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Abstract
The semiconductor industry, governed by the Moore’s law, has achieved the almost unbe-

lievable feat of exponentially increasing performance while lowering the costs for years. The

main enabler for this achievement has been the scaling of the CMOS transistor that allowed

the manufacturers to pack more and more functionality into the same chip area. However, it

is now widely agreed that the happy days of scaling are well over and we are about to reach

the physical limits of the CMOS concept. One major, insurmountable limit of CMOS is the

so-called thermionic emission limit which dictates that the switching slope of the transistor

cannot go below 60mV/dec at room temperature. This makes it impossible to scale down the

supply voltage for CMOS transistor without dramatically increasing the static power consump-

tion. To address this issue, a novel transistor concept called Tunnel FET (TFET) which utilizes

the quantum mechanical band-to-band tunneling (BTBT) has been proposed. TFETs possess

the potential to overcome the thermionic emission limit and therefore allow for low supply

voltage operation.

This thesis aims at investigating the performance of TFETs with alternative architectures

exploiting quantized carrier gases through quantum mechanical simulations. To this end, 1D

and 2D self-consistent Schrödinger-Poisson solvers with closed boundaries are developed

along with the phonon-assisted and direct BTBT models implemented as a post-processing

step. Moreover, we propose an efficient method to incorporate the quantization along the

transverse direction which enables us to simulate different dimensionality combinations. The

implemented models are calibrated against experimental and more fundamental quantum

mechanical simulation methods such as k ·p and tight-binding NEGF using tunneling diode

structures.

Using these tools, we simulate an advanced TFET architecture called electron-hole bilayer

TFET (EHBTFET) which exploits BTBT between 2D electron and hole gases electrostatically

induced by two separate oppositely biased gates. The subband-to-subband tunneling is first

analyzed with the 1D simulator where the device working principle is demonstrated. Then,

non-idealities of the EHBTFET operation such as the lateral tunneling and corner effects are

investigated using the 2D simulator. The origin of the lateral leakage and techniques to reduce

it are analyzed in detail.

A parameter space analysis of the EHBTFET is performed by simulating a wide range of channel

materials, channel thickness and oxide thicknesses. Our results indicate the possibility of

having 2D-2D and 3D-3D tunneling for the EHBTFET, depending on the parameters chosen.

A novel digital logic scheme utilizing the independent biasing property of the EHBTFET n-
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and p-gates is proposed and verified through quantum-corrected TCAD simulations. The

performance benchmarking against a 28nm FD-SOI CMOS technology is performed as well.

The results indicate that the EHBTFET logic can outperform the CMOS counterpart in the low

supply voltage (subthreshold) regime, where it can offer significantly higher drive current due

to its steep switching slope.

We also compare the different dimensionality cases and highlight important differences

between the face and edge tunneling devices in terms of their dependence on the device

parameters (channel material, channel thickness and EOT).

Key words: Tunnel FET, quantum simulation, steep slope switch, circuit benchmarking, band-

to-band tunneling, analytical modeling, numerical simulation, finite element method, carrier

gas dimensionality, density of states (DOS), 2D-2D tunneling, counterdoping, hetero-gate,

electron-hole bilayer
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Sommario
Basandosi sulla legge di Moore, l’industria dei semiconduttori è stata in grado di mettere in

atto un’impresa quasi incredibile : aumentare esponenzialmente le prestazioni dei dispositivi,

congiuntamente alla riduzione dei costi. Questo è stato possibile grazie al processo di minia-

turizzazione del transistore CMOS, che ha permesso di aumentare sempre di più la densità

di dispositivi per unità d’area. Tuttavia, è ormai comunemente accettato il fatto che questo

processo stia giungendo a un termine, essendo al punto di raggiungere i limiti fisici della tec-

nologia CMOS. Ad esempio, un limite insormontabile relativo a questa tecnologia è dovuto alla

cosiddetta emissione termoionica, che fa sì che la pendenza di sottosoglia non possa essere

inferiore a 60 mV/dec a temperatura ambiente. Per questo motivo, risulta impossibile ridurre

la tensione di alimentazione per i transistori CMOS senza aumentare esponenzialmente il

consumo di potenza statico. Per risolvere questo problema, è stato proposto un transistore

alternativo chiamato Tunnel FET (TFET), basato sul meccanismo di tunneling quantistico

banda-banda. I TFET offrono la possibilità di superare il limite dell’emissione termoionica e

così permettere di ridurre la tensione di alimentazione.

L’obiettivo di questa tesi consiste nello studio delle prestazioni di TFET con architetture alter-

native, basate su gas di portatori di carica quantizzati. Lo studio è stato effettuato attraverso

simulazioni numeriche, includendo effetti di meccanica quantistica. A tal fine, sono stati

sviluppati programmi per risolvere in maniera autoconsistente problemi Schrödinger-Poisson

1D e 2D, congiuntamente all’uso di modelli di tunneling quantistico banda-banda diretto o

assistito da fononi, applicati in una fase successiva. Inoltre, in questa tesi proponiamo un

metodo per considerare la quantizzazione nella direzione trasversa, che ci permette di simu-

lare efficientemente diverse combinazioni di dimensionalità. I modelli implementati sono

stati calibrati avendo come termine di paragone dati sperimentali e metodi di simulazione

alternativi basati su simulazioni di meccanica quantistica fondamentale, come il k · p e il

tight-binding NEGF basato su strutture di diodo a effetto tunneling.

Tramite questi strumenti, abbiamo simulato un’architettura TFET avanzata denominato TFET

a doppio strato elettrone-lacuna (electron-hole bilayer TFET o EHBTFET), che si basa sul

tunneling banda-banda tra gas bidimensionali di elettroni e lacune, indotti in modo elettro-

statico da due terminali di gate disposti oppositamente. Prima di tutto abbiamo analizzato

il tunneling da sottobanda a sottobanda con un simulatore monodimensionale, al fine di

dimostrare il principio di funzionamento del dispositivo. Successivamente il simulatore 2D è

stato impiegato per studiare gli aspetti non-ideali dell’EHBTFET, come il tunneling laterale

e gli effetti agli angoli. Le cause del tunneling laterale e le tecniche per ridurlo sono state
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analizzate in dettaglio.

Abbiamo effettuato uno studio dei parametri di progetto dell’EHBTFET simulando una vasta

gamma di materiali per il canale, e di spessori per il canale e per il dielettrico. I nostri risultati

dimostrano che a seconda dei parametri l’EHBTFET può esibire tunneling sia 2D-2D che

3D-3D. Inoltre abbiamo proposto e verificato attraverso simulazioni TCAD con correzioni

quantistiche uno schema logico digitale innovativo basato sulle proprietà di polarizzazione

indipendente dei gate di tipo n e p. dell’EHBTFET. Inoltre abbiamo confrontato le prestazioni

dell’EHBTFET rispetto a quelle offerte dalla tecnologia FD-SOI CMOS a 28 nm. I risultati

mostrano che una logica basata sull’EHBTFET può fornire migliori prestazioni rispetto alla

logica CMOS in regime di bassa tensione di alimentazione, dove la corrente può essere più

alta a causa della maggiore pendenza sottosoglia. Abbiamo anche confrontato diversi casi

di dimensionalità e sottolineato importanti differenze tra dispositivi basati su tunneling di

superficie o di spigolo in quanto a dipendenza su parametri di progetto (materiale e spessore

del canale, spessore effettivo del dielettrico).

Parole chiave : tunnel FET, simulazione quantistica, interruttore ad alta pendenza sottosoglia,

analisi comparativa di circuiti, tunnneling banda-banda, modellizzazione analitica, simula-

zione numerica, metodo ad elementi finiti, dimensionalità di gas di portatori di carica, densità

di stati (DOS), tunneling 2D-2D, controdopaggio, eterogate, doppio strato elettrone-lacuna.
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1 Towards the End of CMOS Scaling &
Motivation of the Thesis

Ever since the advent of integrated circuits (IC) based on CMOS technology, the semiconductor

industry experienced an era of constant increase in performance and scaling of transistors,

which occurred at a neck-break pace. Much of this outcome owes to a key observation made

by Gordon Moore, one of the founders of Intel, in 1965 which stated that the number of

transistors in a given area will double in approximately 24 months and the performance will

double too [17] . Over decades, this observation transformed into a self-fulfilling prophecy

[18], pushing the semiconductor companies to pack more and more transistors into chips

operating at consistently higher speeds. This rapid rate of advancement is indeed phenomenal

when you compare it against other industries such as automotive etc. Imagine that your car

would consume half the fuel to go the same amount of distance in two years’ time (and twice

as fast)! Constant scaling of transistors throughout the ’happy scaling era’ [19] is what enabled

the Moore’s law to hold more or less until now and keep the steam going for the semiconductor

industry.

However, this fast growth came at a price: another relatively less mentioned aspect of Moore’s

law is the exponential increase in investments for semiconductor foundries. Fig. 1.1(Left)

depicts the investment capital costs for exposure systems for different line widths, which

we take as a general indicator of skyrocketing investment costs overall [1]. Looking from

an economic perspective, semiconductor industry is fast becoming a mature market like

automotive industry. We have already observed some big companies such as IBM and AMD

sell their foundries (IBM even paid Globalfoundries to take over its fabs! [20]) simply due

to huge operating costs incurred in investments and R&D. In fact, the average growth of the

semiconductor industry between 1988-2012 was 10.5%, whereas it is estimated to be 2.72% for

2013-2018 [21]. Overall, we can argue that the Moore’s law applies on the economic side of

business as well as the technical ones.

One might wonder why it has become so expensive to develop the next CMOS node. The

answer is that we are approaching the physical limits of CMOS and Silicon technology. We

are going to need much higher resolution photo-lithography, very good process control,

good reliability etc. Fig. 1.1 (Right) shows the physical transistor half-pitch length over each

1
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Figure 1.1 – (Left) Exposure system costs over time (taken from [1]). (Right) The transistor
half-pithches and supply voltages over year and indication of the ’technology node’ name
given by companies (labels in bold) [2].

technology node. We can already see that the node naming has started to lose its physical

meaning as the naming and the physical length are no more the same [2], indicating how hard

it has become to physically shrink the transistors.

Besides this problem which could potentially be overcome with a lot of engineering such as

EUV as the light source for lithography [22], a much more pressing issue is at hand. No matter

how much we try to perfect the CMOS transistors, there is an inherent physical limit. Supply

voltage scaling is no more possible, as seen in Fig. 1.1(Right), where we can indeed observe

that the supply voltage reduction is limited to about 30mV per node. The reason for this stall

in supply voltage scaling is that the OFF state current in MOSFET increases exponentially as

the supply voltage is lowered. The reason for this exponential increase is the fact that MOSFET

is a thermionic device [23], i.e., it relies on the movement of thermally activated carriers which

obey the Fermi-Dirac distribution. Fig. 1.2 depicts a scenario where the supply voltage VDD is

lowered to VDD′ via e.g., gate metal workfunction engineering where the transfer characteristic

curve is rigidly shifted to the left, but the switching slope remains approximately the same.

More specifically, the reason that spelled the doom for the conventional scaling of the supply

voltage is the subthreshold current that grows at an exponential rate as the supply voltage

is shrunk. The physical basis for this is the fact that sub-threshold current for MOSFETs is

dominantly caused by diffusion in weak inversion, for which the drain current is given as [24]:

IDS ∼ exp
VGS

ηVT
(1.1)

where η is given as η= 1+ CS
CG

, CS being the semiconductor capacitance and CG the gate oxide

capacitance. The logarithmic slope of the transfer characteristics is defined as the subthreshold
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Figure 1.2 – Depiction of MOSFET transfer (ID −VGS) characteristics. Given the same MOSFET,
shifting the transfer curves by modifying the gate workfunction to reduce the supply voltage
from VDD to VDD′ with the same ON current ION results in an exponential increase in the OFF
current (IOFF to IOFF′).

swing (SS). Mathematically, SS is given as [25]:

SS = ∂VGS

∂log10 IDS
= ∂VGS

∂φS︸ ︷︷ ︸
η

∂φS

∂ log10 IDS︸ ︷︷ ︸
n

(1.2)

It is evident that in order to improve the SS, ratio CSi
CG

must be minimized such that η is

minimized. In CMOS, η will tend to 1 as the capacitance ratio is minimized. In general terms,

it corresponds to the case with excellent electrostatic control. However, even with this perfect

control, n factor is dependent on the rate of increase in the number of carriers that have energy

larger than the barrier height in the channel and this quantity is governed by the Fermi-Dirac

distribution; therefore n has a lower bound of ∼ kT
q ln10 � 60 mV

dec at room temperature. This

limitation of the n factor has dramatic consequences for voltage scaling. It imposes a limit

on the ON/OFF ratio. For instance, if an ON/OFF ratio of 105 is required, a minimum supply

voltage of 300mV is required. Therefore, we can argue that using CMOS in a low supply voltage

scenario is nearly impossible and overcoming this limit requires a paradigm shift in the device

design. It means that we will either need to rethink the concept of transistor by considering

different conduction mechanisms, or somehow combine the conventional CMOS with some

technological boosters that will allow it to overcome this thermionic barrier.

Looking at Eq. 1.2, one can observe that we have essentially two options: either make η< 1

or n < 60 mV
dec . In the literature, novel device concepts were proposed which can be classified

to the either case. For example, ferro-electric MOSFETs which can achieve internal voltage

amplification thanks to the ferro-electric dielectric material in the gate stack that allows for

η< 1 have been demonstrated experimentally [26]. Phase change materials have been used in
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a similar fashion [27]. Electro-mechanical FETs [28] relies on the mechanical movement of

the gate electrode which gets in and out of contact with the gate stack depending on the gate

voltage whereas NEMS relays [29]) or swtiches [30] makes use of moving beams/cantilevers

that connects the source and drain electrodes.

Another way is to alter the conduction mechanism. In this branch, we can see that a plethora

of devices such as impact ionization FETs which make use of avalanche multiplication that

amplifies the current once a critical field is exceeded [31]. Another idea is the so-called

’feedback FET’ which utilizes extra charges in a p-i-n diode that alters the potential profile

which results in positive feedback [32].

In this thesis, however, we will investigate a type of transistors called ’tunnel FET’ that exploits

the quantum mechanical phenomenon called band-to-band tunneling (BTBT). TFET has

emerged as one of the most promising new device concepts that can overcome the thermionic

barrier by filtering out the exponential tail of the Fermi-Dirac distribution [33]. We will go into

more detail about the working principle of TFETs in the next chapter.

1.1 Thesis Outline

The thesis outline with the highlights of each chapter is given below:

Chapter 2: Tunnel Field Effect Transistors: An Introduction and State-of-the-Art

This chapter introduces the concept of band-to-band tunneling, its history of exploitation as

well as a basic intuitive physical picture. Then the concept of tunnel FET is introduced and

different variants of tunnel FETs proposed in the literature are presented. Then a survey of

direct and phonon-assisted band-to-band tunneling models for bulk and quantized structures

is given. Finally, we detail the Vandenberghe model that we have utilized in the thesis to

estimate phonon-assisted band-to-band tunneling rate.

Chapter 3: Quantum Mechanical Models for Band-to-band Tunneling Devices

This chapter describes the quantum mechanical numerical simulator developed for this thesis.

The Schrödinger and Poisson equations that govern the electrostatics and quantum states in

the device are introduced. The numerical discretization schemes employed for the 1D and

2D variants of the simulators are given in detail. The solution of the self-consistent system

of equations and the algorithmic approach for coupling the two equations is detailed. The

non-parabolicity corrections are then introduced to extend the range of validity of the effective

mass approximation employed in the 1D code and two different non-parabolicity models are

discussed and compared. We then discuss the models that we have modified and implemented

in our code to estimate direct BTBT in quantized carrier gases. We highlight the differences

compared to the bulk case, such as the direction dependence of the BTBT coupling element.
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Two different direct BTBT models are compared and benchmarked through quantum well

diode simulations. Following this, we introduce a general and efficient method to account for

transverse quantization which can be utilized to estimate the impact of carrier dimensionality

on the BTBT current. We then propose an efficient way to account for the "anti-crossing" effect

that results in a drastic asymmetry of the effective masses in the real and imaginary branches

of the heavy hole dispersion relation. We compare our results and calibrate our simulator

using InAs and Ge tunnel diode characteristics simulated by full-quantum approaches k ·p

and TB-NEGF respectively. For Si and Ge diodes, we also provide a comparison of our results

against experimentally measured tunnel diode data found in the literature.

Chapter 4: Dimensionality Effects in Tunneling Devices: Exploitation and Device Opti-

mization

This chapter presents the results obtained by the quantum mechanical simulators developed

in the previous chapter. The bulk of the chapter is devoted to the electron-hole bilayer tunnel

FET (EHBTFET). We first present our initial results obtained with our 1D simulator, where we

show that EHBTFET is actually a subband-to-subband tunneling device, that differs from other

(bulk) TFETs. We then report our simulation results of the EHBTFET using the 2D simulator

and we uncover that a serious non-ideality, lateral tunneling, exists in the EHBTFET that

cripples the promising switching slope estimates of the 1D model. We identify wavefunction

penetration from the drain into the underlap region as the source of this non-ideality. We

then propose two different solution methods to overcome this leakage. Then, we perform a

parametric analysis of the EHBTFET using our 1D code. Our results highlight that the EHBTFET

can operate both as a 2D-2D tunneling device as well as a (pseudo-)3D-3D one. We identify the

distinctions between the two cases and explain the physical basis of the characteristics of the

2D-2D tunneling through an analytical model. Moreover, we estimate the performance upper

bounds for the EHBTFET with various channel materials. We also simulate the fin version of

the EHBTFET and discover another non-ideality particular to the fin version related to the

corner effect. We propose different solution techniques and compare their effectiveness in

suppressing this non-ideality. We then move on to the circuit level and propose a novel digital

logic family for the EHBTFET that can potentially offer significant reductions in the transistor

count. We verify our idea through quantum-corrected TCAD simulations and benchmark the

EHBTFET logic against a state-of-the-art 28nm fully depleted silicon-on-insulator (FD-SOI)

process using various test circuits. We then compare 2D-2D face and edge tunneling devices

against each other and their 1D counterparts (i.e., 1D-1D face and edge tunneling) using our

code with transverse quantization and pinpoint the differences between each case.

Chapter 5: Conclusions & Future Perspectives

This chapter summarizes the main accomplishments presented in the preceding chapters.

Also, possible future directions in terms of continuation of this work as well as broader general

research ideas are provided.

5





2 Tunnel Field Effect Transistors: An
Introduction and State-of-the-Art

This chapter reviews the working principle of the Tunnel FETs (TFET), along with a literature

survey about the current progress in TFET design and optimization. Moreover, a brief survey

about the proposed numerical models for describing band-to-band tunneling is provided.

2.1 Band-to-band Tunneling

TFETs utilize a quantum mechanical phenomenon called band-to-band tunneling (BTBT) for

the modulation of the conductance. BTBT occurs when the valence and conduction band

edges of a semiconductor are positioned such that an energy window ΔE opens (see Fig. 2.1)

that allows for tunneling from the valence to conduction band (or vice versa). BTBT is typically

characterized by very abrupt current changes since it is directly affected by the alignment of

the bands. Moreover, it does not rely on thermionic emission of carriers which is governed by

the Fermi-Dirac distribution. This property allows for steep switching slope values that are

independent of the ’Boltzmann tyranny’ [34]. The phenomenon is well-known and utilized in

Zener diodes to achieve soft-breakdown at relatively lower voltages (compared to avalanche

diodes) and also in Esaki diodes [35] to obtain negative differential resistance (NDR), useful in

microwave applications [36].

Despite being a complex quantum mechanical effect, band-to-band tunneling at a p-n junc-

tion can be modeled fairly well using the WKB approach. The transmission probability through

an energy barrier is given by [37]:

T = exp

⎛
⎝− tc∫

0

2 |κ (x)|d x

⎞
⎠ (2.1)

where x = 0 and x = tc are the classical turning points and κ(x) =
�

2m∗(E−V (x))
�

is the imaginary

wave-vector. In the case of the p-n diode, we can approximate the electric field as constant in

the depletion region. So, making use of the familiar triangular potential barrier approximation

(see. Fig. 2.1), the transmission probability of an electron through this barrier is given by the
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Figure 2.1 – BTBT at the p-n junction approximated as a transmission of electrons through a
triangular potential barrier with an applied voltage VA.

following analytical expression [38]:

T = exp

⎛
⎝−4

�
2m∗E

3
2
G

3q�F

⎞
⎠ (2.2)

Looking at the above equation, we can see that the transmission probability depends on the

barrier height (i.e., the bandgap), the effective mass of electrons and the electric field.

In this approximation, the effective mass of electron is assumed to be constant through its

entire trajectory. A slightly more nuanced approach is to note that the effective mass will tend

to the hole mass as it gets closer to the valence band end of its trajectory. Such an effect can be

modeled as series of two triangular barriers where the region closer to the conduction band

is assumed as electron tunneling and the other region as hole tunneling [39] which is closer

to the actual physical picture. In section 2.3 and Chapter 3, we will show more sophisticated

models which provide a more accurate picture of the BTBT phenomenon.

2.2 TFETs

The idea of utilizing band-to-band tunneling as a conduction mechanism in a transistor

have been around since the 1980s when the first interband tunneling devices were proposed

which commonly made use of III-V hetero-structures [40] and were deemed as a variant of the

then-popular resonant tunneling diodes [41]. The main emphasis back then was to obtain the

NDR behavior, whereas digital logic applications was of secondary importance [42].

The first proposition of the conventional TFET as we know today dates back to as early as 1992

[43] when Baba proposed the p-i-n gated diode structure and the working principle for the

conventional TFETs. However, the idea did not seem to gain traction within the community

when it was first proposed. Around the beginning of the 2000s, the landscape for the emerging

device research had changed dramatically as CMOS scaling started facing serious challenges.
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DrainSource

Gate

Source p+ Drain n+i

Oxide

Figure 2.2 – (Left) Planar n-type TFET structure utilizing a gated p-i-n diode with the BTBT
region indicated. Note that in theory, the same structure could be operated as a p-type device
as well by reversing the voltage polarities and swapping the source and the drain electrodes.
(Right) The carbon nanotube TFET (CNT TFET) structure fabricated by IBM (image taken
from [3]).

Within this new context, band-to-band tunneling devices started garnering considerable

attention as a next generation device that could potentially be more resilient against the short

channel effects [44]. The modern concept of Tunnel FETs for low power applications emerged

when IBM demonstrated the first TFET utilizing carbon nanotubes and experimentally shown

that sub-thermal (SS < 60 mV
dec ) conduction is possible [3]. These works have laid out the basic

structure that was extensively utilized by the first generation TFETs. The layouts of these

transistors were very similar to those of MOSFET, except for the use of a p-i-n doping profile,

Fig. 2.2(Left). The overall structure, therefore, is a gated p-i-n diode.

The principle of operation of the n-type TFET of Fig. 2.2(Left) is sketched in Fig. 2.3. The idea

is as follows: the gate electrode controls the band profile inside the channel region where it

shifts the bands according to the applied gate voltage. BTBT is allowed when the conduction

band edge at the channel and the valence band edge at the source are aligned. The BTBT

barrier at the source-channel interface is modulated by the applied gate bias which in turn

determines the BTBT current. One major downside of this structure is the low ON current

levels caused by the fact that BTBT is concentrated around a very narrow region around the

source-channel interface and the fact that gate control over the lateral electric field around the

tunnel junction is relatively poor. These types of structures are commonly referred as point

tunneling devices [45]. Moreover, as seen in Fig. 2.3(Right), TFETs are prone to ambipolar

conduction [46], which is caused by the formation of a tunneling energy window at the drain

side when the transistor is biased in opposite polarity compared to the ON state. To overcome

this issue, drain underlaps [47] as well as utilizing heterojunctions at the source-channel

interface have been proposed [48].

9



Chapter 2. Tunnel Field Effect Transistors: An Introduction and State-of-the-Art

Location 

 
y

gr
e

n
E

p-Source i-Channel n-Drain

Location 

E
n
e

rg
y
 

p-Source i-Channel n-Drainp-Source i-Channel n-Drain

Location 

E
n
e

rg
y
 

OFF state ON state Ambipolarity

BTBT

BTBT
E

FS

E
FD

E
FS E

FD
E

FS
E

FD

Figure 2.3 – Sketch of n-type TFET device operation: (Left) When VGS ∼ 0 the TFET is in the
OFF state, since no tunneling energy window is present. (Middle) VGS > 0 the band profile in
the channel is pushed down such that a BTBT energy window is formed at the source-channel
interface. (Right) When VGS < 0 ambipolar conduction occurs at the drain-channel interface.
VDS > 0 in all sketches.

To address the issue of low ON current, a second generation of TFETs is proposed which utilize

the so-called line tunneling [45], in which the tunneling direction is aligned with the electric

field induced by the gate voltage. This is achieved by overlapping the gate stack with the source

region, which creates an inversion layer inside the source region through which BTBT takes

place. Fig. 2.4 depicts one example of the line tunneling device concept as proposed by de

Michielis et al. [4]. A drastic improvement in the ON current was indeed observed when gate-

source overlap is introduced since the current is now proportional to the overlap area. Line

tunneling concept was experimentally proven by Schmidt et al. [49] where a linear relationship

was observed between the ON current and the tunneling area. The ’green transistor’ concept

proposed in [50] and also [51] are also other examples of such devices.

Figure 2.4 – (Left) Line tunneling TFET proposed by de Michielis et al. [4]. The inversion layer
is formed in the epi-layer grown on top of the source region by overlapping the gate and the
source. (Right) Simulation of the generation plot of electron and hole pairs (images taken from
[4]).

As a natural extension to the line tunneling devices, Lattanzio et al. [5] proposed the so-called

electron hole bilayer TFET (EHBTFET) in which both electron and hole gases are induced

through electrostatics (see Fig. 2.5). In this device, a positive (negative) gate bias is applied to
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the n-gate (p-gate) to induce 2D electron (hole) gases. The gate stacks are misaligned in order

to prevent lateral tunneling. Initial semi-classical simulations have shown very promising

results with a near-ideal SS 10 mV
dec [5] and encouraging initial results for circuit operation [52].

However, due to the thin semiconductor layer employed and the anti-symmetric biasing of

the gates, size and field induced quantization is expected to be very strong and therefore a

quantum mechanical that can take such effects duly into account is necessary. In fact, the

quantum mechanical study, optimization and exploitation of the EHBTFET will be the bulk of

this thesis.

Figure 2.5 – The EHBTFET structure proposed by Lattanzio et al. [5]. Image taken from [5].

Simultaneously with these development, the concept of density of states (DOS) switch was

proposed by Agarwal & Yablonovitch [15]. The idea is to exploit the different characteristics of

the DOS functions of different dimensions in TFETs. More specifically, DOS switch proposes to

exploit the step-like and spiking (i.e., 1/
�

E ) behaviors of 2D and 1D DOS functions respectively

which would ideally allow for significant number of states right after subband alignment

and therefore improve the switching slope compared to the 3D (bulk) case for which the

DOS ∝�
E (see Fig. 2.6). We will go into more detail on this concept in Chapter 4.
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Figure 2.6 – Qualitative behavior of DOS functions with different carrier dimensionalities.
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2.3 Survey of the BTBT Tunneling Models

The BTBT can be classified into two types of transitions: direct and phonon-assisted. The first

one denotes a process when the involved extrema of the electron and hole bands are at the

same�k point in the Brillouin zone (for example in InAs). Since BTBT is an elastic process, the

total energy and transverse momentum are conserved. For the phonon-assisted BTBT, the

extrema of the electron and hole bands reside at different�k-points (for example in Si and Ge).

Since they are at different points in the Brillouin zone, the transverse momentum offset is

compensated by the absorption or the emission of a phonon corresponding to the difference

in the crystal momentum of the connected band extrema. Fig. 2.7 depicts the two types of

transitions.

k

E

k

E

k=0

k≠0

Direct BTBT Phonon-assisted BTBT

k=0

Figure 2.7 – Different types of band-to-band tunneling: (Left) direct tunneling, where tunneling
takes place between the bands around the same�k-point. (Right) phonon-asssited tunneling,
where the bands at different�k-points corresponding to their energy extrema are connected by
means of a phonon which compensates the discrepancy in the momentum.

In this section, we review some of the prominent band-to-band tunneling models for both

direct and phonon-assisted transition. The aim is to highlight the similarities and differences

between different approaches. The models for BTBT in quantized gases developed during the

PhD will be described in Chapter 3.

2.3.1 Direct Band-to-band Tunneling in Bulk Structures

Among the various models for direct BTBT in the literature, we can see that there are essentially

two types of models, based on the calculation of the tunneling rate spectrum. In the first

group the tunneling rate is calculated with transmission coefficient obtained with the WKB

approximation then integrated over the total energy and transverse momentum of the particles.

The second type makes use of the Fermi’s Golden Rule, which estimates the tunneling rate by

calculating the magnitude of the interband coupling coefficient MCV.
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Kane Theory of Tunneling under Uniform Fields

Kane proposed his band-to-band tunneling theory in his seminal paper in 1959 [9]. The paper

made use of the perturbation theory to write the Schrödinger equation as a sum of interband

and intraband coupling elements. He further illustrated his model using a simple two-band

model to explain tunneling phenomenon in InSb Zener diodes. Here we provide a different,

simpler proof of his results based on Landauer conduction formula and WKB approximation.

Note that the model assumes a uniform electric field, which make it impossible to use it as a

’nonlocal’ model. ’Local’ in this context means that the model does not take into account the

trajectory of the electron during which it could experience drastic changes in the magnitude

and the direction of the electric field which makes it suitable only for regular devices with

relatively uniform electric field profiles such as p-n diodes.

For the derivation, we start by writing the general expression of the current density using the

Landauer’s conduction formula [53]:

J = q

π�A

∫∑
�k⊥

T (E , �k⊥)
[

fv − fc
]

dE (2.3)

where A is the area of the device in the direction normal to tunneling, k⊥ is the transverse

wave-vector, T (E ,k⊥) is the transmission probability and fv − fc is the Fermi supply function.

We make the usual discrete sum to integral transform for a 2D k-space:

J = q

4π3�

�
T (E ,k⊥)

[
fv − fc

]
d �k2

⊥dE (2.4)

To follow Kane’s approach, we set fv = 1 and fc = 0, although it is now seen essential to include

the Fermi supply term in BTBT tunneling models due to the fact that non-zero current is

predicted even when zero bias is applied at the junction [54]. One should note here that,

within the semi-classical framwork, BTBT has been considered as a generation process and

therefore incorporated into the continuity equations whereas till now the expressions we deal

with are spectral current densities (i.e., current flux through an energy bin ΔE , see Fig. 2.8).

Under constant field, we convert this spectral density to a generation rate by using the relation

starting from the continuity equation (see Fig. 2.8):

d J

d x
=−qGBTBT (2.5)

d J

d x

d x

dV
=−q

d x

dV
GBTBT (2.6)

d J

dE
= 1

|F |GBTBT (2.7)

Plugging in the expression in Eq. 2.4 into Eq. 2.7, switching to polar coordinates in |k⊥| and
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Figure 2.8 – Depiction of BTBT under uniform field. The overall generation rate GBTBT at a
position x is given as an integral of spectral BTBT current densities ΔJ over all the energy bins
ΔE .

assuming T being independent of the k-vector direction, we obtain:

GBTBT = q |F |
4π3�

2π
∫

T (E ,k⊥) |k⊥|d |k⊥| (2.8)

where the transmission rate is given by the WKB approximation:

T = π2

9
exp

(
−2

∫
Im(kx )d x

)
(2.9)

It is evident that we need an E −k relation valid into the gap (i.e., describes Im(kx )) which

connects the valence band to the conduction band to perform the integral in Eq. 2.9. Moreover,

since direct BTBT is an elastic process total transverse momentum and energy needs to be

conserved. Among various possibilities such as Flietner’s dispersion [55], we utilize, in the

following, Kane’s two-band dispersion relation [56]:

E± = EG

2
+ �

2k2

2m0
± 1

2

√
E 2

G + EG�
2k2

2mr
(2.10)

where 1
mr

= 1
me

+ 1
mh

and E+(−) denotes the electron (hole) band. Assuming the electric field F

is uniform and along x-direction, kx inside the bandgap (which is imaginary) can be written
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as:

Im(kx ) =
√

mr

EG�
2

√
E 2

G +EG
�2|k⊥|2

mr
−4

(
q|F |x − EG

2

)2

(2.11)

where mr = memh
me+mh

and we set x = 0 at E = 0 (the classical turning point). Once determining

the classical turning points of the conduction and valence bands, it remains to integrate the

WKB transmission coefficient over the x-direction:

T = π2

9
exp

⎛
⎝−π�

mrE
3
2
G

2�q|F |

⎞
⎠exp

⎛
⎜⎝−π�

∣∣∣�k⊥
∣∣∣2

2q |F |

√
EG

mr

⎞
⎟⎠ (2.12)

Putting the resulting expression into Eq. 2.8 and setting |k⊥| = 0, we finally obtain the well-

known expression:

G = q2 |F |2�mr

18π�2
�

EG
exp

⎛
⎝−π�

mrE
3
2
G

2�q |F |

⎞
⎠ (2.13)

Non-Local Band-to-band Tunneling Model

The local models such as the ones presented above have the problem of grossly overestimating

the current when the electric field rapidly changes over relatively small distances. In order to

overcome this issue within the semiclassical framework, the so-called non-local models were

introduced [57, 58]. The particular aim in these models was to introduce the creation of carriers

at either side of the tunneling barrier, in contrast to the local models which unphysically assign

electron and hole generation at the same position.

As an illustrative example, a non-local direct BTBT model based on Kane’s two band dispersion

could be derived by obtaining an analytical expression for the imaginary dispersion κ inside

the forbidden gap, by writing the inverse of Eq. 2.10:

κ= 1

�

√
mrEG

(
1−α2

)
(2.14)

α=− m0

2mr
+2

√
m0

2mr

(
E −EV

EG
− 1

2

)
+ m2

0

16m2
r
+ 1

4

We assume that the tunneling path connects the points xi and x f which denotes the initial and

the final positions of the carrier and EV(xi ) = EC(x f ). Making use of Eqs. 2.9 and noting that

only small k⊥ provide high contribution to the tunneling, we can write Im(kx ) =
√

κ2 +k2
⊥ �
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κ+ |k⊥|2
2κ . We therefore find:

T = π2

9
exp

⎛
⎝−2

x f∫
xi

Im(kx )d x

⎞
⎠ (2.15)

= π2

9
exp

⎛
⎝−2

x f∫
xi

κd x

⎞
⎠exp

⎛
⎝−|k⊥|2

x f∫
xi

d x

κ

⎞
⎠ (2.16)

To keep the computation tractable, the tunneling path is computed for k⊥ = 0. Putting the

expression into Eq. 2.8 and performing the k⊥ integral, we have:

GBTBT(xi ) =|∇EV(xi )| q

36�

⎛
⎝ x f∫

xi

d x

κ

⎞
⎠
−1⎡
⎣1−exp

⎛
⎝−k2

m

x f∫
xi

d x

κ

⎞
⎠
⎤
⎦exp

⎛
⎝−2

x f∫
xi

κd x

⎞
⎠( fc(E)− fv(E)

)
(2.17)

with EV(xi ) = EC(x f ) = E which is precisely the formula used in the commercial simulator

Sdevice [57].

In this model, the non-locality is achieved by attributing a trajectory to the carriers within

the classically forbidden region. Different schemes have been proposed such as the carrier

following the gradient of the energy band [57], or using a predefined tunneling direction [59].

The problem with this approach is that the results depend on scheme employed [59] and it is

not obvious which trajectory provides best approximation of this quantum phenomenon.

Pan’s Model

Pan et al. [60, 61] generalized the results obtained by Kane for bulk semiconductors (i.e.,

two dimensional transverse k-space) to 2D and 1D cases (i.e., one dimensional and zero

dimensional k-space, respectively). They obtain the following expression where d is the

number of dimensions of the device:

J = q

π�

∫ dkd−1
⊥

(2π)d−1

∫
dET (E ,k⊥)

[
fc(E)− fv(E)

]
(2.18)

= A(F )

ΔE∫
0

dE exp(−B

F
)
[

fc(E)− fv(E)
]

(2.19)

with a modified B = Bbulk

(
Eg,QC

EG

)2
parameter due to inclusion of non-parabolicity and higher-

order band coupling effects. Moreover, the A parameter is calculated for each dimensionality
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by properly integrating along the transverse k-space:

A2D = q
√

mrEg ,QC

18�2

[√
qπF

4B
+0.185

(
qF

B

)1.2
]

(2.20)

A1D = 2qπ2

9h
(2.21)

Note that the model presented here is a local model, but the same modifications can be carried

over to non-local models as well.

Carrillo-Nuñez Model

Carrillo-Nuñez et al. [62] also proposed a BTBT model based on multi-band envelope function

formalism for bulk, 2D and 1D gases. Unlike the approach we will follow in this thesis, they

utilize a Landauer-based formula (similar to Eq. 2.3) with a tranmission coefficient that is

obtained from the coupling constant MCV, which is equivalent to our Fermi’s Golden Rule

based expressions [62]. The overall BTBT current is then calculated using the Landauer

formula (similar to Eq. 2.4). Note that this model considers the anisotropic coupling of the

conduction and valence bands which introduces a dependence of the band coupling element

on the wave-vector direction (more details will be provided in section 3.5.3).

2.3.2 Phonon-Assisted Band-to-Band Tunneling Models

Phonon-assisted tunneling occurs in indirect gap materials whose conduction band minima

do not lie at �k = 0 such as Si or Ge. Keldysh [63] first proposed an expression describing

the phonon-assisted BTBT by making use of the perturbation theory. Later on, one of the

first non-local BTBT models has been proposed by Tanaka for phonon-assisted (and direct)

tunneling [58]. In this model, the interband coupling due to electron-phonon interaction in

deformable ion model is used to interband coupling elements of the Wannier formula. The

wavefunctions are obtained patching the plane wave solutions (classically allowed region)

with decaying components (classically forbidden region) using the WKB approximation.

Vandenberghe Model

A recent model that is applicable for non-uniform and 1D, 2D and 3D potential profiles

considering quantization has been proposed by Vandenberghe et al. [64, 65, 66]. The approach

makes use of the diagonal entries of the spectral functions that contain information about the

energy spectrum and the envelope function information of the states and are defined as:

Acα(�r ,�r ,E) = 2π
∑
k
Ψ∗

kα(�r )δ(E −Ekα)Ψkα(�r ) (2.22)
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where Ψkα is the wavefunction, Ekα is energy eigenvalue corresponding to Ψkα, k is the

subband index (quantum number), α is the valley index.

The total phonon-assisted tunneling current is evaluated by first calculating the transmission

coefficient over energy:

T abs,em
v (E) =Ω|M ′

k0
|2 ∑

α,α′

∫
Avα′(�r ,E)Acα(�r ,E ±Eph)d 3r (2.23)

where

Ω|M ′
k0
|2 =

D2
ph�

2

2ρEph
(2.24)

Here, Dph, Eph = �ωk0 is the deformation potential and the energy of the phonon correspond-

ing to the crystal momentum offset of conduction and valence bands [64, 65, 66] considered

respectively and ρ is the density of the material. Then, the phonon-assisted BTBT current is

calculated as the summation of phonon emission and absorption terms:

Jph =2q

�

∫
dE

2π
· ({ fv(E)[1− fc(E −�ωk0 )][ν(�ωk0 )+1]

− fc(E −�ωk0 )[1− fv(E)]ν(�ωk0 )}T em
v (E)

+ { fv(E)[1− fc(E +�ωk0 )]ν(�ωk0 )

− fc(E +�ωk0 )[1− fv(E)][ν(�ωk0 )+1]}T abs
v (E)

)
(2.25)

where fc,v are the Fermi-Dirac distributions of the conduction and valence bands, respectively,

ν(�ωk0 ) is the number of phonons calculated as evaluating the Bose-Einstein distribution

function at �ωk0 . In this thesis, we have utilized Vandenberghe model for our simulations

which will be presented in the subsequent chapters.
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3 Quantum Mechanical Models for
Band-to-band Tunneling Devices

This chapter describes the numerical simulator built for the quantum mechanical simulation

of tunnel FETs. Different variants of the code, their features and limitations are explained in

detail.

At the early stages of the semiconductor industry, models used by the device engineers were

mostly analytical derived from the underlying fundamental physical relations. With the in-

creased computational power brought by computers during the 1960s [67], first numerical

simulators emerged based on the drift-diffusion equations [68]. This framework served the in-

dustry very well during the ’happy scaling era’ [19] where quantum effects and off-equilibrium

transport were mostly negligible and the semiclassical approach remained valid.

However, as the device dimension scaling continued, the semiclassical approach commonly

employed by commercial TCAD tools started to breakdown at narrow dimensions (i.e., thin

semiconductor films) and under high electric fields. To address this issue, the wave property

of the electrons needed to be taken into account. Today, this is almost always done by solving

directly the Schrödinger equation, which is the wave equation for electrons and holes. To

obtain the correct electrostatics within the device, Schrödinger equation is coupled with the

usual Poisson equation that governs the relationship between the potential profile and carrier

concentrations. Methods such as tight-binding NEGF [14], DFT-NEGF [69], k ·p-NEGF [70],

wavefunction formalism [71] and Wigner function formalism [72] are wide spread and popular

frameworks for quantum transport.

Simultaneously with the necessity of quantum mechanical tools that go beyond the semi-

classical approximation, the need for accurate band-to-band tunneling models is also am-

plified. This is justified by two pressing needs: the first one is that in ulta-scaled modern

MOSFETs, band-to-band tunneling start to have a significant impact on the OFF state currents.

The second one is the emergence of band-to-band tunneling devices such as TFETs as next

generation low supply voltage switches due to incompressibility of the switching slope of

MOSFETs.
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Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

3.1 Effective Mass Approximation: Different Boundary Conditions

While the full-quantum methods mentioned above are very accurate, they come at a costly

price. The computational requirement for the simulation of a single device become prohibitive

for parameter analyses etc. unless you have access to a high performance computer with 1000s

of CPUs. A compromise can be achieved between accuracy and simulation time by solving the

Schrödinger equation using the effective mass approximation, in which a parabolic dispersion

relation is usually assumed. Quantum mechanical methods that are based on the single-band

effective mass approximation can be considered as a ’sweet spot’ in terms of accuracy and

computational requirements (see Fig. 3.1).

Semiclassical

Accuracy

Simula�on Time

Closed 

Boundary 

Effec�ve Mass 

QM +

Nonparabolicity

Open 

Boundary 

Effec�ve Mass- 

NEGF

k.p

TB-NEGF

Figure 3.1 – The spectrum of computational load and accuracy of different simulation ap-
proaches. While TB-NEGF atomistic approach provides very good accuracy, it is also very
costly in terms of memory and CPU power.

Another important question concerns the boundary conditions employed when simulating the

device. Essentially, we can have open or closed boundaries. Non-equilibrium Green’s function

(NEGF) formalism [73] is an extremely popular approach that considers open boundaries

for the Schrödinger equation. Another prominent approach is the wavefunction formalism

(also known as quantum transmitting boundary method [74]). Here, the open boundary

means that certain boundaries of the device (i.e., the contacts) are assumed to be connected

to semi infinite leads that have constant potential along the wave propagation direction.

Under this assumption, the wave function inside the device is patched up to the outside

plane wave solutions. Employing open boundaries requires the solution of the system of

equations for a continuum of energies of the incoming wave, which needs to be discretized

and solved (preferably in parallel). This, however, generally results in a high computational

burden stemming from this solution procedure that needs to be repeated for a large number of

incoming wave energies. This concern is partially addressed by employing more complicated

techniques such as mode space solutions [75] and using algorithms that allows for massive

parallelism [76].

The approach that we will follow in this thesis, on the other hand, assumes closed boundaries.
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3.1. Effective Mass Approximation: Different Boundary Conditions

This assumption results in a closed system, where the energies are now quantized. The

eigenvalues of the Hamiltonian matrix now gives the quantized energies of the subbands and

the eigenvectors are the wave functions [77]. Hence, the equation system is solved only once as

a standard eigenvalue problem. It must be noted that in theory the transport in an electronic

switch must be modeled with an open boundary model, since closed systems by definition

cannot account for carrier transport. However, we can get a fairly good approximation of the

open boundary results by employing artificially extended source and drain regions to imitate

the semi-infinite nature of the contacts. Fig. 3.2 compares the charge distribution and the

electrostatics of a nano-scale Si MOSFET simulated with open (using NEGF following [6])

and closed boundaries. Note the artificial bending of the bands and peaks of charge density

around at the source and drain electrode regions, caused by the vanishing wavefunction at the

boundary, but the effect decays very quickly and does not have any impact whatsoever on the

electrostatics in the active device regions. Further comparison in terms of BTBT current will

be shown for various instances in the following sections.
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Figure 3.2 – Conduction band (upper) and Charge density profiles (bottom) for a Silicon DG-
MOS. (Left) Closed boundary system (Right) Open boundary system implemented following
[6]. For VGS = 1V and VGS = 0V.
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Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

In this following sections, two different versions of the effective mass Schrödinger-Poisson

solver will be described in detail. The 1D version solves the device electrostatics on a 1D

line, thus assuming 1D quantization and 2D carrier gases. It is used in the thesis as a tool

for extensive parameter space simulations and optimization of intrinsic device performance.

It also incorporates non-parabolicity corrections which extend the region of validity of the

effective mass approximation. The 2D version, on the other hand, is based on the parabolic

bands and requires more computational power. It is able to capture 2D quantum effects

that cannot be adequately captured by the commercially available TCAD simulators [57],

however lacks the advanced non-parabolicity correction models used in the 1D simulator

(due to the difficulties to be mentioned in the section 3.4). Due to this, it is not particularly

suitable for simulations utilizing lower bandgap materials such as InAs which exhibit very

strong non-parabolic effects around the conduction band minimum.

We note that phenomena such as trap-assisted tunneling [78] and band tails in the energy

gap [39], that may have a significant impact on the experimental TFET devices are not in-

cluded at present in the simulation model. Trap-assisted tunneling due to the traps on the

semiconductor-oxide interface as well as on the hetero-junction interface are recently shown

to be critical to achieve optimum device performance [79]. Band tails occur due to the disloca-

tions found in the crystalline structure and doping [80].

3.2 1D Quantization Model

Our 1D implementation solves the effective mass Schrödinger and Poisson equation self-

consistently in a one dimensional slice of semiconductor for both electrons and holes. A

simulation flow is given in Fig. 3.3. The quantization direction is assumed to be the z-

direction, with the transverse x y-plane assumed to be extending to infinity with a potential

profile assumed to be constant along the x y-plane i.e., V (�R) =V (z). The differential equations

are discretized using the Finite Difference Method (FDM) which is a well-established method

[81] that allows the treatment of non-homogenous systems (e.g., heterojunctions). Since we

assume constant potential along the x y-plane, we can separate the 3D wavefunction Ψ(�R) as

Ψ(�R) =ψ(z)ei�k·�r where�r is a vector in the x y-plane. Therefore, we are left with the solution of

the envelope equation along the z-direction. In the quantization direction z, the envelope

equation for the kth wavefuction residing in the band and valley α reads:

[
∓�

2

2
∇· 1

mz,α(z)
∇+E(C,V)(z)

]
ψlα(z) = Elαψlα(z) (3.1)

where mz,α is the effective mass in the quantization direction, E(C,V)(z) are the conduction

and valence band profiles respectively. The effective mass Schrödinger equation is solved for

each electron valley, heavy hole and light hole bands. The wavefunctions ψlα(z) and subband
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Schrodinger 

Equation

Poisson 

Equation

V(r)

n(r,Ψlα,Elα )

p(r,Ψlα,Elα)

BTBT 

postprocessing

Direct  BTBT

Phonon-

assisted 

BTBT

Ψlα, Elα

Self-

Consistent 

Loop

Postprocessing

Figure 3.3 – Simulation flowchart for the self-consistent Schrödinger - Poisson loop and the
BTBT post-processing step.

energies Elα are then used to obtain the carrier concentrations as [77]:

n(z) = ∑
α∈c

∑
l
ψ∗

lα(z)ψlα(z)nlα

p(z) = ∑
α∈v

∑
l
ψ∗

lα(z)ψlα(z)plα (3.2)

where nlα and plα terms are the electron and hole occupation terms of their respective l th

subbands, which can be calculated as a zeroth order Fermi integral:

nlα = gαmx y,α

π�2

∫∞

Elα

1

1+e
E−EFn

kBT

dE

= gαmx y,α

π�2 F0

(
EF n −Elα

kBT

)
= gαmx y,αkBT

π�2 ln

(
1+e

EFn−Elα
kBT

)

plα = gαmx y,αkBT

π�2 ln

(
1+e

Elα−EFp
kBT

)
(3.3)

In the above equation, mx y,α is the density of states effective mass in the transverse direction

(x y-plane) and gα is the valley degeneracy factor. mx y,α is related to the principal masses of

23



Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

the equi-energy ellipsoids with: mx y,α =�
mx,αmy,α [82]. Note that Eq. 3.3 assumes parabolic

bands, which may not be suitable for semiconductors that exhibit strong non-parabolicity

in their conduction band such as InAs. We will detail in Section 3.4 the non-parabolicity

corrections to the DOS and wavefunctions which will have a considerable impact on the device

characteristics. We also note that we do not consider the complex warped band structure of

holes but utilize instead parabolic bands with hole density of state masses.

The calculated quantum mechanical charge densities are then fed into the right hand side of

the Poisson equation, which reads:

−∇·ε(z)∇V (z) = ρ(z)

=−qn(z)+qp(z)−qNA +qND (3.4)

where ε(z) is the dielectric permittivity of the material, ρ(z) is the total charge density, NA

and ND are acceptor and donor concentration respectively. V (z) is then updated by solving

3.4 with the newly calculated charge density. This loop is continued until the convergence

is reached. The solution of the Poisson equation is achieved through a non-linear Newton’s

method that has the property of global convergence [83] which was indeed observed to be

almost independent on the initial guess in the simulations. The electrostatic potential is

updated in each iteration through the following relation:

−→
V (n+1) =−→

V (n) +TK
−→
δV (3.5)

where
−→
V (n) and

−→
V (n+1) are the n and n +1st iteration vectors containing the electrostatic po-

tential values for each position in the grid, TK is a damping parameter to improve convergence

which is updated in each iteration according to the algorithm [83] and
−→
δV is the update vector

in the electrostatic potential. As usual in Newton’s method,
−→
δV is obtained by solving the

Jacobian:

−→
δV =−J−1−→H (n) =−(A−δRHS)−1

(
A
−→
V (n) −−−→

RHS
)

(3.6)

here, J is the Jacobian matrix containing the first order partial derivatives of the error term(−∇·ε(z)∇V (z)−ρ(z)
)

w.r.t. electrostatic potential in each grid position. A is the tridiagonal

matrix for the Laplacian operator approximated in FDM, δRHS is the derivative matrix of the

right-hand side of the Poisson’s equation,
−−→
RHS is the right-hand side of Poisson equation.

Finally
−→
H (n) is the error term between the left- and right- hand sides of the Poisson equation.

The diagonal of the δRHS matrix is calculated from Eq. 3.2 (the other terms are 0):

diag(δRHS) = δRHS(z) = ∂
−−→
RHS

∂V
=−∑

α∈c

∑
l

qgαmx y,α

π�2 ψ∗
lα(z)ψlα(z)

1

1+e
EFn−Elα

kBT

− (3.7)

∑
α∈v

∑
l

qgαmx y,α

π�2 ψ∗
lα(z)ψlα(z)

1

1+e
Elα−EFp

kBT
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3.2. 1D Quantization Model

Since the current is computed in a post-processing step and not included in the self-consistent

loop, it is implicitly assumed that electron and hole distributions are at equilibrium with the n-

region and p-region contacts, respectively, which translates into EFn =−qVD and EFp =−qVS.

It is thus safely assumed that, due to the low current levels inside the device, tunneling

generation does not appreciably alter the charge distribution in the low voltage regime.

For the numerical discretization, we define our device structure as a finite number of discrete

points (say M) along the z axis, denoted as z1, z2 . . . zm . . . zM . We call the spacing between each

sequential point as Δ1,Δ2 . . .Δm . . .ΔM−1 and we also discretize h(z) as h1,h2 . . .hm . . .hM . The

Laplacian terms ∇·h(z)∇ discretized using the three-point stencil have the familiar tridiagonal

shape for both Schrödinger and Poisson equations [77]:

Am,m−1 = hm−1 +hm

Δm−1 (Δm−1 +Δm)
, Am,m+1 = hm+1 +hm

Δm (Δm−1 +Δm)
, Am,m =−Am,m−1 −Am,m+1

(3.8)

where we replace h(z) with ε(z) and 1
mz (z) for Poisson and Schrödinger equations, respectively.

Another peculiar aspect while coupling Schrödinger and Poisson equations is the inherent

instability of the linear loop which severely degrades convergence [84]. So, we have utilized the

non-linear predictor-corrector coupling scheme proposed by Trellakis et al. [84], which makes

the charge density and its derivative dependent on the voltage step between the successive

solutions of the electrostatic potential. Doing so provides significant stability as well as a

dramatic increase in convergence rate [84]. While the scheme is extremely effective, it requires

very little modification to the original self-consistent scheme. We simply replace the right-

hand side by:

nlα = gαmx y,αkBT

π�2 ln

(
1+e

EFn−ΔE−Elα
kBT

)

plα = gαmx y,αkBT

π�2 ln

(
1+e

Elα+ΔE−EFp
kBT

)
(3.9)

where ΔE = E (n+1)
C (z)−E (n)

C (z) = E (n+1)
V (z)−E (n)

V (z). The derivative of the right-hand side is

also modified as follows:

δRHS(z) = ∂
−−→
RHS

∂V
=−∑

α∈c

∑
l

qgαmx y,α

π�2 ψ∗
lα(z)ψlα(z)

1

1+e
EFn−ΔE−Elα

kBT

−

∑
α∈v

∑
l

qgαmx y,α

π�2 ψ∗
lα(z)ψlα(z)

1

1+e
Elα+ΔE−EFp

kBT

(3.10)

Once the self-consistency is achieved, the band-to-band tunneling current is calculated as

a post-processing step using the numerically calculated wavefunctions. We use the model

proposed by Vandenberghe et al. (described in the section 2.3.2 in the previous chapter) for

phonon-assisted BTBT. In the specific case of 1D quantization, the diagonal elements of the
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spectral functions (Eq. 2.22) are given as:

Acα(z,E) = gαmx y,α

�2

∑
l
ψ∗

lα(z)ψlα(z)Θ(E −Elα)

Avα(z,E) = gαmx y,α

�2

∑
l
ψ∗

lα(z)ψlα(z)Θ(Elα−E) (3.11)

where z is the quantization direction, Θ(E) is the step function given by the step-like 2D

DOS. Since wavefunctions ψ are assumed k⊥ independent, the spectral functions essentially

reduce into summations of various subband 2D DOS functions weighted by the probability

distribution of carriers ψ∗
lα(z)ψlα(z) = ∣∣ψlα (z)

∣∣2. Once the diagonal elements of the spectral

functions are obtained, the phonon-assisted BTBT current is obtained by calculating Eqs. 2.23

- 2.25. For direct BTBT, we utilize Schenk or Bigelow models (will be detailed in the following

sections). We also implemented a gate leakage model based on NEGF which is detailed in

Appendix C.

Additionally, due to being a 1D model, only tunneling along the 1D slice is accounted for.

The inability to incorporate 2D effects such as lateral tunneling, the short channel effects etc.

limits the use of the 1D model to a few specific devices that are essentially 1D in nature. These

devices include p-n tunneling diodes in the reverse bias region. The electron hole bilayer

TFET can also be simulated using this model to estimate the vertical tunneling onset voltage

and the ON current levels but one must be aware of the limitations of the model.

3.3 2D Quantization Model

The 2D version of the code follows the same program flow as in the 1D version (Fig. 3.3). The

2D code simulates a 2D cross section of the device which is assumed to be infinite in the width

direction y . The difference compared to 1D case is that since the simulation domain is 2D, the

potential is V (x, y, z) =V (x, z) i.e., the potential is assumed uniform along only the y direction.

Similarly, we separate the overall 3D wavefunction as Ψ(�R) =ψ(�r )e−i �ky ·�y . The wavefunctions

are found as the eigenvectors of the time independent, effective mass Schrödinger equation

for both holes and electrons:[
∓∇· �

2

2
[mα]−1∇+E(c,v)(�r )

]
ψlα(�r ) = Elαψlα(�r ) (3.12)

where α, l and [mα]−1 indicates the valley index, ladder index and the inverse effective mass

tensor, respectively. The anisotropy of the conduction band valleys is taken into account

through the 2× 2 inverse effective mass tensor [85, 86] with the elements to describe the

equi-energy ellipsoids of the conduction band [87]. While our code can handle the cases

where the device coordinate domain does not align with the principal axes of the ellipsoids (in

which case the mass tensor contains non-diagonal terms), we utilize the method proposed

in [87] to diagonalize the mass tensor. The quantum mechanical carrier distribution is then
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3.3. 2D Quantization Model

calculated as:

nq (�r ) = ∑
α∈c

∑
l

gα

√
2mα,⊥kBT

π2�2 ψlα(�r )ψ∗
lα(�r )F−1/2

(
EF n −ΔE −Elα

kBT

)
(3.13)

pq (�r ) = ∑
α∈v

∑
l

gα

√
2mα,⊥kBT

π2�2 ψlα(�r )ψ∗
lα(�r )F−1/2

(
Elα+ΔE −EF p

kBT

)
(3.14)

where F−1/2 is the complete Fermi-Dirac integral of order −1/2 and mα,⊥ is the effective mass

in the y direction since the transverse k-space is now 1D. Similar to the 1D case, we define

ΔE = E (n+1)
C (�r )−E (n)

C (�r ) = E (n+1)
V (�r )−E (n)

V (�r ). We use the same globally convergent Newton’s

method algorithm for the solution of coupled partial differential equations [83]. For the

solution of the nonlinear system of equations, the iteration scheme proposed by Trellakis

et al. [84] has been used as done in the 1D version. We use COMSOL [88] to generate the

device structure and export the first order triangular mesh as an ASCII file, which we import to

MATLAB to assemble the mass and stiffness matrices (details below), compute the right hand

sides [89] and then solve the linear system of equations. The δRHS term is given as [84]:

δRHS(�r ) = ∂
−−→
RHS

∂V
=−∑

α∈c

∑
l

gαq

√
2mα,⊥

π2�2kBT
ψlα(�r )ψ∗

lα(�r )F−3/2

(
EF n −ΔE −Elα

kBT

)
−

∑
α∈v

∑
l

gαq

√
2mα,⊥

π2�2kBT
ψlα(�r )ψ∗

lα(�r )F−3/2

(
Elα+ΔE −EF p

kBT

)
(3.15)

where F−3/2 is the complete Fermi-Dirac integral of order −3/2. Similar to the 1D version, we

calculate BTBT as a post-processing step using the 2D versions of Vandenberghe (phonon-

assisted BTBT) and the direct BTBT models that will be detailed in section 3.5, respectively.

For the Vandenberghe method, the spectral functions in the case of 2D quantization are given

as:

Acα(�r ,E) = gα

2π

√
m⊥,α

2π2�2

∑
l
ψ∗

lα(�r )ψlα(�r )
1√

E −Elα

Θ(E −Elα)

Avα(�r ,E) = gα

2π

√
m⊥,α

2π2�2

∑
l
ψ∗

lα(�r )ψlα(�r )
1√

Elα−E
Θ(Elα−E) (3.16)

similar to the 1D version, once the diagonal elements of the spectral functions are obtained,

the phonon-assisted BTBT current is obtained by means of Eqs. 2.23 & 2.25.

We used finite element method (FEM) to discretize the partial differential equations, the

reason being that FEM can naturally account for non-rectangular, complicated geometries

which will be critical in our analyses in the following chapters. We provide here a brief outline

of how PDEs can be formulated in FEM. We first define the Laplacian operator by Δu = ∂u
∂x + ∂u

∂y .
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Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

A generic PDE is given in its strong form by [89]:

−Δu +cu = f in Ω

u = g0 in ΓD

n̂ ·∇u = g1 in ΓN (3.17)

where Ω denotes the region where the function u is a free quantity, ΓD,N denotes the bound-

aries with Dirichlet and von Neumann conditions, respectively. We note the possibility of

having multiple boundary regions with different Dirichlet and Neumann conditions. The weak

formulation [90] of the same problem is then given by:∫
Ω
∇u ·∇v +c

∫
Ω

uv =
∫
Ω

f v +
∫
ΓN

g1v (3.18)

where v is a testing function that is 0 at ΓD . We then discretize the PDE domain with a finite

number (say N ) of non-overlapping triangles (other elements such as rectangles or a combi-

nation is certainly possible). We then approximate the integrals in the weak formulation with

the help of a local test function that defined for each point i in the triangulation ϕi which has

the property of being 1 at point i and linearly decreasing to 0 to each of the connected neigh-

boring points. We also replace the continous function u with its discretized approximation

using the basis function ϕ: ũ =∑
i
ϕi ui where ui = u at point i . The discretization of the weak

formulation for each point i is then [89]:

∑
j∈Ω

(∫
Ω
∇ϕ j ·∇ϕi +c

∫
Ω
ϕ jϕi

)
u j =

∫
Ω

f ϕi +
∫
ΓN

g1ϕi︸ ︷︷ ︸
bi

− ∑
j∈ΓD

(∫
Ω
∇ϕ j ·∇ϕi +c

∫
Ω
ϕ jϕi

)
g0( j )

(3.19)

We note that the above set of equations can be written as a linear system of equations where

each of the terms are computed per element and all the contributions from each of the

elements for a point i are added up. This process is called assembly [91] where we define

the Wi j =
∫
Ω∇ϕ j ·∇ϕi as the stiffness matrix and Mi j =

∫
Ωϕ jϕi as the mass matrix [89]. The

overall system of equations is:

∑
j∈Ω

(
Wi j +cMi j

)
u j = bi −

∑
j∈ΓD

(
Wi j +cMi j

)
g0( j ) (3.20)

where W and M both form matrices of size N ×N . Note for the case of the Poisson equation,

M = 0. For the eigenvalue problem (Eq. 3.12 in the same form as Eq. 3.17), the discretized set

of equations with eigenvalues λ are:

∑
j∈Ω

(
Wi j +cMi j

)
u j =λ

∑
j∈Ω

Mi j u j (3.21)

28



3.4. Non-parabolicity Corrections

W−→u =λM−→u (3.22)

which is a generalized eigenvalue equation. Note that in our case, c does not have to be a

constant and therefore needs to be included inside the mass matrix integral, which we did not

in our description for the sake of clarity. W and M are symmetric matrices, so the eigenvalues

of this system are real, corresponding to the quantized energies of the Schrödinger equation.

It should also be noted that care must be taken with the quasi-bound states that are also the

solutions of the closed-boundary Schrödinger equation. Typically, they occur in channel re-

gions under relatively high biases and they are not connected to the source or drain electrodes

because their energy is lower than the first mode entering/exiting into/from the device. In

the steady-state operation, they are stationary hence do not contribute to the current [92],

however they are occupied due to their subband energy levels and therefore they need to be

included when calculating the charge distribution controlling the electrostatics. We overcome

this problem by discarding the states which has less than 10% of their probability distribu-

tion (i.e, |ψ|2) in the source/drain regions in the BTBT postprocessing step, or expressed

mathematically (for electrons, dual expression applies for holes):

∫
DRAIN

∣∣ψ∣∣2 d 2�r

∫
TOTAL

∣∣ψ∣∣2 d 2�r
< 0.1 (3.23)

3.4 Non-parabolicity Corrections

While approximating the dispersion relation around the conduction minima with a parabolic

approximation holds valid for relatively larger bandgap materials (e.g., Si) with bulk structures

[93], the strength of non-parabolicity becomes non-negligible for low bandgap materials (such

as InAs) and deep nano-scale devices due to energy quantization. In these cases, the energy

dispersion relation starts deviating from the parabolic relation. While higher order models

such as k ·p can account naturally for these effects [94], non-parabolicity corrections can also

be applied to the effective mass approximation to extend its range of validity [95]. Analytically,

this band relationship can be written (for isotropic valleys) as [96]:

E(1+αNPE) = �
2k2

2m∗ (3.24)

where αNP is the non-parabolicity coefficient (unit inverse energy eV−1, J−1). Qualitatively, a

higher αNP corresponds to lower quantization energies and higher density of states.

More specifically, non-parabolicity corrections affect the following four quantities in tunneling

devices:

1. decrease of quantized energies compared to parabolic approximation, that lowers the
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Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

voltage required for subband alignment in structures such as the EHBTFET [97],

2. increase of the transverse DOS, hence the carrier occupation of the valley,

3. ‘heavier’ effective masses [98], that decrease the amount of WF overlap between the

electron and hole states,

4. increase in (similar to the point 2) the ‘joint density of states’ available for tunneling that

goes as 1
dEe
dk + dEh

dk

(evaluated at the transverse wave-vector kT which fulfills simultaneous

conservation of total energy and transverse momentum, we will go into more details for

this in section 3.5.4).

In this thesis, two different non-parabolicity correction methods have been implemented

and utilized. Jin’s model applies corrections only to the subband energies, whereas Troger’s

method is a more comprehensive one that also provides non-parabolicity corrections to the

wavefunctions, which is critical when estimating the coupling between the conduction and

valence band states for BTBT current estimation. We utilize Troger’s method to obtain the

self-consistent solution (i.e., nonparabolic WF computation and charge calculation) and use

Jin’s method in the postprocessing step to obtain the nonparabolic transverse dispersion

relations required to compute the BTBT rate.

Jin’s Method

Jin proposed his correction expression as a phenomenological solution to the problem of

obtaining a tractable solution to the non-parabolic subband energies [99]. The expression for

subband minimum energy (i.e., k = 0) is given as:

E NP
μ =Uμ+

−1+
√

1+4αNP
(
E P
μ−Uμ

)
2α

(3.25)

where Uμ is the ’expected value of potential energy’ [99] given as Uμ =
∫∣∣∣ψP

μ

∣∣∣2 U (z)d z and

the E P
μ is the eigenvalues of the parabolic effective mass Hamiltonian. This expected value

calculation makes use of the fact that quantized states are normalized, therefore can be

interpreted as probability density functions for the physical quantities related to the electron

(in this case the potential energy ’felt’ by the electron).

The model also provides a formula for non-parabolic inverse dispersion relation, given as [99]:

k(E) = �
−1

√
2m⊥

[
E −E P

μ+αNP
(
E −Uμ

)2
]

(3.26)

One should note that the model is fairly efficient in terms of computational requirements, as

it only requires calculation of the expected values and a few simple mathematical operations.
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3.4. Non-parabolicity Corrections

Since the model modifies the subband energy and provides an analytical E-k relation, it can

cover the points 1, 2, and 4 of the list above. The modification of the wavefunctions cannot be

estimated by this method which we will demonstrate below to be a critical shortcoming.
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Figure 3.4 – Example of a case where non-parabolicity corrections dramatically alters the
wavefunction in InAs. The black lines indicate the potential profile whereas blue (red) lines
indicate the corresponding energy levels and wavefunctions for parabolic (non-parabolic)
case. zi indicates the classical turning point of the quasi-bound state, beyond which the
non-parabolic wavefunction decays exponentially. Note that the potential profile is artificial
for illustrative purposes and the non-parabolicity parameter αNP was set to 5eV−1 in this
simulation to amplify the separation of the quantized energy levels.

We should note here that while Jin’s method is efficient and accurate enough for materials with

relatively lower conduction band non-parabolicity, the fact that it only provides corrections

to the quantized energies and not the wavefunctions prohibits its usage in materials such as

InAs. To illustrate this, let us consider a toy example where we would like to find the quantized

energies and wavefunctions of a triangular potential well from the dielectric/semiconductor

interface up to a position zc (see Fig. 3.4). We start from the quantized conduction band states

obtained from the parabolic Hamiltonian which (in this example) predicts an unbound state

that extends into the region z > zc (ψp , Ep pair, blue curves Fig. 3.4). If we now calculate the

non-parabolicity corrected energy levels, we find that the corresponding subband is actually

quasi-bound (ψnp , Enp pair, red curves Fig. 3.4). Jin’s method, however, takes into account

only the corrections to the subband energy (i.e., it only calculates Enp ) whereas it does not

change ψp . One can easily note the dramatic difference of the parabolic (does not decay in

the forbidden region z > zi ) and actual non-parabolic wavefunctions (decays in z > zi ). In this

case, using non-parabolicity corrections only to the subband energies would result in utilizing

an unbounded state instead of a quasi-bound one and therefore result in a gross error when

evaluating physical quantities related to the wavefunction (charge and current).
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Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

We detail another method that is able to calculate the non-parabolic wavefunctions in the

following section.

Troger’s Method

A more complete non-parabolicity correction method was proposed by Troger et al [100]. It is

based on a basis transformation of the real space wavefunctions onto another space whose

basis vectors are the eigenvectors of the parabolic kinetic energy operator:

T̂ = �
2k⊥

2m⊥
+ d

d z

1

mz

d

d z
(3.27)

The basis vectors are found as the eigenvectors of the sparse matrix T [100]:

Tum,k⊥ = Γm,k⊥um,k⊥ (3.28)

where m is the eigenvector index, um,k⊥ is the mth eigenvector and Γm,k⊥ is its corresponding

eigenvalue. Then, non-parabolicity is incorporated as a perturbation and the ’spectrum’ of the

non-parabolic wavefunction and the non-parabolic eigenvalue En,(k⊥) is found as the solution

of another (dense) eigenvalue equation [100]:

(
Tk⊥ +V

)
an,k⊥ = En,(k⊥)an,k⊥ (3.29)

where an,k⊥ is the spectral amplitudes of um components in the non-parabolic wavefunction.

Here the matrices T and V are the non-parabolic kinetic energy operator and the potential

energy operator transformed into the new basis space, whose elements are given by [100]:

Tn,m = 2Γn,k⊥

1+√1+4αNPΓn,k⊥
δn,m (3.30)

Vn,m =
∫

um,k⊥(z)V (z)un,k⊥(z)d z (3.31)

Finally, the obtained spectral amplitudes are reverted by to the real space by:

ψn,k⊥(z) =∑
m

am,k⊥um,k⊥(z) (3.32)

In comparison to Jin’s method, Troger’s method does not provide a closed form expression

for the inverse dispersion relation k(E). Instead, the k(E) is obtained by solving Eq. 3.29

for different k⊥ as an input to obtain the En,k⊥(k) (see Fig. 3.5). Consequently, Troger’s

method is more costly in terms of computational requirements compared to Jin’s method. Fig.

3.6 compares the dispersion relations obtained by Jin’s and Troger’s methods and a general
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Figure 3.5 – E-k relations obtained by Troger’s method for different subbands for an InAs
infinite square well (35nm well width, m∗

e = 0.025m0, αNP = 3.6eV−1).
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Figure 3.6 – Comparison of transverse dispersion relations obtained by Jin and Troger’s meth-
ods for an In0.53Ga0.47As quantum well (10nm well width m∗

e = 0.042m0, αNP = 1.5eV−1).

agreement between the two results is observed. Since the non-parabolic wavefunctions can

also be obtained using Eq. 3.32, all aspects of non-parabolicity corrections listed above are

covered by Troger’s method.

One critical problem arises when applying Troger’s method to 2D structures in the specific
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Figure 3.7 – (Left) Quantum well diode structure used for real-space wavefunction calculations
in 2D. (Right) The construction of the real space WF using different number of harmonics and
mesh sizes in the Troger’s method. Note that the quantity plotted here is the 1D cut through a
2D quantum well diode on the left subfigure.

case of TFETs (or any other BTBT device). In 2D, the number of basis vectors required to obtain

the real space wavefunctions becomes large. However, the amplitudes of higher order basis

vectors which determine the function tails in the forbidden region decrease quickly. In the end,

the tails of the constructed real space wavefunction is determined by a summation of many

basis vectors with very low amplitude and a few lower order ones with very high amplitude

i.e., it involves adding/subtracting very large numbers with very small ones. Since we use

finite-precision arithmetic, this results in severe loss of significance [101]. Hence, the accuracy

drops off rapidly and reconstruction of the tail of the real space wavefunction is not possible.

To illustrate this point, in Fig. 3.7(Right) we plot the case where we deliberately set αNP = 0

and compare the 1D cuts of WFs obtained by direct solution of the parabolic Schrödinger

equation (i.e., Eq. 3.1) and reproduced WFs using Troger’s method in the 2D code. While an

excellent agreement is obtained for the classically allowed region, it is evident that Troger’s

method quickly runs into a very high ’noise floor’ in the exponentially decaying tail, thereby

failing to reproduce the full WF.
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3.5. Direct Tunneling in Quantized Gases

3.5 Direct Tunneling in Quantized Gases

In the presence of quantization, different considerations need to be made depending on the

orientation of the simulation domain and the quantization directions. In our specific case of

closed boundary models, we always assume our simulation domain is bounded from all simu-

lated directions (i.e., we assume 1D quantization for the 1D simulator and 2D quantization

for the 2D one). For most of the figures in the thesis, the transverse direction is assumed to

extend to infinity. However, we also propose an extension of the code in which the transverse

direction has finite length in section 3.6.

For both 1D and 2D cases, we can write the following general expression of the direct BTBT

current density using the Fermi’s Golden Rule [37, 102, 15]:

J = 4πq

�

∑
l∈Γ

∑
α={HH,LH},l ′

∣∣∣M ll ′α
CV

∣∣∣2 JDOS(ET)
[

fc(ET)− fv(ET)
]

(3.33)

where the summation runs over all possible electron-hole subband pairs. Note that simultane-

ous conservation of total energy and transverse momentum (since direct BTBT is an elastic

process) results in a single tunneling energy ET and a single transverse k-vector magnitude kT

for each pair (see Fig. 3.8) rather than an integral over the entire tunneling energy window

as in phonon-assisted BTBT. Eq. 3.33 reveals that BTBT has three main components that are

beneficial to underline:

• The interband coupling element MCV: the strength of coupling between electron and

hole states. The main determinant for this quantity is the overlap of electron and

hole wavefunctions which, in turn, is determined by material properties (bandgap and

effective mass) as well as the device geometry and biasing. To a first order, this term is

independent of the dimensionality of the carriers; although, indirectly, improvements

in electrostatics provided by gate-all-around structures using nanowires etc. might have

an impact,

• The joint density of states JDOS(ET): the density of states of electrons and holes com-

bined that obeys the energy conservation during the tunneling event. Note that the

JDOS slightly differs from the usual DOS of a single carrier type that we use in charge

density calculations. The expressions depend on the dimensionality of the carrier gases.

More specifically, the dimensionality of the transverse k-space,

• Fermi supply term fc(ET)− fv(ET): This determines the occupancy of the electron and

hole states and it is critical to consider this factor, as neglecting it will result in unnatural

results such as having a non-zero current when VDS = 0 [16].

In the following subsections, we will dwell on two different methods implemented to calculate

the interband coupling coefficient MCV
1 in the presence of quantization.

1Note that we dropped the l l ′α indices for clarity in the remainder of the thesis.
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Figure 3.8 – Tunneling in the presence of 1D quantization (2D carrier gas) in which the
conduction and valence bands are quantized into subbands along the tunneling direction
with energies E e(h)

z . Tunneling then occurs at a single tunneling energy ET that corresponds to
the transverse wavevector kT that is the intersection of the transverse dispersion relations for
the electron and holes.

Another important point to note for tunneling in quantized gases is the gross asymmetry

between the effective masses of real and imaginary subband dispersions of the holes. While

quantization typically favors heavy hole subbands to contribute to the current, the imaginary

dispersion relation calculations [103] show that the effective mass for the imaginary band is

actually much closer to the light hole mass, which means that the interband coupling matrix

magnitude under quantization is close to the one in the bulk case [60, 61]. An efficient method

to account for this asymmetry will be given in section 3.7 for the 1D model.

Note that the models we describe here consider BTBT as a post-processing step after the elec-

trostatics is determined by the self-consistent solutions of Schrödinger and Poisson equations,

which is a reasonable assumption as long as the BTBT rate is not too high. This is different

with respect to the case of NEGF or full quantum transport formalisms, where transport and

electrostatics are inherently coupled.

3.5.1 Bigelow Model

In the case of quantization, additional considerations compared to the bulk case (e.g., model

described in section 2.3.1) are necessary since the carrier gases are not three dimensional

anymore. In the case of 2D gases (quantum wells), Bigelow et al. [102] developed a model that

is based on Bardeen’s Transfer Hamiltonian approach [104]. This approach exploits the fact

that at either sides of a potential barrier, the Hamiltonian and the wavefunction of the state

will tend to the ’isolated’ cases [15]. Based on this, the coupling element MCV is expressed as:

MCV =− �
2

2m

∫
[φe∇φh −φh∇φe] ·d�S (3.34)
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where �S is normal to the plane that separates the electron and hole systems and φe,h are the

electron and hole wavefunctions including the Bloch terms. Note that the necessity to separate

the overall device into two regions makes this model problematic to use in TFET simulations,

where the potential profile is often complicated and the procedure to divide the device into

two regions is not straightforward.

Using k ·p, theory Bigelow et al. [102] estimated the coupling matrix element as:

M 2
CV = �

2 EG

2m
δk⊥,k ′

⊥ψ
2
eψ

2
hC0(θ) (3.35)

where m = 2m∗
e m∗

h
m∗

e +m∗
h

. The product of slowly-varying envelope functions |ψeψh| is computed at its

point of maximum which is a somewhat arbitrary choice. An important difference compared

to the bulk case is that inclusion of the C0(θ) which accounts for the polarization dependence

of the coupling element in the presence of quantization [105] that we will discuss later.

Using parabolic bands, the two dimensional joint density of states (JDOS) that is available for

tunneling that preserves the tunneling energy ET is given by2 [106]:

JDOS2D(ET) = m

4π�2 Θ(El ′α−ElΓ) with ET = ElΓ+
�

2k2
⊥

2me
= El ′α−

�
2k2

⊥
2mh

(3.36)

so the overall expression using Bigelow’s coupling element for the 1D model is:

I 1D
Bigelow = qEGLGW

2�

∑
l

∑
α,l ′∈v

ψ2
lΓψ

2
l ′αC0,α(θ)

(
fv (ET)− fc (ET)

)
Θ(El ′α−ElΓ) (3.37)

where LG, W are the gate length (along direction x) and device width (along the direction y)

respectively. Note that the superscript 1D in Eq. 3.37 denotes the 1D model and not the 1D

current density.

The original Bigelow method was a 1D model. Here we propose a method to extend it to 2D.

The idea is to find the optimum contour line C between the electron and hole regions such

that it maximizes the overlap line integral g(C ′) of the electron and hole wavefunctions:

C = argmax
(
g(C ′)

)= argmax

⎛
⎝
⎛
⎝∫

C ′

ψl ′αψlΓdr

⎞
⎠2⎞⎠ (3.38)

2Strictly speaking, JDOS is a function of both the electron and hole subband energies ElΓ and El′αand not ET.
However, we prefer to use JDOS

(
ET
)

since it better describes the physical picture.

37



Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

So the coupling constant in 2D is then given as:

M 2
CV = �

2 EG

2m
δk⊥,k ′

⊥

⎛
⎝∫

C

ψl ′αψlΓdr

⎞
⎠2

C0(θ) (3.39)

The JDOS of electrons and holes combined available for tunneling is given by (for parabolic

bands) [107]:

JDOS1D (ET) = 1

2π

√
m

�2(El ′α−ElΓ)
Θ(El ′α−ElΓ) with ET = ElΓ+

�
2k2

⊥
2me

= El ′α−
�

2k2
⊥

2mh

(3.40)

Combining everything together, the 2D tunneling current expression is given by:

I 2D
Bigelow =∑

l

∑
α,l ′∈v

W qEG√
m(El ′α−ElΓ)

⎛
⎝∫

C

ψl ′αψlΓdr

⎞
⎠2

C0(θ)( fv(ET)− fc(ET))Θ(El ′α−ElΓ)

(3.41)

where W , EG, m, ElΓ are the device width, the bandgap of the semiconductor, the reduced

effective mass and the l th Γ electron subband energy, respectively. ET is the tunneling energy

that conserves both energy and momentum.

One very big problem about the Transfer Hamiltonian method in 2D is the non-trivial task of

separating the device into electron and hole regions for the devices such as the EHBTFET which

exhibit very complex potential profile, carrier density profiles and wavefunction shape being

dependent on the bias applied to the two gates. Other devices, such as line tunneling TFETs

which make use of the Van der Waals gap created by stacking two 2D materials [108], could be

more ideal for this model where the electron and hole regions are essentially separated by the

hetero-interface due to band offset between two materials.

Due to this reason, we have implemented another model that does not require this partitioning

which we will detail in the following section.

3.5.2 Schenk Model

To overcome the limitation of the Kane’s model described in section 2.3.1, Schenk proposed

a more generalized version [109], which could be utilized in non-homogeneous and strong

fields. The model estimates the transition probability using Fermi’s Golden Rule making use

of Kane’s two-band model. The model treats the electrostatic potential as a perturbation that

couples the conduction and valence band states.

In order to simulate quantized gases, we do the following: we take the coupling element MCV
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3.5. Direct Tunneling in Quantized Gases

calculated by Schenk, include the polarization dependence term to account for tunneling in

quantized gases and calculate the tunneling current using the general expression given in Eq.

3.33.

In his paper [109], Schenk calculates the coupling element as follows:

MCV = qxCV (0)δk⊥,k ′
⊥

∫
ψ∗

lΓ(z)|F (z)|ψl ′α(z)d z (3.42)

where xCV (0) =
√

�2

4mEΓ
G

is the momentum element of the Bloch functions given by Kane’s two

band model [109] and F (z) is the electric field.

In the case of quantization, to include the directionality dependence of the matrix element

that we mentioned earlier for Bigelow model and will discuss in detail in section 3.5.3, we

incorporate the C0 term into Eq. 3.42 as [7]:

MCV = qxCV (0)δk⊥,k ′
⊥

∫
ψ∗

lΓ(z)
√

C0(θ) |F (z)|ψl ′α(z)d z (3.43)

The overall current in 1D, similar to Bigelow’s method, is then given by [7]:

I 1D
Schenk =

4πW LG q

�

∑
l

∑
α={HH,LH},l ′

|MCV|2 m

4π�2 Θ(El ′α−ElΓ)
(

fc(ET)− fv(ET)
)

(3.44)

An important difference of the Schenk model compared to the approach of Bigelow model

is that it can be relatively easily extended to cover the cases where the electric field is non-

uniform in more than one dimension (i.e., planar TFETs [7]) or quantization is present in more

than one dimension (i.e., nanowire TFETs [62]). The main idea for extension to 2D (and the

same goes even for 3D as well) is to incorporate the direction dependence of the coupling

element into the electric field factor in Schenk’s MCV and change the JDOS expression to the

one for 1D transverse k-space (Eq. 3.40). The general expression for the current in 2D is given

as:

I 2D
Schenk =

4πqW

�

∑
l

∑
α,l ′∈v

|MCV|2 1

2π

√
m

�2(El ′α−ElΓ)
Θ (El ′α−ElΓ)

(
fc (ET )− fv (ET )

)
(3.45)

where the coupling element is defined as:

MCV = qxCV(0)δk⊥,k ′
⊥

∫
ψ∗

l ′α(�r ) |F (�r )|ψlΓ(�r )d 2�r (3.46)

Here |F (�r )| =
√

Fz (�r )2 C0z
(
θ,φ

)+Fx (�r )2 C0x
(
θ,φ

)
is the modified magnitude of the electric

field where Fx,z (�r ) are the x, z components of the electric field respectively. Since the integral

in Eq. 3.43 is an area integral over the entire device, there is no need to partition the device
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into two regions unlike Bigelow model. Moreover, compared to Bigelow’s model (where 1D

definition of C0 i.e., C0(θ) was used in both 1D and 2D versions), 2D form factors C0x(z) can be

easily incorporated into Schenk’s coupling element.

Comparing against the model proposed by Carrillo-Nuñez et al. [62], for the 2D and 1D

gases, the polarization dependence (to be explained in detail in section 3.5.3) of the coupling

elements are treated exactly the same way as our model (i.e., C0 terms used to ’weigh’ the

electric field components in each direction), with the exception of the determination of the φ

angle. We make use of the concept of directional energies (the expected value of the kinetic

energy along the principal axes of simulation domain), whereas Carrillo-Nuñez et al. fixes the

angle at π
4 and takes the average with respect to φ. Let us now give some detail about the C0

form factors found in both models.

3.5.3 Polarization Dependent Coupling: C0 Factor

For bulk structures the interband coupling element MCV is isotropic [110]. Here we briefly

prove this starting from the atomic-like orbital elements (see Appendix B, Eqs. B.2 - B.8 for the

definitions). Suppose that we would like to calculate coupling along a certain direction. In

the case of bulk, the k wavevector of the electron will not have any constraints. Therefore the

average of all possible directions needs to be taken. Say we calculate the coupling between con-

duction band and heavy hole band in the x direction which is given by
∣∣�x ·�pcv

∣∣2 = 〈∣∣�x ·M 2
c−hh

∣∣〉
[110]. In spherical coordinates, we take the average on the surface of a sphere with radius r for

the calculation of the average:

〈∣∣�x ·M 2
c−hh

∣∣〉= 1

4πr 2

π∫
0

2π∫
0

|�x ·Mc−hh|2 r 2 sinθdφdθ (3.47)

Since the spin is conserved in direct BTBT, the coupling between spin up and spin down states

will be zero. So in total, for a given spin we need to calculate only one single coupling element:∣∣〈i S ↑|px |3
2 , 3

2 〉
∣∣ or

∣∣〈i S ↓|px |3
2 ,−3

2 〉
∣∣ (for heavy holes only) depending on which spin we take

(the result will be exactly the same no matter which one is chosen). It should be noted that

only the |X 〉 parts will be non-zero due to the vanishing px elements caused by oddness of

p-like states. Overall, we would have:

〈|�x ·M 2
c−hh|

〉= 1

4πr 2

π∫
0

2π∫
0

∣∣∣∣〈i S ↑|px |3
2

,
3

2
〉
∣∣∣∣2 r 2 sinθdφdθ (3.48)

∣∣∣∣〈i S ↑|px |3
2

,
3

2
〉
∣∣∣∣= ∣∣〈i S|px |X 〉∣∣2 (cos2θcos2φ+ sin2φ

)
2

(3.49)

the
∣∣〈i S|pm |I 〉∣∣ ≡ Px (where m = {x, y, z}) term is related to Kane parameter P through P =
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Px
�

m0
[110]. Now we perform the integral:

〈|�x ·M 2
c−hh|

〉= 1

4πr 2

∣∣〈i S|px |X 〉∣∣2 π∫
0

2π∫
0

(
cos2θcos2φ+ sin2φ

)
2

r 2 sinθdφdθ (3.50)

= 1

3
P 2

x ≡ M 2
b

Mb is defined as the bulk momentum matrix element per spin. Moreover, both heavy-hole

and light-hole valleys have exactly the same contribution as well as being isotropic (
∣∣�e ·M 2

cv

∣∣ is

equal for all�e). We now repeat the same for the directions y and z, for both heavy and light

holes. We have the following:

〈|�y ·M 2
c−hh|

〉= 1

4πr 2

π∫
0

2π∫
0

∣∣〈i S|py |Y 〉∣∣2 (cos2θ sin2φ+ sin2φ
)

2
r 2 sinθdφdθ (3.51)

=1

3
P 2

x ≡ M 2
b

〈|�z ·M 2
c−hh|

〉= 1

4πr 2

π∫
0

2π∫
0

∣∣〈i S|pz |Z 〉∣∣2 (sin2θ
)

2
r 2 sinθdφdθ (3.52)

=1

3
P 2

x ≡ M 2
b〈|�y ·M 2

c−lh|
〉= (3.53)

1

4πr 2

π∫
0

2π∫
0

∣∣〈i S|py |Y 〉∣∣2
((

cos2θ sin2φ+cos2φ
)

6
+ 2sin2θ sin2φ

3

)
r 2 sinθdφdθ

(3.54)

=1

3
P 2

x ≡ M 2
b

〈|�z ·M 2
c−lh|

〉= 1

4πr 2

π∫
0

2π∫
0

∣∣〈i S|pz |Z 〉∣∣2 (sin2θ

6
+ 2cos2θ

3

)
r 2 sinθdφdθ (3.55)

=1

3
P 2

x ≡ M 2
b

The observation that interband coupling depends on the direction of the k-vector of the

wavefunction under quantization was first made by Yamanishi and Suemune [105] in quantum

well structures. This phenomenon comes from the symmetry properties of the p-like orbital

functions with respect to direction and due to the fact that the averaging process to estimate

the coupling element magnitude is now done in two dimensions. In such a case the dipole

moment elements between conduction and valence band states depend on the wavevector

direction of the state [111], denoted by the angle θ. Here, we consider the two quantization

cases: quantization in one and two dimensions. The main problem to be solved is to determine

the direction of the k-vector of the wavefunction, which modulates the strength of coupling.
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Figure 3.9 – (Left) Depiction of averaging for 1D definition of C0. (Right) Visualization of 2D
quantization and angle definitions.

Using a spherical angle notation, the direction of the k-vector is determined by the angles θ

and φ. For 1D quantization (2D carrier gas), the transverse k-space is two dimensional on

which we take the average (by sweeping the angle φ, see Fig. 3.9(Left)) for a transverse k-

vector of a given magnitude that is determined by the conservation of energy and momentum

between the electron and hole states. It should be noted that only the direction and not the

magnitude of the k-vector matters. Since we perform the averaging along the angle φ, the

form factors we obtain do not depend on the angle φ. θ, on the other hand, can be estimated

as the ratio between the kinetic energy component along the tunneling direction z (Ez ) and

the transverse kinetic energy (E⊥) [102]:

cos2θ = k2
z

k2
⊥+k2

z
= Ez

E⊥+Ez
(3.56)

where Ez,(⊥) is an effective kinetic energy along the quantization (transverse) direction. C0(θ)

for quantization along the z direction is then derived as:

C0(θ) =
〈|�z ·M 2

c−hh|
〉

M 2
b

= 1

2πr M 2
b

2π∫
0

∣∣〈i S|pz |Z 〉∣∣2 (sin2θ
)

2
r dφ

= sin2θ

2

P 2
x

M 2
b

= 3sin2θ

2
(3.57)

〈|�z ·M 2
c−lh|

〉= 1

2πr

2π∫
0

∣∣〈i S|pz |Z 〉∣∣2 (sin2θ

6
+ 2cos2θ

3

)
r dφ

=
(

sin2θ

6
+ 2cos2θ

3

)
P 2

x

M 2
b

=
(

sin2θ

2
+2cos2θ

)
(3.58)

therefore, the interband coupling element MCV gains a polarization dependence with the
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following form factors in the case of electric field aligned with the quantization direction on

the z axis:

C0(θ) =
{

2cos2θ+ sin2 θ
2 for LH

3sin2 θ
2 for HH

(3.59)

Note that the expressions above correspond to the TM mode in a quantum well laser [105]

where the quantization direction is aligned with the electric field on the z direction. Different

expressions apply for the cases where the two directions are perpendicular (i.e., TE) mode.

In two dimensions, the situation becomes more complicated since we do not perform any

averaging and we need to calculate two form factors in each direction of the simulation domain

(C0x and C0z ). To calculate C0x(z)
(
θ,φ

)
, an estimation of the wavevector direction is necessary

for each subband, but this time it will depend on the two angles θ and φ. The two k-vector

components (along x and z directions) are estimated from the wavefunctions that are obtained

as the solution of the Schrödinger equation, whereas the transverse component is determined

again by the simultaneous convservation of total energy and momentum. The determination

of these angles is done by finding the expectation value of the so-called estimated (directional)

kinetic energies EX ,EZ , obtained by applying the quantum mechanical (partial) kinetic energy

operator on the wavefunctions along the principal axes:

EX (Z ) =−�
2

2

1

m∗
x(z)

〈ψ| ∂2

∂x2(z2)
|ψ〉 (3.60)

We note that partial derivative is not a good quantum operator (i.e., does not commute with

the Hamiltonian), so it does not exactly correspond to the actual kinetic energy along that

direction, unless the wavefunction can be separated into pure components along the x and

z directions, as in the case of a 2D infinite well. Having approximately separated the kinetic

energy into two directions, the direction of the wavevector is estimated using:

cos2θ = EZ

EX +EY +EZ
(3.61)

cos2φ= EX

EX +EY
(3.62)

where EY (kinetic energy component extending out of the simulation plane) is EY = ET −ElΓ

and ultimately, the C0
(
θ,φ

)
is given as [111]:

C0x
(
θ,φ

)=
{

2sin2θcos2φ+ cos2 θcos2 φ+sin2 φ
2 for LH

3(cos2 θcos2 φ+sin2 φ)
2 for HH

(3.63)

C0z
(
θ,φ

)=
{

2cos2θ+ sin2 θ
2 for LH

3sin2 θ
2 for HH

(3.64)
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3.5.4 Benchmarking of Different Direct BTBT Models

To verify that the new 2D models are consistent with the available 1D ones and one another,

we first use a fairly uniform structure, which can be described as a quantum well diode, as in

Fig. 3.10(Left). Compared to a bulk diode, the difference of the structure in Fig. 3.10(Left) is the

narrow width of the n- and p- doped regions, resulting in significant size-induced quantization.

The p- and n-sides are both highly doped (ND = NA = 1020cm−3) with a thickness of 10nm

each. The uniformity of the device allows us to directly compare the results obtained by 1D

and 2D models since the potential profiles are almost overlapping and the quantized energy

levels are very close between 1D and 2D simulators. Furthermore, it allows us to choose just a

slice oriented along the x-direction as the 1D integral contour C for Bigelow’s model.

The comparison of the I-V curves for the device in Fig. 3.10(Left) predicted by different models

is given in Fig. 3.10(Right). As can be seen from the plot, all the four models predict the

same curvature and the same order of magnitudes for the tunneling current, which means

that eqs. 3.41 and 3.45 are consistent with the 1D models in the case of uniform structures.

However it should be reminded that we are merely emulating the unquantized nature of the

wavefunctions in the y-direction by taking a large width (L = 500nm). Furthermore, for this

simulation only, we are taking the Γ electron effective mass m∗
Γ = m∗

hh. The reason is that

heavier carriers are less affected by quantization effects compared to lighter mass ones, hence

we can keep L relatively small, saving simulaton time, but still emulating a 1D quantization

case.
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Figure 3.10 – Comparison of the two direct tunneling models (Schenk and Bigelow) for Germa-
nium quantum well diodes for different dopings [7]. A general agreement is seen between all
the cases.

Looking at the Fig. 3.10(Right), it can be deduced that Schenk model is the most robust one in

complex 2D structures and the one providing closer agreement between 1D and 2D models

in the QW diodes, therefore it seems to be the feasible choice to be used in both 1D and

2D simulations. We should note that since both models depend on solutions of one-band
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effective mass Schrödinger equation, band mixing effects which may alter the HH effective

mass [112] are neglected. We will see later an empirical correction for the so-called ’anti-

crossing’ [113] that causes asymmetry in the real and imaginary branches of the heavy hole

dispersion relation.

Non-parabolicity Corrections for Joint DOS Calculation of Tunneling States

The next step is to include the non-parabolicity corrections into the DOS calculation for

counting the available states for tunneling. We assume here 2D quantization where the

transverse k-space is 1D, but a similar derivation follows for 1D quantization (2D transverse

k-space) as well. We go back to the δ function definition of the DOS over the two transverse

k-spaces for electron and hole gases (spin excluded) and require energy and transverse k

conservation:

g (Eh,Ee) = 1

π

∞∫
0

∞∫
0

δ
(
Eh −Ee −

(
E h
⊥(k ′)+E e

⊥(k ′′)
))
δ
(
k ′′ −k ′)dk ′dk ′′ (3.65)

g (Eh,Ee) = 1

π

∞∫
0

δ
(
Eh −Ee −

(
E h
⊥(k ′)+E e

⊥(k ′)
))

dk ′ (3.66)

we define E = E h
⊥(k)−E e

⊥(k) and switch to energy integral:

g (Eh,Ee) = 1

π

∞∫
0

δ(Eh −Ee −E)
dk

dE
dE

= 1

π

dk

dE

∣∣∣∣
E=Eh−Ee

Θ(Eh −Ee) (3.67)

which means that we simply need to find the derivative of the inverse dispersion relation

(inverse dispersion relation defined as the functional inverse of E(k) = E h
⊥(k)+E e

⊥(k) and

evaluate it at E = Eh − Ee. Note the change of notation from El ,Γ and El ′,α to Ee and Eh

respectively, for clarity. The approach is valid for any dispersion relation. We now derive

analytically the expression for the parabolic dispersion relations. We note that dk
dE = 1

2

√
m
�2E

and we plug this in the above expression and evaluate it at E = Eh −Ee, we have the familiar

JDOS expression (Eq. 3.40) [107]:

g (Eh,Ee) = 1

2π

√
m

�2(Eh −Ee)
Θ(Eh −Ee) (3.68)

We now want to generalize this approach to any kind of dispersion relations. In order to do so,

we need to find a way to evaluate dk
dE . We do not assume any closed form expression for the

E-k relation. It is only assumed that we have a set of E and corresponding k values for electron

and hole bands separately (for instance, in our case we can obtain them by evaluating Eq. 3.26
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Figure 3.11 – The impact of non-parabolicity correction on JDOS.

in a certain range of E for electrons and use the parabolic E-k relation for holes). The following

algorithm is proposed:

1. Solve the equation Ee +E e
⊥(kT) = Eh −E h

⊥(kT) for kT. Note that since we only have a set

of E-k values, the accuracy of the solution will depend on the spacing of our data set. To

solve the equation, an iterative method such as Newton’s method, for instance can be

used, by calculating the derivative of the E-k relation numerically if no analytical form

exists.

2. Calculate dk
dE . Since here the k involved is the inverse dispersion relation, correspond-

ing to the joint E-k relation it cannot be done directly (except for the parabolic case).

However, we know the value of E = E h
⊥(k)+E e

⊥(k) which is the addition of transverse

energies of the electron and hole bands separately, which we have already calculated.

Then we make use of the following property to express the derivative at a certain point

in terms of the derivative of the inverse of the function:

(
f −1(a)

)′ = 1

f ′ ( f −1(a)
) (3.69)

putting in our functions we have:

dk

dE

∣∣∣∣
E=Eh−Ee

= 1
dE
dk

∣∣∣
k=kT

= 1
dE e

⊥
dk

∣∣∣
k=kT

+ dE h
⊥

dk

∣∣∣
k=kT

(3.70)

now it remains to evaluate the two derivatives around kT numerically.

3. Then Eq. 3.67 can easily be calculated.
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3.6 Efficient Modeling of Transverse Quantization

The models described so far assume an infinite extension of the device along the transverse

direction which means that the wavefunctions along the transverse direction are assumed to

be plane waves ψ⊥ ∼ e
�k⊥·�r⊥ in order to study different dimensionality combinations such as

1D-1D face tunneling [15], 1D-1D edge tunneling etc., we can change our assumption of the

device extending to infinity in the transverse direction and assume that the device width is

finite (say TW). Then, very simply, we can modify our simulation scheme in order to account

for this by doing the following changes:

1. Assume that the potential profile in the transverse direction is constant and therefore

the potential profile is an infinite potential well along the transverse direction with well

width TW,

2. The transverse k-space dimensionality is now reduced and the quantities such as carrier

densities are now given as a discrete summation of different subbands whose potential

profiles are the rigidly shifted versions of the actual band profiles. For example, the

conduction band profile of the 1st electron subband is given as E∗
C = EC +E1 where E1

is the 1st quantized energy level for the transverse subband and EC is the conduction

band profile obtained from the self-consistent solution of the Schrödinger and Poisson

equations in the simulation domain. A similar formula applies for holes as well.

We note that the first assumption (potential is constant along the transverse direction) is rather

crude. In fact, for narrow structures, the wavefunction will be repelled from the boundaries

which will reduce the charge distribution near them. This reduction will cause bending in

the potential profile and may result in significant divergence from the constant potential

approximation.

We mention specifically the modifications for 1D and 2D version of the codes in the following

subsections. We note here that all the indexes and symbols introduced for the models without

the transverse quantization (i.e, sections 3.2, 3.3 and 3.5) bear the same meanings here.

1D Quantization with 1D Transverse k-space

In this case, we modify the 1D version of the code to incorporate a 1D transverse k-space

instead of the previous 2D. Since we assume a uniform potential along the finite transverse

direction (say y , with width TW), the y wavefunction components φm(y) are given by φm(y) =√
2

TW
sin

(
mπ
TW

y
)
. As known, the solutions of the infinite square well potential form a complete

basis set and φm are orthonormal i.e., 〈φm |φm′ 〉 = δm,m′ [37]. The charge densities are now

given by (remember that z is the other quantization direction, whereas along x the wavefuction

are plane waves):
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nq (z) = ∑
α∈c

∑
m

∑
l

√
2mα,⊥kBT

π2�2T 2
W

∣∣ψlα(z)
∣∣2 F−1/2

(
EFn − (Elα+Em)

kBT

)
(3.71)

pq (z) = ∑
α∈v

∑
m

∑
l

√
2mα,⊥kBT

π2�2T 2
W

∣∣ψlα(z)
∣∣2 F−1/2

(
(Elα−Em)−EFp

kBT

)
(3.72)

where Em = π2m2
�

2

2mα,⊥T 2
W

for parabolic bands and the solution of Em (1+αNPEm) = π2m2
�

2

2mα,⊥T 2
W

for

non-parabolic conduction bands. As far as the BTBT expression goes, the JDOS used is the

same as Eq. 3.40. The other modification is the inclusion of the orthogonality condition

δm,m′ which imposes the quantum numbers m, m′ of the electron and hole wavefunctions,

respectively, to be equal [37]:

I 1D
⊥−lim =4πqW LG

�TW

∑
m,m′

∑
l∈Γ

∑
α,l ′∈v

|MCV|2×

1

2π

√
m

�2(El ′αm′ −ElΓm)
δm,m′Θ (El ′αm′ −EkΓm)

(
fc(ET)− fv(ET)

)
(3.73)

where ElΓm and El ′αm′ are given as ElΓm = ElΓ+Em and El ′αm′ = El ′α−Em′ and they represent

the quantized energy levels for electron and holes for a transverse mode m and m′ respectively.

n+

p+

z

y
x

Figure 3.12 – A 1D-1D face tunneling diode.

Within the classification of Agarwal et al. [15], this modified code could be used to simulate

1D-1D face tunneling devices (see Fig. 3.12) in which the tunneling direction is aligned with

the quantized direction.

2D Quantization with 0D Transverse k-space

In this case, the transverse k-space reduces to 0D, i.e., the density of states is 1 (excluding spin).

Then, the charge densities are simply given by:

nq (�r ) = 2

TW

∑
α∈c

∑
l

∑
m

∣∣ψlα(�r )
∣∣2 ( 1

1+e
(Elα+Em )−EFn

kBT

)
(3.74)
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pq (�r ) = 2

TW

∑
α∈v

∑
l

∑
m

∣∣ψlα(�r )
∣∣2
⎛
⎝ 1

1+e
EFp−(Elα−Em )

kBT

⎞
⎠ (3.75)

where�r = (x, z) and we assume uniform charge distribution along y . The JDOS, on the other

hand, reduces into a δ-function:

I 2D
⊥−lim = 4πq

�TW

∑
m,m′

∑
l

∑
α,l ′∈v

|MCV|2δm,m′δ (El ′αm′ −EkΓm)
(

fc(ET)− fv(ET)
)

(3.76)

Within the classification of Agarwal et al. [15], this modified code could be used to simulate

1D-1D edge tunneling devices as well as 1D-1D face tunneling ones. Examples could include

ultra narrow cross-section TFETs such as in [114], or EHBTFETs (briefly described in section

2.2 and detailed in the next chapter) with a very narrow width that results in quantization along

the transverse direction. We will make use of this extension in the next chapter to compare the

different dimensionality effects for two different TFET architectures.

Finally, we note that the idea presented here could also be extended further for other combi-

nations such as 1D Quantization with 0D transverse k-space which would correspond to e.g,

quantum dot p-n junctions.

3.7 Modeling the Imaginary Dispersion Effective Mass Discrepancy

Models based on the effective mass approximation (EMA) are more efficient than other ap-

proaches such as k ·p from a numerical point of view, can handle large devices and can include

phonon assisted tunneling with a small additional effort [115]. They are however based on

separate (i.e., single band) solutions of the electron and hole Schrödinger equations (see

section 3.2). The coupling between bands is added in post processing assuming a dispersion

relationship in the gap that connects the electron and hole branches (section 3.5.1 & 3.5.2).

In such approaches, the curvature of the E-k relationship is symmetric in both real and imagi-

nary branches which means that the effective mass is the same for both real and imaginary k.

This assumption, however, implies that size-induced quantization should essentially kill the

tunneling current. The logic is as follows: the BTBT in bulk materials is dominantly caused by

light holes in the bulk structure due to their very low effective mass which increases greatly

the wavefunction overlap of the electron and hole states and typically heavy hole contribution

is virtually negligible. Contrary to this rationale, NEGF simulations [70] show significant BTBT

current even in quantum well and nanowires, where LH bands are not expected to contribute

to current due to strong quantization.

This evident contradiction is caused by the fact that the tunneling (imaginary) effective mass

is closer to the LH mass even when HH subbands are dominant. This phenomenon is called
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"anti-crossing" [113] of the light-hole (LH) and heavy-hole (HH) branches and it is not natively

included in the EMA approach, which means that the curvature of the E-k relationship is

symmetric in both real and imaginary branches. With "anti-crossing" we mean that, the top of

the valence band in III-V semiconductors is connected with the conduction band through an

imaginary branch with low mass (the LH one), even in the presence of strong quantization

that makes the HH branch dominate. The goal here is to show that the EMA-NP model using

the LH mass as tunneling mass for the HH subband fairly reproduces k ·p results.

To obtain the tunneling parameters, we have fitted the imaginary dispersion relation (see Fig.

3.13 for the real and imaginary dispersion relations obtained) from the 4-band k ·p simulator

developed by the University of Bologna [8]. The effective masses obtained from the fitting are

reported in Table 3.1. For InAs, the fitted tunneling effective mass (mHH,imag) is drastically

different than the effective mass of the real branch (mHH). Note that the fitted value almost

coincides with the bulk LH mass, thus confirming the results of [60, 61] and highlighting the

anti-crossing [113]. The electron dispersion, on the other hand, rather exhibits a symmetry

between the real and imaginary branches.

Table 3.1 – Effective masses and conduction band non-parabolicity factor extracted for InAs
slabs of different thicknesses (see Fig. 3.13).

Slab thickness m∗
HH,real m∗

HH,imag m∗
e αNP[eV−1]

5nm 0.33 0.037 0.037

3.610nm 0.33 0.03 0.026

15nm 0.33 0.023 0.025

This finding, however, brings up the question of using adequate effective masses for the

classically allowed (Eh < EV) and forbidden regions (Eh > EV), since the effective mass in the

forbidden region strongly determines the amplitude of the wavefunction tail, and therefore

the spatial overlap between the electron and hole states in the bandgap (Eq. 3.42). To over-

come this issue, we re-calculate the WFs using the quantized energies obtained by the 1D

Schrödinger equation. We employ WKB approximation using single-band approximation, in

which we modify the effective mass in the forbidden region e.g., with the value extracted from

the imaginary dispersion calculated by the 4-band k ·p simulator (table 3.1) or the light hole

mass. The dispersion relation is given by:

kz (z) =

⎧⎪⎨
⎪⎩

√
2m∗

HH,real(EV(z)−Eh)

�
Eh < EV√

2m∗
HH,imag(EV(z)−Eh)

�
Eh > EV

(3.77)

The WF is then calculated using the familiar expressions given by the WKB approximation

[37]:
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Figure 3.13 – Real (kz > 0) and imaginary (kz < 0) dispersion for (Up left) 5nm (Up right) 10nm
(Bottom) 15nm thick InAs slabs from k ·p [8]. The red and black curves indicate the real and
imaginary relations predicted by single band approximation for HH (with mass m∗

HH,real) and
conduction band (with mass m∗

e ), respectively. The green curve is the fit obtained by the
Kane’s two-band dispersion relation [9] (Eq. 2.14). Parameters from the fitting are given in
Table 3.1.

ψh(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2C�
|kz (z)| sin

( zc∫
z

kz
(
z ′)d z ′ + π

4

)
Eh < EV

C�
|kz (z)|e

−
z∫

zc
|kz (z ′)|d z ′

Eh > EV

(3.78)

where C is a normalization constant and zc is the classical turning point (i.e, Eh = EV).

3.8 Results Comparison & Calibration

As a first check, we compare the self-consistent solutions obtained by our EMA-NP code

and the k ·p results for a bulk InAs tunnel diode. The parameters used for the bulk diode
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Chapter 3. Quantum Mechanical Models for Band-to-band Tunneling Devices

simulations are given in Table 3.2. The band profiles for the bulk InAs diode (Fig. 3.14)

show excellent matching between NP-EMA and k ·p for the n-side. The slight difference in

the p-region comes from the warped bandstructure of holes not captured by the parabolic

approximation employed in our model. Fig. 3.16(Left) shows the current densities obtained

by the EMA-NP model for a bulk diode with different doping levels. A general agreement with

the k ·p results, better at low doping levels, is observed.
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Figure 3.14 – Comparison of the potential profiles calculated for an InAs tunnel diode with
NA = ND = 2× 1019cm−3 for applied reverse biases of (up, middle, down) 0V, 0.25V, 0.5V.
The quasi-Fermi levels for electrons (holes) are indicated as black (green) dashed lines. 1D
EMA-NP model described in previous sections is compared against k ·p calculations from [8].

Going further, we now investigate the impact of transverse quantization, using our 1D code

with transverse quantization. We simulate InAs quantum well diodes with finite transverse

width TW. For all the I-V characteristics results presented here on, we take the potential profile

calculated by the k ·p simulator as input and run our BTBT models as a post-processing step,

in order to better isolate the influence of the tunneling parameters from the influence of device

electrostatics.

Fig. 3.16(Right) compares the k·p and EMA-NP results for QW diodes (Fig. 3.15) with TW = 5nm
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Table 3.2 – Parameters used by EMA+NP model for Ge, InAs and Si for the calibration and
comparison study. The transport (tunneling) is assumed to occur along the [100] direction in
all cases. The Γ valley is assumed to be isotropic. In the anisotropic cases (L and Δ valleys)
the effective masses are given as simulation-mass/transverse-mass. The degeneracy of each
valley is indicated in parantheses.

Material m∗
L m∗

Γ αNP,Γ[eV−1] m∗
Δ αNP,L[eV−1] αNP,Δ[eV−1] m∗

hh m∗
lh

Ge 0.117/0.292 (4) 0.043 - 0.85 0.33 - 0.33 0.043

InAs - 0.022 - 3.6 - - 0.41 0.025

Si - - -
0.9163/0.1905 (4) -

0.5 0.49 0.16
0.1905/0.416 (2)

n+ p+

x

z

y

T
W

Figure 3.15 – The InAs diode structure considered in this study. For bulk diode TW is assumed
infinite, whereas in quantum well diode simulations TW is assumed finite (TW values are
specified where necessary for each case).

and different doping levels. The difference between the models seems to be increasing with

increasing doping levels, which results from states states with higher k being able to contribute

to the current, where the EMA description starts to break down.

Fig. 3.17(Left) compares the models for different TW: both models show the same trend of

current increase as TW increases. However, comparing Figs. 3.16(Left) & 3.16(Right), it is

seen that the current density remains nearly the same, which signals that in both QW and

bulk diodes, it is the same imaginary path that connects the valence and conduction bands

with very similar effective mass values. Of course, a slight degradation is observed for the

quantized cases compared to the bulk ones, due to the transverse quantization which increases

the effective bandgap. To assess the impact of the large asymmetry in mass of the real and

imaginary branches, we compare the cases using the real or imaginary branch masses in the

forbidden region: Fig. 3.17(Right) shows a dramatic decrease in current when the real HH

mass is used for tunneling.

To assess the impact under strong field-induced quantization, we now switch to another

device, the EHBTFET [5], which was briefly introduced in the previous chapter. It is expected

to have much stronger quantization effects in the EHBTFET compared to the diode due

to the fact that n- and p-gates are typically biased in opposite polarities which results in a
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Figure 3.16 – (Left) I-V characteristics of bulk diodes from EMA-NP (dashed) and k ·p (solid)
for various doping levels. (Right) Comparison of I-V characteristics for the QW diode shown in
Fig. 3.15 considering various doping levels. TW = 5nm. EMA-NP (dashed), k ·p (solid).

large electric field. We simulate a vertical slice in the overlap region (see the inset in the Fig.

3.18(Left)). Fig. 3.18(Left) compares the wavefunctions obtained using formulas in Eq. 3.78

using real or imaginary masses for heavy holes in the forbidden gap regions. Note the orders

of magnitude higher amplitude in function tails (i.e., WF component in the forbidden region)

due to much lighter imaginary effective mass.

Looking at Fig. 3.18(Left), one can of course note the spikes at the classical turning point,

caused by the fact that WKB approximation breaks down around the classical turning points

[37]. While this may seem a serious problem, for our purposes, it can be noted that we are

interested in the overlap of wavefunctions (more specifically, the product ψeψh). We perform

a numerical experiment (Fig. 3.18(Right)) in order to quantify the impact of the spikes on

the quantities that we are interested in. To do this, we take the WF overlaps obtained by

the initial version of our 1D code where the wavefunctions are calculated directly from the

numerical solution of the Schrödinger equation and we compare them against our WKB-based

correction code with the real effective mass in the entire device region (i.e., the anti-crossing

effect is turned off). We note that the spikes are far away from the region where the overlap

is significant and the difference between the squared coupling elements |MCV|2 (∝ overlap

integral) of numerical and the WKB-based solution is relatively small (∼ 5%, see Fig. 3.18

(Right)). Bear in mind that some part of this discrepancy comes from the fact that WKB is an

approximate method, independently of the presence of the spike.

One final note is that the WKB-based model to account for the imaginary dispersion relation

is implemented only for the 1D version whereas in the 2D version we utilize the standard

EMA (i.e., symmetric real and imaginary dispersion relations) since 2D extension of the WKB

approximation, to our knowledge, is only possible when the direction of the probability flux is
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Figure 3.17 – (Left) I-V characteristics for various TW values for the InAs diodes in Fig. 3.15.
NA = ND = 2×1019cm−3. EMA-NP (dashed) k ·p (solid) (Right) Comparison of I-V characteris-
tics using k ·p (solid) and EMA-NP with mtun,HH = 0.03m0 (Dashed) or with mtun,HH = 0.33m0

(Dashed with symbols).TW = 5nm.
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Figure 3.18 – (Left) Comparison of wavefunctions (lowest Γ electron subband) using (blue)
imaginary mass (red) real mass listed for TW = 10nm in table 3.1 in the gap, for an InAs
EHBTFET with TCH = 10nm. (Right) Comparison of the wavefunction overlap squared between
the lowest electron and hole subbands with (blue) numerically calculated (red, dashed) WKB-
based (Eq. 3.78) WFs.

known in advance [116] which is not the case for a general-purpose simulator where different

geometries can be simulated.
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3.8.1 Phonon-Assisted Band-to-Band Tunneling Calibration & Comparison
against Experiments

We now turn our attention to indirect gap semiconductors and compare our results against

experimentally reported diode data. We see a general agreement exists between our results

obtained using Vandenberghe model explained in section 2.3.2 and the experimental literature

[10, 11] in Fig. 3.19(Left) for Silicon. Fig. 3.19(Middle) shows that our model for direct tunneling

in Ge, without any adjustment, reproduces the experimental data for Ge diodes collected in

[10]. The parameters used for the bulk diode simulations are given in Table 3.2. We observe

that direct BTBT domintates over phonon-assisted BTBT in bulk diodes. However, once

quantization comes into play we will see that this picture will change dramatically (in Chapter

4).

Figure 3.19 – Current versus maximum electric field for (Left) Silicon (Middle) Germanium
bulk tunnel diodes under a reverse bias of 0.5V. Symbols indicate experimentally measured
data points (taken from [10, 11] for Silicon and [10] for Germanium) whereas lines indicate
our simulation results. For Germanium (Middle figure), blue and red solid lines represent the
simulations using the parameters given in [12] and in [13] respectively. (Right) Reverse bias
characteristics of simulated bulk Ge tunnel diodes for different doping levels by the atomistic
simulator OMEN [14] and our code (labeled EMA-NP).

We also note here the dramatic difference of phonon-assisted BTBT rate between the two sets

of parameters given in the literature by Kao et al. [13] and Vandenberghe et al. [12] where

the latter one is an update to the first. Comparing the results in Fig. 3.19(Right) for the two

parameter sets, we can see that the parameters of Vandenberghe et al. estimate about 200x

higher BTBT rates than the one of Kao et al. The parameter set given in [12] is obtained using

a first principles density functional theory (DFT) code and we consider it as more credible

than the set given before in [13] which is a "crude estimate" [12]. Due to this, we will use

in the remainder of the thesis the deformation potential D = 7.8×1010eV/m and phonon

energy Eph = 6meV [12], which are inputs of the Eqs. 2.24 & 2.25 that we use to estimate the

phonon-assisted BTBT rate.

Fig. 3.19(Right) compares the results obtained by our tool with the atomistic tight-binding
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simulator OMEN [14] for Ge tunnel diodes in reverse bias. A good mutual agreement is

obtained, validating the proposed model. Since the thermionic current in reverse bias is

neglected, very low current levels are observed for the device with NA = ND = 1×1019cm−3

before the device turns on (i.e., the conduction and valence bands are aligned). OMEN results

for the doping NA = ND = 5×1018cm−3 show very little current at lower VA due to the fact that

electron-phonon interactions (which require a very large amount of computational resources)

were turned off for this curve, for which prevents the prediction of the phonon-assisted BTBT

current.

3.9 Chapter Summary & Highlights

In this chapter, a brief description of the quantum mechanical simulation schemes used in

the following parts of the thesis is provided. The contributions of this chapter includes:

• A simulation scheme for solving closed boundary Schrödinger-Poisson equations self-

consistently has been implemented. The 1D EMA-NP solver using FDM can be used for

parameter space investigation with more accurate non-parabolicity correction models.

2D solver FEM can be used to investigate 2D effects in tunneling devices.

• Modifications to already existing direct band-to-band tunneling models made to con-

sider tunneling in quantized gases. Expressions for polarization dependent form factors

C0x,z are derived. Two different direct BTBT models implemented and benchmarked

using a quantum well diode.

• The EMA-NP model has been modified to account for anti-crossing of the valence band

and transverse quantization through adequate shifting of energy bands and modification

of the transverse JDOS. A general agreement is observed between the EMA-NP and k ·p

models after proper calibration.

• Variants of the implemented 1D and 2D models including transverse quantization

effects are proposed and implemented. These variants enable the simulation of various

tunneling dimensionality combinations.
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4 Dimensionality Effects in Tunneling
Devices: Exploitation and Device
Optimization
As discussed in the previous chapters, the concept of density of states (DOS) switch may show

a great promise since the shape of the DOS of the charge carriers in quantized cases can

result in abrupt switching. Agarwal et al. [15] defines various combinations in terms of the

dimensionality of the electron and hole gases (see Fig. 4.1). Throughout the chapter, we will

follow the classifications and naming conventions made by Agarwal et al. [15] to denote the

carrier and tunneling dimensionalities.

Figure 4.1 – The different dimensionality combinations of the carrier gases in the BTBT devices
(taken from [15]).

For tunnel FETs, the case where BTBT occurs between two 2D gases appears to be the most

promising for a variety of reasons. First, the 2D DOS function is step-like; therefore, a sig-

nificant amount of states are available once the electron and hole levels align. This is in
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contrast to other combinations such as 1D-1D tunneling (nanowires) or 0D-0D tunneling

(quantum-dot transistors), where the low DOS limits the amount of BTBT current even though

in terms of electrostatics they might be advantageous. Hence it would be necessary to use

many of such lower dimensional devices in stacks or arrays which might be a huge challenge

in terms of processing. The 2D-2D face tunneling case, instead, offers an optimum point in

terms of current drive. Another advantage of 2D-2D tunneling is the contact resistance to

access the device. We expect that contact and interconnect resistances will be very critical for

lower dimensional devices, whereas 2D-2D tunneling devices will fare better, due to large area

available for contacts.

In this chapter, we will mainly investigate a 2D-2D tunneling device called Electron Hole Bilayer

TFET, that could be a promising candidate for a sub-thermal switch which offers switching

slopes (SS) much lower than 60mV/dec. We describe the device working principle along with

initial quantum mechanical simulations using the tools described in the previous chapter.

Then, we focus on some of the non-idealities that can potentially be problematic, such as the

lateral leakage. We extensively study the device parameter space and point out key features

of 2D-2D face tunneling. Then, we study another incarnation of the EHBTFET using a fin

structure and discuss it in detail. We then propose a novel logic family making use of the

unique properties of the EHBTFET. In the final section, we discuss a few other dimensionality

cases, by using our simulation tool that accounts for transverse quantization, to see if they

present advantages with respect to the 2D-2D case.

4.1 Device Working Principle

The EHBTFET is a thin double-gated p-i-n diode (see Fig. 4.2), similar to a conventional TFET.

The i-region is gated from both top and bottom to induce electron and hole inversion layers by

field effect. The only architectural difference between a conventional double gate (DG) TFET

[117] and the EHBTFET is the asymmetric placement and biasing of the gates. The region

which is overlapped by the two gates is called ’overlap region’, whereas the two regions that

are controlled by only one gate are called ’underlap regions’.

The asymmetrically-biased gates induce quantized energy levels in both electron and hole

inversion layers in the thin channel. The exact configuration of subbands in terms of quan-

tization energy and occupancy depends on the semiconductor band structure and on the

quantization direction. The basic device operation can be summarized as follows: in the OFF

state, the minimum subband energy of electrons Ee1 is above the maximum subband energy

of the holes Eh1 therefore no BTBT can take place. When the device enters into the ON state,

the subband energies for electrons and holes align and, owing to the step-like behavior of

the 2D density of states (DOS), a significant amount of states are available to contribute for

tunneling even at low voltages and thus a steep switching behavior can be obtained.
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Figure 4.2 – (a) Cross-sectional view of the EHBTFET and device parameters utilized in the
initial simulations. (b) Formation of induced electron/hole the bilayer by application of
appropriate gate biases. BTBT direction denoted with arrows.

4.1.1 Numerical Simulations of the Intrinsic Device: Ge Channel

We utilize the 1D version of the Schrödinger-Poisson self-consistent solver described in the

Chapter 3. We assume Dirichlet boundary conditions for the oxide-semiconductor interface

(i.e. we neglect wavefunction penetration into the gate oxide). A Ge EHBTFET with a gate

length LG = 50nm is considered in the simulations (Fig. 4.2). Both gate stacks feature a

gate oxide with an equivalent oxide thickness (EOT) of 0.53nm. The i-region is lightly n-

doped with ND = 1015cm−3. Unless otherwise stated, a device with channel thickness TCH =
10nm is considered, and the n- and p-gate workfunctions are φn−gate = 3.408eV and φp−gate =
5.642eV, respectively. The quantization direction is aligned with the [100] crystal direction

of Ge. In this direction the L electron valleys of germanium are fourfold degenerate with

quantization effective masses calculated as mz,α = 0.117m0 and transverse effective mass

mx y,α = 0.29m0[82]. For the Γ valley, the effective masses of heavy, light holes and electrons

are mHH = 0.33m0, mLH = 0.043m0 and me = 0.043m0, respectively [13]. The electron-phonon

interaction term Ω
∣∣∣M ′

k0

∣∣∣2 and the phonon energy �ωk0 for Ge are calculated (using Eq. 2.24)

and given as: 6.62×10−30eV2m3 and 6meV, respectively, using the parameters from [13] and

[12]. Sentaurus simulations have been used for the calculation of the SRH recombination

contribution with the following carrier lifetime parameters: τmax,n = 4 ·10−5s and τmax,p =
4 ·10−5s [118]. The non-parabolicity factor for the Γ conduction band of germanium is taken

as 0.85eV−1 [119].

Sentaurus Device with the nonlocal BTBT model has been used for comparison purposes.

Quantum mechanical effects on the electrostatics are included in Sentaurus Device via the

Density Gradient (DG) correction method [57].

For this study, we only vary the n-gate bias (which controls the electron inversion layer) and
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keep the p-gate bias at a constant value. Consequently, the p-gate workfunction is adjusted so

that the hole inversion layer is already formed in zero bias (Vp−gate = 0).

The transfer characteristics are shown in Fig. 4.3 in conjunction with the evolution of the

subband energies. The results confirm the working principle described in section 4.1: an

OFF region is seen until VGS ≈ 0.05V due to lack of alignment between any electron and

hole subband. As the n-gate bias increases, the electrostatic potential in the channel region

controlled by the n-gate increases as well, therefore pushing down the subband energies of

the electrons (in a linear fashion in weak inversion). The onset of strong inversion where the

charge density starts to reach critical values is seen when the lowest subband approaches the

drain quasi-Fermi level EFn =−qVDS. A slight effect on the hole energy levels is also observed,

since the n-gate voltage influences the portion of the channel populated by the holes as well.

The switching behavior is caused by the alignment of the ground state (from L valley) of

electron and heavy hole energy level which are denoted in the plot as e1 and hh1, respectively.

The most striking feature of this characteristic is the super steep switching slope, allowing for

SSavg ≈ 10mV/dec over three decades at VDS = 0.5V. We note that this represents an ideal case,

where all 2D effects which we will show to be critical are assumed to be suppressed. However,

above a certain VGS (∼ 0.3V), a plateau of relatively constant current is seen until a second

alignment takes place, resulting in an ON current of ∼ 2μA/μm at VGS =VDS = 0.5V. The reason

for that saturation of current is the decrease of the wavefunction overlaps of e1 and hh1 levels

(see Fig. 4.4), which is caused by the increased electric field in the confinement well, pushing

electron and hole wavefunctions towards the semiconductor/oxide interfaces. Although the

energetic window allowing for tunneling is constantly increasing with increasing gate voltage,

the reduction in wavefunction overlap can actually counterbalance this gain and may cause a

decrease of the drain current for increasing VGS. Further increasing the gate voltage eventually

results in overlap of the heavy hole and Γ valley electron subbands, hence allowing for direct

BTBT to occur.

Note that the results presented here differ from our already published results [115] due to the

change of deformation potential and phonon energy parameters. In [115], we had utilized the

parameter set given in [13] whereas we updated our results according to a more recent param-

eter set given in [12]. The rationale for this is explained in section 3.8.1. The main difference is

an increase in phonon-assisted BTBT current by about 200x in the results presented in this

thesis compared to [115].

Since we have a bandgap difference of ΔEG = 0.14eV between L and Γ valleys in Ge, the onset

of direct tunneling is expected at relatively lower voltages compared to other indirect bandgap

materials such as silicon. While this onset is close to ΔEG in structures with no quantization

such as bulk diodes [120], the onset in a quantized structure such as the EHBTFET will be

shifted to higher voltages. Indeed, we observe a shift of ΔVGS ∼ 0.6V between the onset of

phonon-assisted and direct BTBT for the EHBTFET under study (see Fig. 4.3).

It is helpful to underline the main determinants of the tunneling current in relation to the
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Figure 4.3 – (a) Transfer characteristics (ID−VGS) for the EHBTFET with separate contributions
from phonon-assisted and direct BTBT indicated. Results indicate steep switch-on behavior
at low VGS and additional contributions due to alignment of higher energy subbands. (b)
Evolution of the subband energies for L-valley (e), Γ-valley (Γ) electrons, heavy (hh) and light
(lh) holes with respect to the n-gate voltage VGS.

discussion above. A closer look at equations 3.11, 2.25 and 3.35 reveals that the tunneling

current is mainly dependent on: i) the energetic position of the quantized levels; ii) the

density of states of both electrons and holes; iii) the overlap between the electron and hole

wavefunctions. The current spectra given in Fig. 4.5 indicate that, provided subband alignment

takes place, light hole contribution is higher than that of the heavy holes. However, low

effective mass of the light holes result in considerably higher quantization energies compared

to heavy holes (e.g., compare the contributions of hh2 and lh1 in Fig. 4.5(c)) therefore the light

holes do not play any role at low voltage levels in the region of switching.

We can also note a spike in the current spectrum in Fig. 4.5(c) around E = 20meV correspond-

ing to the only allowed tunneling energy (ET in eq. (3.33)) that preserves momentum and

energy of the tunneling electron. We do not observe such behavior for phonon-assisted BTBT,

since the phonons compensate for the momentum difference between the initial and final

state, therefore resulting in a continuum of tunneling energy values available between aligned
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Figure 4.4 – Impact of the gate voltage on the wavefunctions overlap. Energy band diagrams
(black lines, left y-axis) and product between the electron and hole wavefunctions squared
(right y-axis). A sizable decrease in the WF product when VGS increases is evident stemming
from the wavefunctions being pushed towards the oxide of the Ge EHBTFET of Fig. 4.2.

hole and electron subband energies.

One point worth noting with regard to the simulation tools is the difference between the

semi-classical Sentaurus Device and the quantum mechanical model simulations (Fig. 4.6). It

can be observed that although Sentaurus assumes a bulk, continuous band structure rather

than quantized subbands, the semi-classical model is still able to capture an important part of

the device operating principle. The reason is that, even in the continuous band case, there

is no current conduction if the conduction and valence bands are not aligned. Once the

alignment is achieved, tunneling is eventually allowed and a step-like switching behavior is

seen. The step-like behavior is caused by the switching from an OFF-state to an ON-state

with relatively short tunneling distance. However, since the energy bands are not quantized in

Sentaurus, the alignment voltage is drastically different, which is consistent with the results of

Vandenberghe et al. [65]. The model parameters for direct and phonon-assisted BTBT in the

semi-classical simulations have been taken from [13] and [12] respectively. We reiterate once

again that the behavior in Fig. 4.6 depicts an ideal case where lateral leakage effects that we

will show to be critical is not included.

Fig. 4.7 presents the transfer characteristics for different VDS voltages. What is most striking

is the almost overlap of the curves for VDS ≥ 0.2V. Up to 0.2V, the increase in VDS effectively

increases the DOS that can contribute to tunneling. But further increasing VDS does not result

in an increase in the tunneling current, unless the increase allows for another alignment

between energy subbands. This can be explained by the previously mentioned wavefunction

repulsion mechanism, which decreases the tunneling probability albeit the increase in the

allowed energy window, resulting in negative trans-conductance at high VGS. In the case of

VDS = 0.2V, we observe an ION/IOFF ratio of 107 and an average subthreshold slope of 30mV/dec
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Figure 4.5 – Quantized energy levels for various gate biases for the Ge EHBTFET of Fig. 4.2. The
current density spectra are given as insets for each case. Various subband energies for heavy
hole (hh), light hole (lh), L (e) and Γ (Γ) valley electrons. Spectra reveal that phonon-assisted
tunneling between e-lh occurs at a higher rate per energy slice. Note the spike (Dirac-delta)
in the current spectrum for VGS = 0.9V corresponding to the single tunneling energy in direct
2D-2D tunneling as a result of simultaneous energy and in-plane momentum conservation.

up to VDD that we will see is over optimistic since we are here neglecting the parasitic lateral

tunneling paths.

The output characteristics is given in Fig. 4.8 for different VGS voltages. In line with Fig. 4.7, we

observe a smaller saturation current for VGS = 0.5V than for VGS = 0.4V, due to the negative

transconductance effect. The quasi-ideal saturation characteristic is a limitation of the model,

since it calculates the current using 1D vertical slices of the device and 2D effects are not

taken into account. Nevertheless, full 2D Sentaurus simulations have already shown that

an extremely good saturation behavior can be achieved [97] and there is no reason to think

that vertical quantization would change this property. Therefore, a high output resistance is

expected from the EHBTFET in the saturation region. Also, the absence of a superlinear onset

[16, 121] at low VDS is a result of subband alignment occurring at energies sufficiently larger

than the source Fermi level EFp.

One important distinction must be made regarding the EHBTFET compared to MOSFET
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Figure 4.6 – Transfer characteristics of the Ge EHBTFET: comparison between the quantum
mechanical model (of section 3.2) and Sentaurus. Sentaurus curve has been rigidly shifted to
match the turn on potential calculated by the QM model. Both models predict steep switching
behavior, although Sentaurus significantly overestimates the ON current. The workfunctions
used for Sentaurus are φn−gate = 3.955eV and φp−gate = 4.875eV. The workfunctions used for
QM model are the same as Fig. 4.3 (φn−gate = 3.408eV and φp−gate = 5.642eV).
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Figure 4.7 – Ge EHBTFET transfer characteristics for different VDS in linear and log scale. A
negative transconductance region is visible at high VGS voltages.

regarding the output characteristics under negative VDS. Unlike MOSFET, where the output

characteristics is symmetric with respect to the negative and positive VDS, the EHBTFET might

suffer from the unidirectional conduction that is shared by all TFETs. The EHBTFET consists of

a p-i-n profile along the source-drain direction which is reverse biased in the intended mode

of operation (i.e. when VDS > 0V). In the case where the junction is forward biased (VDS < 0V),

the device might enter into the NDR region where the current levels degrade significantly. Fig.
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Figure 4.8 – Ge EHBTFET output characteristics for different VGS. Note the absence of the
superlinear region at low VDS region, which is commonly seen in TFET output characteristics
[16].
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Figure 4.9 – Ge EHBTFET output characteristics for different VGS under negative VDS. The
width of the NDR region increases when increasing the gate voltage.

4.9 shows the output characteristics of the EHBTFET under negative VDS where the diode is

forward biased. We can clearly observe an increase in the peak voltage and peak current with

increasing gate voltage as the gate voltage increases the overlap of the energy bands. It should

be noted that the forward diode current of the EHBTFET is not included in our simulator,

therefore an exponential increase in current is expected as the VDS is further lowered.

Through 1D quantum mechanical simulations, although reduced ON current levels are ob-

tained compared to CMOS, the EHBTFET is still shown to be a promising candidate for

low supply voltage applications due to its steep switching resulting in SSavg ∼ 30mV/dec and
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ION/IOFF ≈ 107 (VDD ≈ 0.2V). Furthermore, it has been demonstrated that, due to the direct (Γ)

bandgap being comparable energetically to the indirect (L) bandgap, both phonon-assisted

BTBT and direct BTBT can be observed albeit direct BTBT kicks in at much larger voltages

compared to the bulk case.

4.2 Two Dimensional Effects on the EHBTFET

As stated in the previous section, the initial results using the 1D model have shown promising

results although requiring significantly larger applied gate bias compared to semi-classical

simulations [115]. However, 2D effects also need to be investigated. We now turn our attention

to 2D simulations of the Ge EHBTFET to identify if any 2D effect is prominent. We again

deal with Germanium based devices, in which both direct and phonon-assisted BTBT can be

observed due to the fact that the direct Γ valley is separated by only 0.14eV from the indirect

L valleys [13]. To this end, we have utilized the models for both direct and phonon-assisted

tunneling detailed in Chapter 3.

p+ n+2DEG
oxide

oxide

n-gate

p-gate Leakage

i

2DHG
z

y
x

Figure 4.10 – Possible leakage path during OFF state in the EHBTFET of Fig. 4.2.

For the full 2D tunneling simulations, we consider again the EHBTFET structure [122] sketched

in Fig. 4.2. The 2D Schenk model is used here for the calculation of the coupling element MCV

of direct BTBT, due to the difficulty in separating the hole and electron domains in the Bigelow

model for this 2D structure. The source and drain regions are degenerately doped (ND = NA =
1020cm−3), whereas the underlap and overlap regions are lightly doped (NI = 1015cm−3). The

n-gate and p-gate workfunctions are φn−gate = 3.434eV and φp−gate = 5.644eV, respectively.

Although the tunneling occurring between the 2D gases in the ON state is essentially a 1D flow

in the overlap region, it is expected to have some leakage tunneling between the underlap

and inversion layers (Fig. 4.10). However, this effect cannot be captured by a 1D model

since the electric field direction changes in the spacer regions as a function of device bias.

A fully 2D simulator can capture such effects and hence provide more realistic results. We

again remind that, unless otherwise stated, we have set the source-drain length to 200nm in

order to reduce the impact of artificial quantization caused by the closed boundaries in the

Schrödinger equation.

The transfer characteristic of the Ge EHBTFET is given in Fig. 4.11: phonon-assisted (indirect)

and direct components are plotted separately. Unless otherwise stated, the p-gate (hole gate)

has been fixed to 0V, whereas the n-gate (electron gate) was swept. As can be seen, in the 2D

model the SS is degraded compared to the estimate provided by the 1D model, which predicts

68



4.2. Two Dimensional Effects on the EHBTFET

���� ���� ��� ��� ��� ��� ��� ��� ��� ���
��

���

��
���

��
�	

��
��

��
�


��
��

��
��

��
��

��
��

�
��
��
��

�
��
	
�

�
� �
��


�
�
�



������

��
�

������������

������������

����������

����������

��������



��
������


Figure 4.11 – Comparison of direct and indirect components of the Ge EHBTFET of Fig.4.2
with different gate metal workfunctions (φn−gate = 3.434eV and φp−gate = 5.642eV). It is seen
that at high Vn−gate, where the device is in ON state, 1D and 2D tunneling models have mutual
agreement for both indirect and direct tunneling components. Vp−gate = 0V ,VDS = 0.5V,EOT =
0.53nm.

a ’quasi-infinite’ point switching slope (indicated by a dashed arrow) due to the fact that it

cannot account for non-vertical (leakage) tunneling. This leakage is caused by the penetration

of the wavefunctions into the underlap region well before the electron inversion layer has been

formed in the overlap region. This penetration acts as a leakage path (see Fig. 4.10) which

can be better observed in Fig. 4.12. Fig. 4.12(c) shows the integrand for the electron-hole

coupling element MCV integral in eq. 3.46 for the electron-hole wavefunction pair having

the highest contribution for OFF state of the EHBTFET. Since the p-gate gate voltage is low

enough to attract the wavefunctions deep into the overlap region (see Fig. 4.12(b)), the heavy

hole wavefunction is able to penetrate up to the drain side of the channel. However, the Γ

electron wavefunction can only penetrate into the underlap region and not into the overlap

region, as seen in Fig. 4.12(c). The reason for this behavior is that electric field magnitude is

smaller in the underlap region than the overlap region, which results in weaker field-induced

quantization in the underlap region and permits wavefunction penetration from the drain to

this region.

Next, we turn to investigate the different natures of the ON state and OFF state currents. As

a form of classification, OFF state current can be described as point tunneling [45], which is

the tunneling type seen in conventional TFETs. The fact that the current generation is very

narrowly concentrated around the underlap-overlap boundary (see Fig. 4.12) is consistent

with this classification.
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Figure 4.12 – (a) Γ electron wavefunction (b) Heavy hole wavefunction (c) Generation rate for
the electron-hole subband pair that contributes the most to the direct BTBT current in the
OFF state (Vn−gate = 0V, Vp−gate = 0V, VDS = 0.5V) for the Ge EHBTFET of Fig. 4.2. Note the
penetration of the Γ electron wavefunction into the underlap region in (a). The concentration
of the BTBT generation around a narrow peak is a strong indicator of point tunneling.

In contrast, the ON state could be classified as line tunneling [45] which is the name given

to tunneling aligned to the electric field induced by the gate. By definition line tunneling is

proportional to the tunneling area, which is consistent with the findings in Fig. 4.13, where it

is seen that the majority of the overlap region contributes to BTBT.

Figs. 4.14 & 4.15 investigate the geometrical dependences of the BTBT in the Ge EHBTFET.

Fig. 4.14 plots the transfer characteristics for different EOT at both n-gate and p-gates. It is

important to note that in Fig. 4.14 the phonon-assisted BTBT is already in the ON state at

about Vn−gate = 0.1V, due to large effective mass of L valley electrons, whereas direct BTBT

transition to ON state is observed at relatively higher n-gate voltages. The onset of ON state for

direct BTBT corresponds to the inflection points in the I-V characteristics e.g., Vn−gate � 0.9V

for EOT = 0.7nm.

Bearing these in mind, we can qualitatively compare the features of line and point tunneling

by comparing the phonon-assisted BTBT (ON state, line tunneling) and direct BTBT (OFF state,

point tunneling) curves. The most significant feature of the figures is the drastic difference
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Figure 4.13 – Same as Fig. 4.12 but for the ON state (Vn−gate = 2V, Vp−gate = 0V, VDS = 0.5V). As
expected from line tunneling, the BTBT generation is spread throughout the whole overlap
region.

in the dependences of ON state and OFF state. Observing Fig. 4.14, one sees that the EOT

does not play an important role in determining the magnitude of the current in the ON state

but merely shifts the transfer curves. In the OFF state, however, it is found out that the EOT is

effective in determining the magnitude of the current as well as the tunneling onset as we see

(in Fig. 4.14) a monotonic increase of the OFF current with decreasing EOT. Decreasing EOT

also slightly improves the switching slope.

The role of the channel thickness (Fig. 4.15) seems to be more complex compared to the

influence of the oxide thickness. It is seen that the shapes of the transfer characteristics are

drastically different due to dramatic change in the subband energies for different channel

thicknesses. As for the direct BTBT, it can be said that the TCH = 7.5nm case is too extreme

in the sense that no direct BTBT ON current is seen. The reason for such behavior is that

as the channel thickness is reduced, the subband energies in the overlap region for the Γ

electron band increases at a higher rate than those of the L valley due to the low effective

mass of Γ electron valley. Consequently, as the gate voltage is increased L valley states in

the overlap region becomes occupied and charge density increases which pins the potential

profile. Once the potential profile is pinned, the gate induced electric field is screened and
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Figure 4.14 – Transfer characteristics of the Ge EHBTFET of Fig. 4.2 varying the gate oxide
thicknesses TOX at both gates. Phonon-assisted (direct) BTBT are denoted separately as solid
(dotted) lines. VDS = 0.5V and Vp−gate = 0V. TCH = 10nm.
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Figure 4.15 – Transfer characteristics of the Ge EHBTFET of Fig. 4.2 varying the channel
thicknesses TCH. Phonon-assisted (direct) BTBT are denoted separately as solid (dotted) lines.
VDS = 0.5V and Vp−gate = 0V. EOT = 0.53nm.

subband efficiency [123] decreases rapidly as seen in Fig. 4.3.
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Figure 4.16 – Transfer characteristic for the Ge EHBTFET with different biasing schemes. Direct
and phonon-assisted BTBT are denoted separately as lines with filled and hollow symbols
respectively. For this simulation the p-gate workfunction is taken to be φp−gate = 3.64eV,
VDS = 0.5V.

In Fig. 4.16 the impact of different biasing schemes is investigated. For this simulation, the

n-gate and p-gate electrodes are swept simultaneously but in opposite polarities. Note that for

this simulation the p-gate workfunction has been taken as φp−gate = 3.64eV, whereas n-gate

workfunction was kept at 3.434eV. The current levels rapidly drop off for both direct and

phonon-assisted BTBT as Vn−gate is lowered with respect to ON-conditions. This reduces the

leakage and improves SS at low currents.

4.3 Device Optimization and Lateral Leakage Suppression

In the previous section, we have shown that a leakage path exists in the EHBTFET due to

the penetration of the wavefunction (WF) into the so-called underlap region (see Fig. 4.10).

This is due to the field-induced quantization being considerably weaker in the underlap

region which is controlled by only one gate. This WF penetration causes significant lateral

leakage with subsequent SS degradation. In this section, we propose two different methods

[124, 125] to suppress this penetration and hence lateral leakage. Both methods require slight

modifications in the device structure and each of them can be chosen depending on what the

fabrication process allows. Also, both methods present negligible penalty on the ON current

when designed properly.
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4.3.1 Counterdoping as a Method for Lateral Leakage Suppression

We first detail the counterdoping method, which introduces dopingin the underlap regions. We

simulate an In0.53Ga0.47As EHBTFET oriented along the [100] direction. Since InGaAs is a direct

gap material, only direct BTBT is included. The bandgap is 0.81eV and the effective masses

are 0.042m0, 0.0503m0 and 0.465m0 for electrons, light holes and heavy holes, respectively

[126, 127]. The gate oxide has EOT=1nm at both interfaces, which corresponds to roughly

5.9nm of HfO2(ε= 23). We have checked that the magnitude of the electric field inside the

oxide is well below the breakdown field for HfO2 (Ebd ∼ 4MV/cm) reported in [128]. The source

and drain regions are doped p-type and n-type respectively with a doping level of 1020cm−3.

We have checked the impact of incomplete activation of dopants by simulating a case with

1019cm−3 doping in the source and drain regions and seen that the device characteristics are

not affected. We assume midgap workfunctions for both n-gate and p-gates. Unless otherwise

stated, a VDS = 0.25V is used.

p+ n+Overlap

n-gate

p-gate

oxide

oxide

~
50nm L

G 
= 50nm 50nm

1
m

1nm EOT

(a)
Underlap Underlap

i

10nm (InGaAs)

p+ n+
oxide

oxide

n-gate

p-gate Counterdoping

(b) in p

z

y
x

Figure 4.17 – (a) EHBTFET device parameters (b) The proposed solution featuring doped
underlap regions (counterdoping).

The simulation and device optimization strategy is as follows: first the 1D version of the

quantum mechanical simulator (section 3.2) [115] is utilized to perform a parameter sweep

on the channel thickness while fixing the top and bottom oxide thicknesses at 1nm EOT,

as given in Fig. 4.18. For this figure, n-gate and p-gate biases are swept simultaneously in

opposite polarities (i.e., Vp−gate =−Vn−gate). The figures of merit that are of interest are the

subband alignment voltage (Valign = Vn−gate −Vp−gate) and the ON current (defined as ID at

Vn−gate = Valign

2 +0.25V). The figure shows the alignment voltage and ON current levels obtained

for different channel thicknesses TCH. It is seen that TCH = 10nm seems to offer a reasonable

compromise between the alignment voltage (with a required bias of about 3.3V) and the

ON current (about 10μA/μm). For the following results, unless otherwise stated, a channel

thickness of 10nm is used.

The main idea of using counterdoping in the underlap regions is to partially screen the

influence of the gate. Fig. 4.19 reports the conduction band profile cut along the x-direction at
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Figure 4.18 – Alignment voltage Valign and ON current levels for In0.53Ga0.47As EHBTFETs with
different channel thicknesses TCH. EOT = 1nm.

the middle of the semiconductor film. Using counterdoping results in a significant increase of

the energy barrier for both holes and electrons in the underlap regions at source and drain sides

respectively, which delays the onset of the parasitic lateral tunneling component. Note that

counterdoping alleviates the short channel effects (SCE) in the overlap region, by flattening

the potential profile around the overlap-underlap boundary. Due to this, counterdoping is

also expected to help with the lateral scaling of the EHBTFET by suppressing the SCE. For all

the figures shown in this section, the counterdoping is applied only to the underlap region at

the drain side (p-doped region in Fig. 4.17(b)) while the underlap region at the source side

is left undoped. This is due to the fact that for the devices shown here, we use a p-gate bias

that already induces the 2DHG in the overlap region, therefore only the penetration of the

electrons from the drain needs to be suppressed.

The effect of the increase in energy barrier is easily observed in the BTBT generation rates

given in Fig. 4.20, which indicate orders of magnitude lower rates for counterdoped EHBTFET

in the OFF state (GBTBT,max ∼ 1046m−3s−1 with no counterdoping, compared to GBTBT,max ∼
1034m−3s−1 with counterdoping) which shows the efficiency of the method.

Fig. 4.21 shows the transfer characteristics using different underlap doping levels (denoted as

NUL), where the p-gate bias is fixed at −1.4V while sweeping the n-gate. In the optimized case,

NUL = 1.5×1019cm−3, an ON current of about 20μA/μm and an average SS of 31mV/dec over

eight decades of current are obtained in this particular device. The OFF current is taken to be

0.1pA/μm (at the n-gate voltage denoted as VOFF) while the ON current is the drain current at

Vn−gate =VOFF +0.25V.

The optimum counterdoping value is expected to depend on the channel thickness, as the
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Figure 4.19 – Conduction band profile cut through the middle of the channel along the x-
direction for InGaAs EHBTFETs with (blue) and without (red) counterdoping (NUL = 1.5×
1019cm−3 at both underlap regions) in the OFF state (Vn−gate = 1.4V,Vp−gate = −1.4V,VDS =
0.25V).

latter impacts the degree of quantization. To investigate this point, an InGaAs EHBTFET as in

Fig. 4.17 but with TCH = 7.5nm is simulated and the transfer characteristics are reported in

Fig. 4.22(Left) using different underlap doping levels. For this set of curves, the p-gate bias

is fixed at −2.0V while sweeping the n-gate. It is seen that the optimum doping level which

suppresses the lateral leakage while preserving the ON current is NUL = 3.5×1019cm−3, which

is drastically higher than the value found for TCH = 10nm although the value may slightly differ

in different biasing configurations. The optimized configuration in this case yields slightly

improved (compared to 10nm) SS and ON current values (ION = 100μA/μm and an average SS

of 27mV/dec over ten decades of current). Similarly, thicker channels require less doping e.g.,

the optimum doping is NUL = 7.5×1018cm−3 for TCH = 15nm (4.22(Right)).

The plots in Fig. 4.21 & 4.22 point out the following key insights:

• Too low underlap doping results in ineffective suppression of lateral leakage (e.g., see

the case with NUL = 1×1019cm−3 for TCH = 10nm)

• Too high underlap doping, in turn, results in the source and drain regions being ’cut off’

from the channel due to increased barrier height in the underlap region. This increase

causes certain states in the overlap region to become quasi-bound so that they do not

contribute to the current. This results in lower ON current.

A peculiar increase in OFF current is observed for NUL = 2×1019cm−3 and NUL = 4.5×1019cm−3
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Z
Z

Figure 4.20 – BTBT generation rates for the OFF state (TCH = 10nm,Vn−gate = 1.4V,Vp−gate =
−1.4V,VDS = 0.25V) of the InGaAs EHBTFET of Fig. 4.17 (a) without counterdoping (b) with
counterdoping (NUL = 1.5×1019cm−3).

for the 10nm and 7.5nm devices, respectively. This is caused by the induced ambipolar

conduction that occurs due to WF penetration from the overlap region to the underlap region,

in contrast to penetration from the drain in the case without counterdoping [129]. As seen in

Fig. 4.23, using a too high doping could lower the barrier for hole states in the overlap regions

and help them penetrate into the underlap regions controlled by the n-gate only. Moreover,

highly doped regions become less sensitive to the gate control. These findings indicate that

the control of the doping level is critical for the effectiveness of the counterdoping.

We also study the parameter sensitivity of the counterdoping approach by simulating cases

where the border of the counterdoped region is not aligned with the actual border between the

underlap and overlap regions. We denote the cases where the counterdoping extends into the

overlap region with a positive value of misalignment, whereas a negative value is used for the

opposite case. Fig. 4.24 (Left) compares the conduction band profiles along the x-direction

at the middle of the channel. One can see indeed that the barrier height is increased for the

positive misalignments and vice versa. The results given in Fig. 4.24 (Right) indicate that the

counterdoping method retains its effectiveness over a range of misalignments up to -3nm

to +3nm. We observe two different detrimental impacts on the device characteristics for

negative and positive misalignment cases. For negative misalignments, the lateral leakage is

not suppressed as effectively as in the perfectly aligned case; hence resulting in increased OFF

current and poorer SS values. For positive misalignments, on the other hand, we observe that
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Figure 4.21 – Transfer characteristics for the InGaAs EHBTFET of Fig. 4.17 with different
underlap doping levels with TCH = 10nm. VDS = 0.25V,Vp−gate = −1.4V. Note the sudden
increase in OFF current for the NUL = 2×1019cm−3 curve, caused by a second leakage path.

the ON current decreases and the SS get deteriorated due to increased barrier height in the

counterdoped region as already observed in Fig. 4.24 (Left).

A similar analysis has been performed varying the abruptness of the doping profiles by sim-

ulating a non-abrupt junction between the counterdoped underlap and the overlap region

with various doping decay rates. As can be seen in Fig. 4.25(Left & Right), for large decay rates

(> 5nm/dec), an effect similar to the positive misalignment cases (i.e., as in Fig. 4.24 (Right)) is

present. Such non-abrupt doping profiles increase the potential barrier height and therefore

reduce the ON current. These findings highlight the need for a very good process control in

the alignment and anneal steps to ensure sufficiently abrupt junctions.

These critical aspects of the device processing can be addressed to some extent by the template-

assisted selective epitaxy (TASE) growth technique recently developed [130]. This method

allows horizontal epitaxial growth of fin structures by defining an oxide template. Such

a method can be used to obtain the regions with alternating doping profiles with abrupt

junctions that is required by the counterdoped EHBTFET without any implantation steps,

which could be used for implementing the counterdoped EHBTFET on a fin.

4.3.2 Hetero-gate Metal for Lateral Leakage Suppression

A similar effect in the band profile inside the channel can also be achieved by utilizing the so-

called ’hetero-gate’ approach (Fig. 4.26) [125]. The idea is similar to [131] where a combination
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Figure 4.22 – Transfer characteristics for an InGaAs EHBTFET as in Fig. 4.21 but with (Left)
TCH = 7.5nm and Vp−gate =−2V (Right) TCH = 15nm and Vp−gate =−1V with different underlap
doping levels. VDS = 0.25V for both figures. An increase in the OFF current (similar to Fig. 4.21)
is obverved for NUL = 4.5×1019cm−3 (TCH = 7.5nm) and NUL = 1×1019cm−3 (TCH = 15nm).

Z
Z

Figure 4.23 – Heavy Hole wavefunction of the subband with highest contribution to the OFF
current (Vn−gate = −Vp−gate = 1.4V,VDS = 0.25V) for the counterdoping levels of (a) NUL =
1×1019cm−3 (b) NUL = 2×1019cm−3 in the InGaAs device of Fig. 4.17.

of high-k and low-k gate oxides were used to reduce the gate capacitances to improve the

switching performance. Here, however, we are interested in shifting the band profile in the

underlaps to prevent early penetration of the wavefunction. To do this, a different gate metal

is utilized for the underlap of the n-gate where a more p-like workfunction metal is used.
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Figure 4.24 – (Left) Conduction band profile cut through the middle of the channel along the x-
direction for counterdoped InGaAs EHBTFETs with (blue) +5nm (red) -5nm of underlap doping
misalignment (NUL = 1.5×1019cm−3) in the OFF state (Vn−gate = 1.4V,Vp−gate =−1.4V,VDS =
0.25V). (Right) Transfer characteristics for the counterdoped InGaAs EHBTFET of Fig. 4.17
(NUL = 1.5×1019cm−3) with misaligned junctions. (Vp−gate = −1.4V,VDS = 0.25V). Positive
values of misalignment indicate that the counterdoped region extends into the overlap region,
whereas the negative values indicate the opposite case.

Figure 4.25 – (Left) Conduction band profile cut through the middle of the channel along
the x-direction for counterdoped InGaAs EHBTFETs with (blue) 1nm/dec (red) 5nm/dec
of underlap doping decay (NUL = 1.5×1019cm−3) in the OFF state (Vn−gate = 1.4V,Vp−gate =
−1.4V,VDS = 0.25V). (Right) Transfer characteristics for the counterdoped EHBTFET of Fig.
4.17 (NUL = 1.5×1019cm−3) with nonabrupt junctions. (Vp−gate =−1.4V,VDS = 0.25V).

Fig. 4.27(Left) depicts the conduction band profiles with and without hetero-gate using our 2D

simulator. We can see that indeed an effect similar to the counterdoping solution is present.

Fig. 4.27(Right) shows the transfer characteristics for the InGaAs EHBTFET using different
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Figure 4.26 – The hetero-gate EHBTFET structure.

workfunction offsets ΔΦ. Noting that we utilize mid-gap metal for the overlap workfunction, it

is evident that utilizing a workfunction with an offset of ΔΦ= 1eV is effective in suppressing

the lateral leakage. We see the relatively lower offsets are not sufficient to prevent the WF

penetration, similar to the lower underlap doping levels for the counterdoping solution. Again,

using a too large offset results in a reduction in ON current, due to too much increased

potential barrier in the underlap region, effectively cutting off the carriers from the drain

region.

In terms of performance, we can argue that both counterdoping and hetero-gate solutions

are somewhat equivalent in terms of their average SS and the ON current levels. For both

counterdoping and hetero-gate solutions, we see that they entail some additional fabrication

complexity. While we have only dealt with the underlap on the drain side for our device-level

simulations here, we will see in the following sections regarding the circuit-level simulations

that the leakage through the underlap on source side will need to be taken into account. For

the counterdoping solution, it will require a doping profile of p-n-i-p-n which is rather compli-

cated, however, possibly achievable in the case of III-V epitaxial growth through in-situ doping.

On the hetero-gate side, it would entail utilization of four different metal workfunctions and

four critical aligment steps which, for a first analysis, might present a more daunting challenge.

4.4 Investigation of the Parameter Space for the EHBTFET

Throughout our 1D and 2D simulations, we have observed some peculiarities on the impact

of changes in the effective oxide thickness and the channel thickness of the EHBTFET. In this

section, we will tackle this question systematically and propose a simple analytical model

to prove our intuitions as well as provide an assessment of the performance of different

semiconductors as the channel material for the EHBTFET [132].

As done in the 1D simulations of section 4.1.1, we take a 1D vertical slice in the overlap region

and assume translational symmetry along the x-direction (i.e., horizontal potential profile

constant in the overlap region). This assumption relies on the fact that the vertical potential

profile in the overlap region is very close in both 1D and 2D simulations of section 4.2 and
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Figure 4.27 – (Left) Conduction band profile cut through the middle of the channel along the
x-direction for InGaAs EHBTFETs with (blue) and without (red) hetero-gate (ΔΦ= 1.2eV) in
the OFF state (Vn−gate = 1.4V,Vp−gate =−1.4V,VDS = 0.25V). (Right) Transfer characteristics for
an InGaAs hetero-gate EHBTFET with different underlap gate metal workfunction differences.
The overlap region workfunction is the intrinsic level of In0.53Ga0.47As.

lateral effects can be suppressed using hetero-gate configurations (section 4.3.2 [125]) or

underlap counterdoping (section 4.3.1 [124]). The parameters used for the simulation are

given in Table 4.1. The deformation potential and the phonon energy parameters for Ge are

taken from [12]. The parameters for phonon-assisted tunneling (for Si) have been calibrated

against experimental data [10, 11] (see Fig. 3.19). The deformation potential for Si0.5Ge0.5 was

linearly interpolated from the Si and Ge values.

We perform anti-symmetric gate sweeps (i.e., sweep the n and p gates simultaneously with

Vn−gate =−Vp−gate), since it was shown to have lower lateral leakage and better subthreshold

slopes (see section 4.2 and Fig. 4.16). Midgap gate workfunctions have been considered.

Different channel materials (Si, Si0.5Ge0.5, Ge, InAs and In0.53Ga0.5As), film thicknesses (TCH =
[7.5,20]nm) and equivalent oxide thicknesses (TOX = [0.5,3]nm) are employed. In terms of

the channel material, we limit ourselves to homojunction architectures, although significant

improvement may be obtained by utilizing staggered and broken gap III-V heterostructures

[138, 139].

The device is assumed to be oriented along the [100] direction with [001] surface orientation.

For Si, six Δ valleys (four-fold degenerate Δ4 with transverse mass along the z-direction and

two-fold degenerate Δ2 with longitudinal mass along the z-direction) have been taken into

account. Since we are using a mole fraction of 0.5 for SiGe, the effective masses for the Δ valleys

are taken the same as in Si [13]. For Ge, four-fold degenerate L valleys and the direct gap Γ

1Extracted from the k ·p results by University of Bologna [8].
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Table 4.1 – Bandgaps, effective masses, valley degeneracies, non-parabolicity coefficients
along with deformation potentials and phonon energies (phonon-assisted BTBT only) used for
numerical simulations. For anisotropic valleys the masses are given as quantization/transverse
Mass.

Material (Valley) EG [eV] m∗
e [m0] m∗

hh[m0] m∗
lh[m0] αNP[eV−1] Dph[eV/m] Eph[meV]

Si (Δ4)
1.12 [13]

0.1905/0.417 [13]
0.49 [13] 0.16 [13] 0.5 [119] 8.16×1010 [65] 18.6 [65]

Si (Δ2) 0.916/0.1905 [133]
Si0.5Ge0.5 (Δ4)

0.91 [134]
0.1905/0.417 [133]

0.41 [13] 0.102 [13] 0.5 [119] 7.98×1010 [65, 12] 13.6 [65, 12]
Si0.5Ge0.5 (Δ2) 0.916/0.1905[13]

Ge (L4) 0.66 [13] 0.117/0.292[13, 135]
0.33 [13] 0.043 [13]

0.33 [119] 7.8×1010 [12] 6 [12]
Ge (Γ) 0.8 [13] 0.043 [13] 0.85 [119] - -
InAs 0.358 [136] 0.022[136] 0.41[136] 0.025[136] 3.6 1 - -

In0.53Ga0.47As 0.751 [127] 0.042 [127] 0.457 [127] 0.052 [127] 1.5 [137] - -

valley have been considered, so both phonon-assisted and direct BTBT are included. For InAs

and In0.53Ga0.47As, only the conduction band valley in Γ is included since the other valleys sit

far apart energetically. The material parameters used in the simulations and calculations are

listed in Table 4.1.

4.4.1 From 3D-3D to 2D-2D Face Tunneling

The left subplots in Fig. 4.28 depict the alignment voltage (defined as Valign =Vn−gate−Vp−gate =
2Vn−gate) for which the lowest electron and the highest hole subband get aligned, whereas the

right plots report the ION (defined as ID at Vn−gate = Valign

2 +VDS =−Vp−gate with VDS = 0.15V).

Si, Si0.5Ge0.5 and Ge results are dominated by phonon-assisted BTBT. Although direct BTBT is

included in Ge, it is found not to dominate the current in Ge EHBTFETs for the considered

bias, contrarily to what happens in the bulk diodes of Fig. 3.19(Middle & Right) since the

quantized energies of the Γ electrons are much higher than those of L valleys. For InAs and

In0.53Ga0.47As EHBTFETs only direct BTBT takes place. Comparing the Ge, In0.53Ga0.47As and

InAs results, it is seen that the overall behavior with respect to parameter changes is similar,

except for the drastically higher ION of the InAs EHBTFET due to small direct bandgap.

About the TOX independence of the ON current levels for Ge, InAs and In0.53Ga0.47As EHBT-

FETs, denoted by the almost vertical contour lines, a close inspection on the I-V characteristics

reveals that it is caused by the fact that 2D-2D tunneling takes place in those cases which

we will discuss in more detail later on. In this context 2D-2D tunneling means that only one

electron-hole subband pair gets aligned to contribute to the BTBT current.

The behavior of ION with respect to the parameters drastically changes for Si EHBTFET (Fig.

4.28 top right) with thicker channel thicknesses (TCH > 12.5nm). In those cases, the large

effective masses of Si Δ2 valleys and heavy holes allow for the formation of a quasi-3D con-

tinuum of states (i.e., many subband pairs get aligned, see Fig. 4.29). This is due to the fact

that heavier masses reduce the energy spacing between quantized levels, resulting in (pseudo)

3D-3D tunneling. A similar comment can be made for Si0.5Ge0.5 EHBTFET as well, due to the

similar effective mass values, even though the alignment voltage is relatively smaller due to
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Figure 4.28 – Contour plots of (Left subplots) Alignment voltage Valign, (Right subplots)
log10ION[A/μm] for (from left top to bottom) Si, Si0.5Ge0.5, Ge, In0.53Ga0.47As and InAs EHBT-
FETs. The dashed contour line corresponds to Valign = 2V. VDS = 0.15V.

reduced bandgap. For both Si and SiGe, an interesting feature of the contour plots is that as

the channel thickness is reduced from the relatively large values (20nm), a decrease in the ON

current is seen. This is actually caused by the reduction of the DOS available for tunneling,

which is stronger than the competing increase in the tunneling rate brought in by the thinner

channel. Eventually, as the channel is further thinned down, the tunneling rate increase starts

to counterbalance the effects related to the DOS reduction and the current is enhanced.

This drastic difference between 2D-2D tunneling and 3D-3D tunneling clearly demonstrates

that the carrier gas dimensionality plays an important role in determining the influence of

device parameters on the drive current. A limit on the obtainable current is imposed for 2D-

2D tunneling due to the reduction of the available states for tunneling, independently of the

electrostatic control of the channel. This is in stark contrast to 3D-3D tunneling, where a better

electrostatical control would always yield higher current for the same bias.

This latter point is better visualized by the I-V characteristics given for a 2D-2D tunneling

device (i.e., a Ge EHBTFET with TCH = 7.5nm) versus a pseudo 3D-3D tunneling one (i.e., a Si
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Figure 4.29 – Conduction and valence band profiles and quantized subband energies (dashed
lines) for (Left) Si EHBTFET with TCH = 20nm (Middle) Ge EHBTFET with TCH = 7.5nm (bot-
tom) InGaAs EHBTFET with TCH = 10nm. Si EHBTFET exhibits 3D-3D tunneling behavior
since multiple subbands get aligned, whereas for Ge and InGaAs EHBTFETs only one subband
pair is aligned, hence resulting in 2D-2D tunneling behavior.

EHBTFET with TCH = 15nm) in Fig. 4.30. It is seen that, in 3D-3D tunneling, a thinner oxide

increases the ON current and also shifts the onset of tunneling to lower gate biases, whereas

only a rigid shift of the onset of tunneling is seen for 2D-2D tunneling.

Another distinguishing feature between the 2D-2D and 3D-3D tunneling is that the I-V charac-

teristics for the former generally exhibit a negative transconductance behavior [115], which

stems from the wavefunction repulsion as the electric field increases and from the step-like

2D DOS which does not change with the gate bias. Wavefunction repulsion also occurs for

3D-3D tunneling, but the effect is masked by the addition of new states available for tunneling

as the gate bias increases.
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Figure 4.30 – I-V transfer characteristics for (Left y-axis) Ge EHBTFETs with TCH = 7.5nm and
(Right y-axis) Si EHBTFETs with TCH = 15nm. (blue) TOX = 1nm (red) TOX = 2nm. VDS = 0.15V.
The green curves are the artificially shifted versions of the TOX = 2nm cases to align at the
same onset voltage of the TOX = 1nm devices.

4.4.2 Analytical Model

To better explain the results of the numerical model and investigate the characteristic features

of 2D-2D tunneling, an analytical model has been derived by solving the 1D vertical Poisson

equation in the overlap region under the depletion approximation [140]. Neglecting the

fixed dopant charges, since a very light doping NA = 1015cm−3 is used in the simulations, the

electrostatic potential inside the device is given by (see Appendix D for the derivation):

V (z) =−F z +
Vp−gate +Vn−gate(1+ COX

CCH
)

2+ COX
CCH

(4.1)

with:

F = COX

εCH

(
Vn−gate −Vp−gate

2+ COX
CCH

)
(4.2)

The capacitances per unit area are defined as CCH,(OX) = εCH,(OX)

TCH,(OX)
. Fig. 4.31(a) compares the

analytical potential profiles against numerical results: they perfectly match when no inversion

charge is induced and a good overall match is observed in general.

Since the potential is (to a very good approximation) linear, the quantized energies Ee(h) and

wavefunctions ψe(h) are given by the solutions for the triangular potential well, for which
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Figure 4.31 – (a) Potential profiles given by the numerical (blue) and analytical (red) models for
high (symbols) and low (lines) applied gate voltages for the InAs EHBTFET. z = 0 and z = TCH

corresponds to n-gate and p-gate oxide-semiconductor interface respectively. (b) Alignment
field Falign and alignment voltages predicted by the numerical (solid lines) and analytical
(dashed lines) models.

analytical expressions exist [135]. The alignment occurs when (considering direct tunneling)

Ee = Eh [123], i.e., when:

EC(0)−a1
3

√√√√q2F 2
align�

2

2m∗
e

= EV(TCH)+a1
3

√√√√q2F 2
align�

2

2m∗
h

(4.3)

which can be rewritten as:

EG −a1
3

√√√√q2F 2
align�

2

2m∗
e

−a1
3

√√√√q2F 2
align�

2

2m∗
h

= qFalignTCH (4.4)

where a1 = −2.338 is the first zero of the Airy function [141] given by the solution of the

triangular potential well. Eq. 4.4 holds for direct BTBT process, whereas a similar expression

(including the phonon energy) may be derived for phonon-assisted tunneling. Two key insights

can be inferred from Eq. 4.4: i) the numerical results are confirmed about the dependences of

the ION in 2D-2D tunneling since the equation has no explicit TOX dependent terms, ii) for

a given TCH, the alignment always occurs at a certain magnitude of the electric field Falign,

which is the solution of Eq. 4.4. The comparison between the numerically calculated and

analytical Falign values (given in Fig. 4.31(b)), indicates good overall matching (maximum

difference ∼ 6% for the considered plot).

Now, we turn our attention to the implications of the fixed electric field at alignment on
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the wavefunctions. Within the triangular approximation, the analytical expressions for the

electron and hole wavefunctions at subband alignment are given as [135]:

ψe (z) = DAi

((
2m∗

e

�2 (qFalign)

) 1
3 (

z − z∗)) (4.5)

ψh(z) = DAi

⎛
⎝−(2m∗

h

�2 (qFalign)

) 1
3

(z − z∗)

⎞
⎠ (4.6)

where Ai is the Airy function, z∗ is the classical turning point at which EC(V) = Ee(h) and D is a

normalization constant. It is easily seen that the wavefunctions are fixed by Falign, since it is

the only factor governed by the electrostatics. By inspecting Eq. 3.43, the coupling element

MCV is thus deduced to be fixed as well. The magnitude of the coupling element thus depends

on the channel material properties and on the channel thickness only. The same holds for

phonon-assisted BTBT since the wavefunction overlap remains fixed too. We note that the

arguments presented above are valid when the triangular potential approximation holds, i.e.,

in the absence of inversion layers inside the device. In the presence of an inversion layer,

detrimental effects such as pinning of the surface potential that decrease in the ’quantum

efficiency’ [123] and ultimately a decrease in the switching slope might occur.

Even though it does not play a significant role in determining ION, TOX is actually quite crucial

in determining Valign, which can also be calculated by the analytical model as:

Valign = Falign

(
TCH +2

εCH

COX

)
(4.7)

As seen in Fig. 4.31(b), Eq. 4.7 predicts Valign with excellent accuracy.

The findings above signal that the optimization strategy for the EHBTFET with certain per-

formance constraints is to determine the channel material and TCH first according to ION

requirements, and then, using Eq. 4.7, estimate the required COX for the desired operating

voltages. Moreover, since TOX does not impact ION, the gate leakage can be mitigated (at the

cost of a higher operating voltage or more aggressive gate workfunction engineering) with no

penalty on ION.

4.4.3 Performance Considerations & Impact of Channel Material

In addition to the qualitative and theoretical assessments discussed above, certain inferences

can be made about the performance limits (in terms of ON current) of the EHBTFETs with

the different channel materials considered here. We report the alignment voltage values,

minimum allowed channel thicknesses for a given alignment voltage and the ON current

values in Table 4.2. Bearing in mind that EHBTFET is considered mainly for low power and low

standby power applications [142, 143], we set an alignment voltage limit of 2V (see Fig. 4.28).

This constraint can be achieved through gate workfunction engineering i.e., the 2V obtained
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Table 4.2 – Alignment voltages Valign, minimum allowed channel thickness for the corre-
sponding alignment voltage TCH,min and ON currents for the EHBTFETs with various channel
materials. EOT = 0.5nm for all cases indicated below.

Channel Material Valign [V] Min. channel thickness TCH,min [nm] ON current [A/μm]
Si 2 12 1×10−12

Si0.5Ge0.5 2 9 3×10−12

Ge 2 10 3.34×10−6

In0.53Ga0.47As 2 13 1×10−6

InAs
2 8.5 1.75×10−3

1 19 2.6×10−5

here with mid-gap metal work-functions can be achieved with lower applied bias if n- and

p-type workfunctions are used for the n- and p-gates, respectively [144]. Within this constraint,

InAs seems to offer the best ION,max compared to Ge and In0.53Ga0.47As. Moreover, the InAs

EHBTFET can also be operated at an even lower Valign of 1V, of course with lower ION,max, by

using larger TCH. Even though the bandgaps are comparable for Ge and In0.53Ga0.47As, the

obtainable ON current is drastically higher for In0.53Ga0.47As since it is a direct gap material.

On the other hand, it is not even possible to obtain 2D-2D tunneling for Si and Si0.5Ge0.5

within this constraint. It is worthwhile to note that, even if the bulk bandgap is smaller for

In0.53Ga0.47As, the very small effective mass of the Γ electrons result in higher alignment

voltages compared to Si0.5Ge0.5 for a given channel thickness due to stronger size-induced

quantization effects.

An overall consistency with [39] is seen in the predicted alignment voltages (see Table 4.3),

although our simulations indicate orders of magnitude lower conductance levels (SON = ∂ID
∂VDS

at first subband alignment) than in [39] for Si and Ge. This is due to the use of a direct tunneling

matrix element in Agarwal et al. that largely differs from the phonon assisted tunneling one

[66] that we found to be dominant in Si and Ge devices. Even though direct BTBT is dominant

in Ge for bulk 3D-3D tunneling (see Fig. 3.19(Right) in the previous chapter), quantization

essentially suppresses the direct BTBT in the ON state of the Ge EHBTFET for all the cases

considered in this study. Regarding InAs, instead, our results are only 5-10 times lower than

the ones in [39] mainly due to the inclusion in our model of the effect of quantization on the

matrix element (term C0(θ) in Eq. 3.43)[105].

In this section, an extensive analysis for EHBTFETs using different channel thicknesses and

materials as well as oxide thicknesses has been performed. Striking differences in geometrical

parameter dependences of the ION is observed between 2D-2D tunneling (InAs, In0.53Ga0.47As

and Ge) and 3D-3D tunneling (Si and Si0.5Ge0.5). For 2D-2D tunneling with a chosen channel

thickness, the alignment always occurs at a certain Falign, fixing the overlap between the

electron and hole wavefunctions. This exclusive feature of 2D-2D tunneling, along with the

step-like characteristic of the 2D DOS, imposes an upper limit on the ION that can be obtained,

contrary to 3D-3D tunneling. This limit depends on the channel thickness and on the material

properties, whereas it is independent on electrostatic control of the channel. It is seen that
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Table 4.3 – Comparison of calculated conductance values (SON) and alignment voltages (Valign).
TOX,EOT = 0.8nm.

Agarwal et al. This work
TCH[nm] SON[S/μm] Valign[V] SON[S/μm] Valign[V]

Si
4.3 1×10−3 5.55 5.93×10−9 5.29
5.9 1×10−5 4.19 3.33×10−11 4.05

Ge
9.7 1×10−3 2.68 1.47×10−6 2.64

14.9 1×10−5 1.83 4.5×10−9 1.95

InAs
14.6 1×10−3 1.45 1.23×10−4 1.33
24.2 1×10−5 0.93 2.45×10−6 0.95

InAs is a prominent candidate for the realization of 2D-2D tunneling devices, since it has

relatively low alignment voltages and very high ON current levels.

4.5 Fin EHBTFET

The fin EHBTFET is a modified version of the planar EHBTFET [5], where the overlap region

[7] is now implemented as a fin-like structure (Fig. 4.32(a)). This structure was also simulated

by Zhu et al. [145], however they used a purely semi-classical approach and predicted unreal-

istically optimistic performance. Here, we will show the necessity of the proper inclusion of

the quantum effects as our simulations will show evidence of another non-ideality peculiar to

the fin EHBTFET.

In the Fin EHBTFET, exactly in the same manner as in its planar counterpart, 2D electron

and hole gases (2DEG and 2DHG, respectively) are induced at the either sides of the fin by

applying a positive and negative bias to the n-gate and p-gate electrodes respectively. BTBT

occurs in the entire overlap region when the subband energies of the electron and hole states

inside the overlap region align. The major advantage of the fin implementation is the relative

ease of fabrication compared to the planar version, although several challenges still remain

such as effective separation of the n- and p-gates. In this work, we take the substrate region to

be a thin semiconductor layer, but a bulk substrate may be possible too, provided substrate

leakage effects are duly accounted for. Note that differently from the FinFET structure, the

source and drain regions in fin-EHBTFET are along the cross section direction of the fin.

4.5.1 Geometry Effects on the Fin EHBTFET

In this work, we simulate an In0.53Ga0.47As fin EHBTFET with a bandgap of 0.81eV [126]

using our 2D parabolic band model (section 3.3). The effective masses for Γ-valley electrons,

light holes and heavy holes are 0.042m0, 0.0503m0 and 0.465m0, respectively [127]. Unless

otherwise stated, the fin thickness is TCH = 10nm, the substrate thickness TSUB = 10nm, the

oxide thickness TOX = 3nm (HfO2, εr = 22, corresponding to EOT=0.53nm), the fin height
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Figure 4.32 – (a) Fin EHBTFET device structure and regions. (b) ON state which occurs when
the quantized energies for the 2D electron and hole gases (2DEG and 2DHG, respectively)
align; the arrows indicate the BTBT direction. (c) Lateral leakage mechanism at the OFF state.
(d) Counterdoping method to prevent lateral leakage.

LG = 50nm and the spacer length LSP = 50nm at both sides. Fin width W is taken to be

1μm. The source and drain regions are respectively p and n doped with a concentration of

1×1020cm−3. The drain voltage is VDS = 0.25V. Unless otherwise stated, the p-gate is biased

at −1V. We have assumed midgap workfunctions for both gates.

Inspecting the transfer characteristics plotted in Fig. 4.33 (Left, blue solid curve) and the BTBT

generation rate profile in the OFF state (see Fig. 4.33 (Right)), a leakage component is observed

(as sketched in Fig. 4.32(c)) for the fin EHBTFET, since the quantization is less severe in the

substrate region and this allows the carriers to penetrate into the underlap region for lower

voltages compared to the ones required to penetrate the overlap region, similar what happens

in the planar case [7]. To address this issue, we utilize the counterdoping technique discussed

in section 4.3.1 (see Fig. 4.32(d)) which delays the onset of the wavefunction penetration into

the underlap region and hence recovers the steep slope behavior. It is seen that counterdoping

the drain side with a p-type doping of NUL = 2.1×1019cm−3 results in a drastic improvement

of in the SS (red curve in Fig. 4.33 (Left)).

Corner Effect & Solutions to Suppress It

Comparing the ON current levels for the fin EHBTFET in Fig. 4.33 (Left, red curve) with

those reported for the planar case with the same channel thickness reported in section 4.3.1

(green curve in Fig. 4.33) quickly reveals that the ON current is orders of magnitude lower for

the fin EHBTFET. The reason for that is easily understood when we look at the valence and
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Figure 4.33 – (Left) Transfer characteristics for the (red) Fin EHBTFET without counterdoping,
(blue) Fin EHBTFET with counterdoping NUL = 2.1×1019cm−3, (green) 10nm thick planar
EHBTFET with counterdoping NUL = 1.9×1019cm−3 (see section 4.3.1) using 3nm HfO2 as
the gate stack. (Right) The HH wavefunction for the subband that contributes the most to
tunneling at the OFF state (without counterdoping, Vn−gate = 1.25V). The p-gate bias is −1V
for both plots.

conduction band profile cuts at 2Å below the oxide semiconductor interface which indicates

sharp energy barriers with heights � 300−350meV (Fig. 4.34, blue curves). At the corners of

the fin at the substrate-fin interface, the effective oxide thickness is
�

2TOX instead of TOX (see

Fig. 4.35(b)). This increase in the oxide thickness that controls the surface potential results in

reduced electrostatic control that creates an energy barrier for both electrons and holes. This

barrier cuts the connection of the states in the overlap regions from the carrier reservoirs (i.e.,

source and drain regions), hence resulting in a drastic reduction of the current. Specifically,

the presence of the potential barrier effectively results in stationary quasi-bound states that

reside in the fin, with little coupling to the source and drain regions [124]. However, scattering

to the quasi-bound states from the incoming waves is unlikely, since the phonon energies are

essentially insufficient to provide energy for overcoming the barrier. As stated in the preceding

chapter, in our simulations, we neglect scattering and we remove such quasi-bound states by

filtering out the states with low coupling to the source/drain electrodes as explained at the

end of section 3.3.

One solution to alleviate the corner effects could be to smoothen the corners of the fin such

that the maximum oxide thickness is always TOX (see Fig. 4.35(b, left)). In this way the loss

of electrostatic control could be recovered. However, the conduction band cut along the
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Figure 4.34 – The 1D cut of the valence and conduction bands 2Å below the semiconductor-
oxide interface at either sides of the InGaAs fin-EHBTFET with (blue) Sharp corners (red)
Smooth corners (green) corner doping (NC = 1×1020cm−3). Note that red and blue curves are
essentially overlapping except very small difference around the corner region.

oxide-semiconductor interface and the transfer characteristics given in Fig. 4.36 indicate that

the approach is essentially ineffective, since the change in energy barrier height ΔE � 20meV

on the surface energy profile is insufficient. This indicates that the main phenomena at the

origin of the corner effect is not the increase in the effective oxide thickness, but rather the

geometrical shape of the structure. One can illustrate this point by calculating (see Fig. 4.35(b))

the distance between a point K on the surface located exactly on the corner and a point L at

the oxide/gate-metal interface that is 1nm apart from a third point M on the oxide/gate-metal

interface that is the closest point to K on the oxide/gate-metal interface. Bearing in mind that

we utilize a gate oxide of 3nm, the distance between the points K and L are: 5nm (fin with

sharp corners) and 4.32nm (fin with corner smoothing). It is evident that corner smoothing

only solves the problem for the region closer to the corner but quickly loses its effectiveness as
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we move away from the corners, as evidenced by the transfer characteristic curve given in Fig.

4.36.
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Figure 4.35 – Different methods to alleviate corner effects (a) corner smoothening. (b) zoomed
comparison of the oxide configuration around the corners for (Left) no smoothing (Right)
smoothing, (c) corner doping, (d) trapezoidal fin structure.

A second solution is to introduce shallow doped regions around the fin corners at the substrate

interface (see Fig. 4.35(c)), similar to the technique proposed for the suppression of the corner

effects causing earlier onset of conduction in FinFETs [146]. Such a doping profile can be

obtained using low-energy tilted implants. Similar to the counterdoped regions, the corner

doping modifies the band profile around the corners to attenuate the energy barrier. On Fig.

4.34, it is seen that corner doping is extremely effective; it completely removes the energy

barrier. The transfer characteristics for fin EHBTFETs utilizing corner doping are given in Fig.

4.36 where we utilize rectangular doped corner regions of about 6nm×2nm and 4nm×3.5nm

for n-gate side and p-gate side, respectively. It is seen that the case with NC = 1×1020cm−3

is able to provide ON current levels similar to the planar version, although the switching

slope is not as good at lower current levels. As a quantitative indication of the static device

performance, the average slope of the corner doped Fin EHBTFET measures 43mV/dec for

over six decades (from 1pA/μm level to 1μA/μm), whereas for the planar case, it is 36mV/dec.

An analysis of the OFF states for the cases with and without corner doping indicates that the

OFF current is slightly amplified due to corner doping (see e.g., the region where Vn−gate � 1.5V

in Fig. 4.36). Heavy doping essentially screens the gate control around the corner, which then

degrades the OFF state performance. However, we observe this effect only at very low current

levels where other sources of leakage, such as SRH or gate leakage, would most likely dominate

the current.
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As seen in Fig. 4.36(green curve), utilizing a lower doping of 5×1019cm−3 delays the onset

of line tunneling (i.e., the ON state) and also decreases the subthreshold slope, even though

the ON current level reaches the same level as in the 1×1020cm−3 case. The reason for such

a behavior is again the insufficient suppression of the energy barrier in the underlap region

which implies the need of using a higher gate voltage to overcome the barrier.
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Figure 4.36 – Transfer characteristics for the fin EHBTFET with (blue) no optimization, (red)
corner doping NC = 1×1020cm−3, (green) NC = 5×1019cm−3, (magenta) corner smoothing,
(dark yellow) planar EHBTFET with counterdoping using 3nm HfO2 as the gate stack.

Another possible solution that could alleviate the corner effect is employing a trapezoidal

fin structure (see Fig. 4.35(d)). This method aims at reducing the strength of field-induced

quantization around the corners by increasing the fin thickness in those areas. Increasing

the fin thickness moves away the n- and p-gates, thereby reducing the electric field. Fig. 4.37

indicates that fins with different trapezoid configurations result in similar characteristics. For

all the trapezoidal cases, we see that the corner effect is overcome. However, increased bottom

fin thickness results in reduced coupling between electron and hole states in the fin which

contributes to the ON current. On the other hand, it also lowers the strength of quantization

so that the energy spacing between subbands is reduced. At high Vn−gate (∼ 2V), we observe

similar ON currents for the trapezoidal cases due to the fact that reduced coupling between

the states is compensated by the additional aligned subbands in the fin region with lower

current contribution.
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Figure 4.37 – Transfer characteristics for the fin EHBTFET with trapezoidal fin structures (Fig.
4.35(d)). The top thickness of the fins TTOP is kept at 10nm.

4.6 EHBTFET Logic

In this section, we move up from the device-level to the circuit-level and propose a novel

logic scheme. By utilizing the independent gate biasing feature of the EHBTFET, one can

achieve significant simplifications in circuit design, and could potentially translate into faster

operation. We will make use of the fact that a positive (negative) bias needs to be applied to

n-gate (p-gate) to induce the electron (hole) subbands in the overlap region. This ’XOR-like’

conduction property will be used to reduce the number of transistors required to implement

a logic function. We also note here that different configurations are certainly possible with

appropriate gate metal workfunction choices. For example, the EHBTFET could be designed

to conduct when both gates are logic-0 and the device could be turned off by applying logic-1

to p-gate. This is similar to the proposal in [147] that however assumes TFET architectures

different than the EHBTFET.

Another property of the EHBTFET, that is shared by many other TFET structures, is the am-

bipolarity i.e. the same device can be used as a pull-up (p-type) or a pull-down (n-type) device.

However, one should note that the ambipolarity of the EHBTFET is slightly different from the

one of conventional TFETs such is often deemed problematic. In the EHBTFET, the source

and drain regions do not actively take part in the BTBT as in the conventional TFETS, but

only supply the carriers to the tunneling region. Therefore, it could be possible to achieve

a complementary functionality by using a single device. Moreover, since the EHBTFET is a
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symmetric device (i.e. both electrons and holes contribute to conduction mechanism), n-type

and p-type static behavior is almost symmetric as well, provided the gate workfunctions are

chosen appropriately.

A B

n-gate

p-gate

source

drain

(b)

p+ source

n+ drain

Overlap
Underlap

Underlap

n-gate

p-gate

50nm
50nm

50nm

EOT = 1nm

oxide

oxide

10nm

EOT = 1nm

x

y
z

1um

(a)

Figure 4.38 – (a) The sketch of the Hetero-Gate (HG)-EHBTFET device (b) The EHBTFET circuit
symbol for the EHBTFET denoting the corresponding electrodes.

Different than the previous parts of the thesis, in this section, we demonstrate the operation

of various logic circuits using quantum-corrected mixed-mode TCAD simulations. We will use

Sentaurus Device to perform the static and transient simulations. We utilize the semi-classical

tool due to the fact that it can do transient circuit simulations. However, as shown earlier, a

proper treatment of quantum mechanical effect is still a prerequisite. To this end, we make use

of a recently proposed method [148] to mimic subband quantization in the semiconductor by

using the Physical Model Interface (PMI) of Sentaurus Device [57]. The model modifies the

conduction and valence band edges near the semiconductor/oxide interface thus shifting the

onset of tunneling in a consistent way with the predictions of the quantum mechanical (QM)

simulations [115]. Specifically, the quantum-corrected conduction band edge
(
E QM

C

)
is given

as:

E QM
C =

⎧⎨
⎩EC +a1

3
√

q2F 2�2

2me
−dOXF a1

3
√

q2F 2�2

2me
≥ dOXF,

EC otherwise

where a1 =−2.338 is the first zero of the Airy function [141], F is the electric field normal to the

semiconductor/oxide interface and dOX is the distance from the closest semiconductor/oxide

interface. This correction enables the TCAD tool to predict both the vertical (wanted) and the

lateral (leakage, unwanted) BTBT current which stems from the fact that quantization is less

severe in the underlap region as shown in section 4.2. Using such an approach allows us to in-

clude quantum effects properly in the mixed-mode circuit simulation environment. However,

it should be noted that the charge densities are still calculated semiclassically. Therefore care

must be taken while choosing gate workfunctions to ensure that carrier densities do not reach

large values where they will start affecting the curvature of the potential profile, which may
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possibly cause divergence from the QM simulations.

The device structure, the main dimensions and circuit schematic symbol of the In0.53Ga0.47As

EHBTFET is given in Fig. 4.38. The material properties are the ones listed in Table 4.1 for

InGaAs. We utilize the heavy hole mass for the PMI quantization model to determine the sub-

band energy. On the other hand, the light hole mass (m∗
lh = 0.052m0) is used for the dynamic

non-local BTBT model [57] since the conduction and heavy hole subbands are connected in

the imaginary dispersion with a hole effective mass much closer to the light hole one (see

the section 3.7 about anti-crossing). To prevent the lateral leakage that deteriorates the SS,

we utilize the hetero-gate configuration [125] with φn−gate,OL = 3.225eV and φn−gate,UL = 3.9eV

whereas we use φp−gate,OL = 6.225eV and φp−gate,UL = 5.75eV. Unless otherwise stated, we set

VDD = 0.25V.
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Figure 4.39 – The transfer characteristics of the InGaAs EHBTFET for (a) n-gate sweep with
Vp−gate = 0V and (b) p-gate sweep with Vn−gate = 0.25V. Solid lines indicate the results obtained
by the quantum-corrected TCAD tool, whereas the symbols indicate the results obtained by
the quantum mechanical model described in section 3.2.

The transfer characteristics from TCAD for the n- and p-gates are given in Fig. 4.39 (a& b).

Comparison against the results obtained by the 1D quantum-mechanical model developed

in this thesis using the same parameters indicates an excellent match in the current levels

and good match in the onset voltages for tunneling (max. difference ∼ 20mV). For the n-

gate sweep, p-gate is kept at 0V; similarly for the p-gate sweep, n-gate is kept at VDD. The

device exhibits few mV/dec switching slope over eight decades of current for both n- and

p-gate sweeps. Moreover, ON current, switching slope and the tunneling onset voltages are

almost symmetric, signaling that n-type (pull-down) and p-type (pull-up) performances are

comparable and the same device can be used for both purposes. The output characteristics

for the pull-up (source node charges from 0 to 0.25V) and pull-down (drain node discharges

from 0.25V to 0) cases given in Fig. 4.40 (a & b) indicate a good overall match with the QM

simulations as well as negligible superlinearity [16]. The pull-up exhibits slightly lower output

resistance since the valence band profile in the region controlled by the p-gate is not fully
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Figure 4.40 – Pull-up (a) and pull-down (b) output characteristics for the EHBTFET. Solid
lines indicate the results obtained by the quantum-corrected TCAD tool, whereas the symbols
indicate the results obtained by the quantum mechanical model described in section 3.2.

pinned by the inversion charge. These said, it should be noted that the EHBTFET suffers from

the partially unidirectional conduction that is shared by all TFETs that, in certain cases, result

in excess charging of the circuit nodes [149].
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Figure 4.41 – (a) Voltage transfer characteristic (VTC) (b) Inverter gains of the EHBTFET inverter
for a supply voltage VDD = 0.25V using the workfunctions (WF) given in the manuscript (blue
solid line) or using optimized WFs for pull-up and pull-down transistors (red dotted line).
Circuit schematic for the inverter using the EHBTFET is given as an inset of (b). The WF values
for this latter case are Φn−gate,OL = 3.3eV, Φp−gate,OL = 6.3eV (pull down) and Φn−gate,OL =
3.15eV, Φp−gate,OL = 6.15eV (pull up).

Fig. 4.41 (Left) depicts the voltage transfer characteristic (VTC) of an inverter made up of

the EHBTFET (Fig. 4.41 (Right inset)) described above used as both pull-up and pull-down,
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showing sufficient inverter gain and noise margins. We have verified in Fig. 4.41 (Right) that the

inverter gain and the noise margins can be vastly improved by utilizing two different EHBTFET

devices optimized for pull-up and pull-down behavior respectively. For the remainder of the

section, we will present results for the case with same device for pull-up and pull-down.

B

B1 A

BABA

VDD

XOR

A1

0

0

Out = AB + AB

Out

Figure 4.42 – The circuit schematic for the XOR2 gate using EHBTFET logic. Transient simu-
lation input and output waveforms of the XOR2 using VDD = 0.25V. The circuit has 30fF of
capacitive loads at their output nodes. The results indicate extremely fast switching (∼ 10ps)
even at low supply voltage.

VDD

Out

AND

B

A 0

0

AB 11
B

A

VDD

Out

B A

AND

B

_

A A

_

B

_

A

VDD

Out

_

B

B A

XOR2

Figure 4.43 – Circuit schematic for (Left) AND2 gate using EHBTFET logic (Middle) AND2 gate
using static CMOS logic. Note the circuit schematic drawn here is actually for the NAND2 gate
and therefore the output of this stage is labeled as Out. This stage needs to be followed by an
inverter (i.e., incrementing the transistor count by 2) to obtain AND2 functionality. (Right)
XOR2 using standard CMOS logic.
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LUT2

Out

VDD

1

3

2

4

5

6

7

8

Transistor # n-gate/p-gate Transistor # n-gate/p-gate
1 A/B 5 A/B
2 1/0 6 1/0
3 1/A 7 B/0
4 1/0 8 1/0

Figure 4.44 – The circuit schematic for LUT2 gate implemented with EHBTFET logic. Transient
simulation input and output waveforms of LUT2 programmed as AB using VDD = 0.25V. The
corresponding input signals for LUT2 are indicated in the table above. The circuit has 30fF of
capacitive loads at their output nodes.

The main idea behind the EHBTFET logic stems from the observation that the EHBTFET is

conducting only when Vn−gate =VDD and Vp−gate = 0. If we denote the input signal at n-gate

and p-gate as A and B respectively, the condition for conduction is fulfilled only when F = AB .

This flexibility allows us to implement AB terms using one transistor showing n-type (conducts

when the n-gate input is 1) and one showing p-type (conducts when the p-gate input is 0)

behavior. Fig. 4.42 & Fig. 4.43(b) presents two-input XOR and AND gates implemented with

the EHBTFET logic. This flexibility allows for a sizable reduction in the number of transistors

for logic gates. For instance, the XOR gate requires 6 transistors in EHBTFET logic compared to

12 transistors in conventional static CMOS logic (including the inverters required to obtain the

inverted input signals, see Figs. 4.42 & 4.43(Right)) and AND gate 4 transistors vs 6 transistors

(see Figs 4.43(Left) & (Middle)). The EHBTFET logic XOR circuit operation is verified through

transient simulations whose waveforms are given in Fig. 4.42.

Fig. 4.44 shows the EHBTFET implementation of the LUT2, a building block for most FPGAs. It
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allows for implementing any 2-input logic function by multiplexing the inputs A and B as well

as ’1’ and ’0’ bits to the gates of the 8 transistors. The same number of transistors is needed

also for conventional CMOS, but inverters are needed if A and B are required. In the EHBTFET

case, instead, we can exploit the n- and p-gates to eliminate the inverters. As an example,

we show the implementation of the function AB using LUT2 circuit with correponding input

signals (see table in Fig. 4.44) and resulting transient simulations (Fig. 4.44).
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Figure 4.45 – Transient simulations of the XOR2 with a low capacitive load of 300aF. (Left) The
overshoot is too much to recover from, resulting in the output node trapped at a negative
voltage.(Right) The transistor drive current still remains strong enough to discharge the node.

The aforementioned problem of unipolar conduction presents a possible problem during the

switching operation. In the case when the drain somehow gets negatively biased (e.g., voltage

undershoots during switching), the p-i-n junction gets positively biased and the current drops

significantly due to the fact that the Fermi supply window (i.e., the fc − fv term in the BTBT

current expression of Esaki [150] or e.g., Eq. 3.33) no longer coincides with the tunneling

window. This corresponds to VDS < 0 and VSD > 0 regions in Fig. 4.40 for pull-up and pull-

down devices respectively. This is the familiar negitive differential resistance (NDR) effect

seen in Esaki diodes; however in the EHBTFET case, this may cause that the negatively biased

drain node cannot be charged back if the junction bias goes beyond the NDR region, where

the current only consists of reverse bias current which is typically very low since the built

in potential barrier of the junction is not yet overcome. We note here that observation of

such behavior depend on the overall capacitive loads seen at each node where the amplitude

of the overshoot is inversely proportional to the overall load. Considering the approximate

capacitive loads of the next-stage gates which are sizable as well as taking into account the

ever-increasing interconnect capacitances [151], we doubt that such issues will be present for

properly designed gates. In fact, we were only able to reproduce this behavior by using a very

low load capacitance (300aF), in Fig.4.45 and when both inputs A & B are changing. One can

also think of a circuit level design guideline to make sure such node voltages do not alter the
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overall circuit performance and functioning.
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Figure 4.46 – The transfer characteristics for (Left) n-type and (Right) p-type FD-SOI CMOS
devices. For both devices, the width is 1μm.

We now look into a quantitative comparison that will allow us to compare the EHBTFET

against already existing low-power CMOS technology. In order to do this, we make use of the

28nm fully depleted SOI (FD-SOI) of ST Microelectronics [152]. Fig. 4.46 depicts the transfer

characteristics for the n-type and p-type devices. The devices exhibit an average SS of about

80mV/dec. Comparing the transfer characteristics of the EHBTFET (Fig. 4.39) and CMOS (Fig.

4.46) for VDD = 0.25V, we see that the EHBTFET is able to deliver dramatically higher currents

at lower gate voltages.

Fig. 4.47 compares the worst case delays for varying supply voltages for the EHBTFET logic

and 28nm FD-SOI CMOS. We note that we did not utilize the standard cell libraries, but rather

designed standard CMOS implementations of the inverter and XOR gates. For fair comparison,

we fixed the width of each CMOS transistor at 1μm and varied the gate length for adjusting the

driving strength of the transistors for the optimum and balanced rise and fall time behavior.

We compare the worst case timings for fan-out-4 [153] inverter delays in Fig. 4.47(Left).

As commonly done [143, 154], we simulate an inverter chain where the driving strength

quadruples between each stage (see the inset in 4.47(Left)) and we report the worst case delay

of the middle stage. It is seen that for both circuits, the EHBTFET outperforms the CMOS

implementation for low supply voltages (VDD < 0.5V), where it is able to deliver higher drive

current than the CMOS counterpart. As the supply voltage is increased, CMOS performance

improves dramatically thanks to the increasing ON current of the CMOS transistors.
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Figure 4.47 – The worst case delays as a function of the supply voltage VDD for (Left) fan-
out-4 Inverter (Right) XOR circuits. The black (red) lines indicate EHBTFET logic (CMOS,
28nm FD-SOI from ST Microelectronics) implementations. Both circuits have 30fF of load
capacitance.

4.7 Impact of Dimensionality on Tunneling Devices

In the section 4.4.1, we had briefly discussed the impact of carrier dimensionality on the

EHBTFET considering the 2D-2D and 3D-3D cases. In this section, we investigate a few other

dimensionality cases besides the 2D-2D face tunneling [15] and try to assess the impact of

dimensionality effects on the device characteristics.

4.7.1 EHBTFET vs Ultra Thin Body TFET: 2D-2D Face vs 2D-2D Edge Tunneling

The first situation we consider is 2D-2D tunneling. We first aim to compare 2D-2D face and

2D-2D edge tunneling (Fig. 4.1). The 2D EMA simulator developed in section 3.3 allows us

to study this aspect considering a planar InGaAs EHBTFET (2D-2D face tunneling) and an

InGaAs Ultra Thin Body TFET (UTBTFET, 2D-2D edge tunneling). For a fair comparison, we

use the same channel and oxide thicknesses for both devices. We utilize the counterdoping

technique explained in section 4.3.1 to suppress the lateral leakage in the EHBTFET.

In the Fig. 4.48(Left), we provide the transfer characteristics for the EHBTFET and UTBTFET

using the same EOT = 1nm and the same channel thickness and channel material. We note

that we do a double gate sweep (i.e., both gates for the UTBTFET are swept simultaneously),

whereas we keep the p-gate gate fixed for the EHBTFET and only sweep the n-gate. We observe

that significantly higher current levels and steeper switching slopes can be obtained with

2D-2D face tunneling (i.e., the EHBTFET). This signals that, once isolated from parasitic effects
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Figure 4.48 – Transfer characteristics comparison for (red) UTBTFET and (blue) EHBTFET
with In0.53Ga0.47As channel. Note that the curves are shifted rigidly along the x-axis for ease of
viewing together and normalizing the OFF current. (Left) Channel thickness variations: (Solid)
TCH = 10nm (Dotted) TCH = 7.5nm, EOT = 1nm. (Right) Effective oxide thickness variations:
(Solid) EOT = 1nm (Dotted) EOT = 3nm, TCH = 10nm.

such as the lateral tunneling, utilizing 2D-2D face tunneling could be a viable ON current

booster.

Another interesting contrast between the 2D-2D face and 2D-2D edge tunneling is that the

channel thickness essentially has no impact on the maximum obtainable current for 2D-2D

edge tunneling, as the TCH = 7.5nm and TCH = 10nm cases converge to the same current value

at high VGS. This is most likely caused by the fact that the BTBT is concentrated around a

very narrow region for the UTBTFET, where the channel thickness has only an indirect impact

(i.e., by changing the electrostatics around the tunneling junction). On the other hand, the

channel thickness directly determines the distance between the electron and hole gases in the

EHBTFET, hence has a much stronger impact.

We also note an important difference between edge-tunneling and face-tunneling devices.

Face tunneling devices tend to exhibit a saturation behavior due to the fact that quantization

occurs along the direction that is transverse to the direction at which carriers enter into the

device. This result alters the relationship between the electrostatics and the DOS involved in

tunneling. A monotonous increase of drain current with increasing gate voltage is typically

seen for edge tunneling devices, where the carrier injection direction from the source (drain)

is aligned with the tunneling direction.
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4.7.2 EHBTFET: 2D-2D Face vs 1D-1D Face Tunneling

It should be noted that dimensionality effects are inherently intertwined with the electrostatic

effects in TFETs. To put it in clear terms, let us give an example case of a bulk TFET and a

nanowire one. It is of course expected that the nanowire TFET outperforms the bulk one. How-

ever, it is not at all obvious which fraction of this improvement comes from the electrostatic

improvement. The electrostatic control of the nanowire TFET is much better than the bulk

one, so it is expected that a significant portion of the performance improvement should result

from it. It is however an open question whether the reduction in the carrier dimensionality

(3D gas in bulk vs 1D gas in nanowire) is also beneficial for the BTBT current. In the remainder

of this section, however, we will utilize the EHBTFET (a 2D-2D tunneling device) rather than a

bulk TFET.
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Figure 4.49 – (Left) The EHBTFET structure with transverse direction thickness TW indicated
(Right) Transfer characteristics for InGaAs EHBTFET with counterdoping for varying transverse
thicknesses TW.

We use the 2D simulator with transverse quantization model (section 3.6) to compare 2D-2D

and 1D-1D face tunneling cases. We consider an InGaAs EHBTFET with counterdoping to

study the impact of limiting the k states in the y-direction (width direction). We simulate the

cases with different transverse thicknesses TW in Fig. 4.49. The first observation is a shift of

the onset voltage, which is expected, due to increased band gap associated to the size-induced

quantization along the transverse direction y . Most strikingly, it is seen that the ON current

density and the slopes are similar, which signals that no visible benefit is gained as the carrier

dimensionality switches from 2D to 1D. The slight degradation of the slope for the TW = 10nm

case is caused by the formation of inversion layers in the overlap regions at high gate voltages.

Since we do not include the transverse quantization while calculating the potential profile,

we are essentially neglecting the related quantum capacitance effects that are induced by the

electron concentration inside the channel region. Moreover, we remind that we utilize the

same band parameters as in the bulk for both 1D and 2D cases. However, these parameters

might depend on the exact dimensions of the device and they might deviate from their bulk
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values. We already observed that in section 3.7, for InAs QW diodes, the effective mass values

changed slightly.

4.7.3 UTBTFET: 2D-2D Edge vs 1D-1D Edge Tunneling

Another aspect that can be investigated using the modified EMA code is comparing 2D-2D

and 1D-1D edge tunneling. To this end, we simulate and compare an InGaAs UTBTFET with

and without transverse k-space limitation. Different transverse thicknesses are considered in

Fig. 4.50.
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Figure 4.50 – (Left) UTBTFET structure with transverse direction thickness TW indicated (Right)
Transfer characteristics for the InGaAs UTBTFET for different transverse thicknesses TW.

In contrast to the face tunneling case, switching from 2D-2D edge to 1D-1D edge tunneling

results in more evident changes in the transfer characteristics. Similar to the previous case, a

shift of tunneling onset is seen as the transverse thickness is decreased as seen in Fig. 4.50.

Moreover, differently from face tunneling, a reduction of the ON current and switching slope is

observed in edge tunneling when going from 2D-2D to 1D-1D, as seen clearly from the shifted

TW = 10nm curve (blue, dashed).

Note that here we do not consider ’anti-crossing’ (section 3.7) since it is not incorporated in

the 2D code. Inclusion of this effect might change the picture.

4.8 Chapter Summary & Highlights

The significant contributions in this chapter are:

• It was shown via quantum-mechanical self-consistent simulations that the EHBTFET

behaves quite differently compared to a conventional TFET, due to the strong quantiza-

tion at both sides of the tunneling path. Exploitation of both 2DEG and 2DHG results in
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a steep switching behavior caused by the staircase-like 2D DOS. Comparison with the

semi-classical TCAD simulations shows that TCAD models overestimate the current and

also underestimate the alignment voltage since they do not account for the quantized

nature of the electron and hole inversion layers.

• SS of the EHBTFET was seen to be degraded by the leakage caused by the penetration

of the wavefunction into the underlap region from the source/drain. For this reason,

the 2D model of section 3.3 is a powerful tool to optimize the EHBTFET design with the

aim to suppress the leakage paths through the underlap region and make the almost 1D

tunneling in the overlap region dominate.

• Demonstration of the feasibility of utilizing a counterdoped structure in order to sup-

press the lateral leakage current using a quantum mechanical simulation method. It is

shown that, depending on the body thickness and the considered biasing, there exists

an optimum underlap doping value which preserves the ON current and the steep slope.

It is seen that a good control of the doping profile in terms of the doping level, alignment

and junction abruptness is critical for optimum performance.

• A parameter analysis study of the EHBTFET has been performed. InAs stands out as the

most promising material among the considered ones; however, hetero-structures such

as InAs-GaSb will most certainly perform better than a homojunction solution as they

alleviate the need of a high bias to achieve subband alignment.

• An analytical model providing a very good approximation of the vertical potential profile

of the EHBTFET is proposed and verified by comparing it with the numerical findings.

The model succinctly explains the distinguishing features of 2D tunneling such as TOX

independence.

• A novel logic scheme for the EHBTFET is proposed. It makes use of the independent

biasing property of the n- and p-gates and allows for a reduction in the transistor count

and possibly performance improvement over state-of-the-art CMOS. The benchmark

circuits such as fan-out-4 inverters are simulated for both the EHBTFET logic and CMOS

to quantify the advantage of the EHBTFET logic over the CMOS version. It is found that

the EHBTFET logic significantly outperforms the CMOS implementation for low supply

voltage scenarios.

• Investigation of the geometrical quantization effects on the fin EHBTFETs. It is found

that the fin EHBTFET suffers from corner effects caused by a weak electrostatic control

around the fin corners. This effect causes the formation of a potential barrier between

the substrate and the overlap regions degrading the conductivity for both sharp and

smooth corners. Among the possible solutions to suppress this effect, corner doping is

the only viable option that can fully recover the full current drive potential of the device.

Trapezoidal fins suffer from a reduction of the ON current due to increased tunneling

length.
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In chapter 1, we provided a brief overview of the microelectronics industry and introduced

issue of limited supply voltage scaling which is the main motivation for the introduction of

TFETs. In chapter 2, we explained the working principle of the TFET and of the EHBTFET and

provided a brief history/review of the research and development in TFET device design. We

also made a literature survey on direct and phonon-assisted BTBT models. Our contributions

for the remaining chapters are given as:

• A closed-boundary Schrödinger-Poisson solver and quantum mechanical BTBT cur-

rent models. We introduced our quantum mechanical simulation scheme, which is

based on the self-consistent solutions of Schrödinger and Poisson equations. We first

detailed our 1D simulation code based on FDM, followed by the 2D variant which is

based on FEM. We then proposed/implemented the direct band-to-band tunneling

models based on Fermi’s Golden Rule. The first one, originally proposed by Bigelow et al.

[106] as a 1D model is extended to 2D for uniform structures such as p-n diodes. We also

modified the model proposed by Schenk et al. [109] for tunneling under quantization

and incorporated polarization dependent coupling elements. This modified model can

be also used for non-uniform structures such as the EHBTFET.

• Modelling the asymmetry of real and imaginary heavy hole branches. Making use of

real and imaginary band calculations from the University of Bologna obtained by the

k ·p method, we have investigated the impact of quantization on tunneling rates. More

specifically, we have noticed the gross asymmetry between effective masses between

the real and imaginary branches of the heavy hole subbands. We implemented a WKB-

based model to account for this discrepancy and incorporated it in our 1D numerical

model.

• Quantum mechanical simulation of the EHBTFET and analysis of subband-to-

subband tunneling. We first showed that, using our 1D code, the Ge EHBTFET works as

a subband-to-subband tunneling device where the BTBT current exhibits a step-like be-

havior due to the 2D DOS function. Each electron-hole subband alignment contributes
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to tunneling which changes the curvature of the transfer characteristics. We also investi-

gated the output characteristics of the EHBTFET and showed that under negative drain

bias (forward bias region of the p-i-n diode) the EHBTFET may not conduct current

unlike the MOSFET. This is a common characteristic of all TFETs due to the p-i-n diode

property.

• 2D simulation of the EHBTFET and identification of lateral leakage. Through our

2D simulations, we identified the lateral leakage of the EHBTFET as a very critical

non-ideality, which was missed out by the previous simulation work based on the semi-

classical approximation. We then proposed two different methods to suppress it, namely

the counterdoping and the hetero-gate approaches and assessed their effectiveness.

• Parametric study and analytical model explaining the EHBTFET dependences on ge-

ometrical and material properties. We performed a parametric simulation study,

where we quantified the impact of the choice of the channel material, oxide and channel

film thicknesses. We have shown that, in 2D-2D tunneling, the step-like behavior causes

a saturation in the transfer characteristics that is in contrast with the 3D-3D tunneling.

We have shown that depending on the device parameters chosen, the EHBTFET could

operate either as a 2D-2D or a 3D-3D tunneling device. We also proposed an analytical

model that predicts the alignment voltage. We have shown that in the 2D-2D case the

alignment occurs at a fixed electric field magnitude that is independent of the oxide

thickness.

• Identification of the corner effects in the Fin-EHBTFET. We simulated the fin incar-

nation of the EHBTFET, and found out another non-ideal effect particular to the fin-

EHBTFET, which is the corner effect. We proposed and benchmarked different solution

strategies and found that the corner doping seems to offer the best performance, al-

though its practical implementation could pose a significant challenge.

• EHBTFET logic. We proposed and simulated a novel logic scheme making use of the in-

dependent biasing scheme of the EHBTFET and verified its functionality using quantum-

corrected mixed-mode TCAD simulations. This scheme could enable a sizable reduction

in the transistor count. We have also compared this logic scheme against 28nm FD-SOI

CMOS using fan-out-4 inverter and XOR2 circuits and found significant performance

advantage of the EHBTFET logic for low supply voltage scenarios.

• Comparison of different dimensionality cases. Using different variants of our code,

we analyzed the EHBTFET (2D-2D face tunneling), the ultra thin body TFET (2D-2D

edge tunneling) and their 1D counterparts (where the transverse direction has finite

width). Comparing the 2D-2D face and edge tunneling cases, we found that the channel

thickness has a strong impact on the ON current level for face tunneling, whereas in

the UTBTFET case, the impact seems to be more limited; possibly due to the fact that

tunneling is concentrated around a narrow region.
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5.1 Future Perspectives

5.1.1 Experimental Verification of the EHBTFET

We would like to highlight here that work is underway in our lab within another PhD thesis

which aims to fabricate the EHBTFET using the Si-InAs heterostructure system developed in

IBM [155]. IBM’s approach utilizes the so-called template-assisted selective epitaxy (TASE)

which was briefly mentioned in Chapter 4. The method uses hollow templates of SiO2 with a

Si seed layer inside to grow high quality III-V material laterally [130].

Strip Oxide template

(large area template)

SiO2

InAs n-channel
InAs n+

Drain

p-type 

Si Source

i-Silicon

Gate stack deposition,

patterning,

gate separation,

contact formation

 
SiO2

InAs n-channel
InAs n+

Drain

i-Silicon

p-gate

n-gate

S
i S

e
e
d

p
a
d

d
o
p
e
d

p
-ty

p
e
 

Si Seed

Extension n+ InAsn InAs

Template for 

III-V epitaxy

Top view

cross section

Tilted View

SiO2

Opening
Top ViewSi Seed Layer 

(Inside)

(a) (b)

(c) (d)

p-type 

Si Source

Figure 5.1 – Overall sketch of the EHBTFET fabrication process using TASE.

The idea is to make use of the already demonstrated capabilities of the TASE process developed

by IBM to implement the EHBTFET. The channel and the drain region are n and n+ doped

InAs, whereas the source is Si. While there exists a huge band offset between the Γ conduction

band edges of Si and InAs, the valence band offset is about 130meV [156], which is expected

to allow for a good supply of holes into the overlap region. We performed initial simulation

and provided feedback to the fabrication efforts. Fig. 5.1 shows the general process flow for

the fabrication of the device.

Fig. 5.2 shows the initial simulation results using the 2D code. We used larger electron

effective mass (m∗
e = 0.04m0) for InAs to partially mimic the strong non-parabolicity. The

results indicate the device operation and consistent alignment voltage and ON current levels

with the 1D parametric simulation results (Fig. 4.28). The initial simulations indicate the

device indeed performs as a 2D-2D tunneling device and can be considered as a ’proof of

concept’ device whose performance is hindered by the lateral tunneling as expected, since

no countermeasures proposed in the section 4.3 can be applied with the current status of the

fabrication process. We highlight that the results presented here should be taken only as an

early indicator of the device characteristics and a more in-depth analysis is warranted.
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Figure 5.2 – (Left) Simulated device structure. The n- and p-gate metal workfunctions assumed
to be midgap energy of InAs. (Right) Transfer characteristics of the Si-InAs EHBTFET. Vp−gate =
−1.4V, VDS = 0.25V.

5.1.2 Possible Future Work

For each of the contributions mentioned above, we can propose possible paths to continue,

improve and complement the work done here. Specifically:

• For the simulator, implementing the non-parabolicity corrections for the 2D code

would greatly enhance the applicability of the code by enabling the simulation of low

bandgap materials such as InAs. Possible remedies for overcoming the numerical

difficulty of reproducing the wavefunction tail for orders of magnitude could be include

a reformulation of the model in a finite-precision friendly fasion or utilizing an arbitrary

precision arithmetic package such as the Arbirary Precision Toolbox [157] in MATLAB.

Moreover, the series resistance associated with the source/drain electrodes could be

critical for low power and low supply voltage devices such as those investigated in this

thesis. For this reason, it could be of interest to model the contact resistances in our

simulation methodology.

• To better quantify performance of the novel TFET architectures and compare against

the CMOS, a circuit-level simulation scheme including the quantum effects would be

highly beneficial. The method we utilized in section 4.6 is inherently semi-classical.

Right now, such simulations are usually based on lookup tables created by parametric

device-level simulations to obtain the small signal AC capacitance matrices and DC

current levels [131, 158]. As what can be done one step further, we are left with two

options here. The first one is to develop DC and AC compact models for each of these

devices, which can easily be coded in Verilog-A or SPICE and utilized in commercial

circuit simulators. The other option is to extend the device-level quantum simulators to

include also circuit simulation functionality similar to mixed-mode TCAD simulations
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available in Sentaurus [57].

• Regarding the EHBTFET, first efforts should be concentrated on experimental verifica-

tion of the device working principle as already mentined above. Any one of the different

incarnations that we proposed (the ’planar’ version, the fin EHBTFET or the nanowire

one mentioned in the appendix E.2) could be tried. Once this is achieved, the parametric

analyses in Chapter 4 will provide guidance for experimental researchers.

• As mentioned multiple times in the thesis, the alignment voltage Valign requirements for

the EHBTFET could be rather large, due to very strong quantization effects. Improving

the effective oxide thickness of the gate stacks would lower the voltage requirements

since it would take a smaller bias difference to reach the aligment field Falign. To achieve

this, some advances need to be made in incorporating extreme high-k insulators (possi-

bly Tantalum- or Zirconium-based [159]). Gate leakage estimation can be performed by

using the 1D gate leakage model detailed in Appendix C.

• The optimization study could be extended to include hetero-junctions. Lower alignment

voltages could be obtained by creating staggered gap heterojunctions in the channel

such as InAs/GaSb or novel 2D semiconducting materials such as MoS2 or WSe2 or

combining them to form van der Vaals gap structures. Similarly, strain can be utilized to

enhance the performance of III-V based TFETs [70] and GeSn alloys can promote direct

BTBT [160] compared to the pure Ge considered in this thesis and this may result in a

sizable improvement of the ON current.

• The EHBTFET logic idea could be explored further to pinpoint applications where it

could have drastic advantages over CMOS implementations.
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A Pseudo 2D Model

The method described in the section 3.3 could be computationally demanding compared to

the 1D (section 3.2) and semi-classical simulations. Significant computational gains can be

obtained by employing the ’pseudo 2D’ method in which the device is dissected into 1D slices

and the Schrödinger equation is solved only in slices. In addition to being computationally

much more efficient, this method has the advantage of access to many advanced 1D models

such as band non-parabolicity [100]; which are not implemented in the full 2D model of

section 3.3. Although the aformentioned properties make this approach highly desirable,

the question of whether intrinsically 2D effects (such as short channel effects (SCE)) can be

properly included remains to be answered.

p+ n+

i n-gate

p-gate

oxide

oxide

z

y
x

Δ
S

Figure A.1 – EHBTFET structure and the slices in which 1D Schrödinger equation is solved.

For the description of the method, we take the slicing direction as z, the other direction in the

simulation domain as x, and the transverse direction (extending normal to the simulation

domain) as y (see Fig. A.1). For the self-consistent loop, the quantum mechanical charge

density inside a slice is calculated using Eqs. 3.2. Similarly, the 1D BTBT models can readily

be used to get the tunneling current inside the slice. It is obvious that the method will only

calculate the tunneling in the direction of the slice so it works for the EHBTFET or similar

vertical (line [45]) tunneling structures, but not for DG-TFET where the tunneling direction

is bias and geometry dependent. The tunneling current will be given as the integral of the
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current calculated per slice:

I2D =
Lx,max∫

0

I1D(x)d x (A.1)

The 2D charge distribution is obtained as an extrapolation of the obtained 1D charge distribu-

tions:

n2D(x, z) = n1D(z)

ΔS(x)

∣∣∣∣
x=xi

(A.2)

where ΔS(x) is the slice length along the x-direction at the point xi .

Fig. A.2 compares the transfer characteristics obtained for the simulation of a Ge EHBTFET

introduced in Fig. 2.5. For the pseudo 2D method, the EHBTFET is divided into equally

separated vertical slices, since it is expected to have considerable tunneling in the vertical

direction. The onset of direct BTBT indicates that pseudo 2D model is unable to account for

the lateral tunneling that we have in Chapter 4.
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Figure A.2 – (Left) Comparison of different simulation schemes for the Ge EHBTFET described
in Fig. 2.5 with gate metal workfunctions φn−gate = 3.408eV and φp−gate = 5.642eV. It is seen
that at high VGS where the device is in the ON state, both phonon-assisted and direct tunneling
components of 1D and 2D tunneling models converge to similar values. Vp−gate = 0V,VDS =
0.5V. (Right) Normalized current densities per slice in the overlap region for 2D and pseudo-2D
models.

This being said, it should be noted that the pseudo 2D method is able to capture only some

of the 2D effects that are of purely electrostatic origin. Fig. A.2 (Right) shows the the BTBT

distribution per vertical slice in the ON state (therefore the majority of tunneling taking place
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is in vertical direction), it is evident that the pseudo 2D results indicate a reduction of ’effective’

gate length in the left overlap-underlap interface, which reduces the tunneling area as well as

the higher BTBT rate around the region at the interface on the right. This reduction is caused

by the lack of electrostatic control at the interface of underlap and overlap regions due to the

fact that underlap regions are controlled by only one gate compared to double gate control in

the overlap region. Moreover, absence of doping in the channel increases the characteristic

decay length of the potential profile significantly, which further amplifies the SCEs. (see Fig.

A.3).
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Figure A.3 – Γ conduction band profile of the Ge EHBTFET with TCH = 10nm, LOL = LUL =
50nm. The 1D outline (black line) indicates a long characteristic length due to the channel
region being undoped (intrinsic).

To conclude, it is seen that pseudo 2D method is unable to determine the leakage current that

is present in full 2D simulations, essentially yielding no improvement over the 1D model.
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B C0 Derivation Preliminaries & Defini-
tions

We are following the discussion given in S.L. Chuang’s Physics of Photonic Devices [110]. We are

interested in calculating the coupling element between a conduction band and a valence band

state around the Γ extrema pcv = 1
Ω0

∫
Ω0

u∗
c (�r )�j ∇uv (�r )d 3�r where Ω0 is the unit cell. The band-

edge wave basis vectors according to Kane [56] (for any electron wave vector�k = k sinθcosφ�x+
k sinθ sinφ�y +k cosθ�z) is given as follows:

• Conduction Band

|i S ↓〉 (B.1)

|i S ↑〉 (B.2)

• Heavy Hole Band

|3
2

,
3

2
〉 = −1�

2
|(cosθcosφ− j sinφ)X + (cosθ sinφ+ j cosφ)Y − sinθZ 〉 |↑〉 (B.3)

|3
2

,−3

2
〉 = 1�

2
|(cosθcosφ+ j sinφ)X + (cosθ sinφ− j cosφ)Y − sinθZ 〉 |↓〉 (B.4)

• Light Hole Band

|3
2

,
1

2
〉 =−1�

6
|(cosθcosφ− j sinφ)X + (cosθ sinφ+ j cosφ)Y − sinθZ 〉 |↓〉 (B.5)

+
√

2

3
|(sinθcosφ)X + (sinθ sinφ)Y +cosθZ 〉 |↑〉 (B.6)

|3
2

,−1

2
〉 = 1�

6
|(cosθcosφ+ j sinφ)X + (cosθ sinφ− j cosφ)Y − sinθZ 〉 |↑〉 (B.7)

+
√

2

3
|(sinθcosφ)X + (sinθ sinφ)Y +cosθZ 〉 |↓〉 (B.8)
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where |S, X ,Y , Z 〉 are the s, px , py , pz -like basis functions, respectively. We now note that pϕ

(where ϕ=x, y or z) is odd in direction ϕ and even in the other two directions. Without loss

of generality, the derivative of |X 〉 will be odd in y and z directions. Due to this symmetry

property, the momentum matrix elements py,z will be 0 for |X 〉.
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C 1D Gate Leakage Model

Two different gate leakage models were implemented in the 1D simulator: open boundary

and closed boundary models. In the open-boundary model (OBM), gate leakage is estimated

using NEGF [161]. The OBM model works as follows: The electrostatics is solved using a 1D

self-consistent Schrodinger-Poisson equation solver. Then, the gate tunneling is calculated

using open boundary conditions (NEGF), each quasi-bound state (QBS) is detected in the

Density of States (DOS) curve, whose full-width-half-maximum (FWHM) gives the ’escape

time’ for each QBS [162]. A similar method is proposed in [163].

On the other hand, the closed boundary model (CBM) uses the semiclassical approximation

(following [164]), where the electrons are considered as strictly classical particles trapped in

a potential well which have TWKB probability to ’escape’ from the well, at an attempt rate

calculated using an effective transversal time calculated using well-known classical kinetic

energy formula.

Once the escape times are known (with OBM or CBM), the tunneling current is calculated by

combining it with the Fermi occupancies and the 2D density of states [165].

C.1 Open Boundary Model Algorithm

1. Solve the electrostatics using closed boundary conditions (oxide penetration included)

using the closed boundary model explained in section 3.2.

2. Feed the closed boundary system eigenvalues as ’initial guesses’ to NEGF algorithm.

Otherwise, it is computationally very expensive to detect all the peaks using NEGF

since it requires a very dense energy mesh, due to the fact that in systems with low

contact interation (i.e. thick gate oxide) the life-times tend to be large (see Fig. C.1 for a

comparison of DOS peaks for thick and thin oxide stacks), and consequently the DOS

peaks are very narrow. In order to keep the computational burden tractable, NEGF is

only utilized around the eigenvalues of the closed system, which serve as an initial guess

for the QBS levels.
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Appendix C. 1D Gate Leakage Model

3. Solve the open-boundary Schrodinger Equation using the NEGF. Calculate using [162]:

DOS(E) =∫
LDOS(z,E)d z

4. Detect the peaks in the DOS curve. Calculate the broadening ΔE by calculating the full

width half maximum (FWHM). The ’broadening’ of the peaks (FWHM =ΔE) is used to

calculate the escape time as τ [73]: τ= �

ΔE .
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Figure C.1 – (Up left) DOS versus Energy. (Up right) LDOS and Conduction Band near the
oxide-semiconductor interface for TOX = 1nm (εr = 22 corresponding to HfO2). (Down left,
Down right) the same as (a,b) but for TOX = 3nm. Note the larger spread in the DOS and LDOS
for the TOX = 1nm case as the coupling increases between the contact and the quasi-bound
states.

5. Calculate the error in the broadening ΔE . The error is calculated as:

err = DOS(Epeak)/2−DOS(Ehalf_max)

DOS(Epeak)/2
(C.1)

where Ehalf_max is the energy closest to the FWHM of the peak. ’err’ is calculated for

both left and right hand sides of the peak and the final error is the average of the two.
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C.2. Closed-boundary Model

Finally the broadening is given as the summation of the left and right side FWHM points:

ΔE = Ehalf_maxR −Ehalf_maxL.

6. For each iteration, the energy spacing dE is updated by dEnew = dEold/ζ where ζ is

a refinement parameter (which is currently set to 10). NEGF is utilized in the energy

windows around the peaks only: [Epeak −W dE ,Epeak +W dE ]

7. Decide whether the half-maximum point has been left outside the energy window in

the refinement process. If so, double the W parameter to broaden the energy window

(using the same dE). Repeat steps 4, 5, 6 until a ’valid’ life-time is obtained (i.e., within

0.5% error tolerance).

8. Once the life-times are calculated, the 2-D gate leakage current is obtained as [165]:

IG =∑
k

q ALGNk

τ

(
ln(1+e

EFG−Ek
kT )− ln(1+e

EFD−Ek
kT )

)
(C.2)

where k is the subband index running through all the QBS, EFG(FD) is the Fermi level for

the gate (drain) contacts, Nk = KB T gv m∗

π�2 is the 2-D DOS factor, A is area factor, LG is the

gate length. EFG =−qVG and EFD =−qVD respectively.

C.2 Closed-boundary Model

Compared to the OBM, CBM is relatively straightforward to implement. The description of the

algorithm is given below:

1. Solve the electrostatics using closed boundary conditions (oxide penetration included).

2. Calculate the WKB transmission probability TWKB through the oxide:

TWKB = e
−2

TOX∫
0

|k(z)|d z
where k(z) =

√
2m∗(Ek −EC(z))

�
(C.3)

The calculation is done in the region where k is imaginary, and z = 0 is set as the left point

in the barrier where EC = Ek . However, WKB assumes a sufficiently constant potential

profile, which is certainly not the case for our structure (we have a huge discontinuity

at the oxide-semiconductor interface!). Therefore, interface reflections should also be

taken into account. Some authors have done this via a pre-exponential term in front of

the action integral [166].

3. Similarly, the transversal time of the electron tt is determined as:

tt =
∫zc

0

√
2m∗

(Ek −EC (z))
d z (C.4)
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Figure C.2 – (a) I-V curves obtained for a Ge EHBTFET gate leakage for TOX = 1nm (εr = 22
corresponding to HfO2), VDS = 0.5V using OBC. (b) Electron lifetimes for OBS (solid) and for
CBS model (dashed). (c,d) the same as (a,b) but for TOX = 3nm. In this simulations, p-gate is
grounded and n-gate is swept (denoted as VGS). φn−gate = 3.434eV and φn−gate = 5.642eV.

where zc is the classical turning point defined as the point where EC(zc ) = Ek .

4. Finally, the life time in semi-classical approximation is calculated as: τ= TWKB/tt .

5. The same equation as OBS (eq. C.2) is then used to calculate the 1D tunneling current.

Comparable time-time values with the OBS system were obtained using the CBS model (see

fig. C.2).

The initial simulations indicate significant amounts of gate current for our example of Ge

EHBTFET with HfO2 gate stack, especially at lower gate voltages which could cause problems.

However, a complete, calibrated analysis for the gate leakage is warranted to give a reliable

estimate of the gate leakage. Another concern to take note of is the two dimensional effects that

increases the flow of electron around the edges of the gate stack [167], cannot be accounted
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C.2. Closed-boundary Model

for in our 1D model. In any case, it seems evident that extreme high-k oxides with adequate

band offsets with the channel material is essential for an optimized EHBTFET.
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D Derivation of the Analytical Model for
the EHBTFET

We start from the 1D Poisson equation under depletion approximation for a 1D vertical slice

of the EHBTFET:

δ2V (z)

δz2 = qNi

εCH
(D.1)

Integrating the above equation twice yields:

V (z) = qNi

2εCH
z2 +C z +D (D.2)

where C and D =V (0) are constants to be determined using the boundary conditions. Since

we have an asymmetrically biased double gate structure, we impose two boundary conditions

at both top and bottom oxide-semiconductor interface. Specifically, we impose the continuity

of the displacement field:

εCHECH(0) = εOXEOX (D.3)

− εCH
δV (z)

δz

∣∣∣∣
z=0

= Vn−gate −V (0)

TOX
(D.4)

C = εOX

εCH

(
Vn−gate −D

TOX

)
(D.5)

for the top-gate interface. The capacitance per length is defined as COX,CH = εOX,CH

TOX,CH
. Similarly

for the bottom case, we have:

qNi

εCH
+C = COX

εCH

(
Vp−gate −

(
qNi T 2

CH

2εCH
+C TCH +D

))
(D.6)

solving the Eqs. D.5 & D.6 for C and D yields:

C = COX

εCH

(
D −Vn−gate

)
(D.7)
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D =
Vp−gate − qNi T 2

CH
2εCH

+Vn−gate

(
COX
CCH

+1
)
− qNi TCH

COX

2+ COX
CCH

(D.8)

considering that we have very low doping, we can safely neglect the terms with Ni , which

further simplifies the expressions:

C = COX

εCH

(
D −Vn−gate

)
(D.9)

D =
Vp−gate +Vn−gate

(
COX
CCH

+1
)

2+ COX
CCH

(D.10)

again neglecting the Ni term in Eq. D.2, plugging in C & D and writing C in terms of electric

field F =−C :

V (z) =−F z +
Vp−gate +Vn−gate

(
COX
CCH

+1
)

2+ COX
CCH

(D.11)

with F = COX
εCH

(
Vn−gate−Vp−gate

2+ COX
CCH

)
.
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E Possible EHBTFET Fabrication Pro-
cess and Different Incarnation of the
EHBTFET
E.1 Fin EHBTFET Process Flow

One of the main advantages of the fin implementation described in section 4.5 is the relative

ease of fabrication with respect to the planar version. In the fin case, having two different

gates with asymmetric placement is not required. We sketch in Fig. E.1 two possible process

flows for fabrication of the fin EHBTFET.

The two approaches differ from each other only in the fin formation steps, whereas the

remaining processing steps remain the same. In the ’Top-Down’ approach the fin is created

by first depositing the fin material onto the substrate with a deposition technique (e.g., ALD,

MOCVD etc.) and then patterning it into a fin using photo-lithography. For the ’Bottom-Up’

approach, on the other hand, the substrate is first patterned and only the fin regions are left

open for epitaxial growth.

The top-down approach begins with a bulk or SOI substrate. The fin material (may or may

not be the same material as the substrate) is then epitaxially grown in a blanket fashion. Then

the fin is patterned using a hard mask combined with an anisotropic physical etch. The hard

mask is then removed.

The bottom-up approach also begins with the same substrate as in the top-down approach.

This time, the entire substrate is covered by a hard mask except the fin region to prevent

growth outside this region. Then, the fin material is epitaxially grown.

The remainder of the process is the same for both options. The gate stack materials (i.e., oxide

and the n- and p-gate electrodes) are grown conformally using ALD. At this point, the fin is

entirely covered by the gate stack. The spacers are deposited using ALD or CVD and etched

anisotropically to achieve the desired structure. The separation of n- and p-gates is achieved

by etching the metal and gate oxide on top of the fin using anisotropic etch or CMP process.

The source and drain regions are obtained by implanting the source and drain regions and

covering the remaining parts of the device.
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EHBTFET
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Figure E.1 – The process flow for fin EHBTFET using (i) Top-Down (ii) Bottom-Up approaches.

E.2 Nanowire Implementation of the EHBTFET

Here, we propose another idea that could possibly be used to implement the EHBTFET

on a nanowire. It makes use of so-called ’core-shell’ structures for nanowires [168], which

employs hollow semiconductor nanowires filled with another material. In the case of nanowire
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E.2. Nanowire Implementation of the EHBTFET
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Figure E.2 – (Left) Nanowire cross section for the NW-EHBTFET.(Right) (a) A horizontal cross-
section of the nanowire region, indicating different layers. (b) The induced electron and hole
gases and BTBT direction in the ON state. (c) The top horizontal view showing the drain and
n-gate contact separation.

EHBTFET the gate oxide, an insulating layer to separate the n-gate and the source and the gate

metals are deposited conformally both in the hollow core and the outer shell, resulting in a

sandwiched layer of semiconductor between two isolated gate stacks, which can effectively

be operated as an EHBTFET. The vertical and horizontal cross sections, as well as the device

working principle in the ON state is given in Fig. E.2. We have already noted that it is critical to

have a thin semiconductor region to achieve high ON currents, so ideally the semiconductor

shell should be on the order of 10nm. These small features could indeed be a problem in the

top contacts (i.e., n-gate and drain), but we note that the drain region could gradually extend

as it grows out of the channel region (possibly by using a different material similar to what is

done in NW-TFETS of Lund group [138]).
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