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Abstract

Chemical reaction systems act as the basis to get the desired products from raw ma-
terials. An in-depth understanding of all the underlying rate processes is necessary for
monitoring, control and optimization of chemical reaction systems. Traditional repre-
sentation of a reaction system by means of the conservation equations (material and
energy balances) leads to a set of highly coupled differential equations. These coupled
ODEs provides overall contributions of all the underlying rate processes, and hence, it is
difficult to analyse the effect of each rate process in a reaction system. In this thesis, an
alternative representation of reaction systems in terms of decoupled variables, namely,
vessel extents is reintroduced. The advantages of using the representation in terms
of the decoupled variables over the traditional representation are investigated for data
reconciliation, model identification and parameter estimation, and state reconstruction
and estimation.

Vessel extents of reaction, mass transfer, inlet and initial conditions

In the vessel-extent representation of a chemical reaction system, each extent varies due
to a single rate process. For example, the vessel extent of the ith reaction is affected
only by the rate of the ith reaction. For a homogeneous reaction system with S species,
R reactions, p inlet and one outlet stream, the representation in terms of vessel extents
consists of R vessel extents of reaction, p vessel extents of inlet and one extent of
initial conditions. In the case where heat effects in a chemical reactor are modeled,
an additional extent of heat exchange is introduced in the vessel-extent representation
to capture this phenomenon. In this dissertation, we show that there exists a linear
transformation that transforms the representation in terms of vessel extents to the
traditional representation in terms of material and heat balances and vice versa.

For a multi-phase reaction system, with Sf species in each phase, Rf reactions, pm
mass transfers, pf inlet streams and an outlet stream, we show that the representation
in terms of vessel extents for each phase F is written in terms of Rf vessel extents of
reaction, pm vessel extents of mass transfer, pf vessel extents of inlet and one extent of
initial conditions.

Data reconciliation

The numbers of moles measured during the course of a reaction are typically corrupted
by random measurement noise. Data reconciliation techniques improve the accuracy
of these measurements by using redundancies in the material and energy balances ex-
pressed as relationships between measurements. Since, in the absence of a kinetic model,
these relationships cannot integrate information regarding past measurements, they are
expressed in the form of algebraic constraints. This dissertation shows that, even in
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vi Abstract

the absence of a kinetic model, one can use shape constraints to relate measurements
at different time instants, thereby improving the accuracy of reconciled estimates. The
construction of these shape constraints depends on the operating mode of the chemical
reactor. Moreover, this thesis also shows that the representation of the reaction system
in terms of vessel extents helps identify additional shape constraints, thereby further
improving the quality of the measured numbers of moles. A procedure for deriving
shape constraints from measurements is also described.

Sequential kinetic modeling

Modeling chemical reaction systems is an important task. The identified kinetic model
must be able to explain all the underlying rate processes such as chemical reactions and
mass transfers. Traditionally, the modeling task is carried out using a simultaneous
approach, which, for model prediction, requires having a model candidate for all rate
processes. The simultaneous approach, which leads to optimal parameter estimates,
can be computationally expensive due to its combinatorial nature. The incremental ap-
proach, either via rates or extents, was introduced as an alternative to the simultaneous
approach. It is characterized by the fact that each rate process is modeled individu-
ally, that is, independently of the other rate processes, thus making it computationally
more attractive, however at the price of not guaranteeing bias-free estimates. In this
dissertation, we propose a novel sequential approach that combines the advantages of
the incremental and simultaneous approaches.

State estimation

State estimation techniques are used for improving the quality of measured signals
and for reconstructing unmeasured quantities during process operation. For chemical
reaction systems, nonlinear estimators are often used to improve the quality of estimated
concentrations. Usually, these nonlinear estimators, which include the extended Kalman
filter, the receding-horizon nonlinear Kalman filter and the moving-horizon estimator,
use a state-space representation in terms of numbers of moles. In this dissertation, we
formulate the state estimation problem in terms of vessel extents, which allows imposing
additional shape constraints in terms of the sign, monotonicity and concavity/convexity
properties of extents. We show that the addition of shape constraints often leads to
significantly improved state estimates.

Keywords:

Chemical reaction systems; Homogeneous reactions; Multi-phase reaction systems; Ves-
sel extents of reaction; Vessel extents of mass transfer; Kinetic identification; Data
reconciliation; State estimation.



Résumé

Les systèmes de réaction chimiques sont à la base des transformations qui permettent
d’obtenir des produits désirés à partir de matières premières. Une compréhension ap-
profondie de toutes les vitesses des phénomènes physiques et chimiques mis en jeu est
nécessaire pour le monitoring, le contrôle et l’optimisation de ces systèmes de réaction.
La représentation traditionnelle d’un système de réaction au moyen d’équations de con-
servation (conservation de la matière et de l’énergie) mène à un ensemble d’équations dif-
férentielles fortement couplées. Ces équations différentielles ordinaires (EDO) représen-
tent l’ensemble des contributions des vitesses de tous les phénomènes impliqués dans
un système reactionnel, et cette représentation rend donc difficile l’analyse individuelle
de l’effet de chacune de ces vitesses. Dans cette thèse, une représentation alternative
des systèmes de réaction se basant sur des variables découplées, appelées avancements
généralisés, est rappelée. Les avantages de cette représentation en termes de variables
découplées par rapport à la représentation traditionnelle sont étudiés dans le contexte
de la réconciliation de données, de l’identification des modèles et de l’estimation de leurs
paramètres, ainsi que de la reconstruction et de l’estimation d’état.

Avancements généralisés de réaction, de transfert de masse, d’entrées et de
conditions initiales

Dans la représentation d’un système de réaction chimique en termes d’avancements
généralisés, chaque avancement varie suivant un phénomène physique ou chimique
unique. Par exemple, l’avancement 1 de la i-ème réaction n’est affecté que par la vitesse
de la i-ème réaction. Pour un système de réaction homogène avec S espèces chimiques,
R réactions, p entrées et une sortie, la représentation en termes d’avancements général-
isés se compose de R avancements (généralisés) de réaction, p avancements d’entrée et
un avancement de conditions initiales. En cas d’échange de chaleur entre le réacteur
et son environnement, un avancement supplémentaire, dit d’échange de chaleur, est in-
troduit dans la représentation en avancements généralisés afin de capturer l’effet de ce
phenomène thermique. Dans cette dissertation, nous montrons qu’il existe une transfor-
mation linéaire qui transforme la représentation en termes d’avancements généralisés en
la représentation traditionnelle exprimées en termes de bilans de matière et d’énergie,
et vice versa.

Pour un système réactionel multiphasique, avec Sf espèces chimiques dans chacune des
phases, Rf réactions, pm transferts de masse, pf entrées et une sortie, nous montrons
que la représentation en termes d’avancements généralisés pour chacune des phases F
peut être décrite par Rf avancements (généralisés) de réaction, pm avancements de
transfert de masse, pf avancements d’entrée et un avancement de conditions initiales.

1 Pour des raisons de simplicité, le terme avancement est parfois employé seul en lieu et place de sa dénomination
complète avancement généralisé.
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Reconciliation de données

Les mesures du nombre de moles de chaque espèce chimique prises au cours d’une réac-
tion sont généralement corrompues par du bruit de mesure aléatoire. Les techniques de
reconciliation de données améliorent la précision de ces mesures en utilisant les redon-
dances dans les bilans de matière et d’énergie exprimés sous forme de relations entre les
mesures. Ces relations ne pouvant pas intégrer d’information sur les mesures passées
en l’absence d’un modèle cinétique, ces équations sont exprimées sous la forme de con-
traintes algébriques. Cette dissertation montre que, même en l’absence d’un modèle
cinétique, des contraintes dites de forme peuvent être employées pour relier les mesures
à différents instants, améliorant d’autant la précision des données réconciliées. La re-
lation mathématique de ces contraintes de forme dépend du mode de fonctionnement
du réacteur chimique. De plus, cette thèse montre également que la représentation du
systéme réactionnel a l’aide d’avancements permet d’identifier des contraintes de forme
supplémentaires, permettant d’améliorer encore la qualité des mesures exprimées en
nombres de moles. Une procédure pour dériver ces contraintes de forme à partir de
mesures est également décrite.

Identification séquentielle des modèles

L’identification d’un modèle cinétique décrivant un système de réaction chimique est
une tâche complexe mais importante. En effet, le modèle cinétique identifié doit être
en mesure d’expliquer toutes les vitesses des phénomènes physiques et chimiques mis
en jeu, tels que les réactions chimiques et les transferts de masse. Traditionnellement,
la tâche de modélisation est effectuée en utilisant une approche simultanée qui néces-
site d’avoir un modèle candidat pour la vitesse de chacun des phénomènes. L’approche
simultanée conduit à l’estimation optimale des paramètres, mais peut s’avérer coûteuse
en temps de calcul en raison de sa nature combinatoire. L’approche incrémentale,
basée sur les vitesses ou sur les avancements généralisés, a été présentée comme une
alternative à l’approche simultanée. Elle est caractérisée par le fait que la vitesse de
chaque phénomène est modélisée individuellement, c’est-a-dire indépendamment des
autres vitesses, ce qui la rend plus performante en terme de temps de calcul, au risque
cependant de fournir des estimations biaisées. Dans cette dissertation, nous proposons
une nouvelle approche, dite séquentielle, qui combine les avantages des approches in-
crémentales et simultanées.

Estimation d’état

Les techniques d’estimation d’état sont utilisées pour améliorer la qualité des signaux
mesurés et pour reconstruire des quantités non mesurées durant le fonctionnement d’un
procédé. Pour les systèmes de réaction chimiques, des estimateurs non linéaires sont
souvent utilisés pour améliorer la qualité des concentrations estimées. En général, ces
estimateurs non linéaires, tels que le filtre de Kalman étendu, le filtre de Kalman non
linéaire à horizon glissant, et l’estimateur a horizon glissant, utilisent une représenta-
tion d’état en termes de nombre de moles. Dans cette dissertation, nous formulons
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le problème d’estimation d’état en termes d’avancement généralisés, permettant ainsi
d’imposer des contraintes de forme supplémentaires en termes de signe, de monotonicité,
et de concavité / convexité des avancements. Nous montrons que l’ajout de ces con-
traintes de forme mène souvent à une amélioration significative de l’estimation d’état.

Mots-clés :

Systèmes de réaction chimiques; Réactions homogènes; Systèmes réactionels multi-
phasiques; Avancements généralisés de réaction; Avancements généralisés de transfert
de masse; Identification cinétique; réconciliation de données; Estimation d’état.
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Chapter 1

Introduction

1.1 Motivation

Chemical reaction systems are widely used by various industries to convert raw materials
into high-value and marketable products. Some of these chemical reactions are complex
and arise in a number of different processes such as combustion, fluid catalytic cracking,
chemical-vapour decomposition and in biotechnology. For example, the (bio)chemical
industry uses reaction processes to convert raw materials into desired products that
include polymers, organic chemicals, vitamins, vaccines and drugs.

In the recent years, fast-changing market conditions have forced the process industry to
operate its chemical production facilities in an increasingly transient regime, featuring
fast and frequent changes in product type, product grade and production rate [9, 68].
While profit is high on the agenda of these industries, the products must be of very
high quality and, at the same time, satisfy the environmental restrictions. Industries
try to meet these objectives by building reliable mathematical process models during
the process development phase to describe the chemical reaction systems as shown in
Fig. 1.1. These process models can considerably reduce process development costs and
can be used for better process understanding, simulation and design.
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Figure 1.1 Schematic diagram illustrating the modeling phase during process development in
the laboratory.

Process models of a chemical reaction system should be able to explain the effects of all
the underlying chemical reactions. Apart from reactions, these models must also explain
(i) material exchange via inlet/outlet flows, mass transfers, and (ii) energy exchanges

1
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via heating and cooling (heat transfers). The process models could either be derived
from first principles [59, 67] or can be empirical in nature such as response surface
models [19]. The developed process models can then be used during process operations
for model-based monitoring, control and optimization [30, 44, 56] and hence lead to
improved safety, productivity and product quality.

Identifying a reliable description of reaction kinetics and transport phenomena rep-
resents the main challenge in building process models for chemical reaction systems.
In practice, such a description is constructed from experimental data collected in the
laboratory as shown in Fig 1.1 [48].

During the process development phase in the laboratory, the measurements such as
temperature, pressure and concentrations can be obtained from different sources such
as calorimetery, spectrometery (mid-infrared, near-infrared and ultraviolet/visible -
UV/VIS) or chromatography. In an ideal world, these measurements taken during
the course of a chemical reaction system will give the exact values of the states in-
side the reactor and can be used for either kinetic modeling or for data-driven ap-
proaches. However, in reality, these measurements taken are corrupted by random
measurement noise. Since measurements are corrupted by noise, the performance of the
modeling/identification task, and thus also of the subsequent monitoring, control and
optimization steps, depends highly on the accuracy of the measurements.

For model-based monitoring, control and optimization, the kinetic model identified at
the process development stage is used along with the process data from the production
environment in order to adjust the process model and to improve the state estimates as
shown in Fig. 1.2.
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Figure 1.2 Schematic diagram illustrating model adjustment and state estimation during
process operations.

In this dissertation, we aim to solve the following problems to meet industrial goals
based on experimental data:

• Find a suitable system representation for chemical reaction systems,
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• Find a pretreatment for the experimental data in the absence of a process model,

• Develop a methodology for model identification of chemical reaction systems, and

• Develop a procedure for state estimation and model adjustment during process op-
eration.

1.2 State of the Art

1.2.1 Mathematical models

Models of chemical reaction processes based on first principles describe the evolution of
states (mass, concentrations, temperature) by means of balance equations of differential
nature (continuity equation, molar balances, heat balances) and constitutive equations
of algebraic nature (e.g. equilibrium relationships, rate expressions). These models
usually include information regarding the underlying reactions (e.g. stoichiometries,
reaction kinetics, heats of reaction), the transfers of mass within and between phases,
and the operating mode of the reactor (e.g. initial conditions, external exchange terms,
operating constraints). The presence of all these phenomena, and in particular their
interactions, complicates the analysis and operation of chemical reactors.

To simplify the analysis of chemical reaction systems, researchers have introduced alter-
native representations of these systems, where each state variable varies due to a single
rate process [4, 8]. Ideally, one would like to have true variants, whereby each state
depends only on one phenomenon, for example a reaction variant that varies only due
to the effect of a single reaction. Asbjørnsen and co-workers [7, 8, 33] introduced the
concepts of reaction variants and reaction invariants. However, the reaction variants
proposed by Asbjørnsen encompass more than the reaction contributions, since they
are also affected by the inlet and outlet flows. Hence, Friedly [34, 35] proposed to com-
pute the extents of “equivalent batch reactions”, associating the remainder to transport
processes. For open homogeneous reaction systems, Srinivasan et al. [70] developed a
nonlinear transformation of the numbers of moles to reaction variants, flow variants,
and reaction and flow invariants, thereby separating the effects of reactions and flows.
Later, Amrhein et al. [4] refined that transformation to make it linear (at the price of
losing the one-to-one property) and therefore more easily interpretable and applicable.
They also showed that, for a reactor with an outlet flow, the concept of vessel extent
was most useful, as it represents the amount of material associated with a given process
(reaction, exchange) that is still in the reactor. Bhatt et al. [14] extended that concept
to heterogeneous gas-liquid reaction systems for the case of no reaction and no accu-
mulation in the film, the result being vessel extents of reaction, mass transfer, inlet and
outlet, as well as true invariants that are identically equal to zero.

Various implications of reaction variants/invariants have been studied in the literature.
For example, Srinivasan et al. [70] discussed the implications of reaction and flow
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variants/invariants for control-related tasks such as model reduction, state accessibility,
state reconstruction and feedback linearizability. On the one hand, control laws using
reaction variants have been proposed for continuous stirred-tank reactors [40, 78, 29,
32]. The concept of batch extent of reaction is very useful to describe the dynamic
behavior of a chemical reaction since a reaction rate is simply the derivative of the
corresponding extent of reaction. Bonvin and Rippin [18] used batch extents of reaction
to identify stoichiometric models without the knowledge of reaction kinetics. Reaction
extents have been used extensively for the kinetic identification of both homogeneous
and heterogeneous reaction systems using either concentration [16] or spectroscopic [17]
measurements.

On the other hand, the fact that reaction invariants are independent of the reaction
progress has also been exploited for process analysis, design and control. For example,
reaction invariants have been used to study the state controllability and observability
of continuous stirred-tank reactors [12, 33]. Reaction invariants have also been used to
automate the task of formulating mole balance equations for the non-reacting part (such
as mixing and splitting operations) of complex processes, thereby helping determine
the number of degrees of freedom for process synthesis [36]. Furthermore, Waller and
Mäkilä [78] demonstrated the use of reaction invariants to control pH, assuming that
the equilibrium reactions are very fast. Grüner et al. [39] showed that, through the use
of reaction invariants, the dynamic behavior of reaction-separation processes with fast
(equilibrium) reactions resembles the dynamic behavior of corresponding non-reactive
systems in a reduced set of transformed variables. Aggarwal et al. [1] considered multi-
phase reactors operating at thermodynamic equilibrium and were able to use the concept
of reaction invariants, which they labeled invariant inventories, to reduce the order of
the dynamic model and use it for control.

1.2.2 Data reconciliation

The accuracy and precision of measurements can be improved using data reconciliation
(DR) techniques [53, 66] as shown in Fig. 1.3. Static DR uses redundancies in the
conservation equations expressed as relationships between measurements to improve
the exactness of the measurements [26]. In the case of chemical reaction systems, these
relationships are derived from the conservation equations, namely, the material and
energy balance equations [27].

However, the algebraic constraints used for DR are valid at each given time instant,
that is, not over neighboring time instants and do not relate measurements taken at
different times [73]. In such a case, DR solves a weighted least-squares optimization
problem at each time instant. If a kinetic model is available, DR can be performed
using techniques such as Recursive Nonlinear Dynamic Data Reconciliation (RNDDR)
or Moving Horizon Estimator (MHE) [57, 58], that is, data over several time instants
can be reconciled together.
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Figure 1.3 Schematic diagram illustrating the integration of data reconciliation in the mod-
eling phase during the process development stage in the laboratory.

1.2.3 Model identification

Model identification of chemical reaction systems involves determining model structures
and estimating the corresponding model parameters for all the rate processes from
experimental or reconciled data. The model identification task can be carried out either
using a simultaneous approach or via an incremental approach.

Simultaneous model identification

Traditionally, model identification is carried out simultaneously for all the rate processes
involved in the system, and thus the identification approach is labeled “simultaneous
method of parameter estimation”. In this method, a model candidate is proposed for
each reaction and mass transfer. The corresponding parameters are estimated by com-
paring the measured and predicted numbers of moles. The procedure is repeated for all
the possible combinations of candidate rate-law models. The best combination is chosen
based on a pre-defined criterion, such as a least-squares value, Akaike information crite-
rion, or a Bayesian information criterion. The advantage of simultaneous identification
lies in the fact that the model parameters are estimated in a maximum-likelihood sense
[10]. However, simultaneous identification suffers from high computational cost when,
for each rate process, several model candidates are to be tested. If M models have to
be tested for each of the N rate processes, simultaneous identification requires evaluat-
ing MN model combinations. Additionally, since multiple parameters are estimated at
once, simultaneous identification might lead to convergence problems [21] and high cor-
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relation between the estimated parameters. The convergence issue is generally tackled
by solving the regression problem with different initial guesses, while proper design of
experiments is required to reduce the correlation between parameters [52].

Incremental model identification

Another modeling perspective is the incremental model identification approach [11, 16,
22, 51]. In contrast to simultaneous identification, the incremental approach deals with
each rate process individually, that is, independently of the other rate processes. This is
possible by transforming the measured state variables to so-called variant states, either
rates or extents, each one depending on a single rate process. Since the modeling of each
rate process can be done independently of the other rates, the incremental approach does
not have the combinatorial complexity of the simultaneous identification and is therefore
less computationally expensive. In addition, the incremental approach is less prone to
convergence issues since the dimensionality of each regression problem is significantly
reduced compared to the simultaneous identification. On the other hand, the parameters
obtained by the incremental approach may be biased because (noisy) measurements
must be included in the rate expressions as substitutes for the concentrations that cannot
be predicted solely by that particular rate process. Furthermore, in the case of the
extent-based approach, the measurements must also be interpolated so that they become
available at all times for the purpose of integrating the rate laws. The noise present in
these measurements typically leads to biased parameter estimates. As a simultaneous
identification step is eventually made to obtain maximum-likelihood estimates based on
the model structures identified incrementally, the number of regression problems to be
solved with the incremental approach is M ·N + 1. The incremental approach can be
of two types, namely, rate-based and extent-based:

• Rate-based incremental identification: In the rate-based approach, the reaction rates
are obtained by differentiation of the measured numbers of moles and the knowl-
edge of the stoichiometry [23]. Candidate rate laws are then postulated for each
of the rates independently, and their corresponding parameters are estimated by
comparing the measured and estimated rates. The rate-based incremental identi-
fication is computationally the cheapest kinetic modeling technique. However, the
differentiation of noisy measurements can introduce strong biases so that efficient
regularization techniques are necessary [21].

• Extent-based incremental identification: In the extent-based approach, on the other
hand, the measured numbers of moles are transformed to so-called vessel extents
[4, 14]. A vessel extent represents a generalization of the concept of batch ex-
tent in the presence of an outlet flow. Model identification for each rate process is
carried out independently of the other rates by solving an optimization problem, in
which the measured and modeled extents are compared. Note that measured extents
denote extents that have been obtained by transformation of measured numbers of
moles and/or indirect measurements thereof such as calorimetry [72] or spectroscopy
[17]. The extent-based identification approach involves numerical integration, which
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makes it computationally more intensive than the rate-based approach. Neverthe-
less, the extent-based approach has been shown to yield tighter confidence intervals
and to have a better model discrimination capability than the rate-based approach
[16]. The main drawback of the extent-based over the rate-based approach lies in the
need to interpolate measurements for the integration procedure. Also, the extent-
based approach introduced in [15] does not take into account the correlation that
exists between the extents.

1.2.4 State estimation

The field of state estimation focuses on both improving the accuracy of the measured
signals and reconstructing unmeasured signals by enforcing their consistency with the
given process model [69]. Several state estimators are available for nonlinear dynamic
systems. Among these estimators, the most commonly used is probably the extended
Kalman filter (EKF) [42]. EKF is recursive by nature and thus can easily be imple-
mented in real time. The major drawback of EKF lies in its inability to handle bounds
and algebraic constraints, which are common in the representation of chemical reaction
systems.

As an alternative approach, recursive nonlinear dynamic data reconciliation (RNDDR)
was introduced [75]. This method has the advantage of preserving the prediction step
of the EKF method, but the update step is formulated as a constrained optimization
problem. In the unconstrained case, this method reduces to the traditional EKF. The
moving-horizon estimator (MHE) constitutes an alternative that can handle constraints
on the estimated states [57, 58]. A constrained optimization problem is formulated at
each sampling time using a time window of past measurements. This allows incorpo-
rating shape constraints (such as sign, monotonicity and curvature) in the estimation
problem for the given window. The drawback of the MHE method is the need to solve
differential equations within the optimization loop, which can become a computational
issue for real-time estimation. The receding-horizon nonlinear Kalman filter (RNK) is
another nonlinear state estimator. It is based on the prediction and update steps of the
Kalman filter [61]. In the update step, an optimization problem is solved using a time
window of past measurements.

1.3 Thesis Outline and Main Contributions

Chapter 2: Material and Energy balances We start by reviewing the traditional
representation of chemical reaction systems in terms of material and energy balance
equations for homogeneous and heterogeneous reaction systems. In the first part of
Chapter 2, some basic concepts such as stoichiometry, atomic matrix, independent
reactions and independent inlets are introduced. This leads to an important relationship
between the number of species and the number of independent reactions in a reaction
system. This relationship will be used repeatedly in the following chapters for the
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purpose of transforming measured numbers of moles to vessel extents. In the second
part of the chapter, the material and energy balance equations for a homogeneous
reaction system in a generic open reactor with inlet and outlet streams are discussed.
In this part, we introduce the concept of invariant relationships and give a procedure for
deriving such relationships from material and energy balances. In the last part of the
chapter, the balance equations and invariant relationships are extended to heterogeneous
reaction systems with steady-state mass transfer.

Main Contributions

� This chapter introduces a systematic procedure for deriving invariant relation-
ships for both homogeneous and heterogeneous reaction systems.

Chapter 3: Alternative Representation - Vessel Extents This chapter intro-
duces alternative representations of chemical reaction systems in terms of variant and
invariant states. First, we briefly review the various representations in terms of vari-
ant states introduced in the literature. Next, definitions of state variables called vessel
extents, which are functions of a single rate process, are recalled. This leads to an alter-
native representation for homogeneous reaction systems in terms of vessel extents. The
procedure for transforming the representation from numbers of moles to vessel extents
and vice versa is explained in detail. The representation in terms of vessel extents is
then extended to reactor models with heat balance. In this case, an additional vessel
extent of heat exchange is needed to represent the reaction system. In the final part, the
representation in terms of vessel extents is extended to heterogeneous reaction systems.

Main Contributions

� A new transformation is introduced that brings the representation in terms of
numbers of moles to a representation in terms of the vessel extents.

� Extensions of the vessel-extent representation to reaction systems with a heat
balance and to heterogeneous reaction systems are discussed.

Chapter 4: Data Reconciliation This chapter shows that, even in the absence
of a kinetic model, dynamic information can be added to the data reconciliation prob-
lem to further improve the quality of the reconciled estimates. Shape constraints are
introduced to relate measurements at different time instants, thereby improving the ac-
curacy of reconciled estimates. A procedure for constructing the knowledge-based shape
constraints in the representation in terms of both the numbers of moles and extents is
introduced. A procedure for deriving shape constraints from measurements is also de-
scribed. Fig. 1.4 illustrates the use of shape constraints during data reconciliation.
The performance of the data reconciliation procedure in terms of both the numbers
of moles and vessel extents is compared via simulated examples of homogeneous and
heterogeneous reaction systems.
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Main Contributions

� The concept of shape constraints is introduced to improve the accuracy of data
reconciliation procedures.

� Knowledge-based constraints are derived for homogeneous and heterogeneous
reaction systems in terms of numbers of moles and in terms of vessel extents.
We show that the vessel extent representation of a reaction system often leads
to additional shape constraints.

� For cases where knowledge-based constraints do not exist, a procedure for de-
riving measurement-based constraints is introduced.
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Figure 1.4 Schematic diagram illustrating the integration of shape constraints in the data
reconciliation step.

Chapter 5: Sequential Model Identification In this chapter, the reconciled num-
bers of moles or vessel extents from Chapter 4 are used to identify the kinetics of the
reaction system. A novel sequential model identification approach is proposed, which
is based on the extent-based incremental approach that combines the advantages of
the incremental and simultaneous approaches. In addition, a method to reduce the
structural bias that is present in the extent-based incremental approach is introduced.
The sequential model identification procedure is illustrated via a simulated example of
a homogeneous reaction system.
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Main Contributions

� A sequential approach for kinetic modeling of chemical reaction system using
the extent-based incremental approach is developed.

� A procedure for removing the structural bias in the incremental approach is
discussed.

Chapter 6: State Reconstruction and Estimation In the first part of this chap-
ter, a methodology for reconstructing the numbers of moles of the unmeasured species
without the knowledge of a kinetic model is introduced. If a kinetic model for the
reaction system is available, state estimation techniques can then be used to improve
the quality of measured signals, estimate unmeasured quantities and at the same time
to update the model parameters. In this chapter, a nonlinear state estimation problem
is formulated by using the knowledge-based shape constraints derived in Chapter 4 as
shown in Fig. 1.5. The addition of shape constraints in the state estimation prob-
lem leads to significantly improved state estimates. Additionally, the formulation of the
state estimation problem in terms of vessel extents performs better than the formulation
in terms of numbers of moles. A procedure for deriving the measurement-based con-
straints is also introduced. The state estimation procedure is illustrated via a simulated
example.

Main Contributions

� State reconstruction procedures are introduced for reconstructing the numbers
of moles of unmeasured species in the absence of a kinetic model.

� State estimators for chemical reaction systems in the presence of shape con-
straints are introduced.

� The formulation in terms of vessel extents leads to better state estimates than
the formulation in terms of numbers of moles due to additional shape con-
straints.

� A procedure for identifying measurement-based constraints using the identified
model and measurements is explained.
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Figure 1.5 Schematic diagram illustrating the integration of shape constraints to the state
estimation problem.

Chapter 7: Conclusion Finally, Chapter 7 summarizes the main contributions of
this thesis and its results, and discusses some future perspectives.

For pedagogical reasons, the data reconciliation and sequential model identification
procedure for heterogeneous reaction systems are presented in Appendix A and B.
Appendix C extends the vessel extent representation of a chemical reaction system to
reaction systems with instantaneous equilibria. In Appendix D, we discuss a method for
using the vessel extents representation for building calibration models of spectroscopic
data.





Chapter 2

Material and Energy Balances

This chapter introduces the material and energy balance equations of homogeneous and
heterogeneous chemical reaction systems. Section 2.1.1 introduces some basic definitions
and concepts required for writing the first-principles models of homogeneous reaction
systems. Section 2.1.2 derives the mole balance equations for a homogeneous reaction
system in a generic open reactor, a semi-batch reactor and a batch reactor. The concept
of system invariants and a procedure for deriving these invariant relationships from
material balance equations are proposed in Section 2.1.3. The generic heat balance
equations for a reactor and a heating/cooling jacket are derived in Section 2.1.4 along
with the combined material and energy balance equations. The invariant relationships
are also derived for the combined material and energy balance equations.

Section 2.2 extends the material balance equations introduced for a homogeneous reac-
tion system to a multi-phase heterogeneous reaction system. The mole balance equa-
tions are written for a fluid-fluid reaction system with steady-state mass transfer. The
system invariant relationships for a heterogeneous reaction system are also reported.

2.1 Homogeneous Reaction Systems

2.1.1 Preliminaries

Consider a homogeneous chemical system with S species living in the set S, composed
of E chemical elements living in the set E . Let αse denote the number of elements
of type e present in species s, then the atomic matrix A of dimension S × E can be
constructed as:

A =

⎡
⎢⎢⎣
α11 . . . α1E

...
...

...
αS1 . . . αSE

⎤
⎥⎥⎦

Let the system consist of R chemical reactions represented via the following reaction
network:

S∑
j=1

β−
ij Sj →

S∑
j=1

β+
ij Sj , with β+

ij , β
−
ij ≥ 0, ∀i = 1, · · ·R, (2.1)

13
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where β+
ij and β−

ij are the stoichiometric numbers for the jth species involved in the ith
reaction. The net amount of the jth species involved in ith reaction can be described
by its stoichiometric coefficient νij , defined as:

νij = β+
ij − β−

ij . (2.2)

The stoichiometric matrix N of dimension R × S containing the stoichiometric coeffi-
cients of all the R reactions is defined as:

N =

⎡
⎢⎢⎣
ν11 . . . ν1S
...

...
...

νR1 . . . νRS

⎤
⎥⎥⎦

The concepts of atomic and stoichiometric matrices are illustrated in Example 2.1.

Reversible reactions: In some cases, the products are reconverted to the reactants,
i.e. the reverse reaction is significant as well. The reaction network for reversible
reactions are denoted:

S∑
j=1

β−
ij Sj �

S∑
j=1

β+
ij Sj where β+

ij , β
−
ij ≥ 0. (2.3)

In such cases, in order to maintain consistency with the description of irreversible reac-
tions, the reversible reactions must be encoded as two irreversible reactions [28].

S∑
j=1

β−
ij Sj →

S∑
j=1

β+
ij Sj where β+

ij , β
−
ij ≥ 0

S∑
j=1

β+
ij Sj →

S∑
j=1

β−
ij Sj

Therefore, the reversible reaction is represented by two rows in the stoichiometric matrix
N, leading to a linearly dependent stoichiometric matrix, that is, rank(N) < R. Am-
rhein [2] has developed a procedure for converting the dependent stoichiometric matrix
into a linearly independent stoichiometric matrix based on the concept of independent
reactions, and net forward reactions.
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Example 2.1 (Hydrolysis of Sucrose)

Consider the hydrolysis of sucrose to glucose and fructose,

C12H22O11 +H2O → 2C6H12O6

For this reaction system, the set of elements is E = {C,H,O}, while the set of
species is S = {C12H22O11, H2O,C6H12O6}. The atomic matrix A is then given
by:

A =

⎡
⎢⎣12 22 11

0 2 1

6 12 6

⎤
⎥⎦

The stoichiometric numbers of the three species are β−
1 = {1, 1, 0} and β+

1 =
{0, 0, 2}. The stoichiometric coefficients of the three species involved in this reaction
can be written as:

νC12H22O11
= 0− 1 = −1

νH2O = 0− 1 = −1

νC6H12O6
= 2− 0 = 2

The stoichiometric matrix N can then be written as:

N =
[
−1 −1 2

]

Definition 2.1 (Independent reactions)
The R reactions are said to be independent if (i) the rows of N are linearly independent,
i.e., rank (N) = R, and (ii) there exists some finite time interval for which the reaction
rate profiles r(t) are linearly independent, i.e., βTr(t) = 0, ∀t ∈ [t0, t1] ⇔ β = 0R.

The concept of independent reactions is illustrated in Example 2.2.
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Example 2.2 (Ethanolysis of Phthalyl Chloride)

In this reaction system, phthalyl chloride (A) and ethanol (B) react to form phthalyl
chloride monoethyl ester (C), phthalic diethyl ester (E) and hydrochloric acid (D).
Ethanol and hydrochloric acid also react reversibly to form ethyl chloride (F) and
water (G):

R1: A + B → C + D
R2: B + C → E + D
R3: B + D � F + G

For this reaction system, the stoichiometric matrix N based on [2] is written as:

N =

⎡
⎢⎣−1 −1 1 1 0 0 0

0 −1 −1 1 1 0 0

0 −1 0 −1 0 1 1

⎤
⎥⎦

Throughout this thesis, and without loss of generality, all the R reactions will be as-
sumed to be independent.

Relationship between number of species and number of reactions

For a given reaction system with S species and R independent reactions, chemical
elements are transferred from one species to another but are conserved [5],

NA = 0R×E . (2.4)

Based on the rank-nullity theorem [74],

rank(N) + rank(A) = S,

which leads to the following relationship for the number of independent reactions for a
given set of species S:

R = rank(N) = S − rank(A). (2.5)

Since rank(A) ≥ 1, the maximum number of independent reactions possible in a chem-
ical reaction system, Rmax, is always strictly less than the number of species, that is,
Rmax < S.
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Example 2.1 (Hydrolysis of Sucrose cont’d..)

Consider the hydrolysis of sucrose to glucose and fructose,

C12H22O11 +H2O → 2C6H12O6

This reaction has three species S = {C12H22O11, H2O,C6H12O6} and the atomic
matrix:

A =

⎡
⎢⎣12 22 11

0 2 1

6 12 6

⎤
⎥⎦

The rank of the atomic matrix A is 2. This indicates that this reaction has at most
S − rank(A) = 3 - 2 = 1 independent reaction.

Inlet streams

Let the reaction system consists of p inlet streams that are fed into the reaction system
with mass flowrates uin. The matrix Win of dimension S × p is the inlet composition
matrix.

Definition 2.2 (Independent inlets)
The p inlet streams are said to be independent if (i) the columns of Win are linearly
independent, i.e., rank (Win) = p, and (ii) there exists some finite time interval for
which the inlet mass flowrate profiles uin(t) are linearly independent, i.e., βTuin(t) = 0,
∀t ∈ [t0, t1] ⇔ β = 0p.

Throughout this thesis, and without loss of generality, it is assumed that the p inlet
streams are independent.

2.1.2 Material balance equations

The mole balance equations for a homogeneous reaction system involving S species, R
reactions, p inlet streams, and one outlet stream can be written as follows:

ṅ(t) = NTrv(t) +Win uin(t) − ω(t)n(t), n(0) = n0, (2.6)

where n(t) is the S-dimensional vector of numbers of moles, N denotes the R × S
stoichiometric matrix, rv(t) := V (t) r(t) is the R-dimensional vector of reaction rates
expressed in moles

time and r the corresponding vector of reaction rates, with V the vol-
ume, Win = M−1

w W̌in is the S × p matrix of inlet compositions, with Mw the S-
dimensional diagonal matrix of molecular weights and W̌in = [w̌1

in
· · · w̌p

in
] with w̌j

in
the

S-dimensional vector of weight fractions of the jth inlet flow, uin is the p-dimensional
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mass flowrate, ω := uout(t)
m(t) is the inverse residence time with the mass m and the out-

let mass flowrate uout, and n0 is the S-dimensional vector of initial conditions. Note
that, since the reaction rates are modeled as unknown time signals rv(t), the mole
balance equations (2.6) hold independently of the operating conditions. The reaction
rates rv(t) should formally be formulated as functions of the numbers of moles, namely,
rv(t) := V (t)ϕn(n(t),θ). The task of model identification consists in identifying these
functions and their corresponding parameters θ from experimental data. If necessary,
the concentrations c(t) can be constructed from the numbers of moles using the rela-
tionship c(t) = n(t)

V (t) .

The flowrates uin(t) and uout(t) are considered as independent (input) variables in Eq.
(2.6). The way these variables are adjusted depends on the particular experimental
situation, for example, some elements of uin are adjusted to control the temperature in
a semi-batch reactor, or uout is a function of the inlet flows in a constant-mass reactor.
The continuity equation (or total mass balance) is given by:

ṁ(t) = 1T

puin(t)− uout(t), m(0) = m0, (2.7)

where 1p is a p-dimensional vector of ones and m0 the initial mass. Note that the mass
can also be computed from the numbers of moles as

m(t) = 1T

S Mw n(t), (2.8)

which indicates that Eqs. (2.6) and (2.7) are linearly dependent. Hence, the continuity
equation is not needed per se, but it is often useful to express the mass as a function
of the flows rather than the numbers of moles. The material balance equations for a
homogeneous reaction system is illustrated in Example. 2.3.

Semi-batch reactor

If the reaction system is operated in a semi-batch reactor with p inlets, Eq. (2.6) reduces
to

ṅ(t) = NTrv(t) +Win uin(t), n(0) = n0. (2.9)

Batch reactor

Similarly for a batch reactor, Eq. (2.6) reduces to:

ṅ(t) = NTrv(t), n(0) = n0. (2.10)
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Example 2.3 (Acetoacetylation of Pyrrole)

This reaction system consists of seven species involved in four independent reac-
tions. The primary reaction (R1) between pyrrole (A) and diketene (B) produces
the desired 2-acetoacetyl pyrrole (C). The side reactions includes the conversion
(R2) of diketene to dehydroacetic acid (D), the oligomerization (R3) of diketene
to oligomers (E) and the reaction (R4) of diketene and acetoacetyl pyrrole giving
a by-product (F). Reactions R1, R2 and R4 are catalyzed by pyridine (K). The
reaction network for this system can be represented as:

R1: A + B → C
R2: B + B → D
R3: B → E
R4: B + C → F

The stoichiometric matrix N for this reaction system is given by:

N =

⎡
⎢⎢⎢⎢⎣
−1 −1 1 0 0 0 0

0 −2 0 1 0 0 0

0 −1 0 0 1 0 0

0 −1 −1 0 0 1 0

⎤
⎥⎥⎥⎥⎦

Consider the pyrrole system in a reactor with a single inlet and an outlet stream.
The inlet stream feeds species A, B and K, and the species A, B and K are present
initially. The material balance equations for all the seven species can be written
as:

ṅA(t) = −V (t)r1(t) + win,Auin(t)− ω(t)nA(t)

ṅB(t) = −V (t)r1(t)− 2V (t)r2(t)− V (t)r3(t)− V (t)r4(t) + win,Buin(t)− ω(t)nB(t)

ṅC(t) = V (t)r1(t)− V (t)r4(t)− ω(t)nC(t)

ṅD(t) = V (t)r2(t)− ω(t)nD(t)

ṅE(t) = V (t)r3(t)− ω(t)nE(t)

ṅF (t) = V (t)r4(t)− ω(t)nF (t)

ṅK(t) = win,Kuin(t)− ω(t)nK(t)

The vector of initial conditions is given by, n0 = [nA0, nB0, 0, 0, 0, 0, nK0]
T

The S-dimensional representation of the system given in Eq. (2.6) may contain redun-
dant states. We define the dimensionality of the reaction system d as the number of
rate processes affecting the reaction system, that is,
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d = # of endogenous inputs (reactions) + # of exogenous inputs (inlets and outlet)
(2.11)

The dimensionality of the reaction system under different operating conditions is listed
in Table 2.1

Table 2.1 Material balance equations for homogeneous reaction system

Reactor Type Material Balance Equation Dimensionality, d

Open with in-
lets and outlet

ṅ(t) = NT rv(t) +Win uin(t)− ω(t)n(t) R+ p+ 1

Semi-Batch ṅ(t) = NT rv(t) +Win uin(t) R+ p

Batch ṅ(t) = NT rv(t) R

2.1.3 Invariant states

The concept of invariant relationships for homogeneous chemical reaction systems is
presented next. We start by presenting the definition of an invariant relationship.

Definition 2.3 (Invariant relationship)
Any (linear or nonlinear) combination of the state variables n(t) is said to be an invariant
relationship if its value remains constant over time.

This definition clearly shows that the invariant relationships constitute algebraic (i.e.
static) relationships between the various states of the system. These invariant rela-
tionships have to be satisfied at all times, and therefore represent physical constraints
regulating the evolution of the reaction system. The number of invariant relationships
depends on the reactor type. Denoting their number by q, the invariant relationships
can be expressed as:

I
(
n(t)

)
= 0q, (2.12)

with I(·) = [I1(·), . . . , Iq(·)]T and Ii(·) the ith invariant relationship of the system.

2.1.3.1 Invariant States – Reactors with Outlet

Procedure: To construct the invariants of a homogeneous reaction system with an
outlet flow, construct the S × d matrix B by concatenating the structural matrices
of the system (N and Win) along with the vector of initial conditions n0, that is,
B = [NT Win n0]. The matrix B is assumed to be of rank d = R+ p+1, which implies
that S ≥ d. Compute the S × q matrix P such that the matrix lies in the null space of
BT, that is,
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BT P = 0d×q,

with q := S − d = S − R − p− 1 according to the rank nullity theorem [74]. Compute
the q invariant relationships by pre-multiplying Eq. (2.6) with PT:

PT n(t) = 0q. (2.13)

Remark 2.1
For a CSTR with constant volume and constant density, the dimensionality d is reduced
to R + p and the number of invariants is increased to q = S − d = S − R − p. The
additional invariant for a CSTR can be derived from the conservation of mass, namely,
1T

SMwn0 − 1T

SMwn(t) = 0.

Example 2.3 (Acetoacetylation of Pyrrole cont’d..)

Consider the pyrrole system in a CSTR with an inlet stream containing species A,
B and K at the constant flow rate 2 g min−1. The reactor also has an outlet stream
with the constant flow rate 2 g min−1. The volume and the density are constant
and therefore the mass remains constant. The S × p inlet composition matrix Win

is given by:
Win =

[
0.0060, 0.0064, 0, 0, 0, 0, 0.0008

]
T

The initial numbers of moles are n0 = [2, 5, 0, 0, 0, 0, 0.5]. The dimensionality of this
system is d = R+p = 4+1 = 5 and the number of invariants, q = S−d = 7−5 = 2.
The first invariant relationship is obtained according to the procedure described in
Section 2.1.3.1:

nK(t)− 0.0465nA(t)− 0.0814nB(t)− 0.1279nC(t)− 0.1628nD(t)− 0.0814nE(t)− 0.2093nF (t) = 0

In addition, as this reactor is a CSTR with a constant density, the second invariant
relationship, obtained using the conservation of mass, is:

1T
SMwn0 − 1T

SMwn(t) = 0.

Remark 2.2
If S ≤ d, the reaction system does not have any invariant relationships that can be
constructed from the current form of B. Section 2.1.3.3 gives a procedure for extracting
invariants that uses flowrate information and a different definition of B.
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2.1.3.2 Invariant States – Reactors without Outlet

Procedure: The invariants of a homogeneous reaction system without outlet flow are
obtained as follows: Construct the S × d matrix B by concatenating the structural
matrices of the system. For semi-batch conditions, B = [NT Win] with the rank d =
R + p, whereas for batch conditions, B = NT with the rank of d = R. Compute the
S × q matrix P such that the matrix lies in the null space of BT,

BT P = 0d×q,

that is, with q = S−R−p for semi-batch conditions and q = S−R for batch conditions.
Compute the q invariant relationships as:

PT (n(t)− n0) = 0q. (2.14)

Example 2.3 (Acetoacetylation of Pyrrole cont’d..)

Consider the acetoacetylation of pyrrole in a batch reactor with the initial con-
ditions, n0 = [2, 5, 0, 0, 0, 0, 0.5]. The dimensionality for this operating mode is
d = R = 4 and the number of invariant relationships q = S − d = 3. These
relationships can be obtained using the procedure described in Section 2.1.3.2:

nB(t)− 2nA(t)− nC(t) + 2nD(t) + nE(t)− (nB0 − 2nA0 − nC0 + 2nD0 + nE0) = 0

nA(t) + nC(t) + nF (t)− (nA0 + nC0 + nF0) = 0

nK(t)− nK0 = 0

2.1.3.3 Invariant States using Flowrate Information

For semi-batch and open conditions, the q = S−R−p and q = S−R−p−1 invariants,
respectively, can be increased to q = S −R invariants if the flowrates uin(t) and uout(t)
are known. The procedure for computing this reduced number of invariants is as follows:

1. Write the numbers of moles in the reaction-variant form [63]:

nRV (t) := n(t)− n0 −
∫ t

0
Winuin(t) dt+

∫ t

0
ω(t)n(t) dt. (2.15)

2. Write the material balance equation in terms of the reaction-variant form:

ṅRV (t) = NT rv(t). (2.16)

3. Construct the S ×R matrix B = NT with d = R.
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Chemical Reaction 

System 

Structural Matrices

N, Win

Outlet

Stream? 
Yes

No

Construct

B = [NT  Win]

S x (R + p) 

Construct

B = [NT  Win  n
0
]

S x (R + p + 1) 

S > R + p S > R + p + 1

No

Invariant 

Relationships

No

Compute

BT P = 0S-R-p

Compute

BT P = 0S-R-p-1

PT (n(t) - n
0
)= 0S-R-p PT n(t) = 0S-R-p-1

n
0
 

Known

Flowrates? 

No

Yes

No

Construct

B = [NT]

S x R 

Compute

nRV(t)

 

Compute

BT P = 0S-R

PT nRV(t) = 0S-R

Construct

B = [NT]

S x R 

Compute

nRV(t)

 

Compute

BT P = 0S-R

PT nRV(t) = 0S-R

n
0
 

n
0
 

n
0
 

Known 

Flowrates? 
Yes No

Figure 2.1 Schematic procedure for computing the invariant relationships of a chemical reac-
tion system.

4. Compute the S× q matrix P such that the matrix lies in the null space BT, that is,

BT P = 0d×q,

with q := S −R.

5. Compute the q invariants by pre-multiplying Eq. (2.16) with PT:

PT nRV (t) = 0q. (2.17)

Remark 2.3
The use of Eq. (2.15) involves integrating and interpolating noisy measured numbers
of moles.
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Fig. 2.1 summarizes the procedure for computing invariant relationships for reaction
systems with and without an outlet stream.

2.1.4 Heat balance equations

Consider a homogeneous reaction system in an open non-isothermal reactor with a
heating/cooling jacket. The heat balance around the reactor can be written as [2]:

Q̇r(t) = (−ΔHr)
T rv(t) + qex(t) + ŤT

in uin(t)− ω(t) Qr(t), Qr(0) = Qr0, (2.18)

where Qr = mcp Tr is the heat in the reactor, with Tr the reactor temperature and cp
the specific heat capacity of the reaction mixture, qex is the heat flow from the jacket to
the reaction mixture, Ťin the p-dimensional vector of specific heats of the inlet streams
with Ťin,j = cp,in,j Tin,j and Tin,j the temperature of the jth inlet, and ΔHr the R-
dimensional vector of reaction enthalpies. Obviously, the heat-flow term qex(t) depends
on the reactor temperature, for example qex(t) = UA

(
Tja(t) − Tr(t)

)
with the heat-

transfer coefficient UA and the jacket temperature Tja(t), but this dependency is not
included in Eq. (2.18). For simplicity, it is assumed that the inlet specific heat vector
Ťin is constant.

The heat balance for the jacket can be written as:

Q̇ja(t) = −qex(t) + q̌ja,in(t), Qja(0) = Qja0, (2.19)

where Qja = mjacp,jaTja is the heat in the jacket, with cp,ja the specific heat capacity
of the heating/cooling fluid, q̌ja,in = uja(t)cp,ja(Tja,in−Tja) is the net heat flow via the
inlet flow of the heating/cooling fluid, uja the mass flow rate in the jacket and Tja,in

the inlet temperature in the jacket.

Combined material and energy balances

The material balance equations (2.6) and the heat-balance equation inside the reactor
(2.18) can be written in a compact form using the (S + 1)-dimensional state vector:

ż(t) = A rv(t) + b qex(t) + C uin(t)− ω(t) z(t), z(0) = z0, (2.20)

where z(t) =

[
n(t)

Qr(t)

]
, A =

[
NT

(−ΔHr)T

]
, b =

[
0S

1

]
, C =

[
Win

ŤT
in

]
and z0 =

[
n0

Qr0

]
.

System invariants for combined material and energy balance equations

The procedure for deriving the system invariants can be extended to include the heat-
balance equations along with the material balance equations. The procedure is the
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following: Construct a matrix B by concatenating the terms A, b, C and z0 as B =
[A b C z0] of dimension (S + 1)× (R+ p+ 2). Compute an (S + 1)× q matrix P such
that this matrix lies in the null space of the matrix BT,

BT P = 0d×q

where q = (S + 1)− (R + p+ 2). Pre-multiplying Eq. (2.20) by the matrix PT results
in the q invariant relationships for the combined material and energy balances of a
homogeneous reaction system in an open reactor:

PT z(t) = 0q (2.21)

2.2 Heterogeneous Reaction Systems

Consider a two-phase chemical reaction system with phases G and L. The system has S
species living in the S-dimensional set S. Among these S species, Sf species are present
in phase F and constitute the set Sf , with F ∈ {G, L}, f ∈ {g, l} and S = Sg + Sl.
These Sf species are involved in Rf independent reactions in phase F. There are pf
independent inlet and one outlet stream in each phase.

2.2.1 Material balance equations

Under the assumption that the reactions are taking place only in the bulk of each phase
and that the two phases are connected by pm steady-state mass transfers, the differential
mole balance equations for phase F, can be written as:

ṅf (t) = NT

f rv,f (t) +Wm,f ζf (t) +Win,f uin,f (t)− ωf (t)nf (t), nf (0) = nf0 ,(2.22)

where nf is the Sf -dimensional vector of numbers of moles, Nf is the Rf × Sf stoi-
chiometric matrix, rv,f (t) := Vf (t) rf (t) is the Rf -dimensional vector of reaction rates,
Win,f is the Sf × pf inlet matrix expressing the composition of the inlets to phase F,
uin,f is the pf -dimensional vector of inlet mass flow rates to phase F, ωf (t) :=

uout,f (t)
mf (t)

is the inverse residence time, with uout,f the outlet mass flowrate and mf the mass
of phase F, and nf0 is the vector of initial numbers of moles. The pm mass transfers
are treated as pseudo inlets with unknown flowrates, where Wm,f = M−1

w,f Ěm,f is the

Sf × pm mass transfer matrix for phase F, Ěm,f =
[
ě1

m,f · · · ěpm

m,b

]
with ěj

m,f being the
Sf -dimensional vector with the elements corresponding to the jth transferring species
equal to unity and the other elements equal to zero and ζf is the pm-dimensional vector
of mass-transfer rates expressed in mass

time units. The mass-transfer rate ζf,j of the jth
species is positive if the jth species is added into phase F due to mass transfer and it is
negative if that species leaves the phase due to mass transfer. This implies that ζg =
−ζl. The mass in phase F can be calculated from the numbers of moles in that phase as
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mf (t) = 1T

s Mw,f nf (t). Alternatively, the mass can be computed using the continuity
equation:

ṁf (t) = 1T

pm
ζf (t) + 1T

pf
uin,f (t)− uout,f (t), mf (0) = mf0. (2.23)

Semi-batch reactor

If the heterogeneous reaction system is operated in a semi-batch reactor, the material
balance equation reduces to:

ṅf (t) = NT

f rv,f (t) +Wm,f ζf (t) +Win,f uin,f (t), nf (0) = nf0. (2.24)

Batch reactor

The material balance equation for the reaction system operated in a batch reactor can
be written as:

ṅf (t) = NT

f rv,f (t) +Wm,f ζf (t), nf (0) = nf0. (2.25)

2.2.2 Invariant states

Similar to the procedure for homogeneous reaction systems, the invariant relationships
can be derived for each phase F of a heterogeneous reaction system. The dimensionality,
df and the qf = Sf − df invariant relationships for phase F of a heterogeneous reaction
system operated in different operating modes are shown in Table 2.2.

Table 2.2 Algebraic constraints under different operating modes for phase F of a heterogeneous reaction
system.

Reactor df Constraint derivation Invariants

Open with inlets
and outlet

Rf + pm + pf + 1 PT
f [NT

f Wm,f Win,f nf0] = 0qf×df PT
f nf (t) = 0qf

Semi-batch Rf + pm + pf PT
f [NT

f Wm,f Win,f ] = 0qf×df PT
f (nf (t)− nf0) = 0qf

Batch Rf + pm PT
f [NT

f Wm,f ] = 0qf×df PT
f (nf (t)− nf0) = 0qf
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Example 2.4 (Chlorination of Butanoic Acid)

The chlorination of butanoic acid (BA) is a gas-liquid reaction system involving
two reactions in the liquid phase that consume chlorine (Cl2) dissolved from the
gas phase. The first reaction produces α-mono-chloro-butanoic acid (MBA) and
hydrochloric acid (HCl), while the second reaction produces the side product α-di-
chloro-butanoic acid (DBA) and HCl. Due to its high volatility, HCl can be found
in both phases. Hence, this reaction system has two species in the gas phase {Cl2,
HCl} and five species in the liquid phase {Cl2, BA, MBA, HCl, DBA}. Ethanol is
generally used as solvent for the liquid phase. The reaction can be represented by
the following scheme:

R1: BA (l) + Cl2 (g) → MBA (l) + HCl (g)
R2: BA (l) + 2 Cl2 (g) → DBA (l) + 2 HCl (g) .

Assume that the reaction system is operated in a semi-batch reactor, with Cl2 fed
in the gas phase and BA present initially in the liquid phase. The material balance
equation for phase G can be written as:

ṅCl2,g(t) = ζCl2,g(t) + win,Cl2,guin,g(t) nCl2,g(0) = 0

ṅHCl,g(t) = ζHCl,g(t) nHCl,g(0) = 0

For gas phase G, the mass transfer rate ζCl2,g(t) is negative, while ζHCl,g(t) is
positive. The material balance equations for phase L can be written as:

ṅBA,l(t) = −Vl(t)rl,1(t)− Vl(t)rl,2(t) nBA,l(0) = nBA0

ṅCl2,l(t) = −Vl(t)rl,1(t)− 2Vl(t)rl,2(t) + ζCl2,l(t) nCl2,l(0) = 0

ṅMBA,l(t) = Vl(t)rl,1(t) nMBA,l(0) = 0

ṅHCl,l(t) = Vl(t)rl,1(t) + 2Vl(t)rl,2(t) + ζHCl,l(t) nHCl,l(0) = 0

ṅDBA,l(t) = Vl(t)rl,2(t) nDBA,l(0) = 0

For phase L, the mass transfer rate ζCl2,l(t) is positive, while ζHCl,l(t) is negative.
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2.3 Summary

This chapter has derived a relationship between the number of species and the max-
imum number of independent reactions for a chemical reaction system. The material
and energy balance equations for a homogeneous chemical reaction system in a generic
open reactor with inlet and outlet streams have also been explained. This chapter has
introduced the concept of invariant relationships, and a procedure for deriving these
invariant relationships for a homogeneous reaction system has been developed. The
material balance equations for a multi-phase heterogeneous reaction system have been
explained. Finally, the invariant relationships in each phase of the heterogeneous reac-
tion systems have been derived.



Chapter 3

Vessel Extents Representation

The material balance equations in terms of the numbers of moles introduced in the
previous chapter are functions of all the rate processes (reactions, mass transfers, inlets
and outlets). The presence of all these phenomena, and in particular their interactions,
complicates the analysis of chemical reactions. The analysis would become more effi-
cient if the effects of these various phenomena could somehow be separated and each
phenomenon is investigated individually.

Sections 3.1.1 and 3.1.2 briefly summarize the two-way and three-way decoupled repre-
sentations of chemical reaction system in terms of variant and invariant states. Section
3.1.3 introduces the representation in terms of vessel extents for a homogeneous reaction
system. A linear transformation that brings the representation of a homogeneous reac-
tion system from numbers of moles to vessel extents is also introduced. The conditions
under which the transformation between these representations are possible is explained
in detail. The concept of vessel extents is then extended to reaction systems where
the heat transfer between the reactor and its jacket is also modeled. This requires the
introduction of an additional vessel extent for heat exchange. Section 3.2.1 extends the
representation in terms of vessel extents for a heterogeneous reaction system.

3.1 Homogeneous Reaction Systems

In this section, the formal definitions of reaction variants and reaction invariants are
introduced. The various decoupled representations for chemical reaction systems pre-
viously introduced in the literature are briefly discussed in Section 3.1.1 and Section
3.1.2. In Section 3.1.3, we introduce a representation of a chemical reaction system in
terms of vessel extents.

Definition 3.1 (Reaction invariants)
State variables that are not affected by reactions are termed reaction invariants.

Definition 3.2 (Reaction variants)
All other state variables that are affected by chemical reactions are called reaction
variants.

29
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3.1.1 Two-way representation of chemical reaction systems

For a homogeneous reaction system, Asbjørnsen et al. [7, 8, 33] introduced a represen-
tation in terms of the reaction-variant states yr(t) and reaction-invariant states yiv(t).
The resulting dynamical system contains the R state variables yr that depend on the
reactions and the q = S −R state variables yiv that do not:

ẏr(t) = rv(t) +NT+

Win uin(t) − ω(t)yr(t), yr(0) = NT+

n0,

ẏiv(t) = P+Win uin(t) − ω(t)yiv(t), yiv(0) = P+ n0,
(3.1)

where the matrix P of dimension S × q describes the null space of the stoichiometric
matrix, that is, NP = 0R×q. More specifically, one sees that the reaction variants are
decoupled with respect to the reaction rates, that is, yr,i(t) depends on rv,i(t), but not
on the other reaction rates:

ẏr,i(t) = rv,i(t) + (NT+

Win)i uin(t) − ω(t) yr,i(t), yr,i(0) = (NT+

)i n0, (3.2)

where (·)i represents the ith row of the matrix (·). Let y(t) represent the concatenated
matrix

[
yr(t)
yiv(t)

]
.

Transformation from y to n: The transformation from yr(t) and yiv(t) to the num-
ber of moles can be performed using the relationship:

n(t) = NT yr(t) +PT yiv(t). (3.3)

Transformation from n to y: If rank(N) = R, Asbjørnsen et al. [7, 8, 33] intro-
duced a linear transformation for converting the numbers of moles to the reaction vari-
ant and reaction invariant states. This transformation Tasb involves the stoichiometric
matrix N and its null space P, that is :[

yr(t)

yiv(t)

]
=

[
R

Q

]
n(t) := Tasb n(t), Tasb =

[
NT P

]−1
. (3.4)

It follows from NP = 0R×q and Tasb Tasb−1 =

[
R

Q

] [
NT P

]
=

[
IR 0

0 Iq

]
that R = NT+

and Q = P+, where NT+ and P+ represent the Moore-Penrose pseudo-inverse of NTand
P, respectively.

Remark 3.1
Since S > R from Eq. (2.5), the rank of the R × S matrix N is R. This implies that
the transformation Tasb from n(t) to y(t) is always possible.

Remark 3.2
The quantities yr are reaction and flow variants and not solely reaction variants. yiv

are reaction invariants but flow variants, hence not truly invariants. Note that yr are
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pure reaction variants and yiv are true system invariants only for batch reactors, i.e.,
with uin(t) = 0p and ω(t) = 0, for which one can write:

ẏr(t) = rv(t), yr(0) = NT+

n0,

yiv(t) = P+ n0.
(3.5)

Remark 3.3
The quantities yr and yiv are therefore abstract mathematical quantities with no phys-
ical meaning.

3.1.2 Three-way representation of chemical reaction systems

Amrhein et al. [70] introduced a representation of homogeneous reaction systems in
terms of three quantities (i) reaction variants, (ii) flow variants, and (iii) reaction and
inlet-flow invariants. In this representation, the reaction system contains R state vari-
ables that depend on reactions, p state variables that depend on the inlet flows and
S −R− p states that do not depend on reactions and inlet flows:

ẇr(t) = rv(t)− ω(t)wr(t), wr(0) = STn0,

ẇin(t) = uin(t)− ω(t)win(t), win(0) = MTn0,

ẇiv(t) = −ω(t)wiv(t) wiv(0), = QT n0,

(3.6)

where the matrices S, M and Q are of dimensions S × R, S × p and S × (S − R − p)

respectively. Let w(t) represent the concatenated matrix
[

wr(t)
win(t)
wiv(t)

]
.

Transformation from w to n: The number of moles n(t) can be reconstructed from
wr(t), win(t) and wiv(t) using:

n(t) = NT wr(t) +Win win(t) +Qwiv(t). (3.7)

Transformation from n to w: If rank
[
NT Win

]
= R+ p, the linear transformation

Tamr transforms n(t) to w(t) and can be represented as:⎡
⎢⎣wr(t)

win(t)

wiv(t)

⎤
⎥⎦ =

⎡
⎢⎣ ST

MT

QT

⎤
⎥⎦n(t) := Tamr n(t), Tamr =

[
NT Win P

]−1
, (3.8)

where the matrix P of dimension q = S −R− p describes the null space of the matrix[
NT Win

]
, that is, PT [NT Win

]
= 0q×R+p.
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Remark 3.4
Since the matrix

[
NT Win

]
has R + p independent columns, its rank is equal to

min(S,R + p). If S < R + p, the transformation Tamr cannot be applied, i.e., it is
not possible to transform n(t) to w(t). The transformation from w(t) to n(t) using Eq.
(3.7) is however always possible.

Remark 3.5
The transformed variable introduced in this section do not have a physical meaning.
Furthermore, the transformed variables become pure reaction variants even for a semi-
batch reactor when ω(t) = 0,

ẇr(t) = rv(t), wr(0) = STn0,

ẇin(t) = uin(t), win(0) = MTn0,

wiv(t) = QT n0.

(3.9)

3.1.3 Vessel extents representation

In this section, we introduce an alternative representation of homogeneous reaction
systems in terms of vessel extents. The following definitions of vessel extents are adapted
from the work of Bhatt [13]:

Definition 3.3 (Vessel Extent of ith Reaction, xr,i)
The vessel extent of the ith reaction xr,i(t) is defined as the numbers of moles that is
produced by the ith reaction that are still inside the reactor at time t. Hence, one can
write:

ẋr,i(t) = rv,i(t)− ω(t)xr,i(t), xr,i(0) = 0.

The term −ω(t)xr,i(t) accounts for the material produced by the ith reaction that is
removed from the reactor by the outlet stream. Note that, in the absence of an outlet
stream, the definition of a vessel extent reduces to the batch extent of reaction ξr,i.

ξ̇r,i(t) = rv,i(t), ξr,i(0) = 0.

Definition 3.4 (Vessel Extent of jth Inlet, xin,j)
The vessel extent of jth inlet xin,j(t) is defined as the mass added by the jth inlet
stream that is still inside the reactor at time t. Hence,

ẋin,j(t) = uin,j(t)− ω(t)xin,j(t), xin,j(0) = 0.

The term −ω(t)xin,j(t) accounts for the material added by the jth inlet that has left
the reactor by the outlet stream.

Definition 3.5 (Vessel Extent of Initial Condition, xic)
The vessel extent of initial conditions xic(t) is the fraction of the initial conditions that
is still inside the reactor at time t. Hence,
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ẋic(t) = −ω(t)xic(t), xic(0) = 1.

The chemical reaction system can then be represented in terms of vessel extents as:

ẋr,i(t) = rv,i(t) − ω(t)xr,i(t), xr,i(0) = 0, i = 1, · · · , R, (3.10a)
ẋin,j(t) = uin,j(t) − ω(t)xin,j(t), xin,j(0) = 0, j = 1, · · · , p, (3.10b)
ẋic(t) = −ω(t)xic(t), xic(0) = 1, (3.10c)
xiv(t) = 0q , (3.10d)

where xr,i(t) is the extent of the ith reaction at time t expressed in mol, xin,j(t) the extent
of the jth inlet flow at time t expressed in g, xic(t) is the extent of initial conditions
and xiv(t) the vector of invariants at time t. Let x(t) represent the concatenated vector⎡
⎣ xr(t)

xin(t)
xic(t)
xiv(t)

⎤
⎦.

Transformation from x to n: The numbers of moles n(t) can be obtained from x(t)
as:

n(t) = NTxr(t) +Winxin(t) + n0 xic(t). (3.11)

Transformation from n to x: If rank ([NT Win n0]) = d, then the linear transfor-
mation T transforms n(t) to x(t). The transformation can be represented as:⎡

⎢⎢⎢⎢⎣
xr(t)

xin(t)

xic(t)

xiv(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
R

F

iT

Q

⎤
⎥⎥⎥⎥⎦ n(t) := T n(t), (3.12)

and brings the dynamic model (2.6) to the following decoupled form:

ẋr(t) = RNT︸ ︷︷ ︸
IR

rv(t) +RWin︸ ︷︷ ︸
0R×p

uin(t)− ω(t)xr(t), xr(0) = Rn0︸ ︷︷ ︸
0R

,

ẋin(t) = FNT︸ ︷︷ ︸
0p×R

rv(t) + FWin︸ ︷︷ ︸
Ip

uin(t)− ω(t)xin(t), xin(0) = Fn0︸︷︷︸
0p

,

ẋic(t) = iTNT︸ ︷︷ ︸
0T
R

rv(t) + iTWin︸ ︷︷ ︸
0T
p

uin(t)− ω(t)xic(t), xic(0) = iT n0︸︷︷︸
1

,

ẋiv(t) = QNT︸ ︷︷ ︸
0q×R

rv(t) +QWin︸ ︷︷ ︸
0q×p

uin(t)− ω(t)xiv(t), xiv(0) = Qn0︸ ︷︷ ︸
0q

,

(3.13)

where R, F and Q are matrices of dimension R×S, p×S, and q×S, respectively, and
i is a S-dimensional vector, with q = S − d being the number of invariant quantities.
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The linear transformation T is:

T =
[
NT Win n0 P

]−1
, (3.14)

where the matrix P describes the q-dimensional null space of the matrix
[
NT Win n0

]
T.

The transformation T gives the conditions shown under the braces in equation (3.13),
namely: ⎡

⎢⎢⎢⎢⎣
R

F

iT

Q

⎤
⎥⎥⎥⎥⎦
[
NT Win n0 P

]
=

⎡
⎢⎢⎢⎢⎣
IR 0 0 0

0 Ip 0 0

0 0 1 0

0 0 0 Iq

⎤
⎥⎥⎥⎥⎦ . (3.15)

It follows from P being orthogonal to
[
NT Win n0

]
and QP = Iq that Q = P+.

Furthermore, NT R + Win F + n0 i
T + PP+ = IS , where NTR represents the R-

dimensional reaction subspace, WinF the p-dimensional inlet subspace, n0 i
T the one-

dimensional subspace describing the contribution of the initial conditions, and PP+

the q-dimensional invariant subspace as shown in Fig. 3.1. All subspaces add up to the
S-dimensional species space R

S . Note that the invariant subspace is orthogonal to the
other subspaces by construction, while the other subspaces are typically not orthogonal
to each other. An alternative transformation from n(t) to x(t) has been introduced by
Bhatt [13].

invariant subspace    initial condition
 subspace

 reaction  
subspace   inlet  

subspace

n0i
T

PP+

NTR
Win F

1 q = S −R− p− 1

p
R

Figure 3.1 Decomposition of the S-dimensional space of numbers of moles into an R-
dimensional reaction subspace, a p-dimensional inlet subspace, a one-dimensional subspace
describing the contribution of the initial conditions, and a q-dimensional invariant subspace.
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Remark 3.6
If the matrix [NT Win n0] has d independent columns, its rank is equal to min(S, d).
As introduced in the previous chapter, S > R. Hence, to apply the transformation T ,
one must necessarily have S ≥ d.

Example 3.1 (Acetoacetylation of Pyrrole)

Consider the acetoacetylation of pyrrole system with four independent reactions
given in Example 2.3. The reaction system is operated in a reactor with an inlet
stream containing species A, B and K at the constant flow rate 2 g min−1. The
reactor also has an outlet stream with a constant flow rate 1.5 g min−1. The S × p
inlet composition matrix Win is given by:

Win =
[
0.0060, 0.0064, 0, 0, 0, 0, 0.0008

]
T

(3.16)

The initial numbers of moles are n0 = [2, 5, 0, 0, 0, 0, 0.5]. The system representation
in terms of vessel extents for this system can be written as:

ẋr,1(t) = V (t)r1(t)− ω(t)xr,1(t), xr,1(0) = 0,

ẋr,2(t) = V (t)r2(t)− ω(t)xr,2(t), xr,2(0) = 0,

ẋr,3(t) = V (t)r3(t)− ω(t)xr,3(t), xr,3(0) = 0,

ẋr,4(t) = V (t)r4(t)− ω(t)xr,4(t), xr,4(0) = 0,

ẋin(t) = uin(t)− ω(t)xin(t), xin(0) = 0,

ẋic(t) = −ω(t)xic(t), xic(0) = 1,

xiv(t) = 0.

The numbers of moles can be reconstructed using Eq. (3.11). The matrix
[NT Win n0] of dimension (7 × 6) has rank d = R + p + 1 = 6. Therefore,
the transformation matrix T can be used to convert the numbers of moles to vessel
extents.

Next, the representations in terms of extents for three special cases, namely, batch
reactors, semi-batch reactors, and CSTRs are discussed.

3.1.3.1 Batch reactors

The vessel-extent representation for a batch reactor with p = 0 and ω(t) = 0 can be
written as:

ẋr,i(t) = rv,i(t), xr,i(0) = 0, i = 1, · · · , R, (3.17a)
xiv(t) = 0q, (3.17b)

with q = S −R.
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Transformation from x to n: The numbers of moles n(t) can be expressed as:

n(t) = NTxr(t) + n0. (3.18)

Transformation from n to x: For a batch reactor,[
xr(t)

xiv(t)

]
:= T (n(t)− n0), (3.19)

where, T =
[
NT P

]−1 and the matrix P describes the q-dimensional null space of the
matrix

[
NT

]
T.

3.1.3.2 Semi-batch reactors

A semi-batch reactor has no outlet (ω = 0). The representation in terms of vessel
extents becomes:

ẋr,i(t) = rv,i(t), xr,i(0) = 0, i = 1, · · · , R, (3.20a)
ẋin,j(t) = uin,j(t), xin,j(0) = 0, j = 1, · · · , p, (3.20b)
xiv(t) = 0q . (3.20c)

Transformation from x to n: The numbers of moles n(t) can be expressed as:

n(t) = NTxr(t) +Winxin(t) + n0. (3.21)

Transformation from n to x: For a semi-batch reactor,⎡
⎢⎣xr(t)

xin(t)

xiv(t)

⎤
⎥⎦ := T (n(t)− n0), (3.22)

where, T =
[
NT WinP

]−1 and the matrix P describes the q-dimensional null space of
the matrix

[
NT Win

]
T.

3.1.3.3 CSTR

In a CSTR, uout(t) is computed from Eq. (2.7) and m(t) = V0 ρ(t), with V0 the constant
volume, as follows:

uout(t) = 1T

puin(t)− V0 ρ̇(t) . (3.23)

• If the density varies, the system (3.10a)-(3.10d) cannot be simplified and thus holds
with q = S − d.
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• If the density is constant, uout(t) = 1T

puin(t) and thus ω(t) =
1T
puin(t)

m0
. In this case,

xic(t) can be computed algebraically from the states xin(t) as xic(t) = 1 − 1T
p xin(t)

m0
,

with m0 = V0 ρ. This can be shown by differentiating the last expression and writing
ẋin(t) and ẋic(t) using Eqs. (3.10b) and (3.10c). The decoupled system becomes:

ẋr,i(t) = rv,i(t) − ω(t)xr,i(t) xr,i(0) = 0 i = 1, · · · , R (3.24a)
ẋin,j(t) = uin,j(t) − ω(t)xin,j(t) xin,j(0) = 0 j = 1, · · · , p (3.24b)

xic(t) = 1−
1T

pxin(t)

m0
(3.24c)

xiv(t) = 0q . (3.24d)

Hence, the system is of order R+ p with q = S−R− p. The numbers of moles n(t)
can be expressed as:

n(t) = NTxr(t) +
(
Win −

n0 1
T

p

m0

)
xin(t) + n0. (3.25)

Example 3.1 (Acetoacetylation of Pyrrole cont’d..)

Consider the acetoacetylation of pyrrole system introduced in the previous example
but in a CSTR of constant volume and constant density. For this mode of operation,
the representation in terms of vessel extents can be written as:

ẋr,1(t) = V (t)r1(t)− ω(t)xr,1(t), xr,1(0) = 0,

ẋr,2(t) = V (t)r2(t)− ω(t)xr,2(t), xr,2(0) = 0,

ẋr,3(t) = V (t)r3(t)− ω(t)xr,3(t), xr,3(0) = 0,

ẋr,4(t) = V (t)r4(t)− ω(t)xr,4(t), xr,4(0) = 0,

ẋin(t) = uin(t)− ω(t)xin(t), xin(0) = 0,

xic(t) = 1− 1T
p xin(t)

m0
,

xiv(t) = 0.

3.1.4 Vessel extents representation with heat balance

The representation in terms of vessel extents for a system with heat exchange can be
written in terms of five parts, namely, xr(t), xex(t), xin(t) and xic(t) that are associated
with the reactions, the heat exchange, the inlets and the initial conditions, and xiv(t)
that are invariant:
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ẋr(t) = rv(t) − ω(t) xr(t), xr(0) = 0R,

ẋex(t) = qex(t) − ω(t) xex(t), xex(0) = 0,

ẋin(t) = uin(t) − ω(t) xin(t), xin(0) = 0p,

ẋic(t) = −ω(t) xic(t), xic(0) = 1,

xiv(t) = 0q ,

(3.26)

where xex is the extent of heat exchange expressed in kJ. Note that the extents xr, xin

and xic in Eq. (3.26) are those in Eqs. (3.10a)-(3.10c), which confirms the fact that the
transformed model given in Eqs. (3.10a)-(3.10c) can be used to describe the reactions
and flows in a non-isothermal reactor also in the absence of a heat balance.

The numbers of moles n(t) and the energy Q(t) can be obtained from the transformed
variables as follows:

z(t) =
[
n(t)
Q(t)

]
= Axr(t) + bxex(t) + C xin(t) + z0 xic(t). (3.27)

If rank(
[
A b C z0

]
) = R + p + 2, the linear transformation T =

[
A b C z0 P

]−1

transforms the representation in terms of z(t) given in Eq. (2.20) into five parts,⎡
⎢⎢⎢⎢⎢⎢⎣

xr(t)

xex(t)

xin(t)

xic(t)

xiv(t)

⎤
⎥⎥⎥⎥⎥⎥⎦ = T z(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

R

hT

F

iT

P+

⎤
⎥⎥⎥⎥⎥⎥⎦ z(t). (3.28)

The matrix P describes the q-dimensional null space of the matrix
[
A b C z0

]
T, with

q = (S + 1)− (R+ p+ 2) .

3.1.5 Use of flowrate information

In this section, the procedure for simplifying the linear transformation from numbers of
moles to vessel extents when the flowrates (exogenous inputs) are known is explained
for homogeneous reaction systems. Also, a procedure for computing the vessel extent
of heat transfer from the measurements in the jacket is explained.

3.1.5.1 From material balance equations

If the inlet and outlet flowrates uin(t) and uout(t) are known, one can compute xin(t)
and xic(t) using Eqs. (3.10b) and (3.10c). Then, Eq. (3.11) is used to compute the
contribution of the reactions, labeled as the numbers of moles in vessel reaction-variant
(vRV ) form, as follows:
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nvRV (t) := n(t)−Winxin(t)− n0 xic(t), (3.29)

which leads to:
nvRV (t) = NT xr(t), (3.30)

or in differential form,

ṅvRV (t) = NTrv(t)− ω(t)nvRV (t), nvRV (0) = 0S . (3.31)

If rank(N) = R, the extents of reaction can be computed from Eq. (3.30) as:

xr(t) = NT+nvRV (t) (3.32)

Remark 3.7
Since the rank of the matrix N is always equal to R, the transformation from the
numbers of moles in vessel reaction-variant form to the extents of reactions is always
possible.

3.1.5.2 From material and heat balance equations

For this case, if the inlet and outlet flowrates are known, one can compute xin(t) and
xic(t) according to Eqs. (3.10b) and (3.10c). Then, Eq. (3.27) is used to write z(t) in
the vessel reaction and heat-transfer variant (vRHV) form as:

zvRHV (t) =
[
A b]

[
xr(t)
xex(t)

]
= z(t)− C xin(t)− z0 xic(t). (3.33)

If rank(
[
A b]) = R + 1, then the extents of reaction and the extent of heat transfer

can be computed from Eq. (3.33) as:[
xr(t)
xex(t)

]
=

[
A b]+ zvRHV (t) (3.34)

Note that the extent of heat transfer xex(t) can also be computed from the heat gen-
erated in the jacket Qja(t). The extent of heat transfer in the jacket xex,ja(t) can be
defined as:

ẋex,ja(t) = −qex(t) = Q̇ja(t)− q̌ja,in(t), xex,ja(0) = 0. (3.35)

If the heat generated in the jacket Qja(t) is known, then the extent of heat transfer
xex,ja can be computed using:

xex,ja(t) = Qja −
∫ t

0
q̌ja,in(t) (3.36)
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By defining a discounting variable δh that accounts for the flowrate differences between
the reactor and the jacket, the extent of heat transfer xex(t) can be computed from
xex,ja(t). We define, xex(t) = δh(t) − xex,ja(t), where δh(t) is obtained by integrating
the following differential equation:

δ̇h(t) = −ω(t)(δh(t)− xex,ja(t)), δh(0) = 0. (3.37)

3.2 Heterogeneous Reaction Systems

This section extends the representation in terms of vessel extents obtained for homoge-
neous reaction systems to heterogeneous fluid-fluid reaction systems.

3.2.1 Vessel extents representation

For the representation of heterogeneous reaction systems in terms of vessel extents, an
extent of mass transfer is introduced:

Definition 3.6 (Extent of mass transfer, xm,f,k)
The vessel extent of mass transfer of the kth species transferring to phase F is defined
as the mass of the kth species entering that phase that is still inside the reactor.

ẋm,f,k(t) = ζf,k(t) − ωf (t) xm,f,k(t), xm,f,k(0) = 0 ∀k = 1, . . . , pm (3.38)

The extent of mass transfer is positive if a species is added to phase F and is negative
if it leaves phase F. This follows the convention defined earlier for the sign of ζf (see
Eq. (2.22)). The representation in terms of vessel extents for phase F is:

ẋr,f (t) = rv,f (t) − ωf (t) xr,f (t), xr,f (0) = 0Rf
, (3.39a)

ẋm,f (t) = ζf (t) − ωf (t) xm,f (t), xm,f (0) = 0pm
, (3.39b)

ẋin,f (t) = uin,f (t) − ωf (t) xin,f (t), xin,f (0) = 0pf
, (3.39c)

ẋic,f (t) = −ωf (t)xic,f (t), xic,f (0) = 1, (3.39d)
xiv,f (t) = 0qf . (3.39e)

Transformation from xf to nf : The computation of the numbers of moles nf (t)

from xf (t) is:

nf (t) = NT

f xr,f (t) +Wm,f xm,f (t) +Win,f xin,f (t) + nf0 xic,f (t). (3.40)

Transformation from nf to xf For phase F, if rank
(
[NT

f Wm,f Win,f nf0]
)
= Rf+

pm + pf + 1 = df , the linear transformation Tf :=
[
NT

f Wm,f Win,f nf0 Pf

]−1
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transforms nf (t) into five parts, namely, xr,f (t), xm,f (t), xin,f (t) and xic,f (t) that are
associated with the reactions, the mass transfers, the inlets and the initial conditions,
and xiv,f (t) that are invariant:

⎡
⎢⎢⎢⎢⎢⎢⎣

xr,f (t)

xm,f (t)

xin,f (t)

xic,f (t)

xiv,f (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

[
NT

f Wm,f Win,f nf0 Pf

]−1
nf (t), (3.41)

where the matrix Pf of dimension Sf × qf describes the qf -dimensional null space of
the matrix

[
NT

f Wm,f Win,f nf0

]
T, with qf = Sf −Rf − pm − pf − 1.

3.2.2 Use of flowrate information

If the flowrates uin,f (t) and uout,f (t) are known, the extents of inlet xin,f (t) and of initial
conditions xic,f (t) can be computed directly by integrating Eqs. (3.39c) and (3.39d).
The numbers of moles can then be written in vessel reaction and mass-transfer variant
(vRMV) form as:

nvRMV

f (t) =
[
NT

f Wm,f

] [ xr,f (t)
xm,f (t)

]
= nf (t)−Win,f xin,f (t)− nf0 xic,f (t). (3.42)

The Rf + pm extents of reaction and of mass transfer can be computed from Eq. (3.42)
as: [

xr,f (t)
xm,f (t)

]
=

[
NT

f Wm,f

]+
nvRMV

f (t). (3.43)

Formally, since ζl = −ζg, Rl extents of reaction must be computed from phase L and
Rg from phase G, whereas the pm extents of mass transfer can come from either of
the two phases; for instance, pml

extents of mass transfer can be computed from phase
L and the remaining pmg

extents from phase G, with pml
+ pmg

= pm. If necessary,
the extents of mass transfer obtained from one phase can be converted to extents of
mass transfer in the other phase using a discounting variable δm, which accounts for
the difference between the outlet flows of the two phases. For example, consider that
the extents of mass transfer in phase G, xm,g(t) is known. The corresponding extents
of mass transfer in phase L, can be computed as xm,l(t) = δm(t) − xm,g(t), with the
auxiliary variables δm(t) obtained by integrating the following equation:

δ̇m(t) = −ωl(t)δm(t) + (ωl(t)− ωg(t))xm,g(t), δm(0) = 0. (3.44)
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Example 3.2 (Chlorination of Butanoic Acid)

Consider the chlorination of butanoic acid (BA) given in Example 2.4. Assume
that the reaction system is operated in a semi-batch reactor, with Cl2 fed in the gas
phase and BA present initially in the liquid phase. For phase L the representation
in terms of vessel extents is:

ẋr,l,1(t) = Vl(t) rl,1(t), xr,l,1(0) = 0,

ẋr,l,2(t) = Vl(t) rl,2(t), xr,l,2(0) = 0,

ẋm,Cl2,l(t) = ζCl2,l(t), xm,Cl2,l(0) = 0,

ẋm,HCl,l(t) = ζHCl,l(t), xm,HCl,l(0) = 0.

The numbers of moles in phase L can be reconstructed using Eq. (3.40). Since
phase L has five species, dl = Rl + pm = 4, the rank([NT

l Wm,l]) = dl and the
transformation Tl can be applied to transform the numbers of moles to vessel ex-
tents.

For phase G, the representation in terms of vessel extents is:

ẋm,Cl2,g(t) = ζCl2,g(t), xm,Cl2,g(0) = 0,

ẋm,HCl,g(t) = ζHCl,g(t), xm,HCl,g(0) = 0,

ẋin,g(t) = uin,g(t), xin,g(0) = 0.

For phase G has two species, dg = pm + pg = 3, and rank([Wm,g Win,g]) = 2 < dg
and hence the transformation Tg cannot be used to transform ng to xg. However,
it is possible to go from xg to ng using Eq. (3.40).

3.3 Simulated Examples

In this section, the material balances and the vessel-extents representations of homoge-
neous and heterogeneous reaction systems are illustrated via the simulated examples of
a homogeneous and of a heterogeneous reaction system.

3.3.1 Homogeneous reaction system

Consider the acetoacetylation of pyrrole system given in Example 2.3. The reaction
system is operated in a reactor with one inlet and one outlet streams. The inlet stream
contains the species A, B and K, with the composition matrix given by Win in Eq.
(3.16) and a constant inlet flowrate 2 g min−1. The reactor also has an outlet stream
with a constant flowrate 2 g min−1. The reactor initially contains 2 mol of A, 5 mol
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of B and 0.5 mol of catalyst K, for an initial volume of 0.593 L. Assuming constant
density, the volume remains constant at 0.593 L. The following rate models for each of
the four reactions are used for simulation:

r1 = k1 cA cB cK (3.45a)

r2 = k2 c
2
B cK (3.45b)

r3 = k3 cB (3.45c)
r4 = k4 cC cB cK . (3.45d)

The values of the rate constants are k1 = 0.0530 L2 mol−2 min−1, k2 = 0.1280 L2

mol−2 min−1, k3 = 0.0280 min−1 and k4 = 0.003 L2 mol−2 min−1. The reaction system
is simulated using the material balance equations given in Eq. (2.6). The simulated
numbers of moles of all the seven species are shown in Fig. 3.2.
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Figure 3.2 Acetoacetylation of pyrrole: Simulated numbers of moles of species A (o), B (*),
C (×), D (�), E (�), F (	) and K (�).

The reaction system is also simulated using the representation in terms of vessel extents
given in Eqs. (3.10a) - (3.10c). The simulated vessel extents of reaction, inlet and initial
conditions are shown in Fig. 3.3.

3.3.2 Heterogeneous reaction system

Consider the chlorination of butanoic acid system explained in Example 2.4. The reac-
tion can be represented by the following scheme:

R1: BA (l) + Cl2 (g) → MBA (l) + HCl (g)
R2: BA (l) + 2 Cl2 (g) → DBA (l) + 2 HCl (g) .

The rate laws for reactions R1 and R2 and the mass transfer rates of Cl2 and HCl are:
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Figure 3.3 Acetoacetylation of pyrrole: (a) Simulated vessel extents of reaction xr,1 (- -), xr,2

(—), xr,3 (-.-) and xr,4 (· · · ), (b) simulated vessel extents of inlet (xin), and (c) simulated vessel
extents of initial conditions (xic).

r1 =
k1
√
cMBA + k2

1 + k3 cCl2

(
cBA

cBA + ε1

)(
cCl2

cCl2 + ε2

)
(3.46)

r2 = k4 r1 cCl2 (3.47)
ζCl2,g = kCl2AVg Mw,Cl2(cCl2 − c�Cl2) (3.48)
ζHCl,l = kHClAVl Mw,HCl(cHCl − c�HCl) , (3.49)

where k1, k2, k3 and k4 are rate constants, c�Cl2
and c�HCl are the equilibrium concentra-

tions of Cl2 and HCl at the interface, calculated using Henry constants, kCl2 and kHCl

are the molar transfer coefficients of Cl2 and HCl and A is the specific interfacial area.
The values of the reaction parameters taken from [14] are k1 = 0.0044 (kmol m−3)1/2

s−1, k2 = 0.0088 kmol m−3 s−1, k3 = 1.3577 m3 kmol−1, k4 = 0.1, A = 254.9 m−1,
kCl2 = 0.666× 10−4 m s−1 and kHCl = 0.845× 10−4 m s−1 at 403K.
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For the simulation, 10 kmol of butanoic acid, a small amount of MBA and 100 kmol of
solvent are initially loaded in the reactor. The reactor is operated in semi-batch mode
and continuously fed with chlorine gas with a mass flowrate of uin,g = 972 kg h−1. The
reactor volume Vr is constant at 9 m3, with the gas and liquid phases initially occupying
1.844 m3 and 7.156 m3, respectively. The simulated numbers of moles of all the species
in the liquid and the gas phases are shown in Fig. 3.4.
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Figure 3.4 Chlorination of butanoic acid: (a) Simulated numbers of moles of liquid species
BA (o), Cl2 (*), MBA (	), HCl (�) and DBA (�), and (b) simulated numbers of moles of
gaseous species Cl2 (*) and HCl (�).

The phases L and G are also simulated using the representation in terms of vessel
extents. The simulated vessel extents of reaction, mass transfer, and inlet are shown in
Figs. 3.5 and 3.6.
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Figure 3.5 Chlorination of butanoic acid: (a) Simulated vessel extents of reaction in liquid
phase xr,1 (—) and xr,2 (- -), and (b) simulated vessel extents of mass transfer in liquid phase
xm,Cl2 (—) and xm,HCl (- -).
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Figure 3.6 Chlorination of butanoic acid: (a) Simulated vessel extents of mass transfer in gas
phase xm,Cl2 (—) and xm,HCl (- -), and (b) simulated vessel extents of inlet in gas phase xin,g.

3.4 Summary

This chapter has introduced an alternative representation for homogeneous chemical
reaction systems in terms of vessel extents. For homogeneous reaction systems, this
representation has R vessel extents of reaction, p extents of inlet and extent of initial
conditions. Each vessel extent of reaction represents the amount in numbers of moles
produced or consumed by that reaction that is still inside the reactor, while a vessel
extent of inlet represents the mass added by an inlet stream that is still inside the
reactor. The extent of initial conditions represents the fraction of initial conditions that
is still inside the reactor. This chapter has also introduced a linear transformation that
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transforms the representation in terms of numbers of moles for a homogeneous reaction
systems to the representation in terms of vessel extents. This chapter has introduced
an additional vessel extent, namely, the vessel extent of heat exchange, to capture the
heat transfer between the reactor and its jacket. Additionally, a procedure to simplfy
the linear transformation from numbers of moles to vessel extents has been presented
in the case the flowrates are available.

The vessel extent representation has been extended to heterogeneous reaction systems.
In this case, a phase F in the reaction system has Rf vessel extents of reaction, pf
extents of inlet, pm extents of mass transfer and one extent of initial conditions. The
procedure for transforming the representation in terms of numbers of moles to vessel
extents and vice versa has also been presented.





Chapter 4

Data Reconciliation

Chapter 3 introduced the representation of chemical reaction systems in terms of vessel
extents. In practice, in the absence of a kinetic model, the vessel extents have to be
inferred from the measured (noisy) numbers of moles and cannot be measured directly.
In this chapter, we aim to formulate a data reconciliation (DR) problem to improve
the accuracy of the numbers of moles and vessel extents. First, the DR problem is
formulated in terms of the numbers of moles and then in terms of vessel extents.

This chapter shows the existence of knowledge-based constraints, namely, constraints
that are satisfied at all times such as monotonicity and curvature (concavity/convexity)
which provides some dynamic information in the absence of a kinetic model. The nature
and type of these constraints depend on the operating conditions of the reactor (batch,
semi-batch or open with inlets and outlet). It is shown that the state representation
in terms of extents helps (i) simplify the identification of knowledge-based constraints,
and (ii) impose additional shape constraints compared to a representation with classical
states. Conditions of validity of these shape constraints are derived. In addition, for
cases where it is difficult or even impossible to predict shapes beforehand, we propose
a method of shape identification based on measurements. In the presence of these
shape constraints, DR solves a weighted least-squares problem that accounts for all the
measurements up to the current time instant (for online applications) or up to the final
time (for offline applications).

This chapter is organized as follows. Section 4.1 introduces a systematic procedure for
deriving shape constraints both in terms of numbers of moles and vessel extents for a
homogeneous reaction systems. Section 4.2 derives the corresponding constraints for
a heterogeneous reaction systems. The data-reconciliation problems for homogeneous
and heterogeneous reaction systems, in the absence of a kinetic model, are formulated
in Section 4.3. Finally, the proposed reconciliation procedure is illustrated via the
simulated examples of homogeneous and heterogeneous reaction systems in Section 4.4.

4.1 Homogeneous Reaction Systems

Let ñ(th) = ntrue(th) + εn denote the S-dimensional vector of noisy numbers of moles
measured at the time instant th, th ∈ [t1, tH ], where t1 corresponds to the initial

49
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conditions t = 0, εn is an S-dimensional vector of zero-mean Gaussian noise with a
constant variance-covariance matrix Σn.

4.1.1 Shape constraints

In this subsection, knowledge-based constraints are formulated in terms of both numbers
of moles and extents. Moreover, to generate additional constraints, or when shape con-
straints are not known a priori, a methodology is proposed to identify shape constraints
from measurements.

4.1.1.1 Knowledge-based constraints

Knowledge-based constraints are those that are known from prior knowledge and are
valid for all times. These shape constraints, abstractly denoted K, can be formulated
in terms of the numbers of moles n or extents x:

Kn

(
n(t)

)
≤ 0kn

or Kx

(
x(t)

)
≤ 0kx

, (4.1)

with kn and kx the numbers of knowledge-based constraints expressed in terms of num-
bers of moles and extents, respectively.

For the purpose of attributing shape properties to certain species, we need to introduce
very specific classes of species. The two subsets of interest are the subset of non-added
non-produced species Snp and the subset of non-removed non-consumed species Snc.
These subsets are defined next for the case of homogeneous reaction systems.

Definition 4.1 (Non-added non-produced species, Snp)
A species belongs to the set of non-added non-produced species Snp if the corresponding
column of the stoichiometric matrix contains only nonpositive elements and the species
is not fed to the reactor via an inlet stream.

Definition 4.2 (Non-removed non-consumed species, Snc)
A species belongs to the set of non-removed non-consumed species Snc if the corre-
sponding column of the stoichiometric matrix contains only nonnegative elements and
the species is not removed from the reactor via an outlet stream.

Remark 4.1
The set Snc is empty for reactors with an outlet, since all species are removed via the
outlet flow.

Knowledge-based constraints in terms of numbers of moles

The following shape constraints in terms of numbers of moles can be defined a priori.
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Lemma 1: (Non-added non-produced species involved in irreversible reactions)
The number of moles of a non-added non-produced species that is only involved in
irreversible reactions is nonincreasing.

Proof: The material balance equation for the non-added non-produced species s
can be written as:

ṅs(t) = (N)Ts rv(t)− ω(t)ns(t), s ∈ Snp (4.2)

with ns the number of moles of the species s and (N)Ts the row corresponding to the
species s in NT. Since the rates of all irreversible reactions are nonnegative and the
stoichiometric coefficients of the species s are all nonpositive, the term (N)Ts rv(t) is
nonpositive for all times. Since the term −ω(t)ns(t) is also nonpositive, one concludes
that ṅs(t) is nonpositive for all times, and thus the number of moles of the species s is
nonincreasing. ��

Lemma 2: (Non-removed non-consumed species involved in irreversible reactions)
The number of moles of a non-removed non-consumed species that is only involved in
irreversible reactions is nondecreasing.

Proof: The material balance equation for the non-removed non-consumed species
s can be written as:

ṅs(t) = (N)Ts rv(t) + (Win)s uin(t), s ∈ Snc (4.3)

Since the rates of irreversible reactions are nonnegative and the stoichiometric coeffi-
cients of the product species s are all nonegative, the term (N)Ts rv(t) is nonegative for
all times. Since the term (Win)s uin(t) is also nonnegative, one concludes that ṅs(t) is
nonnegative for all times, and thus the number of moles of the species s is nondecreasing.
��

Corollary: If a species belongs to both sets Snp and Snc, namely, it is neither added nor
removed and neither consumed nor produced, its number of moles remains constant.
This is for example the case of a catalyst.

Note that it is difficult to predict a priori the curvature properties of the numbers of
moles, as the numbers of moles can be functions of multiple reactions, unlike vessel
extents. Furthermore, knowledge-based constraints in terms of numbers of moles are
very restrictive since several conditions must be satisfied in Lemmas 1 and 2. Also, a
priori constraints cannot be imposed to species involved in reversible reactions since
their shape can potentially vary during the course of the reaction. However, additional
constraints can be inferred from measurements using the procedure described in Section
4.1.1.2
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Knowledge-based constraints in terms of extents

Knowledge-based constraints in terms of extents are described for reactors both without
and with an outlet.

Reactors without outlet

In the absence of an outlet flow, the system representation of Eq. (3.10) reduces to:

ẋr(t) = rv(t), xr(0) = 0R,

ẋin(t) = uin(t), xin(0) = 0p,
(4.4)

with xic = 1 and xiv = 0q.

The following shape constraints are always valid:

Lemma 3: (Extents of inlet)
The extents of inlet xin(t) are (i) nonnegative nondecreasing functions, and (ii) convex
(concave) functions if the corresponding inlet flowrates are nonnegative nondecreasing
(nonincreasing)1.

Proof: The proof of (i) follows from

xin(th) = xin(th−1) +

∫ th

th−1

uin(t)dt, ∀h = 2, . . . , H, (4.5)

and the fact that uin(t) ≥ 0p for t ∈ [t1, tH ].

To prove convexity in (ii), consider the three time instants th < th+1 < th+2 in the
interval [t1, tH ]. From (4.5) and the fact that the inlet flowrates are nonnegative non-
decreasing, it follows that

xin(th+2)− xin(th+1)

th+2 − th+1
≥ uin(th+1) ≥

xin(th+1)− xin(th)

th+1 − th
,

which proves the convexity property of xin(t) via the relation that exists between the
left and the right terms [20]. Similar arguments can be used to prove concavity. ��

Lemma 4: (Extents of irreversible reactions)
The extents of irreversible reactions are (i) nonnegative nondecreasing functions, and
(ii) concave (convex) functions if the corresponding reaction rates are nonnegative
nonincreasing (nondecreasing).

Proof: The proof of (i) follows from

1 In practice, it is required to know the monotonic behaviour of the inlet flowrates but not their exact numerical
values.
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xr(th) = xr(th−1) +

∫ th

th−1

rv(t)dt ∀h = 2, . . . , H, (4.6)

and the fact that rv(t) ≥ 0R for t ∈ [t1, tH ].
To prove concavity in (ii), consider the three time instants th < th+1 < th+2 in the
interval [t1, tH ]. From (4.6) and the fact that the reaction rates are nonnegative nonin-
creasing, it follows that

xr(th+2)− xr(th+1)

th+2 − th+1
≤ rv(th+1) ≤

xr(th+1)− xr(th)

th+1 − th
,

which proves the concavity property of xr(t) via the relation that exists between the
left and the right terms. Similar arguments can be used to prove convexity. ��

Reactors with outlet

For reactors with an outlet flow, shape constraints exist for the extent of initial condi-
tions, and so-called generalized shape constraints can be derived from their differential
expressions for the extents of reaction and inlet.

Lemma 5: (Extent of initial conditions)
The extent of initial conditions is a nonnegative nonincreasing function.

Proof: The solution to Eq. (3.10c) is xic(t) = e−
∫ t

0
ω(t)dt. It follows that xic(t) cannot

be negative and, from ω(t) ≥ 0, that it is nonnegative nonincreasing. ��

In the presence of an outlet stream, the extents of reaction and the extents of inlet are
described by Eqs. (3.10a) and (3.10b), respectively. Lemmas 3 and 4 no longer hold
due to the presence of the discounting terms ω(t)xr(t) for the extents of reaction and
ω(t)xin(t) for the extents of inlet. Nevertheless, one can derive shape constraints from
their differential expressions, as illustrated next.

Proposition 4.1 (Generalized shape constraints for the extents of reaction and inlet)
The generalized shape constraints for the extents of irreversible reactions and the extents
of inlet are as follows:

ẋr(t) + ω(t)xr(t) = rv(t) ≥ 0R (4.7a)
ẋin(t) + ω(t)xin(t) = uin(t) ≥ 0p. (4.7b)

Proof: Eqs. (4.7a) and (4.7b) are obtained by re-arranging Eqs. (3.10a) and (3.10b)
and using the fact that rv(t) ≥ 0R (for irreversible reactions) and uin(t) ≥ 0p.

If measurements of the outlet flowrate and of the mass are available, the values ω(th) =
uout(th)
m(th)

, ∀h = 1, 2, . . . , H, are known, and Eqs. (4.7a) and (4.7b) can be evaluated by
discretization of the derivative terms at the sampling instants:
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xr(th)− xr(th−1)

th − th−1
+ ω(th−1)xr(th−1) ≥ 0R, (4.8)

xin(th)− xin(th−1)

th − th−1
+ ω(th−1)xin(th−1) ≥ 0p, ∀h = 2, . . . , H. (4.9)

On the other hand, if measurements of the outlet flowrate and the mass are not available,
Eq. (3.10c) can be discretized and re-arranged to obtain an expression for ω(t) in terms
of the extent of initial conditions:

ω(th−1) =
xic(th−1)− xic(th)

(th − th−1) xic(th−1)
, ∀h = 2, . . . , H. (4.10)

Replacing ω(th−1) in Eqs. (4.8) and (4.9) by its value in Eq. (4.10) gives the discretized
shape constraints:

xr(th)−
xic(th)

xic(th−1)
xr(th−1) ≥ 0R, (4.11a)

xin(th)−
xic(th)

xic(th−1)
xin(th−1) ≥ 0p, ∀h = 2, . . . , H. (4.11b)

4.1.1.2 Measurement-based constraints

Knowledge-based constraints cannot always be guaranteed a priori. Nevertheless, some
constraints could well be present in the measurements.

For example, it is well known that a species that is formed and consumed by different
reactions with comparable reaction rates in batch conditions will exhibit an increase
followed by a decrease. Since such a species is neither part of Snp nor of Snc – it is at
the same time both a reactant and a product – a knowledge-based constraint cannot be
defined for this type of behavior.

This section introduces a procedure to identify valid shape constraints for a species or
an extent based on measurements. For the sake of simplicity, the procedure is described
for the ith extent, but the same procedure also applies to an individual number of moles.

Proposition 4.2 (Procedure to identify measurement-based constraints)
The procedure to identify the shape constraints from the measured numbers of moles
ñ is as follows:

1. Estimate the extents x̂i(th), ∀h = 1, . . . H, by using either the linear transformation
given by Eq. (3.14) or solution to the DR problem described in Section 4.3 in the
presence of positivity constraints and additional knowledge-based constraints (if
any). The corresponding standard deviation σ̂xi

(th) is also estimated.
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2. Estimate the first and second derivatives of x̂i(th), denoted ˙̂xi(th) and ¨̂xi(th), as well
as their upper and lower bounds ˙̂xLi (th), ˙̂xUi (th), ¨̂xLi (th) and ¨̂xUi (th). In this work,
the procedure suggested by Bunin et al. [24] is used.

3. Identify curvature constraints based on the sign of the upper and lower bounds of
the second derivative using time windows (of variable size k) in which the following
conditions are satisfied:

a. If ¨̂xi is greater than a positive threshold (¨̂xLi > 0) for all points in the time
window Tk, the ith extent is convex in that time window.

b. If ¨̂xi is lower than a negative threshold (¨̂xUi < 0) for all points in the time window
Tk, the ith extent is concave in that time window.

c. If none of the conditions (a) or (b) are satisfied for the time window Tk, the ith
extent follows no curvature constraint in that window.

Repeat Step 3 for all the time windows in which the ith extent can be convex or
concave.

4. Identify monotonicity constraints based on the sign of the upper and lower bounds
of the first derivative using time windows (of variable size k) in which the following
conditions are satisfied:

a. If ˙̂xi is greater than a positive threshold ( ˙̂xLi > 0) for all points in the time
window Tk, the ith extent is monotonically increasing in that time window.

b. If ˙̂xi is lower than a negative threshold ( ˙̂xUi < 0) for all points in the time window
Tk, the ith extent is monotonically decreasing in that time window.

c. If none of the conditions (a) or (b) are satisfied for the time window Tk, the ith
extent follows no monotonicity constraint in that window.

Repeat Step 4 for all the time windows in which the ith extent can be monotonically
increasing or decreasing.

The constraints identified from measurements are formulated in an abstract way as:

Mn

(
n(t)

)
≤ 0mn

or Mx

(
x(t)

)
≤ 0mx

, (4.12)

with mn and mx the numbers of measurement-based constraints expressed in terms of
numbers of moles and extents, respectively.
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4.2 Heterogeneous Reaction Systems

In this section, we derive the shape constraints for heterogeneous reaction systems. Let
ñf (th) = ntrue,f (th) + εnf

denote the Sf -dimensional vector of noisy numbers of moles
in phase F measured at the time instant th, th ∈ [t1, tH ], where εnf

is an Sf -dimensional
vector of zero-mean Gaussian noise with a constant variance-covariance matrix Σnf

.

4.2.1 Shape constraints

Similarly to the homogeneous reaction systems, knowledge-based constraints for a het-
erogeneous reaction system can be derived both in terms of numbers of moles or vessel
extents as shown in the next subsection. The procedure for identifying the measurement-
based constraints is exactly the same as the procedure in Section 4.1.1.2.

4.2.1.1 Knowledge-based constraints

The knowledge-based shape constraints for heterogeneous reaction systems are ab-
stractly denoted K and can be formulated in terms of the numbers of moles nf or
the extents xf :

Knf

(
nf (t)

)
≤ 0knf

or Kxf

(
xf (t)

)
≤ 0kxf

, (4.13)

with knf
and kxf

the numbers of knowledge-based constraints expressed in terms of
numbers of moles and extents, respectively.

For heterogeneous reaction systems, we introduce two subsets of interest, namely the
subset of non-added non-produced species Snp,f and the subset of non-removed non-
consumed species Snc,f . These subsets are defined next for the case of heterogeneous
reaction systems.

Definition 4.3 (Non-added non-produced species, Snp,f)
A species belongs to the set of non-added non-produced species Snp,f if the correspond-
ing column of the stoichiometric matrix contains only nonpositive elements and the
species is not added to phase F via an inlet stream or mass transfer.

Definition 4.4 (Non-removed non-consumed species, Snc,f)
A species belongs to the set of non-removed non-consumed species Snc,f if the corre-
sponding column of the stoichiometric matrix contains only nonnegative elements and
the species is not removed from phase F via an outlet stream or mass transfer.

4.2.1.2 Knowledge-based constraints in terms of numbers of moles

The following shape constraints in terms of numbers of moles can be defined a priori.
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Lemma 6: (Non-added non-produced species involved in irreversible reactions)
The number of moles of a non-added non-produced species that is only involved in
irreversible reactions is nonincreasing.

Proof: The material balance equation for the non-added non-produced species s
can be written as:

ṅf,s(t) = (Nf )
T

s rv,f (t) + (Wm,f )s ζf (t)− ωf (t)nf,s(t), s ∈ Snp,f (4.14)

with nf,s the number of moles of the species s, (NT

f )s the row corresponding to the
species s in NT

f , and (Wm,f )s the row corresponding to the species s in Wm,f .

Since the rates of all irreversible reactions are nonnegative and the stoichiometric coef-
ficients of the species s are all nonpositive, the term (Nf )

T

s rv,f (t) is nonpositive for all
times. In addition, as the vector (Wm,f )s only contains ones and zeros by construction
and the rates of the mass transfer involving the species s are all nonpositive, the term
(Wm,f )s ζf (t) is nonpositive for all times. Finally, noting that the term −ωf (t)nf,s(t)
is also nonpositive, one concludes that ṅf,s(t) is nonpositive for all times, and thus the
number of moles of the species s is nonincreasing. ��

Lemma 7: (Non-removed non-consumed species involved in irreversible reactions)
The number of moles of a non-removed non-consumed species that is only involved in
irreversible reactions is nondecreasing.

Proof: The material balance equation for the non-removed non-consumed species
s can be written as:

ṅf,s(t) = (Nf )
T

s rv,f (t) + (Wm,f )s ζf (t) + (Win,f )s uin,f (t), s ∈ Snc,f (4.15)

with (Win,f )s the row corresponding to the species s in Win,f .

Since the rates of all irreversible reactions are nonnegative and the stoichiometric coef-
ficients of the product species s are all nonegative, the term (Nf )

T

s rv,f (t) is nonegative
for all times. In addition, as the vector (Wm,f )s only contains ones and zeros by
construction and the rates of the mass transfer involving the species s are all nonnega-
tive, the term (Wm,f )s ζf (t) is nonegative for all times. Finally, noting that the term
(Win,f )s uin,f (t) is nonnegative, one concludes that ṅf,s(t) is nonnegative for all times,
and thus the number of moles of the species s is nondecreasing. ��

Knowledge-based constraints in terms of extents

Knowledge-based constraints in terms of extents are described for reactors both without
and with an outlet.
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Reactors without outlet

In the absence of an outlet, the representation in terms of vessel extents for a heteroge-
neous reaction system given in Eq. (3.39) reduces to:

ẋr,f (t) = rv,f (t), xr,f (0) = 0Rf
, (4.16a)

ẋm,f (t) = ζf (t), xm,f (0) = 0pm
, (4.16b)

ẋin,f (t) = uin,f (t), xin,f (0) = 0pf
, (4.16c)

xic,f (t) = 1, xic,f (0) = 1, (4.16d)
xiv,f (t) = 0qf . (4.16e)

The shape constraints for the extents of inlet and the extents of reaction introduced in
Lemma 3 and Lemma 4 are valid for heterogeneous reaction systems. For the vessel
extent of mass transfer, xm,f (t), we have:

Lemma 8: (Extent of mass transfer)
The extent of mass transfer xm,f,j is (i) a nonnegative nondecreasing function if the jth
species is added to phase F via mass transfer, (ii) a nonpositive nonincreasing function
if the jth species is removed from phase F via mass transfer, and (iii) a concave
(convex) function if the corresponding mass transfer rates is nonnegative nonincreasing
(nondecreasing).

Proof: The proof follows from Lemmas 3 and 4. ��

Reactors with outlet

For reactors with an outlet flow, shape constraints for the extent of initial conditions
are given in Lemma 5. Furthermore, the generalized shape constraints for the extents
of reactions and inlets derived for homogeneous reaction systems are still valid. The
corresponding constraints for extents of mass transfer can be written as:

Proposition 4.3 (Generalized shape constraints for the extents of mass transfer)
The generalized shape constraint for the species j in phase F that transfers to that
phase (ζf,j ≥ 0) is:

ẋm,f,j(t) + ωf (t)xm,f,j(t) ≥ 0. (4.17)

The generalized shape constraint for the species j in phase F that transfers to another
phase (ζf,j ≤ 0) is:

ẋm,f,j(t) + ωf (t)xm,f,j(t) ≤ 0, (4.18)

with xm,f,j the extent of mass transfer of the species j.
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Proof: Eqs. (4.17) and (4.18) are obtained by re-arranging Eq. (3.39b) and using the
fact that ζf,j(t) ≥ 0 for a species that transfers to phase F and ζf,j(t) ≤ 0 for a species
that leaves phase F.

If measurements of the outlet flowrate and of the mass are available, the values ωf (th) =
uout,f (th)
mf (th)

, ∀h = 1, 2, . . . , H, are known, and Eqs. (4.17) and (4.18) can be evaluated by
discretization of the derivative terms at the sampling instants:

xm,f,j(th)− xm,f,j(th−1)

th − th−1
+ ωf (th−1)xm,f,j(th−1) ≥ 0, if ζf,j ≥ 0, (4.19a)

xm,f,j(th)− xm,f,j(th−1)

th − th−1
+ ωf (th−1)xm,f,j(th−1) ≤ 0, if ζf,j ≤ 0, ∀h = 2, . . . , H.

(4.19b)

On the other hand, if measurements of the outlet flowrate and the mass are not available,
ωf (th−1) in Eqs. (4.19a) and (4.19b) can be replaced by its expression in Eq. (4.10),
which allows rewriting these shape constraints as:

xm,f,j(th)−
xic,f (th)

xic,f (th−1)
xm,f,j(th−1) ≥ 0, if ζf,j ≥ 0, (4.20a)

xm,f,j(th)−
xic,f (th)

xic,f (th−1)
xm,f,j(th−1) ≤ 0, if ζf,j ≤ 0, ∀h = 2, . . . , H. (4.20b)

4.3 Data Reconciliation

Data reconciliation of reaction systems uses both redundancies among variables and
shape constraints to improve the accuracy of measurements. These redundancies can
be expressed as algebraic invariant relationships that are extracted from the balance
equations. They can also be seen as process constraints among measured variables.
The following assumptions are made regarding the chemical reaction system:

Assumption 4.1
The number of species S is greater than or equal to the dimensionality d.

Assumption 4.2
The numbers of moles of all S species are measured at all sampling times.

Assumption 4.3
N, Win and n0 are perfectly known.

Assumption 4.1 ensures that all the vessel extents can be computed from the measured
numbers of moles via the transformation matrix T . Chapter 6 discusses the case of a
subset of measured species. Assumption 4.3 ensures that the transformation matrix T
can be constructed without any uncertainty.
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In this section, for the sake of simplicity, DR problems are formulated in terms of
numbers of moles and extents for homogeneous reaction systems. The extension of the
data reconciliation problem to the heterogeneous reaction systems is given in Appendix
A.

4.3.1 Reconciliation using numbers of moles

Data reconciliation in terms of numbers of moles is formulated as a weighted
least-squares optimization problem constrained by the invariant relationships I, the
knowledge-based constraints Kn, the measurement-based constraints Mn, and positiv-
ity constraints.

The reconciliation problem can be formulated as follows:

n̂
(
t1:H) = arg min

n
(
t1:H

) H∑
h=1

(
ñ(th)− n(th)

)
T
W(th)

(
ñ(th)− n(th)

)
(4.21)

s.t. I
(
n(t1:H)

)
= 0q×H (Invariant constraints)

Kn

(
n(t1:H)

)
≤ 0kn×H (Knowledge-based constraints)

Mn

(
n(t1:H)

)
≤ 0mn×H (Measurement-based constraints)

n(t1:H) ≥ 0S×H , (Positivity constraints)

with n̂
(
t1:H

)
= [n̂(t1), . . . , n̂(tH)] the S ×H dimensional reconciled numbers of moles,

n̂(th) the vector of reconciled numbers of moles at time th, th ∈ {t1, . . . , tH}, and
W(th) = ΣΣΣ−1

n (th) the weighting matrix at time th.

Remark 4.2
When assumption 4.3 is not valid due to uncertain initial conditions, the matrix con-
taining the invariant relationships, namely, P, is uncertain. In such a case, the DR
problem can be be solved using the procedure described in [55].

4.3.2 Reconciliation using extents

Data reconciliation in terms of extents is formulated as a weighted least-squares op-
timization problem constrained by the knowledge-based Kx, the measurement-based
constraints Mx, and positivity constraints. The reconciliation problem can be formu-
lated as follows:
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x̂(t1:H) = arg min
x(t1:H)

H∑
h=1

(
ñ(th)− n(th)

)
T
W(th)

(
ñ(th)− n(th)

)
(4.22)

s.t. n(t1:H) = Bx(t1:H)

Kx

(
x(t1:H)

)
≤ 0kx×H (Knowledge-based constraints)

Mx

(
x(t1:H)

)
≤ 0mx×H (Measurement-based constraints)

n(t1:H) ≥ 0S×H and x(t1:H) ≥ 0d×H , (Positivity constraints)

with x̂(t1:H) :=

[
x̂r(t1:H)
x̂in(t1:H)
x̂ic(t1:H)

]
, and x̂r(t1:H) = [x̂r(t1), . . . , x̂r(tH)], x̂in(t1:H) =

[x̂in(t1), . . . , x̂in(tH)] and x̂ic(t1:H) = [x̂ic(t1), . . . , x̂ic(tH)] the sequences of reconciled
extents of reaction, inlet and initial conditions. Note that the q invariant constraints
are implicitly satisfied in the formulation of Eq. (4.22) since the invariants xiv are set
to zero (and hence absent) in x̂(t1:H).

4.3.3 Additional processing

4.3.3.1 Regularization

If desired, the solution delivered by DR formulated in terms of numbers of moles or
extents can be smoothed by adding a penalty term to the objective function [60]. This
can be achieved by modifying the objective functions of Eqs (4.21) and (4.22) as follows:

H∑
h=1

(
ñ(th)− n(th)

)
T
W(th)

(
ñ(th)− n(th)

)
+

H∑
h=1

J(th) (4.23)

where J(th) = 1T

S Λn n̈(th), with Λn an S×S diagonal matrix of regularization param-
eters, is the penalty term used in Eq. (4.21), and J(th) = 1T

d Λx ẍ(th), with Λx a (d×d)
– diagonal matrix of regularization parameters, is the penalty term used in Eq. (4.22).

4.3.3.2 Variance of reconciled estimates

A number of different techniques exist for determining the variance of reconciled esti-
mates [43]. Here, the variance of the reconciled estimates is approximated by consider-
ing only the equality constraints of the reconciliation problem. The variance-covariance
matrix can also be approximated by sampling techniques [64]. One possible sampling
technique consists in (i) computing the normal distribution centered around the mea-
sured numbers of moles or estimated extents at each time instant, and (ii) sampling the
region of the normal distribution that satisfies the inequality constraints. Note that,
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since the region of a normal distribution satisfying the inequality constraints no longer
follows a Gaussian distribution, this sampling technique delivers the first and second
moments of the reconciled estimates following unknown probability distributions [50].

4.4 Simulated Examples

In this section, the DR approaches introduced in Section 4.3 are illustrated in terms
of both numbers of moles and extents for a homogeneous and a heterogeneous reaction
system.

4.4.1 Homogeneous reaction systems

Consider the acetoacetylation of pyrrole system given in Example 2.3 and Section 3.3.1.
This homogeneous reaction system will be investigated both in an open reactor with
inlet and outlet streams and in a semi-batch reactor.

4.4.1.1 Open Reactor with Inlet and Outlet Streams

The inlet stream contains the species A, B and K, with the composition given by Win

in Eq. (3.16) and a constant inlet flowrate of 2 g min−1. The reactor has a constant
outlet flowrate of 2 g min−1. The reactor initially contains 2 mol of A, 5 mol of B and
0.5 mol of catalyst K, for an initial volume of 0.593 L. Assuming constant density, the
volume remains constant at 0.593 L.

Measurements are taken every 0.5 min for 30 min and each measured number of moles
is corrupted with additive and independent zero-mean Gaussian noise. The variance-
covariance matrix Σn is constant and assumed to be:

Σn = diag
(
[10−2, 6× 10−2, 2× 10−3, 9× 10−3, 10−4, 8× 10−7, 6× 10−4]

)
,

where diag(·) converts a vector into a diagonal matrix for the set of species S = { A,
B, C, D, E, F, K }.

The flowrates and the initial conditions inside the reactor are assumed to be perfectly
known, without bias or measurement noise.

Knowledge-based constraints

Data are first reconciled using only knowledge-based constraints.

In terms of numbers of moles

Since the reaction system is operated in an open reactor with constant volume and
constant density, the dimensionality of the system is d = R + p. With S = 7, R = 4
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and p = 1, one has d = R + p = 5, and there exist q = S − d = 2 invariants, whose
mathematical form is described in Example 2.3.

This reaction system does not have non-added non-produced species. Moreover, due
to the presence of the outlet flow, it does not have non-removed non-consumed species
either. This means that, for this operating mode, it is not possible to impose any
knowledge-based constraints in terms of numbers of moles. Hence, DR is performed
with two invariant relationships and positivity constraints on all the numbers of moles.
The residual sum of squares between the true values and the reconciled values are
tabulated in Table 4.1 (columns labeled K).

In terms of extents

In this case, since the flowrates are perfectly known, the extents of inlet and of initial
conditions can be computed using Eqs (3.10b) and (3.10c). Due to the outlet term,
generalized shape constraints are used for the extents of reaction as per Eq. (4.11a).
The residual sum of squares between the true numbers of moles and the numbers of
moles reconciled in terms of extents are tabulated in Table 4.1 (columns labeled K).
Fig. 4.1 shows the numbers of moles reconciled in terms of numbers of moles and extents
using only knowledge-based constraints.

Table 4.1 Sum of squared errors for the simulated numbers of moles (referred to as measured
quantities, ñ) and the numbers of moles reconciled in terms of the numbers of moles n and
the extents x using only knowledge-based constraints K, and using both knowledge-based and
measurement-based constraints K + M, for the pyrrole system in an open reactor with inlet
and outlet streams.

Species Measured Reconciled (K) Reconciled (K+M)
ñ via n via x via n via x

A 0.331 0.340 0.019 0.189 0.007
B 4.045 1.199 0.157 0.581 0.042
C 0.145 0.116 0.019 0.040 0.007
D 0.414 0.235 0.036 0.164 0.016
E 0.009 0.009 0.002 0.001 0.001
F 0.000 0.000 0.000 0.000 0.000
K 0.027 0.000 0.000 0.000 0.000

Measurement-based constraints

Data are then reconciled using both knowledge-based and measurement-based con-
straints.

In terms of numbers of moles

Monotonicity constraints as well as curvature shape constraints are estimated using the
reconciled numbers of moles via the procedure outlined in Section 4.1.1.2. The identified
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Figure 4.1 True (—) and measured (o) numbers of moles compared to the numbers of moles
reconciled via n (–.–) and x (– –) using only the knowledge-based constraints for the pyrrole
system in an open reactor with inlet and outlet streams.
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constraints are listed in Table 4.2. The residual sum of squares with these additional
shape constraints are shown in Table 4.1 (columns labeled K+M).

Table 4.2 Measurement-based constraints (M) identified using the procedure described in
Section 4.1.1.2, for the pyrrole system in an open reactor with inlet and outlet streams. The
symbols + and − indicate monotonically increasing and decreasing behaviors, whereas symbols
� and � indicate convex and concave behaviors, respectively.

Species Monotonicity Until Shape Until
A − 15.0 min � 15.0 min
B − 16.5 min � 14.5 min
C + 22.0 min � 22.0 min
D + 13.5 min � 13.5 min
E + 23.0 min � 30.0 min
F + 27.0 min � 30.0 min
K none – none –
xr,1 + (a) 30.0 min � 30.0 min
xr,2 + (a) 30.0 min � 30.0 min
xr,3 + (a) 30.0 min � 30.0 min
xr,4 + (a) 30.0 min � 30.0 min

(a): the extents of reaction follow the generalized shape constraint in Eq. (4.8)

In terms of extents

Concave and convex shape constraints on the extents of reactions are estimated via
the procedure of Section 4.1.1.2 from extents reconciled using only the knowledge-based
constraints. In this case, all four extents of reaction are identified to be concave for all
times. The residual sum of squares with these additional shape constraints are shown
in Table 4.1 (columns labeled K+M).

It can be seen from the residual sum of squares given in Table 4.1 that DR in terms
of extents leads to significantly better reconciliation than the formulation in terms of
numbers of moles. This is due to the additional knowledge-based constraints that can
be imposed in the extent formulation compared to the absence of such constraints in the
number-of-moles formulation. It is also seen that the addition of the measurement-based
curvature constraints further improves the reconciliation in both formulations. Fig. 4.2
shows the numbers of moles reconciled in terms of numbers of moles and extents using
both knowledge-based and measurement-based constraints.

4.4.1.2 Semi-Batch Reactor

Consider the pyrrole system in a semi-batch reactor with an inlet stream containing pure
B (win,B = 1

Mw,B
with Mw,B = 84 g mol−1) with a flowrate of 5 g min−1. The reactor
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Figure 4.2 True (—) and measured (o) numbers of moles compared to the numbers of moles
reconciled via n (–.–) and x (– –) using the knowledge-based and measurement-based con-
straints for the pyrrole system in an open reactor with inlet and outlet streams.
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is initially loaded with the same amounts of material as the open reactor discussed in
Section 4.4.1.1.

In this case, only the subset Sa = {A, B, C, D, E} is assumed to be measured, and their
numbers of moles are corrupted with additive and independent zero-mean Gaussian
noise. The variance-covariance matrix Σna

is constant and assumed to be:

Σna
= diag

(
[10−2, 6× 10−2, 3.4× 10−3, 1.4× 10−2, 4× 10−4]

)
.

Measurements of the Sa species are taken every 0.5 min for 30 min. The inlet flowrate
is assumed to be unknown in this case.

Knowledge-based constraints

Data are first reconciled using only knowledge-based constraints.

In terms of numbers of moles

Since the reaction system takes place in a semi-batch reactor with R = 4 reactions and
p = 1 inlet, the dimensionality of the system is d = R+ p = 5. With S = 7 and Sa = 5,
the number of invariants is q = qu = 2 and qa = 0, with the 2 invariant relationships
being:

nA(t) + nC(t) + nF (t) = nA0 + nC0 + nF0 (4.24a)
nK(t) = nK0. (4.24b)

The unmeasured species Su = { F, K } are reconstructed using these invariant relation-
ships and thus no invariant is available for DR. Under these experimental conditions,
the set of non-added non-produced species that are nonincreasing is Snp = {A}, while
the set of non-removed non-consumed species that are nondecreasing is Snc = {D, E,
F}. Hence, DR is performed with three knowledge-based constraints for the measured
species A, D, and E, one knowledge-based constraint for the unmeasured species F, and
positivity of all the numbers of moles. The residual sum of squares between the true
(noisy) and reconciled numbers of moles are tabulated in Table 4.3 (columns labeled
K).

In terms of extents

In terms of extents, due to the absence of an outlet stream, all 5 extents (4 extents of
reaction and 1 extent of inlet) are nondecreasing. The residual sum of squares between
the true (noisy) numbers of moles and the numbers of moles reconciled in terms of
extents are tabulated in Table 4.3 (columns labeled K).



68 Data Reconciliation

Table 4.3 Sum of squared errors for the (noisy) simulated numbers of moles (referred to as
measured quantities, ñ) and the numbers of moles reconciled in terms of the numbers of moles n
and the extents x using only knowledge-based constraints K, and using both knowledge-based
and measurement-based constraints K+M, for the pyrrole system in a semi-batch reactor.

Species Measured Reconciled (K) Reconciled (K+M)
ñ via n via x via n via x

A 0.760 0.059 0.044 0.048 0.034
B 3.710 3.630 0.695 3.054 0.689
C 0.180 0.057 0.051 0.045 0.041
D 0.820 0.223 0.103 0.223 0.099
E 0.019 0.009 0.008 0.006 0.005

Measurement-based constraints

Data are then reconciled using both knowledge-based constraints and measurement-
based constraints.

In terms of numbers of moles

Monotonicity constraints on the species B and C, as well as curvature shape constraints
on all the other measured species are identified using the reconciled numbers of moles
via the procedure outlined in Section 4.1.1.2. Note that the monotonic behavior of the
species A, D and E is known a priori from the knowledge-based constraints, as A ∈ Snp,
and both D and E ∈ Snc. The identified constraints are listed in Table 4.4. The residual
sum of squares with these additional shape constraints are shown in Table 4.3 (columns
labeled K+M).

In terms of extents

Concave and convex shape constraints on the extents of reactions were estimated via the
procedure of Section 4.1.1.2 from the extents reconciled using only the knowledge-based
constraints as shown in Table 4.4. The residual sum of squares with these additional
shape constraints are shown in Table 4.3 (columns labeled K+M).

Similarly to the case of open reactors, DR in semi-batch reactors is more efficient in
terms of extents than in terms of numbers of moles. In this example, this is due to the
presence of knowledge-based constraints on all five extents compared to a priori con-
straints on just three species. Also, the measurement-based constraints further improves
DR in both formulations.
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Table 4.4 Measurement-based constraints (M) identified using the reconciled numbers of
moles and reconciled extents using the procedure described in Section 4.1.1.2, for the pyr-
role system in a semi-batch reactor. The symbols + and − indicate monotonically increasing
and decreasing behaviors, whereas symbols � and � indicate convex and concave behaviors,
respectively.

Species Monotonicity Until Shape Until
A − (a) 30.0 min � 10.5 min
B − 7.5 min � 4.0 min
C + 23.0 min � 6.0 min
D + (a) 30.0 min none −
E + (a) 30.0 min � 14.0 min
xr,1 + 30.0 min � 14.0 min
xr,2 + 30.0 min none −
xr,3 + 30.0 min � 14.0 min
xr,4 + 30.0 min none −
xin + 30.0 min none −

(a): known a priori from knowledge-based constraints

4.4.2 Heterogeneous reaction systems

Consider the chlorination of butanoic acid (BA) system introduced in Example 2.4 and
Section 3.3.2. For the simulation, 10 kmol of butanoic acid, a small amount of MBA and
100 kmol of solvent are initially loaded in the reactor. The reactor is operated in semi-
batch mode and continuously fed with chlorine gas with the mass flowrate uin,g = 972 kg
h−1. The reactor volume Vr is constant at 9 m3, with the gas and liquid phases initially
occupying 1.844 m3 and 7.156 m3, respectively. Numbers of moles of all the species in
both phases are measured every minute for 50 min. The measured numbers of moles
are corrupted with zero mean Gaussian white noise with constant variance-covariance
matrices:

Σn,l = diag ([0.4225, 0.0005 0.4224 0.2125 0.0000]) ,

Σn,g = diag ([0.0002, 0.0363])

The flowrates and the initial conditions inside the reactor are assumed to be perfectly
known, without bias or measurement noise. For this case study, we illustrate the data
reconciliation procedure using only the knowledge based constraints.
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Knowledge-based constraints

In terms of numbers of moles

The liquid phase of the gas-liquid reaction system has S = 5 and dimensionality d =
R+p = 4. This phase has a single invariant relationship, whose mathematical form can
be described as:

nBA,l(t) + nMBA,l(t) + nDBA,l(t) = nBA,l0 + nMBA,l0 + nDBA,l0

In this phase, species BA belongs to the set of non-added non-produced species (mono-
tonically decreasing), while species MBA and DBA belong to the set of non-removed
non-consumed species (monotonically increasing). This means that, for this operating
mode, knowledge-based constraints can be imposed on three of the five species. For the
gas phase G with S = 2 species and d = 3, there exists no invariant relationships. How-
ever the species HCl in the gas phase belongs to the set of non-removed non-consumed
species (monotonically increasing). The DR problem is solved for each phase and the
residual sum of squares between the true values and the reconciled values are tabulated
in Table 4.5.

In terms of extents

In phase L, due to the absence of the outlet stream, both extents of reaction are mono-
tonically decreasing functions. Also, from Lemma 8, it follows that the extent of mass
transfer corresponding to species Cl2 is monotonically increasing (since it is added),
while the extent of mass of mass transfer corresponding to species HCl is monotonically
decreasing (since it is removed). For phase G, the extent of inlet is computed using
Eq. (3.39c). The constraints on the extents of mass transfer in phase G is opposite
to the constraints in phase L, i.e. extent of mass transfer due to HCl is increasing
while extent corresponding to Cl2 is decreasing. The residual sum of squares between
the true numbers of moles and the numbers of moles reconciled in terms of extents are
tabulated in Table 4.5. Fig. 4.3 and 4.4 shows the numbers of moles reconciled in terms
of numbers of moles and extents using knowledge-based constraints for phase G and
phase L respectively.

Table 4.5 shows that the data reconciliation in terms of vessel extents is more efficient
than the data reconciliation in terms of numbers of moles. Similarly to the homogeneous
case study, measurement-based constraints can be identified to further improve the
accuracy of the reconciled estimates. Here the measurement-based constraints are not
illustrated.
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Table 4.5 Sum of squared errors for the simulated numbers of moles (referred to as measured
quantities, ñf ) and the numbers of moles reconciled in terms of the numbers of moles n and
the extents x using only knowledge-based constraints K, for the chlorination of butanoic acid
system in a semi-batch reactor with inlet stream in the gas phase.

Species Measured Reconciled (K)
ñf via nf via xf

Cl2,g 0.0088 0.0088 0.0085
HClg 1.8622 0.5268 0.5240
BAl 30.9739 8.6518 3.7265
Cl2,l 0.0239 0.0160 0.0157

MBAl 23.2403 8.4607 3.7267
HCll 14.3601 14.1282 3.8801
DBAl 0.0000 0.0000 0.000
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Figure 4.3 True (—) and measured (o) numbers of moles compared to the numbers of moles
reconciled via ng (–.–) and xg (– –) in phase G, using the knowledge-based constraints for the
chlorination of butanoic acid system.

4.5 Summary

Data reconciliation uses redundancies expressed as relationships between state variables
to reduce the noise in measured data. For chemical reaction systems, the invariant
relationships can be used as constraints for data reconciliation. These relationships are
algebraic constraints, since they do not contain information regarding the states about
past and future time instants.

If a kinetic model is available, DR can be performed using well-established techniques,
such as RNDDR or MHE. In the absence of a kinetic model, this chapter has shown how
to identify shape constraints such as monotonicity and curvature (convexity/concavity)
behavior on the numbers of moles, which are constraints relating the measurements over
several time instants. These shape constraints can be used for DR. Conditions under
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Figure 4.4 True (—) and measured (o) numbers of moles compared to the numbers of moles
reconciled via nl (–.–) and xl (– –) in phase L, using the knowledge-based constraints for the
chlorination of butanoic acid system.
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which these constraints are valid based on prior knowledge have been proposed. Fur-
thermore, it was shown that an alternative formulation of the reaction system in terms
of extents helps identify additional shape constraints, leading to better reconciled esti-
mates. In addition, a procedure for deriving shape constraints based on measurements
has also been developed.





Chapter 5

Sequential Model Identification

This chapter introduces a hybrid – sequential – approach that progressively identifies
the kinetic model from a purely incremental to a purely simultaneous approach. In
this sequential approach, the extents of all rate processes are ranked based on a pre-
defined criterion, such as their variance (highest to lowest) or their signal-to-noise ratio
(lowest to highest). The method starts with the identification (model structure and
parameter values) of the first-ranked rate process using measured extents for all the
other rates. Note that this step is a purely extent-based incremental step. The model
structure of the first rate process is then fixed for all other subsequent identification
problems. As the next step, the model structure of the second-ranked rate process is
identified, and the parameters of the first and second rate models are simultaneously
adjusted using measured extents for the remaining rates. This procedure is repeated for
all rate processes by fixing the model structures of all the previously identified rates and
using measured extents for the remaining rate processes. The identification of the last
rate process is of the purely simultaneous type since all rate parameters are estimated
simultaneously using the model structures that have been determined previously and
the model candidates for the last rate. Assuming M model candidates to be tested per
rate process, this hybrid approach requires M ·N regressions to identify the models of
all N rate processes.

This chapter is organized as follows. Section 5.1.2, briefly reviews the the extent-
based incremental model identification (IMIn) introduced by Bonvin and co-workers
[4, 15]. This section also introduces another variant of the extent-based incremental
approach, IMIx, where the model identification is carried out entirely in terms of vessel
extents. Section 5.1.3 introduces the sequential model identification procedure for a
homogeneous reaction system. Section 5.1.4 discusses the structural and interpolation
biases in the incremental and sequential approaches. Finally, the sequential approach
is illustrated via the simulation of a homogeneous reaction system in Section 5.2, and
Section 5.3 concludes the chapter. For pedagogical reasons, this chapter discusses only
the homogeneous reaction system, the sequential model identification procedure for the
heterogeneous reaction system is provided in Appendix B.

75
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5.1 Homogeneous Reaction Systems

This section details the procedure for identifying the models for all the R reactions
in a homogeneous reaction system using the extent-based incremental and sequential
approaches.

5.1.1 Model identification

Assumption 5.1
Measurements of all S species are available at all sampling times th, ∀h = 1, . . . , H.

Assumption 5.2
The initial conditions n0 at t1 = 0 are perfectly known.

Assumption 5.3
If the reactor has inlet and outlet streams then their corresponding flowrates uin and
uout are perfectly known.

The measured numbers of moles at other time instants are corrupted by independent
Gaussian noise of zero mean and known variance-covariance matrix Σn(th), such that:

ñ(th) = N
(
ntrue(th),Σn(th)

)
, ∀h = 2, . . . , H,

with ntrue and ñ the true and measured values of the numbers of moles. The quality
of the measured numbers of moles are improved via the data reconciliation procedure
introduced in Chapter 4:

n̂(th) = N
(
ntrue(th),Σn̂(th)

)
, ∀h = 2, . . . , H,

where n̂ denotes the reconciled numbers of moles. For the purpose of simplifying the
notation, let us define μ := [ xin

xic
], which allows writing the dynamics of the extents of

inlet and initial conditions as:

μ̇(t) = [ uin

0 ]− ω(t)μ(t), μ(0) =
[
0p

1

]
. (5.1)

For the extents of reaction, xr(t), the reaction rates rv(t) are treated as time signals
that could be modeled as unknown functions of the numbers of moles or vessel extents,
namely, rv(t) := V (t)ϕn(n(t),θ) or rv(t) := V (t)ϕx(xr(t),μ(t),θ). The extents of
reaction can then be represented as:

ẋr(t) = V (t)ϕn

(
n(t),θ

)
− ω(t)xr(t) (5.2)

= V (t)ϕx

(
xr(t),μ(t),θ

)
− ω(t)xr(t), xr(0) = 0R (5.3)
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Also, let us introduce Mn = {Mn,1, . . . ,Mn,R} the set of all M =
∑R

k=1Mk can-
didate models for the R reactions expressed in terms of numbers of moles, and
Mx = {Mx,1, . . . ,Mx,R} the corresponding set in terms of extents. In particular,
Mn,k = {ϕ(1)

n,k, ϕ
(2)
n,k, . . . , ϕ

(Mk)
n,k } and Mx,k = {ϕ(1)

x,k, ϕ
(2)
x,k, . . . , ϕ

(Mk)
x,k } denote the sets of

Mk candidate models for the kth reaction in terms of numbers of moles and extents.

5.1.2 Extent-based Incremental Model Identification (IMI)

This extent-based incremental approach, which has been introduced by Bonvin and
coworkers [4, 15] is a three-step process.

Rate expressions expressed in terms of numbers of moles

The procedure for the extent-based incremental approach in terms of numbers of moles
is detailed in Algorithm 1. The integration of the candidate models in Step 3 involves the
knowledge of the reconciled numbers of moles at all times, which is obtained by interpo-
lation of the numbers of moles n̂ available at the discrete time instants {t1, t2, . . . , tH}.
The initial guesses for the simultaneous estimation of θ in Eq. (5.5) are usually taken as
the estimated model parameters obtained via Eq. (5.4). For the purpose of comparison,
this variant of the incremental model identification with rate expressions expressed in
terms of numbers of moles is labelled IMIn.

Rate expressions expressed in terms of extents

The procedure labeled IMIx is detailed in Algorithm 2. The rate function
ϕ
(mk)
n,k

(
n̂(t),θ

(mk)
k

)
in Eq. (5.4) can also be formulated in terms of the extents as

ϕ
(mk)
x,k

(
xr,k(t), x̂r,J (t),μ(t),θ

(mk)
k

)
, as shown in Eq. (5.6). In such a case, (R − 1)

reconciled extents x̃r,J (and not the reconciled numbers of moles) need to be interpo-
lated, and the extent xr,k that is being modeled can be integrated without interpolation,
just from the knowledge of its initial condition. The initial guesses for the simultaneous
estimation of θ in Eq. (5.7) are taken as the estimated model parameters obtained via
Eq. (5.6).

5.1.3 Extent-based Sequential Model Identification (SMI)

The extent-based sequential model identification is also a multi-step approach. How-
ever, while the incremental approach models each reaction individually, the sequential
approach uses the models identified in the previous steps to facilitate the identification
of the next reactions, as detailed in Algorithm 3. The order selection in Step 3 can be
based on several criteria. Here, two criteria are suggested:
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Algorithm 1 Extent-based incremental model identification (variant IMIn)
Step 1: Compute xin(t), xic(t) and n̂vRV (t) using Eqs. (3.10b), (3.10c) and (3.29)
Step 2: Compute x̂r(t) for all R reactions using Eq. (3.32)
Step 3: The model identification task is carried out by postulating rate expressions
for each reaction individually. The model identification problem can be solved in
parallel for the R reactions as follows:
for k = 1, . . . , R

for mk = 1, . . . ,Mk

θ
(mk) ∗
k = arg min

θ
(mk)

k

J(θ
(mk)
k )

s.t. J =

H∑
h=1

(
x̂r,k(th)− x

(mk)
r,k (th)

)
Wk(th)

(
x̂r,k(th)− x

(mk)
r,k (th)

)
ẋ
(mk)
r,k (t) = V (t)ϕ

(mk)
n,k

(
n̂(t),θ

(mk)
k

)
− ω(t)x

(mk)
r,k (t), x

(mk)
r,k (0) = 0.

(5.4)

end for

m∗
k = argmin

mk

{
J
(
θ
(mk) ∗
k

)}Mk

mk=1
end for
with Wk(th) the inverse of the variance σ2

xr,k
(th) of the kth measured reaction extent

at time th. The model candidate with the least objective function J
(
θ
(mk) ∗
k

)
is chosen

as the best model ϕ(m∗
k)

n,k for that reaction along with the values of its corresponding

parameters θ
(m∗

k) ∗
k .

Step 4: Once the models of all reactions have been identified incrementally, a si-
multaneous parameter estimation problem is solved to obtain the parameter values
in the maximum-likelihood sense:

θ∗ =arg min
θ

H∑
h=1

(
x̂r(th)− xr(th)

)
T

W(th)
(
x̂r(th)− xr(th)

)
s.t. ẋr(t) = V (t)ϕ(m∗)

n

(
n(t),θ

)
− ω(t)xr(t), xr(0) = 0R, (5.5)

with W(th) = Σ−1
x (th) the inverse of the variance-covariance matrix at time th,

ϕ
(m∗)
n =

[
ϕ

(m∗
1)

n,1 ,ϕ
(m∗

2)

n,2 ,...,ϕ
(m∗

R)

n,R

]
T the R rate models identified via the parallel incremental

identification of Step 3, and θ = [ θT
1 ,...,θ

T
R ]T the adjustable model parameters of the

identified rate models.
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Algorithm 2 Extent-based incremental model identification (variant IMIx)
Step 1: Compute xin(t), xic(t) and n̂vRV (t) using Eqs. (3.10b), (3.10c) and (3.29)
Step 2: Compute x̂r(t) for all R reactions using Eq. (3.32)
Step 3: The model identification task is carried out by postulating rate expressions
for each reaction individually. Let the subscript k denote the reaction being modeled,
and J the set of reactions that are not modeled. The model identification problem
can be solved in parallel for the R reactions as follows:
for k = 1, . . . , R

for mk = 1, . . . ,Mk

θ
(mk) ∗
k = arg min

θ
(mk)

k

J(θ
(mk)
k )

s.t. J =

H∑
h=1

(
x̂r,k(th)− x

(mk)
r,k (th)

)
Wk(th)

(
x̂r,k(th)− x

(mk)
r,k (th)

)
ẋ
(mk)
r,k (t) = V (t)ϕ

(mk)
x,k

(
xr,k(t), x̂r,J (t),μ(t),θ

(mk)
k

)
− ω(t)x

(mk)
r,k (t),

x
(mk)
r,k (0) = 0.

(5.6)

end for

m∗
k = argmin

mk

{
J
(
θ
(mk) ∗
k

)}Mk

mk=1
end for
The model candidate with the least objective function is chosen as the best model
ϕ
(m∗

k)
n,k for that reaction along with the values of its corresponding parameters θ(m∗

k) ∗
k .

Step 4: Once the models of all reactions have been identified incrementally, a si-
multaneous parameter estimation problem is solved to obtain the parameter values
in the maximum-likelihood sense:

θ∗ =arg min
θ

H∑
h=1

(
x̂r(th)− xr(th)

)
T

W(th)
(
x̂r(th)− xr(th)

)
s.t. ẋr(t) = V (t)ϕ(m∗)

x

(
xr(t),μ(t),θ

)
− ω(t)xr(t), xr(0) = 0R. (5.7)

• Signal-to-Noise Ratio: Compute the signal-to-noise ratio (SNR) for the extents
to be modeled and order the extents in an increasing SNR, that is, the extent with
the lowest SNR will be modeled first.

• Noise power: Rank the extents in decreasing order with respect to the noise
variance Σx(th) = T Σn̂(th)T T, that is, the extent with the highest noise power
will be modeled first.
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Since the quality of model identification depends on the quality of the interpolation of
noisy measurements, the interpolation error is reduced at each step of the method if
the least noisy extents are interpolated first, or, equivalently, if the most noisy ex-
tents (low SNR or high noise power) are modeled first. The model identification
problem in the sequential approach is formulated in terms of extents. The function
ϕ
(mk)
x,k

(
x
(mk)
r,k (t),x

(m∗
i )

r,I (t), x̂r,J (t),μ(t),θ
(mk)
k

)
is a function of five arguments: (i) the kth

extent that is being modeled, x
(mk)
r,k (t), (ii) the k − 1 extents that have been mod-

eled, x(m∗
i )

r,I (t) with I = {1, 2, . . . , (k − 1)}, (iii) the R − k extents that have not been
modeled yet and are provided as measured and interpolated quantities, x̂r,J (t) with
J = {k+ 1, . . . , R}, (iv) the extents of inlet and of initial conditions, μ(t), and (v) the
adjustable model parameters of the kth reaction, θ(mk)

k . Note that, in the formulation
of Eq. (5.8), the parameters of the first k models are estimated simultaneously. Also,
since the number of provided measured extents (R− k) decreases when k increases, the
interpolation bias is reduced progressively over the identification steps.

5.1.4 Bias due to error propagation and interpolation

As discussed in [16], the extent-based identification methods, whether incremental or
sequential (except for the last step when J = ∅), use measured quantities to model the
extents. This introduces a bias for two reasons: (i) the propagation of measurement
errors in nonlinear models, and (ii) the interpolation of quantities measured at a few
discrete time instants th, ∀h = 1, . . . , H, to a dense number of time points tp ∈ [t1, tH ]
for the purpose of integration. These two cases are discussed next.

Structural Bias: The structural bias results from the propagation of measurement er-
rors through the nonlinear kinetic model. To illustrate this bias, consider the ki-
netic model ϕn(t) = k

(
nA(t)
V (t)

)(
nB(t)
V (t)

)
. Assume that the volume is perfectly known,

Ṽ (th) = Vtrue(th), but the reconciled numbers of moles n̂A(th) and n̂B(th) are corrupted
by additive and zero-mean Gaussian noise of known variance σ2

n̂A
, σ2

n̂B
and cov(n̂A, n̂B).

Defining k′ = k
Ṽ (t)2

, the expected value of ϕn at time th using measured quantities is:

E[ϕ̂n(th)] = k′E[n̂A(th) n̂B(th)]

= k′E[n̂A(th)]E[n̂B(th)] + k′cov(n̂A, n̂B) (5.9)
= k′ nA,true(th)nB,true(th)︸ ︷︷ ︸

ϕ̄n(th)

+ k′ cov(n̂A, n̂B)(th)︸ ︷︷ ︸
b̄n(th)

, (5.10)

which demonstrates that plugging measured quantities in the kinetic model ϕn leads to
a biased estimated value, with the statistical bias b̄n := k′ cov(n̂A, n̂B)(th). For a more
accurate model identification and parameter estimation, this bias must be accounted
for. The unbiased model estimate of ϕn, denoted ϕ̄n, is obtained by rearranging Eq.
(5.10) so that ϕ̄n(th) = E[ϕ̂n(th)]− b̄n(th). In practice, for a given noise realization, a
bias-corrected model estimate of ϕn(th) is obtained by removing the bias b̂n(th) from
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Algorithm 3 Extent-based sequential model identification (SMI)
Step 1: Compute xin(t), xic(t) and n̂vRV (t) using Eqs. (3.10b), (3.10c) and (3.29)
Step 2: Compute x̂r(t) for all R reactions using Eq. (3.32)
Step 3: Sort the computed extents in x̂r based on the order in which they will be
modeled.
Step 4: The model identification task is carried out by postulating rate expressions
for each reaction sequentially (one after the other). Let the subscript k denote the
reaction being modeled, I the set of reactions that have been modeled and J the set
of reactions that will be modeled later. The model identification problem for the R
reactions can be formulated as follows:
for k = 1, . . . , R

I = {1, 2, . . . , k − 1}
J = {k + 1, k + 2, . . . , R}
for mk = 1, . . . ,Mk[

θ
(m∗I) ∗
I

θ
(mk) ∗
k

]
= arg min

θ
(m∗I)

I ,θ
(mk)

k

J(θ
(m∗

I)

I ,θ
(mk)
k )

s.t. J =

H∑
h=1

([
x̂r,I(th)

x̂r,k(th)

]
−

[
x
(m∗I)

r,I (th)

x
(mk)

r,k
(th)

])T

W1:k(th)

([
x̂r,I(th)

x̂r,k(th)

]
−

[
x
(m∗I)

r,I (th)

x
(mk)

r,k
(th)

])

ẋ
(m∗

I)

r,I (t) = V (t)ϕ
(m∗

I)

x,I
(
x
(m∗

I)

r,I (t), x
(mk)
r,k (t), x̂r,J (t),μ(t),θ

(m∗
I)

I
)− ω(t)x

(m∗
I)

r,I (t),

x
(m∗

I)

r,I (0) = 0k−1

ẋ
(mk)
r,k (t) = V (t)ϕ

(mk)
x,k

(
x
(m∗

I)

r,I (t), x
(mk)
r,k (t), x̂r,J (t),μ(t),θ

(mk)
k

)− ω(t)x
(mk)
r,k (t),

x
(mk)
r,k (0) = 0. (5.8)

end for

m∗
k = argmin

mk

{
J(θ

(m∗
I) ∗

I ,θ
(mk) ∗
k )

}Mk

mk=1
end for
with W1:k(th) the inverse of the first k-dimensional submatrix of the variance-
covariance matrix Σx at time th, and the vector quantities x(m∗

I)
r,I =

[
x
(m∗

1)

r,1 ,...,x
(m∗

k−1
)

r,k−1

]
T,

ϕ
(m∗

x,I)
I =

[
ϕ

(m∗
1)

x,1 ,...,ϕ
(m∗

k−1
)

x,k−1

]
T, x̂r,J = [ x̂r,k+1,...,x̂r,R ]T and θ

(m∗
I)

I =
[
θ

(m∗
1),T

1 ,...,θ
(m∗

k−1
),T

k−1

]
T.

ϕ̂n(th):
ϕ̄n(th) = ϕ̂n(th)− b̂n(th), ∀h = 1, . . . , H. (5.11)

For the kinetic model ϕn(t) = k′ nA(t)nB(t), a bias-corrected model estimate can be
computed as

ϕ̄n(th) = k′ n̂A(th) n̂B(th)− k′ cov(n̂A, n̂B)(th), ∀h = 1, . . . , H. (5.12)

For a more accurate model identification and parameter estimation, the extent-based
incremental and sequential approaches should be performed with ϕ̄n instead of ϕ̂n. Note
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that, for the sequential approach, the structural bias for the candidate models must be
recomputed every time a new reaction is identified, since the number of measured signals
decreases at each step.

Interpolation Bias: The sequential extent-based approach offers a remedy to that bias
since the number of extents to be interpolated is reduced at every step and the need
for interpolation finally disappears in the last step, which turns to be a simultaneous
parameter estimation.

To illustrate this bias, consider the bias-corrected model of Eq. (5.12) and assume that
the reconciled numbers of moles n̂A and n̂B are known at the discrete time instants th,
∀h = 1, . . . , H, but must be known for the purpose of integration at more frequent time
points tp, ∀p = 1, . . . , P , with H < P , tP = tH . Defining the interpolation errors on
the numbers of moles of species A and B at time tp as εA(tp) and εB(tp), the integral
of ϕ̄n between t1 and tH , defined as Φ̆n(tH), is:

tH∫
t1

ϕ̄n(τ)dτ

︸ ︷︷ ︸
Φ̆n(tH)

= lim
Δtp→0

P∑
p=1

ϕ̆n(tp)Δtp

︸ ︷︷ ︸
Φ̄n(tH)

+ lim
Δtp→0

P∑
p=2

b̆n(tp)Δtp

︸ ︷︷ ︸
B̄n(tH)

, (5.13)

where Δtp the time between two successive integration points Note that, as the initial
conditions are assumed to be perfectly known, the bias b̆n at t1 = 0 is zero and is thus
omitted in the second summation term of Eq. (5.13).

For the example of the kinetic model ϕn(t) = k′ nA(t)nB(t), ϕ̆n(tp) and b̆n(tp) have the
following structures:

ϕ̆n(tp) := k′n̆A(tp) n̆B(tp)− k′cov(n̂A, n̂B)(th) (5.14a)

b̆n(tp) := k′ (n̆A(tp) εB(tp) + n̆B(tp) εA(tp) + εA(tp) εB(tp)) (5.14b)

where (̆·) indicate interpolated quantities. Eqs. (5.13) and (5.14) demonstrate that
plugging interpolated quantities in the kinetic model ϕ̄n (corrected for the structural
bias according to Eq. (5.12)) for the purpose of integration leads to a biased estimated
value Φ̆n, whose bias is B̄n. For an unbiased model identification and parameter esti-
mation, this bias would need to be accounted for. Generally, an unbiased estimate of
the integral of ϕ̄n between t1 and tH would be:

Φ̄n(tH) = Φ̆n(tH)− B̄n(tH) (5.15)

Unfortunately, as the interpolation errors εA(tp) and εB(tp) in Eq. (5.14b) required to
compute the bias b̆n(tp) are unknown, the interpolation bias cannot be removed.
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5.2 Simulated Example

5.2.1 Homogeneous reaction system

5.2.1.1 Reaction system and operating conditions

Consider the acetoacetylation of pyrrole system given in Example 2.3 and Section 3.3.1.
The reaction system is simulated in a semi-batch reactor with the following rate models
for each of the four reactions:

r1 = k1 cA cB cK (5.16a)

r2 = k2 c
2
B cK (5.16b)

r3 = k3 cB (5.16c)
r4 = k4 cB cC cK . (5.16d)

The reactor is operated as follows. The reactor initially contains 4 mol of A, 0.5 mol of
B, 0.1 mol of C and 1 mol of catalyst K, for an initial volume of 0.41 L. Pure diketene
(B) is fed into the reactor at the constant volumetric flowrate 0.1 L min−1. The values
of the rate constants are k1 = 0.0530 L2 mol−2 min−1, k2 = 0.1280 L2 mol−2 min−1,
k3 = 0.0280 min−1 and k4 = 0.0030 L2 mol−2 min−1. Both the inlet flowrate and
volume inside the reactor are assumed to be precisely known. The simulated numbers
of moles and extents of reactions are shown in Fig. 5.1.
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Figure 5.1 Acetoacetylation of pyrrole system in a semi-batch reactor: (a) Simulated numbers
of moles of species A (—, black), B (—, gray), C (– –, black), D (– –, gray), E (– - –, gray),
F (– - –, black), with species K constant at 1 mol (not shown) and (b) Simulated extents of
reactions xr,1 (—), xr,2 (– –), xr,3 (– - –) and xr,4 (- - -).

5.2.1.2 Simulated measurements and rate candidates

To obtain measured numbers of moles, the simulated numbers of moles of each species
are corrupted by additive zero-mean Gaussian noise of standard deviation corresponding
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to α % of its maximum value. The value of α is varied for the purpose of comparing
the different model identification methods described in previous sections. The catalyst
K is assumed to be known without any measurement errors.

In the following, the rate models and rate parameters of the four reactions are considered
as unknown. Table 5.1 lists the set of rate candidates that will be tested for each
reaction.

Table 5.1 Rate candidates for the acetoacetylation of pyrrole system.
R1 R2 R3 R4
r
(1)
1 = k1cAcBcK r

(1)
2 = k2 c

2
BcK r

(1)
3 = k3 cB r

(1)
4 = k4 cB cC cK

r
(2)
1 = k1 cB r

(2)
2 = k2 cB r

(2)
3 = k3 c

2
B r

(2)
4 = k4 cC

r
(3)
1 = k1 cA r

(3)
2 = k2 c

2
B r

(3)
3 = k3 cBcK r

(3)
4 = k4 cB

r
(4)
1 = k1 cK r

(4)
2 = k2 cBcK r

(4)
3 = k3 c

2
B cK r

(4)
4 = k4 cB cC

r
(5)
1 = k1cAcB r

(5)
2 = k2 cK r

(5)
3 = k3cK r

(5)
4 = k4cC cK

r
(6)
1 = k1cAcK

r
(7)
1 = k1cBcK

r
(8)
1 = k1c

2
AcK

5.2.1.3 Data sets

The performance of the three extent-based approaches presented are compared, namely,
the incremental model identification formulated in terms of measured numbers of moles
IMIn, the incremental model identification formulated in terms of measured extents
IMIx, and the sequential model identification SMI. This comparison is performed using
five different data sets, labeled D1 to D5. Data sets D1, D2 and D3 are generated by
simulating the reaction system 1000 times with different noise realizations, 61 sampling
points per species, and noise levels of 1%, 5% and 10%, respectively. Data set D4 is
generated by simulating the system with 1000 different noise realizations, 21 sampling
points per species and a noise level of 5%, while data set D5 is obtained by 1000 different
noise realizations, 151 sampling points, and a noise level of 5%. Table 5.2 summarizes
the noise level and the number of sampling points for each data set. Within each
data set, the 1000 realizations are reconciled using the approach given in Chapter 4.
The performance of all the model identification techniques is carried out without bias-
correction.
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Table 5.2 Noise level α and number of sampling points H for the different simulated data
sets. Each data set corresponds to 1000 different noise realizations.

Data Set Noise level (α) Sampling points (H)
D1 1% 61
D2 5% 61
D3 10% 61
D4 5% 21
D5 5% 151

5.2.1.4 Comparison between IMIn and IMIx

The performance of the two extent-based incremental approaches IMIn and IMIx are
compared for different noise levels and 61 sampling points. The results of the model
identification are listed in Table 5.3. It is clearly shown that the variant IMIx has a
significantly higher probability of identifying the correct model than the variant IMIn.
Also, the standard deviations on the estimated parameters in the variant IMIx is always
smaller than the values computed by the variant IMIn. These lower standard deviations
can be explained by a reduced interpolation bias in the approach IMIx compared to the
approach IMIn, since the values of the modeled extents in the approach IMIx do not
need to be interpolated (compare Eq. (5.4) and Eq. (5.6)). All these arguments lead
to the conclusion that the extent-based incremental identification formulated in terms
of measured extents (IMIx) is superior to the same method formulated in terms of
measured numbers of moles (IMIn).

5.2.1.5 Comparison between IMIx and SMI

Effect of the noise level

The performance of the extent-based incremental model identification formulated in
terms of extents (variant IMIx) is now compared to the performance of the sequential
model identification (SMI), described in Section 5.1.3, for different noise levels and 61
sampling times. For SMI, the reaction steps are modeled in the following order based
on the noise power: R2, R1, R3 and R4. The results of model identification by these
two methods are presented in Table 5.4. It is clearly shown that SMI has a significantly
higher probability of identifying the correct model than the IMIx approach. If one
excludes the identification of the first reaction in the modeling order, that is, reaction
R2, which is treated in the same way in SMI and IMIx, SMI always leads to better
model identification (higher values of #/1000) and better parameter estimates (k∗ closer
to the true values and lower values of σk∗), once one or more rate models are fixed.
For example, with 10% noise, the probability of finding the correct rate model for R1
is 73.1% for IMIx, but 98.9% for SMI once the correct rate expression for R2 is fixed.
Also, the standard deviations on the parameters (σk∗) reduce significantly over the steps
of SMI, when more rate models are fixed. For example, with 10% noise, the standard



86 Sequential Model Identification

Table 5.3 Comparison between the extent-based incremental approaches IMIn (Algorithm 1)
and IMIx (Algorithm 2) in terms of the number of correctly identified models over the 1000
realizations (labeled #/1000), as well as accuracy (k∗) and precision (σk∗) of the estimated
parameters, using different noise levels and H = 61 sampling points. The true values of the
rate constants are k1 = 0.053, k2 = 0.128, k3 = 0.028 and k4 = 0.003.

Reaction ktrue Data set α
IMIn IMIx

#/1000 k∗ σk∗ #/1000 k∗ σk∗

R1 0.0530
D1 1% 995 0.0529 0.0009 1000 0.0530 0.0005
D2 5% 733 0.0523 0.0041 942 0.0529 0.0023
D3 10% 483 0.0519 0.0075 731 0.0530 0.0045

R2 0.1280
D1 1% 992 0.1275 0.0013 1000 0.1279 0.0007
D2 5% 764 0.1250 0.0059 940 0.1271 0.0028
D3 10% 425 0.1218 0.0114 924 0.1265 0.0059

R3 0.0280
D1 1% 983 0.0280 0.0001 984 0.0280 0.0001
D2 5% 870 0.0279 0.0006 818 0.0279 0.0006
D3 10% 833 0.0278 0.0011 756 0.0278 0.0010

R4 0.0030
D1 1% 749 0.0035 0.0032 999 0.0028 0.0001
D2 5% 335 0.0038 0.0056 994 0.0028 0.0001
D3 10% 236 0.0035 0.0059 866 0.0028 0.0002

deviation of k2 estimated by SMI is reduced by more than 50% between the first step
(R2 modeled with the other extents provided as measurements) and the last step (R4
modeled with all the other rate models fixed to their correct model structure), as shown
in Table 5.4.

Fig. 5.2 gives a summary of the parameter estimates obtained by the IMIn, IMIx
and SMI methods for all four reactions. It shows that the SMI method estimates rate
parameters over a much more narrow region than IMIx and IMIn methods.
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Figure 5.2 Summary of the parameter estimates with the true values (– –, gray), minimum
values (lowest error bar), 2.5 percentile values (bottom of box), median values (– –, black),
97.5 percentile values (top of box) and maximum values (highest error bar) obtained by three
different model identification methods for reactions (a) R2, (b) R1, (c) R3, and (d) R4. The
minimum and 2.5 percentile values (0), the 97.5 percentile value (0.0220) and the maximum
value (0.0221) are out of the bounds of Figure 2d for IMIn.

Effect of the number of sampling points

In Table 5.5, the performance of IMIx and SMI are compared for 5% noise but different
numbers of sampling points. Note that the results for SMI in Table 5.5 correspond to the
parameter values and standard deviation estimated for the last identification step, when
R4 is modeled and all the other rate models are fixed to their correct model structure.
Table 5.5 shows that SMI leads generally to smaller confidence intervals compared to
IMIx.

Discriminatory power

The average discriminatory power of the methods IMIx and SMI are compared in Fig.
5.3 for the reaction steps R1, R3 and R4 using data with 5% noise and 21 sampling
points1. In this framework, the discriminatory power is defined as the ratio of the
average sum of squares of a rate candidate to the average sum of squares of the correct
rate model, such that the discriminatory power of the correct rate model is 1. Fig. 5.3

1 The discriminatory power for R2 is not compared, as this reaction step is the first in the selection order of
SMI and is hence modeled in the same way as in IMIx.
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Table 5.5 Comparison between the IMIx and SMI methods in terms of the number of correctly
identified models over the 1000 realizations (labeled #/1000), and accuracy (k∗) and precision
(σk∗) of the estimated parameters for different sampling times and a noise level of 5%.

Data set H Reaction ktrue
IMIx SMI

#/1000 k∗ σk∗ #/1000 k∗ σk∗

D4 21

R1 0.0530 808 0.0534 0.0036 984 0.0528 0.0009
R2 0.1280 833 0.1276 0.0051 833 0.1274 0.0024
R3 0.0280 738 0.0280 0.0009 994 0.0280 0.0007
R4 0.0030 961 0.0028 0.0001 927 0.0030 0.0001

D2 61

R1 0.0530 942 0.0529 0.0023 999 0.0528 0.0005
R2 0.1280 940 0.1271 0.0028 940 0.1274 0.0013
R3 0.0280 818 0.0279 0.0006 998 0.0280 0.0004
R4 0.0030 994 0.0028 0.0001 994 0.0030 0.00003

D5 151

R1 0.0530 997 0.0530 0.0015 1000 0.0528 0.0003
R2 0.1280 940 0.1276 0.0021 940 0.1275 0.0009
R3 0.0280 854 0.0279 0.0004 998 0.0280 0.0003
R4 0.0030 993 0.0028 0.0001 999 0.0030 0.00002

shows that the discriminatory power of SMI is higher than that of IMIx for R1, R3 and
for some rate candidates of R4.
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Figure 5.3 Discriminatory power (expressed as the mean sum of squares of a rate candidate
normalized with respect to the mean sum of squares of the correct rate model) of the methods
IMIx (white bars) and SMI (black bars) for reaction (a) R1 and its 8 rate candidates (b) R3 and
its 5 rate candidates, and (c) R4 and its 5 rate candidates. The No convergence label indicates
that the parameter estimation did not converge and hence the corresponding rate candidate
can certainly be excluded.

5.3 Summary

Identifying reliable kinetic models (and rate expressions) is one of the most challeng-
ing tasks in the modeling of chemical reaction systems. The extent-based incremental
model identification approach has been introduced in the literature as an alternative to
the computationally expensive simultaneous model identification. In the incremental
approach, each rate process is modeled independently of each other. This chapter has
provided an alternative model identification procedure for chemical reaction systems
that combines the advantages of the incremental and simultaneous model identifica-
tions.

In the sequential model identification, the rate expressions for the different reaction
steps of the system are identified one after the other. But, unlike the incremental
approach, the rate expression that has been identified for a reaction step is then used to
identify the rate expression for the next reaction step. Moreover, this chapter has shown
that the bias due to interpolation is reduced at each step of the sequential identification
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approach. The sequential model identification procedure has been illustrated via the
simulated example of the acetoacetylation of pyrrole system.





Chapter 6

State Reconstruction and Estimation

Chapter 4 introduced the data reconciliation procedure in terms of the numbers of
moles and the vessel extents for the case where all the species in a reaction system
are measured. We assumed in Chapter 5 that the numbers of moles of all the species
are available for kinetic model identification. While it is reasonable to expect these
assumptions to be valid in the process development phase, only a subset of species are
usually measured during process operation. The numbers of moles or concentrations of
the unmeasured species must be inferred from the measured species. In this chapter,
we propose two different methodologies for reconstructing the numbers of moles of the
unmeasured species, while at the same time improving the accuracy of the measured
species:

• State reconstruction: In this case, the conditions under which the numbers of moles
of the unmeasured species can be reconstructed without using kinetic information
are introduced.

• State estimation: In this case, the procedure of estimating the numbers of moles of
the unmeasured species using a kinetic model and the measured numbers of moles
are discussed.

For pedagogical reasons, this chapter discusses only the homogeneous reaction system
as the corresponding extension to heterogeneous reaction system is straightforward.
The chapter is organized as follows. Section 6.1.1 discusses the state reconstruction
procedure using the formulation in terms of numbers of moles, while Section 6.1.2 deals
with the corresponding procedure in terms of vessel extents. Section 6.2 compares the
state estimation procedure in terms of both formulations.

6.1 State Reconstruction

In this section, we first discuss the state reconstruction procedure in terms of numbers
of moles and in terms of vessel extents.

93
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6.1.1 State reconstruction in terms of numbers of moles

Let ña(th) = ntrue,a(th) + εna
denote the Sa-dimensional vector of noisy numbers of

moles measured at the time instant th, th ∈ [t1, tH ], where εna
is an Sa-dimensional

vector of zero-mean Gaussian noise with the constant variance-covariance matrix Σna
.

Assumption 6.1
Let NT, Win, n0, uin(th) and uout(th) be known without any errors.

If Sa ≥ d, the numbers of moles ñu(th) of the Su, unmeasured species can be recon-
structed using qu = Su invariant relationships as follows:

ñu(th) = −(PT

u)
+PT

a ña(th), (6.1)

where, Pa is the Sa × qu submatrix of the invariant matrix P corresponding to the Sa

measured species, and Pu is the Su×qu submatrix corresponding to the Su unmeasured
species.

Remark 6.1
If Sa > d, then qa = Sa− d invariants denoted Ia are available for DR, and qu = q− qa
invariants denoted Iu are used to reconstruct the unmeasured states using Eq. (6.1).
In this case, the reconciliation problem can be formulated as follows:

n̂a

(
t1:H) = arg min

na(t1:H)

H∑
i=1

(
ña(ti)− na(ti)

)
T
Wa(ti)

(
ña(ti)− na(ti)

)
(6.2)

s.t. Ia

(
na(t1:H)

)
= 0qa×H (Invariant constraints - measured states)

Kn,a

(
na(t1:H)

)
≤ 0kn,a×H (Knowledge-based constraints - measured states)

Kn,u

(
nu(t1:H)

)
≤ 0kn,u×H (Knowledge-based constraints - unmeasured states)

Mn

(
na(t1:H)

)
≤ 0mn×H (Measurement-based constraints)

n(t1:H) ≥ 0S×H , (Positivity constraints)

with n̂a

(
t1:H

)
= [n̂a(t1), . . . , n̂a(tH)] and n̂u

(
t1:H

)
= [n̂u(t1), . . . , n̂u(tH)] the sequences

of reconciled measured and unmeasured numbers of moles, respectively.

Remark 6.2
If Sa = d, then qa = 0 and qu = q, so that only the Iu invariant relationships can
be used for reconstructing the unmeasured states. Nevertheless, in this case also, the
shape constraints can be used to smooth the Sa measured states.

Remark 6.3
If Sa < d, then the numbers of moles of the unmeasured species cannot be reconstructed
using this approach.
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6.1.2 State reconstruction in terms of vessel extents

Under assumption 6.1, let Na denote the R× Sa submatrix of N corresponding to the
Sa measured species. If Na has rank R, i.e. Sa ≥ R, the numbers of moles of the
remaining Su species can be reconstructed without knowledge of reaction kinetics using
the following steps:

1. Compute the vessel extent of inlets xin(th) and initial conditions xic(th) by integrat-
ing Eqs. (3.10b) and (3.10c):

ẋin(t) = uin(t) − uout(t)

m(t)
xin(t) xin(0) = 0p

ẋic(t) = −uout(t)

m(t)
xic(t) xic(0) = 1

ṁ(t) = 1T

puin(t)− uout(t) m(0) = m0.

(6.3)

2. Compute the numbers of moles of the measured species in the vessel reaction-variant
form:

ñvRV

a (th) = ña(th)−Win,axin(th)− na,0 xic(th). (6.4)

3. Compute the vessel extents of reactions using:

x̃r(th) = (NT

a)
+ nvRV

a (th). (6.5)

4. The numbers of moles of the unmeasured species can be reconstructed as:

ñu(th) = NT

ux̃r(th) +Win,uxin(th) + nu,0 xic(th). (6.6)

Remark 6.4
The vessel extents of reaction computed in Step 3 above can also be computed in a
data-reconciliation formulation constrained by shape constraints as:

x̂r(t1:H) = arg min
xr(t1:H)

H∑
i=1

(
ñvRV

a (ti)− nvRV

a (ti)
)

T
Wa(ti)

(
ñvRV

a (ti)− nvRV

a (ti)
)
(6.7)

s.t. nvRV

a (t1:H) = NT

a xr(t1:H)

Kx

(
xr(t1:H)

)
≤ 0kx×H (Knowledge-based constraints)

Mx

(
xr(t1:H)

)
≤ 0mx×H (Measurement-based constraints)

na(t1:H) ≥ 0Sa×H and x(t1:H) ≥ 0d×H . (Positivity constraints)
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with x̂r(t1:H) = [x̂r(t1), . . . , x̂r(tH)] the sequences of reconciled extents of reaction.

Asymptotical observer - Unknown initial conditions

Next, let us assume that there is significant uncertainty in the initial numbers of moles
of the unmeasured species denoted by n̄u,0. Let n̄u(th) and ñu(th) denote the estimated
number of moles with the uncertain initial conditions and the estimated numbers of
moles with the correct initial conditions

Proposition 6.1
The estimation error e(th) := n̄u(th) − ñu(th) converges asymptotically to zero in the
presence of an outlet flow.

Proof: (NT

a)
+ represents the Moore-Penrose pseudo-inverse of NT

a. This pseudo-inverse
exists and is unique if Na has rank R. It follows that the estimation error e(th) :=
n̄u(th)− ñu(th) can be evaluated from (6.6) as:

e(th) = xic(th) e(0). (6.8)

Computing the time derivative of the error and using the expression in Eq. (3.10c) for
ẋic(th) gives:

ė(t) = ẋic(t) e(0) = −uout(t)

m(t)
xic(t) e(0)

= −uout(t)

m(t)
e(t) e(0) = n̄u(0)− nu,0 .

(6.9)

Hence, the estimation error goes asymptotically to zero if uout(t) �= 0. ��

6.2 State Estimation

In this part of the chapter, we give the procedure for improving the quality of measured
signals and reconstructing the unmeasured signals using kinetic information. We show
that the knowledge based constraints (K) developed in Chapter 4 in terms of numbers
of moles and in terms of vessel extents can be used to enhance the quality of the
state estimates compared to the estimation without these constraints. First, we give a
procedure for identifying measurement-based shape constraints using measurements and
kinetic models. For the sake of simplicity, this procedure is presented in the context
of the extent domain, but it can also be applied in the concentration domain. The
procedure is as follows:
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6.2.1 Measurement-based constraints

1. Using Eq. (3.10) and noting that rv is a function of x, where x =

[
xr(t)
xin(t)
xic(t)

]
, express

the first and second time derivatives of the extents analytically in terms of x, uin

and ω.

2. Select a time window T of size N .

3. Compute the extents x̃(th) = T ñ(th) in the time window T from the measured
numbers of moles ñ(th)

1.

4. Estimate the first and second derivatives of each extent using the analytical expres-
sions in Step (1), that is, ˙̃xi(th) and ¨̃xi(th), i = 1, . . . , d, th ∈ T.

5. Design shape constraints based on the sign of the estimated second derivatives:

• if ¨̃xi(th) ≥ 0, ∀th ∈ T, then x̃i(t) is convex on T, and stop the procedure;

• if ¨̃xi(th) ≤ 0, ∀th ∈ T, then x̃i(t) is concave on T, and stop the procedure;

• if ¨̃xi(th) changes sign on the time window T, reduce the size of the time window
and go back to Step (2); however, if N is already small with regard to the window
size that is necessary to handle measurement noise, no convex/concave shape can
be imposed and proceed to Step (6) to investigate the existence of monotonicity
constraints.

6. Design shape constraints based on the sign of the estimated first derivatives:

• if ˙̃xi(th) ≥ 0, ∀th ∈ T, then x̃i(t) is monotonically increasing on T, and stop the
procedure;

• if ˙̃xi(th) ≤ 0, ∀th ∈ T, x̃i(t) is monotonically decreasing on T, and stop the
procedure;

• in case ˙̃xi(th) changes sign on the time window T, there are no observable shape
constraints; however, the nonnegative properties of x̃in(t), x̃ic(t), and of x̃r(t)
for irreversible reactions remain valid.

6.2.2 System representation

For state estimation in a stochastic framework, it is necessary to extend the system
representations in terms of numbers of moles given in Section 2.1.2 and in terms of

1 The extents can also be computed using the data reconciliation procedure described in Chapter 4.
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vessel extents given in Section 3.1.3 with measurement equations and both process and
measurement noises.

System representation: Numbers of moles

Since the dimensionality of the reaction system is d and not S, it is possible to use
the invariant relationships to rewrite Eq. (2.6) in terms of d independent species. The
dynamic model can then be rewritten as:

ṅ1(t) = NT

1rv(t) +Win,1uin(t)− ω(t)n1(t), n1(0) = n01 (6.10a)
n2(t) = −(P2)P

+
1 n1(t), (6.10b)

where n1 is the d-dimensional vector of independent species, n2 the q-dimensional vector
of dependent species, N1 is the R × d subset of the stoichiometric matrix, Win,1 the
d × p subset of inlet compositions, n01 the d-dimensional vector of initial conditions,
P2 is the q × q subset of P corresponding to the dependent species and P1 the d × q
subset of P corresponding to the independent species. Note that the set of independent
species are chosen such that rank of the matrix [NT

1 Win,1 n01] = d. The system can
be written in an stochastic form as:

ṅ1(t) = NT

1rv(t) +Win,1uin(t)− ω(t)n1(t) +wn1(t), n1(0) = n01 (6.11a)

y(t) =

[
Id

−(P2)P
+
1

]
n1(t) +wy(t) (6.11b)

The S-dimensional measurement vector y contains the measured numbers of moles. The
term wy represents Gaussian white measurement noise of covariance Qy. The term wn1

is a Gaussian random variable with zero-mean and constant variance-covariance matrix
Qn. Note, in the previous chapters, the variance-covariance matrix was denoted by Σn.

System representation: Vessel extents

For System (3.10), one can write:

ẋr(t) = rv(t) − ω(t)xr(t) +wr(t), xr(0) = 0R (6.12a)
ẋin(t) = uin(t) − ω(t)xin(t) +win(t), xin(0) = 0p (6.12b)
ẋic(t) = −ω(t)xic(t) + wic(t), xic(0) = 1 (6.12c)
y(t) = NT xr(t) +Winxin(t) + n0xic(t) +wy(t). (6.12d)

The terms wr, win and wic are Gaussian random variables with zero-mean and constant
variance-covariance Qr, Qin, and qic, respectively.
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6.2.3 Receding-horizon nonlinear Kalman filter

In this section, the RNK filter equations are developed for the formulation in terms
of extents. The corresponding equations in terms of numbers of moles can be written
similarly and are not discussed here. In Section 6.2.3.1, the RNK filter equations are
derived purely for a state estimation problem with no model adjustment, while Section
6.2.3.2, discusses simultaneous state estimation and model adjustment.

6.2.3.1 State estimation

Here, it is assumed that Assumption 6.1 is valid. For ease of notation, the right-hand
sides of Eqs. (6.12a)–(6.12c) are defined as fr(·), fin(·) and fic(·) and are aggregated
to the d-dimensional vector fx(·); similarly, the block-diagonal covariance matrix Qx is
formed:

x =

⎡
⎢⎣xr

xin

xic

⎤
⎥⎦ , fx(·) =

⎡
⎢⎣ fr(·)
fin(·)
fic(·)

⎤
⎥⎦ ,Qx =

⎡
⎢⎣Qr 0 0

0 Qin 0

0 0 qic

⎤
⎥⎦ . (6.13)

The RNK filter implements the prediction and update steps over a time window. Some
important aspects of the RNK filter are briefly discussed next.

Prediction step

Given the state vector x(th|th), one computes the a priori estimate
x(th+1|th), . . . ,x(th+N |th) for the time window T of length N using the state
evolution described by Eqs. (6.12a)-(6.12c). Let the (Nd)-dimensional vector xT|th
contain all the concatenated states, i.e., xT|th :=

[
x(th+1|th)T, · · · ,x(th+N |th)T

]
T

. The
prediction step is also called ‘open-loop’ estimation.

An a priori estimate of the covariance matrix PT|th of dimension (Nd × Nd) is given
by

PT |th =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pth+1|th P(th+1th+2)|th · · · P(th+1th+N )|th
P(th+1th+2)|th Pth+2|th · · · P(th+2th+N )|th

.

.

.
.
.
.

. . .
.
.
.

P(th+1th+N )|th · · · · · · Pth+N |th

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the diagonal elements represent the variances of the predicted states and the off-
diagonal elements represent the covariance between predicted states. The elements of
the matrix PT|th are estimated from P(th|th) using the following iterative relationships
[61]:

Pth+N |th = AT

th+N−1
Pth+N−1|thAth+N−1

+Qx

P(th+N−1)(th+N )|th = P(th+N−1)(th+N−1)|thA
T

th+N−1
.
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The recursion is initialized using

Pth+1|th = AT

thPth|thAth +Qx,

where Ath := e{
∂fx
∂x |

x(th|th)
} is the linearization matrix of the differential equations

(6.12a)–(6.12c).

Update step

Given the N measured outputs yT :=
[
y(th+1)

T, . . . , y(th+N )T
]
T, the update step

of RNK is formulated as a constrained optimization problem, whose solution is the a
posteriori state estimate xT|th+N

:=
[
x(th+1|th+1)

T, . . . , x(th+N |th+N )T
]
T. With the

introduction of the quantities α := xT|th+N
−xT|th and β := yT − fy

(
xT|th

)
, the update

step can be formulated as the following constrained optimization problem:

min
xT|th+N

αTP−1
T|thα+ βTQ−1

y β

s.t. K(xT|th+N
) ≤ 0kx

,

M(xT|th+N
) ≤ 0mx

,

xT|th+N
≥ 0Nd ,

where K(·) denotes the kx applicable knowledge-based constraints and M(·) denotes
the mx applicable measurement-based constraints.

The a posteriori covariance matrix PT|th+N
is computed as follows [61]:

KT|th+N
= PT|thCT|th (CT|th PT|th CT

T|th +Qn)
−1 (6.14)

PT|th+N
= (I−KT|th+N

CT|th )PT|th , (6.15)

where CT|th is the linearized measurement equation obtained at xT|th . At the end of
this prediction-update step, the scheme is repeated for the next time window of length
N , that is, from th+2 to th+N+1. Note that, in the absence of constraints, the RNK
filter reduces to a traditional EKF filter.

6.2.3.2 Model adjustment

In the formulation of the state estimator in terms of vessel extents, the measurement
equation y(t) is a function of the initial numbers of moles n0. In practice, the initial
numbers of moles n0 are almost always uncertain. Additionally, the model parame-
ters (θ) estimated in the process development phase need not correspond to the actual
parameter values during production. In such a case, the RNK problem can be for-
mulated as a simultaneous state (extents) and parameter (n0,θ) estimation problem.
Let p = [ n0

θ ]. The parameters to be estimated are defined as pseudo-states with zero
dynamics, i.e.,
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p(th+1) = p(th) +Qp,

where Qp is the variance-covariance matrix of the parameters to be estimated. The new
augmented vectors x, f(·) and the matrix Qx for this case can be defined as,

x =

⎡
⎢⎢⎢⎢⎣
xr

xin

xic

p

⎤
⎥⎥⎥⎥⎦ , fx(·) =

⎡
⎢⎢⎢⎢⎣
fr(·)
fin(·)
fic(·)
0

⎤
⎥⎥⎥⎥⎦ ,Qx =

⎡
⎢⎢⎢⎢⎣
Qr 0 0 0

0 Qin 0 0

0 0 qic 0

0 0 0 Qp

⎤
⎥⎥⎥⎥⎦ . (6.16)

The prediction and update steps of the RNK filter can now be applied to this augu-
mented system.

6.3 Simulated Example

This section uses a simulated example and RNK to compare the performance of con-
strained state estimation in terms of numbers of moles and in terms of extents. For
simplicity, we do not illustrate the model adjustment procedure.

Reaction system

Consider the following two-reaction system,

R1 : A+B → C r1 = k1 cA cB (6.17)
R2 : A+ C → D r2 = k2 cA cC . (6.18)

The reaction system is simulated in a semi-batch reactor with k1 = 0.5 and k2 = 0.3,
both in units L mol−1 min−1, V = 1 L, nA0 = 5 mol, and nB0 = nC0 = 0 mol. The
initial numbers of moles are assumed to be known. Species B is fed to the reactor with
an inlet flowrate of 5 g min−1. Species A, B and D are chosen as the independent
species in the mole domain. The numbers of moles of species C are obtained using the
invariant relation:

nC(t) = nA0 + nC0 + 2nD0 − nA(t)− 2nD(t).

It is assumed that the numbers of moles of species A, B and D are measured every
minute for 50 minutes. The simulated numbers of moles are corrupted with Gaussian
white noise with the following measurement variance-covariance matrix:

Qy =

⎡
⎢⎣0.0806 0 0

0 0.0106 0

0 0 0.0553

⎤
⎥⎦ .

The flowrate and the volume are assumed to be perfectly known.
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RNK filter in terms of numbers of moles

The differential equations are written as:

ṅA(t) = − k̄1

V (t)nA(t)nB(t)− k̄2

V (t)nA(t)nC(t) + wn,A (6.19a)

ṅB(t) = − k̄1

V (t)nA(t)nB(t) + win,Buin(t) + wn,B (6.19b)

ṅD(t) =
k̄2

V (t)nA(t)nC(t) + wn,C , (6.19c)

with the (incorrect) parameter values k̄1 = 0.75 and k̄2 = 0.5. The process noise matrix
wn is assumed to be zero-mean and have the covariance matrix,

Qn =

⎡
⎢⎣0.1 0 0

0 0.025 0

0 0 0.025

⎤
⎥⎦ .

The following constraints are known from prior knowledge:

• nA(t) is monotonically decreasing,

• nD(t) is monotonically increasing.

Furthermore, concave and convex constraints on all species are obtained from measure-
ments using a window size N = 10.

RNK filter in terms of extents

The differential equations in the extent domain read:

ẋr,1(t) =
k̄1

V (t)

(
nA0 − xr,1(t)− xr,2(t)

)(
winxin(t)− xr,1(t)

)
+ wxr,1

(6.20a)

ẋr,2(t) =
k̄2

V (t)

(
nA0 − xr,1(t)− xr,2(t)

)(
xr,1(t)− xr,2(t)

)
+ wxr,2

(6.20b)

ẋin(t) = uin(t) + wxin. (6.20c)

The process noise matrix wx is zero-mean and has the covariance matrix Qx computed
from Qn:

Qx =

⎡
⎢⎣0.125 0.025 0

0.025 0.025 0

0 0 ε

⎤
⎥⎦ ,

with ε → 0 (the flowrate is perfectly known). For numerical reasons, ε is set to 10−5.

The following constraints are known:
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• xr,1(t) is concave,

• xr,2(t) is monotonically increasing,

• xin(t) is monotonically increasing.

Furthermore, concave and convex constraints on xr,2(t) and xin(t) are obtained from
measurements using the window size N = 10.

Results and Discussion

First, the performance of the two state estimators is compared using only constraints
based on prior knowledge. The sum of squares of the errors between the true numbers
of moles and the measured and estimated values are given in Table 6.1.

Table 6.1 Sum of squared errors for the unconstrained and estimated numbers of moles using
an RNK filter formulated in numbers of moles (n) and in extents (x), and knowledge-based
constraints.

Species Unconstrained RNK estimation
via n via n via x

A 0.96 0.44 0.10
B 0.19 0.13 0.06
C 1.98 0.63 0.27
D 0.52 0.21 0.12

Table 6.1 clearly shows that the addition of shape constraints improves the estimates.
Furthermore, the performance is better in the extent domain than in the mole domain,
which can be attributed to the stronger shape constraints that can be imposed in the
extent domain.

Next, a similar comparison is done for the case where the shape constraints are deter-
mined from both prior knowledge and measurements. Table 6.2 lists the corresponding
sum of squared errors. The corresponding simulated and estimated numbers of moles
of A and D are shown in Fig. 6.1 for the formulation in terms of extents.

Table 6.3 shows that the performance of both estimators is improved in the presence
of shape constraints obtained from measurements. The effectiveness of measurement-
based constraints depends on the quality of the measured data, since the procedure
relies on the computation of first and second derivatives of noisy measurements. At the
limit, when the noise is too large, it might be impossible to apply shape constraints via
measurements, and only the constraints from prior knowledge remain valid.
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Figure 6.1 True (- -), measured ( ◦ ) and estimated number of moles obtained by RNK esti-
mation via formulation in terms of extents for species A and D(×) with constraints based on
prior knowledge and measurements.

Table 6.2 Sum of squared errors for the measured and estimated numbers of moles using an
RNK filter formulated in numbers of moles (n) and in extents (x), and both knowledge-based
and measurement-based constraints.

Species Unconstrained RNK estimation
via n via n via x

A 0.96 0.27 0.06
B 0.19 0.07 0.04
C 1.98 0.37 0.26
D 0.52 0.13 0.10

6.4 Summary

This chapter has shown the procedure for reconstructing the numbers of moles of the
unmeasured species without and with kinetic information. In the first part, a procedure
for state reconstruction using the numbers of moles and vessel extents, in the absence
of kinetic model, has been discussed. Next, the formulation of the state estimation
problem in terms of numbers of moles and in terms of vessel extents have been compared.
Furthermore, the addition of shape constraints to the state estimation problem has been
shown to improve the accuracy of the estimated state variables. An alternate procedure
for estimating these additional shape constraints from measurements has also been
presented and demonstrated via a simulated example.



Chapter 7

Conclusions

7.1 Summary of Main Results

This section briefly summarizes the important results of each chapter in this dissertation
along with some important questions that are worth investigating in the future.

Vessel Extents

A number of representations of chemical reaction systems exist in literature. In this the-
sis, we have shown that the representation of reaction systems in terms of vessel extents
helps improve and speed up the process development phase compared to the traditional
representation in terms of numbers of moles. At the same time, this representation gives
a better understanding of the chemical reaction system as each state depends on a single
rate process. A new linear transformation that converts the representation in terms of
numbers of moles to the representation in terms of vessel extents has also been intro-
duced. This dissertation has introduced the representation in terms of vessel extents for
homogeneous reaction systems with heat exchange via jacket. This representation has
also been extended to multi-phase reactions sytems with mass transfer between phases.

Data Reconciliation

Data reconciliation uses redundancies expressed as relationships between state variables
to reduce the noise in measured data. For chemical reaction systems, these relationships
are derived from material and energy balance equations. This thesis has proposed
a systematic procedure to derive these constraints for homogeneous and heterogeneous
reaction systems. These relationships are algebraic constraints, since they do not contain
information regarding past and future time instants.

This dissertation has also introduced the concept of shape constraints to provide dy-
namic information regarding the chemical reaction system in the absence of a kinetic
model. We have shown how to identify shape constraints, such as monotonicity and cur-
vature, on the numbers of moles and on vessel extents, which are constraints relating
measurements over several time instants. Conditions under which these constraints are
valid based on prior knowledge have been proposed. Furthermore, it has been shown
that the alternative formulation of the reaction system in terms of vessel extents helps
identify additional shape constraints.
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Chapter 4 illustrates the advantages of using the identified shape constraints for data
reconciliation. The higher number of constraints in the extent-based formulation leads
to better reconciliation in this formulation compared to the formulation in terms of vessel
extents. However, this dissertation has described knowledge-based constraints only for
the case of irreversible reactions. Furthermore, the variance-covariance matrix of the
reconciled estimates has been approximated using only equality constraints. Future
work could focus on:

• Deriving knowledge-based constraints for systems with reversible reactions. Also,
the impact of the inequality constraints on the variance-covariance matrix of the
reconciled estimates could be investigated.

Sequential Kinetic Modelling

Identifying reliable descriptions of kinetics and mass transport is one of the most chal-
lenging tasks in the modeling of chemical reaction systems. This dissertation has in-
troduced the extent-based sequential model identification approach, that combines the
advantages of the incremental and the simultaneous approaches. Also, we have intro-
duced a procedure to correct for the structural bias that could be introduced during the
kinetic modeling step. Future work could focus on the following:

• Designing experiments using the sequential model identification. Since, at every
step, a model is identified for each of the reactions, more specific experiments can
be formulated in order to improve the discrimination for the reaction under study.

State Reconstruction and Estimation

This dissertation has compared the formulation of the state estimation problem in
terms of numbers of moles and in terms of vessel extents. Further, the addition of
shape constraints to the state estimation problem has also been shown to improve the
accuracy of the estimated state variables. We have demonstrated that the formulation in
terms of vessel extents gives better estimates of the states compared to the formulation
in terms of numbers of moles. A procedure for estimating additional shape constraints
from measurements has also been presented and demonstrated via a simulated example.
Future work could focus on:

• The state estimation problem has been formulated in the Receding Horizon Nonlin-
ear Kalman Filter framework. Further investigations must be made by comparing
the performance of the two formulations in other frameworks such as the Moving
Horizon Estimator. Also, the performance of the state estimator has been illustrated
using simulated data; these methods should also be applied to process data in real
time.
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7.2 Outlook and Perspectives

The representation of chemical reaction systems in terms of vessel extents was intro-
duced in Chapter 3. The advantages of this representation for data reconciliation,
model identification and parameter estimation, as well as state estimation were inves-
tigated in Chapters 4, 5 and 6. This section focuses on some future applications of the
representation in terms of vessel extents.

Fault Diagnosis

Process monitoring and fault diagnosis techniques are used for controlling quality and
enforcing safety compliance in industrial processes [76, 77]. Processes are monitored by
comparing abstract or physical variables to set points representing Normal Operating
Conditions (NOC) and faults (AOC) are detected based on deviations from statistical
thresholds. The representation in terms of vessel extents, where each state variable
is a function of a single rate only, could provide a systematic way of identifying and
isolating process faults. Fault diagnosis using extents can possibly be conducted either
qualitatively or quantitatively.

• Qualitative approach: In this approach, the extents computed for the current batch
can be compared with either the extents computed in previous batches or to the
nominal values of the extents computed based on the process operation recipe. In
the case where there is no fault in the system, then the trends of vessel extents
should match with the expected trends. The approach using the operation recipe is
especially useful, for example, in fine chemical industries, where the process recipe
has to be followed exactly.

• Quantitative approach: In this approach, the extents computed from the current
batch can be compared with the extents predicted using a process model. The
most likely fault can then be estimated by using a statistical approach such as the
Generalized Likelihood Approach (GLR) [54].

Control

Various control structures for continuous stirred-tank reactors based on reaction variants
and extensive variables have been proposed in the literature [41, 78]. However, in the
absence of a kinetic model, there does not exist a systematic way of tackling the control
problem. One possible method is to compute the reaction rates from concentration and
temperature measurements via the concept of vessel extents and then use the computed
rates via a feedback linearization scheme for control [62].

For example, consider the temperature control problem in a homogeneous reactor with
heat exchange. Let Qs(t) be the desired trajectory of the heat signal and Q(t) be the
measured heat signal. Let the heat exchanged between the jacket and the reactor, qex(t),
be the manipulated variable using the following control law:
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qex(t) = v(t)− (−ΔH)Tr̂v(t)− ŤT

inuin(t) + ω(t)Q(t), (7.1)
v(t) = Q̇s(t) + γ(Qs(t)−Q(t)), (7.2)

where r̂(t) represents the estimated reaction rates obtained by differentiating the vessel
extents of reaction:

r̂v(t) = ẋr(t) + ω(t)xr(t) (7.3)

In this case, the feedback controller forces the control error e(t) := Qs(t) − Q(t) to
converge exponentially to zero at the rate γ. This approach can then also be extended
to handle the control of reactant and product concentrations, and simultaneous (multi-
variable) control of temperature and concentrations.

Optimization

The possibility of reducing the duration of the iterations of static real-time optimization
algorithms by applying the method of rate estimation and control using the concept of
extents can also be investigated. In the context of real-time optimization of continuous
processes, the estimated rates could be used to predict the economic outcome of the
steady- state that corresponds to a given set of values of the decision variables, much be-
fore reaching that steady-state. Hence, this would allow fast convergence of continuous
reactors to their optimal operating conditions.



Appendix A

Data Reconciliation - Heterogeneous
Reaction Systems

In this chapter, the data reconciliation formulation for heterogeneous reaction systems
is presented. For the sake of simplicity, we assume that Sf,a = Sf , i.e., we assume all
the species in each phase is measured.

A.1 Reconciliation using Numbers of Moles

Data reconciliation in terms of numbers of moles is formulated as a weighted least-
squares optimization problem constrained by the invariant relationships If , the
knowledge-based constraints Knf

, the measurement-based constraints Mnf
, and posi-

tivity constraints. The reconciliation problem can be formulated as follows:

n̂f

(
t1:H) = arg min

nf (t1:H)

H∑
i=1

(
ñf (ti)− nf (ti)

)
T
Wf (ti)

(
ñf (ti)− nf (ti)

)
(A.1)

s.t. I
(
nf (t1:H)

)
= 0q×H (Invariant constraints)

Knf

(
nf (t1:H)

)
≤ 0knf

×H (Knowledge-based constraints)

Mnf

(
n(t1:H)

)
≤ 0mnf

×H (Measurement-based constraints)

nf (t1:H) ≥ 0S×H , (Positivity constraints)

with n̂f

(
t1:H

)
= [n̂f (t1), . . . , n̂f (tH)] the Sf × H sequence of reconciled numbers of

moles, n̂f (th) the vector of reconciled numbers of moles at time th, h ∈ {1, . . . , H}, and
Wf (th) = Σ−1

nf
(th) the weighting matrix at time th.

A.2 Reconciliation using Extents

Data reconciliation in terms of extents is formulated as a weighted least-squares op-
timization problem constrained by the knowledge-based Kxf

, the measurement-based
constraints Mxf

, and positivity constraints. The reconciliation problem can be formu-
lated as follows:
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x̂f (t1:H) = arg min
xf (t1:H)

H∑
i=1

(
ñf (ti)− nf (ti)

)
T
W(ti)

(
ñf (ti)− nf (ti)

)
(A.2)

s.t. nf (t1:H) = Bxf (t1:H)

Kxf

(
xf (t1:H)

)
≤ 0kxf

×H (Knowledge-based constraints)

Mxf

(
xf (t1:H)

)
≤ 0mxf

×H (Measurement-based constraints)

nf (t1:H) ≥ 0S×H , (Positivity constraints)

with df × H dimensional x̂f (t1:H) :=

⎡
⎣ x̂r,f (t1:H)

x̂m,f (t1:H)
x̂in,f (t1:H)
x̂ic,f (t1:H)

⎤
⎦, and x̂r,f (t1:H) =

[x̂r,f (t1), . . . , x̂r,f (tH)], x̂m,f (t1:H) = [x̂m,f (t1), . . . , x̂m,f (tH)], x̂in,f (t1:H) =
[x̂in,f (t1), . . . , x̂in,f (tH)] and x̂ic,f (t1:H) = [x̂ic,f (t1), . . . , x̂ic,f (tH)] the sequences
of reconciled extents of reaction, mass transfer, inlet and initial conditions, respectively.
Note that the qf invariant constraints are implicitly satisfied in this formulation since
the invariants xiv,f are set to zero (and hence absent) in x̂f (t1:H).



Appendix B

Sequential Model Identification -
Heterogeneous reaction system

In this appendix, the sequential model identification procedure is extended to the het-
erogeneous reaction systems. In this case, models must be identified for the Rf reactions
and pm mass transfers in phase F. For the sake of generality, we define χf =

[ xr,f
xm,f

]
as

the (Rf + pm)-dimensional vector of the extents of reaction and mass transfer in phase
F and its dynamics as:

χ̇f (t) = ϕf (t)− ωf (t)χf (t), χ(0) = 0Rf+pm
(B.1)

with ϕf :=
[
rv,f

ζf

]
the (Rf + pm)-dimensional vector of rate expressions to model.

Similarly, let us define the dynamics of μf =
[ xin,f
xic,f

]
as:

μ̇f (t) =
[ uin,f

0

]
− ωf (t)μf (t), μf (0) =

[
0pf

1

]
(B.2)

Also, let us introduce Mnf
= {Mnf , 1, . . . ,Mnf ,Rf+pm

} the set of all M =
∑Rf+pm

k=1 Mk

candidate models for the R reactions and pm mass transfers expressed in terms of
numbers of moles, and Mχf

= {Mχf ,1, . . . ,Mχf ,Rf+pm
} the corresponding set in terms

of extents.

B.1 Extent-based Sequential Model Identification (SMI)

The algorithm for the extent-based sequential model identification procedure is de-
tailed in Algorithm 4. In Step 3, the vessel extents of reaction and extents of mass
transfer are sorted based on the order in which they are to be modeled. The func-
tion ϕ

(mk)
x,f,k

(
χ
(mk)
f,k (t),χ

(m∗
i )

f,I (t), χ̂f,J (t),μf (t),θ
(mk)
f,k

)
is a function of five arguments: (i)

the kth extent that is being modeled, χ(mk)
f,k (t), (ii) the k − 1 extents that have been

modeled, χ
(m∗

I)
f,i (t), with I = {1, 2, . . . , (k − 1)}, (iii) the Rf + pm − k extents that

have not been modeled yet and are provided as interpolated quantities, χ̂f,J (t), with
J = {k + 1, . . . , Rf + pm}, (iv) the extents of inlet and of initial conditions, μf (t),
and (v) the adjustable model parameters of the kth reaction, θ(mk)

f,k . Note that, in the
formulation of Eq. (5.8), the parameters of the first k models are estimated simultane-
ously.
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Algorithm 4 Extent-based sequential model identification for heterogeneous system
(SMI)

Step 1: Compute xin,f (t), xic,f (t) and n̂vRMV

f (t) using Eqs. (3.39c), (3.39d) and
(3.42)
Step 2: Compute χ̂f (t) for all the Rf + pm rate processes using Eq. (3.43)
Step 3: Sort the computed extents in χ̂f based on the order in which they will be
modeled.
Step 4: The model identification task is carried out by postulating rate expressions
for each rate process sequentially (one after the other). Let the subscript k denote
the rate process being modeled, i the set of rate process that have been modeled and
j the set of rate process that will be modeled later. The model identification problem
for the Rf + pm reactions can be formulated as follows:
for k = 1, . . . , Rf + pm

i = {1, 2, . . . , k − 1}
j = {k + 1, k + 2, . . . , Rf + pm}
for mk = 1, . . . ,Mk[

θ
(m∗I) ∗
f,I

θ
(mk) ∗
f,k

]
= arg min

θ
(m∗I)

f,I ,θ
(mk)

f,k

J(θ
(m∗

I)

f,I ,θ
(mk)
f,k )

s.t. J =

H∑
h=1

([
χ̂f,I(th)

χ̂f,k(th)

]
−

[
χ

(m∗
f,I)

f,I (th)

χ
(mk)

f,k
(th)

])T

W1:k,f (th)

([
χ̂f,I(th)

χ̂f,k(th)

]
−

[
χ

(m∗I)

f,I (th)

χ
(mk)

f,k
(th)

])

χ̇
(m∗

I)

f,I (t) = V (t)ϕ
(m∗

I)

χ,I
(
χ
(mk)
f,k (t),χ

(m∗
I)

f,I (t), χ̂f,J (t),μf (t),θ
(mI)
f,I

)− ω(t)χ
(m∗

I)

f,I (t),

χ
(m∗

i )

f,i (0) = 0k−1

χ̇
(mk)
f,k (t) = V (t)ϕ

(mk)
x,k

(
χ
(mk)
f,k (t),χ

(m∗
I)

f,I (t), χ̂f,J (t),μf (t),θ
(mk)
f,k

)− ω(t)χ
(mk)
f,k (t),

χ
(mk)
f,k (0) = 0. (B.3)

end for

m∗
k = argmin

mk

{
J(θ

(m∗
f,I) ∗

f,I ,θ
(mf,k) ∗
f,k )

}Mk

mk=1
end for
with W1:k,f (th) the inverse of the first k-dimensional submatrix of the variance-
covariance matrix Σχf

at time th, and the vector quantities χ
(m∗

i )
f,I =[

χ
(m∗

1)

f,1 ,...,χ
(m∗

k−1
)

f,k−1

]
T, ϕ(m∗

i )
χ,I =

[
ϕ

(m∗
1)

χ,1 ,...,ϕ
(m∗

k−1
)

χ,k−1

]
T, χ̂f,J = [ χ̂f,k+1,...,χ̂f,Rf+pm ]T and θ

(m∗
i )

f,I =[
θ

(m∗
1),T

f,1 ,...,θ
(m∗

k−1
),T

f,k−1

]
T.



Appendix C

Reaction Systems with Instantaneous
Equilibria

Consider that among the Rf reactions in phase F of a heterogeneous reaction system,
Rf,k are kinetically controlled reactions and Rf,e are instantaneous equilibria, with
Rf = Rf,k + Rf,e. Note that the subscripts (·)k and (·)e refer to kinetically controlled
reactions and instantaneous equilibria, respectively.

Kinetic and equilibrium species: The set Sf can be partitioned into the set Sf,k

of kinetic species and the complementary set Sf,e of equilibrium species. The Sf,k

kinetic species are only involved in the Rf,k kinetically controlled reactions, that is, not
in the instantaneous equilibria. The Sf,e equilibrium species are involved in the Rf,e

instantaneous equilibria (and possibly in some of the kinetically controlled reactions).
Hence, Sf = Sf,k ∪ Sf,e and Sf = Sf,k + Sf,e.

Equilibrium components: An equilibrium component is a molecule constituent that
is conserved by instantaneous equilibria. The set Sf,c contains the Sf,c equilibrium
components that are found in Sf,e and whose total numbers of moles are conserved
in the instantaneous equilibria. The subscript (·)c in this appendix will be used to
indicate an equilibrium component that is conserved by the instantaneous equilibria.
The reduction of the Sf,e equilibrium species to the Sf,c equilibrium components is a
linear operation that can be represented by the matrix Ef of dimension Sf,c×Sf,e [45].

Example C.1 (Oxidation of Benzyl Alcohol with Hypochlorite)

To illustrate the notation, let us consider the instantaneous equilibrium reaction
Q++ OCl− � QOCl that has two equilibrium components labeled Qc (including
Q+ and QOCl) and OClc (including OCl− and QOCl). In this simple example, with
Sf,e = {Q+,OCl−,QOCl} and Sf,c = {Qc,OClc}, Ef =

[
1 0 1
0 1 1

]
. To continue with

this example, consider the aqueous phase (denoted as phase G) of the heterogeneous
oxidation of benzyl alcohol with hypochlorite:

Rg,1 : QCl � Q+ + Cl− (kinetically controlled) (C.1a)
Rg,2 : Q+ + OCl− � QOCl (fast) (C.1b)
Rg,3 : Q+ + Br− � QBr (fast) (C.1c)
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This reaction system in phase G consists of one kinetically controlled reaction
(Eq. C.1a) and two instantaneous equilibria (Eqs. C.1b and C.1c), thus giv-
ing Rg = 3, Rg,k = 1 and Rg,e = 2. The set of species in this phase is
Sg = {Cl−,QCl,Q+,OCl−,Br−,QOCl,QBr}, with the set of kinetic species Sg,k =
{Cl−,QCl} and the set of equilibrium species Sg,e = {Q+,OCl−,Br−,QOCl,QBr}.
The set of components Sg,c = {Qc,OClc,Brc} can be constructed from Sg,e using
the (3× 5) matrix Eg,

Eg =

⎡
⎢⎣1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

⎤
⎥⎦ .

For a reaction system consisting of both kinetically controlled and equilibrium reactions,
the balance equations for phase F can be written in two ways, namely, in terms of the
set of all species Sf as shown in section 2.2.1 or in terms of the kinetic species Sf,k and
the equilibrium components Sf,c, as discussed in the next subsection.

C.1 Balances for Kinetic Species and Equilibrium
Components

The Sf × Rf stoichiometric matrix NT

f can be partitioned into two sub-matrices, the
Sf,k ×Rf matrix NT

f,k associated with the Sf,k kinetic species and the Sf,e×Rf matrix
NT

f,e associated with the Sf,e equilibrium species:

NT

f =

[
NT

f,k

NT

f,e

]
. (C.2)

Similarly, the matrices Win,f and Wm,f are partitioned into sub-matrices that are
associated with the Sf,k kinetic species, Win,f,k and Wm,f,k , and the Sf,e equilibrium
components, Win,f,e and Wm,f,e:

Win,f =

[
Win,f,k

Win,f,e

]
, Wm,f =

[
Wm,f,k

Wm,f,e

]
. (C.3)

Considering that the numbers of moles of the equilibrium components can be written
as nf,c(t) = Ef nf,e(t), the mole balance equations for the Sf,k kinetic species and the
Sf,c components read:

[
ṅf,k(t)

ṅf,c(t)

]
︸ ︷︷ ︸

˙̄nf (t)

=

[
NT

f,k

EfN
T
f,e

]
︸ ︷︷ ︸

N̄T
f

rv,f (t) +

[
Wm,f,k

EfWm,f,e

]
︸ ︷︷ ︸

W̄m,f

ζf (t) +

[
Win,f,k

EfWin,f,e

]
︸ ︷︷ ︸

W̄in,f

uin,f (t)− ωf (t)

[
nf,k(t)

nf,c(t)

]
︸ ︷︷ ︸

n̄f (t)

, (C.4)
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where nf,k is the Sf,k-dimensional vector of numbers of moles of the kinetic species,
nf,c is the Sf,c-dimensional vector of numbers of moles of the equilibrium components,
and (̄·) indicates a quantity of dimension S̄f := Sf,k + Sf,c ≤ Sf . The initial conditions
for Eq. (C.4) are n̄f (0) =

[
nf,k(0)
nf,c(0)

]
=

[
nf,k0

nf,c0

]
.

The matrix N̄T

f of dimension S̄f × Rf has a special structure with only zeros in
the Rf,e columns corresponding to the instantaneous equilibria. This follows from the
way the kinetic species and the equilibrium components have been chosen, namely, (i)
the Sf,k kinetic species are only involved in the Rf,k kinetically controlled reactions
and not in the instantaneous equilibria, and (ii) the Sf,c equilibrium components
are conserved by the instantaneous equilibria and therefore all their corresponding
stoichiometric coefficients are zero. It follows that N̄T

f has rank Rf,k ≤ Rf , and the
columns corresponding to the instantaneous equilibria can be discarded.1 The resulting
matrix N̄T

f,k has dimension S̄f ×Rf,k and the vector rv,f reduces to rv,f,k of dimension
Rf,k. The mole balance equation (C.4) becomes:

˙̄nf (t) = N̄T

f,k rv,f,k(t) + W̄m,f ζf (t) + W̄in,f uin,f (t)− ωf (t) n̄f (t), n̄f (0) = n̄f0 .
(C.5)

Example C.1 (Oxidation of Benzyl Alcohol with Hypochlorite cont’d..)

To illustrate the matrix notation, consider the reaction system given by Eqs.
(C.1a) - (C.1c), with Rg = 3, Rg,k = 1, Rg,e = 2, Sg = 7, Sg,k = 2
Sg,e = 5 and Sg,c = 3. The stoichiometric matrix NT

g with respect to all species
(Cl−,QCl,Q+,OCl−,Br−,QOCl,QBr) can be written as:

NT

g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−1 0 0

1 −1 −1

0 −1 0

0 0 −1

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding stoichiometric matrix in terms of the kinetic species and the
equilibrium components is:

1 Because Rf,e columns of N̄T
f are equal to zero, Sf,c +Rf,e = Sf,e.
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N̄T

g =

[
NT

g,k

EgN
T

g,e

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

−1 0 0

1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The last two columns of the matrix N̄T

g corresponding to the equilibrium reactions
are all zeros and hence can be discarded, thus giving:

N̄T

g,k =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

C.2 Reaction Systems with Equilibrium Reactions

For reaction systems with equilibrium reactions, two different cases can be considered
for the system representation in terms of vessel extents .

1. In the first case, the extents are written in exactly the same way as the represen-
tation in Eq. (3.39). This includes extents for all reactions, that is there exists
extents of reactions for both both kinetically controlled and instantaneous equilib-
rium reactions, in addition to extents of mass transfers, inlets and initial conditions.
Note that the extents of equilibrium reactions capture the instantaneous shift in
concentrations caused by the equilibria. The transformation from vessel extents to
numbers of moles is performed using Eq. (3.40). The extents can be computed
from the concentrations of “all species” present in the reaction system using the
transformation described in Section 3.2.

2. In the second case, only the vessel extents of kinetically controlled reactions are
considered for the system representation in terms of vessel extents. The transforma-
tion from vessel extents to numbers of moles produces the numbers of moles of the
kinetic species and equilibrium components as shown in Eq. (C.7). The extents of
the kinetically controlled reactions can be computed from the numbers of moles of
the kinetic species and equilibrium components using the transformation shown in
Section C.2.1. These species represent the minimal set that is necessary to describe
both the kinetically controlled and the equilibrium reactions.
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C.2.1 Using vessel extents of kinetic reactions

The representation in terms of vessel extents can be written as:

ẋr,f,k(t) = rv,f,k(t)− ωf (t)xr,f,k(t), xr,f,k(0) = 0Rf,k

ẋm,f (t) = ζf (t)− ωf (t)xm,f (t), xm,f (0) = 0pm

ẋin,f (t) = uin,f (t)− ωf (t)xin,f (t), xin,f (0) = 0pf

ẋic,f (t) = −ωf (t)xic,f (t), xic,f (0) = 1

x̄iv,f (t) = 0q̄f .

(C.6)

Transformation from x to n̄: The numbers of moles of the kinetic species and
equilibrium components can then be obtained as

n̄f (t) = N̄T

f,k xr,f,k(t) + W̄m,f xm,f (t) + W̄in,f xin,f (t) + n̄f0 xic,f (t) . (C.7)

Transformation from n̄ to x: Let rank
([

N̄T

f,k ± W̄m,f W̄in,f n̄f0

])
= d̄f , with

d̄f := Rf,k + pm + pf + 1, and the S̄f × q̄f matrix P̄f denote the null space
of

[
N̄T

f,k ± W̄m,f W̄in,f n̄f0

]
T, with q̄f := S̄f − d̄f .2 Then, the matrix T̄f =[

N̄T

f,k W̄m,f W̄in,f n̄f0 P̄f

]−1 transforms the S̄f -dimensional vector of numbers of
moles n̄f of the kinetic species and equilibrium components into Rf,k extents of kinet-
ically controlled reaction xr,f,k, pm extents of mass transfer xm,f , pf extents of inlet
xin,f , one extent of initial conditions xic,f and q̄f invariants x̄iv,f that are identically
equal to zero, as ⎡

⎢⎢⎢⎢⎢⎢⎣

xr,f,k(t)

xm,f (t)

xin,f (t)

xic,f (t)

x̄iv,f (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ = T̄f n̄f (t) . (C.8)

Compared to the transformation matrix Tf , the matrix T̄f computes Rf,k reaction ex-
tents, as it only extracts extents corresponding to the kinetically controlled reactions.

2 q̄f = qf since Sf = Sf,k + Sf,e, Rf = Rf,k +Rf,e, and Sf,c +Rf,e = Sf,e.
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C.3 Simulated Example

The vessel extent representation for reaction systems with equilibria is illustrated via
the simulated example of the oxidation of benzyl alcohol by hypochlorite in a batch
reactor [6]. Two cases are considered, namely, (i) measurements of all species in both
phases, and (ii) measurements of the kinetic species and equilibrium components in the
phase where the instantaneous equilibria take place (phase G).

Reaction system and available measurements

The reaction system consists of an aqueous phase (labeled G) with one kinetically
controlled reaction and two instantaneous equilibria (Rg = 3, Rg,k = 1, Rg,e = 2):

Rg,1 : QCl � Q+ + Cl− (kinetically controlled) (C.9a)
Rg,2 : Q+ + OCl− � QOCl (fast) (C.9b)
Rg,3 : Q+ + Br− � QBr (fast) (C.9c)

and an organic phase (labeled L) with a single kinetically controlled reaction (Rl =
Rl,k = 1):

Rl : QOCl + C6H5CH2OH → QCl + C6H5CHO + H2O . (C.10)

The volume of both phases is assumed to be constant and equal to 0.5 L. The
mass-transfer resistance between the two phases is described by a thin film on each
side of the interface, under quasi steady-state conditions. The characteristics of these
two films – surface area, mass-transfer rate laws and parameters – are assumed to be
the same.

In the aqueous phase, cetyltrimethylammonium bromide (QBr) dissociates instanta-
neously to form the ions Q+ and Br− (Eq. C.9c). The Q+ ions react instantaneously
with the hypochlorite ions (OCl−) to form QOCl (Eq. C.9b), which transfers to the
organic phase. In the organic phase, benzyl alcohol (C6H5CH2OH) in excess reacts
with QOCl coming from the aqueous phase and forms benzyl aldehyde (C6H5CHO),
QCl and water. The species QCl formed in the organic phase transfers to the aque-
ous phase, where its dissociation in ions Q+ and Cl− (Eq. C.9a) is kinetically observable.

The reaction and mass-transfer rate expressions as well as the equilibrium con-
stants used for simulating the reaction schemes (C.9) and (C.10) are:
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rg(t) = kg,1 cQCl,g(t)− kg,2 cQ+,g(t) cCl−,g(t) (C.11)
rl(t) = kl cQOCl,l(t) (C.12)

ζQOCl(t) = km,QOCl Al Vl

(
cQOCl,g(t)− cQOCl,l(t)

)
(C.13)

ζQCl(t) = km,QCl Al Vl

(
cQCl,g(t)− cQCl,l(t)

)
(C.14)

Kg,2 =
cQOCl,g(t)

cQ+,g(t) cOCl−,g(t)
(C.15)

Kg,3 =
cQBr,g(t)

cQ+,g(t) cBr−,g(t)
(C.16)

with Al the specific interfacial area. The various sets of species present in this reaction
system are listed in Table C.1. Note that Sl,k = Sl with Sl,e and Sl,c empty. The Sg,e =

Table C.1 Sets of species and components involved in the oxidation of benzyl alcohol with
hypochlorite.

Set Species Dimension
Sl {QOCl, C6H5CH2OH, QCl, C6H5CHO, H2O} Sl = 5

Sl,k {QOCl, C6H5CH2OH, QCl, C6H5CHO, H2O} Sl,k = 5

Sl,e {∅} Sl,e = 0

Sl,c {∅} Sl,c = 0

Sg {Cl−,QCl,Q+,OCl−,Br−,QOCl,QBr} Sg = 7

Sg,k {Cl−,QCl} Sg,k = 2

Sg,e {Q+,OCl−,Br−,QOCl,QBr} Sg,e = 5

Sg,c {Qc,OClc,Brc} Sg,c = 3

Sm {QOCl, QCl} Sm = 2

5 equilibrium species in the aqueous phase G can be reduced to Sg,c = 3 equilibrium
components that represent the following conserved quantities:

cQc,g := cQ+,g + cQOCl,g + cQBr,g = cQ+,g

(
1 +Kg,2 cOCl−,g +Kg,3 cBr−,g

)
(C.17a)

cOClc,g := cOCl−,g + cQOCl,g = cOCl−,g

(
1 +Kg,2 cQ+,g

)
(C.17b)

cBrc,g := cBr−,g + cQBr,g = cBr−,g

(
1 +Kg,3 cQ+,g

)
, (C.17c)

where the concentrations of the equilibrium products cQOCl,g and cQBr,g have been
replaced by their expression obtained from the thermodynamic equilibrium (Eqs. C.15
and C.16). The values of the model parameters used in the simulation are given in
Table C.2.

The aqueous phase G is loaded with 0.125 kmol of OCl− in ionic form, 0.04 kmol of
QBr and 0.005 kmol of QCl. The initial amount of benzyl alcohol in the organic phase
L is 0.968 kmol. The numbers of moles in both phases are simulated for 10 min and all
the measured numbers of moles are corrupted with 2% zero-mean Gaussian noise with
respect to the maximal number of moles of each species.
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Table C.2 Kinetic, thermodynamic and surface parameters used in the simulation.

Parameter Value Unit Parameter Value Unit
kg,1 1.663× 10−2 s−1 kl 22.7 s−1

kg,2 2.5 m3 kmol−1 s−1 km,QOCl 8.02× 10−5 m s−1

Kg,2 1.157× 103 m3 kmol−1 km,QCl 8.91× 10−5 m s−1

Kg,3 0.235× 103 m3 kmol−1 Al 200 m−1

For the computation of extents, two situations with the following measurements are
considered: (Case 1) all species in both phases, (Case 2) all species in phase L and the
kinetic and equilibrium species in phase G.

Case 1: Measurement of all species

The extents are obtained from the measured numbers of moles using the transformations
Tl and Tg of Section 3.2.1. For phase L, Rl = 1 extent of reaction and pm = 2 extents
of mass transfers are extracted from the Sl = 5 measured numbers of moles. For phase
G, Rg,k = 1 extent of (kinetically controlled) reaction, Rg,e = 2 extents of equilibria,
and pm = 2 extents of mass transfers are extracted from the Sg = 7 measured numbers
of moles. The measured numbers of moles as well as the extents of reaction and mass
transfer are shown in Fig. C.1. Note that, since C6H5CH2OH is in large excess, its
concentration in the organic phase is constant and thus not shown. The amount of Q+

in the aqueous phase is also too small to be represented in Fig. C.1. In addition, since
the reaction system has no outlet (batch conditions), the extents of mass transfer xm,g

and xm,l are equal and opposite.

Case 2: Measurement of all species in phase L and of kinetic species and
equilibrium components in phase G

The extents are obtained using the transformation Tl of Section 3.2.1 for the organic
phase L and the transformation T̄g of Section C.2.1 for the aqueous phase G. For phase
L, Rl = 1 extent of reaction and pm = 2 extents of mass transfers are extracted from
the Sl = 5 measured numbers of moles. For phase G, Rg,k = 1 extent of (kinetically
controlled) reaction and pm = 2 extents of mass transfers are computed from the Sg,k+
Sg,c = 5 measured numbers of moles.
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Figure C.1 Case 1: Measurement of all species. (Top (a) and (b)) simulated (noise-free,
continuous lines) and measured (noisy, 2%) numbers of moles of species H2O (o), QCl (�) and
QOCl (	) in the organic phase and of species Cl− (o), QCl (�), OCl− (×), Br− (•), QOCl
(Δ) and QBr (�) in the aqueous phase; (center (c) and (d)) Experimental (computed from
measurements) and modeled (continuous and dashed lines) extents of reaction in the organic
phase, with xr,l (o), and in the aqueous phase, with xr,g,k (×), xr,g,e,1 (�) and xr,g,e,2 (o);
(bottom (e)) Experimental and modeled (continuous lines) extents of mass transfer of QOCl
(�) and QCl (o) in the organic phase.
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Figure C.2 Case 2: Measurement of all species in phase L and of kinetic species and equi-
librium components in phase G. (Top (a) and (b)) Simulated (noise-free, continuous lines) and
measured (noisy, 2%) numbers of moles of species H2O (o), QCl (�) and QOCl (	) in the
organic phase, and of kinetic species Cl− (o) and QCl (�) and equilibrium components Qc (�),
OClc (×) and Brc (	) in the aqueous phase; (center (c)) Simulated (continuous lines) and
reconstructed numbers of moles of the equilibrium species OCl− (×), Br− (•), QOCl (Δ) and
QBr (�) in the aqueous phase; (center (d) and bottom (e)) Experimental (computed from mea-
surements) and modeled (continuous lines) extents of (kinetically controlled) reaction in the
aqueous and organic phases; (bottom (f)) Experimental and modeled (continuous lines) extents
of mass transfer of species QOCl (�) and QCl (o) in the organic phase.
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C.4 Summary

The presence of fast reactions (instantaneous equilibria) affects the other rate processes
such as kinetically controlled reactions and mass transfers. This chapter has introduced
a procedure for decoupling the chemical reaction system with instantaneous equilibria
using the measurements of only the kinetic species and equilibrium components. This
allows the computation of the extents of only the kinetically controlled reactions, that
can then be modeled independently of the instantaneous equilibria. A detailed pro-
cedure for extent-based approach in the presence of instantaneous equilibria has been
documented by Srinivasan et al. [71].





Appendix D

Extent-based Calibration of Spectroscopic
Data

The recent development of Process Analytical Technologies (PAT) has opened up new
avenues for exploiting spectroscopic data, which indirectly provide non-destructive con-
centration measurements of the species in-situ/online during the course of a reaction
[80]. Accurate spectroscopic measurements are available at low cost and short sampling
times, and are free of any delay. In addition, most spectroscopic measurements can
be considered linear with respect to the concentrations of the absorbing species. The
technology of spectrometers and fiber-optic probes has improved significantly in recent
years. Furthermore, numerical methods facilitate the analysis of large sets of multivari-
ate data. For these reasons, online spectroscopic measurements are nowadays widely
used, probably more so than direct concentration measurements [65, 25].

In absorption spectroscopy, calibration models based on Principal Component Regres-
sion (PCR) [47] or Partial Least Squares (PLS) [37] are used to predict the concentra-
tions of absorbing species from an absorbance spectrum measured in a sample [31, 46].
Calibration involves two steps. In the calibration step, the calibration model is built
using pairs of measured concentrations and absorbance spectra. This construction re-
quires defining a certain number of latent variables that represent abstract building
blocks. In the prediction step, the calibration model is applied to the absorbance spec-
trum measured in a new sample to predict the concentrations of the calibrated species.

Since calibration models require that the new spectrum lies in the space spanned by
the calibration set (space-inclusion condition), it is important to properly design the
calibration set [3]. This condition translates the fact that the experimental conditions
used for the calibration set should mimic as much as possible the experimental conditions
of the prediction experiment, inter alia, in terms of concentration and temperature
ranges [38, 49]. One approach consists in preparing calibration samples of various
independent compositions and measuring the absorbance spectrum of each sample. The
resulting non-reacting calibration data are sometimes qualified as ‘static’ in the sense
that the composition of each calibration sample does not vary with time [79]. This
way of constructing the calibration set has the drawback that it requires numerous
calibration mixtures and that none of the calibration samples contains the short-lived
absorbing intermediates that are often found in real samples taken during the course of a
reaction. This can cause a more or less severe violation of the space-inclusion condition.
An alternative approach consists in taking calibration samples during the course of a
preliminary experiment, based on the chemical process at hand, and measuring pairs of

125
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concentrations and absorbance spectra for each of these samples. With such a design,
the intermediate species that are produced by the reactions are included, and the need to
vary them externally disappears [3]. Such a ‘dynamic’ calibration system is particularly
suitable for industry, where reference samples taken during the course of the reaction
under normal operating conditions are usually available and can be used for calibration.

When reacting calibration data are used, the calibration model can be constructed on
two types of calibration pairs. A first possibility consists in taking measured concentra-
tions and absorbance spectra as calibration pairs; in such a case, the calibration model
predicts concentrations from a new spectrum. Alternatively, the calibration model can
be constructed on pairs of concentration and spectroscopic measurements containing
only the reaction and mass-transfer contributions, that is, the contribution of the inlet
and outlet flows is removed from the measurements. The calculation of these pairs
requires the pretreatment of concentrations and spectroscopic data in so-called vessel
reaction- and mass-transfer-variant (vRMV) form.

In this Appendix, we show the procedure for calibrating and then predicting the con-
centrations using the vRMV - and the vRV - forms, for a two-phase reaction system
(G-L) with reactions only in phase L and steady-state mass transfer between phases.

D.1 Factorization of Spectroscopic Data from Reaction
Systems

The starting point of this quantitative analysis of spectroscopic data is Beer’s law.
Assume that an absorbance signal is measured in phase L by a spectrometer, which
produces data that have a linear response with respect to concentrations. Let a(t) be a
W -dimensional absorbance spectrum measured for a unit pathlength at W wavelengths
and at time t. Beer’s law allows writing:

a(t) = ET cl,a(t) (D.1)

where cl,a(t) is the Sa-dimensional vector of concentrations and E is the Sa×W matrix
containing the pure component spectra (molar absorptivities) of the Sa absorbing species
(Sa ≤ Sl). The subscript (·)a indicates a quantity associated with the absorbing species.

D.1.1 Standard factorization

The reconstruction of the numbers of moles nl(t) from the extents xr(t), xm,l(t), xin,l(t)
and xic,l(t) given in Eq. (3.40) can be used to compute the concentrations cl,a(t) of the
Sa absorbing species at time t:
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cl,a(t) =
1

Vl(t)

(
NT

a xr(t) +Wm,l,a xm,l(t) +Win,l,a xin,l(t) + nl0,a xic, l(t)
)

(D.2)

Combining Eqs. (D.1) and (D.2), together with nl0,a = cl0,a Vl0, leads to the so-called
factorization of spectroscopic data [2, 3] given by:

a(t) =
1

Vl(t)

(
ET NT

a xr(t) +AT

m
xm,l(t) +AT

in
xin,l(t) + a0 Vl0 xic,l(t)

)
(D.3)

with AT

m
= ETWm,l,a the W × pm spectra of the species transferring between the two

phases (mass-transfer spectra), AT

in
= ETWin,l,a the W × pl spectra of the inlet flows

(inlet spectra) and a0 = ETcl0,a the W -dimensional initial spectrum.

D.1.2 Factorization in vRMV-form

Similarly to Eq. (3.42), if the inlet and outlet flow rates uin,l(t) and uout,l(t) and the mass
ml(t) of the reaction mixture are known, the extents xin,l(t) and the variable xic(t) can
be calculated by integration of the differential equations (3.39c) and (3.39d). It follows
that, if Vl(t), Win,l,a and nl0,a are also known, Eq. (D.2) can be written in RMV-form
as:

cvRMV

l,a (t) := cl,a(t)−
1

Vl(t)

(
Win,l,a xin,l(t) + nl0,a xic,l(t)

)
=

1

Vl(t)
[NT

a Wm,l,a ]
[

xr(t)
xm,l(t)

]
(D.4)

In addition, if the initial spectrum a0 and the inlet spectra Ain are known, Eq. (D.3)
can be rearranged in vRMV-form that accounts only for the spectroscopic contributions
of the reactions and mass transfers:

avRMV (t) := a(t)− 1

Vl(t)

(
AT

in
xin,l(t) + a0 Vl0 xic,l(t)

)
=

1

Vl(t)
[ETNT

a AT
m ]

[
xr(t)
xm,l(t)

]
(D.5)

D.1.3 Factorization in RV-form

When the pm extents of mass transfer are calculated from the numbers of moles measured
in gas phase, the concentration and spectroscopic contributions of the mass transfers
can be subtracted from Eqs. (D.4) and (D.5), which leads to the following equations:

cvRV

l,a (t) := cl,a(t)−
1

Vl(t)

(
Win,l,axin,l(t) + nl0,axic,l(t) +Wm,l,axm,l(t)

)
=

1

Vl(t)
NT

a xr(t)

(D.6)
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avRV (t) := a(t)− 1

Vl(t)

(
AT

in
xin,l(t) + a0 Vl0 xic,l(t) +AT

m
xm,l(t)

)
=

1

Vl(t)
ET NT

a xr(t)

(D.7)

Eqs. (D.6) and (D.7) represent the RV-forms of Eqs. (D.2) and (D.3), respectively.

For homogeneous reaction systems, there is no mass-transfer contribution and Eq. (D.6)
simplifies accordingly, namely, Wm,l,axm,l(t) = 0Sa

. It follows that the equation to com-
pute the spectroscopic contribution of the reactions avRV (t) is identical to the expression
that holds when all transferring species are spectroscopically silent (non-absorbing),
namely, when AT

m
= 0W×pm

.

D.2 Prediction of Calibrated Concentrations from
Spectroscopic Data

Concentrations in reaction systems can be predicted from measured absorbance spectra
using multivariate calibration. The standard approach for building a calibration model
consists in taking measured concentrations and absorbance spectra as calibration pairs.
Other choices are possible and result in different calibration models.

D.2.1 Standard calibration

The calibration proceeds in two steps. In the calibration step, a calibration model is
constructed using f latent variables. The calibration set consists of H pairs of vectors
that include W -dimensional absorbance spectra acal(t) and Sc-dimensional concentra-
tions cl,cal(t), where t is one of the H sampling times and Sc the number of species
available for calibration (Sc ≤ Sl). The subscript (·)cal denotes a quantity associated
with the calibration experiment and the subscript (·)c indicates that the vector or ma-
trix original dimension comprised of Sl species is reduced to Sc calibrated species. A
calibration model can be expressed by the calibration matrix F of dimensions Sc ×W
comprising Sc rows of prognostic vectors of dimension W that describe the relation
between all H pairs

(
cl,cal(t), acal(t)

)
. This is illustrated in the central part of Fig. D.1.
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Figure D.1 Construction of the calibration model for standard calibration, calibration in
RMV-form and calibration in RV-form.

The method for constructing the matrix F depends on the calibration technique used.
All calibration techniques require turning the time dependence t of the vectors acal(t)
and cl,cal(t) into an additional dimension. Hence, the H pairs of vectors acal(t) and
cl,cal(t) are transposed and stacked vertically in time-resolved matrices Acal (H × W )
and Cl,cal (H × Sc), respectively. With PCR, the matrix Acal is first approximated as
Ū S̄ V̄T, where Ū (H × f) and V̄ (W × f) contain f principal component vectors, S̄
(f× f) is a f-dimensional diagonal matrix of principal component factors, and f is the
number of principal components (also called latent variables). The calibration matrix
F is calculated as CT

l,cal
Ū S̄−1 V̄T. With PLS, the calculation of the calibration matrix

F is more complex and calls for an iterative scheme [45].

In the prediction step, the calibration model is used to predict the Sc calibrated con-
centrations ĉl,c(t) from the W -dimensional absorbance spectrum a(t) measured at time
t of a prediction (or test) experiment:

ĉl,c(t) = Fa(t) (D.8)

D.2.2 Calibration in vRMV-form

When calibration models are constructed using only the spectral contributions of the
reactions and mass transfers, the pairs of calibration vectors

(
cvRMV

l,cal
(t), avRMV

cal
(t)

)
are

given by Eqs. (D.4) and (D.5). Note that the pretreatment of Eqs. (D.4) and (D.5)
requires the knowledge of the inlets (uin,l,cal(t), Win,l,cal, Ain,cal), the outlet (uout,l,cal(t))
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and the initial conditions (nl0,cal, a0,cal), as well as the mass and volume (ml,cal(t),
Vl,cal(t)) of the calibration mixture as illustrated in the upper part of Fig. D.1. The
construction of the calibration matrix FvRMV is similar to the standard calibration,
with the matrices Acal and Cl,cal replaced by AvRMV

cal
(H × W ) and CvRMV

l,cal
(H × Sc),

respectively.

To predict the concentrations of the calibrated species, the spectroscopic contributions
of the reactions and mass transfers are computed using Eq. (D.5) from the absorbance
spectrum a(t) measured for a prediction experiment. The resulting vector avRMV (t) is
used by the calibration model to predict the Sc concentrations in RMV-form, ĉvRMV

l,c (t),
for all time instants of the prediction experiment.

D.2.3 Calibration in vRV-form

If gas-phase measurements can be used to compute the extents of mass transfer in
the liquid phase, the calibration model can be built on the reaction contribution only
by removing the contribution due to mass transfer. The pairs of calibration vectors(
cvRV

l,cal
(t), avRV

cal
(t)

)
are obtained by pretreatment using Eqs. (D.6) and (D.7), which re-

quires the knowledge of the experimental conditions at all calibration times (lower part
of Fig. D.1). The calibration matrix FvRV is constructed in a similar way as for standard
calibration, with the matrices Acal and Cl,cal replaced by AvRV

cal
(H × W ) and CvRV

l,cal
(H

× Sc), respectively.

In the prediction step, the absorbance spectrum a(t) measured during a prediction
experiment is transformed to the RV-form avRV (t) using Eq. (D.7). This spectroscopic
contribution is used to predict the Sc concentrations in RV-form, ĉvRV

l,c (t). Note that
this procedure is also used when there are no transferring species in the calibration set.

For homogeneous reaction systems, standard calibration is based on the pairs
(
ccal(t),

acal(t)
)
. For calibration in RV-form, cvRV

cal
(t) is obtained using Eq. (D.6) without the term

Wm,lxm,l(t), while avRV

cal
(t) results from Eq. (D.7) without the term AT

m
xm,l(t). In the

prediction step, the pretreated vector avRV (t) is then used to predict the concentrations
ĉvRV

c (t) associated with the reactions.

D.2.4 Choice of calibration model

Which path to choose in Fig. D.1 depends on whether or not the spectrum a(t) of the
prediction experiment lies in the subspace spanned by the calibration set. This space-
inclusion condition has been studied in [3, 2]. For Path 1, the space-inclusion condition
a(t) ∈ Im(Acal) can be verified by checking that the Euclidean norm ε

(
a(t),Acal

)
of the

projection error of a(t) on the row space of Acal is nearly zero. Such a norm can be
computed as ε

(
a(t),Acal

)
= ‖aT(t)(IW −A+

cal
Acal)‖2. If this condition is not satisfied,
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Path 2 can be followed, which implies that the calibration and linear transformation
steps are performed in RMV-form. For Path 2, the space-inclusion condition becomes
avRMV (t) ∈ Im(AvRMV

cal
) and can be verified by calculating ε

(
avRMV (t),AvRMV

cal

)
. If the

space-inclusion condition is still not fulfilled, additional independent measurements,
such as gas-phase measurements, are required to take Path 3 and use a calibration model
in RV-form. For such a calibration, the space-inclusion condition is avRV (t) ∈ Im(AvRV

cal
)

and can be checked by computing ε
(
avRV (t),AvRV

cal

)
. If none of these space-inclusion

conditions can be satisfied, the calibration set must be re-designed and it might be
necessary to choose another set of Sc calibrated species.

D.3 Simulated Example

In this section, we illustrate the extent-based calibration technique via simulation of
the acetoacetylation of pyrrole system introduced earlier in Chapter 3.

Simulated measurements

All simulated experiments are conducted in an isothermal continuous stirred-tank re-
actor (CSTR) at 50 ◦C. The reactor is initially loaded with V0 = 1 L of a solution of
pyrrole in toluene and pure diketene is fed (p = 1) at a constant mass flow rate with
the inlet composition win = [0 M -1

w,Bw̌in,B 0 0 0 0 0]T, where Mw,B = 84.08 g mol-1

and w̌in,B = 1. Since the density and the volume of the reaction mixture are assumed
to be constant throughout the course of the reaction, uout(t) = uin(t).

Each concentration is corrupted by additive zero-mean normally distributed noise with
standard deviation corresponding to 1 % of the maximal concentration. Absorbance
spectra are assumed to be measured in the mid-IR region (500-1500 cm-1) with 4 cm-1

resolution, thus leading to W = 250 wavenumbers monitored simultaneously. The
spectrum of the solvent (toluene) is assumed to be treated as background spectrum. All
species involved in the reactions are absorbing, so that Sa = S and ca(t) = c(t). The
absorbance spectra a(t) are generated using Eq. (D.1) from the simulated concentrations
(corrupted with 1% noise) and the (7 × 250)-dimensional pure component spectra E
chosen to resemble the true ones. The pure component spectra are shown in Fig. D.2.

Since the quantities uin(t), uout(t), m(t) and V (t) are known, the extent of inlet flow
xin(t) and initial condition xic can be computed. Under the condition that all experimen-
tal conditions (including the inlet spectrum of diketene) are known, the concentration
and spectral contributions associated with the inlet and outlet can be removed from the
vectors c(t) and a(t) to generate cvRV (t) and avRV (t) using Eqs. (D.6) and (D.7).
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Figure D.2 Acetoacetylation of pyrrole: Simulated mid-IR (500-1500 cm-1) pure component
spectra (absorptivities) of (a) pyrrole, (b) diketene, (c) 2-acetoacetyl pyrrole, (d) dehydroacetic
acid, (e) oligomer, (f) by-product and (g) pyridine, normalized to a unit peak height.

Calibration experiment

In the calibration experiment, the reactor is initially loaded with a solution of compo-
sition c0,cal = [0.92 0.07 0.10 0.02 0 0 4.50]T mol L−1 of mass 919.98 g. Pure
diketene is fed at a constant mass flow rate of 3.65 g min-1, and the reactor content
is continuously withdrawn at the same flow rate. The concentrations and absorbance
spectra are generated according to the procedure described in Section D.3.

The calibration set is built by taking H = 15 absorbance spectra at the equally spaced
times t = 0, 10, . . . , 140 min, that is, with a sampling time of 10 min. In parallel, it
is assumed that samples are taken from the reaction mixture and concentrations of all
species except the catalyst are determined by an offline measurement technique. This
sampling procedure results in 15 pairs of calibration vectors

(
ccal(t), acal(t)

)
for the Sc
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= 6 species {A, B, C, D, E, F}. As all experimental conditions (including the inlet
spectrum) are assumed to be known, the vectors cvRV

cal
(t) and avRV

cal
(t) are also available.

The (6 × 250)-dimensional calibration matrices F and FvRV are constructed by PCR
using the pairs of calibration vectors

(
ccal(t), acal(t)

)
and

(
cvRV

cal
(t), avRV

cal
(t)

)
, respectively.

One extra latent variable is used to account for the effect of noise, that is, f = 7 latent
variables instead of Sc = 6 for F, and f = 5 latent variables instead of R = 4 for FvRV .

Prediction experiment

In the prediction experiment, the reactor is initially loaded with a solution of compo-
sition c0 = [0.72 0.09 0.10 0.02 0 0 5.00]T mol L−1 of mass 923.46 g. Pure
diketene is fed at a constant mass flow rate of 4.40 g min-1, and the reactor content is
continuously withdrawn at the same flow rate. The absorbance spectra are generated
according to the procedure described in Section D.3.

The prediction set is built by taking absorbance spectra every 1 min for a duration of
145 min. The resulting measured absorbance spectra with 1.5% noise are shown in Fig.
D.3. As all experimental conditions (including the inlet spectrum) are assumed to be
known, the vector avRV (t) is also available.Fig. D.4 shows the simulated and predicted
concentrations using FvRV .
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Figure D.3 Acetoacetylation of pyrrole: Mid-IR absorbance spectra a(t) with 1.5% noise
measured every minute but plotted every 15 min. The black continuous and dashed lines
indicate the first spectrum and the last spectrum, respectively.
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Figure D.4 Prediction experiment for acetoacetylation of pyrrole: Simulated concentrations
(dashed line) and concentrations predicted via FvRV (PCR model) for species A (•), B (�), C
(◦), D (∗), E (�) and F (�);

D.4 Summary

PCR and PLS calibration techniques are widely used to predict concentrations from
spectroscopic measurements. In this chapter, a procedure for building calibrations mod-
els using vessel extents has been introduced. The use of extents leads to two different
forms of calibration pairs, namely, the vRMV -form and vRV -form. These calibra-
tions pairs requires pretreatment of calibration data and becomes a requirement for
calibration and prediction when the space inclusion condition in terms of the usual con-
centration and absorbance data is no longer valid. A detailed procedure for building
calibration models and prediction of concentrations using extents has been documented
by Billeter et al. [17].
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