
A methodology for the rigorous verification of Particle-in-Cell

simulations

Fabio Riva,1, ∗ Carrie F. Beadle,1 and Paolo Ricci1

1École Polytechnique Fédérale de Lausanne (EPFL),

Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

Abstract
A methodology to perform a rigorous verification of Particle-in-Cell (PIC) simulations is pre-

sented, both for assessing the correct implementation of the model equations (code verification),

and evaluating the numerical uncertainty affecting the simulation results (solution verification).

The proposed code verification methodology is a generalization of the procedure developed for

plasma simulation codes based on finite difference schemes that was described by Riva et al. [Phys.

Plasmas 21, 062301 (2014)] and consists of an order-of-accuracy test using the method of manu-

factured solutions. The generalization of the methodology for PIC codes consists of accounting for

numerical schemes intrinsically affected by statistical noise and providing a suitable measure of the

distance between continuous, analytical distribution functions and finite samples of computational

particles. The solution verification consists of quantifying both the statistical and discretization

uncertainties. The statistical uncertainty is estimated by repeating the simulation with different

pseudorandom number generator seeds. For the discretization uncertainty, the Richardson extrapo-

lation is used to provide an approximation of the analytical solution and the grid convergence index

is used as an estimate of the relative discretization uncertainty. The code verification methodology

is successfully applied to a PIC code that numerically solves the one-dimensional, electrostatic,

collisionless Vlasov-Poisson system. The solution verification methodology is applied to quantify

the numerical uncertainty affecting the two-stream instability growth rate, which is numerically

evaluated thanks to a PIC simulation.

∗Electronic address: fabio.riva@epfl.ch

1

I. INTRODUCTION

Originally developed to simulate fluid flows in two dimensions [1], the Particle-in-Cell

(PIC) algorithm [2–6] is now a valuable tool to solve the Vlasov-Maxwell system of equa-

tions. The PIC algorithm approximates the distribution function with a set of computa-

tional particles that are evolved in time according to Newton’s laws, and computes self-

consistently the electric and magnetic fields acting on the particles by solving the Maxwell’s

equations. While conceptually simple in their basic formulations, the development of PIC

simulation methods has significantly increased their range of applicability, accuracy, and per-

formance. Energy, momentum, and charge conserving algorithms have been developed [7–9],

which, also within an implicit-time discretization [10–14], allowed progress from the solution

of one-dimensional, electrostatic models to the simulation of complex and realistic three-

dimensional electromagnetic systems. Thanks to PIC simulations, significant progress has

been made in the understanding of fundamental plasma phenomena, such as collisionless

shocks (see e.g. Refs. [15–17]), magnetic reconnection (see e.g. Refs. [18–20]), laser-plasma

interactions (see e.g. Refs. [21–23]), and the plasma-wall transition (see e.g. Refs. [24, 25]).

Despite the widespread use of PIC codes, the methodologies to rigorously assess the correct

implementation of the PIC model into simulation codes (known as code verification) and

estimate the numerical error affecting the simulation results (known as solution verification)

are not well established. This is becoming a very crucial issue, since errors affecting PIC

simulations, which are used to uncover complex plasma phenomena and, for example, pre-

dict performances of future nuclear facilities, can have far reaching consequences [26, 27].

The usual approaches to verify PIC simulations and evaluate the error affecting a simula-

tion result are based on performing code-to-code comparisons (see e.g. Refs. [20, 28–32]).

Simulations of very simple problems, such as the Landau damping of electron-plasma waves,

for which an analytical solution is known, are also used. While valuable, these tests are

not rigorous enough to ensure the correct implementation of the model in the simulation

code or to estimate the numerical uncertainty affecting simulation results, due to difficulties

such as understanding if differences in the numerical results are introduced by the finite

resolution of the grid used for the discretization or by errors in the implementation of the

codes [33]. On the other hand, analytical solutions in complex geometries or with complex

collision operators do not generally exist. The goal of the present paper is to generalize

2

the rigorous code and solution verification methodologies developed for grid-based plasma

simulation codes and presented in Ref. [34], to the verification of plasma simulation codes

based on the PIC algorithm.

Order-of-accuracy tests allow the rigorous assessment of the correct implementation of grid-

based numerical algorithms. In an order-of-accuracy test, the rate of convergence of the

numerical solution to an exact solution is compared with the expected order of accuracy of

the numerical scheme. If they agree, the code is verified [33]. Since the exact solution of the

model equations is unknown in most cases, the method of manufactured solutions (MMS)

was developed by the computational fluid dynamics community [35–38]. This method was

recently ported to the plasma physics community [34], and it is now routinely used for the

verification of grid-based plasma turbulence codes (see e.g. Refs. [39, 40]).

The correct implementation of the model equations in the simulation code does not im-

ply that numerical results are free from numerical errors. Sources of numerical errors are:

rounding off, finite statistical sampling (e.g. using a finite number of particles randomly

distributed to represent a distribution function), termination of an iterative scheme with a

non-vanishing residue, and finite grid resolution [33]. The evaluation of these errors is the ob-

jective of solution verification procedures. Since for grid-based algorithms the discretization

error component usually dominates, a procedure for the solution verification was proposed

based on the Richardson extrapolation [41, 42]. As a matter of fact, the Richardson extrap-

olation converges faster to the exact solution than the simulation results, and therefore it is

used as higher order estimator of the exact solution in computing the discretization error.

However, since the assumptions required to use the Richardson extrapolation as a solution

estimator are difficult to satisfy, the Roache grid convergence index (GCI) was introduced

as a relative numerical uncertainty estimate [43].

The present paper generalizes the methodology discussed in Ref. [34], providing a rigorous

methodology for the code and solution verification of PIC simulations. For the code verifi-

cation, we propose an order-of-accuracy test for PIC simulation codes, developing the MMS

to account for numerical schemes intrinsically affected by statistical noise, and providing

a measure of the distance between continuous, analytical distribution functions, and finite

samples of computational particles. For the solution verification, we discuss how to esti-

mate the statistical uncertainties affecting the numerical results and, using the Richardson

extrapolation as a higher order estimator of the exact solution and the GCI as a relative

3

numerical uncertainty estimate, we provide an evaluation of the discretization error. Both

methodologies are applied to a simple, one-dimensional, collisionless, electrostatic PIC sim-

ulation code, showing the peculiarities and the potential of the proposed procedures.

This paper is structured as follows. After the Introduction, in Sec. II we present the PIC

algorithm used to numerically solve the plasma kinetic equations. Then, in Sec. III we il-

lustrate the MMS, we explain how it is adapted to account for PIC codes, and we discuss

several measures of the distance between continuous, analytical distribution functions and

finite samples of computational particles. The solution verification methodology is presented

in Sec. IV, where we describe how to estimate the statistical uncertainty and the discreti-

tazion error affecting PIC simulation results. In Sec. V we present the simulation code that

we verify with the MMS, and we apply the solution verification methodology to quantify the

numerical uncertainty affecting the two-stream instability growth rate, which is evaluated

from a PIC simulation. Our conclusions are reported in Sec. VI. Finally, Appendix A shows

that the proposed distances between a continuous, analytical distribution functions, and a

finite sample of computational particles are suitable for performing a PIC code verification

with the MMS.

II. THE PARTICLE-IN-CELL METHOD

In the present paper we consider PIC codes used to numerically solve the Vlasov-Maxwell

system of equations. The PIC algorithm represents the distribution function of plasma

species as a set of computational particles (also known as superparticles or markers), whose

position in the phase space is evolved according to Newton’s laws. The forces acting on the

particles are obtained by solving the Maxwell equations, having assigned to a numerical grid

the charge and the current carried by the particles [2–6].

As the goal of the present paper is to introduce a rigorous methodology for the verification of

PIC simulation codes, we consider the simplest kinetic model describing a one-dimensional,

electrostatic, collisionless plasma in a periodic domain. The generalization to the collisional,

electromagnetic, three-dimensional case does not present conceptual difficulties. The model

4

we consider is written

∂fα
∂t

+ v
∂fα
∂x

+ qα
mα

E
∂fα
∂v

= 0 (1)

∂E

∂x
= ρ

ε0
, (2)

where fα(x, v, t) is the distribution function for the α species (α = e for electrons and α = i

for ions), qα and mα are the particle charge and mass, ρ(x, t) = ∑
α qα

∫+∞
−∞ fα(x, v, t)dv is the

total charge distribution and E(x, t) is the electric field. As mi � me, ions can be assumed

at rest as a first approximation, with the ion plasma density ni =
∫+∞
−∞ fidv constant in time

and uniform along x. In the remainder of this paper we use this approximation and we

consider only the evolution of the electron distribution function (we drop the α index).

The PIC method solves numerically Eqs. (1)-(2) by performing the following steps. (i) At

t = 0, N computational particles are randomly distributed in the phase space according

to a distribution function f0(x, v), and a weight wp is assigned to each particle, with wp =

f(xp, vp, t = 0)/f0(xp, vp) [if f0(x, v) = f(x, v, t = 0) all markers have the same weight]. (ii)

The particle charge is assigned to a numerical grid with spacing ∆x, to obtain the charge

distribution at each grid point. (iii) Poisson’s equation [Eq. (2)] is solved and the electric

field E is computed on the grid. (iv) E is interpolated from the grid to the particle positions,

to obtain the electric field Ep acting on each particle. (v) The equations of motion of the

computational particles

dwp
dt

= 0 dxp
dt

= vp
dvp
dt

= q

m
Ep, (3)

are numerically integrated in time to t = ∆t, with ∆t the step of the time integration

scheme. The distribution function is now known at t = ∆t and, following the steps (ii)-(v),

the system is advanced until the final time of the simulation is reached.

Noting that the error associated with a statistical representation of the distribution function

is expected to decrease as N−1/2 [44, 45], the numerical error affecting quantities that result

from a simulation such as f and Ep is

ε = C1∆xα + C2∆tβ + C3N
−1/2 + higher order terms. (4)

where C1, C2, and C3 are constants independent of ∆x, ∆t, and N ; α denotes the order of

accuracy of the spatial operators in the interpolation between particles and grid positions

and in the solution of the Poisson equation; and β is the order of accuracy of the time

5

integration scheme.

To simplify the expression of the numerical error, it is useful to introduce the theoretical

order of accuracy of the algorithm, p, and a parameter h representing the degree of refinement

of the mesh and time step, and the number of markers in the system, defined as

hp =
(

∆x
∆x0

)α
=
(

∆t
∆t0

)β
=
(
N

N0

)−1/2
, (5)

where ∆x0, ∆t0, and N0 are reference parameters for a standard simulation. Consequently,

from Eq. (4) we obtain

εh = Cph
p +O

(
hp+1

)
, (6)

where Cp is a constant independent of h. In the following, we consider p = α, i.e. we define

the theoretical order of accuracy of the algorithm as the order of accuracy of the spatial

discretization scheme.

III. CODE VERIFICATION

Code verification is usually approached by [33]: (a) performing simple tests (e.g., energy

conservation tests), (b) comparing simulation results with results from other codes (also

known as code-to-code benchmark), (c) quantifying the numerical error with respect to the

exact solution, (d) testing the convergence of the numerical solution to the exact solution,

and (e) comparing the rate of convergence of the numerical solution to the expected order of

the numerical scheme (order-of-accuracy tests). As the first two procedures [(a) and (b)] do

not require an exact solution of the model equations, they are simpler to perform. Indeed,

code-to-code comparison is routinely performed to verify numerical codes used in plasma

physics, including PIC simulation codes [20, 28–32]. On the other hand, the other three

approaches [(c)-(e)] are more rigorous, but they require an exact solution of the model.

The order-of-accuracy test is the only code verification procedure able to ensure the correct

implementation of the numerical scheme into a simulation code, and therefore the correct

solution of the model equations [33].

Formally, an order of accuracy test for a PIC code can be stated as follows. Given the

kinetic model M solved by the PIC code, we denote its exact solution as s [M (s) = 0]

and its numerical discretization with degree of refinement h asMh. Moreover, the numerical

solution ofMh is denoted as sh [M(sh) = 0], and the numerical error affecting the simulation

6

results is defined as

εh = ‖s− sh‖, (7)

where ‖·‖ denotes a designated norm. By evaluating the two numerical solutions of Mh

and Mrh, sh and srh, where rh indicates coarsening the parameter h by a factor r, one can

evaluate the observed order of accuracy, p̂, using

p̂ = ln (εrh/εh)
ln (r) . (8)

If p̂ converges to p for h→ 0, i.e. when the numerical error is dominated by the lowest order

term of its Taylor expansion (the so-called asymptotic regime), we can state that the PIC

code is verified and the equations are correctly solved, with the order of accuracy expected

for the numerical scheme.

A. The method of manufactured solutions

The evaluation of the numerical error εh, necessary to obtain p̂, requires that s is known.

Unfortunately, s is unknown in most cases, in particular for complex kinetic problems. The

MMS was developed to overcome this issue, and approaches the problem as follows [35–

38]: instead of solving M analytically, an arbitrary function sM is imposed as a solution

to the model (the so-called manufactured solution), and the model equations are modified

to accommodate the imposed solution; the modified model is then solved numerically to

compute the numerical error. More precisely, for a given model M , we choose an analytical

function sM and compute a source term, S = M (sM), which is subsequently subtracted

from M to obtain a new analytical model G [G = M − S]. The analytical solution of G is

sM : G (sM) = M (sM)− S = 0. It is then straightforward to compute the discretization of

G, Gh = Mh − S, which can be solved numerically to obtain sM,h. Since the source term S

is computed analytically, we do not add any new source of numerical error to the original

numerical model, and the numerical error εh = ‖sM − sM,h‖ satisfies

εh = C ′hp +O
(
hp+1

)
, (9)

where C ′ is a constant independent of h. By showing that p̂→ p for h→ 0, one verifies the

simulation code.

We remark that the manufactured solution should satisfy the following requirements [33]:

7

(i) be sufficiently smooth and not singular, (ii) satisfy the code constraints (e.g. f ≥ 0 and

f → 0 for v → ±∞), (iii) be general enough to excite all terms present in the equations,

and (iv) ensure that the different terms composing the equations are of the same order of

magnitude so that no term dominates the others. Due to these constraints, the manufactured

solutions are usually built as a combination of trigonometric and/or hyperbolic functions.

We remark that the code verification is a purely mathematical issue and therefore the choice

of sM is independent of the physical solution of M .

B. Verification of a PIC simulation code using the method of manufactured solu-

tions

The verification of a PIC simulation code with the MMS is not straightforward, as it

implies the comparison of a continuous, analytical distribution function with a sample

of computational particles affected by statistical noise. In this sub-section we propose a

methodology to perform this comparison.

First, the manufactured solutions EM and fM are chosen, and the corresponding source

terms to be added on the right-hand side of Eqs. (1)-(2) are computed according to

Sf (x, v, t) = ∂fM
∂t

+ v
∂fM
∂x

+ qEM
m

∂fM
∂v

(10)

and

SE(x, t) = ∂EM
∂x
− ρ

ε0
, (11)

with SE = 0 if EM is chosen consistently with fM . While adding SE in the Poisson equation

does not present any conceptual difficulty (see Ref. [34] for a detailed discussion of the

verification of grid-based equations with the MMS), adding a source term to the Vlasov

equation requires the evolution in time of the computational particle weights, wp, and the

modification of Eq. (3) accordingly [46]. More precisely, the particles are initially distributed

with a pseudo-random number generator according to a chosen distribution function f0(x, v)

and the initial weights are set as wp(0) = fM [xp(0), vp(0), 0] /f0 [xp(0), vp(0)]. The weights

wp are then evolved according to
dwp
dt

= Sf [xp(t), vp(t), t]
f0 [xp(0), vp(0)] . (12)

We remark that, in the presence of a collision operator, the marker distribution is not con-

served along particle trajectories and Eq. (12) should be generalized according to Ref. [46].

8

To avoid altering the convergence properties of the numerical scheme, Eq. (12) has to be

integrated in time by using a numerical scheme with order of accuracy β or greater.

We now define the norms used to compute the numerical error affecting the simulation re-

sults. For the electric field, this does not present any particular difficulty, and we indicate

the distance between the numerical and the manufactured solution as

ε(Ep) = max
t

max
p=1,...,N

|Ep(t)− EM [xp(t), t]|. (13)

On the other hand, the definition of the norm used to quantify the numerical error affect-

ing fM requires measurement of the distance between a continuous analytical distribution

function and a set of N computational particles.

The comparison of a data set of N elements to a distribution function is a general mathe-

matical issue that appears in many research fields [47, 48]. For a one-dimensional probability

density function g(x), a data set can be compared to g considering the cumulative distri-

bution function (CDF) G(x) =
∫ x
−∞ g(x′)dx′ and the empirical distribution function (EDF)

related to the data set GN(x) = ∑N
p=1 θ(x − xp)/N , where xp are the elements of the data

set, p = 1, ..., N is the particle index and θ(x) is the Heaviside step function [θ(x) = 0 if

x < 0, and θ(x) = 1 otherwise]. Under the null hypothesis, i.e. {xp}p=1,..,N is a set of N

random realizations of the distribution function g, and in the limit N → ∞, the distance

DN = supx∈R |G(x)−GN(x)| converges to 0 as O(N−1/2) [49], where the supremum is used

rather than the maximum since GN(x) is a piecewise continuous function.

To generalize this result to d > 1 dimensions, Peacock developed a method, detailed in

Ref. [50], which is used to evaluate the distance between a multidimensional distribution

function and an observed sample of N elements. For a two-dimensional distribution func-

tion fM(x, v, t) and a data set of N elements {xp(t), vp(t)}p=1,...,N of equal weight, at a given

time t (in the reminder of this section we drop the t dependence to simplify the notation),

Peacock’s methodology requires one to define the four CDFs

F 1(x, v) = 1
n

∫ x

−∞

∫ v

−∞
fM(x′, v′)dx′dv′ F 2(x, v) = 1

n

∫ +∞

x

∫ v

−∞
fM(x′, v′)dx′dv′

F 3(x, v) = 1
n

∫ +∞

x

∫ +∞

v
fM(x′, v′)dx′dv′ F 4(x, v) = 1

n

∫ x

−∞

∫ +∞

v
fM(x′, v′)dx′dv′

(14)

9

and the four EDFs

F 1
N(x, v) =

N∑
p=1

1
N
θ(x− xp)θ(v − vp) F 2

N(x, v) =
N∑
p=1

1
N
θ(xp − x)θ(v − vp)

F 3
N(x, v) =

N∑
p=1

1
N
θ(xp − x)θ(vp − v) F 4

N(x, v) =
N∑
p=1

1
N
θ(x− xp)θ(vp − v),

(15)

and compute the largest difference between F i and F i
N (i = 1, 2, 3, 4),

dPi = sup
(x,v)∈R2

|F i(x, v)− F i
N(x, v)|. (16)

The distance between fM(x, v) and {xp, vp}p=1,...,N is thus defined as

εP (fM) = max
(
dP1 , d

P
2 , d

P
3 , d

P
4

)
. (17)

Reference [50] shows empirically that εP (fM) decreases as O(N−1/2), irrespective of the

choice of fM , if {xp, vp}p=1,...,N is a set of random realizations of fM .

To verify a PIC simulation code with MMS, one has to account for arbitrary values of wp,

and the definition of the F i
N , Eq. (15), should be modified as follows

F 1
N(x, v) =

N∑
p=1

ŵpθ(x− xp)θ(v − vp) F 2
N(x, v) =

N∑
p=1

ŵpθ(xp − x)θ(v − vp)

F 3
N(x, v) =

N∑
p=1

ŵpθ(xp − x)θ(vp − v) F 4
N(x, v) =

N∑
p=1

ŵpθ(x− xp)θ(vp − v),
(18)

with ŵp = wp/
∑N
p=1wp. We show empirically (see Appendix A) that, if one defines the

EDFs according to Eq. (18), εP (fM) still decreases as N−1/2 for N →∞.

We remark that εP (fM) is affected by statistical uncertainty due to the random initialization

of the markers. Consequently, the observed order of accuracy p̂ obtained using εh = εP (fM)

in Eq. (8) is also affected by statistical uncertainty. To perform an order of accuracy test, it

is therefore necessary to carry out a number, ns, of simulations with different pseudorandom

number generator seeds, and compute the numerical error εh,i = εP (fM) for each simulation,

with i = 1, ..., ns. Then, following the methodology discussed in Sec. IVA, it is possible to

approximate the expected value of εh with

εh '
1
ns

ns∑
i=1

εh,i (19)

and the corresponding statistical uncertanty with

∆εh = 1.96 σεh√
ns
, (20)

10

where σεh =
√∑ns

i=1(εh − εh,i)2/(ns − 1) is the standard deviation corresponding to the dis-

tribution of εh,i. Finally, the expected value of p̂ is computed combining Eq. (19) with

Eq. (8), and the corresponding statistical uncertainty is obtained as

∆p̂ = 1
ln(r)

√√√√(∆εh
εh

)2

+
(

∆εrh
εrh

)2

. (21)

C. Reducing the computational cost of a PIC verification

The evaluation of εP (fM) is computationally expensive for a data set with a large number

of elements. In fact, since F i
N(x, v) is a discontinuous function, the classical methods applied

to compute the maximum value of a continuous function are not suitable. Moreover, the

local maxima of the difference |F i(x, v) − F i
N(x, v)| are found at the N2 points (xpj

, vpk
),

with pj = 1, ..., N and pk = 1, ..., N . Therefore, to compute dPi , one has to evaluate the

limits

dij,k = lim
x→x±pj

lim
v→v±pk

|F i(x, v)− F i
N(x, v)| (22)

for all (xpj
, vpk

) and then impose dPi = maxj,k dij,k.

Reference [51] shows that the value of F i
N(x, v), where (x, v) is a general point of the phase-

space, can be evaluated with a brute force algorithm, or partitioning the points (xp, vp) in a

k-d tree or in a range-counting tree. It results that the complexity of computing dPi according

to Eq. (16) is: O(N3) with the brute force algorithm, O(N5/2) with a k-d tree partitioning,

and O(N2 logN) with a range-counting tree partitioning. However, the memory used to

partition the N points with a range-counting tree scales as O(N logN), while it scales as

O(N) for a k-d tree partitioning or brute-force algorithm. All the evaluations of the EDF

used to obtain the results presented in this paper are performed using a k-d tree partitioning,

which in our opinion is the best compromise between computational cost and memory needs.

To decrease the computational cost of the computation of dPi , Fasano and Franceschini

propose an alternative approach [52], which approximates dPi as

dPi ' dFFi = max
p=1,...,N

lim
x→x±p

lim
v→v±p

|F i(x, v)− F i
N(x, v)|, (23)

where the F i
N are evaluated according to Eq. (15). Reference [52] shows empirically that the

value of εFF (fM) decreases as O(N−1/2) if we define εFF (fM) = max
(
dFF1 , dFF2 , dFF3 , dFF4

)
,

where {xp, vp}p=1,...,N is a set of random realizations of fM . We show empirically (see App. A)

11

that, if one defines the EDFs according to Eq. (18), εFF (fM) still decreases as N−1/2 for

N → ∞. The computational cost of evaluating dFFi is reduced by a factor N with respect

to dPi .

As the computational cost of evaluating dFFi remains very demanding for high values of

N , we discuss here an alternative method used to approximate dPi . Instead of maximizing

|F i(x, v)−F i
N(x, v)| over all points (xp, vp), as done according to the Fasano and Franceschini

approach, one can generate M random points (xj, vj), with j = 1, ...,M , and approximate

dPi with

dPi ' dMC
i = max

j=1,...,M
|F i(xj, vj)− F i

N(xj, vj)|. (24)

This approximation is a true equality in the limit M → ∞, and corresponds to evaluating

Eq. (16) with the Monte-Carlo method. We can therefore compute the distance between

fM(x, v) and {xp, vp}p=1,...,N as

εMC (fM) = max
(
dMC

1 , dMC
2 , dMC

3 , dMC
4

)
. (25)

The evaluation of dMC
i is computationally N2/M times less demanding than dPi and N/M

times less demanding than dFFi .

To further reduce the computational cost of performing a PIC code verification, in the rest

of the present paper we also investigate the comparison of F i(x, v) with F i
N(x, v) only at

x = ±∞ and v = ±∞, i.e. evaluating the supremum of the difference |F i(x, v)− F i
N(x, v)|

only over the boundaries of the phase-space domain. More precisely, we define the two errors

εx(fM) = sup
x∈R

∣∣∣∣∣∣
∫ x

−∞

[∫ +∞

−∞
fM(x′, v)dv

]
dx′ −

N∑
p=1

ŵpθ(x− xp)

∣∣∣∣∣∣ (26)

εv(fM) = sup
v∈R

∣∣∣∣∣∣
∫ v

−∞

[∫ +∞

−∞
fM(x, v′)dx

]
dv′ −

N∑
p=1

ŵpθ(v − vp)

∣∣∣∣∣∣ (27)

and assess whether they decrease according to the order of accuracy expected for the nu-

merical scheme.

IV. SOLUTION VERIFICATION

Even if a model is correctly implemented in a simulation code, numerical errors always

affect the simulation results [33]. Estimating the amplitude of these errors is a crucial issue,

12

not only to ensure the reliability of the numerical results, but also to quantify the uncer-

tainty of the simulations when performing a rigorous validation of the physical model with

experimental results. The evaluation of the numerical error affecting the simulation results

is the objective of the solution verification procedure.

The simulation results are affected by round-off, iterative, statistical sampling, and dis-

cretization errors [33]. Round-off errors are due to the finite number of digits that computers

use when representing numerical values. Assuming that all the computations are performed

in double precision, round-off errors are usually negligible with respect to the other sources

of errors (we assume that this is the case in the remainder). Iterative errors are due to the

use of iterative numerical schemes terminated with a finite residue. This source of error can

be reduced by increasing the number of iterations and it is neglected here. Statistical sam-

pling errors, due to the random initialization of the markers, and discretization errors, due

to the use of a finite grid resolution, a finite time step, and a finite number of computational

particles, cannot be neglected in general. Moreover, as the analysis of the simulation results

is generally performed using post-processing tools (e.g. the linear growth rate of an insta-

bility is usually obtained with an exponential fit), the solution verification procedure should

also quantify the numerical uncertainty introduced by these tools. The sum of statistical

sampling errors, discretization errors, and uncertainties introduced by post-processing tools

constitute the numerical uncertainty affecting the simulation results.

A. Statistical error

The numerical results obtained with a PIC simulation code are always affected by statis-

tical uncertainty. In fact, the distribution functions are approximated with a finite number

of computational particles, which are initialized randomly according to a defined initial dis-

tribution function, by using a pseudorandom number generator. Moreover, PIC simulation

codes often make use of operators based on pseudorandom number generators (e.g. when a

collision term is added to the Vlasov equation). This introduces another source of statistical

uncertainty.

To estimate the statistical uncertainty affecting Xh, where Xh is a point-by-point solution

value or a solution functional evaluated from a simulation with discretization parameter h,

we proceed as follows. We repeat the simulation ns times with the same h, but changing

13

the pseudorandom number generator seed, and we define

X̄h = 1
ns

ns∑
i=1

Xh,i, (28)

where Xh,i is the ith evaluation of Xh and i = 1, ..., ns. Assuming that the Xh,i are randomly

distributed from an unknown probability distribution with unknown but finite mean µX,h

and variance σ2
X,h, then X̄h → µX,h for ns → ∞. Moreover, according to the central limit

theorem, the distribution of X̄h converges to the normal distribution with mean µX,h and

variance σ2
X,h/ns for ns →∞. Therefore, for ns →∞,

µX,h −
1.96σX,h√

ns
≤ X̄h ≤ µX,h + 1.96σX,h√

ns
(29)

with probability equal to 0.95. As a consequence, X̄h can be used as an estimator of Xh,

and we compute the uncertainty on this value as

∆Xstat
h = 1.96σX,h√

ns
. (30)

We remark that the unknown σ2
X,h can be estimated according to

σ2
X,h = 1

ns − 1

ns∑
i=1

(
Xh,i − X̄h

)2
. (31)

Equations (28) and (30) provide a rigorous estimate of Xh and of its statistical uncertainty.

However, due to the high computational cost of PIC simulations, ns is typically low. To

still have a realistic estimate of the statistical uncertainty, one can run ns simulations with

a smaller number of particles, N ′ < N , and evaluate the corresponding variance, (σX,h′)2,

according to Eq. (31). Then, assuming that the statistical uncertainty is proportional to

N−1/2, the statistical error for a single simulation carried out with N particles can be

estimated as

∆Xstat
h = 1.96σX,h′

√
N ′

N
. (32)

B. Discretization error

Since PIC codes make use of discretized spatial grids, finite integration time steps, and

a finite number of markers, their results are always affected by discretization errors. A

rigorous methodology for the evaluation of the discretization error is detailed in Ref. [34],

14

and its main features are summarized here. Defining the Richardson extrapolation [41, 42]

as

X̂ = X̄h + X̄h − X̄rh

rp − 1 , (33)

then |X − X̂| = O(hp+1), where X is the exact solution of the physical model and p is

the order of accuracy of the numerical scheme (i.e., X̂ converges to X faster than Xh for

h → 0). Consequently, we can use X̂ as higher order estimator of X and approximate the

discretization error as

∆Xdisc
h '

∥∥∥X̄h − X̂
∥∥∥ =

∥∥∥∥∥X̄rh − X̄h

rp − 1

∥∥∥∥∥ , (34)

and the relative discretization error (RDE) as

RDE = X̄h −X
X

' X̄h − X̂
X̂

= X̄rh − X̄h

X̄hrp − X̄rh

. (35)

We remark that, for X̂ to be a reasonable estimate of X, several assumptions should be

satisfied [33]. First, the Richardson extrapolation method requires that the degree of mesh

refinement can be represented solely by the parameter h. Second, the simulations used to

evaluate X̂ should be in the asymptotic regime, that is p ' p̂, where

p̂ =
ln
[(
X̄r2h − X̄rh

)
/
(
X̄rh − X̄h

)]
ln (r) . (36)

This may result in computationally very expensive simulations, due to the potential need

for very fine meshes. Third, it is required that the solutions are smooth enough and do

not present singularities and/or discontinuities. More precisely, to allow the expansion of

the numerical error in powers of the parameter h, the derivatives of the analytical solution

should exist and be continuous. Finally, we note that we do not have any guarantee that the

Richardson extrapolated solution will meet the same governing equations satisfied by either

the numerical solution or the analytical solution; consequently we use this extrapolation for

the computation of the numerical error only.

Since it may be demanding to satisfy the requirement of being in the asymptotic regime,

Ref. [43] introduces the GCI, defined as

GCI = Fs
rp̃ − 1

∣∣∣∣∣X̄rh − X̄h

X̄h

∣∣∣∣∣ , (37)

that represents another estimate of the relative discretization error affecting the simulation

results. The GCI is obtained by approximating in Eq. (35) X̄hr
p − X̄rh ' (rp̃ − 1) X̄h. The

15

parameters Fs and p̃ ensure that the GCI is larger than the numerical discretization error

in 95% of the cases, and are defined as follows: if the difference between p and p̂ is less

than 10%, the simulations are assumed to be in the asymptotic regime and Fs = 1.25 and

p̃ = p. If the difference between p and p̂ is larger than 10%, a more conservative factor of

safety, Fs = 3, is used and p̃ = min [max (0.5, p̂), p]. If p̂ is not evaluated (for example, if

only two solutions are available), Fs = 3 and p̃ = p. We remark that there is still an ongoing

discussion in the verification community about the generality of these estimates. We finally

note that the presented procedure can be applied not only to point-by-point solution values,

but also to solution functionals.

V. APPLICATION OF THE VERIFICATION METHODOLOGY TO A PIC SIM-

ULATION CODE

In this section we apply the code and solution verification methodologies previously dis-

cussed to a simple PIC simulation code. We discuss the chosen manufactured solutions

and we verify the correct implementation of the physical model into the simulation code by

showing that p̂ → p for h → 0. As an application of the solution verification methodology,

we consider the simulation of two counterstreaming beams of electrons, and we discuss how

to evaluate the linear growth rate of the resulting two-stream instability and the numerical

uncertainty affecting this value.

A. The PIC simulation code

The PIC simulation code considered numerically solves Eqs. (1)-(2) on a periodic spatial

domain that extends from x = 0 to x = L. It uses a numerical grid xi = i∆x to discretize the

x coordinate, with ∆x = L/M the grid spacing (i = 0, ...,M − 1 and M the number of grid

points), and a time step ∆t for the integration of the equations of motion. The charge of the

particles is assigned to the grid using a first-order weighting scheme, known as cloud-in-cell

(CIC) scheme [3], i.e. ρ(xi, t) = ∑N
p=1 qI[xi − xp(t)]wp(t), with I the interpolation function

given by

I(x) =

 0

− |x|∆x + 1

if |x| > ∆x

if |x| ≤ ∆x.
(38)

16

Poisson’s equation ∂2
xφ(x, t) = −ρ/ε0 is solved by using a second order centered finite dif-

ference scheme and imposing the boundary condition φ(x = 0) = 0. The electric field Ep is

computed according to E(x, t) = −∂xφ(x, t) by using a second order centered finite differ-

ence scheme and interpolating from the grid onto the particle positions using again the CIC

scheme. Finally, the equations of motion, Eq. (3), are integrated in time with a second order

Leapfrog scheme. This numerical scheme is second order in ∆x and ∆t, i.e. α = β = 2.

In the code, all quantities are normalized to (tilde denotes a physical quantity in SI units):

x = x̃/λ̃D, t = t̃ω̃pe, where λ̃D =
√

ε0T̃e0
ñ0e2 is the Debye length and ω̃pe =

√
ñ0e2

ε0me
is the plasma

frequency, with ñ0 and T̃e0 a reference density and electron temperature, respectively. The

simulation code is written in Fortran 90 and parallelized using a domain cloning approach,

implemented within an hybrid Message Passing Interface (MPI) and OpenMP environment.

B. A practical example of PIC code verification

To apply the code verification methodology previously discussed, we choose the following

manufactured solutions

EM(x, t) = 2πkxL sin(πt) sin
(
kx

2π
L
x
)

(39)

fM(x, v, t) = fx(x, t)fv(v), (40)

where

fv(v) = 2√
π
v2e−v

2 (41)

and we make use of two functions for fx(x, t),

fx1(x, t) = [1− sin(πt) cos(2πx/L)] /L (42)

fx2(x, t) = 1
L

+ 1
2 [1− cos(πt)]

{
λ [(L− x)−2 + x−2]

2 cosh2 [λ(L− x)−1 − λx−1]
− 1
L

}
, (43)

to ensure empirically that the results discussed are valid for different choices of fM . We

denote f1 = fx1fv and f2 = fx2fv. We remark that the manufactured solution satisfies

the requirements listed in Sec. IIIA. In particular, the parameters kx, L, and λ allow

us to calibrate the numerical error, so that the magnitude of the different terms in the

Vlasov-Poisson system are of the same order of magnitude (we use L = 2 and kx = 2

for f1, and kx = 5, L = 5, and λ = 20 for f2, and for all the simulations we evolve the

17

computational particles for 2 time units). We note that fv(v) is chosen different from a

Maxwellian distribution in v to ensure that a numerical solution does not converge to fM
because of numerical dissipation. Finally, we note that the computational particles are

initially distributed according to the probability distribution function f0(v) = e−|v|/(2L)

and the initial weights are computed as wp(0) = fM [xp(0), vp(0), 0]/f0[vp(0)].

For the verification of the PIC code, we refine at the same time the grid size and the

time step, while increasing the number of particles. Defining h = ∆x/∆x0 = ∆t/∆t0 =

(N/N0)−1/4, we perform 5 sets of simulations, with respectively h = 1, 2, 4, 8, 16, for both f1

and f2. We perform simulations with h = 8, 16 thousands of times, simulations with h = 4

hundreds of times, and simulations with h = 1, 2 a few times, and for each value of h we

compute the average of εFF (fM) and ε(Ep) and the corresponding uncertainty. The observed

order of accuracy p̂ and the corresponding uncertainty are computed applying Eqs. (8) and

(21), respectively. We note that, while ε(Ep) is computed considering all the time steps of

the simulations, εFF (fM) is estimated at t = 2 due to the high computational cost of its

evaluation.

The results obtained from these simulations are represented in Fig. 1. Both εFF (fM) and

FIG. 1: Values of εFF (fM) and ε(Ep) averaged over the performed set of simulations (left) and

corresponding p̂ (right) for the two distribution functions f1 and f2, and for h = 1, 2, 4, 8, 16. Each

error is normalized to its value at h = 1, and the statistical uncertainties are represented with

errorbars. The dashed lines represent h2 (left) and p̂ = 2 (right).

ε(Ep) clearly decrease for h → 0. Moreover, the observed order of accuracy p̂ converges to

2 when decreasing h, proving that the PIC algorithm is correctly implemented in the code,

and the equations are verified.

18

As a further proof of the capabilities of the code verification methodology illustrated herein,

we perform the same verification with a zero-order weighting scheme (the so-called nearest-

grid-point scheme, or NGP) when interpolating the electric field. This corresponds to use

an interpolation function defined as

I(x) =

 1

0

if |x| ≤ ∆x
2

if |x| > ∆x
2

(44)

when interpolating the electric field from the grid onto the marker positions. Since the

accuracy of the numerical scheme is reduced, the error affecting the results is expected to

satisfy

ε = C ′′h+O(h2), (45)

where C ′′ is a constant independent of h. The results are presented in Fig. 2 (only f1 is con-

FIG. 2: Values of εFF (f1) and ε(Ep) averaged over the performed set of simulations (left) and

corresponding p̂ (right) for h = 1, 2, 4, 8, 16. Each error is normalized to its value at h = 1, and

the statistical uncertainties are represented with errorbars. The dashed lines represent h (left) and

p̂ = 1 (right).

sidered for this test). The code verification methodology is able to identify this change in the

numerical scheme. In fact, while both εFF (f1) and ε(Ep) decreases as h → 0, the observed

order of accuracy converges to 1. Therefore, the proposed code verification methodology not

only ensures that the numerical solution converges to the exact solution, but it also correctly

identifies the convergence rate.

To investigate the applicability of the distance εMC (fM) for the verification of PIC sim-

ulation codes, we consider the same set of simulations presented in Figs. 1 and 2, and we

19

evaluate the difference between fM(x, v, t) and the sample of computational particles accord-

ing to Eq. (25) at t = 2, for M = 106. The results thus obtained are shown in Fig. 3. We

FIG. 3: Values of εMC (f1) averaged over the performed set of simulations (left) and corresponding

p̂ (right) for h = 1, 2, 4, 8, 16, interpolating the electric field onto the marker positions both with

the CIC (red) and the NGP (blue) interpolation schemes. Each error is normalized to its value at

h = 1, and the statistical uncertainties are represented with errorbars. The dashed lines represent

h and h2 (left) and p̂ = 1 and p̂ = 2 (right).

observe that the error decreases for h→ 0 as expected both for the CIC and NGP schemes,

with p̂ → 2 for the CIC scheme, and p̂ → 1 for the NGP scheme. Moreover, we note that

the errors computed according to the Fasano and Franceschini method (see Figs. 1 and 2)

and according to Eq. (25) are very similar. This means that the norm εMC is suitable for

the verification of PIC simulation codes.

Finally, we consider the same set of simulations presented in Figs. 1 and 2 and we evaluate

εx(fM) and εv(fM). The results thus obtained are presented in Figs. 4 and 5 for the CIC

and NGP weighting schemes, respectively. We observe that the error decreases for h → 0

as expected for both the weighting schemes, with p̂ → 2 for the CIC scheme, and p̂ → 1

for the NGP scheme. Therefore, also the norms defined in Eqs. (26)-(27) are suitable for

the verification of PIC simulation codes with the MMS. We note that, as the computational

cost of evaluating εx(fM) and εv(fM) is considerably decreased with respect to εFF (fM), this

evaluation is performed for all t = 0.08j, with j = 0, ..., 25, and the maximum between the

resulting values is computed. We finally remark that this last approach is easily generalized

to a d-dimensional distribution function, without increasing significantly the computational

cost of performing the order-of-accuracy test.

20

FIG. 4: Values of εx(fM) and εv(fM) averaged over the performed set of simulations (left) and

corresponding p̂ (right) for the two distribution functions f1 and f2, and for h = 1, 2, 4, 8, 16. Each

error is normalized to its value at h = 1, and the statistical uncertainties are represented with

errorbars. The dashed lines represent h2 (left) and p̂ = 2 (right). The electric field is interpolated

from the grid onto the particle positions using the CIC scheme.

FIG. 5: Values of εx(fM) and εv(fM) averaged over the performed set of simulations (left) and

corresponding p̂ (right) for the two distribution functions f1 and f2 and for h = 1, 2, 4, 8, 16. Each

error is normalized to its value at h = 1, and the statistical uncertainties are represented with

errorbars. The dashed lines represent h (left) and p̂ = 1 (right). The electric field is interpolated

from the grid onto the particle positions using the NGP scheme.

C. A practical example of PIC solution verification

In order to illustrate a practical example of application of the solution verification method-

ology, we consider here the two-stream instability. This textbook plasma instability is ideally

studied by using PIC simulations.

Consider the distribution function f(x, v) = fx(x)fv(v), where fx(x) = 1/L and fv(v) =

21

[δ(v − v0) + δ(v + v0)] /2, with δ(v) the Dirac function. The dispersion relation associated

with small amplitude perturbations is

D(ω, k) = 1− 1
2

[
1

(ω − kv0)2 + 1
(ω + kv0)2

]
. (46)

Since for 0 < k < 1/v0 the ω solution of D(ω, k) = 0 is complex, the system is affected by

an instability called two-stream instability. As a consequence, if the system is perturbed,

small amplitude modes can grow exponentially, before saturating due to nonlinear effects.

The fastest growing mode, with growth rate γmax = 1/
√

8, is obtained for kmax =
√

3/(8v2
0).

To numerically compute the linear growth rate of the two-stream instability, we proceed

as follows. First, we initialize our PIC simulations according to a distribution function

f = [fx + A cos(kmaxx)] fv, where A � 1 is used to seed the perturbation. Second, we

compute the Fourier transform of φ(x, t) along x, thus obtaining φ̃(k, t). Third, we identify

the time interval during which the mode φ̃(kmax, t) grows exponentially. Finally, over the

identified time interval, we fit the amplitude of the mode, |φ̃(kmax, t)|, with an exponential

curve to evaluate γmax.

We now apply the solution verification methodology discussed in Sec. IV to rigorously esti-

mate γmax and its numerical uncertainty ∆γmax. We perform three sets of ten simulations

for h = 1, 2, 4, with different pseudorandom number generator seed, with L = 2π, v0 = 0.2,

∆x0 = L/128, ∆t0 = 1/16, and N0 = 2.048 · 109, for which we expect kmax ' 3 and

γmax ' 0.353. The time evolution of |φ̃(kmax, t)| is shown in Fig. 6 (left panel) for h = 4.

After an initial transient, the mode grows until t ' 18, before saturating because of non-

FIG. 6: Time evolution of |φ̃(kmax, t)| for h = 4 (left) and growth rates of the two-stream instability

for h = 1, 2, 4 (right). The circles in the right panel represent γ̄max,h, while the errorbars represent

∆γmax. The dashed line represents the expected value of γmax

22

linear effects. We exponentially fit each profile in the time interval 15 ≤ t ≤ 17 to obtain

the growth rates γmax that we plot in Fig. 6 (right panel, red crosses). The same process

is repeated for h = 1 (green crosses) and h = 2 (blue crosses). It is noticeable that the

spreading of the growth rates is smaller at smaller h (i.e. larger N).

To compute ∆γmax we estimate separately the uncertainty introduced by the post-processing

(i.e., the exponential fit), ∆γfitmax, the statistical uncertainty, ∆γstatmax, and the discretization er-

ror, ∆γdiscmax. First, the uncertainty introduced by the exponential fit is ∆γfitmax,1 ' 0.003, that

is the confidence interval of the fit for the simulations with h = 1. Second, applying Eqs. (28),

we compute the values of γ̄max,h averaged over the set of simulations for h = 1, 2, 4, which

are represented in Fig. 6 (right panel) as circles. We note that, as discussed in Sec. IVA,

the variance of γmax,1 can be estimated as σγ,1 ≈ σγ,4/16 = 3.7 · 10−4. This is close to

σγ,1 = 3.9 · 10−4, obtained with Eq. (31). We therefore obtain ∆γstatmax,1 = 0.0002.

Third, the discretization error is obtained by applying the methodology discussed in

Sec. IVB. In particular, using the three estimates of γmax,h obtained by averaging over

the 10 simulations, which are γ̄max,h = 0.349, 0.343, 0.318 for h = 1, 2, 4, respectively, we

compute the Richardson extrapolation γ̄max = γ̄max,1 + (γ̄max,1− γ̄max,2)/3 = 0.351 according

to Eq. (33). We also compute the observed order of accuracy according to Eq. (36), obtain-

ing p̂ = 1.96, thus ensuring that the Richardson extrapolation is a reasonable estimate of the

exact solution. The discretization error is thus computed according to Eq. (34), obtaining

∆γdiscmax,1 = 0.002.

Finally, ∆γmax is obtained by summing up the uncertainty introduced by the exponential fit,

the statistical uncertainty, and the discretization error, ∆γmax = ∆γfitmax,1+∆γstatmax,1+∆γdiscmax,1,

resulting ∆γmax ' 0.005. Comparing the value of γ̄max,1 = 0.349 with the expected value

γmax ' 0.353, it results that the numerical evaluation of γmax is consistent with the exact

solution within the numerical uncertainty.

VI. CONCLUSIONS

In the present paper a methodology to rigorously verify PIC simulations is proposed, gen-

eralizing the procedures for finite difference codes presented in Ref. [34] to PIC algorithms.

The main differences between the verification of grid-based and PIC simulation codes are

discussed, and a methodology to overcome the emerging difficulties is illustrated.

23

To rigorously assess the correct implementation of PIC algorithms into simulation codes,

an order-of-accuracy test based on the MMS is proposed, accounting for numerical schemes

intrinsically affected by statistical noise, and providing a measure of the distance between

continuous, analytical distribution functions, and finite samples of computational particles.

In particular, the value of εh is estimated averaging over several simulations carried out with

different pseudorandom number generator seeds, and the statistical uncertainty affecting εh
and p̂ is quantified. Then, the distances defined in Refs. [50, 52] are generalized to account

for time-evolving marker weights, proving empirically that εP and εFF still decrease as N−1/2

for N → ∞ when wp 6= 1. Moreover, since the proposed norms are extremely demanding

in terms of computational resources when large number of computational particles are con-

sidered, the value of dPi is approximated with a Monte-Carlo approach and εMC is used in

verifying the PIC simulation code, allowing to considerably decrease the computational cost

of a PIC code verification. Finally, the norms εx and εv are introduced, showing that it

is possible to consider independently each coordinate of the phase-space when performing

a PIC code verification. The latter approach is easily generalized to phase-space in more

dimensions, without increasing the computational cost considerably.

To estimate the numerical uncertainty affecting the simulation results, a rigorous method-

ology is proposed. In particular, the uncertainty introduced by using a finite grid, a finite

time step, and a finite number of markers to perform a PIC simulation is quantified by

introducing the Richardson extrapolation to approximate the exact solution of the model,

and thus estimating the discretization error affecting the simulation results. Moreover, the

statistical uncertainty is quantified by repeating the simulation with different pseudorandom

number generator seeds. Finally, the numerical uncertainty affecting the simulation results

is computed by summing up the different contributions.

The application of the proposed procedures to a one-dimensional, electrostatic, collisionless

PIC simulation code allowed us to investigate the peculiarities of the verification method-

ology, showing how to perform a rigorous PIC code verification. We also quantify the

numerical uncertainty affecting the estimate of the two-stream instability growth rate. The

verification methodology discussed in this paper can be easily generalized to more complex

geometries and more realistic systems, providing the basis to perform a rigorous verification

of complex PIC simulations.

24

Acknowledgments

The authors gratefully acknowledge useful discussions with S. Brunner and L. Villard.

The simulations presented herein were carried out in part using the HELIOS supercom-

puter system at Computational Simulation Centre of International Fusion Energy Research

Center (IFERC-CSC), Aomori, Japan, under the Broader Approach collaboration between

Euratom and Japan, implemented by Fusion for Energy and JAEA; and in part at the Swiss

National Supercomputing Center (CSCS) under Projects ID s549. This work has been car-

ried out within the framework of the EUROfusion Consortium and has received funding from

the Fond National Suisse de la Recherche scientifique and from the Euratom research and

training programme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.

APPENDIX A: VERIFICATION OF DIFFERENT APPROACHES TO EVAL-

UATING THE DIFFERENCE BETWEEN AN ANALYTICAL DISTRIBUTION

FUNCTION AND A FINITE SAMPLE OF PARTICLES

In this appendix we empirically show that εP (fM), εFF (fM), and εMC(fM) decrease as

N−1/2 for N → ∞ if {xp, vp}p=1,...,N is a set of random realizations of fM , even if wp 6= 1.

We first generate N points (xp, vp) according to f0(v) = e−|v|/(2L), with p = 1, ..., N , and

we set wp = f1(xp, vp, 0)/f0(vp). Then, we compute εP (f1), εFF (f1), and εMC(f1) at t = 0

[for εMC(f1), M = 106]. We apply this procedure for different N , and, for each N , we

repeat the process a number of times, changing the pseudorandom number generator seed.

We compute the averaged value of εP (f1), εFF (f1), and εMC(f1) according to Eq. (28), and

the corresponding statistical uncertainties according to Eq. (30). Finally, defining h = 1/N ,

we estimate p̂ and its statistical uncertainty by applying Eqs. (8) and (21). The results

thus obtained are presented in Fig 7. We observe that the distance between f1(x, v, 0)

and the data sets decreases asN−1/2 forN →∞, with a similar value, for all the three norms.

25

FIG. 7: Values of εP (f1), εFF (f1), and εMC(f1) averaged over the performed set of simulations

(left) and corresponding values of p̂ (right) for h = 1/N . The errorbars represent the statistical

uncertainty affecting the results.

[1] F.H. Harlow. The particle-in-cell computing method for fluid dynamics. Methods for Comput.

Phys., 3:319–343, 1964.

[2] John Dawson. One-Dimensional Plasma Model. Physics of Fluids, 5(4):445, 1962.

[3] Charles K. Birdsall and A. Bruce Langdon. Plasma physics via computer simulation. Series in

plasma physics. Taylor & Francis, New York, 2005. Originally published: New York ; London

: McGraw-Hill, 1985.

[4] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Taylor & Francis,

Inc., Bristol, PA, USA, 1988.

[5] Y.N. Grigoryev, V.A. Vshivkov, and M.P. Fedoruk. Numerical "Particle-in-Cell" Methods:

Theory and Applications. De Gruyter, 2002.

[6] John M. Dawson. Computer modeling of plasma: Past, present, and future. Physics of

Plasmas, 2(6):2189, 1995.

[7] John Villasenor and Oscar Buneman. Rigorous charge conservation for local electromagnetic

field solvers. Computer Physics Communications, 69(2-3):306–316, mar 1992.

[8] G. Chen, L. Chacón, and D.C. Barnes. An energy- and charge-conserving, implicit, electro-

static particle-in-cell algorithm. Journal of Computational Physics, 230(18):7018–7036, aug

2011.

26

[9] Giovanni Lapenta and Stefano Markidis. Particle acceleration and energy conservation in

particle in cell simulations. Physics of Plasmas, 18(7):072101, 2011.

[10] H. Denavit. Time-Filtering Particle Simulations. Jouranl of Computational Physics, 366:337–

366, 1981.

[11] Rodney J. Mason. Implicit moment particle simulation of plasmas. Journal of Computational

Physics, 41(2):233–244, jun 1981.

[12] J.U Brackbill and D.W Forslund. An implicit method for electromagnetic plasma simulation

in two dimensions. Journal of Computational Physics, 46(2):271–308, may 1982.

[13] A.Bruce Langdon, Bruce I Cohen, and Alex Friedman. Direct implicit large time-step particle

simulation of plasmas. Journal of Computational Physics, 51(1):107–138, jul 1983.

[14] Giovanni Lapenta, J. U. Brackbill, and Paolo Ricci. Kinetic approach to microscopic-

macroscopic coupling in space and laboratory plasmas. Physics of Plasmas, 13(5):055904,

2006.

[15] D. W. Forslund and C. R. Shonk. Formation and Structure of Electrostatic Collisionless

Shocks. Physical Review Letters, 25(25):1699–1702, dec 1970.

[16] D. W. Forslund, K. B. Quest, J. U. Brackbill, and K. Lee. Collisionless dissipation in quasi-

perpendicular shocks. Journal of Geophysical Research, 89(A4):2142, 1984.

[17] B Lembege and Dawson J M. Formation of Double Layers Within an Oblique Collisioinless

Shock. Physical Review Letters, 62(23):2683–2686, 1989.

[18] P. L. Pritchett. Geospace Environment Modeling magnetic reconnection challenge: Simu-

lations with a full particle electromagnetic code. Journal of Geophysical Research: Space

Physics, 106(A3):3783–3798, mar 2001.

[19] J F Drake, M Swisdak, C Cattell, M A Shay, B N Rogers, and A Zeiler. Formation of electron

holes and particle energization during magnetic reconnection. Science (New York, N.Y.),

299(5608):873–7, feb 2003.

[20] Paolo Ricci, J. U. Brackbill, W. Daughton, and Giovanni Lapenta. Collisionless magnetic

reconnection in the presence of a guide field. Physics of Plasmas, 11(8):4102, 2004.

[21] C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund.

Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nature,

311(5986):525–529, oct 1984.

[22] S P D Mangles, C D Murphy, Z Najmudin, A G R Thomas, J L Collier, A E Dangor, E J

27

Divall, P S Foster, J G Gallacher, C J Hooker, D A Jaroszynski, A J Langley, W B Mori, P A

Norreys, F S Tsung, R Viskup, B R Walton, and K Krushelnick. Monoenergetic beams of

relativistic electrons from intense laser–plasma interactions. Nature, 431(7008):535–538, sep

2004.

[23] S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon. Absorption of ultra-intense laser

pulses. Physical Review Letters, 69(9):1383–1386, aug 1992.

[24] D. Tskhakaya and S. Kuhn. Particle-in-cell simulations of the plasma-wall transition

with a magnetic field almost parallel to the wall. Journal of Nuclear Materials, 313-

316(SUPPL.):1119–1122, 2003.

[25] Joaquim Loizu, Paolo Ricci, and Christian Theiler. Existence of subsonic plasma sheaths.

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(1):016406, jan 2011.

[26] P. W. Terry, M. Greenwald, J.-N. Leboeuf, G. R. McKee, D. R. Mikkelsen, W. M. Nevins,

D. E. Newman, and D. P. Stotler. Validation in fusion research: Towards guidelines and best

practices. Physics of Plasmas, 15(6):062503, 2008.

[27] Martin Greenwald. Verification and validation for magnetic fusion. Physics of Plasmas,

17(5):058101, 2010.

[28] A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim,

J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E.

Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J. Weiland. Comparisons and physics

basis of tokamak transport models and turbulence simulations. Physics of Plasmas, 7(3):969,

2000.

[29] G L Falchetto, B D Scott, P Angelino, A Bottino, T Dannert, V Grandgirard, S Janhunen,

F Jenko, S Jolliet, A Kendl, B F McMillan, V Naulin, A H Nielsen, M Ottaviani, A G

Peeters, M J Pueschel, D Reiser, T T Ribeiro, and M Romanelli. The European turbulence

code benchmarking effort: turbulence driven by thermal gradients in magnetically confined

plasmas. Plasma Physics and Controlled Fusion, 50(12):124015, dec 2008.

[30] M. M. Turner, A. Derzsi, Z. Donko, D. Eremin, S. J. Kelly, T. Lafleur, and T. Mussenbrock.

Simulation benchmarks for low-pressure plasmas: Capacitive discharges. Physics of Plasmas,

20(1):013507, 2013.

[31] R. V. Bravenec, Y. Chen, J. Candy, W. Wan, and S. Parker. A verification of the gyrokinetic

microstability codes GEM, GYRO, and GS2. Physics of Plasmas, 20(10):104506, 2013.

28

[32] J.U. Brackbill. On energy and momentum conservation in particle-in-cell plasma simulation.

Journal of Computational Physics, 317:405–427, jul 2016.

[33] William L. Oberkampf and Christopher J. Roy. Verification and Validation in Scientific

Computing. Cambridge University Press, New York, NY, USA, 2010.

[34] F. Riva, P. Ricci, F. D. Halpern, S. Jolliet, J. Loizu, and A. Mosetto. Verification methodology

for plasma simulations and application to a scrape-off layer turbulence code. Physics of

Plasmas, 21(6):062301, jun 2014.

[35] Stanly Steinberg and Patrick J Roache. Symbolic manipulation and computational fluid

dynamics. Journal of Computational Physics, 57(2):251–284, jan 1985.

[36] Patrick J. Roache. Verification and Validation in Computational Science and Engineering.

Hermosa Publishers, Albuquerque, NM, USA, 1998.

[37] Patrick J. Roache. Code Verification by the Method of Manufactured Solutions. Journal of

Fluids Engineering, 124(1):4, 2002.

[38] Christopher J. Roy. Review of code and solution verification procedures for computational

simulation. Journal of Computational Physics, 205(1):131–156, may 2005.

[39] B. D. Dudson, J. Madsen, J. Omotani, P. Hill, L. Easy, and M. Løiten. Verification of

BOUT++ by the method of manufactured solutions. Physics of Plasmas, 23(6):062303, jun

2016.

[40] P. Tamain, H. Bufferand, G. Ciraolo, C. Colin, D. Galassi, Ph Ghendrih, F. Schwander, and

E. Serre. The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in

versatile magnetic geometries. Journal of Computational Physics, 321:606–623, sep 2016.

[41] L. F. Richardson. The Approximate Arithmetical Solution by Finite Differences of Physical

Problems Involving Differential Equations, with an Application to the Stresses in a Masonry

Dam. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences, 210(459-470):307–357, jan 1911.

[42] L. F. Richardson and J. A. Gaunt. The Deferred Approach to the Limit. Part I. Single

Lattice. Part II. Interpenetrating Lattices. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 226(636-646):299–361, jan 1927.

[43] Patrick J Roache. Perspective: A Method for Uniform Reporting of Grid Refinement Studies.

Journal of Fluids Engineering, 116(3):405, 1994.

[44] A. Y. Aydemir. A unified Monte Carlo interpretation of particle simulations and applications

29

to non-neutral plasmas. Physics of Plasmas, 1(4):822, 1994.

[45] S.J. Allfrey and R. Hatzky. A revised δf algorithm for nonlinear PIC simulation. Computer

Physics Communications, 154(2):98–104, aug 2003.

[46] Genze Hu and John A Krommes. Generalized weighting scheme for δf particle-simulation

method. Physics of Plasmas, 1(4):863, 1994.

[47] F. James. Statistical Methods in Experimental Physics. World Scientific Publishing Co Inc,

2006.

[48] L. Lista. Statistical Methods for Data Analysis in Particle Physics. Lecture Notes in Physics.

Springer International Publishing, 2015.

[49] A. N. Kolmogorov. Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale

dell’Istituto Italiano degli Attuari, 4:83–91, 1933.

[50] J. A. Peacock. Two-dimensional goodness-of-fit testing in astronomy. Monthly Notices of the

Royal Astronomical Society, 202(3):615–627, mar 1983.

[51] R. H. C. Lopes, I. Reid, and P. R. Hobson. The two-dimensional Kolmogorov-Smirnov test.

In XI International Workshop on Advanced Computing and Analysis Techniques in Physics

Research, 2007.

[52] G. Fasano and A. Franceschini. A multidimensional version of the Kolmogorov-Smirnov test.

Monthly Notices of the Royal Astronomical Society, 225(1):155–170, mar 1987.

30

