An Agent Operationalization Approach for Context Specific Agent-Based Modeling

The potential of agent-based modeling (ABM) has been demonstrated in various research fields. However, three major concerns limit the full exploitation of ABM; (i) agents are too simple and behave unrealistically without any empirical basis, (ii) 'proof of concept' applications are too theoretical and (iii) too much value placed on operational validity instead of conceptual validity. This paper presents an operationalization approach to determine the key system agents, their interaction, decision- making and behavior for context specific ABM, thus addressing the above-mentioned shortcomings. The approach is embedded in the framework of Giddens' structuration theory and the structural agent analysis (SAA). The agents' individual decision-making (i.e. reflected decisions) is operationalized by adapting the analytical hierarchy process (AHP). The approach is supported by empirical system knowledge, allowing us to test empirically the presumed decision-making and behavioral assumptions. The output is an array of sample agents with realistic (i.e. empirically quantified) decision-making and behavior. Results from a Swiss mineral construction material case study illustrate the information which can be derived by applying the proposed approach and demonstrate its practicability for context specific agent-based model development.

Published in:
Journal of Artificial Societies and Social Simulation, 14, 2
University of Surrey, Department of Sociology

Note: The status of this file is: EPFL only

 Record created 2017-03-12, last modified 2018-03-17

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)