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Abstract
In this thesis we have studied the emergence of spontaneously dimerized phases in frustrated

spin-S chains, with emphasis on the nature of the critical lines between the dimerized and

non-dimerized phases. The main numerical method used in this thesis is the Density Matrix

Renormalization Group (DMRG). The DMRG algorithm is a relatively old and well established

method for the investigation of the ground-state. In this thesis, we show how to use this

algorithm to calculate the excitation spectra of one-dimensional critical systems, known in

the context of conformal field theory as conformal towers of states. We have demonstrated

that the method works very well for two simple minimal models (the transverse-field Ising

model and the three-state Potts model), and we have used it systematically to identify the

universality classes and the underlying conformal field theories of various one-dimensional

spin systems. It has been known for a long time that the transition to a spontaneously dimer-

ized phase in a spin-1 chain can be either continuous, in the Wess-Zumino-Witten (WZW)

SU(2)2 universality class, or first order. By combining a careful numerical investigation with

a conformal field theory analysis, we were able to detect in a frustrated spin-1 chain with

competing next-nearest-neighbor and three-site interactions the presence of yet another

type of continuous phase transition that belongs to the Ising universality class. In contrast

to the WZW SU(2)2 critical line, at which the singlet-triplet gap closes, the Ising transition

occurs entirely in the singlet sector, while the singlet-triplet gap remains open. The use of

the standard DMRG approach, along the lines mentioned above, has allowed us to provide

explicit numerical evidence for the presence of a conformal tower of singlets inside the spin

gap. Moreover, according to field theory, a WZW SU(2)k critical line can turn into a first

order transition due to the presence of a marginal operator in the WZW SU(2)k model. A

careful investigation of the conformal towers along the critical lines has allowed us to find the

precise location of this point in both S = 1 and S = 3/2 chains. We have also shown that the

nature of the continuous dimerization transitions is related to the topological properties of

the corresponding phases, and that the phase diagrams of various frustrated spin chains can

be effectively extracted by looking at the local topological order parameter - the degeneracy of

the lowest state in the entanglement spectrum. When coupled with the conformal field theory

of open systems, DMRG appears to be an extremely powerful tool to characterize not only the

phase diagram and the ground-state correlations of quantum one-dimensional systems, but

also the excitation spectrum and the conformal structure along critical lines.

Key words: One-dimensional quantum magnetism, frustrated spin chains, three-site interac-
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Résumé
L’objectif principal de cette thèse consiste à étudier l’émergence de phases spontanément

dimérisées dans les chaînes de spin-S frustrées, avec une attention particulière sur la nature

des lignes critiques entre les phases dimérisées et non-dimérisées. La méthode numérique

principalement employée est la méthode du groupe de renormalisation de la matrice densité

(DMRG), une méthode bien établie et efficace pour étudier l’état fondamental. Nous expli-

quons dans cette thèse comment utiliser cet algorithme pour calculer les spectres d’excitation

des systèmes critiques unidimensionnels connus sous le nom de tours conformes d’états dans

le contexte de la théorie conforme des champs.

Tout d’abord, nous avons démontré que la méthode fonctionne parfaitement sur deux modèles

minimaux simples, à savoir le modèle d’Ising et le modèle de Potts à trois états en champ-

transverse. Ensuite, nous l’avons utilisée de manière systématique pour identifier les classes

d’universalité et les théories conformes des champs sous-jacentes dans différents systèmes de

spin. Il est admis depuis longtemps que la transition vers la phase spontanément dimérisée

dans une chaîne de spin-1 est continue dans la classe d’universalité de Wess-Zumino-Witten

(WZW) SU(2)2, ou du premier ordre dans le cas contraire. En combinant une étude numérique

minutieuse avec une analyse de la théorie conforme des champs, nous avons pu détecter la

présence d’un nouveau type de transition de phase qui appartient à la classe d’universalité

d’Ising dans la chaîne de spin-1 frustrée avec des interactions entre second voisins qui sont

en concurrence avec des interactions à trois sites. Contrairement à la ligne critique de WZW

SU(2)2 où le gap singulet-triplet se ferme, la transition d’Ising se manifeste entièrement dans

le secteur singulet et le gap reste ouvert. L’utilisation du DMRG standard nous a permis de

démontrer explicitement la présence d’une tour conforme d’états singulets dans le gap de spin.

En outre, la ligne critique de WZW SU(2)k peut devenir une transition du premier ordre selon

la théorie des champs, à cause de la présence d’un opérateur marginal dans le modèle de WZW

SU(2)k . Une analyse approfondie des tours conformes d’états le long des lignes critiques nous

a permis de trouver l’emplacement précis de ce point dans les chaînes de spin S = 1 et S = 3/2.

Nous avons également démontré que la nature des transitions de dimérisation continues est

liée aux propriétés topologiques des phases correspondantes, et que les diagrammes de phase

des chaînes de spin frustrées peuvent être déduits du paramètre d’ordre topologique local —

la dégénérescence de l’état le plus bas dans le spectre d’intrication.

Lorsque le DMRG est utilisé en parallèle avec la théorie conforme des champs des systèmes

ouverts, il constitue un outil puissant pour caractériser non seulement le diagramme de phase

et les corrélations de l’état fondamental des systèmes quantiques unidimensionnels, mais
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également le spectre d’excitation et la structure conforme le long des lignes critiques.

Mots clefs : Magnétisme quantique unidimensionnel, chaînes de spins frustrés, interactions

à trois sites, dimérization spontanée, transition de phase quantique, lignes critiques, classe

d’universalité, théorie conforme des champs, tours d’états conformes, spectre d’excitation,

méthode du groupe de renormalisation de la matrice densité, état de produits matriciels,

transition de Wess-Zumino-Witten, transition d’Ising, transition de Kosterlitz-Thouless
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1 Introduction

The quantum many-body problem is one of the most prominent and at the same time most

challenging fields of modern condensed matter physics. The low-dimensional strongly corre-

lated systems such as one- and two-dimensional frustrated magnets, ultra-cold atomic gases,

high-temperature superconductors and many others are of particular interests. Various novel

quantum phenomena emerge in low-dimensional strongly correlated systems, such as, topo-

logically protected phases, quantum spin liquids, and quantum criticality, to name just a few.

The theoretical understanding of such quantum systems is based on simplified models that

reflects the essential physical properties of real systems. For example, the Hubbard model and

the t-J model are used to describe high-temperature superconductors, the ultra-cold atoms

trapped in optical lattices are studied with the Bose-Hubbard model, and the Heisenberg

model and its extensions deal with quantum magnets. In spite of the apparent ’simplicity’ of

these models, they can be solved exactly (analytically) only in a few very special cases.

A large portion of the field of strongly interacting systems is devoted to quantum magnets.

If a single local condition imposed by the Hamiltonian of the model is unable to lead to a

simple pattern for an extended system, the model is said to be frustrated. As an example, let

us consider the classical nearest-neighbor Heisenberg model, defined by the Hamiltonian

Hclass =
∑
〈i j 〉

Ji j Si ·S j , (1.1)

where the sum runs over nearest neighbors i and j , Si are classical three-dimensional vectors

that describe spin at the site i , and Ji j > 0 is an set of antiferromagnetic coupling constants.

The local rule that minimizes the energy of this Hamiltonian imposes that every pair of

neighboring spins are antiparallel to each other. This constraint can be easily satisfied on

a square lattice, and more generally on a bipartite lattice, and leads to a global pattern of

antiparallel spins known as the Néel state. On the other hand, this local rule cannot be satisfied

on all bonds of a triangular lattice even for nearest-neighbor coupling and leads to geometrical

frustration.

The phases with long range order usually can be described by classical approaches, e.g. mean
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Chapter 1. Introduction

field, and quantum fluctuations provide minor corrections to the classical wave-function.This

in not true however for one-dimensional frustrated magnets, which can exhibit only short-

range order with exponentially decaying correlations, or quasi-long-range order with correla-

tions decaying algebraically. The latter is associated with critical regimes. Quantum effects

are then essential in one-dimensional systems and lead to various novel phases and exotic

criticalities.

The simplest one-dimensional quantum spin model is given by the transverse field Ising

Hamiltonian:

HIsing = J
∑

i
Sx

i Sx
i+1 +hSz

i , (1.2)

where Sx
i and Sz

i are the projection of spin-1/2 operators Si on two orthogonal axes. The first

term corresponds to the classical Ising model. The second term corresponds to the transverse

magnetic field and leads to a quantum critical point at h =±J/2. The system with periodic

or open and free boundary conditions is exactly solvable by methods of statistical physics,

and by mapping the Hamiltonian to a quadratic form of Fermi operators using Jordan-Wigner

transformation[68, 80]. Moreover the critical transverse field Ising model is an example of a

minimal model exactly solvable by a conformal field theory.

The simplest isotropic spin model is given by the quantum version of the Heisenberg Hamilto-

nian:

HHeis = J
∑

i
Si ·Si+1. (1.3)

The exact solution of this model for one-dimensional systems was obtained by the celebrated

Bethe ansatz in 1931 [13]. More that fifty years later, in 1983, Haldane predicted a finite

gap for Heisenberg chains with integer spins, in contrast to critical chains for half-integer

spins. Nevertheless, non-critical chains with integer spins can be driven into a critical regime

by adding a frustration. One of the text-book examples is the spin-1 chain with bilinear-

biquadratic nearest-neighbors interactions, defined by the Hamiltonian:

HJ1−Jb = J1
∑

i
Si ·Si+1 + Jb

∑
i

(Si ·Si+1)2 (1.4)

Positive biquadratic interactions Jb leads to an extended critical quadrupolar trimerized

phase for Jb ≥ J1[34], while negative biquadratic coupling leads to a spontaneously dimerized

phase for Jb <−J1. Numerical investigation of the bilinear-biquadratic chain have shown that

the transition occurs directly from the dimerized to the ferromagnetic state [63], although

according to the field theory some intermediate gapped spin-nematic phase appears between

the two phases[27]. The system at the quantum critical point Jb =−J1 turns out to be exactly

solvable by the Bethe ansatz[9, 96]. According to conformal field theory, this critical point

belongs the Wess-Zumino-Witten SU(2)2 universality class [1, 5, 6].
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Experimental realizations of quasi-one-dimensional quantum magnets are mostly based

on first-row transition-metal ions. Compounds based on Cu2+, V4+ and Co2+ realize spin-

1/2 systems, compounds with Ni2+ and V3+ ions realize spin-1 chains, V2+ and Cr3+ ions

correspond to spin-3/2, Fe2+ realize spin-2 and Ir-based compounds can realize spin-5/2.

A quantum spin-1/2 chain was first investigated experimentally in CuCl2·2NC5H5 in 1974[30,

44]. The spin-1/2 antiferromagnetic Heisenberg chain has also been realized for instance

in KCuF3 and Sr2CuO3. In fact, the SrCuO family of materials realizes a large variety of one

dimensional spin chains with competing interactions as well as spin ladders with different

numbers of legs.

In spin-1 chains, Haldane gap has been observed for the first time in the Ni-based compound

Ni(C2H8N2)2NO2ClO4 (NENP) [86, 85, 83]. Other experimental realizations of quasi-one-

dimensional spin-1 antiferromagnets that realizes Haldane gap include Ni(C5H14N2)2N3(PF6)

(NDMAP) [49, 51, 22], Ni(C5H14N2)2N3(ClO4) (NDMAZ) [50], AgVP2S6 [73, 8, 97, 98], PbNi2V2O8

[100, 107], SrNi2V2O8 [107, 11, 79] and Y2BaNiO5 [105, 28] to mention just a few.

Explicitly dimerized phases of spin-1 chains have been realized experimentally in the Ni-based

compound Ni(C9D24N4)(NO2)ClO4 (abbreviated as NTENP) [74, 106, 84], that exhibits field-

induced Ising quantum critical point [42]. The dimerized phase in alternating spin-3/2 chain

has been observed only recently in Cr2(BP3O12)[52] and YCrGeO5 and SmCrGeO5[43]. In the

two latter compounds, the authors provide evidence of a finite singlet-triplet gap and suggest

that the ground state is in the fully dimerized phase. So far, there is no known example of

spontaneous dimerization in spin-S chains with S > 1/2.

One-dimensional quantum magnetism deals with numerous effective models, and a large

variety of methods have been developed to treat them: i) exact solutions including Bethe

ansatz and mapping onto free fermions via Jordan-Wigner transformation; ii) quantum field

theory methods, including conformal field theory and bosonization; iii) classical mean-field

solutions and quantum perturbations around it; iv) and finally a large varieties of numerical

methods, among which exact diagonalization, Quantum Monte Carlo, and the Density Matrix

Renormalization Group.

The Density Matrix Renormalization Group algorithm, invented by S.R.White in 1992 [103,

90], has established itself over the past twenty-five years as the most versalite and powerful

numerical tool for one-dimensional strongly correlated systems. Its reformulation in terms of

local tensors[90, 78] leads to a new class of numerical algorithms for one- and two-dimensional

strongly correlated systems named Tensor Networks.

Frustrated spin-1/2 chains have attracted a lot of attention in the past decades. However much

less is known about frustrated chains with S > 1/2. Spin-S chains with competing nearest-

and next-nearest interactions have been studied numerically in Ref.[56, 57, 88], where authors

suggested the presence of a first order phase transition for integer spins, and of a continuous

Kosterlitz-Thouless transition between critical and dimerized phases for half-integer spins.
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However, to quote the authors, the nature of the phase transition has been obtained with

’highly indirect evidence only’.

Recently, it has been shown that a three-site interaction J3 [(Si−1 ·Si )(Si ·Si+1)+H.c.] that

reduces to the next-nearest neighbor interaction for spin-1/2 is also able to induce a sponta-

neous dimerization in spin-S chains for arbitrary S, and that, at least up to S = 2, the transition

is in the SU(2)2S WZW universality class[71, 70]. The study of the model with nearest-neighbor

and three-site interactions has been restricted to positive values of both coupling constants,

while the full phase diagram of this model remains unexplored.

Three-site interaction appears in the next-to-leading order expansion of the two-band Hub-

bard model, together with next-nearest-neighbor and biquadratic terms. Therefore it is

important to consider also a combination of these terms. The first step in this direction has

been in Ref.[81], in which the competition between next-nearest-neighbor and biquadratic

interactions has been studied.

The general goal of this thesis is to study this family of one-dimensional models with S > 1/2,

revisiting on the way the conclusions of Ref.[81], and to determine as accurately as possible

the phase diagram of these models and the nature of the critical lines that separates different

phases, with emphasis on spontaneously dimerized phase and exotic critical lines. The present

work is mostly based on numerical results obtained with Density Matrix Renormalization

Group algorithm.

The rest of the thesis is organized as follows: We start with a brief review of the Density Matrix

Renormalization Group and variational Matrix Product State algorithms. Chapter 2 discusses

an extension of the standard approaches that enables one to calculate the excitation spectrum

of critical systems at very low computational cost. In Chapter 3 we used this method to

extract the conformal towers in two minimal models - the transverse field Ising model and

the three-state Potts model - and verify the boundary conformal field theory predictions for

these models made by Cardy [20, 21]. The next Chapter 4 is dedicated to a spin-1 chain with

nearest-neighbor, next-nearest-neighbor and an additional three-site interactions. The latter

induces a spontaneous dimerization and leads to an exotic quantum phase transition. Using

extensive numerical simulations and a conformal field theory analysis, we show that the

transition to the spontaneously dimerized phase can be of three types: continuous in the Wess-

Zumino-Witten SU(2)k=2 universality class, continuous in the Ising universality class, or first

order. In Chapter 5, we revisit the phase diagram of the spin-1 chain with nearest-neighbor,

next-nearest neighbor and biquadratic interactions, previously studied in the Ref.[81], and

we show that that the two models have essentially the same phase diagram. Therefore the

properties we have obtained for the critical lines appears to be generic for spin-1 chains.

Chapters 4 and 5 rely to a large extend on Refs.[24, 25, 23]. Chapter 6 generalizes the results of

Chapter 4 to the spin-3/2 chain with next-nearest neighbor and three-site interaction with a

number of new features related to the half-integer nature of the spin. The Heisenberg model

with three-site interactions including positive coupling constants for both terms is discussed
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in Chapter 7. Finally, in Chapter 8, we review and summarize the main results of this PhD.
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2 Density Matrix Renormalization
Group algorithm

The modern quantum many-body physics to a large extend relies on the numerical simulations.

Among different algorithms, the Density Martix Renormalization Group (DMRG)[103, 90]

has established itself as the most powerful tool for strongly correlated one-dimensional sys-

tems. The DMRG has been developed as an algorithm for the ground state search for one-

dimensional systems. The reformulation of the algorithm in terms of local tensors - Matrix

Product States (MPS) [78, 91] - not only has lead to the simplification of the traditional method,

but has also boosted the generalization of the DMRG to higher dimensions, now known as

Tensor Network algorithms.

In the present chapter we will briefly describe the variational MPS algorithm, that is to a

large extend equivalent to the traditional DMRG. Some technical details on the implemented

algorithm such as the number of kept states, the Matrix Product Operator tensors, convergence

etc. will be mentioned. We will set up and test an efficient extension of the standard variational

MPS (DMRG) that allows one to extract about 20 lowest states in the excitation spectra of

critical systems. Although the proposed method is not generic and cannot in principle provide

reliable results for systems far from criticality, it still produce reliable excitation energies for

systems with localized impurities and low-lying edge states.

2.1 Variational Matrix Product States

2.1.1 MPS representation

The Hilbert space of the total system grows exponentially fast with the number of sites d N ,

where d is the size of the local Hilbert space. The limitation on the memory restricts the

maximal number of sites for which the quantum state can be written explicitly to N ≈ 20. The

key point of the MPS representation is to overcome this restriction and to write the state as a

product of local tensors. This can be done since any quantum states of a bipartite system can

be effectively represented in a compact basis constructed with the Schmidt decomposition. It

relies on a tool known from linear algebra as Singular Values Decomposition (SVD). For any
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rectangular matrix M of dimension m ×n there exists a decomposition

M =U SV †, (2.1)

where

• U is of dimension m ×min(m,n) and is left-normalized, i.e. U †U = I . If m ≤ n, U is

unitary and also UU † = I

• V is of dimension n ×min(m,n) and is right-normalized, i.e. V V † = I . If m ≥ n, V is

unitary and also V †V = I

• S is a diagonal matrix of dimension min(m,n)×min(m,n) with non-negative entries.

The Schmidt rank s of matrix M is given by the number of non-zero singular values

Si i > 0.

Figure 2.1 shows step-by-step how a generic state of N particles with si local degrees of freedom

can be decomposed into N three-dimensional tensors (the tensors on the first and the last sites

are considered as three-dimensional with one bond dimension equal to one). First, the many-

particle state that has the dimension of the total Hilbert space of the system 2N is reshaped

into a rectangular matrix. The matrix is SVD decomposed into U SV †. The left-normalized

matrix U is treated as a local tensor A for the first site, while SV † is reshaped into another

rectangular matrix. Repeating these steps one can construct a local left-normalized tensors

for every sites. The obtained MPS representation is then called left-normalized. Equivalently,

one can start from the right edge and treat V † as a local right-normalized tensor B , then the

MPS representation is called right normalized.

reshape

reshape

reshape

SVD

SVD

Figure 2.1 – Decomposition of a generic quantum state into MPS form via reshaping and
singular value decomposition.

In practice the most convenient representation is a mixed one with all left-normalized tensors

on the left and the right-normalized tensors on the right side of the chain. The Mixed-state

representation is sketched in Figure2.2(a). The contraction of the left-normalized tensors with
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their conjugate over left and physical bonds is equal to the identity matrix (Figure2.2(b)). The

same is true for the right normalized tensors contracted though their right and physical bonds

(Figure 2.2(c)).

BSA A
= =

a) b) c)

Figure 2.2 – Different types of MPS normalization: (a) state in mixed representation. Identity
matrix matrix as a result of contraction for (a) left- and (b) right-normalized tensors

The bond dimension ai = min(d i ,d N−i ) grows exponentially with distance to the edges

min(i , N − i ), therefore the performed decomposition itself does not reduce the required

amount of memory. However, for strongly correlated systems, the Schmidt values Si ,i decay

fast with i . Therefore the exact decomposition of the matrix in Eq.2.1 could be replaced by an

approximate one:

Mk,l ≈
D∑

i=1
Uk,i Si ,i V †

i ,l , (2.2)

with summation index i running over just a few of the largest Schmidt values D < min(m,n).

With this approximation, the bond dimension ai of the MPS representation is given by ai =
min(d i ,d N−i ,D). In practical applications, the number of kept Schmidt values is between a

few hundreds and a few thousands, which is much smaller than the size of the total Hilbert

space.

2.1.2 Matrix Product Operator

The exponential growth of the Hilbert space implies also the exponential growth of the opera-

tors, such as Hamiltonian. Therefore, the Hamiltonian should also be reformulated in terms of

local tensors - Matrix Product Operators (MPO). MPO is a tensor of rank four with two legs and

two auxiliary legs. The physical legs are contracted to the MPS, while auxiliary legs connect

the MPOs on different sites. Let us consider the Heisenberg model with only nearest-neighbor

interaction Ji and external magnetic field hi . The Hamiltonian of this model is:

H =
N−1∑
i=1

Ji
(
S+

i S−
i+1 +S−

i S+
i+1 +Sz

i Sz
i+1

)+ N∑
i=1

hi Sz
i , (2.3)

where S±
i = (Sx

i ± i S y
i )/

�
2 are rescaled raising and lowering spin operators at site i . In order to

construct MPO at site i , it is useful to rewrite the Hamiltonian explicitly as a tensor product of

d ×d identity matrix I and spin S operators and to look explicitly at the operator that appears

at site i (the middle column of the Table 2.1).

From Table 2.1 it is easy to deduce that there are only five different states for the spins 1...i −1,
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index 1...i −1 i i +1...N index
5 I ...I hi Sz

i I ...I 1
2 I ...I Ji−1S+

i−1 S−
i I ...I 1

3 I ...I Ji−1S−
i−1 S+

i I ...I 1
4 I ...I Ji−1Sz

i−1 Sz
i I ...I 1

5 I ...I Ji S+
i S−

i+1I ...I 2
5 I ...I Ji S−

i S+
i+1I ...I 3

5 I ...I Ji Sz
i Sz

i+1I ...I 4
1 I ...I full I ...I I I ...I 1
5 I ...I I I ...I full I ...I 5

Table 2.1 – Hamiltonian of Eq.2.3 represented as a tensor product operator with operators on
sites 1...i −1, operator on site i and operators on site i +1...N . The second and third columns
contain five different states each. These states form a basis for the local MPO. The basis states
are labeled by their indices as they appear in the MPO of Eq.2.4

which form a basis of the first index of the MPO. The basis set of the second index also contains

five vectors and is given by the states for sites i +1...N . The dimension of two physical bonds

are hidden in the operators I and S, that are d ×d square matrices. Thus the size of the

obtained MPO is d ×d ×5×5. The local tensor is given by:

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎝

I

S−
i

S+
i

Sz
i

hi Sz
i Ji S+

i Ji S−
i Ji Sz

i I

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.4)

where blank spaces correspond to zeros entries. The square matrix of Eq.2.4 is in fact a four-

dimensional tensor. This representation of the MPO is correct for 1 ≤ i ≤ N −1. The MPO on

the first site is given by the last row and the MPO on the last site is given by the first column of

the MPO of Eq.2.4.

Let us now construct the MPO representation of the J1 − J2 − J3 Hamiltonian given by:

H =∑
i

(J1Si ·Si+1 + J2Si−1 ·Si+1)+
∑

i
J3 [(Si−1 ·Si )(Si ·Si+1)+H.c.] (2.5)

A significant role in the successful convergence is played by an efficient representation of the

Hamiltonian in terms of MPO. As it will become clear later, the complexity of the algorithm is

proportional to the auxiliary bond dimension. The straightforward MPO representation of the

J1− J2− J3 model has a bond dimension d = 17 (3+3 for J1 and J2 terms, 9 for J3 interaction, 1

for unity matrix and 1 for full term). Using the spin commutation relations this number can be

reduced to d = 14. Below we show slightly different approach that allows to reduce the bond

dimension to d = 8.

10



2.1. Variational Matrix Product States

The efficient MPO representation naturally appears when the J3-term is rewritten in terms of

quadrupolar operators:

∑
i

J3 [(Si−1 ·Si )(Si ·Si+1)+H.c.] =
∑

i

∑
α,β=x,y,z

J3Sα
i−1Qαβ

i Sβ

i+1, (2.6)

where Qαβ

i = Sα
i Sβ

i +Sβ

i Sα
i . Generally speaking Q is not a traceless tensor, and therefore it is

not a quadrupolar operator, but let us keep the Q-notation for simplicity. Combining the new

expression for the J3 term with the J2 term, one obtains the Hamiltonian in the following form:

H =∑
i

J1Si ·Si+1 +
∑

i

∑
α,β=x,y,z

Sα
i−1

(
J2δ

αβ+ J3Qαβ

i

)
Sβ

i+1 (2.7)

The term inside the brackets can be written in matrix form as:

⎛
⎜⎝

J2I + J3Qxx J3Qx y J3Qxz

J3Qx y J2I + J3Q y y J3Q y z

J3Qxz J3Q y z J2I + J3Qzz

⎞
⎟⎠ , (2.8)

In terms of rescaled lowering and raising operators S±
i a complete MPO tensor reads:

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

S−
i

S+
i

Sz
i

J2I + J3Q+− J3Q−− J3Q−z

J3Q++ J2I + J3Q+− J3Q+z

J3Q+z J3Q−z J2I + J3Qzz

hSz
i J1S+

i J1S−
i J1Sz

i S+
i S−

i Sz
i I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.9)

where blank spaces correspond to zero entries. The MPO Hamiltonians for the first and the

last sites are given by the last row and the first column of tensor (2.9) respectively.

11



Chapter 2. Density Matrix Renormalization Group algorithm

2.1.3 Ground state search

The search for the ground state consists in finding an MPS representation of the state |ψ〉 that

minimizes the energy:

E = 〈ψ|H |ψ〉
〈ψ|ψ〉 (2.10)

The algorithm operates iteratively, namely while all but two tensors are kept constant, a

selected couple of tensors are updated by solving the corresponding eigenvalue problem.

The code consists of four parts:

1. Infinite-size DMRG (sketched in Fig.2.3): We start with some initial guess for the tensors

at the first and last sites. Without loss of generality one can fix these tensors to be identity

matrices. We contract the guess tensors over physical indices with an MPO in order to obtain

left and right ’environments’ L1 and RN (see Fig.2.4 for a pictorial representation of the

environments). The effective Hamiltonian for four sites is then obtained by contracting these

environments with MPOs on sites 2 and N −1 over their auxiliary bonds. The ground-state

obtained from diagonalization of the effective Hamiltonian is then decomposed by SVD into

left-normalized tensor A2 and right-normalized tensor BN−1. These tensors together with the

corresponding MPO are contracted with previously obtained environments in order to get L2

and RN−1. These new environments contracted with the pair of MPOs on sites 3 and N −2 give

an effective Hamiltonian for 6 spins. Then, its ground state is decomposed into tensors A3 and

BN−2. By repeating these steps, the system size grows by two until the tensor network reaches

the required length N . For an odd total number of spins N , the same procedure is performed

until the system reaches a size of N − 1, in this case only one tensor is multiplied to the

environment. Assuming without loss of generality that the left environment was updated and

therefore contains an effective basis for (N −1)/2 spins, one can reuse the right environment

for (N −3)/2 spins and insert the local Hamiltonian for two additional spins in order to reach

a system size with N odd.

In this part of the code, we usually keep 44 singular values, however, close to the critical lines,

this number is increased to 66 or 88. These values (that seem strange at a first glance) have

been chosen in such a way, that after increase by 50% during each of the two half-sweeps

in the warm-up, the resulting number of states are 100, 150 and 200 respectively. Although

the infinite-size DMRG can be used independently in order to get some observables in the

thermodynamic limit, here we use infinite-size DMRG only to create a good starting point for

the following finite-size routines. At each iteration environment tensors Ln and Rn are stored

on a hard disk and will be reused during the following finite-size sweeps. The tensors A, S and

B are also stored and will be reused while creating an initial guess for the iterative eigensolver

(here Lanczos).

2. The warm-up function consists of an incomplete finite-size sweep. Iterating from the middle

of the chain to its right end we calculate site-by-site local tensors An and corresponding left

12



2.1. Variational Matrix Product States

...

diag SVD

diag SVD

Figure 2.3 – Sketches of the few steps in infinite-size DMRG. Green and blue circles are left
and right normalized MPS, yellow boxes are on-site MPOs, magenta boxes are a ground states
of effective Hamiltonians, orange diamonds are diagonal matrices with Schmidt singular
values. The system size grows from 2 to the required length N by inserting two-site MPO and
diagonalizing an effective Hamiltonian at each iteration

= =

Figure 2.4 – Graphical representation of left and right environments

environments Ln . Sweeping back from the right end to the left, we update the tensors Bn and

right environments Rn . We increase the maximal number of states while sweeping from left to

right and from right to left by a factor 1.508. Thus in the end of the warm-up the number of

kept states is 100 (or 150 and 200 for 66 and 88 states in infinite-size DMRG). A few steps of

finite-size DMRG are sketched on Fig.2.5

3. The ’main body’ of the algorithm consists in sweeping from left to right and back locally

updating the tensors. We usually perform 6-7 sweeps for open boundary conditions and up to

16 sweeps for periodic chains. We keep up to 700 singular values for N < 200 and up to 900

states for larger systems. We implemented two-site DMRG, which turns out to be significantly

more stable and to converge faster, despite the obvious growth of complexity by a factor

(2S +1)2 = 9. Roughly speaking, the number of kept states 700 and 900 for two-site DMRG is

equivalent to 1210 and 1560 for the one-site routine, although there is no simple one-to-one

correspondence.
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Chapter 2. Density Matrix Renormalization Group algorithm

...

diag SVD

diag SVD

diag SVD

diag SVD

Left-to-right:

Right-to-left:

Figure 2.5 – Sketches of a few steps in finite-size DMRG, starting from the warm-up. At each
iteration the ground-state of the effective Hamiltonian is decomposed via SVD into left- and
right-normalized tensors Ai and Bi+1. The A tensors are contracted with the left environment,
while sweeping from left to right and B tensors are contracted with the right environment
while sweeping back.

4. During the ’final sweep’ we do not increase the number of states anymore, but at each

iteration we measure the set of local observables such as on-site magnetization, nearest-

neighbor spin-spin correlations and entanglement entropy. The left and right normalized

tensors and vectors of the Schmidt decomposition are stored and used later in order to

calculate the observables which involve more than two spins (energy in the middle of the

chain, long-range correlations, structure factor, etc.) or to extract the entanglement spectrum.

The total Hilbert space contains d N basis vectors. In exact diagonalization one exploits on-site

representation: to each of d states on a single site one assign a local label, e.g. spin projection

Sz , colors etc. Then the basis of the total Hilbert space of N particles is formed by all possible

combinations of N on-site labels. In this basis the Hamiltonian can be written exactly as

d N ×d N matrix. By truncating the bond dimension in SVD, we reduce the number of basis

vectors. The use of the basis formed by on-site states is no longer optimal, instead, linear

combinations of the basis vectors should be used. The constructed tensors A and B perform a

basis rotation in such a way that the new basis becomes the best set of basis vectors for the

selected state - the ground state. Thus, the effective Hamiltonian shown in Fig.2.3 and Fig.2.5

can be understood as a full Hamiltonian of size d N ×d N written in a rotated and truncated

basis of size (Dd)2 (see Fig.2.6).
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2.2. Excitation spectrum with MPS

Figure 2.6 – The row of on-site MPO (yellow boxed) contracted through the auxiliary bonds is
a d N ×d N matrix of the total Hamiltonian. A collection of An and Bn tensors approximates
the basis via rotation and truncation. The approximate basis contains (dD)2 � d 2N vectors.

2.2 Excitation spectrum with MPS

The DMRG algorithm has first been developed as a method for the ground-state search. When

the knowledge of excited states or excitation spectrum is necessary, the implementation

becomes rather advanced. Several approaches were developed on the basis of standard DMRG

algorithm:

1. If some symmetry can be imposed on the wave-function and the excited state of interest is

the lowest-energy state of some symmetry sector, the search for the excited state is then simply

a ground-state search within the corresponding symmetry sector. In particular, this approach

allows rather straightforward calculation of singlet-triplet gap, by accessing the lowest energy

states in the sectors of total magnetization Sz
tot = 0 and Sz

tot = 1. In the following chapters we

use both codes with and without the implementation of the conserved total magnetization.

The latter is used for Ising and three-states Potts model, the former for all remaining models

discussed below.

If the Hamiltonian does not preserve any discrete symmetry or if the excitation occurs in the

symmetry sector of the ground state or other excitations with lower energies, the algorithm

has to be modified significantly:

2. In conventional DMRG, the density matrix is constructed not only from basis vectors of the

ground state, but also from basis vectors of low-lying excitations. This approach can also be

applied in variational MPS. Then, the tensors An and Bn have to encode a mixed state. All

excited states are then calculated together with the ground-state, but the price to pay is the

fast increase of the bond dimension D with the required number of eigenstates.

3. The MPS representation allows significant improvement: After the construction of the

ground-state, one can search for an eigenstate that is orthogonal to the ground state and

has the smallest energy. For higher excitations, the state is orthogonalized to all previously

15



Chapter 2. Density Matrix Renormalization Group algorithm

constructed eigenvectors of the Hamiltonian. Although this method is systematic and rather

controlled, the algorithm has to be re-run for each eigenstate. Moreover, the states should be

well converged, otherwise the error will accumulate in the following runs.

Here we propose to use a simpler method - to target excitation energies by calculating several

eigenvalues of the effective Hamiltonian, written in the effective basis constructed for the

ground state only. Of course, in general case this method gives only a poor estimate for

the excitation spectrum - the basis chosen for ground-state is not the best set of vectors to

calculate the excited states. However, in some particular cases the proposed method reveals

itself as the most efficient way of calculating the excitation spectrum. Below we consider

three situations, where the excitation energies can be obtained rather accurately from the

Hamiltonian written in the ground-state basis: i) localized excitations; ii) in-gap states in open

chain; iii) critical systems. The latter is perhaps the most important in view of its possible

application for the identification of the underlying conformal field theory of critical systems.

2.2.1 Local excitations and impurities

Let us first discuss localized excitations by considering the Heisenberg Hamiltonian with

alternating coupling constants on spin-1/2 chain:

H = J1S1 ·S2 + Jeven

N /2−1∑
i=1

S2i ·S2i+1 + Jodd

N /2−1∑
i=2

S2i−1 ·S2i + JN−1SN−1 ·SN (2.11)

where Jodd = 1 and Jeven = 0.1. Local bond impurities are imposed at the edges by changing

the coupling constants J1 and JN on the first and last bonds. In the absence of impurities

(J1 = JN = Jodd) the ground state of of the Hamiltonian (2.11) corresponds approximately

to spin-1/2 singlets located on every strong (odd) bond. The system has a finite gap to the

first triplet excitation. By changing locally the coupling of a particular odd bond one can

manipulate the energy needed to excite the selected bond to a triplet state. We introduce two

different edge impurities by reducing the coupling of the first and the last bonds to J1 = 0.3

and JN−1 = 0.8.

We calculate the ground-state energy and the energy of the few lowest excitations in the

symmetry sectors with total magnetization Sz
tot = 0 and 1 in an open chain with N = 28 sites.

Figure (2.7a) shows the energies obtained at each iteration in variational MPS by targeting

several eigenvalues of the effective Hamiltonian. As expected, the ground state is a singlet

with an energy about E0 ≈−9.838. Singlets appear only in the Sz
tot = 0 sector (blue lines). The

value of the energy of the first excited state in this sector depends on the position at which

the effective Hamiltonian is diagonalized. Thus, when the diagonalization is performed close

to the left edge J1, the energy of the first excited state obtained around the left edge is about

E1 ≈−9.539. By contrast, when the diagonalization is performed around the right edge JN−1,

the excited state has higher energy E2 ≈−9.042. The excitation energies obtained numerically
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2.2. Excitation spectrum with MPS

E1 −E0 ≈ 0.299 and E2 −E0 ≈ 0.796 agree with the rough expectations Δ1 = J1 and ΔN = JN for

the singlet-triplet excitations in case of decoupled dimers. Thus our interpretation of these

two excitation levels is correct. The DMRG data agree within 10−8 with exact diagonalization

results (see Fig.2.7(d)). The energies E1 and E2 therefore corresponds to the first and second

excited states of the complete chain. The energies of the higher excited states in the Sz
tot = 0

symmetry sector have local minima close to the middle of the chain and takes value around

E3,4 ≈ −8.9. We increase the number of kept states linearly over the first five sweeps and

perform three more sweeps with Dmax. The results for different number of states are provided

in Figure (2.7b). Interestingly, in most cases except the two last sweeps with Dmax = 1000, there

are small intervals where the first excited state in the Sz
tot = 0 sector converges to the bulk

excitation E3 > E1,E2 while changing between E1 and E2. This happens when the number of

kept basis vectors for the left and right environment tensors are not sufficiently large to see

the edge excitation within each tensor. On the other hand, the environment tensors converges

well to the ground state and the bulk excitation is seen properly. This is what we expect also

for much larger systems - the localized edge excitations can be seen only in the vicinity of the

corresponding edges. Numerically we will see it later in the context of spin-1 J2 − J3 model.

In the sector Sz
tot = 1 (red lines), the state with the lowest energy is the one with the triplet on

the first bond. The first excited state in this sector corresponds to a triplet on the last bond.

The number of kept states is not sufficient to see this excitation far away from the right edge

and it appears only when the effective Hamiltonian is diagonalized at the right half of the

chain. On the other hand, the number of states has to decrease close to the edge by MPS

construction and therefore the left environment block is written in the basis vectors that has

the largest weight in the ground state and poorly describe the excited state that belongs to

different symmetry sectors. In the present case, that would corresponds to the basis vectors

that describes the triplet state in the left environment better than a singlet one. This leads

to the double-through structure of the first excitation energy. The first excited state in the

sector Sz
tot = 1 calculated close to the right edge does not converge to the energy E2 that

corresponds to the singlet on the left and triplet on the right bond, however it converges to

the state that corresponds to the simultaneous excitations of the first and last bonds to the

triplet states with energy about E ≈−8.743. Since dimers are not completely decoupled but

connected with Jeven = 0.1, the two triplet bonds at the edges coupled together and form a

triplet (two excitations also form a singlet state, which however is not seen in Sz
tot = 0 sector

and a quintuplet, which is probably missed due to small size of the Hilbert space at the edges).

From Fig.2.7(c) and (d) we can deduce that eigenvalues of the effective Hamiltonian written in

the basis of the ground state are correct for the local excitations, while for the bulk excitation

the discrepancy with the exact results is significant (of the order of 10−3). It is not surprising,

since for the localized excitations most of the system is in the same state as in the ground-state.

In other words, the triplet excitation localized at the right edges implies that the left environ-

ment tensor is essentially the same (exactly the same for completely localized excitations) as

that of the ground-state. Moreover, by tracing the excitation energy as a function of iterations

(or equivalently as a function of position index of the currently optimized tensors), one can
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Figure 2.7 – Local excitation energy in alternating Heisenberg chain with bond impurities.
(a) Energy as a function of iteration for the alternating Heisenberg chain with Jodd = 1 and
Jeven = 0.1 and weak first J1 = 0.3 and last JN = 0.8 bonds for N = 28. Results obtained with
exact diagonalization are shown with gray lines for reference. The lowest states and several
excited states in the Sz

tot = 0 (blue) and Sz
tot = 1 (red) sectors of total magnetization. The

number of states increases during warm-up and first five up to Dmax = 1000 and kept constant
over the last three sweeps. b) Ground state and several excited states in the sector Sz

tot = 0 for
different number of kept states Dmax = 100 (green), 500 (magenta) and 1000 (blue) with the
same growing procedure as in (a). (c) and (d) enlarged parts of plot (a) around bulk and edge
excitation levels. In (d) the gray line for the exact diagonalization results is completely hidden
behind the red line

distinguish the excitation energies of different impurities. Thus the proposed approach is an

efficient alternative to the existing methods for excited states calculation in the context of

localized excitations or local impurities.

2.2.2 Detection of low-lying in-gap states

Many topologically non-trivial phases could be characterized by the edge states that appear in

open systems inside the phase and disappear at the phase boundary. However, exponentially

small gap to the low-lying in-gap states make their detection challenging. The method of

targeting several eigenvalues of the effective Hamiltonian written in the ground-state basis

turns out to be useful in the detection of edge states and allows one to extract the excitation

energy with sufficiently high precision.

As a toy model we consider the spin-1 Heisenberg chain. The model has a singlet ground state

and a finite bulk gap[41]. The topologically non-trivial nature of the Haldane phase implies

the existence of edge states[54, 40] with a gap vanishing exponentially fast with the system size.
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Figure 2.8 – (a) Ground-state and excitation energies calculated in the sectors of Sz
tot = 0 (blue)

and Sz
tot = 1 (red) in open Haldane chain with N = 100 sites. (b) An enlarged part of (a) around

the ground-state energy. (c) Ground-state and excitation energies sectors of Sz
tot = 0 (green)

and Sz
tot = 1 (magenta) in periodic Haldane chain with N = 100 sites and one broken bond

between 25th and 26th sites. (d) enlarged part of (a) and (c) around the ground state energy.

Since for an even number of sites, the ground-state of the model is a singlet and the low-lying

in-gap state is a triplet (known as Kennedy triplet [54]), the obtained value of the energy for

the excited state in the sector of zero total magnetization Sz
tot = 0 is compared to a checked

with a reliable result for ground state in the sector Sz
tot = 1.

Fig.2.8(a) and (b) shows our DMRG results for energies for an open Haldane chain with N = 100

spins. As one can notice the Kennedy triplet starts to appear only when the number of kept

states exceed 500 in two-site DMRG. Of course, this number would increase for larger systems

and in the case of more complicated Hamiltonians.

In contrast to the case of localized excitations, here the best estimate of energy appears in the

middle of the chain, therefore by looking only at the excitation energy as a function of iterations

it is impossible to conclude whether it corresponds to edge or very low bulk excitations. In

principle, to answer this question one has to access the excited state explicitly and to compute

observables, however this would require to re-run the algorithm. Below we will show how this

information can be obtained at very low computational cost.

By looking at Fig.2.8(b), one can see that far enough from the edges, where the Hilbert space is

too small, the energy of the in-gap excitation is essentially flat - we employ this as an indicator

of the convergence.

Of course, the real worth of this method shows up when the fist excited states cannot be

calculated simply as a lowest state in different symmetry sector. For instance in the Haldane
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Figure 2.9 – Same as Fig.2.8 for N = 101 with the triplet ground state the singlet in-gap state.

chain with an odd number of sites, where the ground state is a triplet and the low-lying edge

excitation belongs to the singlet symmetry sector and is thus seen as the second lowest state

in the sector of Sz
tot = 0. The example for N = 101 is shown in Fig.2.9.

In many practical applications it is important to figure out whether the edge states are present

or not, without knowing explicitly the excitation energy of low-lying in-gap states. It could be

achieved at very small computational cost by representing an open system as a closed chain

with one broken bond. Here we break a bond between 25th and 26th sites, that is sufficiently

far from the edges, where the Hilbert space is too small, and from the middle of the chain.

The singlet-triplet edge excitation are then seen as local excitation of the bond (25,26). This

local excitation can be captured immediately with the effective Hamiltonian, even if the bond

dimension is small D < 50. As expected, the convergence of the periodic DMRG is slower than

the open one within the same scheme of the increase of the bond dimension (Fig.2.8(d)).

To summarize, the detection of the edge states by targeting several eigenstates of the effective

Hamiltonian provides rather accurate results, although it requires sufficiently large bond

dimension D. In contrast, treating an open chain as a periodic one with one broken bond

allows to detect the edge states at very low computational cost, although the estimate of the

energy is rather crude.

2.2.3 Critical systems

Perhaps the most important application of the described method is the calculation of the

excitation spectra of critical systems. According to conformal field theory, the excitation

spectrum calculated at the critical line forms a so-called conformal tower that reveals the

universality class of the transition and of the underlying critical theory. Traditionally, the
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2.2. Excitation spectrum with MPS

universality class of the transition is extracted by computing the central charge and the critical

exponents of some observables (on-site magnetisation, spin-spin correlations etc.). The latter

is extremely sensitive to the logarithmic corrections of the theory (if any). In principle, the

excitation spectrum contains more information on the underlying critical theory and can be

used as a complement to the central charge. In cases, where the latter cannot be extracted

or provide inconclusive results (e.g. due to strong finite-size effects), the conformal tower

becomes the method of choice.

The main difficulty to obtain the excitation spectra with DMRG is its large computational

cost. In order to identify the critical theory one has to compute energies for sufficiently large

numbers of excited states (at least 4-5 states). Therefore, whether one uses traditional DMRG

with mixed-state density matrix or re-orthogonalization scheme in MPS, the computational

cost is enormous. In the following, we show that by targeting many eigenvalues of the effective

Hamiltonian written in the ground-state basis, the construction of conformal towers becomes

a relatively easy problem.

As a toy model let us consider the Ising model in transverse field:

H =−J
∑

i
Sx

i Sx
i+1 +hSz

i , (2.12)

where Sx,z
i are spin-1/2 operators at site i . The system is critical at h = J/2. The underlying

conformal field theory will be discussed in details in the next chapter. Three low-lying levels

of the Ising conformal tower were obtained within each symmetry sector by Evenbly and Vidal

[31] with scale-invariant MERA - another type of tensor network algorithm.

In Fig.2.10 we show the convergence of the 30 low-energy states computed by targeting

many states of the effective Hamiltonian in DMRG calculation of the ground-state. One

can immediately notice that the structure of the excitation energies typical of the conformal

tower is well preserved. A fast increase of the energy occurs close to the chain boundary and

comes from the fact that the Hilbert space is too small at the edges by MPS construction. The

flattening of the energies in the middle of the chain signals the convergence.

On a finite chain with open boundary conditions the Hamiltonian (2.12) can be rewritten as a

quadratic form of Fermi operators using Jordan-Wigner transformation. Following Ref.[68, 80]

the eigenvalue problem on the Hilbert space of size 2N can be reduced to a problem of the

diagonalization of an N ×N matrix, which can be solved exactly on sufficiently large clusters.

The full spectrum can then be deduced from linear combinations of the obtained eigenvalues.

The obtained spectrum is taken as a reference while comparing with the DMRG results (grey

lines in Fig.2.10 and Fig.2.11).

As shown in Fig.2.11, the described method provides an energy spectrum that is in perfect

agreement with the exact data, when the system is critical. By contrast, in gapped systems
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Figure 2.10 – Energy of the 30 low-energy states in the critical Ising model in a transverse field
with N = 100 sites as a function of iterations. The flattening of the energies in the middle
of the chain signals the convergence. A periodic increase of the energy occurs close to the
chain boundary and is the result of the reduced Hilbert by MPS construction. Exact results are
provided for reference and shown with grey lines. The plot starts with the first full sweep, the
result from infinite-size DMRG and warm-up are not shown.

the agreement is rather poor and moreover some states are missed. In the gapped phases,

low-lying states can be significantly different from each other and can even belong to different

symmetry (here parity) sectors, requiring essentially different sets of basis vectors. By contrast,

at the critical point, the excitation spectrum is obtained by applying some descendant opera-

tors on primary fields. Therefore it is natural that the basis obtained from the ground state

describes the excited states also with high accuracy.

This hypothesis agrees with the observation made by Läuchli in Ref.[62], where conformal

towers for different critical models were extracted via entanglement entropy. Both cases show

that the ground-state contains not only the central charge or critical exponents, but essentially

all the information about the critical theory.

The described method can be applied to more complicated systems in order to extract the

excitation spectrum. Let us consider a spin-1 chain with next-nearest neighbor coupling and

three-site interaction given by the Hamiltonian:

H = J2
∑

i
Si ·Si+2 + J3

∑
i

(Si−1 ·Si ) (Si ·Si+1)+H.c., (2.13)

with J2, J3 > 0. The motivation to study this model and its properties will be discussed in
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Figure 2.11 – Excitation energies obtained with one DMRG sweep in the critical (a)-(e) and
gapped (f),(g) transverse field Ising model for an open chain with N = 100 sites. Exact results
are provided for reference and shown with grey lines. (a) DMRG results agree with exact
energies. (b)-(e) Enlarged parts of (a) around different excitation levels. The ordinal number
of states are indicated in each plot, 1 corresponds to the ground-state. The number at the left
side of plots (b)-(e) indicates a window around the selected energy level. (f) and (g) Far from
criticality DMRG results poorly agree with the exact ones, some states are missed, and strong
oscillations appear.

Chapter 4. Antiferromagnetic next-nearest neighbor coupling favors two Haldane chains on

next-nearest neighbor bonds, while a strong J3 term leads to a dimerized phase. The transition

between these two phases occurs at J3/J2 = 0.352. In the absence of the J3 term, each Haldane

chain has free edge spins. When the two chains are coupled together by the J3 interaction pairs

of spins at each boundary couple to each other and form singlets, and the entire system does

not have edge states anymore. On the other hand, each of the two boundary singlets can be
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Chapter 2. Density Matrix Renormalization Group algorithm

excited to the triplet state with relatively small excitation energies. These triplet excitations are

localized at the edges and should be distinguished from the bulk excitation while constructing

the conformal tower.

In Fig.2.12(a), DMRG results for the energies of a few low-lying states of the J2 − J3 model in

an open chain are shown as a function of iterations for one selected sweep. We show results

in the sector of zero total magnetization Sz
tot = 0 for N = 300 sites, for which the energy of the

edge excitations is approximately equal to the bulk gap. By looking at the energy as a function

of iterations along one sweep, edge and bulk excitations can be distinguished by the position

of their local minima.
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Figure 2.12 – DMRG result for the calculation of the excitation spectra in J2 − J3 open chain
with N = 300 sites. a) Energy of the ground-state (blue), two-fold degenerate localized edge
excitations (red,violet, magenta) and bulk excitations (yellow, green) as a function of iterations.
Edge excitations can be distinguished from bulk ones by the position of the local minima.
b) Variance 〈ψ|H 2|ψ〉− (〈ψ|H |ψ〉)2 as a function of iteration. The minimum of the energy
occurs at the same position (iteration) as the minimum in the variance. Therefore the energy
extracted at the local minima provides the best estimate of the energy of some eigenstates of
the Hamiltonian.

The energy of the localized edge excitations is the smallest close to the edges and increases in

the middle of the chain, where the ground-state basis does not describe the edge excitations

properly (red, violet, magenta). The minima that appear at both edges mean that each level

is two-fold degenerate - excitations can be localized on left or right edges. The lowest edge

excitations (red) correspond to a singlet-triplet excitations of the bond at one of the edges. This

was checked by computing two low-energy states in the sector of Sz
tot = 1. The nature of the

other edge excitations (violet, magenta) is not clear and would requires further investigation.

Presumably, they are triplet and quintuplet excitations of triangles close to the edges, obtained

by breaking one Haldane bond. Bulk excitations have minima of the energy in the middle

of the chain (yellow and green dots in Fig.2.12(a)). In cases where bulk and edge excitation

energies are approximately equal several line crossing occur during the sweep.

In order to check that the local minima indeed correspond to the best estimate of the excita-
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2.3. Convergence

tion energies, we computed the variance 〈ψ|H 2|ψ〉− (〈ψ|H |ψ〉)2, as shown in Fig.2.12,(b). It

vanishes when states obtained with DMRG are close to the true eigenstates of the Hamiltonian.

The variance of the bulk excitations (yellow and green) indeed has a minimum in the middle

of the chain. The large value of the variance (0.1 and 0.25) indicates that in the selected sweep

the convergence has not been reached yet. Although it is not clear why the variance of the

lowest edge excitations oscillates close to the edges (red), its minimum occurs at the same

position as the local minimum in energy.

2.3 Convergence

In the last section of this chapter we will address rather technical questions on the algorithm

convergence. The latter depends on many different factors: how far the system is from the

critical line, the size of a chain, boundary conditions (open or periodic, free or fixed), the type

of effective Hamiltonian (one-site, two-site etc.), the growing scheme for the bond dimension

and many others. In the following we will shortly discuss how the convergence can be checked

and controlled, and how results can be extracted even if the convergence cannot be reached.

The first example of convergence was already shown for the critical Ising model in Fig.2.10.

We have noticed that the convergence of the excitation energies obtained by targeting many

eigenvalues of the effective Hamiltonian depends not only on the number of kept states

D, but is also extremely sensitive to the number of Lanczos iterations. In Fig.2.13 we show

the convergence of the energy spectra in critical Ising chain, when the number of Lanczos

iterations is restricted to 200.

There are several ways to control the convergence: Traditional DMRG exploits the so-called

truncation error or discarded weight, defined as the sum of the discarded singular values. The

discarded weight is zero by construction in one-site DMRG, while one can access it in two-

or more-site DMRG. The convergence of the ground state is achieved when the energy of the

ground state does not change anymore with the sweeps and with the increase of the number

of states D. We use the latter when compute the ground-state only as a good indicator of

convergence, however there is a risk that the energy will be stuck at a local minimum and

converges to some excited state instead of the ground-state. The same could happen when

the convergence is checked by the variance, that signals convergence to an eigenstate, but not

necessary to the ground state. The only way to check this (although it does not provide any

guarantee) is to increase the number of kept states in different ways.

One can start with different numbers of states in infinite-size DMRG and let the bond dimen-

sion grow linearly or as a geometric series (or in a more complicated way). In most of the cases

we use a linear increase of the bond dimension at each half-sweep. Then one can check the

convergence with both the number of performed sweeps and the number of kept states. Close

to the critical point DMRG converges very slowly and a large number of states has to be kept

in order to get reliable results. Therefore for critical systems, it is reasonable to increase the

bond dimension very fast during the first few sweeps (lets us say till D ≈ 800) and continue
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Chapter 2. Density Matrix Renormalization Group algorithm
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Figure 2.13 – Same as Fig.2.10 obtained with at most 200 Lanczos iterations. When the number
of Lanczos iterations is sufficiently large the noise in higher excited states is suppressed as
shown in Fig.2.10 obtained with at most 500 Lanczos iterations

sweeping through the tensor network with large number of kept states. In order to avoid

convergence to a wrong eigenstate, one has to shake the system either by a slow increase of

the bond dimension (say 20-50 states during one sweep) or by shaking the wave-function with

decreasing and increasing the number of states until the convergence is reached (e.g. decrease

by 20-30 while sweeping left-to-right and increase by 50-80 while sweeping back). One can try

different approaches to see whether all of them converge to the same state.

In Fig. 2.14(a), we have plotted the ground-state energy of periodic chains for spin-1 J1− J2− J3

model at Ising critical line (see Chapter 4) as a function of the inverse number of sweeps.

Note that we plot measurements after each passage through the system, whereas a sweep

corresponds to going back and forth. So the variable sweep takes half-integer as well as

integer values. The almost flat part of the curves for large number of sweeps indicates that

convergence was reached. For each curve, we have used the slope of the last few points to

extrapolate the results for infinite number of sweeps. We do up to 16 sweeps and keep up to 900

states. In the first 6-7 sweeps the number of kept states increases from 100 to approximately

90% of the maximal value, and we reaches the maximim while by increasing and decreasing

number of states.

The lack of convergence can also be a problem for higher excited states even with open

boundary conditions as shown in Fig.2.14 (b) and (c). As pointed out in the previous section,

the convergence of the excited state is reached if the energy as a function of iterations becomes

flat in the middle of the chain. In some complicated cases such as J1 − J2 models with either
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Figure 2.14 – Extrapolation of the DMRG results towards infinite number of sweeps. (a) Ground
state energies for periodic chains with different numbers of sites. The continuation of the line
is a fit linear in 1/sweep of the last few points. (b) and (c) Ground-state energy and energy of
the lowest excited states as a function of the inverse number of DMRG sweeps (equivalently
inverse number of states) for J1 − J2 − J3 model in open chain with N = 80 (b) and 85 (c) sites.
Dots are DMRG results while red lines are linear fits of the last few points for each curve
marked with large circles.

three-body interactions (J3) or biquadratic coupling (Jb) a large number of states should be

kept. This leads to a very slow convergence starting from rather small systems. Fig. 2.14(b)

provides the convergence for several energy levels as a function of the inverse number of

sweeps. Although convergence is reached only for the ground-state and the lowest excited

state, one can estimate energies of few more levels by extrapolating the last few points of each

curve to infinite number of sweeps (here we use linear fit in 1/sweep). We do 7-9 sweeps and

the number of kept states increase linearly from 100 to 900. Therefore finite-size scaling of the

energy with the number of sweeps is equivalent to scaling with number of kept states.
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Figure 2.15 – a) Energy of the ground state and of the first four low-lying excited states as a
function of iterations. The ground-state energy, bulk and edge excitation are marked with red,
blue and green dots respectively. b) Energy scaling with the number of iterations. The values
of the energies are taken at the points marked on the left panel. The lower bound estimates
are linear fits of the last two available points. The upper bound is the value of the last available
point
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Chapter 2. Density Matrix Renormalization Group algorithm

The convergence is even more complicated in the case of the J2− J3 model for which, as briefly

discussed above, low-lying localized edge excitations appears below slowly convergent bulk

excitations. An example of convergence for N = 300 sites and the extrapolation of the energies

with the number of sweeps is provided in Fig.2.15. As before we increase the number of states

linearly so the extrapolation with the number of sweeps in Fig.2.15(b) is equivalent to the

extrapolation with the number of states. In the provided example, the convergence has not

been reached for the excited states, therefore we estimate the errorbar with linear fits of the

last two available points as a lower bound and the the values of the last available points as an

upper bound. Later we shall see that despite the poor convergence, the underlying critical

theory still can be extracted from these results.

2.4 Summary

In this section we have discussed the implementation details of the DMRG algorithm that

has been used to obtain most of the numerical results presented in the following chapters. In

particular, we have provided an efficient representation of the Hamiltonian in terms of on-site

matrix product operators for the J1 − J2 − J3 model. A new method of extracting the excited

states from a single-run DMRG has been described. The key point is to follow the excitation

spectrum during the sweeps, this enables to distinguish bulk and edge excitations and check

the convergence of the excitation energies. Although the established method is not universal,

it can be applied to many relevant problems such as the excitation energies of the localized

impurities, the detection of the low-lying in-gap states, and the excitation spectra of critical

systems. Finally, the convergence of the results has been discussed and some examples for the

extrapolation of non-convergent results have been provided.
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3 Minimal models

This chapter is dedicated to the numerical investigation of particularly simple critical points

in one-dimensional quantum systems described by minimal models of conformal field theory

(CFT). We start with a brief review of general properties of the minimal models following

Ref.[35]. According to boundary CFT, one can switch between primary fields or combinations

of several primary fields by changing the boundary conditions in the Hamiltonian. Therefore,

a particular advantage of the minimal models is that they are described by a finite number

of primary fields. The excitation spectrum of these systems is then given by a conformal

tower built from each primary field. Thus, by playing with boundary conditions, one can

in principle observe all possible conformal towers that appear in the minimal model. The

boundary CFT for the transverse field Ising and three-state Potts models were worked out by

Cardy in Ref.[21]. The excitation spectra for open chains reveal the formation of conformal

towers under different boundary conditions: free, fixed or mixed. The goal of this chapter

is twofold: first, to confirm the predictions of boundary CFT for two selected models - the

transverse field Ising model and the three-state Potts model; second, to test the numerical

approach for the calculation of the excitation spectrum proposed in the previous chapter.

3.1 Introduction

The model is called minimal if the corresponding CFT contains a finite number of local

fields with well-defined scaling behavior. The minimal models can be labeled by two positive

integers (p, p ′) that reflect the periodicity properties of the conformal dimension

hr,s = hr+p ′,s+p . (3.1)

The central charge of the critical theory can be expressed in terms of these integers as [35]:

c = 1−6
(p −p ′)2

pp ′ (3.2)
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Chapter 3. Minimal models

For minimal models the conformal dimension h is given by Kac formula[53, 35]:

hr,s = (pr −p ′s)2 − (p −p ′)2

4pp ′ , (3.3)

where the pair of integers (r, s) label the various conformal dimensions and range in the

intervals 1 ≤ r ≤ p ′ − 1 and 1 ≤ s ≤ p − 1. The conformal dimension obeys the following

symmetry property (see Eq.A.1 for derivation):

hp ′−r,p−s = hr,s (3.4)

A minimal model is unitary if and only if |p ′−p| = 1 [37, 35]. In this case, the minimal conformal

dimension is h1,1 = 0 and it corresponds to the primary conformal field identity φ(1,1) = I .

Without loss of generality we assume p > p ′, then for unitary minimal models the central

charge of Eq.3.2 can be rewritten as

c = 1− 6

p(p −1)
. (3.5)

The first non-trivial (c > 0) unitary model is labeled by (4,3) and corresponds to the critical

Ising model in a transverse field[10, 35]. The following pairs (5,4) and (6,5) label the tri-critical

Ising model [36, 35] and the three-state Potts model [29, 99, 35] respectively. The first and the

last cases will be investigated numerically in the following sections.

One of the fundamental characteristic of a conformal field theory is a central charge, as first

realized in Ref.[10]. In practice, the universality class of a critical theory is usually determined

by extracting the central charge from numerical data. Although it is not always feasible to

deduce the critical theory from the central charge in a unique way, the number of candidates

for possible CFTs is reduced to just a few. The selection among them often can be based

on simple physical intuition. In addition, the critical exponents can be extracted from the

scaling of some physical operators (on-site magnetization, correlations etc.). Moreover, in

case of conformally invariant boundary conditions the excitation spectrum forms so-called

conformal tower. Various boundary conditions correspond to primary fields with different

conformal dimensions that result in various conformal towers or their superposition. In cases,

where there is no physical intuition on the type of the critical theory, or when the numerical

computation of the central charge is complicated (see the following chapters for examples)

the study of the excitation spectra provides a systematic and complete way to extract the

parameters of the underlying critical theory.

In the minimal model labeled by (p, p ′), the irreducible character is given by

χ(r,s)(q) = K (p,p ′)
r,s (q)−K (p,p ′)

r,−s (q), (3.6)
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3.2. Ising model in a transverse field

where

K (p,p ′)
r,s (q) = q−1/24

ϕ(q)

∑
n∈Z

q (2pp ′n+pr−p ′s)2/4pp ′
, (3.7)

and ϕ(q) is the Euler function:

1

ϕ(q)
=

∞∏
n=1

1

1−qn (3.8)

The structure of the excitation spectra for a particular CFT can be deduced from the small-q

expansion of the characters in Eq.3.6.

3.2 Ising model in a transverse field

The simplest one-dimensional model that exhibits a quantum phase transition is the Ising

model in a transverse field. It is given by the following Hamiltonian:

HIsing = J
∑

i
Sx

i Sx
i+1 +hSz

i , (3.9)

where positive (respectively negative) coupling constant J corresponds to antiferomagnetic

(respectively ferromagnetic) Ising models. In both cases, a quantum phase transition occurs

at the critical values of the magnetic fields h =±J/2.

As pointed out in the introduction, the critical Ising model is described in CFT by the minimal

model with (p, p ′) = (4,3)[10, 35]. According to Eq.3.5, the central charge of the critical theory

is c = 1/2. The theory has three operators: identity I with conformal dimension h1,1, spin

operator σ with h1,2 = 1/16 and energy density ε with conformal dimension h2,1 = 1/2 (see

table 3.1).

s = 1 s = 2 s = 3

r = 1 h1,1 = 0 h1,2 = 1/16 h1,3 = h2,1

r = 2 h2,1 = 1/2 h2,2 = h1,2 h2,3 = h1,1

Table 3.1 – Conformal dimension hr,s of the field φ(r,s) in the Ising critical theory. The repeating
dimensions due to the symmetry properties of Eq.3.4 are shown in gray

The finite size spectrum of the Ising model with different types of boundary conditions in open

chain were all worked out by Cardy[21]. For open and free boundary condition the excitation

spectrum is the superposition of I and ε conformal towers. The two towers are separated

when the edge spins are fixed. For ↑,↑ boundary conditions only the conformal tower I occurs

and for ↑,↓ boundary conditions, only ε occurs. The conformal tower σ is induced by mixed

boundary conditions, when the spin at one edge is fixed to either ↑ or ↓ while the spin at the
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other edge remains free.

The characters of these conformal towers, that determine the multiplicities of the excited

states, were first calculated in Ref.[87]. In Appendix A we repeat the calculations of characters

using the definition of Eq.3.6 and keeping up to eight orders in q . The obtained expansions

are listed below:

Identity conformal tower:

χI = q−1/48 (1+q2 +q3 +2q4 +2q5 +3q6 +3q7 +5q8) (3.10)

ε conformal tower:

χε = q1/2−1/48 (1+q +q2 +q3 +2q4 +2q5 +3q6 +4q7 +5q8) (3.11)

σ conformal tower:

χσ = q1/16−1/48 (1+q +q2 +2q3 +2q4 +3q5 +4q6 +5q7 +6q8) (3.12)

The terms inside the brackets gives the structure and the multiplicities of the excitation

spectrum. More precisely, a term mqn corresponds to the n’s energy level with multiplicity m.

The ground state corresponds to n = 0, therefore the scaling of the ground-state is given by the

prefactor equal to qhr,s−c/24:

E = ε0N +ε1 + πv

N

[
− 1

48
+x

]
(3.13)

where ε0 and ε1 are non-universal constants and x is the corresponding conformal dimension:

x = hI = 0 for the identity, x = hε = 1/2 for ε and x = hσ = 1/16 for σ conformal towers.

When the excitation spectrum is given by the superposition of several conformal towers,

the corresponding characters are added and therefore x equal to the smallest conformal

dimension of these towers. Thus, for free boundary condition, since hI < hε the ground-state

belongs to the I conformal tower and scales according to Eq.3.13 with x = 0.

We have computed the excitation spectrum of the critical Ising model in open chains under

different boundary conditions by targeting many eigenvalues of the effective Hamiltonian in

the DMRG (the method was described in details in the section 2.2).

The DMRG results on the scaling of finite-size spectra are shown in Fig.3.1. Figures 3.1(a),(b),(c)

and (d) show the scaling of the ground-state energy for different boundary conditions. Non-

universal terms ε0, ε1 and the velocity v are treated as fitting parameters. Numerically obtained

values of the velocities vfree = 0.491, v↑↑ = v↑↓ = 0.509 coincides within 2% with the value

vI si ng = 1/2.

Figures 3.1(e),(f),(g) and (h) show levels of conformal towers obtained numerically as n =
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Figure 3.1 – Finite-size scaling of the energies of the critical Ising model in open chains with
different boundary conditions: (a),(e),(i) - free at both edges; (b),(f),(j) - fixed with both edge
spins pointing up; (c),(g),(k) - fixed with one edge spin pointing up and other pointing down;
(d),(h),(l) - fixed at one edge and free at second one. (a),(b),(c) and (d) finite-size scaling of
the ground-state energy after removing ground-state energy in the thermodynamic limit ε0

and boundary terms ε1. (e), (f), (g) and (h) conformal towers of the excitation spectra. Blue
dots are the DMRG data for n = (En −E0)/(πv N ) with v = vI si ng = 1/2. The CFT predictions
are shown with gray lines for reference. The multiplicities of the levels are indicated on the
right of each tower. (i), (j), (k) and (l) Finite-size scaling of the excitation energies. Blue dots
are DMRG data, red, green and magenta lines are conformal towers for identity I , energy ε

and spin σ fields.

(En −E0)/(πvI si ng N ). The DMRG results (dots) are in good agreement with CFT predictions

(gray lines). Note that due to the absence of logarithmic corrections in the Ising model, the

structure of the conformal tower is independent of the system size and can be observed

starting from very small system sizes (N ≈ 30−40). The multiplicities of each level observed

numerically are shown on the right of the Figures 3.1(e),(f),(g) and (h) and coincide with the

expansion of the characters of Eq.3.10, Eq.3.11 and Eq.3.12.
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The finite-size scaling of the gap is shown in Figures 3.1(i),(j),(k) and (l). They contain essen-

tially the same amount of information as the three figures above. The DMRG results for up to

20 states are marked with blue dots, red, green and magenta lines show the CFT prediction for

the scaling of I and ε and σ conformal towers respectively. The consistence can be checked by

extracting the velocities from the finite-size scaling of the ground-state and every excited state.

The obtained velocities are listed in the table A.1 and agree within 2% with vI si ng = 1/2.

Previously, the conformal towers of the critical Ising modelhave been computed numerically by

Evenbly and Vidal[31] using scale-invariant MERA, where three lowest levels were computed

for each tower. The conformal towers with twelve levels has been obtained from entanglement

spectrum in chains with open free and periodic boundary conditions by Läuchli [62].

3.3 Three-state Potts model

The next minimal model that we probe numerically is the three-state Potts model, which is

an extension of the transverse field Ising model to a system with a local Hilbert of dimension

d = 3. For convenience, we label single-particle states by A, B and C. The model is defined by

the Hamiltonian:

HPotts =−J
N−1∑
i=1

3∑
μ=1

Pμ

i Pμ

i+1 −h
N∑

i=1
Pi , (3.14)

where Pμ

i = |μ〉i i 〈μ|−1/3 projects spin at site i along the μ direction and Pi = |λ0〉i i 〈λ0|−1/q

aligns spins along the direction |λ0〉i =∑μ |μ〉�q . The first term in the Hamiltonian plays the

role of the ferromagnetic interaction, while the second one is a generalized transverse field.

In the context of CFT the model is labeled by (p, p ′) = (6,5)[29, 99, 35] for which Eq.3.2 gives

the central charge c = 4/5. The corresponding minimal model has ten different fields, with the

conformal dimensions listed in the Table 3.2.

s = 1 s = 2 s = 3 s = 4 s = 5

r = 1 h1,1 = 0 h1,2 = 1/8 h1,3 = 2/3 h1,4 = h4,2 h1,5 = h4,1

r = 2 h2,1 = 2/5 h2,2 = 1/40 h2,3 = 1/15 h2,4 = h3,2 h2,5 = h3,1

r = 3 h3,1 = 7/5 h3,2 = 21/40 h3,3 = h2,3 h3,4 = h2,2 h3,5 = h2,1

r = 4 h4,1 = 3 h4,2 = 13/8 h4,3 = h1,3 h4,4 = h1,2 h4,5 = h1,1

Table 3.2 – Conformal dimension hr,s of the field φ(r,s) in the critical three-state Potts model.
The repeating dimensions due to symmetry properties of Eq.3.4 are shown in gray

The small-q expansion of the characters for these ten fields is provided in the Appendix A. Six

of them appear in the description of the operators I of zero dimension, σ of dimension 1/15, ε
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3.3. Three-state Potts model

of dimension 2/5, and ψ of dimension 2/3. The corresponding characters are:

χI =χ1,1 +χ4,1 χε =χ2,1 +χ3,1 χσ =χσ† =χ2,3 χψ =χψ† =χ1,3 (3.15)

The small-q expansion of these characters gives:

χI = q−1/30 (1+q2 +2q3 +3q4 +4q5 +7q6) (3.16)

χε = q−1/30+2/5 (1+2q +2q2 +4q3 +5q4 +8q5 +11q6) (3.17)

χσ = q−1/30+1/15 (1+q +2q2 +3q3 +5q4 +7q5 +10q6) (3.18)

χψ = q−1/30+2/3 (1+q +2q2 +2q3 +4q4 +5q5 +8q6) (3.19)

The appearance of different conformal towers under various applied boundary conditions

was studied by Cardy[21]. In an open chain with free boundary conditions at both ends, the

excitation spectrum corresponds to the superposition of three conformal towers χI ⊕2×χψ.

Strictly speaking, the conformal tower in this case is given by χI ⊕χψ⊕χψ† . However, the

characters of the field ψ and its conjugate are equal χψ† =χψ. The three towers split according

to χI ⊕2×χψ under fixed boundary conditions. If only the local state A is allowed at both

edges, then the boundary condition is of the type A-A and the excitation spectrum is given by

the identity conformal tower I . When the allowed state is different at the edges, the boundary

conditions are then A-B and A-C, and in both cases the excitation spectrum is given by the

conformal tower of ψ. Numerically, the conformal towers for free, and periodic boundary

conditions were obtained previously from entanglement spectra by Läuchli [62].

The finite-size scaling of the ground-state is given by:

E = ε0N +ε1 + πv

N

[
− 1

30
+x

]
, (3.20)

where ε0 and ε1 are non-universal constants. In the case of free and A-A boundary conditions,

the ground state belongs to the conformal tower I with conformal dimension x = hI = 0, while

the spectrum of A-B (and A-C) boundary condition belongs completely to the ψ conformal

tower with conformal dimension x = hψ = 2/3. DMRG results on the ground-state scaling

are summarized in Fig.3.2(a), (b) and (c). ε0 and ε1 together with the velocity v are treated as

fitting parameters. The obtained values of the velocities are vfree = 0.827, vA−A = 0.857 and

vA−B = 0.862.

Figures Fig.3.2(d),(e) and (f) show levels of conformal towers obtained numerically as n =
(En −E0)/(πv A−A N ). The DMRG results (dots) are in good agreement with CFT predictions

(gray lines). Note that the structure of the conformal towers does not depend on the system

size and the excitation spectra do not reveal finite-size corrections. The multiplicities of each
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Figure 3.2 – Finite-size scaling of the energies of the critical three-state Potts model in open
chains with different boundary conditions: (a),(d),(g) - free, (b),(e),(h) - fixed with the same
state at both edges, (c),(f),(i) - fixed with different states on the left and right edges. (a),(b),(c)
finite-size scaling of the ground-state energy after removing ground-state energy in the ther-
modynamic limit ε0 and boundary terms ε1. (d), (e), (f) conformal towers of the excitation
spectra. Blue dots are the DMRG data for n = (En −E0)/(πv N ) with v = vA−A = 0.857. The CFT
predictions are shown with gray lines for reference. The multiplicities of the levels are indi-
cated on the right of each tower. (g), (h), (i) Finite-size scaling of the excitation energies. Blue
dots are DMRG data, red and blue lines are conformal towers for I and ψ fields respectively
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3.3. Three-state Potts model

level observed numerically are shown on the right of the Figures 3.1(d),(e) and (f) and coincide

with the expansion of the characters of Eq.3.16, 3.17, 3.18 and 3.19.

The finite-size scaling of the excitation energies for different boundary conditions are provided

in Fig. 3.2(g),(h) and (i). The DMRG results for up to 20 states are marked with blue dots, red

and blue lines show the CFT prediction for the scaling of I and ψ conformal towers respectively.

The consistence can be checked by extracting the velocities from the finite-size scaling of the

ground-state and every excited state. The obtained velocities are listed in Table A.2.

In agreement with Cardy’s prediction [21], the conformal towers of ε and σ appear under

partially fixed boundary conditions, when two states are allowed at the edges, while the third

one is suppressed. When the same pair of states are allowed at both edges, the boundary

conditions are of type AB-AB and the energy spectrum is described by the superposition of two

conformal towers I ⊕ε (see Fig.3.3(d) and (g)). The ground state scales according to Eq.3.20

with x = hI = 0 as shown in Fig.3.3(a). When different pairs of states are allowed at two edges

of a chain, the boundary is of type AB-AC and the energy spectrum is a superposition of σ⊕ψ

conformal towers (see Fig.3.3(e) and (h)). The ground-state scales according to Eq.3.20 with

x = min(hσ,hψ) = hσ = 1/15 as shown in Fig.3.3(b).

Surprisingly, the excitation levels that belong to σ or ε towers exhibit strong finite-size effects,

while towers I and ψ remain unaffected. Most clearly it can be observed in Fig.3.3(g) and

(h). The discrepancy between the numerical data and CFT predictions for σ and ε towers is

significant only for small systems N < 100 and suppressed while approaching thermodynamic

limit, for which CFT predictions apply.

The velocity extracted from the ground-state scaling AB-AB boundary condition v AB ,AB = 0.857

is in good agreement with previous results. By contrast, in the case of AB-AC boundary

conditions the ground state scaling gives the velocity v AB−AC = 1.05, that is more that 20% off

the velocities obtained with other boundary conditions. Perhaps this discrepancy is due to

the observed finite-size effect, since the ground-state belongs to the σ conformal tower. The

velocities extracted from the finite-size scaling of the excitation energies are summarized in

Table A.3.

When the applied boundary condition fixes one edge and partially fixes the second one, the

energy spectrum is described by only one tower. If the allowed states at the two edges are

different (A-BC boundary), the whole spectrum belongs to the ε conformal tower, otherwise

the excitation spectrum is described by σ conformal tower (A-AB boundary). The ground

state scales according to 3.20 with x = hε = 2/5 (Fig.3.4(b)) and x = hσ = 1/15 (Fig.3.4(a)). As in

the case of partially fixed boundary conditions (AB-AB and AB-AC), strong finite-size effects

appear in both σ and ε conformal towers (Fig.3.4(g) and (h)).

In order to see the towers for the remaining four primary fields, namely for φ(1,2), φ(2,2), φ(3,2)

and φ(4,2), the boundary conditions should be fixed or partially fixed only at one edge while at

the second edge the spin remains free [21]. The superposition of the towers with conformal
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dimensions h2,2 = 1/40 and h3,2 = 21/40 appear under AB-free boundary condition. The other

two towers with h1,2 = 1/8 and h4,2 = 13/8 are superposed under A-free boundary conditions.

In the case of AB-free boundary conditions the ground state scales according to Eq. 3.20 with

x = h2,2 = 1/40, that corresponds to a very small numerical prefactor for the universal term

−πv/120N (Fig.3.3 (c)). Numerically, the calculated conformal towers χ2,2 and χ3,2 are shown

in Fig.3.3 (f) and (i). Significant finite-size effects appear in both towers.

If the spin is fixed only at one edge (A-free boundary condition) x = h1,2 = 1/8 in the ground-

state scaling of Eq.3.20 (Fig.3.4 (c)). The calculated conformal towers match the theoretical

by predicted χ1,2 and χ4,2. Note that the finite-size discrepancy does not appear in these two

towers and the structure of the energy spectrum is clear starting from small systems (Fig.3.4

(f) and (i)).

The velocities extracted from the finite-size scaling of the ground-state and excitation energies

are listed in the Table A.2 for A-free and in Table A.3 for AB-free boundary conditions.

3.4 Summary

In the present chapter we have provide a solid numerical confirmation for the predictions

of boundary conformal field theory for the critical Ising and three-state Potts models. An

extensive DMRG calculation has allowed us to reproduce the excitation energies for up to

20 low-energy states. The obtained numerical results suggest strong finite-size effects in the

scaling of the ground-state and excitation energies for the conformal towers ε, σ, χ2,2 and χ3,2.

By contrast, other conformal towers of the Potts model do not exhibit deviation from the linear

scaling for small sizes.

The study of minimal models has allowed us to set up and test an extension of the DMRG

algorithm that gives access to many energy levels within a single run and at low computational

cost. Thus, the method described in the previous chapter indeed provides accurate results for

the excitation spectrum of finite-size systems and allows one to extract the underlying critical

theory. Moreover, by changing boundary conditions one changes primary fields and therefore

the structure of the excitation spectrum. Thus, the excitation spectrum obtained for different

boundary conditions can in principle identify the underlying critical theory in a complete and

unique way. As we will show in the next chapters, this method turns out to be a powerful tool

in the identification of the universality class of critical lines even in more complicated models

including the J1 − J2 − J3 and the J1 − J2 − Jb models.
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Figure 3.3 – Finite-size scaling of the energies of the critical three-state Potts model in open
chains with partially fixed boundary conditions: (a),(d),(g) - only two states are allowed at
the edges and excluded state is the same for left and right edge; (b),(e),(h) - only two states
are allowed at the edges and excluded state is different for left and right edge; (c),(f),(i) - only
two states are allowed at one edge while second edge remains free. (a), (b) and (c) finite-size
scaling of the universal term in the ground-state energy. (d), (e) and (f) conformal towers of the
excitation spectra. Blue dots are the DMRG data for n = (En−E0)/(πv N ) with v = v A−A = 0.857.
The CFT predictions are shown with gray lines for reference. The multiplicities of the levels
are indicated on the right of each tower. (g), (h) and (i) Finite-size scaling of the excitation
energies. Blue dots are DMRG data, lines of different colors correspond to different conformal
towers

39



Chapter 3. Minimal models

0

2

4

6

8

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.5

1

1.5

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

2
2
4
5
8

1
2
3
5
7

5

0 0.4 0.8 0 0.4 0.8

0 0.02

0 0.02

A - AB A - BC
a)

d)

g)

b)

e)

h)

0 0.4 0.8
0

1

2

3

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

4

0 0.02 0

A - free

0.02

0 0.02 0 0.02

f)

i)

c)

1
1
2
3
4

1
1
2
3

Figure 3.4 – Finite-size scaling of the energies of the critical three-state Potts model in open
chains with mixed boundary conditions: (a),(d),(g) - only two states are allowed at one edge
and only one of these two is allowed at the second edge; (b),(e),(h) - only two states are allowed
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scaling of the universal term in the ground-state energy. (d), (e) and (f) conformal towers of the
excitation spectra. Blue dots are the DMRG data for n = (En−E0)/(πv N ) with v = v A−A = 0.857.
The CFT predictions are shown with gray lines for reference. The multiplicities of the levels
are indicated on the right of each tower. (g), (h) and (i) Finite-size scaling of the excitation
energies. Blue dots are DMRG data, lines of different colors correspond to different conformal
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4 The spin-1 chain with next-nearest-
neighbor and three-site interactions

4.1 Introduction

The simplest isotropic model of a spin chain includes only nearest-neighbor interaction and

is described by the Heisenberg Hamiltonian:

HHeis = J
∑

i
Si ·Si+1. (4.1)

Heisenberg spin chains have been studied intensively over the years. The celebrated Bethe

ansatz published in 1931 [13] provides an exact solution of this model. Adding frustration

through competing interactions leads to a variety of new phases and quantum phase transi-

tions. The most famous example is probably the J1 − J2 spin-1/2 chain:

HJ1−J2 = J1
∑

i
Si ·Si+1 + J2

∑
i

Si−1 ·Si+1, (4.2)

for which the ground-state is exactly dimerized when J2/J1 = 1/2 [69]. This point belongs to

an extended spontaneously dimerized and gapped phase that appears when the ratio of the

next-nearest neighbor interaction to the nearest-neighbor one exceeds J2/J1 = 0.2411 [77].

In 1983 Haldane predicted a finite gap for Heisenberg chains with integer spins, in contrast to

critical chains for half-integer spins. An important milestone in the confirmation of Haldane’s

prediction was the construction of an exact ground state at the Affleck-Kennedy-Lieb-Tasaki

(AKLT) point Jb/J1 = 1/3 [7] of the bilinear-biquadratic spin-1 chain:

HJ1−Jb = J1
∑

i
Si ·Si+1 + Jb

∑
i

(Si ·Si+1)2 (4.3)

At the AKLT point, the Hamiltonian HJ1−Jb is a parent Hamiltonian for the so-called valence-

bond-solid (VBS) ground state. The VBS state is the unique state with a single valence bond

connecting each nearest-neighbor pair of spins. As shown in Fig.4.1, the spin-1 at each site

can be represented graphically as a pair of spin-1/2 dots, each of which is connected by a
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Chapter 4. The spin-1 chain with next-nearest-neighbor and three-site interactions

Figure 4.1 – Graphical representation of the VBS state on spin-1 chain. Spin-1 at each site (oval)
is represented by a pair of dots (spins-1/2). Each dot is connected to one of its nearest neighbor
by a line (valence bond singlet). In open chain, one dot at each edge remains unconnected
and leads to spin-1/2 edge states

+

+ + ...
Figure 4.2 – Graphical representation of intertwined NNN-Haldane chains. J1 − J2 chain is
presented as a zig-zag ladder with J1 rungs and J2 legs. In the following, only the top sketch
will be used to label NNN-Haldane phase

valence bond line to one of its neighbors.

The VBS state is used to describe an extended Haldane phase that is usually associated with the

spin-1 Heisenberg Hamiltonian and is robust under small perturbations of the Hamiltonian.

The Haldane phase is topologically non trivial, and the ground state has a hidden order

characterized by a non-local string order parameter. For open boundary conditions, a spin-

1/2 at each edge remains unpaired that gives rise to edge states. The excitation energy of the

low-lying in-gap state (so-called Kennedy triplet [54, 40]) vanishes exponentially fast with

the system size. More recently, it was shown that the Haldane phase is characterized by the

double degeneracy of the entanglement spectrum [82]. This degeneracy is protected by the

same set of symmetries that protect the stability of the Haldane phase. If the Hamiltonian is

deformed while preserving these symmetries, the degeneracy can be lifted only by crossing a

phase boundary.

In the spin-1 chain, by contrast to the spin-1/2 chain, the next-nearest neighbor interaction

J2 does not lead to dimerization, but induces a first-order phase transition into a phase that

consists of intertwined next nearest-neighbor (NNN) Haldane chains [56, 58] sketched in

Fig.4.2.

The spin-1 J1 − J2 model, given by Hamiltonian (4.2), has been studied using a variational

ansatz and DMRG. The authors have shown that the Haldane phase is stable until J2 =
0.7444(6), where a phase transition to the NNN-Haldane phase takes place. According to
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DMRG calculations, the spin gap remains open. The finite jump in the string order parameter

suggests that the phase transition is first order, although no discontinuity could be identified

in the first derivative of the energy at the transition. Disorder and Lifshitz points (i.e. points,

where the correlation function in real space becomes incommensurate with a wave-vector

q �= 0,π/2,π, or where the structure factor has two peaks at q �= 0,π/2,π, respectively) were

identified at αd = 0.284(1) and αL = 0.3725(25).

Spontaneous dimerization has long been known to be induced in spin-1 chains by a negative

biquadratic interaction Jb exactly opposite to the bilinear one: Jb/J1 =−1. The critical point

is integrable with Bethe ansatz [9, 96], and it is in the SU(2)2 Wess-Zumino-Witten (WZW)

universality class [1, 5, 6] .

The combined effect of J2 and Jb for the spin-1 chain has recently been investigated by Pixley

et al [81], who came to the conclusion that the phase diagram only consists of the phases

previously identified in the models with only one of these frustrating interactions (J2 or Jb):

the Haldane phase, a spontaneously dimerized phase, and the NNN-Haldane phase. They also

carefully investigated the short-range correlations, which become incommensurate through

Lifshitz and disorder transition line. The dimerization transition was argued to be either in the

SU(2)k=2 WZW universality class, or to be first order. The nature of the critical lines will be

re-investigated in the next chapter.

Together with next-nearest-neighbor and biquadratic interactions, a three-site interaction

J3 [(Si−1 ·Si )(Si ·Si+1)+H.c.] appears in the next-to-leading order in the strong-coupling ex-

pansion of the two-band Hubbard model. It has been shown that a three-site interaction of

this form, that reduces to the next-nearest neighbor interaction for spin-1/2, is also able to

induce a spontaneous dimerization in spin-S chains for arbitrary S. Michaud et al. [71, 70]

have shown that there is an exactly dimerized point for all spin-S chains for the J1 − J3 model

at J3/J1 = 1/(4S(S+1)−2). For spin-1/2, this model reduces to the J1− J2 model with J2 = J3/2,

and this exactly dimerized state can be seen as the generalization of the Majumdar-Ghosh

point of the spin-1/2 J1 − J2 chain. For S = 1 there is a transition at J3 � 0.111 [71] to a spon-

taneously dimerized phase. This transition is continuous and belongs to the SU(2)k=2 WZW

universality class [6].

In this chapter we will focus on J1− J2− J3 model that combines nearest-neighbor, next-nearest

neighbor and three-site interactions:

HJ1−J2−J3 = J1
∑

i
Si ·Si+1 + J2

∑
i

Si−1 ·Si+1 + J3
∑

i
[(Si−1 ·Si )(Si ·Si+1)+H.c.] , (4.4)

We set J1 = 1 throughout this chapter and concentrate on the case of J2, J3 ≥ 0. The main

results for J1 − J2 and J1 − J3 are summarized in phase diagram 4.3.

Further investigations have shown that the result of Michaud et al. [71] can be extended to

the case where a next-nearest neighbor exchange interaction J2 is included [102]. Indeed,
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Figure 4.3 – Summary on the results from previous study on J1 − J2 and J1 − J3 models. The
exactly dimerized state is an eigenstate along the red line, but it is a ground-state only for
small values of J2 (schematically shown as solid line)

provided that

J3

J1 −2J2
= 1

4S(S +1)−2
. (4.5)

the two fully dimerized states are eigenstates along a line in the J2 − J3 parameter space, and

they are ground states if J2 is not too large. Now, for J3 = 0 and S = 1, it has already been

shown by Roth and Schollwöck that the ground state is not dimerized for J2 = 1/2, but that it

lies in the Haldane phase [56, 57]. This suggests that, for spin 1, the transition between the

dimerized phase and the Haldane phase, which is continuous for J2 = 0, has to become first

order somewhere on the line J2 +3J3 = 1/2.

4.2 Main results

Let us first summarize the main results obtained numerically with DMRG simulations and

exact diagonalizations (ED). The phase diagram as a function of J2 and J3 couplings consists

of three phases, each of which may be schematically illustrated by a diagram with lines

indicating valence bond singlets formed between various sites, (see Fig. 4.4): a Haldane phase

with one valence bond per J1 bond, a next-nearest neighbor (NNN)-Haldane phase with one

valence-bond per J2 bond, and a dimerized phase with two valence-bonds on every other J1

bond.

The transition between the Haldane and the NNN Haldane phase is always first order (the

energy per site has a kink), in agreement with previous results for J3 = 0 [56]. It is topological:

the two phases cannot be distinguished by any local order parameter, but the Haldane phase

is topological (supports gapless edge states and non-zero string-order parameter), while the

NNN-Haldane is not (see Fig. 4.1 and Fig. 4.2).

For small J2, the transition between the Haldane and dimerized phases is in the SU(2)2 WZW
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Figure 4.4 – Phase diagram of the spin-1 chain with next-nearest neighbor coupling J2 and 3-
site interaction J3. The transition from the dimerized phase to the Haldane phase is continuous
along the solid line, with central charge c = 3/2, and first order along the dashed line. The
transition from the NNN-Haldane to the dimerized is a continuous transition in the Ising
universality class with central charge c = 1/2. The transition between the Haldane phase and
the NNN-Haldane phase is always first order.

universality class with central charge c = 3/2 from J2 = 0, J3 � 0.111 [71] up to and including

at a critical end point beyond which the transition becomes first order. This first-order line

connects smoothly, at an unusual triple point, with the first-order transition between the

Haldane and NNN-Haldane phases.

Finally, the transition between the NNN Haldane and dimerized phases is in the Ising univer-

sality class. As it will be shown later, singlet excitations become critical while the magnetic

excitations remain gapped at the transition.

In addition to these phases, which can be distinguished by their topological properties or by

the development of long-range dimerization, we have also identified regions of the phase

diagrams characterized by various types of short-range order. The lack of long-range order to

distinguish these regions prevents them from being true phases in the thermodynamic sense.

However, they play an important role in understanding the evolution of correlations in the

phase diagram, and we will nevertheless refer to them as phases.

The correlation function C (x) = 〈S(0) · S(x)〉 can be well accounted for throughout by the

product of the two-dimensional Ornstein-Zernicke (OZ) form:

COZ (x) ∝ cos(q · x)
e−x/ξ

�
x

, (4.6)

with, in some cases, a prefactor 1+δ(−1)x , leading to the dimerized Ornstein-Zernicke (DOZ)
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Figure 4.5 – Phase diagram based on the type of short-range order realized in the phases of
Fig.4.4. The notations for the different phases are described in the text. Note that the disorder
line αd is distinct from the Lifshitz line αL in both Haldane and dimerized phases. The line
where the fully dimerized state is an exact ground state coincides with the disorder line αd in
the dimerized phase.

form:

CDOZ ∝ (1+δ(−1)x )COZ (x), (4.7)

The wave number q , the correlation length ξ, and the dimerization parameter δ are fitting

parameters that depend on the couplings J2 and J3. Note that the same form applies to the

dimerized and non-dimerized phases, except, of course, a line of continuous WZW SU(2)2

phase transition, at which the spin-spin correlation decays algebraically C (x) ∝ (−1)x /|x|3/4

up to logarithmic corrections. The dimerized phase is characterized by the development of

long-range correlations of the two-spin operator Si ·Si+1.

The structure factor is defined by the Fourier transform of real space correlations 〈Si ·S j 〉:

SF (q) = 1

N

∑
i , j

ei q(i− j )〈0|Si ·S j |0〉 (4.8)

Various short-range commensurate and incommensurate phases are shown in Fig.4.5. Below

we provide a short description of each phase. The detailed discussion of the form of the

correlations that led to the identification of short-range order can be found in Section 4.8.

Haldane Phase
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• H-C: Short-range antiferromagnetic order with commensurate real-space correlation

function. C (x) is well described by the OZ form with q =π and no dimerization (δ= 0).

The structure factor SF (q) has a single peak at q =π.

• H-SD-C: Short-range dimer phase with commensurate real-space correlations (q =π).

C (x) is well described by the dimerized OZ form with q =π and δ> 0. SF (q) has a single

peak at q =π.

• H-SD-ICR: Short-range dimer phase with incommensurate real-space correlations,

characterized by q >π and δ> 0 in Eq.4.7. SF (q) has a single peak at q =π.

• H-ICR: Short-range antiferromagnetic order with incommensurate real-space corre-

lations. C (x) is well described by the OZ form with q �= π and no dimerization (δ= 0).

SF (q) has a single peak at q =π.

• H-IC: Short-range antiferromagnetic order with incommensurate correlations in both

real and momentum spaces. C (x) is well described by the OZ form with q >π and no

dimerization (δ= 0), but SF (q) has two symmetric peaks at q �=π.

Dimerized phase

• D-C: The spin correlations are commensurate in both, real and momentum space. C (x)

is well described by the dimerized DOZ form with q =π and δ> 0. SF (q) has a single

peak at q =π.

• D-ICR: Real-space correlations are incommensurate, and C (x) is well fitted by the DOZ

form with δ> 0 and q >π. SF (q) still has a single peak at q =π.

• D-IC: The spin correlations are incommensurate in both real and momentum space,

C (x) is well fitted by the DOZ form with δ> 0 and q >π, but SF (q) has two symmetric

peaks at q �=π.

• D-ICM: The spin correlations are incommensurate in momentum space, SF (q) has two

symmetric peaks at q �=π,π/2. Real space correlations are commensurate with q =π/2.

NNN-Haldane phase

• NNN-IC: The spin-spin correlations are incommensurate in both, real and momentum

space. C (x) is reasonably well fitted by the OZ form with q > π and no dimerization

(δ= 0). SF (q) has two symmetric peaks at q �=π.

4.3 Phase diagram

In the following section, we will explain how the phase boundaries in Fig.4.4 were obtained by

looking at different quantities: dimerization, ground-state energy, entanglement spectra and
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Figure 4.6 – Finite-size (N = 150) dimerization D(N /2, N ) as a function of J3 for 0 ≤ J2 ≤ 0.3
(left panel) and 0.5 ≤ J2 ≤ 0.9 (right panel). The dashed line indicates a first order phase
transition.

Berry phase. Phase boundaries obtained with all these methods will be compared at the end

of the section.

4.3.1 Dimerization

The natural order parameter to identify the dimerized phase is the dimerization parameter

defined by

D( j , N ) = |〈S j ·S j+1 −S j ·S j−1〉|, (4.9)

where j is a position index and N is the total number of sites. The best estimate for the

thermodynamic limit can be obtained from open finite-size chains when j = N /2 for which

edge effects are the smallest. Fig. 4.6 shows numerical results for the dimerization of a chain

with N = 150 sites as a function of J3 obtained by DMRG.

In moderately large systems (N > 120) and close to the first order phase transition the varia-

tional MPS algorithm suffers from a kind of hysteresis: the algorithm converges to the first

excited state instead of the ground state. This results in an unphysical jump in the total energy

curve (see Fig.4.7) and in an abrupt change of dimerization before the actual phase transition.

These results were discarded when discussing the nature of the phase transition, and Fig.4.6

presents only dimerization curves for which the finite-size energy is continuous.

In order to determine the boundary of the dimerized phase in the thermodynamic limit we

have performed a finite-size extrapolation of the dimerization parameter D(N /2, N ) for chains

with N = 30, 60, 90, 120 and 150 sites. A chain is in the dimerized phase if the dimerization

stays finite for N →∞, which we associate with a convex curve in a log− log plot. By contrast,

a concave scaling curve leads to a vanishing dimerization in the thermodynamic limit and

therefore means that the system is in the Haldane or NNN-Haldane phase. The phase transi-

tion then corresponds to a straight line in the scaling. Some examples of finite-size scaling
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0.042 0.044 0.046 0.048 0.05 0.052

-153

-152

-151

Figure 4.7 – Total energy of a chain with N = 150 sites as a function of J3 coupling for fixed
value of J2 = 0.4. In the vicinity of critical line algorithm converges to the excited (dimerized)
state, that results in a finite jump in the total energy. The position of the true transition in
finite-size chain corresponds to the crossing point of the energy levels

Figure 4.8 – Finite-size scaling of the dimerization parameter for J2 = 0.2, 0.3 and 0.6. The
value of J3 is attached to each curve. The phase transition is continuous at J2 = 0.2 and 0.6.
The abrupt change of scaling at J2 = 0.3 indicates a first order phase transition.

are shown in Fig. 4.8. A smooth change of the scaling curvature implies that the dimerization

curve is continuous in the thermodynamic limit Fig.4.8 (a) and (c), while a first order phase

transition with a finite jump in the dimerization curve leads to an abrupt change from concave

to convex scaling at the critical point Fig.4.8 (b).

The investigation of dimerization has led to a precise determination of the transition line, and

of the nature of the phase transition (continuous or first order) except in the vicinity of the

end point of the continuous transition between the Haldane phase and the dimerized phase,

where first order phase transition is seen as continuous on finite-size systems (see section 4.6).

4.3.2 Ground-state energy

In view of the hysteretic behavior of the system, and to complete the phase diagram in regions

where the ground-state energy appears to be discontinuous, we have carefully investigated the
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Figure 4.9 – (a) Energy of the central bonds for J2 = 0.4 as a function of J3 for finite-size chains
with N = 30,60,90,120 and 150 sites. Solid lines are polynomial fits. The kink was created by
letting the two fits cross. (b) Position of the kink in εmi d as a function of size. The fitting curve
is a quadratic function in 1/N .

behavior of the energy in the vicinity of the transition lines. An estimate of the ground-state

energy in the thermodynamic limit is provided by the value of the energy of the central bonds:

εmi d = ε1 +ε2 +ε3, (4.10)

where

ε1 = J1

2
〈Si−1 ·Si +Si ·Si+1〉,

ε2 = J2〈Si−1 ·Si+1〉,
ε3 = J3〈(Si−1 ·Si )(Si ·Si+1)+H.c.〉,

and where (i , i +1) is the central bond. The dependence on J3 of εmi d for chains with N =
30, 60, 90, 120 and 150 sites for J2 = 0.4 is presented in Fig. 4.9(a). The energy curves are

discontinuous due to the edge effects and due to hysteresis of the variational MPS algorithm

for N = 120,150. In order to determine as precisely as possible the location of the first order

phase transition in the thermodynamic limit, we have extrapolated the lines until they cross.

Then, a finite-size scaling of the position of the kink is presented in Fig. 4.9(b).

For 0.25 ≤ J2 ≤ 0.45, the ground-state energy and the dimerization parameter lead to the same

estimate for the location of the phase transition. For larger next-nearest-neighbor coupling,

the kink disappears for small clusters but it is still present in large chains (see Fig. 4.10). The

phase transition line continues towards small J3 and end up at J3 = 0 and J2 = 0.75, close to

the value 0.0744(4) obtained by Kolezhuk et al. [56, 57].

In order to confirm the location of the continuous phase transition deduced from the dimeriza-

tion parameter, we have calculated the second derivative of εmi d with respect to J3. Examples

for N = 90 and 150 are shown in Fig. 4.11. A kink in the energy implies a divergence of its
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Figure 4.10 – Same as Fig. 4.9 for J2 = 0.6

second derivative. Besides divergences, one can see the appearance of pronounced minima,

which agree with the continuous finite-size phase transitions found with the dimerization

parameter. For the first order transition between the Haldane phase and the NNN-Haldane

phase, a kink is visible in the energy only for non-zero J3. In order to extract the phase bound-

ary at J3 = 0, and although the phase transition is believed to be first order at this point, we

have looked at the minimum of the second derivative of the energy. The finite-size effect

slightly increase with increasing J2. The positions of the minima are in good agreement with

the phase boundaries found with the dimerization parameter for J2 ≤ 0.2 and J2 ≥ 0.5 (see

scaling comparison on Fig. 4.20).

4.3.3 Entanglement spectrum

As mentioned in the introduction, the Haldane phase of the spin-1 chain is an example

of a symmetry protected topological phase in one dimension [39]. It is distinct from the

topologically trivial NNN-Haldane and dimerized phases, and it can be characterized by the

finite value of the string order parameter, a criterion already used for the J1 − J2 model [56].

More recently, it has been proposed to characterize topological phases by their entanglement

spectrum, obtained by dividing the system into two parts, tracing out one of them, and

diagonalizing the reduced density matrix of the remaining part [67, 66, 55]. This creates

artificial edges without breaking the inversion symmetry.

In the present case, a system with open ends may be partitioned across a certain bond and the

wave function can then be Schmidt decomposed as:

|Ψ〉 =∑
α
λα|Lα〉|Rα〉, (4.11)

where |Lα〉 and |Rα〉 are orthonormal basis vectors of the left and right parts. In variational
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0.0

Figure 4.11 – Upper panels: second derivative of εmi d with respect to J3 for N = 90,150 and
J2 = 0,0.1,0.15 across continuous phase transition between Haldane and dimerized phases.
Lower panels: second derivative of εmi d for N = 90,150 and J2 = 0.6,0.8,1 across the transition
line between NNN-Haldane and dimerized phases

MPS, the Schmidt values λα are obtained naturally at each iteration. Now, the multiplicity

of the Schmidt values is related to the number of edge states that appear due to partitioning:

Any topologically non-trivial phase is characterized by at least two-fold degeneracy. Pollmann

et al. [82] have shown that the Haldane phase of S = 1 chains is characterized by a twofold

degeneracy of the entanglement spectrum.

An example of finite-size entanglement spectrum containing all three phases is shown in

Fig. 4.12. Three VBS (valence bond solid) sketches are attached in order to show how edge

states are formed in each phase. In complete agreement with previous works, the entangle-

ment spectrum in the Haldane phase is twofold degenerate, the edge states being spins 1/2. By

contrast, the entanglement spectrum is non-degenerate in the NNN-Haldane phase because

there are no edge states. For the dimerized phase, it depends where the system is cut. For

a system with open boundary conditions and an even number of sites, the ground state is

non degenerate and consists of alternating strong and weak bonds. If the system is cut in

the middle of a weak bond, no edge states appear, and the entanglement spectrum is non

degenerate, and cannot distinguish the NNN-Haldane phase from dimerized one (see Fig.4.13).

However, if the system is cut on a strong bond, i.e. on a bond which is essentially a singlet

made of two spins 1, as done in Fig. 4.12, the entanglement spectrum is threefold degenerate

52



4.3. Phase diagram

a)

b) c) d)

Figure 4.12 – (a) Entanglement spectrum for an open chain with N = 150 sites as a function
of J3 (only the lower part of the spectrum is shown). The dots show the multiplicity of the
Schmidt values. The plot for J2 = 0.6 is shown here as an example. Lower panels: VBS sketches
of various boundaries created by the bipartition of the chain inside the (b) Haldane, (c) NNN-
Haldane and (d) dimerized phases. (b) The black arrows at each edge stand for two free spins
1/2, which form a singlet, leading to a twofold degenerate entanglement spectrum. (c) The two
spin-1/2 created at each edge couple with each other, which is represented as a gray ellipse.
There are no edge states, and the entanglement spectrum is non-degenerate. (d) The edge
spins are spins 1 and form a singlet, which leads to a three-fold degenerate entanglement
spectrum.

because spin-1 edge states are created, and the NNN-Haldane phase can be distinguished

from the dimerized phase.

In small systems an intermediate phase with a three fold degenerate entanglement spectrum

and a low-lying non-degenerate level appears between the Haldane and NNN-Haldane phases

(see Fig.4.14). This phase disappears for larger system sizes and is thus a finite-size effect.

The resulting phase diagram is shown in Fig. 4.15. It is consistent with other approaches, but

finite-size effects are strong, especially for the transition between the NNN-Haldane phase

and the dimerized phase.

4.3.4 Berry Phase

Another powerful tool to characterize topologically non-trivial phases is the Berry phase [12].

It can be defined for any Hamiltonian H(φ) which depends periodically on a parameter φ.

If |GS(φ)〉 is a single-valued ground state of H(φ), the Berry connection is given by A(φ) =
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Figure 4.13 – Same as Fig.4.12(a) for cut across weak bond. The transition between NNN-
Haldane and dimerized phase does not show up

0.01 0.02 0.03 0.04
0

2

4

6

8

0.01 0.02 0.03 0.040

2

4

6

8IntermediateHald. NNN-Haldane Dimerized IntermediateHald. NNN-Haldane Dimerized
a) b)

Figure 4.14 – Entanglement spectra as a function of J3 coupling for N = 60 and J2 = 0.6 for
chain cut across (a) strong and (b) weak bonds. Intermediate phase with three-fold degenerate
lowest level in entanglement spectrum appears between Haldane and NNN-Haldane phases

〈GS(φ)|∂φ|GS(φ)〉, and the Berry phase is the integration of the Berry connection over a loop:

iγ=
∮

A(φ)dφ (4.12)

It was proposed by Hatsugai et al. [48] to use the angle φ of the twist of the transverse

component of the spin-spin interaction on a given bond (i , j )

S+
i S−

j +S−
i S+

j → eiφS+
i S−

j +e−iφS−
i S+

j . (4.13)
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Figure 4.15 – (a) Phase boundaries deduced from the entanglement spectrum for chains with
N = 30, 60, 90, 120, and 150 sites, and after finite-size scaling (N∞). Shaded area: intermediate
phase for N = 60 and 90. (b) Example of finite-size scaling for J2 = 0.7 with a quadratic fit.

a) b)

Figure 4.16 – a) Berry phase applied on three bonds to be consistent with anti-periodic bound-
ary conditions for the transverse component of the spin-spin interaction at φ=π. This Berry
phase γ=π in the Haldane phase and γ= 0 otherwise. b) Berry phase applied on two bonds to
distinguish the dimerized phase (γ2 = 0) from the Haldane and NNN-Haldane phases (γ2 =π).

Then the number of valence bond singlets Bi j on the bond (i , j ) is related to the Berry phase

by:

γ= Bi j ·π, mod(2π). (4.14)

In other words, the Berry phase gives access to the parity of the number of valence bond

singlets on a given bond.

Previous studies of the Berry phase in spin systems have demonstrated that topological phase

transitions can be reliably captured when the applied twist at φ = π is equivalent to anti-

periodic boundary conditions for the transverse component of the interaction. To fulfill this

requirement, three bonds must be simultaneously twisted as shown in Fig. 4.16a. The twist

applied on a bond (i , i +1) implies that the transverse component of the interaction in the

initial Hamiltonian is changed in all terms where the term Si ·Si+1 appears, i.e. both in the J1
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and J3 terms. The twist of an (i , i +2) bond changes only the J2 term.

In the dimerized phase, there is no singlet on next-nearest neighbor bonds (i −1, i +1) and

(i , i +2), while bonds (i , i +1) have either zero or two singlets. So the Berry phase γ, which

is defined only up to 2π, is equal to zero. In the NNN-Haldane phase, the bonds (i −1, i +1)

and (i , i +2) contain one spin-1/2 singlet each and there is no singlet on the link (i , i +1), so

that γ= 0 as in the previous case. By contrast, the Berry phase is equal to π in the Haldane

phase, in which there is one VBS singlet on the bond (i , i +1) and no VBS singlet on the bonds

(i −1, i +1) and (i , i +2).

We have calculated the Berry phase γ for chains with periodic boundary conditions using exact

diagonalizations. According to a general result for planar contours [12], the Berry phase will be

equal to 0 if the gap does not close inside the contour, and it will be equal to π if the gap closes

at one point inside the contour. In the present model, one can detect the change of the γ berry

phase by computing the gap at one particular point on the contour φ=π. The computational

cost are reduced drastically: for each value of J3 instead of computing numerically the integral

of Eq.4.12, one computes the two lowest energies at one point on the integration contour.

Moreover, unlike the quantized berry phase, energies are continuous and smooth functions

of J3, therefore the transition could be extracted with higher precision. An example of level

crossing is shown in Fig.4.17.

0.08 0.081 0.082 0.083 0.084 0.085
-14.9

-14.8

-14.7

Figure 4.17 – Two lowest energies of the Hamiltonian with three bonds twisted as in Fig.4.16(a)
according to Eq.4.13 with φ= π. The level crossing corresponds to the change of the Berry
phase.

The results for finite sizes are presented in Fig. 4.18a-c, and the finite-size scaling based on

chains of length N = 8,10,12,14 sites in the interval 0 ≤ J3 ≤ 0.25 is shown in Fig. 4.18d). The

results from the finite-size extrapolation are also included in Fig. 4.18a). Systems close to the

first order phase transition have strong finite-size effects, and no meaningful extrapolation

could be performed with only four points. There is also a clear indication of an even-odd

effect: the scaling for N = 8,12, ...,4k is different from the one for N = 10,14, ...,2(2k +1). For

J2 ≥ 0.3, the results for N = 12 (the largest accessible chain with an even number of spin pairs)

are taken as the Berry phase estimates of the phase boundary. Quite remarkably, the finite-size
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Figure 4.18 – Results of the Berry phase calculation in a periodic chain with N = 8,10,12,14.
Upper panels: Finite size phase transitions captured by the Berry phase for J2 in the range a)
0 ≤ J2 ≤ 0.25, b) 0.3 ≤ J2 ≤ 0.5, and c) 0.5 ≤ J2 ≤ 0.78. The results of finite-size extrapolation
are shown in a) as a black line. Lower panels: Size dependence of the boundaries deduced
from Berry phase. d) Finite-size scaling for J2 = 0 performed with a cubic fit in 1/N . e) and f)
Examples of strong finite-size effects that do not allow one to make a finite-size extrapolation.

results for such small chains are already very close to the phase boundaries obtained in the

thermodynamic limit with other techniques (see Fig.4.20 and 4.21).

When the twist used to define the Berry phase does not correspond to anti-periodic boundary

conditions at φ=π, the Berry phase can still reflect some local properties of the system and

capture phase transitions. To distinguish the dimerized phase from the NNN-Haldane phase,

we propose to define the Berry phase by twisting two links as shown in Fig. 4.16b. Similarly

to what was done for the three-bond Berry phase, we apply the twist on two bonds (i , i +1)

and (i , i +2) simultaneously. In the Haldane phase there is only one VBS singlet on the bond

(i , i +1), in the NNN-Haldane phase one VBS singlet on the (i , i +2) bond, and in both cases

γ2 = π. In the dimerized phase the bond (i , i +1) contains either zero or two singlets while

the (i , i +2) bonds have no singlets, and the Berry phase γ2 = 0. The finite-size results for

N = 12 and N = 14 are shown in Fig. 4.19. Qualitatively, this Berry phase gives the same phase

boundaries as the dimerization parameter, which is also shown as a reference line. There is a

strong finite-size effect however, and the extrapolation to the thermodynamic limit requires

bigger system sizes.
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Figure 4.19 – Phase transition obtained by the γ2 Berry phase for periodic chains with N = 12
(blue circles) and N = 14 (red circles) sites. The phase transition, obtained with finite-size
scaling of the dimerization parameter (black squares) is shown as a reference.

4.3.5 Comparison

To show that all approaches presented above capture essentially the same phase diagram, we

provide examples of comparative finite-size scaling (Fig. 4.20) and phase diagrams obtained

with different criteria (Fig. 4.21).

We compare the phase boundaries deduced from the dimerization, energy, entanglement

spectra and Berry phase (Fig. 4.21). For J2 = 0 the second derivative in the energy gives a

phase boundary different from the one obtained with the dimerization parameter. Except

for this point, the two boundaries are in rather good agreement. They also agree with the

’entanglement boundary’ between the NNN-Haldane phase and the dimerized phase. The

first order phase transition from Haldane to the dimerized phase is well located by all methods.

The most reliable phase boundary between Haldane and NNN-Haldane phases is obtained by

the kink in the energy of the central bond. Since on the one hand, the kink in the εmi d for large

J3 has vanishing finite-size effect (see Fig. 4.9b) and on the other hand the kink for small J3

appears only in large systems, we determined the boundary of the phases with the energy of

the central bonds of the largest cluster to which we have access εmi d (N = 150). We cannot see

a kink for J3 = 0 and to locate the phase transition on the J2 axis we have used the minimum

in the second derivative of the energy with respect to J2. The error in the ’entanglement

boundary’ is due to the abrupt change of the degeneracy from two in the Haldane phase to one

in the NNN-Haldane or three in the dimerized. The finite-size results of the Berry phase for

N = 12 agree with the ’energy boundary’ except for 0.5 ≤ J2 ≤ 0.6. The finite-size extrapolation

of the Berry phase is close to the ’dimerization boundary’.
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Figure 4.20 – Comparison of finite-size scaling for a) J2 = 0.2, b) J2 = 0.4, c) J2 = 0.6 and
J3 � 0.026, d) J2 = 0.6 and J3 � 0.045. Finite-size results for: entanglement spectra (red
squares), the Berry phase (green diamonds), kink in the energy of the central bond εmi d (blue
circles), minimum in the second derivative of εmi d (cyan circles). Results from finite-size
scaling of the dimerization parameter (magenta stars). All fitting curves are polynomial in 1/N .
Dashed green lines shows the interval between the smallest and the biggest values deduced
from the Berry phase.

Figure 4.21 – Comparative phase diagram obtained by dimerization parameter (magenta stars),
kink in the energy of the central bond εmi d (blue circles), εmi d (N = 150) and εmi d (N = 90)
(cyan open circles and dots), entanglement spectra (red squares), and Berry phase (green
diamonds)
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4.4 Field theory

The conformal field theory for the J1 − J2 − J3 model has been developed in Ref.[24]. In

this section we provide a brief review of the obtained critical theory, focusing on the most

important aspects necessary for understanding the following numerical results.

Phase diagram 4.22 and the nature of the various transitions can be understood using confor-

mal field theory (CFT) techniques. We begin near the SU (2)k=2 critical point where the low

energy degrees of freedom of the spin chain can be written:

�S j ≈ [�JR ( j )+�JL( j )]+C1(−1) j tr[g ( j )�σ]

�S j ·�S j+1 ≈ C2T ( j )+ (−1) j C3trg ( j ) (4.15)

where g (x) is the SU (2) Wess-Zumino-Witten field with k = 2,�JR/L are the right/left current

operators, T is the energy density and the Ci are non-universal constants.
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Figure 4.22 – Same as Fig.4.4 with indicated expectation values for Ising σ and boson θ

operators

The Hamiltonian density is that of the SU (2)2 WZW model with one relevant and one marginal

perturbation allowed by symmetry:

H =HW Z W +λ1(trg )2 +λ2�JR ·�JL . (4.16)

The relevant coupling constant, λ1, controls the Haldane to dimerized transition. When λ1 < 0,

energy is minimized when 〈trg 〉 is non-zero corresponding to dimerisation [6], as we see from

Eq. (4.15). When λ1 > 0 the energy is minimized when second term is suppressed 〈trg 〉 = 0

that correspond to a non-dimerized Haldane phase. The marginal coupling constant, λ2,
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normalizes to zero if it is initially negative. In this regime the Haldane to dimerized transi-

tion is second order, with the WZW model occurring along the critical line with logarithmic

corrections to scaling behavior due to λ2. These logarithmic corrections vanish at the end of

the critical line where λ2 = 0. When λ2 > 0 we expect λ1 to produce a first order transition. To

understand the full phase diagram, it is very useful to use a conformal embedding (also called

a coset construction), an exact representation of the SU (2)2 WZW model as a direct product of

a free boson and an Ising model. [32]

trg ∝ iσsin
�
πθ

trg�σ ∝ σ(i sin
�
πφ, i cos

�
πφ,cos

�
πθ)

(trg )2 ∝ ε−C4 cos
�

4πθ

�JL ·�JR ∝ εcos
�

4πθ+C5∂xφL∂xφR . (4.17)

with C4 > 0. Here σ is the Ising order parameter of dimension hσ+ h̄σ = 1/16+1/16 = 1/8

and ε is the Ising energy density operator of dimension hε+ h̄ε = 1/2+1/2 = 1. The value of

the central charge is correctly reproduced: c = 3/2 = 1+1/2. The Ising model corresponds

to the coset SU (2)2/U (1). To see how λ1 induces the Haldane to dimerized transition, note

that a positive λ1 pins θ at 0 whereas a negative λ1 pins it at ±�π/2, leading to 〈sin
�
πθ〉 �= 0.

Positive coefficient of ε corresponds to the disordered phase whereas a negative coefficient to

the ordered phase with 〈σ〉 �= 0, thus we obtain 〈trg 〉 �= 0 for λ1 < 0. Note that in both phases

〈trg�σ〉 = 0 as it should be since spin-rotation symmetry is unbroken. Remarkably, in this

representation of the WZW model, a second order transition occurs simultaneously in Ising

and boson sectors.

To see how λ1 induces the Haldane to Dimerized transition, note that a positive λ1 pins θ at

0 whereas a negative λ1 pins it at ±�π/2, leading to 〈sin
�
πθ〉 �= 0. Positive coefficient of ε

corresponds to the disordered phase whereas a negative coefficient to the ordered phase with

〈σ〉 �= 0 thus we obtain 〈trg 〉 �= 0 for λ1 < 0. Remarkably, in this representation of the WZW

model, a second order transition occurs simultaneously in Ising and boson sectors.

The first order transition for λ2 > 0 can be understood intuitively in this representation. A large

positive λ2 favors states with 〈ε〉〈cos
�

4πθ〉 < 0. There are then two degenerate gapped states

with 〈ε〉 < 0 and θ pinned at 0 corresponding to the Haldane phase or 〈ε〉 > 0 and θ pinned at

±�π/2 corresponding to the dimerised phase. Turning on λ1 splits the degeneracy, leading to

a first order transition.

So, far we have focused on the vicinity of the WZW critical point. Let us now consider what

may happen as we move far from it along the first order transition line. It is now no longer

permissible to only consider the couplings which are relevant at the critical point so the Ising

and boson transitions could occur at different places in the phase diagram. For instance, a

term that does not contains Ising field λ3 cos3
�

4πθ would favor either 〈θ〉 = 0 or 〈θ〉 =±�π/2

depending on its sign. If λ3 changed sign along a line in the phase diagram the transition could
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occur in the boson sector without occurring simultaneously in the Ising sector. This phase

with 〈θ〉 =±�π/2, 〈σ〉 = 0 corresponds to the NNN-Haldane phase. This can be seen from the

presence of gapless S=1/2 edge excitations when 〈θ〉 = 0 but not when 〈θ〉 =±�π/2. These can

be understood from the numerical observation that an open boundary condition promotes

local dimerisation even in the Haldane phase, and hence 〈trg (x)〉 becomes non-zero near the

boundary. Thus we might expect, from Eq. (4.17), that θ(x) takes the value ±�π/2 at an open

end. On the other hand, 〈θ(x)〉 = 0 far from the boundary in the Haldane phase. This rotation

of θ(x) corresponds to an induced near an open boundary in the Haldane phase. On the other

hand there is no induced magnetisation in the NNN-Haldane phase since 〈θ(x)〉 =±�π/2 in

the bulk, so it does not rotate at the boundary. So this phase has no gapless edge modes but

also has no dimerisation since 〈σ〉 = 0. Thus, we may identify it with the NNN-Haldane phase.

The above argument also implies that a domain wall between Haldane and dimerized phases

has a ±�π/2 rotation of θ corresponding to an S = 1/2 excitation, whereas a domain wall

between NNN-Haldane and dimerized phases has no rotation of θ and hence no spinful

excitations. This prediction will be confirmed with numerical calculations in the section 4.7.

We note that θ and φ are not simply periodic bosons but rather (θ,σ) should be identified

with (θ+�
π,−σ) and (φ,σ) should be identified with (φ+�

π,−σ). Therefore, for λ1 < 0, there

are only 2 inequivalent ground states, not 4, corresponding to the sign of 〈σsin
�
πθ〉. In the

Haldane phase where 〈σ〉 = 0, there is only one ground states with θ pinned at 0 or
�
π being

equivalent. Likewise, in the NNN Haldane phase where 〈σ〉 = 0, θ being pinned at ±�π/2 are

equivalent.

We now see that a third transition can also take place in which θ remains pinned at ±�π/2

while the sign of the ε term in the Hamiltonian changes. This corresponds to an Ising transition

from NNN-Haldane to dimerized phases. All spinful excitations must remain gapped at this

transition since there is a gap in the boson sector at the transition. This follows since all

excitations of non-zero Sz are in the boson sector. Due to the SU (2) symmetry there can

therefore be no multiplets of non-zero spin among the Ising excitations. Various universal

predictions for the NNN-Haldane to dimerized transition follow from this derivation. Since

β= 1/8 for the Ising model, the dimerisation order parameter should scale as

(J3 − J3c )1/8 (4.18)

As discussed above, an open boundary condition corresponds to a non-zero boundary mag-

netic field in the Ising model, leading to a dimerisation which decays away from the boundary

on the critical line in the same way that the magnetisation in the critical Ising model with a

boundary magnetic field decays, 〈σ(x)〉∝ 1/x1/8. For a finite system with an even number of

sites, N , this becomes

<σ(x) >∝ 1

[(N /π)sin(πx/N )]1/8
(4.19)
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On a finite chain, we define the local dimerization as D( j , N ) = |〈�S j ·�S j+1〉−〈�S j−1 ·�S j 〉|. Identi-

fying the local dimerization with σ, this leads to

D( j , N ) ∝ 1/[N sin(π j /N )]1/8, (4.20)

and in particular to D(N /2, N ) ∝ 1/N 1/8. The central charge, c = 1/2 can be measured from

the entanglement entropy or finite-size scaling of the ground-state energy. With an extensive

DMRG calculations we investigate the nature of the different critical lines. We start our

discussion with the most unexpected Ising transition.

4.5 Ising transition

4.5.1 Critical scaling of dimerization

We start the numerical investigation of the Ising transition by locating precisely the critical line

in the J2 − J3 parameter space. We use the middle chain dimerization D(N /2, N ) as an order

parameter to distinguish the dimerized phase from the non-dimerized NNN-Haldane phase.

In finite-size chains dimerization changes very slowly with J3 (see Fig.4.23(c)). Therefore one

has to take large enough systems in order to distinguish scalings that correspond to dimerized

and non-dimerized phases as can be seen from Fig.4.23(a). Here we take chains with up to

N = 800 spins.

By perforforming finite-size extrapolation of the dimerization as shown in Fig.4.23(a) we de-

termine the expectation values of the dimerization in the thermodynamic limit. According to

field theory limN→∞ D(N /2, N ) ∝|J − Jc |β with critical exponent β= 1/8 for the Ising model in

a critical transverse field. The critical exponent extracted numerically from extrapolated values

of the dimerization β≈ 0.123 is consistent with field theory predictions. The corresponding

critical point is located around J c
3 ≈ 0.05814.

As briefly discussed in Section 4.3.1, for any fixed value of J2 , the critical value of J3 can also

be associated to a separatrix in the log-log plot of the finite-size scaling of the dimerization

parameter D(N /2, N ), as shown in Fig.4.23(b). The slope of the separatrix corresponds to the

scaling dimension d ≈ 0.129 and it is in a good agreement with the Ising prediction 1/8 (see

Eq.4.20).

Open boundaries favor dimerization. This can be seen in Fig.4.24 as a rapid increase of

the dimerization parameter D( j , N ) around both edges. The dimerization along the chain

scales according to Eq.4.20. The value of the scaling dimension d ≈ 0.128 obtained from the

numerical fit again agrees with Ising 1/8.
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Figure 4.23 – Scaling of the middle-chain dimerization J2 = 0.7 and different values of J3. (a)
Scaling of the dimerization D(N /2, N ) with 1/N . J3 ≥ 0.585 belongs to the dimerized phase.
The extrapolation is a linear fit of the last two points. Phase transition occur approximately
around J3 = 0.58. Quadratic fit for J3 = 0.058 and J3 = 0.0575 is not reliable and most likely
overestimated the dimerization in the thermodynamic limit. (b) Log-log plot of the dimer-
ization. The linear curve corresponds to the Ising critical point, and the slope to the critical
exponent. This leads to J3c = 0.058, and to a slope 0.129, in good agreement with the prediction
1/8 for Ising (see Eq.4.20). (c) Dimerization as a function of J3 for different system sizes from
N = 30 (dark cyan) till N = 600 (light green) and extrapolation to the thermodynamic limit
as shown in (a). (d) Critical exponent β for the scaling away from critical line as (J3 − J c

3)β.
Computed critical exponent 0.123 is in the good agreement with Ising prediction 1/8

4.5.2 Finite-size scaling of the energy spectra

The underlying conformal field theory of a critical system can be extracted from its energy

spectrum. The scaling of the ground-state and excitation energies with the system size for

the critical transverse field Ising model has been discussed in Section 3.2. The finite-size

spectrum of the Ising model does not exhibit logarithmic corrections, and it can be deduced

from relatively small systems. CFT predicts that all excitation energies, for any conformally

invariant boundary conditions, are of the form (πv/N )xn where v is the velocity and the

dimensionless numbers xn are universal scaling dimensions of operators [20]. Different
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Figure 4.24 – Site dependence of D( j , N ) at the critical point fitted to 1/[N sin(π j /N )]d . This
determines an exponent d = 0.128, close to the Ising prediction1/8.

boundary conditions in the critical Ising model correspond to conformal towers of different

primary fields with different conformal dimensions xn . The correspondence between different

boundary conditions in the critical Ising model and the corresponding Ising operators was

worked out by Cardy [20, 21] and discussed at length in Section 3.2. Furthermore, the ground

state energy contains a universal term −πvc/(24N ) for open boundary conditions (OBC) and

−πvc/(6N ) for periodic boundary conditions (PBC) where c is the central charge.

We identify OBC with ↑,↑ boundary conditions in the Ising model for N even and ↑,↓ boundary

conditions for N odd, where the arrows refer to the directions of the boundary magnetic fields.

The identification of boundary conditions follows because OBC favor the same sign of the

dimerisation at both ends of the system for N even but opposite signs for N odd. Similarly

we identify PBC on the spin chain with PBC on the Ising model for N even but anti-periodic

boundary conditions on the Ising model for N odd. We have calculated the ground state

energies in all 4 cases and the lowest 4 excited state energies for OBC and both parities of

N (see Fig. 4.25). Note that, in stark contrast to the singlet sector, the singlet-triplet gap in

Fig. 4.25(c) and (d) goes to a non-zero value at 1/N → 0.

The data on singlet energies determines ten xn parameters. The nine parameters extracted

from OBC all agree to within 5% with the conformal field theory predictions for the Ising

model (see Table I in 4.1).

The agreement is not as good for PBC because the sizes accessible to DMRG are much smaller.

We plot the excited states energies in the upper panels of Fig. 4.25c and 4.25d. The expected

conformal tower structure of excited states is clearly revealed.

Note that the extraction of the central charge from the entanglement entropy for PBC and OBC

using the Calabrese-Cardy formula [17] is tricky because of the presence of strong oscillations,

but the results are also consistent with c = 1/2.
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Figure 4.25 – Ground state and excitation energy at J2 = 0.7 and J3 = 0.058, on the Ising line. a)
Linear scaling of the ground state energy per site in open chain with 1/N 2 after subtracting
ε0 and ε1 terms. b) Linear scaling of the ground state energy per site with 1/N 2 for periodic
chain. c) and d) Energy gaps in singlet and triplet sectors for OBC as a function of 1/N for even
and odd number of sites. The slope of singlet gap gives values of the velocity. Inset: Conformal
towers. Grey lines show Ising conformal towers I (N even) and ε (N odd); blue symbols are
DMRG data.

4.5.3 Central charge from entanglement entropy at the Ising transition

For a periodic chain with N sites, the entanglement entropy of a subsystem of size n is defined

by SN (n) = −Trρn lnρn , where ρn is the reduced density matrix. According to conformal

field theory, the entanglement entropy in periodic systems depends on the size of the block

according to [17]:

SN (n) = c

3
ln

[
N

π
sin
(πn

N

)]
+ s1 (4.21)

In the vicinity of this phase transition the convergence of the entanglement entropy in DMRG

algorithm is very slow. This results in big oscillations that appear on top of the curve given by

Eq. 4.21. In principle these oscillations can be removed by increasing the number of sweeps

and the number of states kept in DMRG. We went up to 16 sweeps keeping up to 900 states in

two-site DMRG. With these parameters, oscillations disappear only for chains smaller than 30

sites. For larger systems, we have extracted the central charge for lower and upper curves of the

entanglement entropy separately, as shown in Fig. 4.26a). Note that the finite-size corrections

to Eq.4.21 are minimal when the block size n is as far as possible from the extreme values 1 and

N [59]. Therefore we discard a few points close to the edges while fitting. Alternatively, one
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DMRG
Energy level CFT Ising J2 = 0.7, J3 = 0.058

OBC, Even, ground state -1/48 -1/48
OBC, Even, 1st excited state 2 1.99
OBC, Even, 2nd excited state 3 2.90
OBC, Even, 3rd excited state 4 3.82
OBC, Even, 4th excited state 4 3.87

OBC, Odd, ground state 23/48 � 0.479 0.477
OBC, Odd, 1st excited state 1 1.00
OBC, Odd, 2nd excited state 2 1.98
OBC, Odd, 3rd excited state 3 2.98
OBC, Odd, 4th excited state 4 3.97

PBC, Even, ground state -1/12 � -0.0833 -0.094

PBC, Odd, ground state 1/6 � 0.167 0.196

Table 4.1 – Energy levels on Ising line. Ground state refers to the 1/N term in the ground state
energy. For excited states, the gap above the ground state is given. Results are in units of πv/N .
Note the degeneracy of the 3rd and 4th excited state, for OBC, N even, which occurs in the
Ising conformal tower [87] and is well-reproduced by our DMRG results.

can estimate the finite-size central charge by calculating it in the middle of the curve with only

two points (see sketches with diamonds in Fig. 4.26(a)). Using Eq. 4.21 leads to the estimates:

ck = 3
[
SN ( N

2 − (k +2))−SN ( N
2 −k)

]
ln
[

cos( (k+2)π
N )/cos( kπ

N )
] , (4.22)

where k = 0,1 for upper and lower curves.

For each system size, we then extrapolate the extracted values of the central charges with the

number of states kept in DMRG algorithm. The extrapolated values of the central charge as

a function of system size N are shown in Fig. 4.27(c). They are consistent with c = 1/2 in the

thermodynamic limit however not conclusive due to strong finite-size effects.

It is well established that DMRG algorithm has better performances for open systems, and

much bigger system sizes can be reached then. In systems with open boundary conditions,

the entanglement entropy scales with the block size according to:

SN (n) = c

6
ln

[
2N

π
sin
(πn

N

)]
+ s1 + ln g (4.23)

Since we are dealing here with much larger system sizes it is useful to present results in a

logarithmic scale by introducing the conformal distance d :

d = 2N

π
sin
(πn

N

)
(4.24)
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Figure 4.26 – Extraction of the central charge for periodic boundary conditions and J2 = 0.7,
J3 = 0.058. a) Example of entanglement entropy as a function of block size n for N = 36 sites
and 800 states kept in DMRG. Light red and light blue lines are fits to the Calabrese-Cardy
formula of Eq. 4.21. Red and blue diamonds schematically show how the formula (4.22) can
be applied. b) Scaling of the central charge extracted in different ways with the number of
states kept in the DMRG calculation. The lines are linear fits to the data-points (circles for the
Calabrese-Cardy fit and diamonds for central charge calculated in the middle of the chain).
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Figure 4.27 – Extraction of the central charge for open boundary conditions. Entanglement
entropy as a function of the conformal distance for N = 300 (green), 600 (blue) and 800
(red) sites at J2 = 0.7 and J3 = 0.058. a) The solid lines are fits of the upper and lower curves
to Eq. 4.23. The slopes of the fits give upper and lower limits for the central charge. b)
Entanglement entropy after removing the Friedel oscillations with weight ζ≈ 2/9. The data
for N = 300 and 600 are shifted downward by 0.1 and 0.05 for clarity. (c) Central charge for
the Ising transition as a function of 1/N . The light blue and red circles have been obtained
with the fits of the upper and lower curves of the entanglement entropy with Calabrese-Cardy
formula. The red and blue diamonds stand for the central charge extracted in the middle of
each curve. All results are extrapolated with the inverse number of sweeps. Magenta triangles
stand for the central charge extracted from the entanglement entropy in open chains.

As in the case of periodic boundary conditions, big oscillations appear on top of the prediction

of Eq. 4.23. However, in open systems, the oscillations are caused by Friedel oscillations and

cannot be removed by increasing the number of sweeps or the number of states. Separate fits

of the upper and lower curves of the entanglement entropy leads to rough estimates of the

68
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central charge: clower ≈ 0.41 and cupper ≈ 0.63 (see Fig. 4.27a)).

In order to remove the oscillations, following Ref.[18], we have subtracted the spin-spin

correlation on the corresponding link from the entanglement entropy with some weight ζ.

Then the reduced entanglement entropy as a function of the conformal distance takes the

form:

S̃N (n) = c

6
lnd(n)+ζ〈SnSn+1〉+ s1 + ln g (4.25)

The results of the numerical calculation of the central charge from the entanglement entropy

for both OBC and PBC are summarized in Fig 4.27. These results are consistent with c = 1/2.

4.5.4 Triple point

According to conformal field theory, there are two possible scenarios for the triple point of

Ising critical line: it can be in either in the Ising or in the tricritical Ising universality class.

According to conformal field theory, the first scenario is characterized by a scaling dimension

d = 1/8 and a central charge c = 1/2, while the second one is characterized by d = 1/24 and

c = 7/10.

We have looked at the critical point along a line that is very close to the first order transition

and perpendicular to the Ising critical line. According to conformal field theory, the local

dimerization depends on the chain length N and bond index j as D( j , N ) = [N sin(π j /N )
]−d .

The values of J2 and J3, for which the scaling of the mid-chain dimerization D(N /2, N ) is a

separatrix is taken as the critical point (Fig.4.28a). At the critical point the fit of D( j , N ) is also

good (Fig.4.28b). The resulting values of d ≈ 0.158 and 0.155 point rather towards Ising than

towards tricritical Ising criticality.

The central charge was extracted at the critical point from the scaling of reduced entanglement

entropy given by Eq.4.25. Although our numerical result point out to a central charge c ≈ 0.6,

that is in between the two expected values, the monotonous decrease and the fact that for

N = 150,200 the central charge is below 0.7 suggests that the critical point is in the Ising

universality class.

4.5.5 J2 − J3 model

We have studied the limit of large J2 and J3 couplings by setting the nearest neighbor inter-

action to zero: J1 = 0. As above, we locate the critical point by looking for the separatrix in

the scaling of the mid-chain dimerization D(N /2, N ) with the chain length N . The slope gives

a critical exponent d ≈ 0.126, in excellent agreement with the Ising one (see Fig.4.29a). We

also looked at the local dimerization D( j , N ) as a function of the bond position j . Although

the dimerization remains large close to the boundary, one can clearly see that some edge

effects appear in the absence of a J1 coupling. A similar picture arises in the Ising chain in a
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Figure 4.28 – (a) Log-log plot of the mid-chain dimerization as a function of the number of sites
N for different parameters J2 and J3 along the line close to the first order phase transition and
perpendicular to the Ising critical line. The linear curve corresponds to the critical point and
the slope gives the critical exponent d ≈ 0.158. (b) Site dependence of D( j , N ) at the critical

point fitted to 1/
[
N sin(π j /N )

]d . This determines the exponent d ≈ 0.155. (c) Scaling of the
entanglement entropy of open chains after removing the Friedel oscillations with conformal
distance d(n). (d) Central charge extracted from the entanglement entropy of open chains as
a function of 1/N

transverse field if the up-up boundary field is weak with respect to the transverse field. We

have thus excluded a few edge points from the fit. The rest of the curve is again in excellent

agreement with the Ising prediction d = 1/8 (see Fig.4.29b).

As discussed in the context of Ising transition for non-zero J1 term, the ground-state energy

of an open system with an even number of sites scales as E = ε0N +ε1 −πv/(48N ), where ε0

is a ground-state energy per site, ε1 - is a non-universal constant, and v is the velocity. For

odd N the scaling is of the form E = ε0N + ε1 +23πv/(48N ) [14]. We present the fit of the

numerical data in the Fig.4.30(a) and (b). The extracted values of the velocities veven ≈ 8.03

and vodd ≈ 7.62 are in reasonable agreement with each other.

The conformal tower for even N corresponds to the Ising conformal tower of I , while for odd

N it corresponds to the Ising conformal tower of ε. We have used the velocity veven deduced

from the finite-size scaling of the ground state energy for even N in order to plot the Ising

towers of I and of ε in Fig.4.30(c)-(d) as references.
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Figure 4.29 – (a) Log-log plot of the mid-chain dimerization as a function of the number of sites
N for J1 = 0, J2 = 1 and different values of J3. The linear curve corresponds to the Ising critical
point and the slope gives a critical exponent d = 0.126, in good agreement with 1/8 for the

Ising transition. (b) Site dependence of D( j , N ) at the critical point fitted to 1/
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]d .
This leads to an exponent d = 0.124, again close to the Ising prediction 1/8
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Figure 4.30 – Ground state and excitation energy as J1 = 0, J2 = 1 and J3 = 0.352, on the Ising
line. a) and b) Linear scaling of the ground-state energy per site in an open chain with 1/N 2

after subtracting the ε0 and ε1 terms for even (a) and odd (b) number of sites. c) and d) Energy
gap in singlet (blue) and triplet (red) sectors for OBC as a function of 1/N for even and odd
number of sites. Each magnetic excitation is twofold degenerate. Grey lines mark the Ising
conformal towers of I c) and of ε d) with the velocity v = 8.03 deduced from the finite-size
scaling of the ground state energy for even N .

We have calculated the excitation energy for even and odd numbers of sites in the singlet

Sz
tot = 0 and triplet Sz

tot = 1 sectors. As discussed in the sections 2.2 The absence of the J1 term

releases low-lying magnetic excitations that are shown with red lines in Fig.4.30(c) and (d).

Each red line is twofold degenerate, corresponding to the excitation close to the left and to
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the right edges. The first singlet excitation appears below the triplet one only for N > 300. By

looking at the excitation energy as a function of the number of DMRG iterations, or, more

specifically, as a function of the position of the state tensor updated at each iteration, we

were able to distinguish bulk excitations from the excitations at the edges, even when they

were above the first triplet excitation (for further details see sections 2.2). Note that by edge

excitation we understand a localized magnetic excitation of a bond that is located close to the

chain boundary.

Since the calculations had to be done for very large systems (in Fig.4.30(c)-(d), we present the

results for N in the range 150 to 601.), the convergence of the algorithm is quite slow, implying

significant error bars (explicit meaning of the error bar here is explained in sec 2.3). In systems

with non-zero J1 coupling, we saw that for an odd number of sites the fourth excitation was

more stable in the DMRG sense than the third one (see e.g. Fig.2.14(c)). This explains the

’missing’ third excitation on panel (d): we were not able to converge enough excited states for

systems that are so large.

To summarize, we have have provided numerical evidence that the phase transition between

the NNN-Haldane and dimerized phases is always in the Ising universality class all along

the critical line, including the triple point where the Haldane, NNN-Haldane and dimerized

phases touch, and the limiting case of the J2 − J3 model.

4.6 The end point of WZW SU(2)2 critical line

The critical line that corresponds to the continuous WZW SU(2)2 transition can be extracted

in the same way as it has been done in for Ising transition - by identifying a separatrix in

log-log plot of finite-size scaling of the dimerization. The method is less precise in the context

of WZW SU(2)2 transition due to non-zero logarithmic corrections that changes both, slope

and curvature of the scaling curve. However, as we shall see later the accuracy of identified

position of the critical line is sufficiently good.

As stated above in the section 4.4, the end point of the WZW SU(2)2 is characterized by the

absence of logarithmic corrections. So this is the only point along the line where the critical

exponents can be accurately extracted from finite sizes. For the WZW SU(2)2 model, CFT

predicts

D( j , N ) ∝ 1/[(N /π)sin(πx/N )]3/8 (4.26)

By fitting a separatrix for each fixed J2 we can extract an ’apparent’ critical exponent (see

Fig. 4.31(a)). Interestingly, this apparent exponent can be extracted also along first order phase

transition, if sufficiently close to the end point. This is the result of strong finite-size effect that

comes from exponentially slow opening of a gap along first order transition above the end

point. The apparent exponent decreases from � 0.43 for J2 = 0 until it reaches 3/8 at J2 � 0.12

(see Fig. 4.31(b)).
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Figure 4.31 – (a) Examples of finite-size scaling of the dimerization D(N /2, N ) in the vicinity of
the end point in log-log scale. Points for which the finite-size scalings are shown are marked
on J2− J3 parameter space in the inset. Solid lines are fit to Eq.4.26 the slope gives an apparent
critical exponent, dashed lines are guide to the eyes. (b) Apparent critical exponent along the
SU (2)2 critical line as a function of J2. Black solid circles: from the slope of the log-log plot
D(N /2, N ) as a function of N for the value of J3 for which it is linear. Open color circles: from
fitting D( j , N ) for different sizes at the same points. The dashed line is the theoretical value of
the exponent, 3/8. Thus the end point is located at J2 = 0.12 and J3 = 0.087

The scaling of the dimerization induced by open boundaries is also characterized by Eq.4.26.

The example of this scaling is provided in Fig.4.32.

,

0
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1
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Fit
DMRG

Figure 4.32 – Scaling of the dimerization parameter D( j , N ) along the chain with N = 400 sites
at the SU (2)2 critical end point fitted to Eq.4.26. The extracted exponent is in good agreement
with d = 3/8.

The central charge extracted from entanglement entropy in periodic chain with Calabrese-

Cardy formula [17] given by Eq.4.21 is equal to c = 3/2 that corresponds to WZW SU(2)2 and

decreases when transition becomes first order. From Fig.4.33 one can immediately deduce the

upper bound to the end point - it has to occur below J2 ≈ 0.22. Importantly, the central charge

never significantly exceeds the value c = 3/2. We disagree with this regard with the reference
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Chapter 4. The spin-1 chain with next-nearest-neighbor and three-site interactions

[81], where the end point of WZW SU(2)2 critical line in the related model is predicted to be in

WZW SU(2)4 universality class with central charge c = 2. We will come back to this discussion

in the next chapter.

Ce
nt

ra
l c

ha
rg

e

1.6

1.5

1.4

1.3

1.2

0 0.1 0.2 0.3

N = 16
N = 20
N = 24
N = 30

Figure 4.33 – Central charge along the critical line as determined from fitting the entanglement
entropy of periodic chains with the Calabrese-Cardy formula, given by Eq.4.21

Until now, we only assume, that the end point can be associated with the critical exponent

closed to the field theory predictions, due to vanishing logarithmic corrections. In order to

confirm this hypothesis, we extract the low-energy spectra for open boundary conditions with

N even and odd.

For the SU (2)2 WZW model there are 3 conformal towers labeled by the spin of the lowest

energy states, j = 0, 1/2 and 1. Finite size spectra with conformally invariant boundary

boundary conditions at both ends of the system can be determined from the corresponding

boundary states, which are labeled by the primary operators. [21] OBC with N even in our

model corresponds to the |0〉 boundary state at both ends of the system and the corresponding

conformal tower in the finite-size spectrum is j = 0. Going to an odd number of sites is

formally analogous to the infrared fixed point spectrum of a spin-1 Kondo model and the

corresponding boundary state changes to |1〉 at one end of the system. [4] The resulting

finite-size spectrum contains the j = 1 conformal tower. Thus the ground state energies of an

open chain with an even or odd number of sites are:

Eeven = ε0N +ε1 − πv

16N
, (4.27)

Eodd = ε0N +ε1 + 7πv

16N
. (4.28)

In order to build the conformal tower at the end point J2 = 0.12 and J3 = 0.087, we calculate the

gap between the ground state energy and the lowest energies in different sectors of Sz
tot. The

gap scales linearly with 1/N and the slope gives access to the velocity. By calculating excited

states in the sectors Sz
tot = 0,1, we could determine the multiplicity of two lowest energy levels.

In a chain with an even number of sites, the ground state is a singlet and the first excited state

is a triplet, while for a chain with an odd number of sites, the ground state is a triplet and
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the first excited state is degenerate and consists of one triplet and one singlet, in complete

agreement with CFT predictions. The DMRG data on the scaling is presented in Fig.4.34 (a)

and (b) and summarised in Table II.
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Figure 4.34 – Ground state and excitation energy at J2 = 0.12 and J3 = 0.087, on the critical line
between the Haldane and the Dimerized phases. (a) and (b): Linear scaling of the ground state
energy per site with 1/N 2 after subtracting ε0 and ε1 in open chains with (a) even and (b) odd
numbers of sites N . (c) and (d): Energy gap between the ground state and the lowest energies
in different sectors of Stot

z = 0,1, ...,5 (black symbols) as a function of 1/N for even and odd
numbers of sites. The multiplicity of the ground state and of the first excited states has been
obtained by calculating excited states in the sectors Stot

z = 0 (blue crosses) and Stot
z = 1 (blue

pluses). Insets: Conformal towers for even and odd N . Black and blue symbols are DMRG
data for the ground states in different sectors of Stot

z and for the first excited state in the sector
Stot

z = 1

Moreover, we have checked that the conformal tower is destroyed by moving along the critical

line away from the end point. To demonstrate this, we have plotted the velocities extracted

from three different excitation levels n (fig.4.35). At the end point, all velocities are expected

be the same, implying that the conformal tower is restored. This occurs around J2 = 0.12, in

agreement with the value determined from the critical exponent.

4.7 Magnetic and non-magnetic domain walls. Solitons

Regarding the alternative between Ising and WZW SU(2)2, if the transition is continuous, we

would like to suggest that it is intimately related to the nature of the domain walls between

the phases (see Fig. 4.36). A domain wall between Haldane and Dimerized phases necessarily
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DMRG
Energy level CFT SU(2)2 J2 = 0.12,J3 = 0.087

OBC, Even, ground state Stot
z = 0 -1/16 -1/16

OBC, Even, ground state Stot
z = 1 1 1.027

OBC, Even, ground state Stot
z = 2 2 2.052

OBC, Even, ground state Stot
z = 3 5 5.14

OBC, Even, ground state Stot
z = 4 8 8.29

OBC, Even, ground state Stot
z = 5 13 13.50

OBC, Odd, ground state Stot
z = 1 7/16

� 0.4375 0.443
OBC, Odd, 1st exited state Stot

z = 1 1 1.052
OBC, Odd, ground state Stot

z = 2 2 2.052
OBC, Odd, ground state Stot

z = 3 4 4.12
OBC, Odd, ground state Stot

z = 4 8 8.26
OBC, Odd, ground state Stot

z = 5 12 12.52

Table 4.2 – Energy levels at SU (2)2 critical point. Ground state for N even Stot
z = 0 and odd

Stot
z = 1 refers to the 1/N term in the ground state energy. For the rest, the gap above the

ground state is given. Results are in units of πv/N .

Figure 4.35 – Velocity along the critical line between the Haldane and the dimerized phases
extracted from the gap between n’s energy level and a ground state. Red, blue and green
lines show results for a) N = 50 and b) N = 51. Similar results for a) N = 30,24,20 and b)
N = 31,25,21 are shown in gray (from dark thick to light thin).

carries spin-1/2 because the Haldane phase is topological and has edge states, leading to a

transition with magnetic excitations (WZW SU(2)2 if it is continuous), whereas a domain wall

between NNN-Haldane and dimerized phases does not because the NNN-Haldane phase

is topologically trivial with no edge states, leading to an Ising transition in the singlet sector

with gapped magnetic excitations. These observations are consistent with the field theory
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4.7. Magnetic and non-magnetic domain walls. Solitons

(a)

(b)

(c)

Figure 4.36 – Sketch of domain walls between (a) the Haldane and Dimerized phases, (b)
the Haldane and NNN Haldane phases, and (c) the NNN Haldane and Dimerized phases. A
spin-1/2 appears at the domain wall in the first two cases, but not in the third one.

argument discussed in the end of Section 4.4.

The alternative between Ising and SU(2)2 universality classes has been first pointed out by

Nersesyan and Tsvelik in the related context of spin-1/2 ladders with four-spin interactions

using a Majorana fermion representation of the field theory. [75, 92] Calculations on specific

models with ring-exchange or frustrated leg coupling have supported this prediction. [15, 76,

72, 45, 46, 89, 61, 38, 65, 33, 101, 64, 47] In that respect, the main difference with our model is

that, in the model of Nersesyan and Tsvelik, one goes from Ising to SU(2)2 through a trivial

point of decoupled chains [101, 47] and central charge c = 2, with no indication of an end-

point of the SU(2)2 line followed by a first-order transition, a generic feature of our approach

due to the presence of a marginal operator.

Coming back to the role of edge states at the transition, the result summarized in Fig. 4.36

can easily be extended to ladders to explain the fundamental difference between Ising and

SU(2)2 universality classes: spontaneous dimerization transitions between phases which

are both topologically trivial (rung singlet and columnar dimer) or non trivial (Haldane and

staggered dimer) can be expected to be generically Ising because edge states are absent or

compensate each other, while spontaneous dimerization transitions between a topological

and a non-topological phase (staggered dimer and rung singlet or Haldane and columnar

dimer) must include magnetic excitations because of the edge states and can be expected to

be generically SU(2)2, or possibly first-order with spin-1/2 solitons. Similar ideas might be

extended to transitions between valence-bond solids and dimerized phases in other contexts,

possibly in higher dimension.

We have studied numerically the soliton formation around the first order phase transition

between the Haldane and dimerized phases. In Fig.4.37 we show results for the lowest-lying

Sz
tot = 1 states of a N = 121 site chain for J2 = 0.3 and different values of J3. The most relevant

quantities are: i) the local magnetization 〈Sz
j 〉 that reveals edge states or solitons; ii) the spin-

spin correlation between nearest neighbors 〈Sz
j Sz

j+1〉 that reflects the presence of dimerization;

and iii) the expectation value of the three-site interaction 〈(Si−1Si )(Si Si+1)−h.c.〉, an indicator

of the Haldane phase - it is large and positive in the Haldane phase since spin-spin correlations
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Figure 4.37 – Spin solitons in chains with N = 121 at J2 = 0.3 and Sz
tot = 1 below (a-c), above (i-k)

and on the critical line (d-f). Left panels: On-site magnetization. It reveals a) spin-1/2 edge
states, d) spin-1/2 solitons inside the chain, and i) spin-1 soliton. Middle panels: Spin-spin
correlations. They provide evidence of a small dimerization all along the chain in the Haldane
phase (b), of a large dimerization at the edges and of its fast decrease in the middle, when the
two phases coexist (e), and of a large dimerization all along the chain except in the narrow
window in the middle, where the spin-1 soliton is located (j). Right panel: Expectation value of
the three-body term. It is large and positive all along the chain in he Haldane phase (c), it is
small at the dimerized edges but remains large in a domain of Haldane phase in the middle of
a chain (f), and it almost vanishes in the dimerized phase (k). The sketches on the right show
the VBS picture of solitons in different phases. Thin and thick arrows indicates spin-1/2 and
spin-1 solitons. For clarity, each even (odd) data point corresponds to a blue (red) symbol.

on adjacent bonds are (almost) equal and negative, it is very small and positive in the dimerized

phase close to the transition, it vanishes when the state is exactly dimerized, and it is negative

everywhere else in dimerized phase.

Our main results can be summarized as follows: Deep inside the Haldane phase there are

spin-1/2 edge states as seen from the local magnetization of Fig.4.37a. The small dimerization

and the large expectation value of the three-body interaction all along the chain confirm that

the entire chain is in the Haldane phase. Around the phase transition, two phases coexist: the

dimerized state is favored close to the edges, while the central part of a chain remains in the

Haldane phase. (Fig.4.37e-f). The two humps of the local magnetization curve (Fig.4.37d)

show that free spins have moved away from the boundaries and form a pair of spin-1/2 solitons

that separates the Haldane and dimerized domains. Deep inside the dimerized phase, the

two spins-1/2 recombine into a delocalized spin S = 1, and two dimerized domains with

different orientations occupy half of the chain each (Fig.4.37i-k). The transition between two

dimerization domains with different dimer orientations can also be deduced from the crossing

of the lines formed by red and blue points in the spin-spin correlation (see Fig.4.37j)
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Figure 4.38 – Same as Fig.4.37 for N = 120 at J2 = 0.3 and Sz
tot = 2 (see main text for the details).

The soliton picture remains true for higher values of the total spin. Fig.4.38 provides an

example of solitons in a chain with N = 120 and Sz
tot = 2. As in the previous case, one can

clearly distinguish spin-1/2 edge states in Fig.4.38a). On top of it, a slight increase of the

on-site magnetization occurs in the middle of the chain, indicating the appearance of a

spin-1 bond in the bulk. The Haldane phase is then perturbed. This is reflected in the

suppressed three-body term measured in the middle of the chain (Fig.4.38c). The formation

of the dimerized phase starts at the edges, but also in the bulk when approaching the phase

transition. Different dimerization domains are separated by domains of Haldane phase, each

carrying a total spin-1. Numerically, three dimerization domains are clearly seen with the

spin-spin correlations in Fig.4.38e), while the two maxima in the three-body term correspond

to two Haldane domains. Inside the dimerized phase, the Haldane domains are suppressed,

the dimerization is essentially different from zero everywhere along the chain except at two

points symmetric with respect to the middle of the chain. The domain walls are located at

the points with vanishing dimerization. The four spins-1/2 recombine into a pair of spins-1,

each of them delocalized along half the chain. The lines formed by red and blue points in

the spin-spin correlation intersect twice in Fig.4.38e,c), implying that the orientation of the

dimers is different in neighboring domains.

4.8 Short-range order

4.8.1 Disorder and Lifshitz lines

As mentioned in Section 4.2, several types of short-range order are present in the Haldane,

NNN-Haldane and dimerized phases (see Fig.4.39). A detailed description of each phase has

already be given in Section 4.2. In this section, we describe the numerical results that led to
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this phase diagram in more detail.

Figure 4.39 – Enlarged part of phase diagram on Fig.4.5 indicating short-range order within
the thermodynamic phases. Lifshitz line αL is marked with diamonds and disorder line αd is
marked with open circles. Dashed line is a line of the first order phase transition

The most important result is that, by tuning either the next-nearest-neighbor or the three-body

interaction, short-range incommensurate order can be induced beyond the so-called disorder

and Lifshitz lines. Disorder points were first discussed by Stephenson in models of classical

statistical mechanics [94, 95, 93]. On one side of a disorder point, the correlation function

decays in a commensurate way, while on the other side it decays in an incommensurate way.

The disorder point is said to be of the first kind if the wave number in the incommensurate

phase depends on the temperature, and of the second kind if it does not [95]. In the present

case, we have only found disorder points of the first kind.

By contrast, at a Lifshitz transition, the spin-spin correlation function becomes incommensu-

rate in momentum space, each peak being replaced by two symmetric peaks in the structure

factor SF (q) defined in Eq.4.8.

By keeping track of real space and momentum space correlations, we found that disorder and

Lifshitz lines cross the transition line at J2 � 0.335 and J2 � 0.342.

4.8.2 Dimerized phase

By fitting the numerical results of the spin-spin correlations with the dimerized OZ form given

by Eq.4.7, we have extracted the wave number q and the short-range dimerization parameter

δ. Examples of fits for J2 = 0.25 are shown in Fig.4.40.
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Figure 4.40 – Spin-spin correlation function 〈Si S j 〉 for J2 = 0.25 with a) J3 = 0.083 and b)
J3 = 0.084; The red lines are fit to the data with the dimerized OZ form given by Eq.4.7 with a)
q =π and b) q >π

We have found that, with very high accuracy, the disorder line coincides with the line where

the fully dimerized wave-function is the exact ground state of the model (see Fig.4.41).
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Figure 4.41 – Wave number q and dimerization δ deduced from a fit of the spin-spin correlation
function with Eq.4.7 for J2 = 0.25. The position of the first order phase transition and the line
αd where the ground state is fully dimerized are marked with black and red lines respectively.

In order to determine the Lifshitz line, we have looked for the appearance of a two-peak

structure in SF (q) given by Eq.4.8, where we have restricted the sum to the interval 20 < i , j ≤
N −20 in order to eliminate edge effects. Some examples of structure factor calculated for

fixed J2 = 0.25 are presented in Fig.4.42.

The conclusion that emerges from these results is that, to go from the commensurate to the

incommensurate part of the dimerized phase, one has to cross first a disorder line, and then

a Lifshitz line. These results are very similar to those obtained for the spin-1/2 chain with

next-nearest-neighbor interaction, the fully-dimerized line of our model being the equivalent

of the Majumdar-Ghosh point [69]. At that point, the correlation length vanishes, and it

coincides with the disorder point J d
2 = 1/2, while the Lifshitz point of the spin-1/2 chain is

located at J L
2 = 0.52036(6) [16], well above the disorder point.
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Figure 4.42 – Structure factor SF (q) for J2 = 0.25 and various values of J3. The Lifshitz point is
at J3 = 0.0915±0.0005.

4.8.3 Haldane phase

Depending on the type of correlation in the Haldane phase we have fitted the numerical data

with either non-dimerized OZ or dimerized OZ forms given by Eq.4.6 and Eq.4.7. Below we

provide several examples of spin-spin correlations and some fits.

The wave number q and the short-range dimerization parameter δ extracted from the fit

for fixed J3 = 0.03 are summarized in Fig.4.44. Note that there is a finite region where the

dimerization is essentially different from zero.

Crossing the transition line at J2 � 0.335, the disorder line is separated from the transition

line in Haldane phase by a thin tail of commensurate phase with short-order dimerization

(H-SD-C).

The Lifshitz line in the Haldane phase is obtained in the same way as in the dimerized phase.

Close to the crossing point J2 � 0.342, the Lifshitz line is very close to the boundary of the

H-SD-ICR phase, making the H-ICR phase vanishingly small in this region.

4.9 Conclusion

Combining field theory arguments with DMRG (and occasionally exact diagonalizations),

we have shown that the dimerization transitions of the spin-1 Heisenberg model with next-

nearest neighbor and three-site interaction can be precisely located and fully characterized.

In particular, the transition between the Haldane phase and the dimerized phase is in the

SU (2)2 WZW universality class for small J2, and it becomes first order at an end point also

in the SU (2)2 WZW universality class. This happens because the WZW SU(2)2 model has a
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Figure 4.43 – Spin-spin correlation function 〈Si S j 〉 for a) J2 = 0.27, J3 = 0; b) J2 = 0.3, J3 = 0; c)
J2 = 0.3, J3 = 0.04 and d) J2 = 0.3, J3 = 0.059. The red line on a) and b) is a fit to the data with
the OZ form.

Figure 4.44 – Wave number q and dimerization δ deduced from a fit of the spin-spin correlation
function with Eq.4.7 for J3 = 0.03.

marginal operator, and the coupling constant of this operator changes its sign at the end point.

Reformulating the low-energy Hamiltonian with conformal embedding in terms of Ising and

boson fields, one can deduce that in the vicinity of the end point, the transition (whether

continuous or first order) occurs simultaneously in the Ising and boson sectors. However, far

from the end point they can split. The Ising transition between NNN-Haldane and dimerized

phases has been confirmed numerically with the finite-size scaling of the energy spectrum,

the central charge, and the critical exponents.

The alternative between Ising and WZW SU(2)2 universality classes is related to the nature of
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the domain walls between corresponding phases(see Fig. 4.36). A domain wall between the

Haldane and Dimerized phases necessarily carries a spin-1/2 because the Haldane phase is

topological and has edge states, leading to a transition with magnetic excitations (WZW SU(2)2

if it is continuous), whereas a domain wall between NNN-Haldane and dimerized phases does

not because the NNN-Haldane phase is topologically trivial with no edge states, leading to an

Ising transition in the singlet sector with gapped magnetic excitations. These observations are

consistent with the field theory approach and with the numerical observation of magnetic

solitons at the first order phase transition between the Haldane and dimerized phases. The

observed solitons are in qualitative agreement with the fact that along the SU (2)2 line, there are

low-lying magnetic excitations. By contrast, the transition between the next-nearest neighbor

Haldane phase and the dimerized phase is in the Ising universality class. Along this transition

line, the spin-gap remains open, and the low-lying excitations are all in the singlet sector.

To fully characterize the transitions, DMRG with open boundary conditions turned out to be

extremely useful. This is due to the fact that the conformal tower of a critical model with open

boundary conditions is often just the tower of a single primary field. By contrast, the conformal

tower of a critical model with periodic boundary conditions is in general the superposition of

different towers. We think that a systematic use of these ideas might turn out to be useful in

other one-dimensional quantum systems.

In addition, we have shown that short-range correlations can be commensurate or incommen-

surate, with several disorder and Lifshitz lines, leading to a remarkably rich phase diagram.

Interestingly, several of these phases occur for relatively small, hence physically realistic values

of the couplings J2 and J3. So it is our hope that the present investigation will encourage

experimentalists to try and check some aspects of this phase diagram.
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5 The spin-1 chain with next-nearest
neighbor and biquadratic interactions

5.1 Introduction

In the present chapter we continue to study the appearance of spontaneously dimerized

phase induced by frustration and the nature of the corresponding critical lines. This chap-

ter is dedicated to the spin-1 model with bilinear-biquadratic and next-nearest neighbor

interactions.

The phase diagram of this model has been investigated by Pixley, Shashi and Nevidomskyy

[Phys. Rev. B 90, 214426 (2014)]. It consists of three phases, and the nature of the phase

transitions has been determined using Density Matrix Renormalization Group (DMRG) and

field-theory arguments. In the previous chapter, we have investigated a similar model in which

the biquadratic interaction is replaced by a three-site interaction that provides the appropriate

generalization of the spin-1/2 Majumdar-Ghosh chain. Much to our surprise, while the

competing phases are the same as for the model with biquadratic interaction - Haldane, NNN-

Haldane (called NNN-AKLT in Ref. [81]) and dimerized - we came to significantly different

conclusions regarding the transitions between them:

i) We provide numerical evidence of a continuous Ising transition between the NNN-Haldane

phase and the dimerized phase;

ii) We show that the tri-critical end point, where the continuous transition between the

Haldane phase and the dimerized phase turns into a first order transition, is distinct from the

triple point where the three phases meet;

iii) Finally, we demonstrate that the tri-critical end point is in the same Wess-Zumino-Witten

(WZW) SU(2)2 universality class as the continuous transition line that ends at this point.

The goal of this chapter is to re-investigate the nature of the phase transitions in the model

with biquadratic interactions. As we will see, this leads to a new phase diagram that turns out

to be qualitatively similar to that of the model with three-site interactions.
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Figure 5.1 – Phase diagram of the spin-1 chain with next-nearest neighbor coupling J2 and
biquadratic interaction Jb . The transition from the dimerized phase to the Haldane phase
starts at the Takhtajan-Babudjian (TB) point[96, 9], is continuous along the solid line, with
central charge c = 3/2, and first order along the dashed line. The transition from the NNN-
Haldane phase to the dimerized phase is a continuous transition in the Ising universality class
with central charge c = 1/2. The transition between the Haldane phase and the NNN-Haldane
phase is always first order.

5.2 Phase Diagram

The J1 − J2 − Jb model is described by the Hamiltonian:

H =∑
i

J1Si ·Si+1 + J2Si−1 ·Si+1 + Jb(Si−1 ·Si )2, (5.1)

J1 = 1 throughout the paper. In the convention of Ref.[81], J2 =α and Jb =β. Our main results

are summarized in the phase diagram of Fig.4.4. Each phase may be schematically illustrated

by valence bond pictures, as it has been done in the context of J1 − J2 − J3 model

Below, with the help of extensive density matrix renormalization group (DMRG)[103, 90, 78, 91]

calculations, we will demonstrate that: i) The phase transition between the NNN-Haldane

phase and the dimerized phase is continuous and in the Ising universality class, and not

first order; ii) The continuous WZW SU(2)2 transition starts at the Takhtajan-Babujian (TB)

point and terminates at a tri-critical point that is distinct from the triple point; iii) Beyond the

tri-critical point, the phase transition between the Haldane phase and the dimerized phase is

first order; iv) The tri-critical point is in the same WZW SU(2)2 universality class as the critical

line that ends at that point, and not in the WZW SU(2)4 universality class, as suggested in

Ref.[81].
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Figure 5.2 – (a) Log-log plot of the mid-chain dimerization in open chain as a function of
the number of sites N for J2 = 1 and different values of Jb . The linear curve corresponds to
the Ising critical point, and its slope to the critical exponent d . This leads to Jb =−0.223 and
d = 0.129, in good agreement with the prediction 1/8 for Ising. (b) Site dependence of D( j , N )

at the critical point fitted to 1/
[
N sin(π j /N )

]d . This leads to an exponent d = 0.128, again
close to Ising prediction 1/8.

5.3 Ising transition

Let us first consider the transition between the NNN-Haldane phase and the dimerized

phase. We define the local dimerization as D( j , N ) = |〈�S j ·�S j+1〉−〈�S j−1 ·�S j 〉|, where j is the

site index and N is the total number of spins. In order to locate the phase boundaries, we

look at the mid-chain dimerization D(N /2, N ) around the transition as a function of system

size N . In the NNN-Haldane phase, the dimerization vanishes with the system size, while

in the dimerized phase it stays finite. In finite-size chains, we found that the dimerization

increases continuously from NNN-Haldane phase to the dimerized phase, in agreement

with the numerical results of Ref.[81]. The separatrix in a log-log plot corresponds to the

phase transition, and its slope is equal to the critical exponent (see Fig.5.2). Since open

boundaries favor dimerization, they correspond to non-zero boundary magnetic field in the

Ising model. From boundary conformal field theory (CFT), the magnetization at the critical

point is expected to decay away from the boundary as [19] 〈σ(x)〉∝ 1/x1/8. Moreover, for a

finite system 〈σ(x)〉∝ 1/[(N /π)sin(πx/N )]1/8. Identifying the local dimerization with σ(x),

one gets D( j , N ) ∝ 1/[N sin(π j /N )]1/8 and in particular D(N /2, N ) ∝ 1/N 1/8. The critical

exponent obtained numerically d ≈ 0.129 is in good agreement with the Ising prediction.

In a complete analogy with J1 − J2 − J3 model we identify open boundary conditions in our

model with ↑,↑ boundary conditions in the Ising model for N even and with ↑,↓ boundary

conditions for N odd, where the arrows refer to the directions of boundary magnetic fields in

the Ising model. Then according to conformal field theory (CFT), the ground state energy in

an open Ising chain scales with the system size N as E = ε0N +ε1 −πv/(48N ) for N even and

E = ε0N +ε1 +πv/(23N ) for N odd [14]. The scaling of the DMRG data for the ground-state

energy are presented in Fig.5.3 (a) and (b).
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Figure 5.3 – Ground-state and excitation energy at J2 = 1 and Jb =−0.223, a point that belongs
to the Ising critical line. (a) and (b) Linear scaling of the ground-state energy per site in an
open chain with 1/N 2 after subtracting the ε0 and ε1 terms for even and odd number of sites.
(c) and (d) Energy gaps in the singlet and triplet sectors for OBC as a function of 1/N for even
and odd number of sites. The slope of the singlet gap gives access to the value of the velocity.
Insets: Conformal towers. Grey lines show Ising conformal towers for I (N even) and for ε (N
odd). Blue symbols correspond to DMRG data.

We have calculated the lowest four excited state energies for both parities of N in the singlet

sector as well as the triplet gap; see Fig.5.3(c) and (d). The excitation energies in the singlet

sector reveal the expected Ising conformal tower of the identity primary field I for N even and

of the energy primary field ε for N odd with scaling dimensions 0 and 1/2 respectively [21].

This definitely establishes that the transition is continuous and in the Ising universality class.

By contrast, the singlet-triplet gap remains finite. In Ref. [81], the authors came to the same

conclusion regarding the singlet-triplet gap. However, they did not investigate the singlet

sector. So they came to the conclusion that there is no gap closing at the transition, and

accordingly that the transition must be first order.

5.4 Transition between Haldane and dimerized phases

As mentioned above, the transition between the Haldane phase and the dimerized phase starts

at the TB point, where it is continuous in the WZW SU(2)2 universality class, and terminates at

the tri-critical point, where the transition becomes first order. The SU(2)2 phase transition is
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Figure 5.4 – (a) Central charge along the critical line as determined from fitting the entangle-
ment entropy of periodic chains with the Calabrese-Cardy formula[17]. (b) Apparent critical
exponent along the SU(2)2 critical line as a function of J2 from the slope of the log-log plot
D(N /2, N ) as a function of N for the values Jb for which it is linear. The grey line is the
theoretical value of the exponent, 3/8. (c) Log-log plot of the mid-chain dimerization as a
function of the number of sites N at the critical point J2 = 0.37 and Jb =−0.331. The slope
corresponds to the critical exponent d = 0.364, in good agreement with 3/8 for WZW SU(2)2.

(d) Site dependence of D( j , N ) at the critical point fitted to 1/
[
N sin(π j /N )

]d . This leads to an
exponent d = 0.351, again close to WZW SU(2)2 prediction 3/8.

characterized by a central charge c = 3/2 and by the critical exponent d = 3/8 of the operator

tr g , the j = 1/2 primary operator in the SU(2)2 WZW model that describes dimerization:

�Si ·�Si+1 ∝ (−1)i tr g +uniform part.

In Ref.[81], the main argument in favor of the WZW SU(2)4 universality class at the end point

was based on the central charge. It was extracted from the scaling of the entanglement entropy

SN (n) with block size n in open chains of size N according to the Calabrese-Cardy formula[17]:

S(n) = c

6
ln

[
2N

π
sin
(πn

n

)]
+ s1 + ln g . (5.2)

Using an open chain with N = 90 sites, the authors of Ref.[81] came to the conclusion that the

central charge is around c = 2.

Since the finite-size effects for open systems are usually quite strong for the extraction of the
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central charge, we have revisited this conclusion using periodic systems. In Fig.5.4 (a), we

present results for the central charge extracted from fits of the entanglement entropy to the

Calabrese-Cardy formula for periodic systems:

S(n) = c

3
ln

[
N

π
sin
(πn

n

)]
+ s1 (5.3)

The results for N = 16, 20 and 30 sites are shown. The central charge extracted from periodic

chains has very small finite-size dependence, and it is clear that it never exceeds significantly

the value c = 3/2. This implies that the end point is in the WZW SU(2)2 universality class. To

recover this result with open boundary conditions, one should presumably use systems much

larger than 90 sites.

We now confirm these results by calculating the critical exponent and the conformal towers.

The marginal operator changes its sign at the tri-critical point, therefore logarithmic correc-

tions present all along continuous part of the transition vanish at this point. It is thus the

only point on the critical where the critical exponents can be accurately extracted from finite

sizes. We again look for the separatrix in the scaling of the mid-chain dimerization in order

to locate the critical line, as described in the previous section. The slope gives an apparent

critical exponent, presented in Fig.5.4(c). The point at which the slope is the closest to the

predicted value 3/8 (Fig.5.4a) is identified with the end point. The critical exponent obtained

at the end point from a scaling analysis of the dimerization D( j , N ) with the spin position j for

a fixed chain length N is also in good agreement with the prediction d = 3/8; see Fig.5.4b). The

position of the end point deduced from this analysis is J2 = 0.37±0.01, Jb =−0.331±0.001,

well separated from the triple point.

In Ref.[81] it was suggested that these two points coincide. While the estimate of the triple

point 0.47 < J2 < 0.55 and −0.2 < Jb <−0.15 reported in Ref. [81] is consistent with our results,

we think that the two points do not coincide, and that the tri-critical point lies clearly outside

this interval.

As it was shown already in the contex of J1 − J2 − J3 model the ground-state energies for even

and odd number of sites are expected to scale according to:

Eeven = ε0N +ε1 − πv

16N
, (5.4)

Eodd = ε0N +ε1 + 7πv

16N
. (5.5)

In order to build the conformal tower at the end point J2 = 0.37 and Jb =−0.331, we calculate

the gap between the ground-state energy and the lowest energies in different sectors of Sz
tot.

The gap scales linearly with 1/N , and the slope gives access to the velocity. In a chain with an

even number of sites, the ground state is a singlet and the first excited states is a triplet, while

in a chain with an odd number of sites, the ground state is in the triplet sector. The DMRG
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Figure 5.5 – Ground-state and excitation energy at J2 = 0.37 and Jb = −0.331, a point that
belongs to the critical line between the Haldane and the Dimerized phases. a) and b) Linear
scaling of the ground-state energy per site in an open chain with 1/N 2 after subtracting the ε0

and ε1 terms for even and odd number of sites. c) and d) Energy gap between the ground state
and the lowest energy states in different sectors of Stot

z = 0,1, ...,5 as a function of 1/N for even
and odd number of sites. Insets: Conformal towers. Blue symbols correspond to DMRG data.
Red lines are the expected conformal towers [24], with a velocity defined by the finite-size
scaling of the ground state energy for N even.

data on the scaling are presented in Fig.5.5.

In order to prove that the point J2 = 0.37 and Jb =−0.331 is indeed the end point, we checked

that the logarithmic corrections destroy the conformal towers away from this point [24]. In

order to do so, we have calculated the velocities by performing a linear fit of the gap for the first

three levels in each tower. The conformal towers are reconstructed only when all velocities take

the same values. Otherwise the structure is perturbed. Fig.5.6 provides examples of velocities

extracted along the critical line for different sizes. The crossing points around J2 = 0.37 are

compatible with our determination of the tri-critical point. Note, that discrepancy of the

velocities develops slowly for smaller J2, that corresponds to logarithmic corrections to WZW

SU(2)2 critical theory along continuous transition. In contrast, the towers are destroyed much

faster on the side of first order pase transition.
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5.5 Conclusion

Extensive DMRG calculations coupled to CFT arguments have revealed significant differences

with the original phase diagram of Ref.[81] regarding the nature of the phase transitions: i)

In accordance to the original paper [81] we have found that the singlet-triplet gap does not

close at the phase transition between the NNN-Haldane and dimerized phases. However,

the excitation spectrum obtained with DMRG calculations within the singlet sector shows

critical finite-size scaling. The structure of the excitation spectra, the finite-size scaling of the

ground-state energy and the extracted critical exponents imply that the transition between

the NNN-Haldane and dimerized phases is continuous and in the Ising universality class,

something that had been overlooked in the original study, where this transition was identified

as first order. ii) The tri-critical point at which the continuous WZW SU(2)2 transition turns

into a first order one occurs below the triple point and thus, there exists an interval of first order

transition between the Haldane and dimerized phases. iii) A detailed analysis of the central

charge, critical exponent and excitation spectra allows us to conclude that the tri-critical point

is in the same WZW SU(2)2 universality class as the critical line that ends at this point and not

in the SU(2)4 universality class proposed in the original study [81].

The similarities of the phase diagrams for biquadratic and three-site interactions suggest that

their main features are generic properties of spontaneous dimerization transitions of spin-1

chains. Finally, since the end point of the WZW SU(2)2 critical line and the triple point do

not coincide but are separated by a first-order transition line between the Haldane and the

dimerized phases, as in the model of Ref.[24], we anticipate that the conclusions of Ref.[81]

regarding the end points of the disorder lines will also be modified, and that they might end

at the first-order transition line and not at the triple point or at the WZW SU(2)2 critical line.

This goes beyond the scope of this Chapter however and is left for future investigation.
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6 The spin-3/2 chain with next-nearest-
neighbor and three-site interactions

6.1 Introduction

In this chapter we continue the discussion of properties of the J1− J2 model with an additional

three-site interaction, now for a spin chain with S = 3/2. We recall the form of the Hamiltonian

for J1 − J2 − J3 model:

HJ1−J2−J3 = J1
∑

i
Si ·Si+1 + J2

∑
i

Si−1 ·Si+1 + J3
∑

i
[(Si−1 ·Si )(Si ·Si+1)+H.c.] , (6.1)

and, as before, we set J1 = 1 throughout this chapter and restrict ourselves to the case J2, J3 ≥ 0.

Let us first review the main results previously obtained for two limiting cases of the J1 − J2 − J3

spin-3/2 chain. For J3 = 0, it has been shown by Roth and Schollwöck [88] that the model has

a transition into a dimerized phase at a critical value 0.29 < J2/J1 < 0.33. The transition is in

the Kosterlitz-Thouless universality class [60]. Moreover, spin-1/2 edge states disappear when

the ratio of the coupling exceeds J2/J1 ≈ 0.48[88].

In the J1 − J3 model, the transition to a spontaneously dimerized phase occurs at J3/J1 =
0.063[70]. The phase transition is continuous and belongs to the SU(2)k=3 WZW universal-

ity class [6]. As we will show later, the dimerized phase induced by three-site interaction

corresponds to the fully dimerized phase, while in the J1 − J2 model the Kosterlitz-Thouless

transition separates critical phase occurs from partially dimerized one.

The fully dimerized state is an exact eigenstate[71, 70, 102] along the line J3 = 1/13(1−2J2)

as can be immediately obtained from Eq.4.5 by setting the value of the spin to S = 3/2. For

J2 = 0, this fully dimerized eigenstate is also a ground-state at J3 = 1/13. The aim of the present

chapter is to study the full phase diagram of J1 − J2 − J3 model.
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6.2 Phase diagram

Let us first summarize our main numerical results. They are presented in the phase diagram

of Fig.6.1. For a moment, we concentrate on small values of next-nearest neighbor coupling

J2 ≤ 0.5 (higher values of next-nearest neighbor couplings will be briefly discussed in the end

of the chapter). The phase diagram contains three phases: a non-dimerized critical phase,

and two different dimerized phases: a partially dimerized phase and a fully dimerized one.

Each phase can be schematically illustrated using a valence bond singlet (VBS) representation

as shown in sketches of Fig. 6.1. Fully dimerized phase corresponds to three valence-bonds on

every other J1 bond; while the partially dimerized one corresponds to alternating one and two

valence bonds. The critical phase might be schematically illustrated as one valence bond per

J1 bonds and on top of that one valence bond that resonates between two neighboring bonds

that is shown schematically with dashed line.
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dimerized

c=1

c=9/5
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Figure 6.1 – Phase diagram of the J1 − J2 − J3 spin S = 3/2 chain. It contains three phases:
critical, fully dimerized and partially dimerized. The critical phase is in the WZW SU(2)1

universality class. The transition between the critical phase and the partially dimerized phase
is in the Kosterlitz-Thouless universality class and corresponds to WZW SU(2)1. The transition
between the critical and dimerized phases is continuous in the WZW SU(2)3 universality
class along the solid line and first order along the dashed line. The transition between the
partially dimerized and dimerized phases is first order for J2 < 0.4. Beyond this point, the two
dimerized phases are connected via a crossover through an intermediate ’ladder’ state. The
fully dimerized state is an exact ground-state along the dotted line. The spin-1/2 edge states
disappear at dot-dashed line

The transition between the critical and partially dimerized phases is in the Kosterlitz-Thouless[60]
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universality class, in agreement with previous study of J1−J2 model[88]. Both the critical phase

and the Kosterlitz-Thouless transition line are described by WZW SU(2)k=1 critical theory.

However, in complete analogy with the critical J1 − J2 spin-1/2 chain, logarithmic corrections

are present and significant inside the critical phase but vanish at the Kosterlitz-Thouless criti-

cal line. The numerical confirmation will be provided in Section 6.4. This happens because

the marginal coupling constant becomes zero at the transition.

The transition between the critical and fully dimerized phases is continuous in the WZW

SU(2)k=3 universality below and at the end point and first order beyond it. The end point is

located around J2 ≈ 0.1 and J3 ≈ 0.05128. As discussed in the context of spin-1 chain (see sec-

tion 4.4), the switch from continuous to first order transition is induced by the change of sign

of a marginal operator. The logarithmic corrections that are non-zero all along the continuous

transition vanish at the end point, where the marginal coupling vanishes. Interestingly, the

value of the next-nearest neighbor coupling J2 at which the end point occur changes only

slightly between between spin-1 (J2 = 0.12) and spin-3/2 J2 ≈ 0.1 cases.

The first order transition line continues towards small J3 and separates the fully dimerized

from the partially dimerized phases below the end point located at J3 ≈ 0.4. Beyond this point,

the two dimerized phases are connected by a crossover.

In order to distinguish non-dimerized and dimerized phases we use dimerization D( j , N ) =
|〈�S j ·�S j+1〉−〈�S j−1 ·�S j 〉| as an order parameter to probe numerically the phase diagram. Fig.6.2

shows examples of the middle chain dimerization D(N /2, N ) as a function of J3 for three

different values of J2. The dimerization changes continuously for J2 = 0 (Fig.6.2 (a)), in

agreement with a continuous WZW SU(2)3 transition. A finite jump in dimerization as in

Fig.6.2(b) for J2 = 0.2 implies a first order phase transition. Both transitions occur from

non-dimerized to fully dimerized phases.

For J2 = 0.3, the dimerization grows continuously from zero to approximately one that cor-

responds the transition from critical to partially dimerized phase. The Kosterlitz-Thouless

transition between the two occurs around J3 ≈ 0.008. Under further increase of the J3 cou-

pling, the dimerization jumps abruptly to approximately D(N /2, N ) ≈ 4 indicating a first order

phase transition to a fully dimerized phase. Note also that if one keeps track of the sign of the

dimerization Ds( j , N ) = 〈�S j ·�S j+1〉− 〈�S j−1 ·�S j 〉, there is a small region before the first order

transition where the sign of the dimerization changes. It corresponds to the disappearance of

edge states and to the reorientation of dimers in the partially dimerized phase as sketched in

Fig.6.3. The line along which the edge states disappear is marked with a dot-dashed line in the

phase diagram of Fig,6.1.

6.3 The end point of the WZW SU(2)3 critical line

In order to determine the precise location of the critical line between the non-dimerized

critical phase and the fully dimerized phase, we follow the same logic as for the spin-1 chain.
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Figure 6.2 – Middle chain dimerization for N = 90 (blue) and N = 150 (red) across different
transitions. (a) Continuous growth of dimerization across the WZW SU(2)3 critical line. (b)
Finite jump in dimerization across the first order phase transition from the critical phase to
the fully dimerized phase. (c) Continuous change of the dimerization from the non-dimerized
critical phase to the partially dimerized phase across Kosterlitz-Thouless transition (the critical
line goes through J2 = 0.3, J3 ≈ 0.008) and finite-jump of dimerization across the first order
transition from the partially to the fully dimerized phase around J3 ≈ 0.033. Inset: Sign
preserved dimerization across first order transition. The negative value of dimerization
indicates a change of the dimer orientation induced by open boundary (see Fig.6.3)

edge states disappear

Figure 6.3 – Disappearance of the edge states inside the partially dimerized phase and resulting
reorientation of the dimers (sketches).

The critical line is associated with the straight line in the log-log plot of the dimerization

D(N /2, N ) as a function of chain length N (see Fig.6.4(a)). CFT for WZW SU(2)k=3 predicts the

scaling dimension of the dimerization operator to be d = 3/[2(2+k)] = 3/10. The slope of the

separatrix gives an ’apparent’ critical exponent, different from d = 3/10 due to logarithmic

corrections. At the end point, the logarithmic corrections vanish, since coupling constant

of the marginal operator vanishes, so this is the only point along the line where the critical

exponents can be accurately extracted from finite sizes. By by keeping track of the apparent

critical exponent along the critical line, we find that it crosses the line d = 3/10 at J2 ≈ 0.10

and J3 ≈ 0.05128.

As discussed in Chapter 4, open boundaries in the spin-1 J1 − J2 − J3 chain favor dimerization.
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Figure 6.4 – (a) Log-log plot of the middle-chain dimerization D(N /2, N ) as a function of the
number of sites N for J2 = 0.1 and different parameters J3 around critical value. The linear
curve corresponds to the critical point and the slope gives the critical exponent d ≈ 0.307 in
good agreement with CFT prediction 3/10 for WZW SU(2)k=3 critical theory. (b) Apparent
critical exponent along the SU (2)3 critical line as a function of J2. Red circles: from the slope
of the log-log plot D(N /2, N ) as a function of N for the value of J3 for which it is linear. Blue
circles: from fitting D( j ,200). Black line is the theoretical value of the exponent, 3/10. Thus
the end point is located at J2 = 0.1 and J3 = 0.05128. (c) Scaling of the dimerization parameter
D( j , N ) along the chain with N = 200 sites at the SU (2)3 critical end point fitted to Eq.6.2. The
extracted exponent is in excellent agreement with d = 3/10. (d) Entanglement entropy at the
end point for N = 200 after removing the Friedel oscillations with weight ζ≈−1.3. The central
charge obtained from the fit to Calabrese-Cardy formula[17] c ≈ 1.781 agrees within 2% with
9/5 predicted by CFT

This remains true for larger values of the spin and the dimerization scales along the chain

according to:

D( j , N ) ∝ 1/[(N /π)sin(πx/N )]d (6.2)

with d = 3/10 for WZW SU(2)k=3. An example of the scaling of the dimerization along a

finite chain is shown in Fig.6.4(c). The critical exponents extracted along the transition line

are summarized in Fig.6.4(b) and are in a perfect agreement with those extracted from the

finite-size scaling of the middle-chain dimerization D(N /2, N ).
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Numerically, we compute the central charge from the entanglement entropy in an open chain:

S̃N (n) = c

6
lnd(n)+ζ〈SnSn+1〉+ s1 + ln g , (6.3)

where d = 2N
π sin

(
πn
N

)
is the conformal distance and ζ is a non-universal constant introduced

in order to suppress Friedel oscillations (see Sec. 4.5.3 for more details). An example of fit of

the reduced entanglement entropy S̃N (n) with Eq.6.3 is provided in Fig.6.4(d). The obtained

values of the central charge along the continuous part of the transition always agree within 3%

with the CFT prediction c = 9/5 for the critical WZW SU(2)3 theory.

For any conformally invariant boundary condition, the ground state scales with the system

size as

E = ε0N +ε1 + πv

N

(
− c

24
+x
)

, (6.4)

where ε0 and ε1 are non-universal constants, c is the central charge and x is the scaling

dimension of the corresponding primary field. For the SU (2)k=3 WZW model there are 4

conformal towers labeled by the spin of the lowest energy states, j = 0, 1/2, 1 and 3/2. The

scaling dimension of the corresponding operator is given by x = j ( j +1)/(2+k). As we have

seen in the context of the spin-1 case, chains with an even number of sites have a singlet

ground-state and are thus described by the conformal tower j = 0 with scaling dimension

x = 0. By contrast, the ground state of a chain with an odd number of sites belongs to the

conformal tower with the largest j = 3/2 with scaling dimension x = 3/4. Thus the ground

state energies of an open chain with even or odd numbers of sites scale as:

Eeven = ε0N +ε1 − 3πv

40N
, (6.5)

Eodd = ε0N +ε1 + 27πv

40N
. (6.6)

Examples of finite-size scaling of the ground-state energy for even and odd numbers of sites

are shown in Fig.6.5(a) and (b).

We have extracted several excited states by calculating the lowest states within different

symmetry sectors of total magnetization 0 ≤ Sz
tot < 6. In order to construct WZW SU(2)k=3

conformal towers we have followed Ref.[3]. Since we are interested only in the lowest state for

different values of the total spin s, the energy level that corresponds to this state can be found

with a rather simple formula:

n =
⌈

j 2 −S2

k

⌉
, (6.7)

where �x� is a ceiling function that returns an integer n in the range x ≤ n < x +1. The results
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Figure 6.5 – Ground state and excitation energy at J2 = 0.1 and J3 = 0.05128, on the critical
line between the critical and the fully dimerized phases. (a) and (b): Linear scaling of the
ground state energy per site with 1/N 2 after subtracting ε0 and ε1 in open chains with (a) even
and (b) odd numbers of sites N . (c) and (d): Energy gap between the ground state and the
lowest energies in different sectors of Stot

z = 1, ...,5 for even and Stot
z = 5/2, ...,11/2 for odd (blue

circles) as a function of 1/N for even and odd numbers of sites. Red lines are CFT predictions
for j = 0 and j = 3/2 towers with the velocities extracted from first lowest excitation level and
indicated in each panel.

for j = 0 and j = 3/2 WZW SU(2)3 conformal towers are summarized in Table 6.1. For the

j = 3/2 tower, the ground-state is in the sector with Stot = 3/2, and it appears as the lowest

state in the two sectors of total magnetization Sz
tot = 1/2 and 3/2.

j=0
s 0 1 2 3 4 5

(E −E0)N /πv 0 1 2 3 6 9
j=3/2

s 1/2 3/2 5/2 7/2 9/2 11/2
(E −E0)N /πv , 2 0 2 4 6 10

Table 6.1 – Lowest excitation energy with spin s for both j = 0 and j = 3/2 WZW SU(2)3

conformal towers.

The conformal towers obtained numerically for both even and odd numbers of sites are shown

in Fig.6.5(c) and (d) and summarized in Table 6.2.

Finally, in order to prove that the pair of parameters J2 = 0.1 and J3 = 0.05128 indeed corre-

sponds to the end point, we will show that the conformal tower is destroyed by moving along

the critical line away from the end point. Following the procedure established in the context of
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Chapter 6. The spin-3/2 chain with next-nearest-neighbor and three-site interactions

DMRG
Energy level CFT SU(2)3 J2 = 0.1,J3 = 0.05128

OBC, Even, ground state Stot
z = 0 -3/40 -3/40

OBC, Even, ground state Stot
z = 1 1 1.0065

OBC, Even, ground state Stot
z = 2 2 2.0003

OBC, Even, ground state Stot
z = 3 3 2.9999

OBC, Even, ground state Stot
z = 4 6 6.057

OBC, Even, ground state Stot
z = 5 9 9.12

OBC, Odd, ground state Stot
z = 3/2 27/40

=0.675 0.666
OBC, Odd, ground state Stot

z = 5/2 2 2.018
OBC, Odd, ground state Stot

z = 7/2 4 4.028
OBC, Odd, ground state Stot

z = 9/2 6 6.058
OBC, Odd, ground state Stot

z = 11/2 10 10.19

Table 6.2 – Energy levels at the SU (2)3 critical point. Ground state for N even Stot
z = 0 and odd

Stot
z = 3/2 refers to the 1/N term in the ground state energy. For the rest, the gap above the

ground state is given. Results are in units of πv/N with v = 1.095.

the spin-1 chain, we have plotted the velocities extracted from three different excitation levels

n according to vn = (En −E0)N /(πn) (Fig.6.6). At the end point, all velocities are the same,

implying that the conformal tower is restored. This occurs around J2 = 0.1, in agreement with

the value determined from the critical exponent. Velocities splits but remain relatively close to

each along continuous transition due to the logarithmic corrections to the WZW SU(2)3 critical

theory. Above the end point, along the first order transition the spitting of (En −E0)N /(πn) is

much faster.
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1.2
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0 0.1 0.21.05

1.1

1.15

1.2a) b)

Figure 6.6 – Velocity along the critical line between the critical and the fully dimerized phases
extracted from the gap between n’th energy level and the ground state for (a) N = 50 and (b)
N = 51

100



6.4. Critical phase and Kosterlitz-Thouless transition

6.4 Critical phase and Kosterlitz-Thouless transition

The critical phase and the Kosterlitz-Thouless transition are both characterized by the WZW

SU(2)1 critical theory. This critical theory has central charge c = 1. We have calculated the

central charge numerically by fitting the reduced entanglement entropy to Eq.6.3. Examples

of fit of finite-size results are provided in Fig.6.7. Due to the logarithmic corrections deep

inside critical phase, the central charge extracted from the entanglement entropy in finite-

size clusters differs significantly from the expected value c = 1, as can be deduced from

Fig.6.7(a). By contrast, close to the Kosterlitz-Thouless critical line, the logarithmic corrections

are suppressed, and the central charge can be extracted with sufficient accuracy even from

relatively small chains Fig.6.7(b).

20 40 60 80 100
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3.6

20 40 60 80 100

3.2

3.3

3.4

3.5a) b)

Figure 6.7 – Extraction of the central charge for open chains with N = 90 (green) and N = 150
(red) by fitting the reduced entanglement entropy S̃N (n) with the Calabrese-Cardy formula of
Eq.6.3 (a) inside critical phase and (b) at Kosterlitz-Thouless transition

Close to the Kosterlitz-Thouless transition the dimerization decreases almost linearly in

log-log scale at both sides of the transition, and the precise location of the critical line by

looking for a separatrix becomes challenging (see Fig.6.8(a)). In order to locate the phase

boundary, we have extracted the apparent critical exponent in the vicinity of the critical

line. Since logarithmic corrections are absent at the Kosterlitz-Thouless transition, the phase

boundary can be associated with the J2 for which the apparent critical exponent is closest

to the CFT prediction for WZW SU(2)k=1 for the scaling dimension of dimerization operator

d = 3/[2(2+k)] = 1/2. Moreover, one can extract the central charge, that differs slightly from

c = 1 inside critical phase close to the transition, but rapidly decreases in the gapped partially

dimerized phase, as shown in Fig.6.8. The phase boundaries extracted in these two ways agree

with each other within errorbars.

In order to check that along the Kosterlitz-Thouless critical line the logarithmic corrections are

absent and the underlying critical theory can be extracted from finite-size systems, we have

calculated the velocities for some levels of the excitation spectrum for even and odd numbers

of sites. For the SU (2)k=1 WZW model, there are only two conformal towers labeled by total

spin: j = 0 and 1/2. The levels corresponding to the lowest states with different magnetization
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Figure 6.8 – (a) Middle-chain dimerization D(N /2, N ) as a function of the system size N for
J3 = 0.01. The dimerization scales linearly even above the transition that occur at 0.29 ≥
J2 ≥ 0.30. (b) Central charge is equal to c = 1 inside critical phase close to the transition and
decreases towards zero in the gapped partially dimerized phase. Results for open chain with
N = 150 sites and J2 = 0.1 are shown. The transition is around J2 ≈ 0.30.

sectors can be extracted from Eq.6.7. They are summarized in Table 6.3. Due to presence of

the low-lying edge states close to the Kosterlitz-Thouless transition, the listed states can be

found as ground states in symmetry sector Sz
tot = s +1. The obtained numerical results for

J3 = 0.01 are summarized in Fig.6.9. The crossing point where all velocities are the same and

therefore the conformal towers are restored is around J2 ≈ 0.31 and slowly moves towards

smaller values with increasing the size of the chain. Therefore these results are consistent with

our previous estimate of the critical point J2 ≈ 0.3 for J3 = 0.01.

j=0
s 0 1 2 3 4 5

(E −E0)N /πv 0 1 4 9 16 25
j=1/2

s 1/2 3/2 5/2 7/2 9/2 11/2
(E −E0)N /πv , 0 2 6 12 20 30

Table 6.3 – Lowest excitation energy with spin s for both j = 0 and j = 1/2 WZW SU(2)1

conformal towers.

6.5 Transition between dimerized phases

A phase transition between the partially and fully dimerized phases occurs for 0.22 ≤ J2 ≤ 0.4

and is of first order. This transition can be seen as a pronounced kink in the energy per site

εmi d calculated in the middle of the chain (see Eq.4.10 for definition). A small hysteretic

behavior appears due to open boundary conditions that favor dimerization (see Fig.6.10) and

decreases with increasing the system size. Apart from that, the finite-size effects are very small,

and the location of the critical point can be extracted accurately from relatively small clusters.
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Figure 6.9 – Velocities across the Kosterlitz-Thouless transition between critical and partially
dimerized phases extracted from the gap between various energy levels and the ground state
as a function of J2 for fixed value of J3 = 0.01 and different system sizes
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Figure 6.10 – Kink in the energy across the first order phase transition between partially and
fully dimerized phases. Small hysteretic behavior is induced by open boundaries. Finite-size
effects are negligibly small.

In order to understand what happens at large J2, we start by looking at the entanglement

spectrum. An example of the entanglement spectrum as a function of J2 is shown in Fig.6.11.

In the dimerized phase, the lowest level in the entanglement spectrum is four-fold degenerate

when the system is cut across the J1 bond that contains a dimer and non-degenerate otherwise.

In the critical phase, the degeneracy of the entanglement spectrum is the same as in the
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Chapter 6. The spin-3/2 chain with next-nearest-neighbor and three-site interactions

fully dimerized one. Perhaps, this is due to finite-size effects. In the partially dimerized

phase the lowest level in the entanglement spectrum is three-fold (respectively two-fold)

degenerate, when the chain is cut across the J1 bond that contains two (respectively one) VBS

singlets. Apart from these three phases, there are two regions with different degeneracy of the

entanglement spectrum. The degeneracy (3,2) of the partially dimerized phase changes to

the degeneracy (2,3). This change occurs approximately at the line at which the edge states

disappears. Interestingly, the degeneracy remains the same until large values of J2 ≈ 1.15,

where it changes to (2,1). The latter is consistent with the VBS representation where every

J2 bond and every other J1 bond contain one VBS singlet. In the following, we will refer to

this state as the ’ladder state’. The results on the entanglement spectrum are summarized in

Fig.6.12.
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Figure 6.11 – Entanglement spectrum as a function of J2 for N = 150, J3 = 0.005 when the
system is cut across odd (a) and even (b) bonds. Short-hand notation are used for the three
phases: C for critical, PD for partially dimerized, FD for fully dimerized. In addition to these
phases, there are two regions with different degeneracy of the entanglement spectrum: 2(3)
and 2(1) when the system is cut across an odd (even) bond.
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Figure 6.12 – Phase diagram of the J1 − J2 − J3 model with S = 3/2 chain obtained from en-
tanglement spectrum. In addition to critical, partially and fully dimerized phases, there are
two regions with different degeneracy of the entanglement spectrum. The degeneracy of the
lowest level of the entanglement spectra is indicated with the pair of integers (m,n), where m
(n) is the degeneracy obtained when system is cut across an odd (even) bond.

In order to understand these two topologically different phases observed with the entangle-

ment spectrum, we have looked at the spin-spin correlation 〈S j ·S j+1〉 as a function of J2 for j

even and odd. The results for J3 = 0.015 and N = 150 are shown in Fig.6.13. The two curves are

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

Figure 6.13 – Spin-spin correlation 〈Sz
j Sz

j+1〉 in the critical and dimerized phases. 〈Sz
j Sz

j+1〉
is significantly different for even and odd bonds for 0.28 < J2 < 0.42, (partially dimerized
phase). For J2 < 0.28, the dimerization vanishes, indicating a critical non-dimerized phase.
For J2 ≈ 0.57 the two curves cross due to open boundary conditions. In the thermodynamic
limit, the system belongs to the dimerized phase for all J2 > 0.28.
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close to each other for J2 < 0.28, and then becomes significantly different. This corresponds to

the partially dimerized phase. Around J2 ≈ 0.42, the two curves cross. Then, the two curves

approach each other, cross and go away. This leads to a dimerized phase. Although the two

curves are very close to each other for 0.45 < J2 < 0.7 and therefore the dimerization in this

region is very small, we think that the crossing between the spin-spin correlation on even

and odd bonds is induced by open boundaries. Thus it should be considered as a finite-size

effect. Moreover, smooth evolution of spin-spin correlation suggests a crossover between the

partially and fully dimerized phases rather than a quantum phase transition.

As sketched in Fig.6.14, with periodic boundary conditions, each dimerized phase has a

two-fold degenerate ground-state, while with open boundary conditions the ground state is

non-degenerate. In the oversimplified picture, the ground state of the open system can be

understood as one of the two degenerate states. In reality, however, the picture is mode com-

plicated due to the extremely strong edge effects. In particular, the topological transition (see

Fig.6.14), at which the spin-1/2 edge states disappear and the dimers change their orientation,

is induced by open boundary conditions.

The two intermediate phases observed with entanglement spectrum can be understood as

regions of the dimerized phase within one topological sector that can be distinguished from

each other with a local topological order parameter. A change of the local topological order

parameter (here the degeneracy of the entanglement spectrum) does not necessary indicate a

quantum phase transition, but rather a crossover between different regions of the dimerized

phase. A similar observation has been made in the context of spin-S ladders [26], where a

change of the topological order parameter - the Berry phase on the rungs - indicates only a

crossover, and not a quantum phase transition.

6.6 Summary

In the present chapter, we have investigated the properties of a spin-3/2 chain with nearest

J1, next-nearest J2 and three-site J3 interactions. We have found a rich phase diagram, that

contains three phases - critical in WZW SU(2)k=1, partially and fully dimerized. The transition

between the critical phase and the fully dimerized one is continuous in the WZW SU(2)k=3

universality class below and including at the end point, and the first order beyond it. The

change from continuous to first order transition along the critical line is due to change of

sign of the coupling constant of the marginal operator, that vanishes at the end point J2 ≈ 0.1

and J3 ≈ 0.05128. In this respect, the result for spin-3/2 is very similar to those obtained in

the context of the spin-1 chain for J1 − J2 − J3 and J1 − J2 − Jb models and therefore can be

expected to be a generic result for the transition between uniform and fully dimerized phase

in spin-S chains with S = 1,3/2.

The critical and partially dimerized phases are separated by a Kosterlitz-Thouless transition,

that is in WZW SU(2)k=1 universality class. At the phase transition, the coupling constant

of the marginal operator changes sign, and the logarithmic corrections disappear along the
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Figure 6.14 – The transition between partially and fully dimerized states is first order for
J2 < 0.4. For larger values of J2 these two phases are connected through a cross overs via
intermediate topologically different state that has ladder geometry. The ground-state of the
system with periodic boundary conditions (PBS) is two-fold degenerate in each sector of the
dimerized phase. System with open boundary conditions (OBC) has non-degenerate ground
state. As a consequence, there is an intermediate topological phase transition induced by edge
effects, between two partially dimerized states in different topological sectors.

Kosterlitz-Thouless transition. By extracting the velocities for different excitation levels, one

can not only confirm the disappearance of the logarithmic corrections and the restoration of

the excitation spectra, but also locate rather accurately the position of the critical lines using

the properties (absence of logarithmic corrections) of the Kosterlitz-Thouless transition.

The transition between the partially dimerized and the fully dimerized phases is always first

order and ends around J2 ≈ 0.4. Beyond this point, the two dimerized phases are smoothly

connected by a crossover via a state that can be represented with valence-bond-singlets as a

ladder.
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In the thermodynamic limit, we expect that the gap and the dimerization decrease (but always

remain finite) with J2 in analogy with the J1 − J2 spin-1/2 chain[104], and possibly increases

again due to the three-site interaction. This is consistent with our preliminary numerical

results but requires further numerical investigation.
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7 Spin-1 chain with three-site interac-
tion

7.1 Introduction

In this chapter we continue our study of the spin-1 chain with three-site interaction. The

J1 − J3 model is defined by the Hamiltonian:

HJ1−J3 = J1
∑

i
Si ·Si+1 + J3

∑
i

[(Si−1 ·Si )(Si ·Si+1)+H.c.] , (7.1)

where the coupling constants J1 and J3 can be positive or negative. The following parametriza-

tion is introduced for convenience: J1 = J cosθ and J3 = J sinθ with θ ∈ [0,2π] and without

loss of generality we set J = 1.

The segment of the phase diagram with positive couplings J1 and J3 has been first studied

in Ref.[71] and discussed at length in Chapter 4. Here we repeat the most important points

previously established for this part of the phase diagram:

• For small values of the parameter θ the system is in the Haldane phase. Upon increasing

θ, the three-site interaction induces spontaneous dimerization [71].

• The transition between the two phases is located at J3/J1 � 0.111 (θ ≈ 0.0352π) [71]. The

critical point is in the WZW SU(2)2 universality class.

• There is an exactly dimerized point at J3/J1 = 1/6 (θ ≈ 0.0526π) [71]. This point coincides

with the first disorder point, where spin-spin correlations become incommensurate

[24].

• The Lifshitz point, beyond which the structure factor has two symmetric peaks at wave

number q �= π/2,π, is located at J3/J1 � 0.1855 (θ ≈ 0.0584π). It coincides with the

second disorder point, at which spin-spin correlations become commensurate with

q =π/2.
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While the physics for θ ∈ [0,π/2] is well understood, the rest of the phase diagram remains

unexplored. In the rest of the chapter we will study the complete phase diagram of the spin-1

chain described by J1−J3 model. In particular, we will show that positive three-site interactions

added to ferromagnetic nearest-neighbor Hamiltonian leads to a rich phase diagram with an

unusual critical quadrupolar phase.

7.2 Phase diagram

Let us first summarize the main results obtained numerically with DMRG simulations. The

phase diagram as a function of θ is shown in Fig.7.1 and consists of five phases: Haldane,

dimerized, next-nearest-neighbor (NNN) Haldane, critical quadrupolar and ferromagnetic

(FM).

Haldane

Dimerized

FM

NNN-Haldane

,

1s
t  or

de
r

Quadrupolar

5

Figure 7.1 – Phase diagram of spin-1 chain with nearest-neighbor and three-site interactions.
The transition between the Haldane and the dimerized phases at θ1 ≈ 0.03519π is in the WZW
SU(2)2 universality class. The transition between the dimerized and NNN-Haldane phases is
continuous in the Ising universality class and located at θ2 ≈ 0.8913π. Between θ3 ≈ 0.915π
and θ4 ≈ 0.947π, the system is in a critical quadrupolar phase. The transition between the
ferromagnetic (FM) and Haldane phases is at θ5 ≈ 1.33π and is first order.

The transition between the Haldane and dimerized phases is continuous, and in WZW SU(2)2

universality class[71]. It is characterized by central charge c = 3/2. Inside the dimerized phase,

there is a transition between the two possible ground states with open boundary conditions:

for θ < 0.55π a strong dimer is formed on the first bond, while for θ ≥ 0.55π a strong dimer is
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formed on the second bond. So, in finite chain with open boundary conditions the orientation

of the dimers changes at this point. As a consequence, the spin-1 edge states appear for

θ ≥ 0.55π. The transition between the dimerized and NNN-Haldane phase is in the Ising

universality class with central charge c = 1/2, in agreement with our previous results on the

spin-1 J1 − J2 − J3 model. The NNN-Haldane phase is separated from the FM phase by an

intermediate critical phase with dominant quadrupolar correlations. The underlying critical

theory is under construction. The transition between the ferromagnetic and Haldane phases

is first order.

7.3 Energy

The ground-state energy per bond calculated in the middle of the chain is shown in Fig.7.2.

The ferromagnetic phase can be well described by the classical state with all spins aligned. The

classical energy per site of this state is given by εF M = J1 +2J3 = cosθ+2sinθ. A pronounced

kink around θ = 1.33π signals a first order phase transition between the ferromagnetic phase

and the Haldane phase as indicated in the phase diagram of Fig.7.1.
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exact FM

Figure 7.2 – Ground-state energy per bond calculated in the middle of the finite-size chain as
a function of θ. In the ferromagnetic phase, the DMRG data coincide exactly with the analytic
prediction εF M = cosθ+2sinθ.

We have also calculated the first derivative of the energy per site with respect to θ. The results

are shown in Fig.7.3. In such a plot, a first order phase transition is clearly seen as a finite jump

in the derivative. The kink in the derivative of the energy around θ = 0.95π suggests a second
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Chapter 7. Spin-1 chain with three-site interaction

order phase transition to the ferromagnetic phase. For the other values of θ, both the energy

and its derivatives remain continuous, implying that, apart from the transition at θ = 1.33π, all

phase transitions that appear in the phase diagram are continuous.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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N=60
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N=150

Figure 7.3 – Derivative of the ground-state energy per bond with respect to θ. The finite jump
of the derivative around θ = 1.33π corresponds to the first order phase transition between the
Haldane and the ferromagnetic phases. A pronounced kink around θ = 0.95π implies a second
order phase transition from the other side of the ferromagnetic phase.

7.4 Variational phase diagram

The first step in the understanding the phase diagram in Fig.7.1 is to construct a variational

phase diagram using the mean-field approach. In this approach, the entanglement between

the selected unit cell and the rest of the system is set to zero. Then the wave-functions of the

whole system |Ψ〉 can be written as a product of the local wave-functions |Ψ〉 = ⊗|ψ〉 j . The

local wave-functions |ψ〉 j depend on the set of the parameters determined by minimizing the

energy 〈Ψ|h|Ψ〉.

Let us first try to describe with the variational approach the four gapped phases of the phase

diagram 7.1 - Haldane, dimerized, NNN-Haldane and ferromagnetic.

i) For θ = 0 (J1 = 1, J3 = 0), the system is known to be in the ordered antiferromagnetic phase

with anti-align neighboring spins. The local wave-function is given by |11̄〉, the energy is equal

to:

E|11̄〉 = −J1 +2J3 (7.2)

ii) For θ =π (J1 =−1, J3 = 0) the system has ferromagnetic order with all spins align. The local
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7.4. Variational phase diagram

wave-function is then given by |11〉 and the corresponding variational energy is:

E|11〉 = J1 +2J3 (7.3)

iii) As pointed above, a large three-site interaction favors dimerization. In the variational

approach, the dimerized phase is described by the wave-function |111̄1̄〉 with four spins in the

unit cell. The energy of this variational state is given by:

E|11〉 = −2J3 (7.4)

iv) The same variational wave-function |111̄1̄〉 describes the NNN-Haldane phase with anti-

alignes spins on next-nearest-neighbor bonds. The variational energy of these two phases are

the same and they cannot be distinguished within the variational approach.

The most general spin-1 state is described by six complex amplitudes:

|Ω̂〉 = a1eiϕ1 |1〉+a2eiϕ2 |0〉+a3eiϕ3 |1̄〉 (7.5)

Two out of these six parameters can be fixed with the normalization constraint and by fixing

the overall phase:

a2
1 +a2

2 +a2
3 = 1 (7.6)

ϕ1 +ϕ2 +ϕ3 = 0; (7.7)

The remaining four parameters give a big flexibility. However, the complexity grows very fast

with the number of spins in the unit cell n, since the energy has to be minimized with respect

to 4n parameter. The usual way to proceed it to restrict further the number of parameters.

Purely quadrupolar states are usually described in the following basis, invariant under the

time-reversal symmetry:

|x〉 = i
|1〉− |1̄〉�

2
(7.8)

|y〉 = |1〉+ |1̄〉�
2

(7.9)

|z〉 =−i |0〉 (7.10)

The action of the spin operators on these states are given by Sα|β〉 = iεαβγ|γ〉, where α,β,γ

is one of the coordinates x, y, z and εαβγ is the Levi-Civita symbol. Therefore, any pure

quadrupolar states (e.g. ferroquadrupolar |zz〉, or antiferroquadrupolar |x y z〉) gives zero
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energy.

As briefly mentioned in Chapter 2 the J3 term can be rewritten in terms of quadrupole operator

Qαβ = SαSβ+SβSα− 2
3 S(S +1)δαβ (see Eq.C.2 for the derivation):

∑
i

J3 [(Si−1 ·Si )(Si ·Si+1)+H.c.] =
∑

i

∑
α,β=x,y,z

J3Sα
i−1Qαβ

i Sβ

i+1 +
4

3

∑
i

J3Si−1 ·Si+1 (7.11)

This first term in the right hand side suggests that, instead of a purely quadrupolar state, one

has to look at a state with both spin and quadrupole degrees of freedom. Moreover, as we

will show later, we are interested in a helical state with wave-vector q �= 0,π/2,π. All these

conditions are fulfilled with the following basis, that contains only two free parameters:

|W 〉 = 1

2
e−iϕ

(
cos

ϑ

2
− sin

ϑ

2

)
|1〉+ −i�

2

(
cos

ϑ

2
+ sin

ϑ

2

)
|0〉+ −1

2
eiϕ
(
cos

ϑ

2
− sin

ϑ

2

)
|1̄〉 (7.12)

In this basis, the spin degrees of freedom is confined in the x − y plane and the quadrupole

director is perpendicular to it. The parameter ϕi describes the angle of the spin at site i with

respect to y axis, while cosϑi gives the length of the spin at site i . The energy per site (i ) of

this state is derived in the Appendix C.1 and is given by:

E = J1

2
(cosϑi−1 cosϑi cos(ϕi−1 −ϕi )+cosϑi cosϑi+1 cos(ϕi −ϕi+1))

+1

2
J3 cosϑi−1 cosϑi+1

[
cos(ϕi+1 −ϕi−1)(3+ sinϑi )+cos(ϕi−1 +ϕi+1 −2ϕi )(1− sinϑi )

]
(7.13)

If we restrict the spin length at each site to be the same ϑi =ϑ= const and allow the rotation

of the spin between any pair of neighboring sites by the same angle ϕi+1 −ϕi =ϕ, the energy

per site simplifies to:

E = J1 cos2ϑcosϕ+ 1

2
J3 cos2ϑ

[
cos2ϕ(3+ sinϑ)+ (1− sinϑ)

]
(7.14)

This energy can then be minimized numerically. The results obtained for the variational

energies of different states are summarized in Fig.7.4(a). The corresponding values of ϑ and

ϕ that minimize the energy of the state |W 〉 are shown in Fig.7.4(b) and (c). Since ϑ takes

relatively small values, spin component dominates over the quadrupolar one. The phase with

π≤ϕ<π/2 is identified with anti-ferroquadrupolar phase, while the phase with π/2 <ϕ≤ 0
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7.5. Ising transition

corresponds to the ferroquadrupolar one.

We have checked that the energies remain unchanged if ϑ is allowed to alternate between

even and odd sites ϑ2i =ϑ1 and ϑ2i+1 =ϑ2 while the angle difference ϕ remains uniform. The

energy is also the same if ϕ alternates on even and odd bonds while θ remains uniform.
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Figure 7.4 – (a) Variational energy as a function of θ for different variational states: antifer-
romagnetic |11̄〉, ferromagnetic |11〉, dimerized |111̄1̄〉 and helical quadrupolar |W 〉, defined
by Eq.7.12. Parameters (b) ϑ and (c) ϕ for which the energy of the |W 〉 state is minimized as
a function of θ. The phase with π≤ϕ<π/2 is identified as an anti-ferroquadrupolar phase,
while the phase with π/2 <ϕ≤ 0 corresponds to a ferroquadrupolar one.

The variational phase diagram obtained with the energies of Fig.7.4 is compared to the phase

diagram obtained with the DMRG one in Fig.7.5. In the mean-field phase diagram, a helical

quadrupolar state appears between the Haldane and the dimerized phases, however the

quantum phase transition to the dimerized phase at smaller θ and quadrupolar phase does

not appear for J1 > 0. On the other side of the phase diagram, as expected the variational phase

diagram does not distinguish the dimerized and NNN-Haldane phase. The phase boundaries

of the helical quadrupolar phase is in good agreement with our DMRG data.

7.5 Ising transition

7.5.1 Dimerization

In order to distinguish the dimerized phase from non-dimerized one, we introduce the dimer-

ization parameter D( j , N ) = |〈�S j ·�S j+1〉−〈�S j−1 ·�S j 〉|. It remains finite in the thermodynamic

limit in the dimerized phase and vanishes in the non-dimerized one. Following the logic of

the previous chapters we plot the values of the middle chain dimerization as a function of

the system size in a log-log scale. The phase transition is then associated with the separatrix.
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Figure 7.5 – Comparison between the variational phase diagram (inner circle) and the phase
diagram obtained with DMRG.

The slope gives the critical exponent. In Fig.7.6(a) we present our numerical results for the

dimerization around the transition located at θ ≈ 0.8913π. The critical exponent extracted

from the scaling of the middle chain dimerization is d ≈ 0.141. It agrees within 15% with the

corresponding Ising critical exponent 1/8.

This critical exponent can also be extracted from the scaling of the dimerization along a finite-

size chain. According to conformal field theory (see Eq.4.20), at the critical point it scales as

D( j , N ) ∝ 1/[N sin(π j /N )]d . The fit of our numerical data for N = 300 and N = 400 is shown

in Fig.7.6(b). Since edge effects are very strong, we exclude from the fit at least 25 points at

each edge. The obtained critical exponent d ≈ 0.140 agrees with the one computed above.

7.5.2 NNN-Haldane phase

In order to understand the nature of the non-dimerized phase, we computed the entanglement

spectrum as a function of θ. The obtained entanglement spectra for a system cut across odd

and even bonds are shown in Fig.7.7 (a) and (b) respectively. For θ < 0.55π open boundaries

favor dimerization and therefore every odd bonds in the dimerized phase is occupied with

the spin-1 dimer. Thus the lowest level in the entanglement spectra is three fold degenerate

when the system is cut across an odd bond and non-degenerate otherwise (see for example

Fig.4.12(a)). For θ > 0.55π, edges favor a bond without dimer and the two branches (even and
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Figure 7.6 – Scaling of the dimerization at the critical Ising point. (a) Log-log plot of the
dimerization. The linear curve corresponds to the Ising critical point, and the slope to the
critical exponent. This leads to θc = 0.8913π, and to a slope 0.141, that agrees within 15% with
the prediction 1/8 for Ising critical point. (b) Site dependence of D( j , N ) at the critical point
fitted to 1/[N sin(π j /N )]d . This leads to an exponent d = 0.140, that also agrees with the Ising
prediction 1/8 within 15%.

odd) are exchanged, as shown in Fig.7.7.

In the non-dimerized phase the lowest level in the entanglement spectrum is always three-fold

degenerate. Therefore the ground state is translational invariant by one site. We interpret

this non-dimerized phase as two next-nearest-neighbor Haldane chains ferromagnetically

coupled with J1 interaction. In the case of antiferromagnetic nearest-neighbor coupling, the

entanglement spectrum in the NNN-Haldane phase is non-degenerate, since the two spin-1/2

created at each edge when the system is cut couple with each other and form a singlet. By

contrast, the ferromagnetic coupling between two spin-1/2 at the edge induces a triplet, and

the degeneracy of the entanglement spectrum is three.

In order to confirm our interpretation of the non-dimerized phase, we interpolate between

the considered J1 − J3 model and a model with ferromagnetic nearest-neighbor J1 < 0 and

antiferromagnetic next-nearest-neighbor J2 > 0 interactions, for which the appearance of the

NNN-Haldane phase is natural. We consider the following Hamiltonian:

HJ1 J3→J1 J2 = cosθ
∑

i
[Si ·Si+1−αSi ·Si+2]+(1−α)sinθ

∑
i

[(Si−1 ·Si )(Si ·Si+1)+H.c.] , (7.15)

where α interpolates between J1 − J3 and J1 − J2 model. When α= 0, the Hamiltonian 7.15 is

reduced to the J1 − J3 model with our usual parametrization J1 = cosθ and J3 = sinθ. Here

we take θ = 0.9π, inside the NNN-Haldane phase. When α= 1, the last term vanishes and the

Hamiltonian is reduced to the J1 − J2 model with J1 = −J2 = cosθ. As it will be shown later
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Figure 7.7 – Entanglement spectrum for an open chain with N = 150 sites as a function of θ
when cut across (a) odd and (b) even bond. Only the lower part of the spectrum is shown. The
dots show the multiplicity of the Schmidt values. Insets: VBS sketches of various boundaries
created by the cut of the chain inside the dimerized and NNN-Haldane phases. The two
spin-1/2 created at each edge in NNN-Haldane phase couple with each other and form a
triplet, which is represented as an orange ellipse. This leads to the three-fold degeneracy of the
lowest state of the entanglement spectrum. The entanglement spectrum is non-degenerate
and rather chaotic when the system is in the critical phase.

this point also belongs to the NNN-Haldane phase (see Fig.7.15). As shown in Fig.7.8, the gap,

calculated within the symmetry sector of the ground state, never closes while interpolating

between the J1 − J3 and J1 − J2 models with the parameters specified above. Therefore, the

non-dimerized phase that appears at θ = 0.8913π of J1 − J3 model can indeed be identified as

a NNN-Haldane phase.

Then, with respect to our previous investigation on the phase transition between dimerized

and NNN-Haldane phase discussed in Chapter 4, it is natural to expect the critical point to be

in Ising universality class. The critical exponents d ≈ 0.14 extracted from the scaling of the

dimerization parameters in Fig.7.6 agrees within 13% with the Ising prediction d = 1/8. The

relatively big discrepancy between numerically computed critical exponent and field theory

predictions presumably comes from strong edge effects.
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7.5. Ising transition

Figure 7.8 – Energy gap while interpolating between the J1 − J3 model (α = 0) with J3/J1 =
tan(0.9π) to J1 − J2 (α= 1) model with J1 =−J2. The latter corresponds to the NNN-Haldane
phase. Since the gap remains open for all the values of the interpolation parameter α, the
non-dimerized phase in the J1 − J3 model is identified as a NNN-Haldane phase.

7.5.3 Central charge

The confirmation of the Ising universality class of the critical point between the dimerized

and the NNN-Haldane phases can be obtained by computing the central charge. The fit of

the reduced entanglement entropy (the entanglement entropy after removing the Friedel

oscillations) to the Calabrese-Cardy formula 4.25 is provided in Fig.7.9. Obtained values of the

central charge agrees within 7.5% with the field theory prediction c = 1/2 for Ising.

7.5.4 Energy spectrum

As a further confirmation of the Ising universality class of the critical point between the

dimerized and the NNN-Haldane phase, we computed the finite-size scaling of the ground-

state energy and excitation energies for open chains with even and odd numbers of sites. Since

both open edges favor bonds without dimers, we associate the spin-1 chain with even (odd)

number of sites with Ising ↑,↑ (↑,↓) boundary condition, in complete analogy with the case of

antiferromagnetic nearest-neighbor coupling (see Sections 4.4 and 4.5).

The ground-state energy of the system with conformally invariant boundary conditions at the

Ising critical point scales according to Eq.3.13, that we recall here:

E = ε0N +ε1 + πv

N

[
− 1

48
+x

]
, (7.16)

where ε0 and ε1 are non-universal coupling constants and x is the corresponding conformal

dimension. As predicted by Cardy[21] for ↑,↑ the energy spectrum is given by the identity

conformal tower I and for ↑,↓ boundary conditions - by ε conformal tower. The corresponding
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Figure 7.9 – Scaling of the entanglement entropy of open chains after removing the Friedel
oscillations with conformal distance d(n) for θ = 0.8913π and different system sizes. The
extracted values of the central charge agree within 8% with the field-theory prediction c = 1/2
for the Ising critical theory.

scaling dimensions are xI = 0 and xε = 1/2. The finite-size scaling of the numerically obtained

values of the ground-state energy for even and odd number of sites are shown in Fig.7.10(a)

and (b). The extracted values of the velocities agree with each other within 15%.

We have also calculated the excitation energy of the lowest excited state in the sector Sz
tot =

0 (see Fig,7.10(c)). The bulk gap scales linearly with 1/N , in agreement with conformally

invariant critical theory. Moreover, according to conformal field theory (see sec3.2), the lowest

excitation energy that belongs to the ε conformal tower scales with the system size as πv/N ,

while for the I conformal tower, the lowest excitation energy scales as 2πv/N .

The low-lying excitations shown in green in Fig.7.10(c) have been computed in the sector

of Sz
tot = 0 and are localized edge excitations. Due to spin-1 edge states induced by the

ferromagnetic J1 coupling, there are three low-lying states are expected - singlet, triplet and

quintuplet. Depending on the sizes of the system, one of them becomes the ground state, and

the other two are separated by an exponentially small gap. The singlet-triplet gap can be thus

obtained as the difference between the ground-state energy and the third state in the sector

of Sz
tot = 0. However, one can neglect the exponentially small gap for long enough chains.

Then effectively the singlet-triplet gap can be obtained as the lowest state in the sector of

Sz
tot = 3, since this state is, loosely speaking, a bulk triplet plus spin-2 in-gap state of negligible

energy. This is much simpler to detect from the numerical point of view. The gap between the

lowest states in the sectors Sz
tot = 3 and Sz

tot = 0 is in good agreement with the localized edge

excitations, obtained by calculating several energy levels in the sector of Sz
tot = 0. Therefore we

interpret these excitations as triplet excitations. Since these localized edge excitations occur

at both edges, the corresponding energy levels are two-fold degenerate. Note also that this
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Figure 7.10 – Left panels: Linear scaling of the ground state energy per site in open chains with
1/N 2 after subtracting ε0 and ε1 terms for (a) even and (b) odd number of sites. The extracted
values of the velocities agree with each other within 15%. Right panel: Energy gaps in singlet
(blue) and triplet (green) sectors for open boundary conditions as a function of 1/N for even
(circles) and odd (diamonds) number of sites

singlet-triplet gap is small, and the first singlet excitation appears below the triplet one at

relatively large system size (N > 120 for odd chains and N > 250 for even chains).

7.5.5 Domain wall between the NNN-Haldane phase and the dimerized phase

In the context of a spin chain with antiferromagnetic nearest and next-nearest-neighbor

couplings and positive three-site interaction (see Chapter 4), we argue that the Ising transition

at which the gap closes in the singlet sector while the singlet-triplet gap remains open occurs

because the domain walls between the corresponding phases are non-magnetic.

In the present case, due to the ferromagnetic nearest-neighbor coupling, a pair of spins-1/2 at

the edge of a domain in the NNN-Haldane phase does not form a singlet, but a triplet, as can

be deduced from the entanglement spectra of Fig.7.7. However, a positive J1 also favors a state

without a dimer at the edge of the dimerized phase.
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Figure 7.11 – Sketches of the non-magnetic domain wall between the NNN-Haldane and the
dimerized phases.

The fact that the transition is in the Ising universality class leads us to speculate that the

spins-1 that appear at the boundaries of the Haldane and the dimerized domains couple to

each other and form a singlet, leading to a non-magnetic domain wall between these two

phases, as sketched in Fig.7.11.

7.6 Critical quadrupolar phase

7.6.1 Spin and quadrupolar correlations

The most intriguing part of the phase diagram of this model is a critical phase that appears

between the NNN-Haldane and ferromagnetic phases (see phase diagram of Fig. 7.1). The first

indication of the presence of a critical phase comes from the entanglement spectrum. The

chaotic and non-degenerate structure of the entanglement spectrum can be due to either the

presence of a critical phase, or to non-convergent DMRG results. The latter, however, usually

signals that the system approaches a critical regime.

To check the nature of this critical phase, we have looked at the spin-spin and quadrupole-

quadrupole correlations defined as follows:

CS(i , j ) = 〈Sz
i Sz

j 〉−〈Sz
i 〉〈Sz

j 〉; (7.17)

CQ,0(i , j ) = 4

3

〈[
(Sz

i )2 − 1

4
(S+

i Si
i +S−

i S+
i )

]
·
[

(Sz
j )2 − 1

4
(S+

j S−
j +S−

j S+
j )

]〉

− 4

3

〈
(Sz

i )2 − 1

4
(S+

i Si
i +S−

i S+
i )

〉〈
(Sz

j )2 − 1

4
(S+

j S−
j +S−

j S+
j )

〉
(7.18)

CQ,1(i , j ) = 1

2

〈
(Sz

i S+
i +S+

i Sz
i )(Sz

j S−
j +S−

j Sz
j )+h.c.

〉
(7.19)

CQ,2(i , j ) = 1

2

〈
(S+

i )2(S−
j )2 +h.c.

〉
(7.20)

Longitudinal correlations CS and CQ,0 only contain terms that conserve Sz
tot, while transverse

CQ,1 and pairing CQ,2 components contain the entries of the quadrupolar operator with
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ΔSz =±1 and ΔSz =±2 respectively.

An example of the scaling of these correlation functions with the distance | j − i | in different

phases is shown in Fig.7.12. In the dimerized phase (Fig.7.12(a)) both spin and quadrupo-

lar correlations are commensurate and decay exponentially fast with the distance between

the spins. In the NNN-Haldane phase (Fig.7.12(b) and (c)) the correlations become incom-

mensurate, but they still decay exponentially fast with the distance. In the dimerized and

NNN-Haldane phases all three components of the quadrupolar correlations coincide showing

that the system is SU(2) invariant. The small discrepancy between CQ,0, CQ,1 and CQ,2 that

occurs for θ = 0.9π is due to edge effects.

In Fig.7.12(f) and (g), the quadrupolar correlations dominate over the spin-spin correlations

and both of them are incommensurate. This phase is reminiscent of the helical quadrupolar

phase found in the classical phase diagram between the dimerized phase and the ferromag-

netic phase (see Fig.7.5). The very slow decay of the quadrupolar correlations implies that the

phase between the NNN-Haldane phase and the ferromagnetic one is critical. Moreover, the

three components of the quadrupolar correlations split, signaling a broken SU(2) symmetry.

7.6.2 Spin gap in the critical quadrupolar phase

As pointed out above, the open boundaries and ferromagnetic nearest-neighbor coupling

imply that starting from θ = 0.55π spin-1 edge states are present in the dimerized and the

NNN-Haldane phases. For system with even number of sites, the ground-state is in the singlet

sector, and the triplet and quintuplet in-gap states are separated from the ground-state by

exponentially small gap. As expected, the gap closes in all sectors of total magnetization at

the quantum phase transition between the critical quadrupolar and ferromagnetic phases.

However, it turns out that in the critical phase the total magnetization of the ground-state

gradually increases, as shown in Fig.7.13. The fact that only few states come down and the total

magnetization remains relatively small in comparison to the fully polarized ferromagnetic

state, suggests that the increase of the ground-state magnetization is an edge effect and not a

bulk property.

7.6.3 One magnon instability

In order to understand what happens in the vicinity of the ferromagnetic phase, we look at

the one-magnon instability from the ferromagnetic state. We start with the ferromagnetic

wave-function polarized in the z-direction |0〉 = |S,S, ...,S,S〉, such that for any site l S+
l |0〉 = 0,

and S = 1. The energy of this state can be obtained by applying the Hamiltonian 7.1 to this

state:

EF M = (J1 +2J3)N = (cosθ+2sinθ)N (7.21)
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Chapter 7. Spin-1 chain with three-site interaction
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Figure 7.12 – Spin-spin and quadrupole-quadrupole correlations defined by Eq. 7.17, 7.18,
7.19 and 7.20 calculated in (a) the dimerized, (b) and (c) the NNN-Haldane, and (d), (e) and
(f) the critical quadrupolar phases. The correlations are commensurate in the dimerized
phase and incommensurate in the NNN-Haldane and critical phases. In the critical phase,
quadrupolar correlations decay slowly and dominate over spin correlations. The splitting
of the three branches of quadrupolar correlations in (d), (e) and (f) implies that the SU(2)
symmetry is broken.

We consider a single magnon state from the ferromagnetic state |0〉 defined by:

|ϕ(q)〉 = 1�
2N S

N∑
l=1

ei ql S−
l |0〉 (7.22)

where q is the momentum, and 1/
�

2N S is a normalization factor. The energy of this state

(see derivation in the AppendixC.2) as a function of θ and q is given by:

E(q) = f1 +2 f2 cos q +2 f3 cos2q, (7.23)
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7.6. Critical quadrupolar phase
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Figure 7.13 – The gap between the ground-state energy calculated in the sector of Sz
tot = 0 and

the energy of the lowest states in different sectors of Sz
tot.

with

f1 = (N −2)cosθ+2(N +1)sinθ

f2 = cosθ+2sinθ

f3 = sinθ

(7.24)

At θ = π (J1 = −1 and J3 = 0) the system is in the ferromagnetic state, the energy given by

Eq.7.23 has a minimum at q = 0 and is equal to the ferromagnetic energy. Upon decreasing

the θ, the curvature of the energy as a function of q decreases at q = 0. The phase transition

occurs, when the curvature changes sign:

C = dE(q)

d q

∣∣∣∣
q=0

=− 2 f2 cos q −8 f3 cos q
∣∣

q=0 = 0 (7.25)

The solution is

f2

f3
= J1 +2J3

J3
=−4. (7.26)

This leads to J3/J1 =−1/6, i.e. θ ≈ 0.9474π. This value is in the perfect agreement with our

DMRG data. The wave-vector for which the energy is minimized is given by:

−2 f2 sin q −4 f3 sin2q = 0. (7.27)
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Chapter 7. Spin-1 chain with three-site interaction

The non-trivial solution of this equation is cos q =− f2/4 f3, leading to:

q = arccos

(
−1

2
− 1

4
cotθ

)
. (7.28)

The wave-vector q as a function of θ is shown in the Fig.7.14(d). It is in good agreement with

the wave-vector extracted numerically from our DMRG data.

7.7 Short-range order

In addition to five quantum phase transitions, the phase diagram contains several disorder and

Lifshitz lines. The disorder and Lifshitz points are the points where the correlation function in

real space becomes incommensurate with a wave-vector q �= 0,π/2,π, or where the structure

factor has two peaks at q �= 0,π/2,π, respectively. In order to find the location of the disorder

points, we have extracted the wave-number q by calculating the spin-spin correlations defined

by Eq. 7.17 and we have fitted it with the dimerized Ornstein-Zernicke form:

CDOZ ∝ (1+δ(−1)x )cos(q · x)
e−x/ξ

�
x

, (7.29)

where the wave number q , the correlation length ξ, and the dimerization parameter δ are

fitting parameters. The location of the Lifshitz point is determined by the position of the peak

in the structure factor SF (q), defined by the Fourier transform of real space correlations:

SF (q) = 1

N

∑
i , j

ei q(i− j )〈0|Si ·S j |0〉. (7.30)

As discussed in Chapter 4, the first disorder point is located at θαd ,1 = arctan(1/6) ≈ 0.0526π,

where the ground state is given by the exactly dimerized state. At this point the wave-number

extracted from the fit of the spin-spin correlations with Eq.7.29 changes from q =π toπ/2 < q <
π. The second disorder point coincides with the first Lifshitz point at θαd ,2 = θαL ,1 ≈ 0.0584π.

At this point the wave-number of the real space spin-spin correlation becomes q =π/2, while

the structure factor SF (q) starts to have two symmetric peaks at q �=π. For larger values of θ,

the peaks in the structure factor asymptotically approach the value q =π/2.

On the other side of the phase diagram, both the disorder and Lifshitz points coincides with the

quantum critical point between the dimerized and NNN-Haldane phases at θ2 = 0.8913π. In

the NNN-Haldane and critical quadrupolar phases spin-spin correlations are incommensurate

in both real and momentum space. Fig.7.14(a) provides an example of fit of the spin-spin

correlation to the dimerized Ornstein-Zernicke form defined by Eq.7.29. The extracted values

of the correlation length ξ and short-range dimerization parameter δ as a function of θ for

N = 150 are shown in Fig.7.14(b) and (c). The wave-numbers extracted from real-space

correlation and from the position of the peak of the structure factor are in a good agreement

with each other and with the wave-numbers obtained from the analysis base onm the one-
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7.8. Spin-1 chain with ferromagnetic nearest-neighbor and antiferromagnetic
next-nearest-neighbor interactions
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Figure 7.14 – Incommensurate correlations in the NNN-Haldane and critical quadrupolar
phase extracted from an open chain with N +150. (a) Examples of fit of the spin-spin correla-
tions to the dimerized Ornstein-Zernicke form defined by Eq.7.29. (b) Correlation length and
(c) dimerization extracted as shown in (a) as a function of θ. (d) Wave-number, extracted from
a fit of the real-space correlation with the Ornstein-Zernicke form (blue stars), and from the
location of the peak of the structure factor (magenta circles). The DMRG data agree well with
the wave-number obtained analytically for the one-magnon instability (black line).

7.8 Spin-1 chain with ferromagnetic nearest-neighbor and antifer-

romagnetic next-nearest-neighbor interactions

Interestingly, the critical phase with dominant quadrupolar correlations also appears as

an intermediate phase between the NNN-Haldane and ferromagnetic phases in the spin-1

chain with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor

interactions. The model is defined by the following Hamiltonian:

HJ1−J2 = J1
∑

i
Si ·Si+1 + J2

∑
i

Si ·Si+2 (7.31)
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Chapter 7. Spin-1 chain with three-site interaction

where the coupling constants J1 and J2 are parametrized by J1 = cosθ and J2 = sinθ with

θ ∈ [0,π], that restricts the next-nearest neighbor coupling to be antiferromagnetic. The

phase diagram is shown in Fig.7.15. The transition between the Haldane and NNN-Haldane

phase is topological and is of the first order [56, 58]. The critical phase occurs in the range

0.87π< θ < 0.922π and separates the NNN-Haldane phase form the ferromagnetic phase. The

quadrupolar correlations dominate over spin-spin correlation in a similar was as in the model

with three-site interaction discussed above.

HaldaneFM
Quadr.

NNN-Haldane

1s
t  ord

er

Figure 7.15 – Phase diagram of the spin-1 chain with nearest and next-nearest-neighbor
interactions. The transition between the Haldane and the NNN-Haldane phases is first order
and located at θ1 ≈ 0.205π. Between θ3 ≈ 0.87π and θ4 ≈ 0.922π, the system is in a critical
quadrupolar phase.

The real-space correlations becomes incommensurate at the disorder point located at θd ≈
0.0881π structure factor has two peaks at q �= 0, pi /2, pi starting from the Lifshitz point θL ≈
0.1135π[56]. This remains true until the phase transition to the ferromagnetic phase.

The energy of a single magnon state from the ferromagnetic state |0〉 defined by:

|ϕ(q)〉 = 1�
2N S

N∑
l=1

ei ql S−
l |0〉, (7.32)

takes the following form:

E(q) = (J1 + J2)(N −2)+2J1 cos q +2J2 cos2q. (7.33)

The curvature of the energy as a function of the wave-number q is the given by:

c =−2J1 cos q −8J2 cos2q. (7.34)

As before, the transition is associated with the point where the sign of the curvature computed

at q = 0 changes. This leads to J2
J1
=−1

4 , i.e. θ = 0.9220π, in good agreement with our DMRG

data.
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7.9. Conclusion
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Figure 7.16 – Spin-spin and quadrupole-quadrupole correlations defined by Eq. 7.17, 7.18,
7.19 and 7.20 calculate (a) NNN-Haldane, and (c)-(f) the critical quadrupolar phase. In the
critical phase, quadrupolar correlations decay slowly and dominate over spin correlations.
The splitting of the three branches of quadrupolar correlations in (c)-(f) implies that the SU(2)
symmetry is broken.

7.9 Conclusion

To summarize, we have shown that nearest-neighbor Heisenberg interactions combined with

three-site interactions lead to a rich phase diagram that consists of Haldane, dimerized, NNN-

Haldane, critical quadrupolar and ferromagnetic phases. While the main phases - Haldane,

dimerized and ferromagnetic ones - are the same as in the phase diagram of the spin-1 bilinear-

biquadratic chain, we want to stress the main differences between these two models: i) The

critical trimerized phase that appears between the Haldane and the ferromagnetic phases

[34] in the bilinear-biquadratic chain is absent in the chain with three-site interaction, for

which these two phases are separated by a first order phase transition. ii) According to the

most recent numerical investigation of the bilinear-biquadratic chain, the transition occurs

directly from the dimerized to the ferromagnetic state [63], although the field theory predicts

some intermediate gapped quadrupolar phase[27]. By contrast, in the spin-1 chain with

three-site interactions we have observed two intermediate phases - a NNN-Haldane phase

and a critical quadrupolar phase - between the dimerized phase and the ferromagnetic one.

The transition between the Haldane and dimerized phases is continuous and is in the WZW

SU(2)2 universality class [71].

129



Chapter 7. Spin-1 chain with three-site interaction

The transition between the dimerized and NNN-Haldane phase is in the Ising universality

class, in agreement with our previous results on the spin-1 chain described by the J1 − J2 − J3

model, where the critical line between the NNN-Haldane phase and the dimerized phase has

been shown to be Ising transition. We argue that two spin-1/2 that appear at the edges of the

domain in the NNN-Haldane phase couple to a spin-1 at the edge of the dimerized domain

and form a singlet. So the domain wall between these phases is non-magnetic, consistent

with an Ising transition that occurs completely in the singlet sector, with a singlet-triplet gap

that remains open. This also agrees with our previous arguments on the nature of the domain

walls at Ising and WZW critical lines.

Perhaps the most interesting part of the phase diagram is the critical phase between NNN-

Haldane and ferromagnetic phases. Surprisingly, while the spin-spin correlations remains

short-ranged, the quadrupolar correlations becomes critical. This phase is incommensurate.

This is consistent with the variational calculation, that suggests a helical state with mixed

spin and quadrupolar components. The same phase has been observed in a spin-1 chain

with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor coupling.

So the presence of a critical quadrupolar phase between the NNN-Haldane phase and the

ferromagnetic phase seems to be generic. It would be interesting to investigate this region of

the phase diagram with field theory methods.
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8 Summary and outlook

In this thesis we have investigated the emergence of spontaneous dimerization in spin-S

chains under frustration induced by the competition between nearest-neighbor Heisenberg

interaction an the interactions that show up in the higher order states for Hubbard model:

next-nearest-neighbor, biquadratic, and three-site interactions. We specially focus on the

nature of dimerization transitions in various spin models.

For pedagogical reasons we have provided a brief review of Density Matrix Renormalization

Group (DMRG), formulated in terms of Matrix Product State. We realized that the effective

Hamiltonian written in the truncated basis of the reduced density matrix of the ground-state

also encodes information about excited states when the system is critical. The fact that

the ground state encodes essentially all the information of the underlying conformal field

theory, in particular the conformal towers of states, has been pointed already in the context

of entanglement spectrum by Läuchli [62]. This allowed us to extend the standard DMRG

algorithm and to compute the energy spectrum at low computational cost. Moreover, it turns

out that by looking at the excitation energy calculated in such a way as a function of iterations

one can distinguish bulk and edge excitations and reach conclusions about the convergence

of different states.

The described method has been benchmarked on the critical systems described by two mini-

mal models - the transverse field Ising model and the three-state Potts model. For both models

the conformal towers extracted for various boundary conditions are in a good agreement with

the predictions of boundary conformal filed theory. Interestingly, we have found that in the

three-state Potts model finite-size effects are significant for some conformal towers.

Combining extensive numerical simulations with conformal field theory analysis, we have the

investigated the phase diagram of the Heisenberg spin-1 chain with additional next-nearest-

neighbor and three-site interactions. It consist of three phases Haldane, NNN-Haldane and

dimerized. The transition between the two non-dimerized phases - Haldane and NNN-

Haldane - is topological and is first order in agreement with previous study of the model with

nearest and next-nearest neighbor interactions [56, 57]. We have shown that the transitions
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Chapter 8. Summary and outlook

to spontaneously dimerized phase can be continuous in WZW SU(2)2 or Ising universality

classes, or first order. For small values of next-nearest-neighbor interactions, the transition

between the Haldane and the dimerized phases is in the WZW SU(2)2 universality class, in

agreement with previously obtained results for spin-1 chain with nearest-neighbor and three-

site interactions[71]. However, the WZW SU(2)2 critical line turns into a first order line at the tri-

critical point that also belongs to the WZW SU(2)2 universality class. This is possible due to the

presence of a marginal operator in the WZW SU(2)2 model. At the tri-critical point the coupling

constant of this operator changes sign. According to a conformal embedding, close to the

WZW SU(2)2 tri-critical point, the phase transition (whether continuous or first order) occurs

simultaneously in the Ising and boson sectors, while far from this point, the two transitions

can split. This leads to an Ising critical line between the NNN-Haldane and dimerized phases.

The alternative between WZW SU(2)2 and Ising transitions relies on the topological properties

of the phases and on the nature of the domain walls between them. Domains of topologically

non-trivial Haldane phase have spin-1/2 edge states, while domains of the topologically trivial

NNN-Haldane and dimerized phases do not. Therefore, the domain wall between the Haldane

and the dimerized phases carries a spin-1/2 and leads to a magnetic WZW SU(2)2 critical line,

while the domain wall between the dimerized and NNN-Haldane phases does not carry any

spin and leads to a non-magnetic Ising transition. We have confirmed the presence of free

spin-1/2 at the domain wall between the Haldane and the dimerized phases by looking at

the emergent magnetic solitons at the first order phase transition between the corresponding

phases. In the future, this idea might be extended to transitions between valence-bond solids

and dimerized phases, possibly in higher dimensions. Finally, we show that short-range

correlations change character in the Haldane and dimerized phases through disorder and

Lifshitz lines, as well as through the development of short-range dimer correlations in the

Haldane phase, leading to a remarkably rich phase diagram.

The phase diagram of the related spin-1 model with nearest, next-nearest-neighbor and

biquadratic coupling had already been studied in Ref.[81]. Careful DMRG calculations coupled

to conformal field theory arguments have revealed significant differences with the original

phase diagram of Ref.[81] regarding the nature of the phase transitions: i) The phase transition

between the NNN-Haldane phase and the dimerized phase turns out to be continuous, and

in the Ising universality class; ii) The tri-critical point at which the continuous WZW SU(2)2

transition turns to first order occurs below the triple point; iii) This tri-critical point is in the

same WZW SU(2)2 universality class as the critical line that ends at this point. To summarize,

on a qualitative level the phase diagram for this model is similar to the one obtained for

the spin-1 chain with three-site interaction. Since the end point of the WZW SU(2)2 critical

line and the triple point do not coincide but are separated by the first-order transition line

between the Haldane and the dimerized phases, as in the model with three-site interaction,

we anticipate that the conclusions of Ref.[81] regarding the end points of the disorder lines will

also be modified, and that they might end at a first-order transition line and not at the triple

point or at the WZW SU(2)2 critical line. It would be interesting to continue the investigation

of the model with biquadratic interaction in this direction and to compare the results with
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those obtained for the model with three-site interaction.

By studying the full phase diagram of the Heisenberg spin-1 chain with an additional three-

site interaction, we have obtained a numerical evidence of two intermediate phases that

separates the dimerized and the ferromagnetic phases, in contrast to the previous results on

a bilinear-biquadratic spin-1 chain, where the transition occurs directly from the dimerized

phase into the ferromagnetic one [63]. We have justified that one of these phases is NNN-

Haldane phase with ferromagnetic coupling between two Haldane chains. The transition

between the dimerized and NNN-Haldane phase is in the Ising universality class. We provide

numerical evidence of a gap closing in the singlet sector, while the singlet-triplet gap remains

open. The most interesting and numerically challenging part of the phase diagram is the

presence of a critical phase, that separates NNN-Haldane phase from the ferromagnetic

one. This phase is characterized by critical quadrupolar correlations, while the spin-spin

correlations remain gapped. These correlations all are incommensurate, in agreement with

the helical quadrupolar phase predicted by the variational approach. The location of the phase

transition between the critical quadrupolar phase and the ferromagnetic phase, obtained by

calculating an energy of the one magnon instability is in good agreement with the DMRG data.

A similar critical phase with dominant quadrupolar correlations has been found between the

NNN-Haldane phase and the ferromagnetic phase in the model with ferromagnetic nearest-

neighbor interaction and antiferromagnetic next-nearest-neighbor exchange. So the presence

of a critical quadrupolar phase between the NNN-Haldane phase and the ferromagnetic phase

seems to be generic. It would be interesting to investigate this region of the phase diagram

with field theory methods.

By studying the properties of the spin-3/2 chain with nearest, next-nearest neighbor and three-

site interactions, we had generalized the results obtained for spin-1. In particular, we have

shown that the transition between the uniform critical phase and the fully dimerized phase is

continuous in the WZW SU(2)2S=3 universality class, in agreement with the previous results

for zero next nearest-neighbor coupling [70]. As in the case of spin-1 chain, the transition

remains continuous up to and including at the tri-critical end point, where it turns into a

first order transition. The transition between the critical and partially dimerized phase is

in the Kosterlitz-Thouless universality class. Interestingly, the partially dimerized phase is

separated from the fully dimerized one by a first order transition only for relatively small value

of next-nearest-neighbor coupling. For larger values of this coupling, there is a continuous

crossover between partially and fully dimerized phases via the topological sector with two-leg

ladder geometry. This picture has to be clarified with further investigation.

As a further perspective, it would be interesting to generalized the results obtained for spin-3/2

with nearest and next-nearest neighbor coupling and three-site interaction to the model,

where the dimerization is induced by the bilinear interaction. Since for the spin-1 chain the

two phase diagrams are essentially the same, it would be important to figure out whether it

remains true for larger values of spin. As we have shown, the three-site interaction lead to a

rich physics. So, it would be interesting to study this kind of frustration in the combination
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Chapter 8. Summary and outlook

with other other terms, such as biquadratic coupling, or on a lattice with different geometry.

Of course, it would be important to check what happens when all next-order terms (next-

nearest-neighbor, biquadratic, and three-site) are present. This model would be more realistic

since all these terms show up in the expansion of the two-band Hubbard model. As we have

shown, many interesting phenomena appear at relatively small (and hence physically realistic)

values of the coupling constant of the three-site term in the Hamiltonian. We hope that this

will inspire an active search for experimental realizations. One could for instance try to look

for materials where the on-site repulsion U in the Hubbard model is small enough to generate

significant corrections to the Heisenberg Hamiltonian.

We have also shown that the conformal towers extracted with the DMRG algorithm is a

powerful tool in the identification of the universality classes of critical systems. It can be

considered as a complement to the usual method that only relies on the central charge or on

the critical exponents. It would be very interesting to extract the conformal towers of other

quantum critical one-dimensional models along the lines of the present work.
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A Minimal model

Symmetry property of the conformal dimension hr,s can be deduced directly from the Eq.3.3:

hp ′−r,p−s = (pp ′ −pr −p ′p +p ′s)2 − (p −p ′)2

4pp ′ = hr,s (A.1)

A.1 Ising model

The small-q expansion of 1/ϕ(q) up to eight’s order term:

1

ϕ(q)
=

∞∏
n=1

1

1−qn =

(1+q +q2 +q3 +q4 +q5 +q6 +q7 +q8)(1+q2 +q4 +q6 +q8)

× (1+q3 +q6)(1+q4 +q8)(1+q5)(1+q6)(1+q7)(1+q8)

= 1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8. (A.2)

We compute the characters of the three conformal towers of transverse field Ising model using

the definition of Eq.3.6. For identity conformal tower:

χ(1,1)(q) = K (4,3)
1,1 (q)−K (4,3)

1,−1 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (24n+1)2/48 −q (24n+7)2/48

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q1/48 (1−q −q6 +O(q11)
)

= q−1/48 (1+q2 +q3 +2q4 +2q5 +3q6 +3q7 +5q8) (A.3)
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Appendix A. Minimal model

free ↑,↑ ↑,↓ free,↑
ground-state I0 0.4914 I0 0.5092 ε0 0.5088 σ0 0.5000

1st excited ε0 0.4950 I2 0.5049 ε1 0.5048 σ1 0.4999
2nd excited ε1 0.4949 I3 0.5046 ε2 0.5043 σ2 0.4996
3rd excited I2 0.4949 I4 0.5041 ε3 0.5038 σ3 0.4992
4th excited ε2 0.4945 I4 0.5046 ε4 0.5030 σ3 0.4997
5th excited I3 0.4946 I5 0.5034 ε4 0.5047 σ4 0.4986
6th excited ε3 0.4940 I5 0.5042 ε5 0.5021 σ4 0.4995
7th excited I4 0.4941 I6 0.5025 ε5 0.5047 σ5 0.4978
8th excited I4 0.4947 I6 0.5037 ε6 0.5010 σ5 0.4988
9th excited ε4 0.4933 I6 0.5044 ε6 0.5037 σ5 0.4993

10th excited ε4 0.4949 I7 0.5016 ε6 0.5055 σ6 0.4967
11th excited I5 0.4936 I7 0.5032 ε7 0.4999 σ6 0.4980
12th excited I5 0.4945 I7 0.5043 ε7 0.5030 σ6 0.4989
13th excited ε5 0.4926 I8 0.5007 ε7 0.5038 σ6 0.4994
14th excited ε5 0.4949 I8 0.5022 ε7 0.5046 σ7 0.4956
15th excited I6 0.4927 I8 0.5032 ε8 0.4990 σ7 0.4972
16th excited I6 0.4935 I8 0.5039 ε8 0.5021 σ7 0.4983
17th excited I6 0.4940 I8 0.5048 ε8 0.5032 σ7 0.4988
18th excited ε6 0.4911 I9 0.5089 ε8 0.5038 σ7 0.4991
19th excited ε6 0.4935 I9 0.5015 ε8 0.5050 σ8 0.4947
20th excited ε6 0.4941 I9 0.5028 ε9 0.4988 σ8 0.4963

Table A.1 – Velocities extracted for transverse field Ising model from finite-size scaling of the
ground state and first 20 excited states for open chain with different boundary conditions.

For ε conformal tower:

χ(2,1)(q) = K (4,3)
2,1 (q)−K (4,3)

2,−1 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (24n+5)2/48 −q (24n+11)2/48

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q25/48 (1−q2 −q3 +q7 +O(q17)
)

= q1/2−1/48 (1+q +q2 +q3 +2q4 +2q5 +3q6 +4q7 +5q8) (A.4)

Finally, σ conformal tower is given by:

χ(1,2)(q) = K (4,3)
1,2 (q)−K (4,3)

1,−2 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (24n−2)2/48 −q (24n+10)2/48

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q4/48 (1−q2 −q4 +O(q10)
)

= q1/16−1/48 (1+q +q2 +2q3 +2q4 +3q5 +4q6 +5q7 +6q8) (A.5)
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A.2. Three-state Potts model

A.2 Three-state Potts model

The small-q expansions of the characters for ten fields of the theory are derived below:

χ(1,1)(q) = K (6,5)
1,1 (q)−K (6,5)

1,−1 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+1)2/120 −q (60n+11)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q1/120 (1−q −O(q20)
)

= q−1/30 (1+q2 +q3 +2q4 +2q5 +4q6) (A.6)

χ(2,1)(q) = K (6,5)
2,1 (q)−K (6,5)

2,−1 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+7)2/120 −q (60n+17)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q49/120 (1−q2 −O(q15)
)

= q−1/30+2/5 (1+q +q2 +2q3 +3q4 +4q5 +6q6) (A.7)

χ(3,1)(q) = K (6,5)
3,1 (q)−K (6,5)

3,−1 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+13)2/120 −q (60n+23)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q169/120 (1−q3 −O(q10)
)

= q−1/30+7/5 (1+q +2q2 +2q3 +4q4 +5q5 +8q6) (A.8)

χ(4,1)(q) = K (6,5)
4,1 (q)−K (6,5)

4,−1 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+19)2/120 −q (60n+29)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q361/120 (1−q4 −q5 −O(q11)
)

= q−1/30+3 (1+q +2q2 +3q3 +4q4 +5q5 +8q6) (A.9)

χ(1,2)(q) = K (6,5)
1,2 (q)−K (6,5)

1,−2 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n−4)2/120 −q (60n+16)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q16/120 (1−q2 −O(q16)
)

= q−1/30+1/8 (1+q +q2 +2q3 +3q4 +4q5 +6q6) (A.10)
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Appendix A. Minimal model

χ(2,2)(q) = K (6,5)
2,2 (q)−K (6,5)

2,−2 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+2)2/120 −q (60n+22)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q1/30 (1−q4 −O(q12)
)

= q−1/30+1/40 (1+q +2q2 +3q3 +4q4 +6q5 +9q6) (A.11)

χ(3,2)(q) = K (6,5)
3,2 (q)−K (6,5)

3,−2 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+2)2/120 −q (60n+22)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q8/15 (1−q6 −O(q8)
)

= q−1/30+21/40 (1+q +2q2 +3q3 +5q4 +7q5 +10q6) (A.12)

χ(4,2)(q) = K (6,5)
4,2 (q)−K (6,5)

4,−2 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n+14)2/120 −q (60n+34)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q49/30 (1−q4 −O(q8)
)

= q−1/30+13/8 (1+q +2q2 +3q3 +4q4 +6q5 +9q6) (A.13)

χ(1,3)(q) = K (6,5)
1,3 (q)−K (6,5)

1,−3 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n−9)2/120 −q (60n+21)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q27/40 (1−q3 −O(q12)
)

= q−1/30+2/3 (1+q +2q2 +2q3 +4q4 +5q5 +8q6) (A.14)

χ(2,3)(q) = K (6,5)
2,3 (q)−K (6,5)

2,−3 (q) = q−1/24

ϕ(q)

∑
n∈Z

q (60n−3)2/120 −q (60n+27)2/120

= q−1/24 (1+q +2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8)q3/40 (1−q6 −O(q9)
)

= q−1/30+1/15 (1+q +2q2 +3q3 +5q4 +7q5 +10q6) (A.15)
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Therefore, the character of the identity operator is given by:

χI =χ(1,1)(q)+χ(4,1)(q)

= q−1/30 (1+q2 +q3 +2q4 +2q5 +4q6)+q−1/30+3 (1+q +2q2 +3q3 +4q4 +5q5 +8q6)
= q−1/30 (1+q2 +2q3 +3q4 +4q5 +7q6) (A.16)

The character of the ε operator is given by:

χε =χ(2,1)(q)+χ(3,1)(q)

= q−1/30+2/5 (1+q +q2 +2q3 +3q4 +4q5 +6q6)+q−1/30+7/5 (1+q +2q2 +2q3 +4q4 +5q5 +8q6)
= q−1/30+2/5 (1+2q +2q2 +4q3 +5q4 +8q5 +11q6) (A.17)

free A-A A-B A-free

ground-state I0 0.8274 I0 0.8573 ψ0 0.8622 (1,2)0 0.8391
1st excited ψ0 0.8438 I2 0.8691 ψ1 0.8669 (1,2)1 0.8576
2nd excited ψ0 0.8438 I3 0.8583 ψ2 0.8619 (4,2)0 0.8518
3rd excited ψ1 0.8468 I3 0.8689 ψ2 0.8672 (1,2)2 0.8588
4th excited ψ1 0.8468 I4 0.8590 ψ3 0.8626 (4,2)1 0.8547
5th excited I2 0.8517 I4 0.8680 ψ3 0.8666 (1,2)3 0.8590
6th excited ψ2 0.8434 I4 0.8703 ψ4 0.8619 (1,2)3 0.8630
7th excited ψ2 0.8434 I5 0.8587 ψ4 0.8636 (4,2)2 0.8541
8th excited ψ2 0.8477 I5 0.8597 ψ4 0.8660 (4,2)2 0.8569
9th excited ψ2 0.8477 I5 0.8679 ψ4 0.8726 (1,2)4 0.8521

10th excited I3 0.8409 I5 0.8703 ψ5 0.8626 (1,2)4 0.8561
11th excited I3 0.8513 I6 0.8590 ψ5 0.8635 (1,2)4 0.8614
12th excited ψ3 0.8451 I6 0.8605 ψ5 0.8645 (4,2)3 0.8462
13th excited ψ3 0.8451 I6 0.8610 ψ5 0.8656 (4,2)3 0.8518
14th excited ψ3 0.8481 I6 0.8639 ψ5 0.8732 (4,2)3 0.8537
15th excited ψ3 0.8481 I6 0.8673 ψ6 0.8557 (1,2)5 0.8528
16th excited I4 0.8421 I6 0.8700 ψ6 0.8594 (1,2)5 0.8554
17th excited I4 0.8508 I6 0.8714 ψ6 0.8606 (1,2)5 0.8608
18th excited I4 0.8533 I7 0.8598 ψ6 0.8626 (1,2)5 0.8648
19th excited ψ4 0.8454 I7 0.8604 ψ6 0.8637 (4,2)4 0.8475
20th excited ψ4 0.8466 I7 0.8616 ψ6 0.8644 (4,2)4 0.8508
stand. dev. 0.0033 0.0049 0.0040 0.0049

Table A.2 – Velocities extracted for three-state Potts model from finite-size scaling of the ground
state and first 20 excited states for open chain with free and fixed boundary conditions
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AB-AB AB-AC A-AB A-BC AB-free

ground-state I0 0.8576 σ0 1.0791 σ0 0.6187 ε0 0.9844 (2,2)0 0.2003
1st excited ε0 0.7670 ψ0 0.8503 σ1 0.8370 ε1 0.7733 (3,2)0 0.7913
2nd excited ε1 0.8131 σ1 0.8760 σ2 0.8450 ε1 0.8867 (2,2)1 0.8971
3rd excited ε1 0.8853 ψ1 0.8613 σ2 0.8972 ε2 0.8125 (3,2)1 0.8242
4th excited I2 0.8688 σ2 0.8069 σ3 0.8487 ε2 0.8825 (2,2)2 0.8358
5th excited ε2 0.8220 σ2 0.8705 σ3 0.8514 ε3 0.8219 (2,2)2 0.8850
6th excited ε2 0.8769 ψ2 0.8592 σ3 0.8904 ε3 0.8272 (3,2)2 0.8200
7th excited I3 0.8576 ψ2 0.8637 σ4 0.8355 ε3 0.8412 (3,2)2 0.8343
8th excited I3 0.8708 σ3 0.8194 σ4 0.8509 ε3 0.8797 (2,2)3 0.8411
9th excited ε3 0.8298 σ3 0.8666 σ4 0.8535 ε4 0.8312 (2,2)3 0.8797

10th excited ε3 0.8612 σ3 0.8684 σ4 0.8853 ε4 0.8361 (2,2)3 0.8814
11th excited ε3 0.8727 ψ3 0.8610 σ4 0.8868 ε4 0.8472 (3,2)3 0.8295
12th excited ε3 0.8735 ψ3 0.8643 σ5 0.8390 ε4 0.8784 (3,2)3 0.8410
13th excited I4 0.8591 σ4 0.8238 σ5 0.8524 ε4 0.8827 (3,2)3 0.8777
14th excited I4 0.8702 σ4 0.8269 σ5 0.8549 ε5 0.8344 (2,2)4 0.8424
15th excited I4 0.8730 σ4 0.8660 σ5 0.8573 ε5 0.8387 (2,2)4 0.8460
16th excited ε4 0.8291 σ4 0.8674 σ5 0.8815 ε5 0.8431 (2,2)4 0.8768
17th excited ε4 0.8324 σ4 0.8710 σ5 0.8833 ε5 0.8507 (2,2)4 0.8795
18th excited ε4 0.8618 ψ4 0.8615 σ5 0.8859 ε5 0.8507 (3,2)4 0.8303
19th excited ε4 0.8698 ψ4 0.8624 σ6 0.8410 ε5 0.8749 (3,2)4 0.8349
20th excited ε4 0.8711 ψ4 0.8638 σ6 0.8456 ε5 0.8784 (3,2)4 0.8436
stand. dev. 0.0290 0.0196 0.0206 0.0292 0.0276

Table A.3 – Velocities extracted for three-state Potts model from finite-size scaling of the ground
state and first 20 excited states for open chain with partially fixed boundary conditions. The
standard deviation for towers where the finite-size corrections are observed is more then five
times larger than standard Deviations computed in Table A.2
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B Non-abelian bosonization

Wess-Zumino-Witten (WZW) models describe conformal field theories that obey the sym-

metries defined by Lie-algebra. WZW model are based on the non-linear sigma model[35]

defined by the action:

SNLSM = 1

4a2

∫
d 2xTr′(∂μg−1∂μg ), (B.1)

where a2 is a positive coupling constant and g (x) is a matrix bosonic field that obey Lie algebra,

the trace is chosen to have representation-independent normalization Tr′(M a , M b) = 2δa,b

with [M a , M b] =∑c i fabc M c , where the fabc ’s are the structure constants of the Lie algebra

and the M a are the generators of the algebra in the matrix representation. This field theory

is not scale invariant, since the dimensionless coupling constant a2 at the quantum level

acquires a scale dependence. Moreover, the currents defined as

Jz = ∂z g g−1, Jz̄ g−1∂z̄ g (B.2)

are not conserved in the nonlinear sigma model.

In order to preserve the symmetry and current conservation, a Wess-Zumino term

Γ= −i

24π

∫
d 3 yεαβγTr′(g̃−1∂αg̃ g̃−1∂βg̃ g̃−1∂γg̃ ) (B.3)

should be added to the action in Eq.B.1. The integral is defined on a three-dimensional

manifold, the boundary of which corresponds to the original two-dimensional space. The field

g is extended correspondingly to its three-dimensional version g̃ . Then the Wess-Zumino-

Witten action is given by:

SWZW = SNLSM +kΓ, (B.4)
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where integer k is the topological coupling constant that labels the levels of the WZW model.

The currents B.2 are conserved for a2 = 4π/k [35].

It was suggested by Affleck [2] that in some cases critical antiferromagnetic spin-S chains are

described by the WZW SU(2)k model with k = 2S. The central charge is given by c = 3k/(2+k).

As shown in Ref.[6] relevant operators emerge for all k > 1 and the number of such relevant

operators is the largest integer j such that j ≤ k/2 and j ( j +1) < 2+k. Thus, for WZW SU(2)2,

the largest integer that satisfies both conditions is equal to j = 1. This is consistent with the

effective Hamiltonian 4.16 that contains only one relevant operator λ1(trg )2 that controls the

quantum phase transition from the Haldane phase to the dimerized one.

In non-abelian bosonization, a spin-S is treated as a collection of nc = 2S spins-1/2 of different

colors such that

Sn =∑
i

Si n = 1

2

∑
iα,β

ψ†iα
n �σαβψiβn , (B.5)

where i is a color index, n is a position index and σ is a vector of Pauli’s matrices. Fermionic

operator ψiβn annihilates an electron of color i and spin β at site n.

Thus, the spin-S antiferromagnetic Heisenberg Hamiltonian

H = J
∑
n

Sn ·Sn+1 (B.6)

can be expressed in terms of the fermionic creation and annihilation aperators introduced

above:

H = J
∑
n

∑
iαβ

1

2
ψ†iα

n �σαβψiβn · ∑
jα′β′

1

2
ψ

† jα′
n+1�σ

α′β′
ψ jβ′(n+1)

= J
1

4

∑
n

∑
i j

∑
αβα′β′

ψ†iα
n ψiβnψ

† jα′
n+1ψ jβ′(n+1)�σ

αβ ·�σα′β′

= J
1

4

∑
n

∑
i j

∑
αβα′β′

ψ†iα
n ψiβnψ

† jα′
n+1ψ jβ′(n+1)2δ

αβ′
δα

′β

= J
1

2

∑
n

∑
i j

∑
αβ

ψ†iα
n ψiβnψ

† jβ
n+1ψJα(n+1)

= −J

2

∑
n

∑
i j

∑
αβ

ψ†iα
n ψ jα(n+1)ψ

† jβ
n+1ψiβn

(B.7)

One can decompose an annihilation operator into a pair of slowly varying ones on a lattice

space operators ψL(R) that annihilates left- (right-) moving electrons and create left- (right-)
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moving holes:

1�
a
ψiαn ≈ eiπan/2ψLiα(an)+e−iπan/2ψRiα(an) (B.8)

This leads to a continuum Hamiltonian (after setting the Fermi-velocity to one)[6]:

H = i
∫

d x
[
ψ†iα

L dxψLiα−ψ†iα
R dxψRiα

]
. (B.9)

The corresponding Lagrangian density is given by:

L = i
(
ψ†iα

L ∂−ψLiα+ψ†iα∂+ψRiα

)
, (B.10)

where ∂± = ∂t ±∂x . The energy momentum tensor can be also defined in terms of the left- and

right-moving fermionic operators:

TL,R = iψ†iα
L,R∂±ψL,Riα (B.11)

Following Ref.[6], left and right moving U(1) currents are defined as:

JL,R =: ψ†iα
L,RψL,Riβ :, (B.12)

where the double dots denote normal ordering. Left and right moving spin currents are:

�JL,R =ψ†iα
L,R

�σ
β
α

2
ψL,Riβ (B.13)

For a critical spin-1/2 chain in the WZW SU(2)2 universality class, the continuum representa-

tion of the spin operators in terms of the spin currents is given by:

�S j ≈�JL( j )+�JR ( j )+ 1

2
(−1) j (ψ†α

L �σ
β
αψRβ). (B.14)

Applying bosonization to the second term one can find the expression for the spin operators[6]

as it appears in Eq.4.15:

�S j ≈�JL( j )+�JR ( j )+C (−1) j tr(g�σ) (B.15)

Now, let us consider two copies of spin chains with nearest-neighbor interactions (that is

equivalent to J2 next-nearest-neighbor coupling in the original Hamiltonian 4.4). The two

chains are coupled with J1 and J3 interactions. The spin operators for each of the two chains
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can be written as:

�S2 j ≈�JL(2 j )+�JR (2 j )+C (−1) j tr(g1(2 j )�σ), (B.16)

�S2 j+1 ≈�JL(2 j +1)+�JR (2 j +1)+C (−1) j tr(g2(2 j +1)�σ) (B.17)

The dimerization order parameter is then:

D( j ) =�S2 j · [�S2 j+1 −�S2 j−1] ∝ [�JL(2 j )+�JR (2 j )+C (−1) j tr(g1(2 j )�σ)]×
[�JL(2 j+1)+�JR (2 j+1)+C (−1) j tr(g2(2 j+1)�σ−�JL(2 j−1)−�JR (2 j−1)−C (−1) j−1tr(g2(2 j−1)�σ],

(B.18)

Assuming that fields�JL,R and g1,2 vary slowly on the lattice and thus JL,R (2 j +1) ≈ JL,R (2 j −1)

and g2(2 j +1) ≈ g2(2 j −1), we get:

D( j ) ∝ [�JL(2 j )+�JR (2 j )+C (−1) j tr(g1(2 j )�σ)]×[C (−1) j tr(g2(2 j+1)�σ)−C (−1) j−1tr(g2(2 j−1)�σ)]

≈ [�JL +�JR +C (−1) j tr(g1�σ)] ·2C (−1) j tr(g2�σ)

(B.19)

For the same reason, the alternating terms (−1) j�JL,R tr(g2�σ) can be dropped. The remaining

term is:

D( j ) ∝ tr(g1�σ) · tr(g2�σ) (B.20)

On top of the WZW Hamiltonian there are, in principle, six operators that are allowed by the

symmetry of the Hubbard model[6], but only two of them appear in the effective Hamiltonian

for the spin-1 J1 − J2 − J3 chain. As pointed out in the beginning of this Appendix, only one

relevant operator is allowed for the WZW SU(2)2 model. This operator can be written as

λ1(trg )2. When λ1 < 0 the energy of this term is minimized for 〈trg 〉 �= 0 that, according to

Ref.[6], corresponds to the dimerized phase with spontaneously broken translation symmetry.

The second term that appears in the Hamiltonian is marginal and takes the form λ2�JL · �JR . The

effect of this term is explained in details in the main text.
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C Variational calculations for spin-1 J1 −
J3 chain

We recall the form of the Hamiltonian:

HJ1−J3 = J1
∑

i
Si ·Si+1 + J3

∑
i

[(Si−1 ·Si )(Si ·Si+1)+H.c.] , (C.1)

C.1 Variational phase diagram

First we derive the three-site interaction
∑

i J3 [(Si−1 ·Si )(Si ·Si+1)+H.c.] in terms of quadrupo-

lar operators Qαβ = SαSβ+SβSα− 2
3 S(S +1)δαβ:

∑
i

(Si−1 ·Si )(Si ·Si+1)+H.c.

=∑
i

∑
α,β

(Sα
i−1Sα

i )(Sβ

i Sβ

i+1)+H.c.

=∑
i

∑
α,β

Sα
i−1(Sα

i Sβ

i +Sβ

i Sα
i )Sβ

i+1

=∑
i

∑
α,β

Sα
i−1(Sα

i Sβ

i +Sβ

i Sα
i − 4

3
δα,β+

4

3
δα,β)Sβ

i+1

=∑
i

∑
α,β

Sα
i−1Qαβ

i Sβ

i+1 +
4

3

∑
i

∑
α,β

Sα
i−1Sβ

i+1δα,β

=∑
i

∑
α,β

Sα
i−1Qαβ

i Sβ

i+1 +
4

3

∑
i

(Si−1 ·Si+1) (C.2)

We compute variational energy for the state given by Eq. 7.12, here we recall the form of the
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state:

|W 〉 = 1

2
e−iϕ

(
cos

ϑ

2
− sin

ϑ

2

)
|1〉+ −i�

2

(
cos

ϑ

2
+ sin

ϑ

2

)
|0〉+ −1

2
eiϕ
(
cos

ϑ

2
− sin

ϑ

2

)
|1̄〉 (C.3)

We introduce short-hand notations ai = cos ϑi
2 − sin ϑi

2 and bi = cos ϑi
2 + sin ϑi

2 . We apply the

Hamiltonian C.1 to this state:

J1 contribution:

〈11|11〉 1
16 a2

1a2
2 〈10|01〉 and 〈01|10〉 2

8 a1b1a2b2 cos(ϕ1 −ϕ2)

〈11̄|11̄〉 −1
16 a2

1a2
2 〈11̄|00〉 and 〈00|11̄〉 2

8 a1b1a2b2 cos(ϕ1 −ϕ2)

〈1̄1|1̄1〉 −1
16 a2

1a2
2 〈1̄1|00〉 and 〈00|1̄1〉 2

8 a1b1a2b2 cos(ϕ1 −ϕ2)

〈1̄1̄|1̄1̄〉 1
16 a2

1a2
2 〈01̄|1̄0〉 and 〈1̄0|01̄〉 2

8 a1b1a2b2 cos(ϕ1 −ϕ2)

The terms from the left column vanish, the terms from the right column gives:

〈W |H1|W 〉 = J1a1b1a2b2 cos(ϕ1−ϕ2) = J1

(
cos2 ϑ1

2
− sin2 ϑ1

2

)(
cos2 ϑ2

2
− sin2 ϑ2

2

)
cos(ϕ1−ϕ2)

(C.4)

Therefore:

〈W |H1|W 〉 = J1 cosϑ1 cosϑ2 cos(ϕ1 −ϕ2) (C.5)

J3 contribution:

1. Canceling terms:

〈111|111〉 2
64 a2

1a2
2a2

3 〈111̄|111̄〉 −2
64 a2

1a2
2a2

3 〈11̄1|11̄1〉 2
64 a2

1a2
2a2

3 〈11̄1̄|11̄1̄〉 −2
64 a2

1a2
2a2

3

〈1̄11|1̄11〉 −2
64 a2

1a2
2a2

3 〈1̄11̄|1̄11̄〉 2
64 a2

1a2
2a2

3 〈1̄1̄1|1̄1̄1〉 −2
64 a2

1a2
2a2

3 〈1̄1̄1̄|1̄1̄1̄〉 2
64 a2

1a2
2a2

3

〈011|101〉 and 〈101|011〉 2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈011̄|101̄〉 and 〈101̄|011̄〉 −2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈001|11̄1〉 and 〈11̄1|001〉 −2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈001̄|11̄1̄〉 and 〈11̄1̄|001̄〉 2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈001|1̄11〉 and 〈1̄11|001〉 2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈001̄|1̄11̄〉 and 〈1̄11̄|001̄〉 −2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈01̄1|1̄01〉 and 〈1̄01|01̄1〉 −2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)

〈01̄1̄|1̄01̄〉 and 〈1̄01̄|01̄1̄〉 2
32 a1b1a2b2a2

3 cos(ϕ2 −ϕ1)
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〈101|110〉 and 〈110|101〉 2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈100|111̄〉 and 〈111̄|100〉 2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈100|11̄1〉 and 〈11̄1|100〉 −2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈11̄0|101̄〉 and 〈101̄|11̄0〉 −2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈1̄10|1̄01〉 and 〈1̄01|1̄10〉 −2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈1̄11̄|1̄00〉 and 〈1̄00|1̄11̄〉 −2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈1̄00|1̄1̄1〉 and 〈1̄1̄1|1̄00〉 2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

〈1̄01̄|1̄1̄0〉 and 〈1̄1̄0|1̄01̄〉 2
32 a2

1a2b2a3b3 cos(ϕ3 −ϕ2)

2. The non-vanishing terms:

〈011|110〉 and 〈110|011〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈010|111̄〉 and 〈111̄|010〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈01̄1|11̄0〉 and 〈11̄0|01̄1〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈01̄0|11̄1̄〉 and 〈11̄1̄|01̄0〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈010|1̄11〉 and 〈1̄11|010〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈01̄1̄|1̄1̄0〉 and 〈1̄1̄0|01̄1̄〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈01̄0|1̄1̄1〉 and 〈1̄1̄1|01̄0〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

〈011̄|1̄10〉 and 〈1̄10|011̄〉 2
32 a1b1a2

2a3b3 cos(ϕ3 −ϕ1)

1

2
J3 cos(ϕ3 −ϕ1)

(
cos2 ϑ1

2
− sin2 ϑ1

2

)(
cos

ϑ2

2
− sin

ϑ2

2

)2 (
cos2 ϑ3

2
− sin2 ϑ3

2

)

= 1

2
J3 cos(ϕ3 −ϕ1)cosϑ1(1− sinϑ2)cosϑ3

〈010|11̄1〉 and 〈11̄1|010〉 4
32 a1b1a2

2a3b3 cos(ϕ1 +ϕ3 −2ϕ2)

〈011̄|11̄0〉 and 〈11̄0|011̄〉 4
32 a1b1a2

2a3b3 cos(ϕ1 +ϕ3 −2ϕ2)

〈01̄1|1̄10〉 and 〈1̄10|01̄1〉 4
32 a1b1a2

2a3b3 cos(ϕ1 +ϕ3 −2ϕ2)

〈01̄0|1̄11̄〉 and 〈1̄11̄|01̄0〉 4
32 a1b1a2

2a3b3 cos(ϕ1 +ϕ3 −2ϕ2)

1

2
J3 cos(ϕ1 +ϕ3 −2ϕ2)

(
cos2 ϑ1

2
− sin2 ϑ1

2

)(
cos

ϑ2

2
− sin

ϑ2

2

)2 (
cos2 ϑ3

2
− sin2 ϑ3

2

)

= 1

2
J3 cos(ϕ1 +ϕ3 −2ϕ2)cosϑ1(1− sinϑ2)cosϑ3

〈000|101̄〉 and 〈101̄|000〉 4
16 a1b1b2

2a3b3 cos(ϕ3 −ϕ1)

〈001|100〉 and 〈100|001〉 4
16 a1b1b2

2a3b3 cos(ϕ3 −ϕ1)

〈000|1̄01〉 and 〈1̄01|000〉 4
16 a1b1b2

2a3b3 cos(ϕ3 −ϕ1)

〈001̄|1̄00〉 and 〈1̄00|001̄〉 4
16 a1b1b2

2a3b3 cos(ϕ3 −ϕ1)
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J3 cos(ϕ3 −ϕ1)

(
cos2 ϑ1

2
− sin2 ϑ1

2

)(
cos

ϑ2

2
+ sin

ϑ2

2

)2 (
cos2 ϑ3

2
− sin2 ϑ3

2

)

= J3 cos(ϕ3 −ϕ1)cosϑ1(1+ sinϑ2)cosϑ3

〈W |H3|W 〉 = 1

2
J3 cos(ϕ3 −ϕ1)cosϑ1 cosϑ3(1− sinϑ2)+ 1

2
J3 cos(ϕ1 +ϕ3 −2ϕ2)cosϑ1 cosϑ3(1− sinϑ2)

+J3 cos(ϕ3 −ϕ1)cosϑ1 cosϑ3(1+ sinϑ2)

〈W |H3|W 〉 = 1

2
J3 cosϑ1 cosϑ3

[
cos(ϕ3 −ϕ1)(3+ sinϑ2)+cos(ϕ1 +ϕ3 −2ϕ2)(1− sinϑ2)

]

Finally, the energy per site is given by:

E = J1

2
(cosϑi−1 cosϑi cos(ϕi−1 −ϕi )+cosϑi cosϑi+1 cos(ϕi −ϕi+1))

+1

2
J3 cosϑi−1 cosϑi+1

[
cos(ϕi+1 −ϕi−1)(3+ sinϑi )+cos(ϕi−1 +ϕi+1 −2ϕi )(1− sinϑi )

]
(C.6)

C.2 One-magnon instability

In the vicinity of the ferromagnetic phase. We start with the ferromagnetic wave-function

|0〉 = |S,S, ...,S,S〉, such that S+
l |0〉 = 0.

Consider first the action of the Hamiltonian C.1 on the state S−
l |0〉:

J1-terms:

a1 = J1
1

2

N∑
j=1

S+
j S−

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S−
l+1S+

l S−
l |0〉 if j = l

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣=

1

2
J1S−

l+1(2Sz
l +S−

l S+
l )|0〉 = J1S ·S−

l+1|0〉

a2 = J1
1

2

N∑
j=1

S−
j S+

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

J1S−
l−1S+

l S−
l |0〉 if j = l −1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣=

1

2
J1S−

l−1(2Sz
l +S−

l S+
l )|0〉 = J1S ·S−

l−1|0〉
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a3 = J1

N∑
j=1

Sz
j Sz

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S2S−
l |0〉 if j , j +1 �= l

S(S −1)S−
l |0〉 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣= J1((N −2)S2 +2S(S −1)) ·S−

l |0〉

= J1S(N S −2) ·S−
l |0〉

J3-terms:

b1,1 = J3
1

4

N∑
j=1

S+
j−1S−

j S+
j S−

j+1S−
l |0〉 = 0

c1,1 = J3
1

4

N∑
j=1

S+
j+1S−

j S+
j S−

j−1S−
l |0〉 = 0

b1,2 = J3
1

4

N∑
j=1

S+
j−1S−

j S−
j S+

j+1S−
l |0〉 = 0

c1,2 = J3
1

4

N∑
j=1

S+
j+1S−

j S−
j S+

j−1S−
l |0〉 = 0

b1,3 = J3
1

2

N∑
j=1

S+
j−1S−

j Sz
j Sz

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S2 ·S−
l+1S+

l S−
l |0〉 if j = l +1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

2
S2 ·S−

l+1(2Sz
l +S−

l S+
l )|0〉 = J3S3 ·S−

l+1|0〉

c1,3 = J3
1

2

N∑
j=1

S+
j+1S−

j Sz
j Sz

j−1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S2 ·S−
l−1S+

l S−
l |0〉 if j = l −1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3S2 ·S−
l−1(2Sz

l +S−
l S+

l )|0〉 = J3S3 ·S−
l−1|0〉

b2,1 = J3
1

2

1

4

N∑
j=1

S−
j−1S+

j S+
j S−

j+1S−
l |0〉 = 0

c2,1 = J3
1

4

N∑
j=1

S−
j+1S+

j S+
j S−

j−1S−
l |0〉 = 0
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b2,2 = J3
1

4

N∑
j=1

S−
j−1S+

j S−
j S+

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S−
l−2S+

l−1S−
l−1S+

l S−
l |0〉 if j = l −1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

4
S−

l−2(2Sz
l−1 +S−

l−1S+
l−1)(2Sz

l +S−
l S+

l )|0〉

= J3S2 ·S−
l−2|0〉

c2,2 = J3
1

4

N∑
j=1

S−
j+1S+

j S−
j S+

j−1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S−
l+2S+

l+1S−
l+1S+

l S−
l |0〉 if j = l +1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

4
S−

l+2(2Sz
l+1 +S−

l+1S+
l=1)(2Sz

l +S−
l S+

l )|0〉

= J3S2 ·S−
l+2|0〉

b2,3 = J3
1

2

N∑
j=1

S−
j−1S+

j Sz
j Sz

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S−
l−1S+

l Sz
l Sz

l+1S−
l |0〉 if j = l

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

2
S(S −1) ·S−

l−1(2Sz
l +S−

l S+
l )|0〉

= J3S2(S −1) ·S−
l−1|0〉

c2,3 = J3
1

2

N∑
j=1

S−
j+1S+

j Sz
j Sz

j−1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

S−
l+1S+

l Sz
l Sz

l−1S−
l |0〉 if j = l

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

2
S(S −1) ·S−

l+1(2Sz
l +S−

l S+
l )|0〉

= J3S2(S −1) ·S−
l+1|0〉

b3,1 = J3
1

2

N∑
j=1

Sz
j−1Sz

j S+
j S−

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

Sz
l−1Sz

l S+
l S−

l+1S−
l |0〉 if j = l

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

2
Sz

l−1Sz
l S−

l+1(2Sz
l +S−

l S+
l )|0〉

= J3S3 ·S−
l+1|0〉
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c3,1 = J3
1

2

N∑
j=1

Sz
j+1Sz

j S+
j S−

j−1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

Sz
l+1Sz

l S+
l S−

l−1S−
l |0〉 if j = l

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

2
Sz

l+1Sz
l S−

l−1(2Sz
l +S−

l S+
l )|0〉

= J3S3 ·S−
l−1|0〉

b3,2 = J3
1

2

N∑
j=1

Sz
j−1Sz

j S−
j S+

j+1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

Sz
l−2Sz

l−1S−
l−1S+

l S−
l |0〉 if j = l −1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

J3
1

2
Sz

l−2Sz
l−1S−

l−1(2Sz
l +S−

l S+
l )|0〉

= J3S2(S −1) ·S−
l−1|0〉

c3,2 = J3
1

2

N∑
j=1

Sz
j+1Sz

j S−
j S+

j−1S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩

Sz
l+2Sz

l+1S−
l+1S+

l S−
l |0〉 if j = l +1

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣

= J3
1

2
Sz

l+2Sz
l+1S−

l+1(2Sz
l +S−

l S+
l )|0〉

= J3S2(S −1) ·S−
l+1|0〉

b3,3 +c3,3 = 2J3

N∑
j=1

Sz
j−1Sz

j Sz
j Sz

j+1S−
l |0〉 =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S3(S −1) ·S−
l |0〉 if j −1, j +1 = l

S2(S −1)2 ·S−
l |0〉 if j = l

S4 ·S−
l |0〉 otherwise

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
= 2J3S2(2S(S −1)+ (S −1)2 + (N −3)S2) ·S−

l |0〉
= 2J3S2(N S2 +1) ·S−

l |0〉

Then after adding all the terms:

HS−
l |0〉 =

(
J1S(N S −2)+2J3S2(N S2 +1)

)
S−

l |0〉
+S
(

J1 +4J3S2 −2J3S
)

(S−
l−1 +S−

l+1)|0〉
+(J3S2) (S−

l−2 +S−
l+2)|0〉
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We introduce a short-hand notation: HS−
l |0〉 = f1S−

l |0〉+ f2(S−
l−1 +S−

l+1)|0〉+ f3(S−
l−2 +S−

l+2)|0〉,
where

f1 = J1S(N S −2)+2J3S2(N S2 +1) = EF M +2S(J3S − J1) (C.7)

f2 = S(J1 +4J3S2 −2J3S) (C.8)

f3 = J3S2 (C.9)

For the case of S = 1 the coefficients become:

f1 = EF M +2(J3 − J1) (C.10)

f2 = J1 +2J3 (C.11)

f3 = J3 (C.12)

The state S−
l |0〉 itself is not a ground state of the Hamiltonian C.1. However, the following

combination of these states is indeed a ground-state of the Hamiltonian C.1:

|ϕ̃(q)〉 =
N∑

l=1
ei ql S−

l |0〉 (C.13)

This state is not normalized yet:

〈ϕ̃|ϕ̃〉 =
N∑

l ,k=1
〈0|ei q(l−k)S+

k S−
l |0〉 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⎧⎨
⎩
〈0|2Sz

l +S−
l S+

l |0〉 if l = k

0 otherwise

∣∣∣∣∣∣
∣∣∣∣∣∣=

N∑
l=1

〈0|2Sz
l |0〉 = 2SN

(C.14)

Then the normalized one-magnon state is given by:

|ϕ(q)〉 = 1�
2N S

N∑
l=1

ei ql S−
l |0〉 (C.15)

Then, the energy of this state is

E(q) = f1 +2 f2 cos q +2 f3 cos2q (C.16)
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