The appearance of every shape is defined by three
random choices for height, asset mesh (box, cylinder, or star), and color (brown, blue, or
turquoise.

The set of parameters Θ is also new in G. It contains all rule probabilities and all
parameters of any random number generators used during derivation. For example, the
heights h1 and h2 in the toy grammar are randomly sampled from uniform distributions
whose ranges are included in Θ.

The toy grammar’s first rule id1 stacks two generic shapes with random heights (h1

and h2) on top of each other. The type of each shape is decided in the rules id2, id3, id4

that chose between a box, cylinder, or star (using the i operation to instantiate meshes)
with 1

3 probability. Rules id6, id7, id8 define the shape color to be either brown, blue, or
turquoise, also with uniform probability. Rule id5 does not offer any stochastic choices
and is therefore redundant for our purposes. This simple toy grammar highlights some
challenges for modeling arbitrary pdfs with context-free grammars. For example, it is
impossible to change the variables in Θ such that the top shape is always blue and the
bottom shape has a random color. This can only be achieved when id2 through id8 are
duplicated and modified to assign different color probabilities for each shape. If we added
more shapes to the stack, the encoding of specific combinations of colors and shapes
would explode combinatorially, and the grammar would become harder to understand.
To define a generic joint pdf over several variables, one needs an exponential number of
production rules in the grammar. Our framework can do this adaptation of the grammar
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Figure 4.3: Toy Grammar Samples Random models sampled from the toy grammar
defined in Fig. 4.2 and described in Sec. 4.3.2.

automatically behind the curtain without requiring the user to touch or look at the
grammar code.

4.4 Learning the Probability Density Function

There are two main steps for learning a new pdf. First, we define a function that maps
models of a grammar to features vectors (Sec. 4.4.1). We assume that preference scores
vary smoothly over that feature space. Second, we explain how we model a preference
function as a Gaussian process to interpolate preference scores from a few samples (that
the user provides through the interface explained in Sec. 4.6) over the remaining parts of
the shape space (Sec. 4.4.2). We describe the regression, the regularization, and also how
to find optimal hyperparameters for the kernel function. A new pdf is then obtained by
normalizing the preference function learned with GPR. There is also a third optional
step that allows creating a global preference function by combining several individual
ones as factors (Sec. 4.4.3).

4.4.1 Features

Finding a good mapping function from a rule-based model m to the feature space X is
difficult. Geometric features are not optimal because different grammars require separate
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ω

〈id1, 1〉 〈id1, 2〉

〈id2, 1〉 〈id4, 1〉

〈id5, 1〉

〈id6, 1〉〈id8, 1〉

Mass

Mesh

Terminal
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Figure 4.4: Features A random model m derived from the toy grammar is displayed
together with its shape tree. The set p2 contains all shape tree paths of effective length
two. Each shape tree path is mapped into one component of the feature vector Φ(m). The
mapping function simply counts how many times a certain path exists in the shape tree.

features designed specifically for the grammar. The image-based view attributes from
Chap. 3 are unfortunately not discriminative enough for our design tasks. For parametric
models the parameters themselves can often be used directly as features, e.g., Talton et
al. [TGY∗09] do that. Grammar parameters have been used as features before [STKP11]
but only for simple façade grammars with a narrow shape space of similar models. We
use the information encoded in the shape trees of the rule-based models to define a set
of features with sufficient discriminative power to compare models. An example shape
tree is shown in Fig. 4.4. The nodes of the shape tree represent shapes, and they are
labeled by the corresponding shape labels, i.e., terminal and non-terminal symbols of the
grammar. The edges of the tree represent rules labeled by a tuple consisting of the rule
id and the child index. The child index consistently numbers all shapes generated by the
rule.

We can identify a path in the shape tree by the sequence of labels on its edges. For
example, for the shape tree in Fig. 4.4 we can observe a path (〈id1, 2〉, 〈id4, 1〉). We only
consider paths that follow the order of derivation, i.e., go from parents to children. We
can observe that the paths encode the relationships between shapes and shape attributes.
For example, if (〈id4, 1〉, 〈id5, 1〉, 〈id6, 1〉) exists, there exists an brown star in m (either
at the top or the bottom), while (〈id1, 1〉, 〈id2, 1〉, 〈id5, 1〉, 〈id8, 1〉) indicates that the
bottom shape is a turquoise box.
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4.4. Learning the Probability Density Function

A model m generated by the grammar G is mapped into the feature space with a
mapping function Φ(m) with the following components:

• The values θm assigned to all random parameters of shape operations in any
successor i used to derive m. (In a recursive grammar, we combine the parameters
of all recursive rules up to a predefined level of recursion.)

• The number of times each symbol (∈ NT ∪ T ) occurs in the shape tree.

• The number of times a path occurs in the shape tree.

The number of different paths in a shape tree can become very large even for shape
trees of moderate size. Therefore, we limit the feature vector to a subset of paths that
are useful. The ability to discriminate properties differs with the length of the path.
Short paths can distinguish general properties, e.g., a brown box or a turquoise star.
Longer paths identify more specific elements, e.g., a brown box on the bottom or a brown
box on top. Since short paths are sufficient to identify simple concepts, we start with
short paths of maximal length k. Once the current feature vector becomes unable to
differentiate models with substantially different preference scores, we gradually increase
k to include longer paths.

There are several details to consider. First, some rules have no discriminative infor-
mation. For example, in the toy grammar, if rule id4 is executed, the child shape will
always be replaced with rule id5. We define the effective length of a path by discarding
these non-informative rules. For example, the path (〈id4, 1〉, 〈id5, 1〉, 〈id6, 1〉) has length
3, but effective length 2 since id5 is not counted. We categorize paths by their effective
length instead of their length. Second, since superfluous features increase the chance of
overfitting, we typically start with k = 1. The number of features D also defines the
dimension of the feature space X . In Fig. 4.4 we show the extraction of selected features
from a shape tree.

4.4.2 Gaussian Process Regression (GPR)

GPR is a kernel-based Bayesian regression technique. In our case it imposes a Gaussian
process as a prior for the preference function u(m) that we want to learn, where m is a
model derived from the given grammar. This means that a set of n models with scores
[u(m1), . . . , u(mn)]T (assigned by the user) can be seen as an n-dimensional sample of an
n-variate Gaussian distribution. GPR gives reasonable results even for small numbers of
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Chapter 4. Designing Probability Density Functions for Shape Grammars

observations, which allows our system to work iteratively. It already provides meaningful
output for the first few observations, and it updates the preference function whenever new
observations are available. For an in-depth review of Gaussian processes, we recommend
the excellent review by Rasmussen and Williams [RW06].

A Gaussian probability distribution is characterized by a mean and covariance. Simi-
larly, a Gaussian process is governed by a mean function and a kernel function k(m, m′)
that, in our case, measures the similarity between the two derivations m and m′. We
learn the hyperparameters of the kernel function directly from the user input. The mean
function expresses a bias for the prior of u and is commonly chosen to be zero, which
means that none of the models are desirable at the start. This has been proven successful
in related contexts such as the ranking of songs [PBS∗01].

Preference Prediction We have n models m = [m1, m2, . . . , mn]T and their associated
preference scores u = [u(m1), u(m2), . . . , u(mn)]T. Our objective is to make predictions
about the preference u(m∗) of another arbitrary model m∗.

Given a Gaussian process prior with zero mean for u(m) and the kernel function
k(m, m′), [u, u(m∗)]T is described by an (n + 1)-variate zero mean Gaussian distribution
with the following covariance matrix:

Cn+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k(m1, m1) . . . k(m1, mn) k(m1, m∗)
...

k(mn, m1) . . . k(mn, mn) k(mn, m∗)
k(m∗, m1) . . . k(m∗, mn) k(m∗, m∗)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A closed from solution for u(m∗) is given by the conditional distribution p(u(m∗)|u). It
is also Gaussian and has a mean of:

u(m∗) = kTC−1
n u,

where Cn is the n × n submatrix in the upper left of Cn+1 and

k =

⎡
⎢⎢⎢⎣

k(m1, m∗)
...

k(mN , m∗)

⎤
⎥⎥⎥⎦ .

GPR not only predicts u(m∗) but it also has the nice property of giving us a confidence
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4.4. Learning the Probability Density Function

estimate of the prediction. This prediction uncertainty is the variance of p(u(m∗)|u) and
is defined as:

σ2(m∗) = k(m∗, m∗) − kTC−1
n k

Our user interface (Sec. 4.6) can use the prediction uncertainty to present models that it
is not knowledgeable about. This will usually speed up the learning convergence because
GPR gains more information from models with high uncertainty than from models with
low uncertainty.

Kernel Function The type of kernel function used to interpolate the preference scores
from a few exemplar models over the entire shape space influences the outcome of the
GPR. We do not use a fixed kernel but rather choose a family of parameterized kernel
functions for which we learn parameters from the user input.

The anisotropic kernel function k, used to compare two rule-based models models m

and m′ in the D-dimensional feature space X , is defined as:

k(m, m′) = θ0 exp
(

−1
2

D∑
d=1

θd(xd − x′
d)2

)
+ δmm′β−1,

where xd and x′
d are the components of the feature vectors of m and m′, δmm′ is the

Kronecker delta, and β−1 is a small noise-like term that is added to the diagonal
elements of the covariance matrix to guarantee its positive-definiteness. The weights
θd, d ∈ [1, D] are the hyperparameters of the kernel, and they are not constant. They are
readjusted every time the user scores new models, and they reflect the importance of
their corresponding features. The importance of a feature typically depends on the design
task and the preference function that the user is modeling. A large weight indicates that
a feature has a strong influence on the preference scores.

Automatic Relevance Determination We use Automatic Relevance Determination
(ARD) to learn the hyperparameters. ARD finds the set of hyperparameters θ =
(θ0, θ1, . . . θD) for the kernel function that maximize the log likelihood of the user-scored
training models:

ln p(u|θ, m) = −1
2

ln |Cn| − 1
2

uTC−1
n u − n

2
ln(2π).

63



Chapter 4. Designing Probability Density Functions for Shape Grammars

0

0

70

70

Pr
ef

. s
co

re
Pr

ef
. s

co
re

0 0 0

0 0 0

0 50

50

0

10050

0

0

50

0

51

51

Figure 4.5: Automatic Relevance Determination (ARD) The left side shows
preference scores assigned to 16 models of the toy grammar according to a modeling task
that only allows designs that have the same color for both shapes (preference score 100
for brown and 50 for blue and turquoise). We then generate many variations of the
highlighted model with two turquoise boxes by randomly changing the shape heights h1
and h2 within the range [1, 5]. Predicted preference scores for h1 and h2 are plotted on
the right side, with ARD (orange) and without (blue). The almost constant orange curves
for the different values of the heights indicate that ARD correctly detects the irrelevance
of the height parameters for this specific task.

We add a lasso term for regularization that prevents overfitting. We use the conjugate
gradient method to minimize the resulting energy function:

E(θ) = − ln p(u|θ, m) + λ
D∑

d=1
|θd|.

The hyperparameters θd should be positive, hence |θd| = θd. To avoid non-negativity
constraints (θd > 0) we optimize for ln(θd). Additionally, the lasso regularizer has the
advantage of driving as many hyperparameters as possible to zero. This way, only relevant
features receive a non-zero weight, and the other features are discarded.

The effect of ARD is demonstrated in Fig. 4.5. The user wants to design a preference
function for which only colors are relevant. Designs should have the same color for the
top and bottom shapes, with a preference of 50 for blue and turquoise and 100 for brown.
The shape heights h1 and h2 have no influence, and ARD can detect that.
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4.5. Generating Models According to a PDF

4.4.3 Preference Function Factorization

Our framework allows modeling either a single preference function, or one can model
an overall preference function as a product of K factors, i.e., K individual preference
functions multiplied together:

u(m) =
K∏

i=1
ui(m), (4.1)

where K is chosen by the user. Having factors allows specifying the preference for
particular aspects individually, e.g., for materials, window types, or roof shapes. It is
often easier to set preference scores for individual aspects than for many aspects at once.

A design task for the toy grammar could have two factors: 1) color that assigns scores
100 to two brown shapes, 50 to two blue or two turquoise shapes, and 0 to the rest, and
2) geometry that assigns scores based on the type of the bottom shape, i.e., 100 for a
box, 50 for a cylinder, and 0 for a star. Fig. 4.6 presents examples of both factors and
their combination. Commonly, each factor has different relevant features, and thus one
can often learn factors more efficiently than a global preference function. Each factor is
learned individually with our user interface.

4.5 Generating Models According to a PDF

After training a new preference function u(m) for the grammar we want to generate new
models sampled according to the pdf that is proportional to the preference function. We
experimented with three different ways for generating samples: 1) rejection sampling, 2)
parameter learning that changes production rule probabilities, and 3) structure learning
that modifies the grammar structure by adding new rules in addition to changing the
rule probabilities.

Rejection sampling outputs models that are distributed exactly according to the
designed pdf. However, it can be very inefficient because many samples might be
discarded. Parameter learning is faster as no samples are discarded, but it is inflexible;
just changing rule probabilities is usually insufficient to approximate the target pdf well.
Our default solution is structure learning that approximates the pdf well, and it can
generate new samples without rejection after an initialization preprocess.
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Figure 4.6: Preference Function Factorization The preference function can be
learned as a combination of factors. Two factors for the toy grammar for color and
geometry (see Sec. 4.4.3 for details) are learned separately and combined into an overall
preference function.

Rejection Sampling This approach does not change any aspects of the grammar. It
samples from the grammar’s default pdf and discards unwanted samples. The probability
p(m) that the grammar generates a specific model m (according to the default pdf) is
the product of the probabilities of all the rules used to create m and also of all involved
parameters (e.g., the heights h1 and h2 in the toy grammar). The new sample model
m is accepted only with probability u(m)

Mp(m) , where M is the upper bound of u(m)
p(m) . If it

is rejected instead, m is resampled as many times as necessary until it is accepted. We
derive M empirically from a large number of samples.

Parameter Learning This algorithm leaves the grammar structure intact and only
adapts the production rule probabilities to maximize the chance of generating a specific
set of training models. The rule probabilities that assign maximum likelihood to the
training set are given by a relative frequency estimator [Sto94, Joh98]. The optimal
probability p̂(idx) for a rule idx, with respect to the training set, is the ratio of the
number of uses of idx and the number of uses of rules with the same predecessor as idx
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4.5. Generating Models According to a PDF

(including idx itself):

p̂(idx) =
c(idx)∑

idi∈{rules with same predecessor as idx} c(idi)
,

where c counts how often a rule is applied for deriving the training models. We obtain a
sufficiently large set of training models from the original grammar by rejection sampling.
Parameter learning is too simple and performs badly as shown in Tab. 4.3. The default
structure of a grammar is often not suited to encode design tasks that have dependencies
between choices of production rules. For example, parameter learning cannot adjust the
default toy grammar to assign blue colors to star shapes with higher probability than to
other shapes. It can only modify the color probabilities for all shapes at once.

Structure Learning Our preferred solution overcomes the drawbacks of both previous
sampling strategies in two steps. 1) We first generate a new grammar adapted to the
relevant features by applying split operations to duplicate relevant rules in the original
grammar. We can then adjust the probabilities of the duplicated rules individually and
gain enough flexibility to describe interdependencies of production rules. 2) We define
the final grammar as a mixture of several grammars. Each component grammar of the
mixture has the same structure as the adapted grammar resulting from the first step, but
with different rule probabilities so that each component can focus on different aspects of
the pdf.

The inspiration for the split operation is based on the idea of parent annotation in
natural language processing [Joh98] and a similar splitting concept introduced by Talton
et al. [TGY∗09]. A non-terminal symbol S can be split into multiple new non-terminals.
Every occurrence of S in a successor of any production rule will be replaced by a symbol
Si, where i enumerates the occurrences. The production rule for S has to be duplicated
for each Si. The successors of all the production rules for Si are identical, but the rule
probabilities can differ. For example, splitting the Mass symbol in the toy grammar
leads to different symbols for the top and bottom shapes after deriving the axiom. The
consequence is that the probabilities of the shape types (box, cylinder, star) become
independent for the bottom and the top. It is important to note that splitting a non-
terminal symbol does not alter the shape space of a grammar. But it does add more
degrees of freedom to adjust the probability distribution of the grammar. Splitting
all non-terminal symbols in a grammar increases the number of rules exponentially.
Therefore we split only those symbols that occur in the relevant features that were
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Chapter 4. Designing Probability Density Functions for Shape Grammars

assigned a non-zero weight during ARD (Sec. 4.4.2).

The second step defines the final grammar G′ as the mixture of K component grammars
G′

i. Each component is selected with its corresponding probability αi:

G′ αi−→ G′
i.

Given the set of training models T = [m1, m2, . . . , mN ]T, we want to find K and also
the hyperparameters η of the final grammar that maximize the log likelihood of the
training models L(T|G′) =

∑N
i=1 ln p(mi|G′). The hyperparameters η consist of all αi

and all grammar parameters and rule probabilities of each component grammar G′
i. The

probability p(m|G′) that the final grammar derives a specific model m is a weighted
average of the probabilities of the component grammars G′

i:

p(m|G′) =
K∑

i=1
αip(m|G′

i).

Our optimization for η is almost identical to the expectation–maximization (EM) al-
gorithm for Gaussian mixture models. The difference is that the M-step changes the
parameters of the component grammars and not of Gaussians. The E-step computes the
responsibilities wkn that measure how likely a model mn is to be generated by component
grammar G′

k:

wkn = p(G′
k|mn, η) =

αkp(mn|G′
k)∑K

i=1 αip(mn|G′
i)

.

Summing up the responsibilities of one component grammar G′
k gives the effective number

of models Nk =
∑N

n=1 wkn assigned to that component. The component weights of the
mixture are then given by:

αnew
k =

Nk

N
.

To update the rule probabilities in each component grammar, we use a modified version
of the parameter learning approach explained earlier on. When adapting G′

k, instead of
just counting the occurrences of rules in each model mn, we weigh each occurrence with
the responsibility wkn.

To initialize the EM algorithm, we first cluster the training models in T. Clustering
is done by computing the pair-wise distances between all training models with a distance
based on the kernel function. A neighborhood graph is created that contains edges between
models if their distance is below a threshold (0.001 of the maximal distance of any two
models). We iteratively remove the node with the highest degree and all its neighbors
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Figure 4.7: User Interface Users are presented with a grid of sample models from
the grammar that they can score. There are various options to choose from for the
distribution and sorting of the shown samples. (a) The sample models from the current
pdf are displayed together with the prediction of the preference scores (orange) and the
prediction uncertainties (blue). (b) The Models are sorted by similarity to the highlighted
model. (c) Several samples are selected and scored simultaneously.

from the graph to create a new cluster. Per cluster, we initialize the hyperparameters for
the component grammar with the normal parameter learning algorithm.

4.6 User Interface

Our user interface allows users to provide feedback by assigning preference scores to sets
of sample models from a shape space. These scores range of 0 to 100 (where 100 is the
most desirable) and our framework uses them to learn the preference function for the
entire shape space using GPR (Sec. 4.4.2). We use an active learning approach that
updates the preference function iteratively whenever a new set of scores is available, and
the system will present the user with new samples in return. Fig. 4.7 shows screenshots
of the user interface that arranges the sample models in a grid. The predicted preference
scores and the prediction uncertainty can also be shown for each sample.

We support different settings for how the displayed sample models are chosen: default,
current pdf, complimentary pdf, uncertainty, and already scored. Default samples the
models from the default pdf. Current pdf samples from the pdf that is proportional to
the current preference function. The complimentary pdf is a normalized version of 100
minus the current preference function. This will provide samples that the framework
believes to be undesirable. Uncertainty shows models with high prediction uncertainty.
This is useful because the framework gains more knowledge from scores for models that
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NΘ NNT∪T NP

Tables 50 38 75
Buildings 26 80 122
High-rises 39 27 61
Airplanes 8 44 26
Trees 73 N/A N/A

Table 4.1: Parameter Statistic The table lists the number of parameters NΘ, symbols
NNT∪T , and production rules NP for the four grammars and the Weber & Penn tree
model.

the Gaussian Process is uncertain about. Finally, already scored shows all previously
rated models and can be used to correct mistakes.

The order of the models in the grid can be sorted by preference score, by uncertainty,
by similarity to a user-selected model, or it can be random. More complex preference
functions are often easier modeled as a combination of factors (Sec. 4.4.3) that separately
specify preferences for specific aspects such as color or shape. With the user interface,
one can create, store, and combine factors.

4.7 Evaluation and Results

To evaluate our method we created four grammars for tables, buildings, high-rises, and
airplanes. We further also use the Arbaro1 implementation of the parametric tree model
by Weber & Penn [WP95]. In Tab. 4.1 we give an insight of the complexity of the
examples by listing the number of parameters, symbols, and rules.

In Tab. 4.2 we define several different design tasks for the grammars, each one with
different complexity. For every task, we also define the ground truth as a set of up to
5000 manually scored sample models. We use Jensen-Shannon (JS) divergence [Lin91], a
method for measuring the dissimilarity between two pdfs, to validate our results. We
compare the pdfs learned with our framework with the target pdf of the ground truth.
Figs. 4.8 (high-rises), 4.9 (airplanes), 4.10 (tables and buildings), and 4.14 (trees) show
samples from the designed pdfs for all design tasks. Fig. 4.10 also presents examples that
combine two design tasks in one. Combining the pdfs of the individual tasks as factors
(Sec. 4.4.3) does this efficiently. For example, Fig. 4.11 shows that the pdf converges

1Arbaro: http://arbaro.sourceforge.net, accessed on 2017/02/28
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Preference Scores

T1 Valid tables (that stand on their own and that have matching legs and bases) with
one leg (70), two legs (20), four legs (10), and invalid tables (0).

T2 Bright wood tables with round top (60), dark wood tables with rectangular top (40),
and all other tables (0).

T3 Valid tables made of steel (70) or wood (30), and invalid tables (0).
T4 Valid tables with round top (70) or rectangular top (30), and invalid tables (0).
B1 Buildings of different style: office buildings with glass windows, glass doors, and a flat

roof) (40); residential buildings with bright walls, Paris-style windows, and ground
floor shops (20); residential buildings with simple windows and doors (20); residential
buildings with old-school windows and doors (20); buildings with components with
mismatching style (0).

B2 Big buildings (5-6 stories) with L-shape (50), small buildings (2-3 floors) with rectan-
gular shape (50), and other buildings (0).

B3 Buildings of different shape: L-shape (60), rectangular (40), and other shapes (0).
B4 Buildings of different size: big (80), small (20), and other buildings (0).
H1 High-rises with all blocks being rectangular (60), V-shaped (20), or cylindrical (20).

Other high-rises are (0).
H2 High-rises with rectangular (100), cylindrical (50), or V-shaped (0) bottom block.
A1 Old-school airplanes (e.g., double decker) (100), modern airplanes (commercial, trans-

port and fighter jet) (50), and airplanes with mismatching parts (0).
WP1 Realistic trees (100) and implausible trees (0).

Table 4.2: Design Tasks The various design tasks for tables (Ti), buildings (Bi),
high-rises (Hi), airplanes (A1), and Weber & Penn trees (WP1).

faster for the combination of tasks T3 and T4 when learned as two factors instead of one
overall pdf.

We empirically find the parameters for the kernel and the ARD energy function, i.e., the
noise-like term β−1 = 0.01 and the weight of the lasso regularizer λ = 0.1 (see Sec. 4.4.2).
The publication corresponding to this chapter [DLC∗15] and its supplementary material
contain further evaluations and details that are unimportant for the contributions of this
dissertation, e.g., a preliminary user study and measurements of the pdf convergence
rate for the different user interface and framework settings. The supplementary material
also contains more example models for each design tasks than shown in this section.
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Figure 4.8: High-Rise Buildings Models from the grammar for high-rise buildings
sampled from different pdfs: (a) default pdf, (b) pdf of design task H1, and (c) pdf of
design task H2. H1 is learned with the initial features that contain only paths of effective
length k = 1. An increase to k = 2 is needed for H2. A plot of the JS divergence for
varying training set sizes shows the convergence rate and the quality of the approximation
of the pdfs for both tasks (H1 in blue and H2 in orange).

600

0.5

training size

JS
 d

iv
er

ge
nc

e

0(b)(a)

Figure 4.9: Airplanes Models of the airplane grammar sampled from (a) the default pdf
and (b) the pdf of design task A1. We use JS divergence to compare the pdf convergence
of our method (orange) with the method of Talton et al. [TGY∗09] (blue).
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Figure 4.11: Convergence for Factors It is advantageous to model more complex
preference functions as several factors. The JS divergences show that the combination of
design tasks T3 and T4 can be learned more efficiently as two separate factors (orange)
than as one overall pdf (blue).

Feature Evaluation Fig. 4.12 analyzes the effect of the effective path length k (Sec. 4.4.1)
on the convergence behavior of our framework. We evaluate the JS divergence for the
table and high-rise design tasks T4 and H2 for different amounts of training models.
We disable the automatic adjustment of k and run the GPR for four different sets of
features for maximal effective lengths 1, 2, 3, and 4. k does not have any influence for
task T4 . In task H2 however, we see that k = 1 (red) is insufficient to learn the pdf. For
longer effective path lengths the target pdf is approximated well. But if it gets too large,
e.g., k = 4 (black), the convergence is slowed down. From this, we deduce our strategy
to start with k = 1 and to dynamically increase it if necessary.
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Figure 4.12: Evaluation of Effective Path Length The plots compare the JS
divergence of pdfs learned with our framework with features sets with different maximal
effective path length. We examine the table task T4 (a) and the high-rise task H2 (b).
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4.7. Evaluation and Results

T1 T2 T3 T4 H1 H2

Original 0.3282 0.4449 0.2804 0.2897 0.2465 0.3134
Parameter learning 0.2198 0.2539 0.1691 0.1854 0.0885 0.1963
Structure learning 0.0685 0.0668 0.0782 0.0840 0.0009 0.0816

B1 B2 B3 B4 A1

Original 0.3492 0.3483 0.0986 0.1197 0.2104
Parameter learning 0.1054 0.2813 0.0071 0.1218 0.1675
Structure learning 0.0666 0.0825 0.0071 0.0777 0.0627

Table 4.3: Evaluation of Sampling Strategies The JS divergence with respect to
the target pdf of the different design tasks in Tab. 4.2 is listed for the default pdf, the pdf
obtained from parameter learning, and the pdf achieved by structure learning. The result
of parameter learning is often only slightly better than the default pdf. Structure learning,
however, achieves a good approximation of the target pdf.

Evaluation of Generation Strategies To analyze the effectiveness of the parameter
and structure learning strategies (Sec. 4.5), we compare how well they can approximate
the target pdf for each design task. For both strategies, we adapt the grammars based
on ground truth models. The JS divergences of the pdfs of the adapted grammars and
the target pdfs are listed in Tab. 4.3. For comparison we also provide the JS divergence
of the default pdfs. The grammars adapted by parameter learning do not correlate well
with their corresponding target pdfs. The only exception is the very simple design task
B3, for which it is sufficient to change the rule probabilities of one single non-terminal
symbol. Structure learning performs equally well for B3 and much better for all other
design tasks.

Comparison to Kernel Density Estimation Our GPR-based framework is compared
with the kernel density estimation method by Talton et al. [TGY∗09]. We change Talton’s
method to consider preference scores by using the scores as weights of the kernels. The JS
divergence plots for selected tasks in Fig. 4.9 (A1) and Fig. 4.13 (T1, B1, H1) show that
our method approximates the target pdf better for a given number of training models.
For tasks B1 and H1 the pdfs learned with kernel density estimation do not correlate
well with the target pdf even for a large set of training models. In Fig. 4.14 we also show
the JS divergence comparison for the parametric Weber & Penn trees. Other advantages
of our framework are that we can estimate the uncertainty of preference predictions, and
we can also inform our system about unwanted models (by assigning preferences scores
of 0) while Talton et al.’s method can only learn from desirable sample models.
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Figure 4.13: Comparison with Kernel Density Estimation The pdfs learned with
our GPR-based method (orange) converge faster towards the target pdf than Talton et al.’s
kernel density estimation method [TGY∗09] (blue). The JS divergence is shown for table
task T1 (a), building task B1 (b), and high-rise task H1 (c). For task T1, our method
reaches a JS divergence of 0.01 after scoring 245 sample models while Talton’s method
needs 438 samples.
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Figure 4.14: Weber & Penn Trees (a) Random parameter combinations can lead
to unrealistic tree models like the two highlighted examples. Talton et al.’s method
[TGY∗09] (b) and ours (c) can both adapt the parametric model’s distribution to avoid
such undesirable trees. The JS divergence of both methods shows that our method (orange)
converges faster than Talton et al.’s kernel density estimation (blue).
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(a) (b) (c)

Figure 4.15: Style Mismatches Some of the visible style mismatches of building
components in Fig. 4.16 (top) are: (a) Mismatch of ground and upper floor styles: a
house with an ancient ground floor should not have its higher floors in a modern office
style with glass façades. (b) Mismatching roof and façade: modern office buildings do
not usually have old red tile roofs. (c) Too many floors: the quintessential Parisian-like
Haussmannian building should not be larger than six floors.

4.7.1 Urban Planning Use Case

Consider the task of modeling a city using an existing shape grammar that can generate
a variety of different buildings. If the grammar is general enough to cover a broad range
of styles over multiple building components such as roofs, façades, windows, etc., then
the initial result could look very chaotic, e.g., as in Fig. 4.16 (top). The buildings have
random materials and a random height distribution. Such a grammar can also be a
combination of different more specific grammars that were merged together.

Some of the generated models also do not make sense because they contain mismatching
styles and colors within the model. In Fig. 4.15 we illustrate several such example
mismatches from the chaotic city that can occur when the grammar is too general.

While it is possible for an expert to manually edit the grammar to enforce all required
design constraints, it is not a scalable solution. As more components from different
architectural styles are added to the grammar, it becomes more complex to encode all
their interdependencies, and maintenance of the grammar will become a tedious task
due to the combinatorial explosion. With our framework even novice users can model
pdfs for the building grammar that avoid these mismatches.
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4.8. Limitations and Future Work

Figure 4.17: Top View of City Districts The left shows the layouts of the residential,
downtown, and financial districts. On the right is a rendering of he final city.

Imagine that we want to divide our example city into three distinct districts as shown
in the top-down perspective in Fig. 4.17: a residential region for small suburban buildings,
a finacial district with office buildings, and a downtown area featuring Haussmannian
architecture. To achieve our design objective, we specify two goals: 1) each district should
contain buildings appropriate for that district (e.g., a skyscraper would look strange in
the residential area, and a residential building would be out of place amongst the glass
buildings in the financial district), and 2) no mismatches in any buildings. With our
system the user can easily achieve these goals by designing three individual pdfs, one for
each district. Each pdf limits the grammar’s shape space to the subset of valid models
for the given district. Our resulting city in Fig. 4.16 (bottom) was created from a single
grammar by sampling from these three pdfs to generate three different sets of buildings:
short residential buildings, Hausmannian downtown buildings, and office buildings.

4.8 Limitations and Future Work

Limitations Our work has some limitations. A common problem of GPR is its inability
to learn discontinuities. This is problematic when there is a discontinuity in a preference
function that depends on a continuous variable. An infinite number of training models
would be required to learn the exact function because it cannot be represented with a
finite number of Gaussians. For our framework, this problem can be overcome when
such continuous variables are changed in the grammar to discrete sets of values. Further,
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the more features are involved the slower the pdf converges to the target pdf (e.g., in
Fig. 4.12 (b)). For very complicated design tasks requiring feature sets with long paths,
it is unavoidable that a large number of sample models are scored. Also, the complexity
of possible design tasks is limited by the design of our features. Paths in the shape tree
can only follow one child branch at every node they pass through. Hence it is impossible
to encode design constraints that depend on different child branches of the same node.
For example, in the high-rise grammar that recursively stacks building blocks on top of
each other, our feature vector cannot encode that cylindrical blocks with black windows
are preferably on top of box blocks with green windows but not on top of box blocks
with blue windows. The properties of the different levels are in different branches of
the shape tree. It would take subtrees and not just paths to capture this aspect. Tree
kernels [CD01] used in natural language processing (NLP) do exactly that. Instead of
counting paths, a tree kernel counts the occurrences of all possible subtrees in a parse tree.
While tree kernels inspired us, the same methodology is not applicable in our case, simply
because our examples have much larger shape/parse trees than the common examples
in NLP. The number of features in a tree kernel increases exponentially when the tree
grows. Finally, our framework always begins the learning process with the default pdf
from the input grammar. If the user is interested in models that are unlikely in the initial
distribution, it can take many iterations before the framework displays any desirable
samples.

Future Work It would be interesting to extend the framework to also learn the spatial
distribution of models, e.g., the distribution of different tree species in a forest. In the
urban planning use case (Sec. 4.7.1), it could help to create smooth transitions between
the residential, downtown, and commercial districts. Another future project might take
the user out of the loop. Any black box system that can evaluate the goodness of a
certain type of model could be used to assign scores. For example, a physical simulation
could assess the structural stability of sample models and rate them accordingly. An
adapted grammar could avoid instable models. A different direction for future research
could also improve the design the features.

4.9 Conclusions

Our framework allows users to design pdfs for stochastic shape grammars and to adapt
the grammar so that it creates more models according to the designed pdf. Both expert
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4.9. Conclusions

and non-expert users profit from our system to encode difficult design constraints in
such procedural models as grammars and parametric models. Our contributions extend
the domain of exploratory modeling from finding single models to designing probability
distributions of entire shape spaces. We propose a new kernel function that compares
different derivations of a given grammar and use it in GPR to interpolate user-assigned
preference scores from a few sample models over the rest of the shape space. Non-terminal
split operations increase the degrees of freedom of stochastic grammars without altering
their shape space. This allows adapting grammars to derive models according to the
user-designed target pdf.
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5 Design Transformations for Rule-
based Procedural Modeling

We introduce design transformations for rule-based procedural models, e.g., for buildings
and plants. Given two or more procedural designs, each specified by a grammar, a design
transformation combines elements of the existing designs to generate new designs. We
introduce two technical components to enable design transformations. First, we extend
the concept of discrete rule switching to rule merging, leading to a very large shape space
for combining procedural models. Second, we propose an algorithm to jointly derive two
or more grammars, called grammar co-derivation. We demonstrate two applications of
our work: we show that our framework leads to a larger variety of models than previous
work, and we show fine-grained transformation sequences between two procedural models.

Figure 5.1: Tree L-Systems A design transformation computed from two different
L-systems (first and last images). Our method can compute a sequence of intermediate
results transforming one design into the other by combining and merging the L-systems
rather than the geometry of the two trees.
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original designs:

semantic matches:all discrete variations:

random fine-grained variation samples:

Figure 5.2: Coarse-Grained Versus Fine-Grained Transformations Two simple
grammars have correspondences (called semantic matches) for the production rules that
generate the mass models and the building style (top right). Discrete rule switching spans
only a very limited shape space with four designs, the two original designs (top left) plus
two variations (middle left). Fine-grained rule merging can span a shape space with
infinitely many designs (bottom).

5.1 Introduction

Architectural design over centuries gives us many examples for the reuse, evolution, and
the combination of designs [SMR04, Kni94]. We study these design transformations and
present algorithms for their technical realization in the context of rule-based procedural
modeling.

Rule-based procedural modeling systems, such as L-systems and shape grammars,
provide an efficient method for the automatic creation of scenes with rich geometric
detail. The rules specify how to iteratively evolve a design from a crude initial shape to
a highly detailed model.

The simplest way to realize design transformations is to switch rules between different
procedural models, e.g., to replace the window rule of one building with the window
rule of another building. Rule switching can be used to combine two or more procedural
models using the framework of Bayesian model merging [TYK∗12].
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5.1. Introduction

discrete transformation sequence:

different fine-grained transformation sequences:

Figure 5.3: Transformation Sequences Discrete switches can only create very limited
transformation sequences while fine-grained rule merging enables the generation of different
interpolation paths that morph one design into another.

We improve on this initial idea. Rule switching is the simplest method to obtain
design transformations, but it only provides coarse-grained control and a limited number
of new designs. In our framework we complement rule switching with rule merging,
i.e., combining the effect of two rules. In contrast to rule switching, rule merging also
provides continuous changes and generally leads to an infinite number of variations. For
our solution we need to overcome two major challenges. First, we need to be able to
merge rules that are structurally different, e.g., they generate a different number of
shapes and place them in different spatial arrangements. Second, grammars also exhibit
structural differences globally. As a consequence, it is often not possible to establish
simple one to one correspondences between shape (rule) labels. In such cases we can
only establish sparse correspondences and it is not sufficient to merge individual rules.
We propose a solution to this problem by merging shape trees that are the result of
(partial) derivations using multiple rules. We call this new derivation framework grammar
co-derivation.

To summarize, we present the following main contributions. On the technical side,
we propose algorithms for rule merging for rule-based procedural modeling. On the
application side, we can generate a larger space of design variations than competing
methods (Fig. 5.2) and demonstrate fine-grained transformation sequences between
different procedural designs (Figs. 5.1 and 5.3). Transformation sequences are gradual
transformations of one design into another, and they can be shown as computer animations.
The generation of such transformation sequences is difficult to achieve using existing
work.
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Chapter 5. Design Transformations for Rule-based Procedural Modeling

5.2 Related Work

An inspiration for this project was Terry Knight’s book Transformations in Design [Kni94].
It describes how certain architectural styles evolved over time. The book goes further
than just defining the styles with shape grammars; it introduces meta rules that do
not operate on the shapes but rather modify the grammar’s production rules. The
evolution of a style can thus be represented by a sequence of meta rules that are applied
to the shape grammar. Knight’s work is based on the archetypal shape grammars
by Stiny [Sti82]. While she discusses architectural concepts, our work focuses on the
technical aspect of automatically computing design transformations. We demonstrate our
idea of co-derivation both in the context of grammars similar to CGA shape [MWH∗06]
and L-systems [Pru86].

In this section we only mention literature that is relevant to our design transformations.
For a complete overview of rule-based procedural modeling techniques, please refer to
Chap. 2.

Inverse Procedural Modeling and Grammar Induction In computer graphics
there are several recent approaches that study how to generate design variations given
a single existing design. Bokeloh et al. [BWS10], Stava et al. [ŠBM∗10], and Talton et
al. [TYK∗12] all propose methods to compute simple shape grammars from input designs
to generate variations of those input models. The main difference between our work and
previous work is the granularity of the combination. While previous work mainly relies
on rule switching, our grammar co-derivation and rule merging operations lead to a much
larger shape space.

Morphing and Style Transfer Our design transformations combine elements of volume
morphing and style transfer — two successful modeling methods in computer graphics.
Volume morphing was pioneered by Lerios et al. [LGL95] and Kanai et al. [KSK97]. An
overview over different morphing methods is given by Alexa [Ale02]. Similar to our work
are the methods by Alhashim et al. [ALX∗14, AXZ∗15] that do not only blend shapes
geometrically but also topologically.

Style transfer is the process of applying the style of one exemplar model to another
target model. Often geometric high frequency details are re-targeted and applied to
another mesh [BIT04, MHS∗14]. The same idea has also been applied to images [HJO∗01].
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Structure Preserving Editing There are structure-aware methods that automati-
cally keep the finer geometric details intact while the coarse shape of a 3D model is
changed [CLDD09, BWKS11, BWSK12]. Our method also has to deal with geometry
changes at the structural and detail levels. We have the advantage to work with rule-based
procedural models; if a design changes at a coarse level, the structure of the detail shapes
can be kept consistent by reevaluating their production rules. Our challenge is to keep
that consistency when combining elements from different grammars.

Design Exploration The space of all possible design transformations for a set of
grammars could be interpreted as a parametric model that spans a shape space. That
space could be navigated with an interactive exploration tool, e.g., the work by Talton et
al. [TGY∗09] or our own method from the previous chapter [DLC∗15].

5.3 Overview

5.3.1 Grammar Definitions

As our proposed concepts are applicable to a broader range of rule-based procedural
modeling systems, we describe our framework for a generalized set grammar, similar to
CGA shape [MWH∗06] and L-systems [Pru86]. We define a grammar G as a four-tuple:

G = 〈NT , T, ω, P 〉.

The grammar operates on shapes where each shape is assigned exactly one label, or
symbol. The symbols stem from two disjoint sets: non-terminals (NT ) and terminals (T ).
A shape can have a list of geometric and non-geometric attributes. The most important
attributes are encoded by the scope, i.e., a local coordinate frame and the shape’s size
defining a (bounding) box in space. The grammar derivation starts with a single shape
labeled with the special symbol ω ∈ NT , the axiom or start symbol. During the grammar
derivation, a shape is selected and a production rule (or just rule), is applied to it. P is
the set of rules of the form:

predecessor : cond → successor ,

where predecessor is a symbol ∈ NT and successor is a general procedure (or program)
that generates zero, one, or more successor shapes labeled with symbols (∈ NT ∪ T ).
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A rule can only be applied if its condition cond is met. A condition can depend on
shape attributes (e.g., the scope’s size, position, etc.), the rule’s parameters (in case of
parametric grammars), and other shapes. In our examples, we use conditions for occlusion
queries [MWH∗06] in building grammars and as a recursion counter in plant grammars
(the max number of derivation steps is initialized to n and decreased during derivation so
that a rule can stop the recursion when n < 0). We use the term deterministic grammar
if there is only a single possible derivation for all possible starting shapes. Otherwise, a
grammar is called stochastic. Procedural modeling systems differ in the way a successor
can be defined. Typically, commands like translation, scaling, rotation, instantiation of
mesh and texture assets, and splitting rules are used.

The derivation generates a shape tree. After applying a rule to a non-terminal shape,
all the shapes generated by successor will be added as children. We assume the derivation
order to be breadth-first.

5.3.2 Framework Overview

Our framework consists of multiple components. In a preprocess we establish sparse
correspondences between rules of the input grammars (Sec. 5.4.1). These correspondences
help our proposed co-derivation (Sec. 5.4.2) to synchronize the simultaneous derivation of
two grammars. The co-derivation algorithm uses two different strategies for rule merging:
1) a general shape matching and blending algorithm (Sec. 5.4.3) and 2) a specialized
algorithm for split rules (Sec. 5.4.4). We further describe the extensions necessary for
our two applications together with their results: co-derivation using multiple grammars
is important for generating variations of designs (Sec. 5.5.1), and we introduce a user
interface to control transformation sequences (Sec. 5.5.2).

5.4 Co-Derivation of Shape Grammars

5.4.1 Sparse Correspondences

We require a sparse set of correspondences between the symbols (rules) of the input
grammars. These correspondences are called semantic matches. In general, this is a
modeling problem that does not have a single correct solution, and we let the users
adjust the semantic matches according to their design intent. We use the tuple notation
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5.4. Co-Derivation of Shape Grammars

〈Syma, Symb〉 to say that symbol Syma in one grammar matches symbol Symb in another.

Since the structure of the grammars can be quite different, not every rule will have a
valid match. For the presented examples, only 24-54% of the rules have matches. We allow
one-to-many matches, i.e., it is possible that a rule has more than one match in another
grammar. For example, one grammar might have different rules for GothicWindow and
RoundWindow which both match the only Window rule in the other grammar. The
axioms of all grammars are always set to be a semantic match.

Finding semantic matches automatically is a very challenging problem and beyond
the scope of this dissertation. We have the user annotate selected rules with tags coming
from a set of architectural vocabulary (e.g., mass model, roof, façade, floor, window tile,
window, etc.). Rules with the same tag are automatically matched while non-tagged
rules are not matched. This assignment works in most cases. Otherwise the user can
manually refine the semantic matches.

5.4.2 Grammar Co-Derivation

Grammar co-derivation is an extension of traditional grammar derivation to two grammars.
We first look at the problem of extending a single derivation step, and then use our
proposed solution to design a complete grammar co-derivation algorithm.

The elementary step of a traditional shape grammar is to select a shape, select a rule,
and replace the shape by its successor by adding newly generated shapes as children in
the shape tree. We call the elementary step of grammar co-derivation, used to derive
shapes with semantic matches, a co-derivation step. The co-derivation step generates
separate partial derivations of a shape x for each grammar and merges both outputs.
The fundamental challenge of designing a co-derivation step is the following: if we only
apply a single rule from each of the two input grammars to x, we likely end up with
two sets of incompatible shapes. Some of these will have semantic matches and others
will not. However, good merging results can only be achieved if we work with two sets
of shapes where all of them either have semantic matches or are terminal shapes. A
co-derivation step therefore needs to synchronize the derivation. Each grammar needs to
derive shape x until only terminal shapes or shapes with semantic matches exist. Our
co-derivation step has three parts (also see Fig. 5.4):
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1. Derive x with both grammars. Similar to traditional grammar derivation, we also
use breadth-first order, but stop at shapes that have a semantic match or that are
terminals. See Alg. 5.1.

2. Collapse the two subtrees. For each of the two subtrees, we bring all shapes into a
common coordinate system and delete intermediate nodes.

3. Merge all shapes of both collapsed subtrees into a final shape set. The merging
can either combine shapes from the two derivations, discard shapes, or copy shapes
unmodified. The resulting shapes are appended to the shape tree as x’s children.
The merging operation is more involved and we will explain two merging algorithms
in Secs. 5.4.3 and 5.4.4.

To define a complete co-derivation, we recursively apply co-derivation steps until all the
shape tree leaves become terminal shapes. See Alg. 5.2 for pseudo code.

Algorithm 5.1 coDerivationStep_1(shape, grammar)
1: derive(shape, grammar)
2: repeat
3: done = true
4: for each l ∈ leaves(shapeTree) do
5: sym = symbol(l)
6:
7: # keep deriving non-terminal leaves without semantic matches
8: if � semantic match for sym && sym ∈ NT then
9: derive(l, grammar)

10: done = false
11: until done

5.4.3 Rule Merging

The input to this step are two sets of shapes, one from grammar Ga and one from
grammar Gb. The output of this step is a single set of shapes that are either directly
copied from Ga or Gb and/or shapes that are combined by blending pairs of shapes.
In general, this is an underspecified problem with many possible solutions. In order
to manage this large design space, we propose the following method to parameterize
the solutions. For each semantic match, we use a parameter ps ∈ [0, 1]. ps = 0 means
that all shapes are directly copied from grammar A while ps = 1 means all shapes are
directly copied from grammar B. In addition, we use a single threshold th (default 0.5)
to facilitate certain discrete decisions, e.g., when to switch assets.
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1) Derive shape with
both grammars

2) Collapse shape trees
and concatenate trans-
formations

3) Merge and blend
resulting shapes

Figure 5.4: The Co-Derivation Step 1) A shape, whose symbol A has a semantic
match, is separately derived with both grammars. 2) Both subtrees are collapsed and all
leaf shapes are transformed into a common coordinate system. 3) The resulting shapes are
combined in a merge step according to user preferences. Shapes can come from the first
(green) or the second (red) grammar. If a shape’s symbol has a semantic match, it can
also be blended together with matching shapes from the other subtree (brown). Blended
shapes are labeled with the match tuple.

Algorithm 5.2 Co-Derivation Process
1: shapeTree = new node(〈Axiom, Axiom〉)
2:
3: repeat
4: for each l ∈ leaves(shape_tree) do
5: if symbol(l) /∈ T then
6: # derive twice and collapse shape trees to height 1
7: st1 = copy(l)
8: coDerivationStep(st1, grammar1)
9: collapse(st1)

10: st2 = copy(l)
11: coDerivationStep(st2, grammar2)
12: collapse(st2)
13:
14: # calculate resulting set of shapes
15: res = mergeAndBlend(leaves(st1), leaves(st2))
16: l.append(res)
17: until shape_tree does not grow anymore
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Munkres Matching Closest Distance Matching

ps = 1
3 ps = 2

3 ps = 1
3 ps = 2

3

Figure 5.5: Shape Matching & Blending The two automatic strategies for shape
matching are Munkres assignment (top left) or closest distance matching (top right).
Munkres matches are always bidirectional. (bottom) The merged and blended resulting
shape sets are shown for the parameter values of 1

3 and 2
3 with a threshold of 0.5.

To compute the resulting set of shapes, we need three ingredients: 1) a distance
metric that can be computed between each pair of shapes, 2) a matching algorithm that
computes matches based on the distance metric, and 3) an interpolation algorithm that
combines matched (and unmatched) shapes.

We propose a distance metric d that is the sum of two components, a semantic distance
ds and a geometric distance dg. The semantic distance ds is zero if there is a semantic
match between the labels of the two shapes and infinity otherwise. That means that
two shapes can only be matched if there also exists a semantic match between their
corresponding symbols. The distance-metric dg compares shape positions and scope sizes
by summing up the point-to-point distances of the eight scope corners.

We propose two automatic ways to compute matches based on the metric d. (We
allow the user to override the automatic assignment for additional artistic control, but
this option is not used in any of our results.) 1) The first strategy uses the Munkres
(or Hungarian) algorithm [Mun57] for finding a minimum weight maximum matching
in a weighted bipartite graph. It results in only one-to-one and one-to-none matches.
2) The second matching algorithm assigns each shape from Ga’s output the closest
shape derived by Gb and vice versa. Note that this assignment, unlike the result of the
Munkres algorithm, is not necessarily symmetric. All pairs of shapes that mutually map
to each other are included in the set of pairs. The Munkres matching method might
leave remaining single (unmatched) shapes while the closest distance approach will likely
end up with some unidirectional matching pairs.
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Our proposed interpolation algorithm works as follows. Singles from Ga and unidi-
rectional pairs pointing from Ga to Gb are kept if the corresponding parameter ps is
below the threshold th and vice versa. The advantage of this approach is that it also
allows one-to-many matches. A shape matching and blending example is given for both
proposed strategies in Fig. 5.5. The shapes of matching pairs are blended by interpolating
their scope attributes according to the corresponding parameter ps. Position, size, and
color are linearly interpolated, while we use quaternion slerp to interpolate the shapes’
orientations with respect to their centers. For overlapping blended shapes, an additional
parameter decides if they are kept as is or if they are merged together (which enables
interesting scenarios such as the one with multiple houses merging into one building
shown in Fig. 5.12). Currently, we do not support the morphing of asset geometry
attached to the shapes. We simply use the threshold to switch between the assets from
Ga and Gb. The same applies to all textures. In the output, all blended shapes are
labeled with tuple names.

5.4.4 Rule Merging for Split Rules

Split rules [WWSR03, MWH∗06] are a particular type of rule to define the successor of a
shape. They are most commonly used for architectural modeling. A split rule subdivides
a shape along an axis into a set of smaller shapes that are tightly aligned. For example,
a split rule along the y-axis can partition a façade into individual floors. An advantage
of split rules is that they can be written to adapt to the size of shapes (encoded by
the scope). For example, a split rule can generate a reasonable number of floors for
façades of any height. An important aspect of split rules is that they partition the scope,
i.e., none of the successor shapes should overlap, and all the space defined by the scope
should be filled by successor shapes. The previously described solution cannot guarantee
these two conditions, because the shapes produced by a split rule cannot be transformed
independent of each other. For example, a shape in the split pattern can only become
larger if other shapes shrink. Our method for handling split rules guarantees that the
output is also a valid split pattern. We again use a parameter for semantic matches to
parametrize the solution space.

Our proposed algorithm has two steps, structure computation and geometry computa-
tion. The first step computes a sequence of symbols (thereby deciding on the number,
type, and relative position of symbols). The second step computes the shape attributes,
such as size.
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Structure Computation For example, a string for a split pattern of a building floor
consisting of windows (W ), pillars (P ), and wall pieces (ω) could be:

{ ω, W, ω, P, ω, W, ω, P, ω, W, ω, P, ω, W, ω, P, ω, W, ω }.

In building designs the split patterns consist of relevant shapes such as ornaments or
windows. For our split transformation algorithm that is tailored towards such architectural
patterns, the wall pieces that make up the spacing between the important elements are
irrelevant. The user indicates the symbol that is used for spacing (default Wall). The
example pattern is reduced to:

{ W, P, W, P, W, P, W, P, W }.

The removed wall shapes will be reinserted again in the geometry computation step.

We propose an algorithm based on an edit distance between two strings. We optimize
the edit distance and take the lowest cost edit sequence to compute intermediate strings.
The algorithm takes two reduced strings as input (src and dst) and produces a sequence of
intermediate strings. A single parameter value pr will define what string of the sequence
is used at the current state. The edit distance is computed by summing the cost of
elementary edit operations:

• delete – Removes a single symbol from the string. Only applicable if the symbol
(or a semantic match) appears in src and dst but more often in src.

• insert – Inserts a single symbol. Can be used if the symbol (or a semantic match)
appears in src and dst, but more often in dst.

• switch – Exchanges the positions of two different, neighboring symbols.

• delete all – Removes all symbols with a given label that only appears in src.

• insert all – Inserts all symbols with a given label that only appears in dst.

• semantic switch – Replaces all symbols of a label with semantically matching
symbols.

Since split rules are predominantly used for regular patterns with repeating elements
or with a clear structure, we also want edit operations that keep such regularities intact.
For strings that are symmetric, i.e., they read the same from the left and the right (like
a palindrome), we define symmetric versions of the delete, insert, and switch operations.
These symmetrically apply the same edit operation twice. Further, if a string is symmetric,
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basic edit operation symmetric version

delete

insert

switch

delete all

insert all

semantic switch

Figure 5.6: Edit Operations Overview of all edit operations for split transformations.
For details see Sec. 5.4.4.

edits that result in a symmetric string again will be preferred over edits that break the
symmetry. All edit operations are summarized in Fig. 5.6. Two simple examples of what
is possible with such edits are shown in Fig. 5.7.

Each possible edit operation has an assigned cost that reflects how drastic the change
of the string is. The task of finding a smooth sequence of strings that gradually changes
from src to dst can be cast as a shortest path problem on a graph that can be solved
with Dijkstra’s algorithm. Graph nodes represent strings while each edit operation and
its cost correspond to a weighted edge. We never store the entire graph in memory since
we do not know it upfront. We expand it on the fly; when the search arrives at a specific
string, we grow the graph by adding all remaining neighbors of the current node. All
edit operations except the symmetric ones have a cost of 1. If an edit breaks the string’s
symmetry its cost is increased by 100 to assure that a non-symmetry breaking sequence

delete all delete delete

switch switch switch semantic switch

Figure 5.7: Edit Sequences Two simple sequences that apply edit operations. (top)
First all pillars are removed, then the number of windows is gradually reduced to three.
(bottom) A door is moved from the left to the right with subsequent switches, then a
semantic switch changes the door style.
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is given priority (if one exists). Symmetric edit operations cost 2.5. They are less gradual
than two normal edit operations because they change two symbols at once. However, it
is often not possible to apply two subsequent normal edit operations without breaking
the symmetry. To prevent the search from exploding, we also penalize edits that result in
strings that are longer or shorter than the two input strings. This speeds up the search
without changing its outcome.

Geometry Computation This step of the algorithm sets the shape sizes and adds
spacing between the elements by reinserting walls. Our observation to make this algorithm
work is that we not only need to consider the sizes of shapes in the two input sets but also
the average sizes of shapes occurring in the model in general. We fully derive all input
grammars and compute the average sizes of all shapes with a specific symbol and the
average distances between neighboring shapes. If a symbol in the output has a semantic
match, the average shape sizes from grammars Ga and Gb are interpolated according to
the parameter pr. The average distances are used to reinsert Wall shapes of that size.
If two symbols do not appear as neighbors in the input, the average spacing between
one symbol and any other symbol is used instead. The sum of the sizes of all resulting
shapes might not exactly match the size of the parent scope. Therefore we uniformly
rescale the Wall shapes to match the size. In Fig. 5.8 we show an example result of our
method for transforming split rules applied to two hierarchical patterns consisting of
several nested splits.

5.5 Applications & Results

We describe how we use and adapt the basic design transformation framework to enable
our two modeling applications, and we present their results.

5.5.1 Variety Generation with Multiple Grammars

To compute a co-derivation of multiple input grammars, we extend our framework. When
working with n grammars, a semantic match tuple can have a maximum size of n. To
derive shapes with tuple labels, we randomly pick two of the participating grammars
that define a rule for that symbol and apply the co-derivation step described in Sec. 5.4.2.
To generate a random variety of shapes, we can randomly sample parameters for the
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Figure 5.8: Façade Split A transformation between two hierarchical façade split
patterns. The first (top left) and last (bottom right) images show the two inputs to
the algorithm, and the remaining eight images show intermediate steps. The entire
transformation applies 18 gradual changes to façade structure over the timeline. For
elements with semantic matches, scope sizes and shape colors are smoothly interpolated.

semantic matches and their thresholds during the derivation.

We explore the concept of generating a variety of designs in the context of urban
modeling. The idea behind our approach is that it is much easier to write deterministic
grammars depicting a few designs (for example by recreating designs from photographs)
rather than writing a stochastic grammar describing a larger shape space. Design
transformations can then be used to generate a city consisting of new unique models of
the same architectural style. The input to our example are four deterministic exemplar
grammars depicting Venice style buildings. The output is a city consisting of about 400
buildings (Fig. 5.9). The buildings are the result of randomly combining and transforming
parts of the different Venice grammars.

To compute the design transformations we use the shape blending algorithm from
Sec. 5.4.3 for the block and roof rules and the split rule merging algorithm from Sec. 5.4.4
for the façade rules.
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global timeline

semantic match 1

semantic match 2

0 t 1

ts1 tth1

ts2 tth2 te2

Figure 5.11: User Interface A sketch of the user interface for making transformation
sequences. The transformation of the first semantic match is gradually executed over the
time range [ts1 , 1] and has not started at t. The transformation for the second semantic
match is active at t since t ∈ [ts2 , te2 ]. tth1 and tth2 represent the thresholds that control
discrete decisions. For semantic match 2, asset geometry and textures are taken from the
second grammar since t > tth2.

5.5.2 Transformation Sequences

One application of our work is to compute a transformation sequence between the design
of one grammar and the design of another. There are two conflicting goals for designing
transformation sequences. First, all intermediate designs should be valid. Second, the
transitions between intermediate designs should be as smooth as possible. For example,
a valid building design needs to have windows of a certain minimum size, which requires
discontinuities in the transformation sequence. However, these should be limited as much
as possible to favor smoothness. Similar animations are often used as special effects
in the entertainment and movie industry. We control transformation sequences by a
global timeline parameter t ∈ [0, 1]. All individual transformation parameters for each
semantic match are derived from the global timeline. The user has the possibility to
change the default mapping by adjusting start and end times and thresholds. By default
all parameters span the full range and all thresholds are set to 0.5. Fig. 5.11 illustrates
the user interface.

We show transformation sequences for building and plant models. All sequences can
have alternative interpolations paths. See Fig. 5.3 and the Sternwarte example described
in the following.

Farm → Castle In Fig. 5.10 a farm transforms into a castle. Both consist of several mass
models that are matched as follows: Shed and MainBuilding symbols match MainHall,
CastleWall, and Gate symbols, and Silo corresponds to Tower .

Residential Houses → High-Rise Fig. 5.12 shows the transition of a group of several
small residential houses into fewer but larger apartment blocks. From there the scene

99



Chapter 5. Design Transformations for Rule-based Procedural Modeling

Figure 5.12: Houses → High-Rise A transformation from several small residential
houses into apartment blocks that eventually converge into a high-rise office building. For
this scene we allow one-to-many shape matches, and we decide to collapse intersecting
mass model shapes.

transforms into a high-rise building. Merging the buildings together in such a fashion is
facilitated by one-to-many matches.

Chain of Transformations We use four procedural buildings to create transformations
between them: the Sternwarte building designed by Semper, two modern residential
buildings, and a Hausmannian building from Paris. Transforming the buildings in the
given order leads to three transformation sequences that can be concatenated together
as shown in Fig. 5.13. An alternative transformation of the first part, in which all façade
elements change before the mass models, is shown in Fig. 5.14. In App. A.1 we give
detailed descriptions of the parameters and settings of both versions of the first part of
this transformation chain.

This scenario was created as an homage to Müller et al.’s video1 [MWHG05] in which
Semper’s Sternwarte model is morphed into Corbusier’s famous Villa Savoye. With
our system it is easier to create such animations because it avoids laborious manual
keyframing tasks.

Tree L-Systems The first plant transformation sequence (Fig. 5.1) is based on two
procedural models presented by Honda [Hon71] and by Aono and Kunii [AK84]. The
example illustrates how a monopodial branching pattern smoothly changes into a sympo-
dial one. In both cases, an apex will always create exactly two offspring branches. An
in-depth description of this tree L-system transformation is presented in App. A.2.

1https://www.youtube.com/watch?v=deSpf9EGcvw, accessed on 2017/02/28
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Figure 5.13: Sternwarte Chain An animation sequence that consists of several
sequential transformations. Semper’s Sternwarte design is first changed into a white
modern building, then into a red modern building, and finally into a Hausmannian
building.

Figure 5.14: Sternwarte Chain 1 Alternative An alternative interpolation path for
the same transformation as shown in the first row of Fig. 5.13. This time all façade rules
are transformed before any of the mass model rules.
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Figure 5.15: Flower L-Systems A more complicated transformation sequence that
gradually changes the output of one flower L-system into another. Design transformations
do not only blend the overall tree structure but also the smaller leaf and blossom shapes.
What further complicates the transformation is that the growing rules for both flowers are
structurally very different.

Flower L-Systems A more complex plant example (Fig. 5.15) is inspired by the L-
systems in Figs. 1.26 and 3.14 in Prusinkiewicz and Lindenmayer’s book [PL90]. Not
only does this example feature leaves and blossoms whose colors, shapes, and sizes are
interpolated, but the branching structure is also more complicated. In each iteration, the
first grammar grows each apex into two subsequent internodes and three new apexes, one
between the internodes and two at the end of the outer internode. The other grammar
grows an apex into an internode followed by one younger and one older apex. At the
next iteration the older apex recursively repeats the branching, while the younger apex
grows into an older one (which will only expand later). The rules have to be carefully
matched so that the merge and blend steps happen after every iteration for the first
L-system but only after every other iteration for the second L-system.

5.5.3 Quantitative Results

Our implementation of design transformations builds on a newly designed procedural
modeling system that combines elements of CGA Shape, G2 [KPK10], and L-systems.
We implemented the framework in C++ and used a 2012 MacBookPro to measure the
running times. See Tab. 5.1 for the timings of our algorithm and other quantitative
information of the examples in this chapter.
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Name
Figs.

Time [s]
#Term

inals ×103

#Rules
#Match

es

%NT w. Match

#Params

#Edits

Tree L-Systems 5.1 0.11 0.5 23 6 39 10 0
Fine-grained Variations 5.2, 5.3 0.05 0.6 34 4 24 10 0/6
Façade Split 5.8 0.02 0.2 51 15 54 30 0
Venice Variations 5.9 0.06 0.8 108 15 46 25 0
Farm → Castle 5.10 0.18 3.3 117 20 24 50 22
Houses → High-rise Part 1 5.12 0.20 1.8 48 9 38 14 3
Houses → High-rise Part 2 5.12 0.23 2.9 49 9 37 14 4
Sternwarte Chain Part 1 5.13, 5.14 0.15 1.0 107 21 36 39 17/23
Sternwarte Chain Part 2 5.13 0.06 0.7 60 12 40 22 4
Sternwarte Chain Part 3 5.13 0.10 1.5 85 13 27 23 7
Flower L-Systems 5.15 0.04 0.3 42 8 39 18 4

Table 5.1: Results We list the following results (and their corresponding figures): the
average computation time per transformed model (mean over 200 frames or variations),
the average number of terminals shapes in the design, the number of rules of all involved
grammars, the number of semantic matches, the average percentage of rules with matches
(%NT w. Match), the number of parameters, and the number of parameters adjusted
by the user (#Edits). If a result has two different interpolation paths, we show two
different numbers of user edits. The percentage of rules with matches is an indicator of
the sparsity of the correspondences. It cannot simply be inferred from the number of rules
and semantic matches since certain rules are part of more than one match. The number
of parameters hints at the large size of the shape spaces. Comparatively few user edits
are usually sufficient to get a reasonable result.

5.6 Discussion

Our two applications clearly show how design transformations facilitate the creative
process of combining and merging parts of different grammars. It is important to note
that our framework does not need stochastic grammars as input but works directly with
deterministic grammars. While we can also apply our method to stochastic grammars,
modeling deterministic grammars is much easier for the user. Therefore, our framework
can help a user to accelerate modeling larger environments because the time-consuming
modeling step of extending deterministic grammars to stochastic ones can be omitted.

Difference to L-Systems Our design transformations are not directly applied to L-
systems. Instead we recreate the procedural plant descriptions using our grammar
framework. The main reason is because traditional L-systems derive a complete model
as a string in a first pass and then interpret the string as a geometric model in a second
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pass. In contrast, our grammar interpreter provides a geometric interpretation at every
intermediate step, as required by our transformation framework. Plant models also
require two minor changes in the derivation. First, rotations are not interpolated around
shape centers, but are interpolated around the attachment points at the scope origins.
Second, the output of a merging operation needs to be a valid branching structure. This
can be achieved by enforcing connectivity as a constraint in the merging step.

Comparison with Talton et al. [TYK∗12] Their method for Bayesian grammar
induction has similarities with our first application insofar that it also allows to generate
variations from a small set of input models. For Talton et al.’s method, the inputs are
given as scene graphs annotated with semantic labels. These trees are automatically
converted into trivial, deterministic grammars. By applying ideas from natural language
processing, a more general and stochastic grammar can be inferred. This works very well
for the examples presented in their paper. All inputs and also the resulting grammars
are, however, Lego-like: all designs are composites of predefined components with given
connector locations (similar to Plex languages [Fed71]). Our approach is more flexible.
It can also deal with more advanced operations such as extrusions, component and
subdivision splits, etc., and not only stick existing pieces together.

Comparison with Knight [Kni94] With rule switching it is always possible to define
a new (transformed) grammar that can derive a transformed design. For rule merging
however, this is not the case anymore. Our rule merging solely operates on the shapes
that are output by the production rules. In essence, we generate a valid shape tree by
combining and mixing elements of several grammars. None of the involved grammars
alone can generate such a shape tree on its own. This also clearly distinguishes our project
from Knight’s more abstract work: she uses meta rules to describe how production rules
of a grammar change while always having a valid grammar at each step. While our
approach does not operate on the grammars themselves, it works with the output of set
grammars that can handle more complex models than Knight’s schematic and purely
geometry-based shape grammars.
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5.7 Limitations and Future Work

Our work has several limitations and possibilities for improvements. First, it would
be better if semantic matches could be found fully automatically without any manual
annotations. This is a very hard problem since one single mismatch can impair or even
completely ruin the result. It is elusive and some human knowledge or preference will
always be required. Some initial results for a related problem were presented by Alhashim
et al. [ALX∗14, AXZ∗15]. However, this problem becomes significantly more difficult
for our inputs since semantic matches might exist between parts of the design that are
geometrically and structurally different.

We aim for transformation sequences that are as smooth as possible, but there are
still noticeable discrete changes when transforming one model into another. The reason
is that many objects, such as windows, cannot realistically grow from zero size, but they
need to start appearing with a realistic minimum size. This leads to some discontinuities
in the transformation. Switching terminal assets also leads to small discontinuities; it
would interesting to morph them via convolutional Wasserstein barycenters [SdGP∗15].

Our edit operations for split rules can transform many regularly structured splits, but
not all of them. It would be helpful to expand the system with more edit operations,
e.g., with one that removes one repetition out of a repeat split. Further research could
also lead into the direction of transforming less regular or even random split patterns.

5.8 Conclusions

We present design transformations as a modeling tool for rule-based procedural modeling.
On the application side, we show two improvements of the state of the art. First, we
show how design transformations can create a larger set of variations from a set of input
designs than previous work. Second, we show how to compute fine-grained transformation
sequences between two input designs that cannot be generated with previous work. We
describe two main components that enable design transformations: grammar co-derivation
and rule merging. The results show example design transformations for a variety of
building and plant models.
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6 Conclusions

In conclusion, we present algorithms that address some of the drawbacks of current
rule-based procedural modeling systems. More specifically, we contribute 1) a pipeline
that visualizes the diversity of models in the shape space of a given grammar, 2) a
framework that allows users to adapt the probability distribution of the models generated
by a grammar according to their design intent, and 3) a method to transform between
designs defined by different grammars. Each system is different, remedies a different
limitation of rule-based procedural modeling, and makes shape grammars more accessible
to novice users.

We introduce thumbnail galleries for rule-based procedural models to help users
visualize and grasp the range of variations that grammars can define. This is helpful
when one is confronted with several grammars to choose from. We show how a new set
of view attributes allows us to find the best view of a procedural model and compare
two different models derived from the same grammar. Based on these view attributes,
the pipeline samples a grammar’s shape space, clusters the sample models, ranks them,
and arranges selected representatives rendered from their best viewpoint in a resulting
thumbnail gallery. Such galleries provide an intuitive visual understanding of a shape
space.

We demonstrate that stochastic grammars with undesirable default distributions can
be adapted to reflect a user’s intent. A grammar’s default distribution also often contains
completely unwanted models that are avoided with our method. New distributions for
different tasks are designed with an active learning approach that builds on Gaussian
process regression. Grammar parameters and shape tree paths are used as features in
a kernel function to compare models generated by the same grammar. The important
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features vary for different design tasks, and they are detected by automatic relevance
determination. We show how splitting relevant non-terminals provides a solution for
the difficult problem of modifying a grammar to generate new models according to a
designed distribution. Also novice users can use the system as no understanding of the
grammar is required. Additionally, the framework can be used to explore the shape space
of a grammar.

Finally, design transformations solve the non-trivial task of combining elements of
different grammars to emerge new designs. Our framework is guided by the user and first
creates semantic matches to establish correspondences between grammars. Then we apply
grammar co-derivation to jointly derive several grammars rules. It provides fine-grained
control for merging the outputs of the rules at different stages of the derivation process.
Design transformations allow the generation of innumerable variations from a set of
procedural designs by randomly combining and merging their different components. We
can also create animated transformation sequences between two procedural designs.

6.1 Future Work

There are ideas for future research directions that are directly related to the three main
topics of this dissertation, e.g., improving the sampling strategy for the thumbnail galleries,
replacing the user with a black box when learning a pdf and improving the feature design,
or finding semantic matches automatically. These have already been mentioned in the
discussions of the corresponding chapters (Sec. 3.6, Sec. 4.8, and Sec. 5.6). It would
further be interesting to see if the features used for designing distributions for shape
spaces could also be used in the clustering step of the thumbnail gallery pipeline. We
would expect these features to perform better because they were developed after the
view attributes with the unique purpose of distinguishing models.

Although our three main contributions ameliorate some of the limitations of rule-based
procedural modeling systems, there are still remaining problems. Some of the major
advantages of most rule-based systems are also their drawbacks. The context-freeness and
also the implicitly defined control flow of shape grammars keeps the syntax simple and
makes shape grammars easy to use, but they unfortunately also hinder the expressiveness
for modeling complicated structures that have to interact and query each other. We
believe that research towards more expressive shape grammars without overcomplicated
syntax will become important.
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Ideally, in the future we could combine all these techniques, and more, in one common
tool. For example, this tool would feature a grammar database together with an
interactive user interface to browse and explore grammars. At first, thumbnail galleries
would provide previews of grammars. The shape spaces of promising grammars could
then be explored in more detail with our learning approach by iteratively designing
distributions that generate models close to the current model(s) of interest. If several
models are selected, design transformations would allow users to mix and merge their
components (with an extension to stochastic grammars and an automatic way to find
meaningful semantic matches). We also hope that novel machine learning techniques
will give inverse procedural modeling techniques a boost. The grammars in the database
should not be written manually anymore but rather learned directly from acquired data
such as point clouds or photos. We envision a future for shape grammars that will provide
a full tool set not only to visualize, adapt, and transform grammars, but also to acquire
or learn them automatically from various sorts of input data.
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A Detailed Design Transformation
Result Descriptions

In this appendix we provide detailed descriptions of the grammars, the semantic matches,
their parameters, and the entire co-derivation process for two of our results in Chap. 5.
We first provide some insights into the transformations between Semper’s Sternwarte
and the white modern building via two different interpolation paths (Figs. 5.13 and 5.14).
Second, we explain how we transform the two tree L-systems in Fig. 5.1. We use the
notation @tag to annotate rules that we consider for semantic matches (Sec. 5.4.1). For
each possible pair of two rules (one from each grammar) with the same tag, a semantic
match is automatically established.

A.1 Sternwarte Chain Part 1

Mass Models The first co-derivation step derives the start shape with the axiom rules
of both grammars. It passes through some intermediate (untagged) rules before it comes
to a halt after all mass model shapes have been instantiated. Their rules are tagged with
@mass_lvl0, @mass_lvl1, or @mass_lvl2 for shapes on the ground plane and shapes
at two higher stacking levels. The tags essentially define a synchronization barrier
that allows to apply a match & blend step (Sec. 5.4.3) to the mass models before the
co-derivation continues. Fig. A.1 shows the result of the shape matching.

Afterwards, in the second co-derivation iteration, the rules split the mass models into
their faces for façades and roof tops, and they also generate railings on the Sternwarte
roofs and support columns for the white modern building. The component splits of
both grammars always produce the same exact shapes. For them, the interpolation
parameters have no influence on the outcome of the co-derivation steps since the matched
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LeftWing

Tower

Main2

Main1

Main0
RightWing

Bottom

Middle

Top

Bottom

Figure A.1: Shape Matching The result of the Munkres matching for the first part of
the Sternwarte Chain. Only shapes with the same colors can be matched. Gray shapes are
tagged as @mass_lvl0, blue shapes as @mass_lvl1, and orange shapes as @mass_lvl2.
The unmatched shapes LeftWing and Tower will disappear during the transformation
while the other shapes are blended with their matches.

Figure A.2: Sternwarte and White Modern Building Façades The two façade
styles for the upper mass models of both building designs.

and blended shapes are identical. But the railings and columns are only defined in
one of the two grammars, and if these elements are present or not depends on the
thresholds of the semantic matches that control the co-derivations (〈Main2 , Top〉 and
〈RightWing, Bottom〉). The thresholds are visible in Figs. A.3 and A.4.

Façade Transformations The next co-derivation steps of interest are the split trans-
formations of the façades. We hierarchically apply the technique presented in Sec. 5.4.4.
As example, we describe the transformation of the façades shown in Fig. A.2. They are
the façades of the long sides of the blue shapes in Fig. A.1. The automatically computed
edit sequence for that 〈YellowFacade, Facade〉 co-derivation is:

{ Floor1, Ledge } delete all Ledge

{ Floor1 } semantic switch Floor1 → Floor2

{ Floor2 } insert Floor2

{ Floor2, Floor2 },
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A.1. Sternwarte Chain Part 1

where we use the subscripts to distinguish symbols that occur in both grammars. The
edit sequence for the next lower level, controlled by the semantic match 〈Floor , Floor〉,
is given in the following. The notation is: P for Pillar , Yt for YellowWinTile, and Wt
for WindowTile.

{ P, P, Yt, P, Yt, P, Yt, P, Yt, P, P } delete all P

{ Yt, Yt, Yt, Yt } semantic switch Yt → Wt

{ Wt, Wt, Wt, Wt } insert Wt

{ Wt, Wt, Wt, Wt, Wt } insert Wt

{ Wt, Wt, Wt, Wt, Wt, Wt }

Window tiles are transformed as vertical splits. Their strings only consist of one single
Window shape (after removing the Walls) and the edit sequence is a single semantic
switch. Even though the edit sequence is very simple, the split transformation still
provides a nice effect because the size interpolation smoothly shrinks the window over
time.

Parameters In Figs. A.3 and A.4 we list all semantic matches together with their
parameters for both interpolation paths of the transformation between the Sternwarte
and the white modern building. For some semantic matches, some of the parameters are
unused or ignored and we do not show them in the figures. Possible reasons for that can
be:

• If a shape is not the result of a blending operation and if the shape does not initiate
a split transformation, ts and te are not used.

• If no discrete decisions need to be made, tth is not needed.

• Split transformations do not need thresholds either.

• Parameters are irrelevant when both grammars generate identical output in a
co-derivation step.

• The parameters do not matter if a semantic match is never applied.
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A.2. Tree L-Systems

A.2 Tree L-Systems

The second example transforms between the two L-systems by Honda [Hon71] and by
Aono and Kunii [AK84]. We ported the L-systems to our rule-based modeling framework.
While it is the example with the lowest number of rules and with only a few semantic
matches, understanding it is not trivial due to its recursive nature.

Grammar Descriptions Executing the first grammar yields a monopodial tree (Fig. A.6
top row). It has three different branching rules, A, B, and C. They each generate a
straight and a lateral segment. Rule A is responsible for the tree’s vertical growth
towards the sky, while rules B and C generate branches growing to the sides. The only
difference between B and C is that their lateral segments lie on opposite sides of the
straight segment. The second grammar grows a sympodial tree (Fig. A.6 bottom row)
that is based on only two branching rules, A and B. Rule A is only applied once at the
beginning for the trunk, all remaining branchings are handled by B.

Both grammars also use a rule F that instantiates a cylinder mesh to represent a
segment’s geometry (F originally stood for forward, telling the turtle that executes the
L-system to advance). All remaining rules are responsible for gradually diminishing the
tree’s thickness or they implement the exit conditions for the recursive execution of the
L-systems.

We only use two different tags for the symbols: @branching for A, B, C in the first
grammar and for A, B in the second grammar, and @segment for F in both grammars.
Putting the @branching tag on all branching rules means that we consider them all as
interchangeable. The tags results in the six semantic matches listed in Fig. A.5.

In the following, two simplified grammars show the overall structures of both L-systems.
The ellipses stand for affine transformations that are of no relevance for this explanation.
Untagged in-between rules have been removed.

ω → . . . A ω → . . . A

A → F . . . [. . . B] . . . A A → F . . . [. . . B] . . . B

B → F . . . [. . . C] . . . C B → F . . . [. . . B] . . . B

C → F . . . [. . . B] . . . B
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〈ω, ω〉
〈A, A〉
〈A, B〉
〈B, B〉
〈C, B〉
〈F, F 〉

0 1

Figure A.5: Transformation Parameters for Tree L-Systems All the parameters
of all semantic matches are set to their default values. Start times are set to 0 and end
times to 1. No thresholds are shown since no discrete choices have to be made for this
transformation: both designs do not use textures, the branch meshes are identical in both
grammars, and the co-derivation steps never end up with any unmatched shapes.

Co-Derivation Steps A few iterations of the growth structure encoded by these rules
are shown in the top and bottom rows of Fig. A.6. The interesting parts of the entire
co-derivation happen in the co-derivation steps of our interchangeable branching rules
and we explain it by means of the semantic match 〈A, A〉. The three parts of that
co-derivation step are:

1. The given shape is derived with the A rules of both grammars. Both generate three
successor shapes each, one F shape at the attachment point that leads to two new
branching shapes.

2. The subtree collapsing step can be skipped since the simplified grammars do not
generate any shapes without semantic matches.

3. For the shape matching and blending, we choose the Munkres strategy. In this case
it works on two sets of three shapes each. The F shape from the first grammar
can only be matched with the F shape from the second grammar. The remaining
shapes are all compatible for matching. All shapes are matched and therefore all
of them are blended, resulting in three shapes labeled 〈F, F 〉, 〈B, B〉, and 〈A, B〉.
The blending interpolates branching angles, segment lengths and radii, and color.
This exact matching and blending is visualized between the first two iterations in
the middle row of Fig. A.6.

Co-derivation steps for the other three semantic matches for branchings (〈A, B〉, 〈B, B〉,
and 〈C, B〉) are analogous since all branching rules always generate three similar successor
shapes. Examples for these are present in columns three and four of the figure.
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Appendix A. Detailed Design Transformation Result Descriptions

Parameters Note that the semantic matches 〈B, A〉 and 〈C, A〉 do not appear in the user
interface (Fig. A.5) even though the tags automatically establish these correspondences.
This is because such a situation can never occur. Rule A in the second grammar is
only used in a co-derivation step once. That one occurrence is controlled by the 〈A, A〉
semantic match. The user interface further shows that all parameters are set to their
default values for this tree L-system transformation.
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