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Abstract
Extreme loading scenarios such as earthquakes, exceptional wind gusts or tides are char-

acterized by very high amplitude and multidirectional cyclic loads applied to a structure.

Ultra Low Cycle Fatigue (ULCF) arises in such cases and can be summarily defined as the

deterioration of material properties due to repetitive loading at large amplitudes. In the case

of welded steel joints, failure is generally reached in just a few number of cycles – typically

less than ten or twenty.

The importance of a comprehensive understanding of this phenomenon lies in the balance

between safety or allowable damages and an economical design. For rare events with very

high demands there is a need to use the material’s properties to its fullest in order to obtain

the most rational design. A common example of this is the use of material ductility to absorb

the energy of earthquake loading in design standards. The goal of this thesis is to provide

the engineer with both the understanding of the physical phenomenon involved in ULCF

and the tools to design a structural component with flexibility and sufficient accuracy.

Failure of metals in the presence of high plastic strains is commonly observed to be of ductile

nature. Micromechanical models based on homogenization theory are typically used to predict

this type of fracture, because they attempt to capture the fundamental mechanisms involved

in void growth to coalescence. In this thesis, two micromechanical models (Gologanu-Leblond-

Devaux for void growth and Torki-Benzerga-Leblond for void coalescence), developed for

monotonic loading, are studied in the context of large amplitude cyclic loadings and their

predictions are compared with experimental results obtained on small scale specimens for

a high strength steel – S770QL. Component scale specimens, namely welded tube to plate

specimens of the same steel type, are tested in bending and torsion. Digital image correlation

measurements of weld toe strains for over 60 tests are presented and used to recommend a

design procedure using local strains in finite element modeling, with a Manson-Coffin type of

approach.

Key words: Ultra low cycle fatigue, High-strength steel, Multiaxial loading, Welded joints,

Void growth to coalescence, Gurson, Gologanu-Leblond-Devaux, Manson-Coffin
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Résumé
Les scénarios de sollicitations extrêmes tels que tremblements de terre, rafales exceptionnelles

ou marées se caractérisent par des chargements cycliques multidirectionnels de très grande

amplitude appliqués à une structure. L’endommagement à très faible nombre de cycles (ULCF)

apparaît alors dans de tels cas et peut être défini sommairement comme la détérioration des

propriétés du matériau due à des déformations répétées de grandes amplitudes. Dans le cas

des joints soudés en acier, la rupture est généralement atteinte en quelques cycles - moins de

dix ou vingt.

L’importance d’une compréhension globale de ce phénomène réside dans l’adéquation entre

la sécurité ou les dommages admissibles et une conception économique. Pour les événements

rares avec des sollicitations très élevées, il est nécessaire d’utiliser au maximum les propriétés

du matériau afin d’obtenir la conception la plus rationnelle. Le but de cette thèse est de

fournir à l’ingénieur à la fois une compréhension du phénomène physique à l’oeuvre dans

l’ULCF, et des outils ayant une validité générale pour dimensionner un composant structural,

tout en garantissant une précision suffisante.

La rupture de métaux en présence de déformations plastiques élevées est couramment

observée comme étant de nature ductile. Des modèles micromécaniques basés sur la théorie

de l’homogénéisation sont souvent utilisés pour prédire ce type de rupture car ces descriptions

capturent les mécanismes fondamentaux impliqués dans la croissance des vides jusque à leur

coalescence. Dans cette thèse, deux modèles micromécaniques (Gologanu-Leblond-Devaux et

Torki-Benzerga-Leblond), développés pour des chargements monotones, sont étudiés dans le

contexte de charges cycliques de grande amplitude et leurs estimations sont comparées avec

les résultats expérimentaux obtenus sur des éprouvettes à petite échelle pour un acier à haute

résistance - S770QL. Des éprouvettes à l’échelle d’un composant structural, soit des tubes

du même acier soudés à une plaque, sont testées en flexion et en torsion. Les mesures de

corrélation d’images numériques des déformations au pied de la soudure pour plus de 60 essais

sont présentées et utilisées pour recommander une procédure de dimensionnement utilisant

des déformations locales obtenues dans un modèle par éléments finis. Les déformations locales

sont utilisées dans une approche du type Manson-Coffin.
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1 Introduction

Many extreme loading scenarios such as earthquakes, exceptional wind gusts or tides are

characterized by very high amplitude and multi-directional cyclic loads applied to a structure.

Ultra Low Cycle Fatigue (ULCF) arises in such cases and can be summarily defined as the

deterioration of material properties due to repetitive loading at very high strain amplitudes.

In these situations, failure is typically reached in just a few number of cycles – typically less

than ten or twenty.

The importance of a comprehensive understanding of this phenomenon lies in the delicate

balance to be made between safety or allowable damages and an economical design. For rare

events with very high demands, there is a need to use material properties to their fullest in

order to obtain the most rational outcome. A common example of this are specifications in

design standards regarding material ductility to absorb the energy of earthquake loading.

This work aims to make a contribution to this field by both providing insights into the

physical mechanisms that govern ULCF (which can help tailor material properties to specific

applications) and also practical recommendations to address the most immediate need for

design criteria in welded high-strength steel joints.

One will begin this introductory chapter by discussing more specifically the background and

motivations behind this study. Subsequently, a statement of objectives and scope of the

research will be given as well as the outline of how the problem was approached. Finally, a

detailed overview of how the thesis is structured is presented.
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Chapter 1. Introduction

1.1 Background and motivation

The research presented in this study is part of a DACH collaboration project, grant number

200021L-141315, between École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland,

Graz University of Technology (TUG) in Austria and Karlsruhe Institute of Technology

(KIT) in Germany.

The overall aim of the project was to understand ULCF behavior of welded connections under

extreme multi-axial loading conditions on both conventional and high-strength steels. Project

partners had different tasks that were roughly divided as follows: 1 - study deformation

time-histories of typical welded connections in situations susceptible to ULCF (the demand

side - TUG); 2 - provide a failure criterion to ULCF in welded joints under multi-axial

loading for both these materials (the resistance side - KIT and EPFL). EPFL focused on the

characterization of material resistance to ULCF in high-strength steels.

There are a number of examples that can be given to illustrate the need both for a fundamental

understanding and for appropriate design procedures in ULCF but none, in the author’s

opinion, as clear as the case of thin walled shell structures. An economic design of these

systems hinges on the judicious use of wall thicknesses throughout the structure, where a even

slight variation in thickness selection can bring about important financial costs. Examples of

this type of structure can be found in pressure vessels, pipelines and liquid storage tanks. If

one looks into current codes of practice relevant for these structures, one can see that the

design criteria provided therein are often conservative and/or insufficiently justified.

Such is the case for Eurocode 3 Part 1-6 [European Committee for Standardization, 2007],

pertaining to the design of shell structures, where design to cyclic loading that is liable to

happen for more than three cycles during the lifetime of the structure can follow either of the

following two criteria: 1- the stress amplitudes cannot exceed two times the yield strength of

the material; 2 - the accumulated equivalent plastic strain at any point in the structure (not

closer to a notch than the thickest adjacent plate) should be limited to twenty-five times the

elastic strain of the material. The first criterion’s purpose is to limit the accumulation of

plastic strain and is thus conservative. The second, besides bypassing the special care to be

given in the presence of stress / strain risers such as welds, lacks, to the author’s knowledge,

a justification in literature.

Another paradigmatic case in ULCF is the seismic loading provisions for the design of

unanchored liquid storage tanks. The problem with thin shelled unanchored tanks is that, due

to their flexibility, during earthquake loading there is the possibility of certain regions of the

tank wall to uplift, subjecting the base-plate to very high plastic deformations. The most up-
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1.1. Background and motivation

to-date standards ([European Committee for Standardization, 2006b] and [NZSEE, 2009])

try to address this issue by imposing a limit on the maximum allowable plastic strain of 5%

in the cross-section over a postulated plastic hinge length of two times the thickness of the

base plate. Again, a big issue in this provision is that the limit of 5% strain, to the author’s

knowledge, lacks justification in literature. Furthermore, this provision does not inform the

designer over how many number of cycles this limit should be considered nor the type of

steel it should be limited to. Experimental studies into this type of connection in mild-steel

have shown that these design requirements are overly conservative [Cortes et al., 2011] thus

underscoring a need for a more robust approach to ULCF.

Codes of practice are, however, inertial in the adoption of new ideas and thus those provisions

might not necessarily reflect the current knowledge on the subject. There is, nonetheless, a

need to deepen one’s understanding of ULCF if one looks into the most up-to-date literature.

Without getting into much detail on what will be covered more extensively in Chapter 2, the

current state of the art on ULCF in civil engineering structures revolves around two main

approaches.

The first approach, more phenomenological, follows some variation of the well known Manson-

Coffin (M-C) relation for Low-Cycle fatigue. Most of the resistance curves rooted in M-C

formulae are based on experimental testing of smoothly polished small scale specimens

(typically bars of 5 to 8 mm diameter) of base material. Data concerning tests carried out

on welded parts in the ULCF regime are scarce, particularly when it comes to multiaxial

loadings. The validity of such an approach (or at least its extent) is therefore unknown and

further investigation on the subject is warranted if one is to apply it to welded structural

components.

The second approach, more physics based, follows the attempts of

[Kanvinde and Deierlein, 2004] to bring micro-mechanically informed failure criteria devel-

oped for ductile fracture into the ULCF regime. The main idea of this approach is to

reduce the resistance for monotonic loading by an empirical function that is representative

of material degradation to cyclic loading. The parameters of this empirical function are

generally fit to experimental data of tests on small scale specimens. Building upon this

work, quite recently and after this research project started, a model was proposed to ex-

tend [Kanvinde and Deierlein, 2004]’s work to generalized stress states [Smith et al., 2014],

thereby tackling the issue of multiaxiality in the ULCF regime. This work, however, similarly

to the M-C test programs, is based on small scale tests of base material and, as will be seen

in Chapter 4, tests conducted on welded structural components can behave in ways that are

not captured fully with a small scale experimental program.
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1.2 Scope, objectives and approach to the problem

With the context given in the previous section, one can now set the scope of this study. The

focus of the work presented in this document will be to address the issue of ultra low cycle

fatigue resistance in welded high-strength steel joints under multiaxial loading.

The statement of objectives is given as follows,

1. Understand the behavior of high-strength steel under ULCF

2. Provide a model capable of estimating failure in welded high-strength steel joints under

multi-axial ULCF

3. Develop an appropriate framework for the structural verification of welded high-strength

steel joints under multi-axial ULCF

The first objective is quite broad and what it covers needs to be discussed more specifically.

Phenomenological or empirical formulations are never the ideal bedrock in which to base

design rules. The most obvious reason is their limited range of application. Understanding

the true mechanisms behind the material’s response to ULCF can allow the engineer to make

better decisions with respect to either the choice of materials or design rules, and thus it

is important to focus at least some part of the effort on this topic. This objective will be

addressed in this thesis by performing small scale specimen testing taken to be representative

of material behavior and then, leveraging state of the art micromechanical solutions to ductile

fracture, try to explain some part of the phenomenological character of ULCF of the two

approaches mentioned in the previous section.

To arrive at a model capable of estimating failure in steel joints under multi-axial loading a

large experimental campaign on welded tube-to-plate was conducted so as to provide it with

the necessary basis. Ideally this model would build upon the work conducted for the first

objective. As will be shown in the detailed discussion of the tests conducted on the welded

component level, experimental observations led to the conclusion that a significant part of a

component’s life is spent in the propagation of a crack. Considering that material behavior in

ULCF is already poorly understood1 under fairly uniform strain fields, that problem is only

aggravated in presence of very high strain gradients such as a sharp crack tip. For practical

reasons a more phenomenological approach is thus employed to take into account the total

life of the joint under ULCF (initiation and propagation).

1at length scales relevant for micromechanical models of ductile fracture and how they are able to describe
the differences observed in fracture patterns under monotonic and ULCF
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The third and final objective is to take the knowledge acquired in the welded component

test campaign and the model for multiaxial ULCF resistance suggested in objective number

two, and provide a methodology that can be used for design. This will mainly be achieved

by reproducing experimental results of the welded component tests by appropriate finite

element models. The specifics involved in building those finite element models will become

the very definition of that methodology.

1.3 Structure of the thesis

Chapter 2 - Background and state of the art

The purpose of this chapter is to provide the necessary background information to understand

both the details involved in the model developed in Chapter 5 and in Digital Image Correlation

(DIC) measurements that are essential to the interpretation of results in Chapter 4. A brief

review of the state of the art on ductile fracture and ultra low cycle fatigue is also given.

Chapter 3 - Material characterization and behavior

This chapter presents the methods and results of an experimental program conducted on

small-scale specimens. The focus of this chapter is to characterize key micromechanical

variables as well as define the small scale experiments that will serve as a proxy for material

behavior. The experiments presented in this chapter attempt not only to describe failure

under uniaxial loading with round notched bar tests, but also in multiaxial loading with

double notched tubes under tension and torsion.

Chapter 4 - Welded component behavior

In this chapter the methods and results of an experimental program to study the behavior

of welded structural components under multiaxial ULCF are presented. These tests consist

of a welded tube-to-plate configuration loaded in bending and in torsion. One of the most

innovative aspects of this test program is the use of DIC measurements to assess large strain

time-histories at the weld toe of a component in a very localized way . It will be shown that

these measurements correlate well with a M-C type law thereby providing a suitable model

for ULCF.
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Chapter 5 - A cyclic micromechanical material model

This chapter is dedicated to the adaptation of state of the art micromechanical models

in ductile fracture to the domain of ultra low cycle fatigue. Its implementation as a

user defined material model (UMAT) in the commercial software package Abaqus v6.11-2

[Dassault Systèmes, 2011] is discussed at length and its performance is validated by comparing

it with similar material models. Taking the experimental results presented in Chapter 3,

the application of this cyclic micromechanical model will be shown to provide reasonable

estimates in ULCF for single notched specimens. However, modeling the results of double

notched tubes under multiaxial loads proved challenging with this methodology. Here only a

qualitative assessment in monotonic loading cases will be presented.

Chapter 6 - Design approach for welded structural components

Building on the data collected for welded structural components in Chapter 4, this chapter

will provide a design guideline for the assessment of welded high strength steel joints under

multiaxial ULCF. This will be achieved by postulating a specific mesh element size and type

around the weld toe region that consistently reproduces the resistance curve given by the

localized strain measurements obtained with DIC. The main argument behind this approach

is that a consistent modeling method is able to reproduce consistently the experimental

results. Local weld toe evaluation methods are not unprecedented in fatigue analysis. One

need only look at the hot-spot stress method for high-cycle fatigue established in current

design codes. The design proposal in this chapter, with all its assumed shortcomings, follows

along those lines and represents a step towards improving what was discussed in Section 1.1.

Chapter 7 - Conclusion and future work

This chapter briefly summarizes the work presented throughout the thesis and provides

suggestions on areas to conduct future work.

Appendices

The thesis is completed by a set of appendices containing key information on the UMAT

that was developed, as well as a summary of the results of the experimental campaigns

conducted on both small and component level specimens. For more detailed informa-

tion on each test result and simulation, one refers to a companion report to the thesis

[de Castro e Sousa and Nussbaumer, 2017]. In that document one can also find the Fortran

code for the UMAT discussed in Chapter 5.
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1.4 Notation and abbreviations

The following general notation rules are used. Lower case bold roman characters (a) are

vectors, upper case bold characters (A, Σ) are second-order tensors and lower case Greek

bold characters (σ) are second-order tensors. Normal characters represent scalar quantities.

Exceptions can be found to this notation but they will be explicitly noted with respect to

their nature.

The Einstein summation convention is used, where repeated indices imply summation:

(Ab)i = Aijbj . The Frobenius product is defined as A : B = AijBij . The dyadic product of

two vectors is expressed by (a ⊗ b)ij = (abT )ij = aibj

These standard abbreviations are used throughout the text: w.r.t. - stands for "with respect

to"; i.e. - id est, stands for "that is"; e.g. - exempli gratia, stands for "for example"; cf. -

stands for "confer".
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2 Background and state of the art

This chapter will provide the background and the current state of the art on the subject of

ultra low cycle fatigue. It is is divided in four sections: plasticity; digital image correlation;

micro-mechanical modeling of ductile fracture; and low and ultra low cycle fatigue. The first

two sections provide some background on key concepts used throughout the thesis. Their

aim is to provide context and basic definitions to the reader and are by no means extensive

in their domains. The subsequent sections present a literature review of the work carried out

by the community on the subject.

2.1 Finite strain plasticity

The purpose of this section is to provide background on finite strain plasticity. The detail

afforded in describing this subject will be justified in the development of a cyclic micro-

mechanical model in Chapter 5. Much of the concepts that are outlined is this section can

be consulted more in depth in [Simo and Hughes, 1998] and [Lubliner, 2008] .

Basic kinematics

Consider an object defined in space by set B, i.e. every material point defined by position

X ε R3 in that object belongs to set B. Furthermore, consider that this object can move

in space such that there exists a function ϕ → R3 mapping position X in the material

configuration to position x in the spatial configuration. Mathematically, this can be written

as

ϕ (B) = {x = ϕ (X) | X ε B} (2.1)
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• X
OX

B

•
xn+α

Oxn+α

•
xnOxn

•
xn+1

Oxn+1

Fn

Fn+α

Fn+1

fn+α

fn+1

f̃n+α

ϕn

ϕn+1

ϕn+1ϕ−1
n

Figure 2.1 – Mapping between material and spatial configurations

Practical treatment of the mechanical problem of insuring equilibrium between internal and

external work in body B from the reference configuration to the final configuration usually

involves dividing this path in appropriate step sizes. This becomes exceedingly important

the more acute the material and geometric nonlinearities are. In rate formulations, variables

at time tn+1 are equal to tn + Δt where Δt defines the step size.

Let us define the mapping function (ϕ) in an intermediate configuration n + α as a linear

combination of step n + 1 and n,

ϕn+α = αϕn+1 + (1 − α) ϕn | α ε [0, 1] (2.2)

Let us also define the deformation gradient(F) on the neighborhood of point X (OX) at
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2.1. Finite strain plasticity

n + α as,

Fn+α =
∂ϕn+α

∂X
(2.3)

then from Eq. 2.2,

Fn+α = αFn+1 + (1 − α) Fn | α ε [0, 1] (2.4)

Defining F in an intermediate configuration is a useful concept because it gives one flexibility

in choosing how to integrate within time increment Δt. By setting α = 0, one uses the

forward Euler method (explicit time stepping). For α = 1 one uses the backward Euler

method (implicit time stepping). For α = 1
2 one uses the implicit midpoint rule (second

order accurate, as opposed to the Euler method which is first order accurate).

Fig. 2.1 depicts the mapping between material and spatial configurations. All important are

the relations between spatial configurations(f) expressed in Eqs. 2.5, 2.6 and 2.7.

fn+α = Fn+αF−1
n (2.5)

fn+1 = Fn+1F−1
n (2.6)

f̃n+α = fn+1f−1
n+α (2.7)

The deformation gradient can be decomposed into two parts: one corresponding to a rigid

body rotation and another representing the stretch around OX that the material undergoes.

This can be expressed in the following forms (Eqs.2.8 and 2.9).

F = RU (2.8)

F = VR (2.9)

where U and V are defined as the right and left stretch tensors, respectively, and R the

rotation associated with the rigid body movement on OX.

The time rate of change of the deformation gradient relative to the spatial configuration, i.e.
the spatial velocity gradient tensor (L), can be shown to be equal to,

L = ḞF−1 (2.10)

The symmetric part of L is defined as the spatial rate of deformation tensor d and the

anti-symmetric part, i.e. rotational unbalanced, is defined as the spin tensor W of the

material - see Eqs.

d =
1
2
(
L + LT

)
(2.11)
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W =
1
2
(
L − LT

)
(2.12)

Another important definition in the subsequent discussion of objectivity is the rotation rate

Ω.

Ω = ṘRT (2.13)

This tensor also has the property that it is anti-symmetric, i.e. Ω + ΩT = 0 (belonging to a

special orthogonal group so(3)).

Objectivity

With the spatial rate of deformation d defined, an appropriate approximation for the

increment in total strain can be given by,

Δεn+ 1
2

= Δtdn+ 1
2

=
1
2

f̃T
n+ 1

2

[
I −
(
fn+1fT

n+1
)−1] f̃n+ 1

2
(2.14)

Δεn+ 1
2

has the interesting property that if the deformation when going from configuration n

to n+1 consists solely of a rigid body rotation (Λ), i.e. fn+1 = Λ where ΛΛT = I (belonging

to special orthogonal group SO(3)), then Δε = 0. As such, this quantity is considered to be

incrementally objective. Having shown that the increment in strain is incrementally objective,

let’s turn now our attention to stress measures. Assume that the Cauchy stress tensor (σ)

transforms objectively1 such that,

σ̃ = ΛσΛT (2.15)

where [̃] represents a rotated quantity. The time derivative of Eq. 2.15 can be shown to be,

˙̃σ = Λσ̇ΛT + Λ̇ΛT σ̃ − σ̃Λ̇ΛT (2.16)

or more conveniently,
˙̃σ = Λ

(
σ̇ + ΛT Λ̇σ − σΛT Λ̇

)
ΛT (2.17)

One can see comparing Eqs. 2.15 and 2.17 that whereas the Cauchy stress transforms

objectively its rate of change does not.

Let us define the tensor ω̂ ε so(3) as representing a quantity that characterizes the rigid body

rotation rate on Ox such that,

Λ̇ = (ω̂ ◦ ϕ)Λ (2.18)

1i.e. that there is a direct correspondence between reference frames under rigid body rotations that
conforms to the rules of tensor calculus
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Eq.2.17 becomes,
˙̃σ = Λ (σ̇ + ω̂σ − σω̂) ΛT (2.19)

Two classical measures of rotation are of relevance in the present discussion,

1. ω̂ ≡ W - Jaumann-Zaremba stress rate, leading to Eq. 2.20

2. ω̂ ≡ Ω - Green-McInnis-Naghdi stress rate, leading to Eq. 2.21

�
σ = σ̇ + WΣ − σW (2.20)

◦
σ = σ̇ + Ωσ − σΩ (2.21)

One can now link stress and strain responses via an appropriately chosen constitutive law.

Objectivity of integration algorithm hinges on formulating a constitutive law that is insensitive

to rigid body rotations in the spatial configuration. This is usually done by defining its rate

form in the material configuration, also known as the convected configuration, and then

pushing-forward to the spatial configuration. Consider the hypo-elastic rate constitutive law

in Eq. 2.22 in the material configuration,

σ̇ = Cd (2.22)

where, C is the fourth-order elastic stiffness tensor. Approximating Eq. 2.22 by the midpoint

rule

σn+1 − σn = Δt σ̇n+ 1
2

= Δt Cn+ 1
2
dn+ 1

2

= Cn+ 1
2
ΛT

n+ 1
2
Δε̃n+ 1

2
Λn+ 1

2
(2.23)

Rearranging 2.23 to express it incrementally in the spatial configuration yields,

σ̃n+1 = ΔΛσ̃nΔΛT + C̃Δε̃n+1 (2.24)

where,

ΔΛ = Λn+1ΛT
n (2.25)

ε̃n+1 = Λ̃n+ 1
2
ε̃n+ 1

2
Λ̃T

n+ 1
2

(2.26)

Λ̃n+ 1
2

= Λn+1ΛT
n+ 1

2
(2.27)

and C̃ the stiffness matrix rotated to the spatial configuration at n + 1. When elastic isotropy
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is assumed, C = C̃ because the operations only involve rigid body rotations.

The only thing left to define is how to obtain Λn+α . Considering that at t = 0 → Λ0 = I,

Λn+α can be found by integrating Eq. 2.18 as,

Λn+1 = eΔtω̂n+αΛn (2.28)

For ω̂ ≡ Ω, from Eq. 2.28 follows that one only needs to perform three polar decompositions

following Eq. 2.8,

Λn = Rn ; Λn+α = Rn+α ; Λn+1 = Rn+1 (2.29)

For ω̂ ≡ W

Δt ω̂n+α =
1
2
[
hn+α + hT

n+α

]
(2.30)

hn+α = �n+αũ = (Fn+1 − Fn) F−1
n+α (2.31)

It can be shown that the widely used Hughes-Winget formula [Hughes and Winget, 1980] is

an approximation to Eqs. 2.28 and 2.30 [Simo and Hughes, 1998].

Yield surfaces and hardening laws

Modeling plasticity typically involves assuming an additive decomposition of the strain rate

tensor into elastic and plastic parts, as per Eq. 2.32

d = de + dp (2.32)

Yield functions (henceforth generally denote as φ) serve to assess the boundary between

elastic (φ < 0) and plastic deformation (φ = 0) . Plasticity in metals is usually expressed in

terms of J2 flow theory. J2 stands for the second invariant of the deviatoric stress tensor (σ′;

where the apostrofe implies S′ = S − 1
3 SkkI) . The Von Mises yield criterion appears in this

theory as Eq. 2.33.

φV M = σ2
vm − σ2

y = 0 (2.33)

σvm is the Von Mises equivalent stress (given by
√

3/2σ′ : σ′) and σy is denoted as the

matrix yield stress. σy defines a limit on the yield function in Eq. 2.33 whose surface defines

a cylinder in principal stress space, with its axis of revolution along the hydrostatic axis.

One defines the π-plane as the plane normal to the hydrostatic axis that passes through

the origin. To describe a hardening material, there are two common approaches - isotropic

and kinematic hardening. Fig. 2.2 presents the projection of φV M = 0 onto the π-plane for

those two scenarios. The first and most immediate solution is to increase the size of the yield
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surface (or circle in the π-plane) as the material undergoes plastic deformation. The second

solution would be to move the yield surface along with the loading. Eq. 2.34 expresses those

two options mathematically, where α is a stress tensor that shifts the center of the surface -

this tensor is also known as the backstress. If one is to try to model a metal’s plastic response

in monotonic loading, an isotropic hardening is sufficient. In cyclic loading, however, because

of the Bauschinger effect, kinematic hardening is usually employed to some extent.

O

σy
,0

Δσy

(a) Isotropic hardening

O

α

σ

(b) Kinematic hardening

Figure 2.2 – π-plane representation of hardening rules

φV M =
3
2

(σ − α)′ : (σ − α)′ − (σy,0 + Δσy)2 = 0 (2.34)

Once one has reached the limit set by the yield function, a direction of plastic flow needs

to be defined. This is normally imposed by another function commonly denoted as the

plastic potential. When the plastic potential equals the yield function one is in the presence

of associated plasticity. Such is the case for J2-theory. Following Drucker’s postulate and

principle of maximum plastic dissipation, the plastic strain rate obeys normality to the yield

function φ, leading to the following associated flow rule,

dP = λ̇
∂φ

∂σ
(2.35)

where dp is proportional to the normal to the yield function by a factor commonly called

the plastic multiplier λ. Hardening laws, as the name suggests, serve to describe how the

material hardens. A number of hardening laws exist. Pervasive in most of them, is a scalar

strain measure known as the equivalent plastic strain εp
eq. This quantity is obtained by

enforcing work conjugacy in the rate of plastic dissipation, see Eq. 2.36

σ : dp = σvmε̇p
eq ; ε̇p

eq =
√

2
3

dp : dp (2.36)
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In isotropic hardening, this scalar variable is sufficient for a description of the material

behavior. The simplest nonlinear isotropic power law due to [Ludwik, 1909] is presented in

Eq. 2.37.

σy = σy,0 + K
(
εp

eq

)n (2.37)

For the case of kinematic hardening, one also needs a direction where to move the yield

surface. A widely used non-linear kinematic law due to [Armstrong and Fredrick, 1966] is

given in Eq. 2.38, expression in which the direction of the backstress rate (α̇) is set by

the plastic strain rate (dp) and previous backstress values. Here, C is a linear hardening

parameter on the plastic strain rate and γ the so-called relaxation term that introduces

non-linearity to the law. The well-known Chaboche model [Chaboche et al., 1979] takes

the Armstrong-Fredrick law and defines backstress as the sum of a number component

backstresses (αk)- see Eq. 2.39.

α̇ =
2
3

Cdp − γαε̇p
eq (2.38)

⎧⎪⎨⎪⎩α =
∑

k αk

α̇k = 2
3 Ckdp − γkαε̇p

eq

(2.39)

Non-linear kinematic hardening laws in hypo-elastic finite strain formulations are know to be

sensitive to shear oscillations [Xiao et al., 2006]. A manifestation of the problem can be seen

in Fig. 2.3. Here a Finite Element Method (FEM) simulation is made on the software Abaqus

Standard[Dassault Systèmes, 2011] on an 8-node reduced integration cubic element on which

simple shear is applied. A prescribed material law is given (marked Intended in the figure)

and the response in terms of accumulated plastic strain and Von Mises stress is registered for

the built-in material models corresponding to non-linear isotropic and kinematic hardening.

One can see that, for the same hardening curve in simple shear, different material models

will give different results. Abaqus Standard’s finite strain formulation is hypo-elastic and

based on the Jaumann-Zaremba stress rate. One should therefore be cognizant of this fact

when performing FEM analyses that involve large shear strains.

16



2.2. Digital image correlation

0.0 0.5 1.0 1.5 2.0 2.5

εpeq

0

200

400

600

800

1000

1200

1400

1600

σ
v
m

(M
P
a
)

Intended

Abaqus Standard: Non-linear kinematic

Abaqus Standard: Non-linear isotropic

Figure 2.3 – FEM Non-linear isotropic and kinematic hardening in Abaqus and prescribed
stress-strain curve in simple shear

2.2 Digital image correlation

DIC is a measurement technique that was used throughout the experimental programs made

during this work. Due to its importance, it is useful to have a few dedicated remarks on the

procedures that are at the root of this method.

The two different methods of DIC used were: stereo DIC with speckle pattern (Fig. 2.4a)

and target recognition (Fig. 2.4b). The latter is a simple technique that consists of an

in-house image recognition program that, by analyzing contrast between white and black

pixels, defines the outlines of circular targets and fits the best circle that represents the data.

This can be done continuously at sample rates of 10Hz. Displacements on uni-axial tests

are expressed in difference in pixels w.r.t. a reference configuration. A scaling factor must

therefore be applied and this is done so by using a ruler as wide as the picture itself to get a

correspondence between pixels and actual length scale.

A more complex method involves the use of a randomized speckle pattern on the surface of a

specimen. The working principle can be understood by interpreting Fig. 2.5 with the help

of Eq. 2.40. One begins by establishing a subset size (Fig. 2.5a) in a reference image (I)

that defines a box with center (x, y) of n × n pixels. In Fig. 2.5b one finds a picture in the

deformed configuration (I∗) with an idealized pattern having moved by (u, v) pixels. Now,

each pixel has associated with it a numerical value (I(x, y)) corresponding to its greyscale

(say 0 is white, 1 is black). Out of all n × n boxes that can be placed in the deformed picture,

there is one whose difference, pixel by pixel, w.r.t. the reference picture is minimum. That is
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(a) Speckle pattern (b) Circular targets

Figure 2.4 – DIC methods

a measure of correlation between the two pictures and is, essentially, what can be interpreted

from Eq. 2.40.

CDIC(x, y, u, v) =
n/2∑

i,j=−n/2

(I(x + i, y + j) − I∗(x + u + i, y + v + j))2 (2.40)

Two extra parameters contribute a great deal to DIC speckle measurements. The first is the

step size2 that one chooses between the boxes, i.e. the grid spacing of (u, v) measurement

points (Fig. 2.5c). The second is the filter size that sets a window of m × m (u, v) points

over which data is averaged (m being an odd number of points; c.f. Fig. 2.5d). With a field

measurement of displacements values, strain fields can be calculated.

Stereo correlation systems add another level of sophistication in so far as with two camera

systems one can produce full-field measurements in 3D. This involves knowing precisely the

relative position of each camera. It should be noted that accuracy in the in-plane direction

is generally better than the out-of-plane. Specialized software (in this study VIC3D from

Correlated Solutions [McGowan et al., 2001]) and calibration procedures have to be employed

for reliable results. More details can be found in [Schreier et al., 2009].

2step size can be inferior to subset size, i.e boxes may overlay
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Figure 2.5 – Digital image correlation definitions

2.3 Ductile fracture in metals

This section presents a synopsis of the state of the art in ductile fracture by void growth

to coalescence. Its objective is to summarize the work in the field and to put the cur-

rent study into context. For a comprehensive treatment of the subject one refers to

[Benzerga and Leblond, 2010] and [Pineau et al., 2016].

2.3.1 Experimental observations

One starts by presenting pertinent experimental observations in literature. Consider Fig. 2.6

which presents a force-displacement curve for a single notched round tube along with cross

sectional cuts representative of key points during the loading. What is apparent from this

test is the diffuse formation of voids in the material, followed by an appreciable increase in

19



Chapter 2. Background and state of the art

size until their volume becomes such that they start to coalesce to form a full-sized crack

in the material.This full-sized crack will propagate until ultimate failure of the specimen.

In this succinct description lies the foundation for micro-mechanical based models of void

growth to coalescence.

Load

Displacement

100μm

(c)

(f)

Figure 2.6 – Loading of a single notched bar - from [Benzerga and Leblond, 2010]

This process is schematically represented in Fig. 2.7. The process of formation of voids around

inclusions or second-phase particles have been reported as far back as [Argon and Im, 1975].

During loading, voids tend to form around those particles (Fig. 2.7a) either by decohesion

(Fig. 2.7c) of the matrix or by particle cracking (Fig. 2.7b). Then voids grow (Fig. 2.7d) up

to a point where plastic instability ensues and necking in the inter-void ligament is observed

(Fig. 2.7e). A crack is then formed by the coalescence of these voids. The fracture surface is

then characterized by pockets of ellipsoidal depressions henceforth called dimples.

Different modes than the coalescence of voids by necking in the inter-void ligament have been

reported in literature. These include shearing of the inter-void ligament and coalescence in

columns (often associated with material delamination) [Benzerga, 2000].

Experiments also show that the fracture behavior is highly dependent on the stress state

([Bao and Wierzbicki, 2004], [Mohr and Henn, 2007], [Dunand and Mohr, 2011],

[Barsoum et al., 2012], [Faleskog and Barsoum, 2013], [Smith et al., 2014]). The two most

commonly used measures of the stress state to describe material ductility (as represented by

the fracture strain) are the stress triaxiality (T - Eq. 2.41) and the Lode parameter (L - Eq.
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2.3. Ductile fracture in metals

a) b) c)

d) e)

Figure 2.7 – Nucleation, void growth and coalescence

2.42).

T =
σh

σvm
(2.41)

L =
2σ2 − σ1 − σ3

σ1 − σ3
(2.42)

where σh is the hydrostatic stress (σh = 1
3 σkk) and σ1, σ2 and σ3 are the principal stresses.

Physically the triaxiality can be interpreted as a measure of the relationship between

hydrostatic and deviatoric stress states. The Lode parameter, being closely related to the

third invariant of the deviatoric stress tensor, acts as a measure of the axisymmetry of

the loading. It is a bounded measure going from L = −1 in uniaxial tension to L = 1 in

equi-biaxial tension.

In so far as larger values of triaxiality imply a larger hydrostatic component in the loading,

which intuitively implies a greater rate of growth of voids, large triaxiality values are associated

with decreased ductility. A typical fracture surface in the tensile regime can be seen in

2.8a. Fracture surfaces for low triaxiality values, which are predominantly shear loadings,

are associated with shearing instability of the inter-void ligament and can be seen in Fig.

2.8b. Phenomena such as crack tunneling in CT specimens can be viewed in this perspective.

Triaxialities in front of a crack tip in plane strain conditions are greater than in plane stress

conditions. This justifies a greater rate of crack growth in the middle of CT specimens as

seen in 2.9.
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(a) Predominantly tension load showing deep
dimples

(b) Predominantly shear
[Becker and Shipley, 2002]
[Pineau et al., 2016]

Figure 2.8 – Typical ductile fracture surfaces

Figure 2.9 – Fracture surfaces of CT specimens illustrating crack tunneling. From bottom
to top: 1 - Fatigue crack; 2 - monotonic ductile crack propagation; 3 - brittle failure
[Vassilaros et al., 1980]

2.3.2 Modeling approaches

This subsection summarizes current approaches to modeling of the experimental observation

made in the previous section. For a comprehensive review one refers to [Benzerga and Leblond, 2010].

Homogenization theory plays a central role in the derivation of micromechanical models.

Consider 2.10 where a schematic of a porous body is presented and an arbitrary velocity

field is applied on the boundaries of body ∂B as per Eq. 2.43.

∀xε∂B, vi = Dijxj (2.43)
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T v

B

∂B

∂T v

Figure 2.10 – Schematic of porous body

The Hill-Mandel Lemma (Eq. 2.44) allows one to express the macroscopic rate of dissipation

(Σ : D) as the average microscopic dissipation in the matrix of body B.

Σ : D = 〈σ : d〉B

= (1 − f) 〈σ : d〉B\T v

(2.44)

where f is defined as the porosity of the material given by T v/B.

The principle of maximum plastic dissipation and the upper bound theorem allow one to

make the following statement: among the set of microscopic strain rate fields d+ that are

kinematically admissible with the macroscopic strain rate field D (d+εK(D)), together with a

statically admissible stress field σ∗, the tightest upper bound to the actual plastic dissipation

rate (Σ : D) is given by Eq. 2.45.

Σ : D ≤ Π(D) = inf
d+εK(D)

〈
sup
σ∗

σ∗ : d+
〉

B
(2.45)

By selecting an appropriate Representative Volume Element(s) (RVE) and corresponding

velocity field, it can be shown (c.f. [Benzerga and Leblond, 2010]) that one can use Eq. 2.45

to obtain a set of macroscopic stress states that characterize the elastic domain, thereby

defining a yield criterion.

Void growth models

The popular Gurson model [Gurson, 1975] uses a spherical RVE with a spherical internal

void as depicted in Fig. 2.11 in a perfectly plastic J2-plasticity matrix to obtain the well

known yield function given in Eq. 2.46

φG(Σ; f) =
Σ2

vm

σ2
y

− 1 + 2f cosh
(

1
2

Σ : I
σy

)
+ f2 (2.46)
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b a

Figure 2.11 – Spherical RVE with a spherical internal void

Since its appearance, the Gurson model has been the target of intense study and enhancements

starting with the corrections of [Tvergaard, 1982] to account for void interaction effects.

Recently, attempts have been made to address the shortcomings of the Gurson in low

triaxiality regimes either by heuristic extensions incorporating additional stress measures

(like the Lode parameter - [Nahshon and Hutchinson, 2008]) or by making use of second-order

homogenization models [Danas and Castaneda, 2012] .

Other models have tried to incorporate void shape effects explicitly. Such is the case

of the GLD model [Gologanu and Leblond, 1993], [Gologanu et al., 1994], [Gologanu, 1997],

[Gologanu et al., 1997] (see Eq. 2.47), where the yield function φGLD (Σ; f, w, Υ) is depen-

dent not only on the porosity (f) but also on the aspect ratio of a spheroidal void (w) and

its orientation (Υ as given by Eq. 2.50 in correspondence with Figs. 2.12 and 2.13).

φGLD = C
‖Σ′ + η(Σ : X)Q‖2

σ2
y

+

2 (g + 1) (g + f) cosh
(

k
Σ : X

σy

)
−

(g + 1)2 − (g + f)2 (2.47)

where X and Q are given by,

X = α2 (n1 ⊗ n1 + n2 ⊗ n2) + (1 − 2α2)n3 ⊗ n3 (2.48)

Q = −1
3

(n1 ⊗ n1 + n2 ⊗ n2) +
2
3

n3 ⊗ n3 (2.49)

and ‖S‖ =
√

3/2S′ : S′. C, η, g, k and α2 are functions of the aspect ratio w and the
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porosity f given in Appendix A.

Υ =

⎡⎢⎢⎣
| | |

n1 n2 n3

| | |

⎤⎥⎥⎦ (2.50)

with n1, n2 and n3 being the void’s axes and n3 being the void’s principal direction.

n1 n2

n3

(a) Oblate

n1 n2

n3

(b) Prolate

Figure 2.12 – Spheroidal void shapes

l1

l2

l3

e1
e2

e3

n1

n2

n3

Figure 2.13 – Material (ei) and void orientations (ni) with respect to the undeformed
reference frame (li)

Models also attempt to describe the evolution of the internal state variables. Porosity is a

classic case for which, assuming the matrix is incompressible, one can state that Ṫ v = Ḃ
thus implying Eq. 2.51.

ḟ =
d

dt

T v

B =
(

1 − T v

B

)
Ḃ
B = (1 − f) Dkk = (1 − f) λ̇

∂φ

∂Σkk
(2.51)

Although not used in this thesis, the porosity evolution rate is often seen to be supplemented
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with terms accounting for void nucleation [Chu and Needleman, 1980].

Void shape evolution laws have been derived in the work of [Gologanu et al., 1997], and are

presented in Eq. 2.52 as per [Kweon et al., 2016]. One defines S = ln w.

Ṡ = Z :
[
(1 + kwkf kτ ) Dp +

(
1
f

Xv − X
)

Dp
kk

]
(2.52)

where,

Z = −1
2

(n1 ⊗ n1 + n2 ⊗ n2) + n3 ⊗ n3 (2.53)

kw =
9
2

α1 − αG
1

1 − 3α1
(2.54)

kf = (1 −
√

f)2 (2.55)

kT =

⎧⎪⎨⎪⎩1 − T 2+T 4

9 for sgn(ΣkkΣ′
33) = 1

1 − T 2+T 4

18 for sgn(ΣkkΣ′
33) = −1

(2.56)

with α1 and αG
1 as parameters given in Appendix A. Xv is defined as in Eq. 2.48 with α2

replaced by α1. Here void evolution is influenced by factors such as stress triaxiality as well

as the porosity (f) and the void’s aspect ratio itself (w). This expression was calibrated so

as to give similar results to the evolution observed in cell models.

Evolution of the orientation of the void is usually associated with the evolution of the

material’s rotation itself as per Eq. 2.57.

ṅ3 = Λ̇n3 (2.57)

When Λ is associated with the material’s spin (W), corrections based on

[Kailasam and Castaneda, 1998] are usually employed to take into account plastic distortion

effects [Kweon et al., 2016]. To the author’s knowledge, when Λ is tied to the material’s

rotation rate (Ω), such corrections are unavailable in literature.

Extensions of the GLD model to include plastic anisotropy effects were developed by

[Keralavarma and Benzerga, 2010] and a numerical implementation of that study in the

form of an Abaqus User-defined subroutine can be found in [Kweon et al., 2016]

One of the shortcomings of the GLD model is the fact that it assumes a spheroidal

shape for the voids. This issue was addressed recently by [Madou and Leblond, 2013a],

[Madou and Leblond, 2013b] that obtained solutions to the more general case of ellipsoidal
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2.3. Ductile fracture in metals

void shapes.

Void coalescence models

Micromechanical models for void coalescence hinge upon representative volume elements that

localize strains within a narrow band representing the inter-void ligament. Early works on

the subject include the well-known Thomason model [Thomason, 1985]. Thomason’s model

attempts to describe the limit load in square-prismatic and cylindrical voids in homomorphic

RVE’s, following much of the methodology that has been outlined (upper bound estimate by

arbitrating kinematically admissible velocity fields within the inter-void ligament). Over the

years, several corrections have been proposed to better describe its behavior in, for example,

the limit of penny-shaped cracks [Benzerga, 2002].

Quite recently, a model for coalescence has been proposed that combines both tension and

shear loading. The representative volume element of the Torki-Benzerga-Leblond (TBL)

model [Torki et al., 2015] can be seen in Fig. 2.14.

axis of revolution

RT BL

LT BL

rigid

rigid

plastic matrix

void
2hT BL 2HT BL

Figure 2.14 – Cylindrical RVE for TBL coalescence criterion

The TBL’s’ RVE consist of a cylindrical volume with a cylindrical void volume in its interior

bordered at the top and bottom by a rigid layer. Limit analysis allowed the authors to define

27



Chapter 2. Background and state of the art

the following yield surface φT BL (Σv,χT BL,wT BL ),

φT BL,mod =

⎧⎨⎩
(|Σ33|−tT BLΣsurf )2

b2(Σvol)2 + 4 Σ2
31+Σ2

32
l2τ2 − 1 , | Σ33 |≥ Σsurf

4 Σ2
31+Σ2

32
l2τ2 − 1 , | Σ33 |≤ Σsurf

(2.58)

where, Σvol(χT BL), Σsurf (χT BL, wT BL) and tT BL(χT BL) are weighted values of the limit stress

in the matrix (σy) that depend on the key geometric quantities in Eq. 2.59. tT BL, b and l

are parameters fit to cell model calculations. All parameters can be found in Appendix A.

χT BL =
RT BL

LT BL
; wT BL =

hT BL

RT BL
; λT BL =

LT BL

HT BL
(2.59)

2.4 Ultra low cycle fatigue

Ultra low cycle fatigue is defined here as the deterioration of material properties under large

amplitude cyclic loading of typically less than 10 or 20 cycles. Currently there are two

common approaches used in the characterization of ultra low cycle fatigue life of structural

components in civil engineering structures.

The first approach, phenomenological in nature, dates back as far as [Manson, 1953] and

[Coffin, 1954] with the widely known Manson-Coffin relation for low-cycle fatigue given in

Eq. 2.60.
Δεp

2
= b(2Nf )c (2.60)

where Δεp

2 represents the cyclic amplitude of plastic strain and 2Nf the number of reversals

or twice the number of cycles to failure (Nf ).

Extensions of Eq. 2.60 to multiaxial fatigue appeared shortly thereafter with an approach

proposed by [Yokobori et al., 1965] to use as strain measurement the octahedral shear strain.

Other empirical methods include energy models which express fatigue life as a function of

the plastic work performed during loading ([Garud, 1981]), and critical plane models whose

aim is both to predict fatigue life and the dominant failure plane ([Fatemi and Socie, 1988]).

A comprehensive review of multiaxial fatigue from the low to high cycle can be found in

[Socie and Marquis, 1999].

In so far as the validity of Eq. 2.60 can be put into question in the presence of large

scale yielding 3, more recently work has been carried out to investigate properties of M-C
3most of the experimental results in literature’s had been conducted within a range between 102 and
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type laws in the ultra low cycle fatigue regime (c.f. [Kuroda, 2002], [Tateishi et al., 2007] ,

[Xue, 2008]). It was found that around 50 cycles if one wishes to unify ULCF and low-cycle

fatigue predictions, certain corrections have to be employed to take into account an observed

decrease in ULCF in that range (w.r.t. to the low cycle fatigue regime under 104 cycles).

However, the predictions to ULCF considering only cycles below that transition regime using

this type of empirical formulae remain remarkably consistent - see Fig. 2.15. Since ULCF

applications (e.g. earthquake induced failure) typically experience a low number of cycles of

amplitudes whose resistance falls within the range of low-cycle fatigue, M-C relationships are

deemed a suitable approach to ULCF.

Figure 2.15 – Illustration of Manson-Coffin type approaches in a hot-rolled S355J2H steel -
from [Nip et al., 2010a]

Examples of applications to structural components of M-C type of relations include the

ULCF resistance of base plate liquid storage tanks [Prinz and Nussbaumer, 2012a],

[Prinz and Nussbaumer, 2012b] and braces for steel frames [Nip et al., 2010b].

The second approach, more physics based, draws on insights provided by micromechanical

models. In [Kanvinde and Deierlein, 2004] an ULCF design criterion was developed that drew

on the works of [McClintock, 1968], [Rice and Tracey, 1969], [Hancock and Mackenzie, 1976]

where for monotonic loading fracture strain is characterized by its relation with the stress

triaxiality (cf. Eq. 2.61).

ηmon
f =

∫ εp
eq,f

0
exp(1.5T )dεp

eq (2.61)

ηmon
f represents a material property that defines fracture over a minimum volume of material.

104cycles
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This minimum volume is inherently linked to the length scale most relevant to the fracture

process. Different measures for this so called characteristic length (l∗) have been proposed like

the average material grain size or void diameter at failure ([Kanvinde and Deierlein, 2004]).

In [Kanvinde and Deierlein, 2004] it is also proposed that the resistance set by ηmon
f should

be decreased as a function of damage processes happening in the material. Those damage
processes, it is proposed, are closely related to the accumulation of plastic strain as measured

by εp
eq. This relation is mathematically expressed in

ηcyclic
f = f(damage).ηmon

f = exp(−λDεp
eq).ηmon

f (2.62)

where λD is a constant parameter to be estimated with experiments. Note the exponential

decay nature tied to the increase in demand, a characteristic also present in 2.60. This

is also consistent with maximum entropy estimations of a damage accumulation processes

[Bhate et al., 2012].

Characterization and calibration of parameters that define ηcyclic
f have been the subject of

intense research ([Myers et al., 2005], [Myers et al., 2010], [Myers et al., 2014],

[Cooke and Kanvinde, 2015]).

Weld influence in ULCF has also been studied in [Myers et al., 2009]. In this work, it was

found that the variability of ηcyclic
f in the Heat Affected Zone (HAZ) was greater than in

base material by a factor of almost two. Although that conclusion was based on few test

results, it is an important account to take note of. Fig. 2.16 summarizes the FEM approach

in that report, where analyses in the commercial software package Abaqus of a welded

column-to-base-plate connection with a complete joint penetration weld along the flange was

made. Here, a strategy was used where a coarse mesh model of the connection simulates

with sufficient accuracy the global moment-rotation curves measured in tests. Subsequently,

sub-models of critical zones with refined meshes were conducted as to evaluate laws of the

type shown in Eq. 2.62. Of particular interest to this thesis is the element size and type

used in those analyses. Here, quadratic reduced integration hexahedra elements with reduced

integration (element C3D20R) were used throughout the sub-models. The size of the elements

were picked so that the volume sampled by an integration point would be consistent with a

volume representative of the characteristic length l∗ (taken to be within the range defined by

[Kanvinde and Deierlein, 2004] between 60μm and 500μm for most structural steels).

Recently an extension of this micromechanical approach to characterize ULCF in low-

triaxiality regimes has been proposed in [Smith et al., 2014].
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(a) Global FEM model

(b) Flange corner sub-model (taper not included) (c) Access hole sub-model

Figure 2.16 – FEM modeling of weld fracture under ULCF of column to base plate connection
- adapted from the work of [Myers et al., 2009]

Applications of this approach have been reported in modeling beam to column connections

in moment resisting frames ([Zhou et al., 2012], [Zhou et al., 2014]), column base plates

([Myers et al., 2009]), forensic examinations of failures in earthquake events

([Kanvinde et al., 2011]) as well as bracing members [Fell et al., 2008]

Less used in the context of civil engineering for ULCF are explicit4 micromechanical models.

Cyclic loading of metals is often associated with modeling the material’s plastic response

with kinematic hardening to some extent because of the Bauschinger effect. An important

consideration in modeling porous ductile media with kinematic hardening versus isotropic

hardening is the sensitivity to the yield surface curvature to the load path. For mate-

rials that exhibit a significant amount of work-hardening, non-proportional load paths

can lead to significant differences in predicting the evolution of porosity inside a material

[Mear and Hutchinson, 1985].

4by which it is meant that material degradation is taken into account by an explicit physical variable such
as the void volume fraction
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In so far as it is known that fracture strains under ULCF are lower than in monotonic load,

one can envision that this can be modeled in the context of the Gurson model as increase

in porosity due to cyclic loading - henceforth denoted porosity ratcheting. One fact that

is important to note is that the original Gurson model does not predict ratcheting effects

on the porosity due to cyclic loading under constant triaxiality and a rigid-ideally-plastic

material ([Devaux et al., 1997]).

Unit cell calculations similar to the ones by [Koplik and Needleman, 1988] have been reported

by [Besson and Guillemer-Neel, 2003] which suggest that unit cells with a matrix of nonlinear

isotropic power law material show porosity ratcheting under cyclic loading. Similar results

have also been reported in [Gilles et al., 1992] and [Devaux et al., 1997].

An extension of the Gurson model proposed by [Leblond et al., 1995] that can qualitatively

simulate the effects of porosity ratcheting can be seen in Eq. 2.63

φLDP =
‖Σ − A‖2

(ρσy,0 + (1 − ρ)Σ1)2 + 2q1fcosh

(
q2
2

(Σ − A) : I
(ρσy,0 + (1 − ρ)Σ2)

)
− 1 − (q1f)2 (2.63)

where A is the macroscopic backstress tensor, q1 and q2 constant parameters fit to unit cell

calculations ([Tvergaard, 1982], [Tvergaard and Needleman, 1984], [Tvergaard, 1990]), ρ a

parameter between 0 and 1 that weighs the amount of isotropic and kinematic hardening

(purely isotropic → ρ = 0; purely kinematic → ρ = 1) and Σ1, Σ2 are history dependent

parameters that are able to qualitatively incorporate porosity ratcheting. Although proposing

an extension of the Gurson model to kinematic hardening that does not incorporate explicitly

ratcheting, [Besson and Guillemer-Neel, 2003] also suggests using parameters q1 and q2 to

take this phenomenon into account.

It is important to take note that the evolution law associated with the backstress (chiefly its

direction) is not as trivial a subject as it might seem due to the fact it may have both deviatoric

and mean stress components. For example,[Mear and Hutchinson, 1985] suggests that the

backstress rate should be co-directional with Σ−A, whereas [Besson and Guillemer-Neel, 2003]

suggests Dp for that direction. Influence regarding this choice will be discussed more explicitly

in Chapter 5 for the GLD model. More recently [Klingbeil et al., 2016] proposed a direction

equal to the deviatoric part of Dp.
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2.5 Summary

This chapter presented the necessary context to the work carried out in this study.

It addressed the issues involved in finite strain plasticity that one needs to understand the

implementation of the material model in Chapter 5. It focused on the question of objectivity

and showed an example of a well known problem in kinematic hardening that arises in the

presence of large body rotations.

This chapter also provided an introduction to DIC to understand the measurements made

throughout the experiments presented in Chapters 3 and 4. This synthesis is important

in particular for the speckle pattern methodology because full-field measurements in the

presence of high strain gradients depend significantly on the distance of sample points and

the area over which the measurements are averaged. Here, precise definitions were given to

unambiguously set the scope for the discussions in Chapter 4.

A brief state of the art that described current approaches to modeling ductile fracture as

well as ultra low cycle fatigue was given. That discussion will be able to put into context the

decisions made in modeling of small-scale specimens with void growth to coalescence models

in Chapter 5 and also the FEM models of tube-to-plate joints in Chapter 6 suggested as a

design approach.
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3 Material characterization and

behavior

This chapter presents the results of an experimental campaign designed to gather data on the

structural steel used in this thesis to study ultra low cycle behavior. The chapter will focus

on two main themes: firstly on the characterization of basic material and microstructural

properties (Sections 3.1 and 3.2); secondly on describing the fracture behavior of small scale

experiments under monotonic and large amplitude cyclic loading (Sections 3.3 and 3.4). The

main idea behind the small scale experimental testing program is that the geometric properties

of the specimens assure a reasonably uniform state of applied load through a controlled

cross-section (a notch). This fact would allow to state that the material’s behavior can be

satisfactorily approximated by the behavior of the small scale specimen itself. Interpretation

of test results within Sections 3.3 and 3.4 will discuss to which extend it is reasonable to do

so and provide insights for the micromechanical model presented in Chapter 5.

3.1 Characterization of basic material properties

The material studied in the thesis is the high strength structural steel S770QL (not included in

EN10210-1 [European Committee for Standardization, 2006a] for tubular sections but whose

properties can be derived from EN10025-6 [European Committee for Standardization, 2009]

for flat plate products). Steel specimens were cut out of circular hot rolled seamless tubes of

two different diameters (101.6 × 10mm and 219.1 × 22.2mm) produced by the same supplier

but from different plants. Two diameters were used because in order to be able to machine a

double notched specimen geometry a minimum of 15mm diameter tube had to be used (see

Section 3.4). Smooth round bar and single notched round bar specimens were cut out of the

101.6 × 10mm tubes because this is the tube diameter used in the welded tube to plate test

campaign in Chapter 4.
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Chapter 3. Material characterization and behavior

The steel’s chemical composition for both tubes is presented in Table 3.2, as provided by the

inspection certificates, and later confirmed by Energy Dispersed X-ray Spectroscopy (EDX)

conducted at the Interdisciplinary Center for Electron Microscopy at EPFL (CIME) 1. It is

a quenched and tempered steel with martensitic microstructure and a grain size on the order

of 10μm (between 5 to 15μm - see Fig. 3.1a).

L

T

(a) Base material’s polished surface chemically
treated with a Nital 2% solution

L
T

(b) SEM photo of an inclusion taken during EDX
measurements

Figure 3.1 – Micrographs of S770QL’s microstructure

Smooth bar tension tests of 6mm diameter were conducted in accordance with [ASTM, 2013b].

Strains were measured using DIC by tracking targets laid on the specimens similar to what

is shown in the single notched tests in Fig. 3.8a. 5 tests were conducted and the average

results are summarized in Table 3.1.

Table 3.1 – Summary table for smooth round bar tension tests and power law parameters

σy,0 (MPa) σu (MPa) Emod (GPa) ΔL/L0 ε̄f K (MPa) n

Mean 915 1024 197 20.79% 115.0 % 615 0.245
StD 11.6 11.02 4.0 1.35% 2.8% 27.82 0.015

COV 1.27% 1.08% 2.02% 6.47% 2.44% 4.54% 6.02%
StD - standard deviation; COV - coefficient of variation

In Table 3.1, σy is the yield stress2, σu is the ultimate stress, Emod the modulus of elas-

ticity, ΔL/L0 the elongation to fracture, ε̄f the logarithmic strain after failure (given by

2 ln D0/Df )3. Also given in this Table are K and n the coefficients of an isotropic hardening

power law defined in Eq. 3.1 with a σy,0 equal to 700 MPa - see Fig. 3.2. The material

exhibits a small yield plateau and a ratio between ultimate and yield stress on the order of

1although an extensive analysis was not conducted, w.r.t the nature of inclusions, measurements by EDX
detected the presence of aluminum oxides and calcium sulfides

2subscript 0 stands for initial value
3D0 is the initial diameter of the round bar and Df the diameter after failure
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3.1. Characterization of basic material properties

1.10.

σy = σy,0 + K(εp
eq)n (3.1)

Fig. 3.2 shows the results of the 5 tests and an average power law in terms of uniaxial true

stress (σ) vs. true strain (ε). These measures were derived from the classical considerations

of material volume conservation represented by Eq. 3.2 and the engineering stress 4 and

strain 5 measured during the tests. Note that these relationships are only valid up to necking

of the specimens.

σ = σeng (1 + εeng) , ε = ln (1 + εeng) (3.2)

0 2 4 6 8 10

ε (%)

0

200

400

600

800

1000

1200

σ
(M

P
a
)

U7 1

U7 2

U7 3

U7 4

U7 5

Power Law

Figure 3.2 – True stress vs true strain curve for uniaxial tests and fitted Power Law

The power law depicted in Fig. 3.2 plays a fundamental role in this thesis because all the

FE analyses in Chapters 5 and 6 follow exactly the same uniaxial half-cycle curve, albeit

with a nonlinear kinematic hardening model (the Chaboche model presented in Chapter 2,

whose coefficients can be consulted in Table A.1). The main justification for this fact is to

give a uniform basis of comparison in the analyses for the material hardening properties.

Although some variability in those results can be associated with the variability of hardening

properties, having a uniform basis of comparison was deemed more important. Another

relevant consideration to be made is the fact that due to the lack of knowledge of yield stress

values above the necking strain, these are often inferred from FE analyses by changing material
4σeng = F/A0 with F the force measured in, A0 the initial cross-sectional area
5εeng = ΔL/L0, L0 being the initial length between the two DIC sights (gauge size)
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parameters like σy,0, K and n to match force-displacement test curves (the variables that are

actually measured). This can potentially lead to non-unique solutions and considerable errors

in estimating plastic strains as discussed in [Cooke and Kanvinde, 2015]. This epistemic

shortcoming is indeed something to be underlined but, in the absence of better and more

local measurements, a fact one has to resign to and make the best of. Although not covered

in this thesis, calibration procedures for material laws are all important. Here, a simple

procedure to try to minimize the difference between force-displacement curves in tests and

FEM using a global optimization algorithm (Probabilistic Global Search Lausanne (PGSL)

[Raphael and Smith, 2003]) was used to obtain the set of values presented in Table 3.1

but a detailed exposition of it is deemed unnecessary. A comprehensive discussion of a

variant of the same methodology using Particle Swarm Optimization (PSO) can be found in

[Smith et al., 2014].

As a complementary note, it may be observed that non-linear cyclic hardening parameters

were determined solely based on the half cycle curve in Fig. 3.2 and not based on a stabilized

cyclic hysteresis curve. This simplification is considered sufficient for this steel as will be clear

in chapters to come. This is mainly due to the fact that the amount of isotropic hardening

was found to be negligible.

3.2 Inclusion content

This section presents the work done in determining the inclusion content of S770QL steel.

Determining the inclusion content is an important step in the material characterization

because it serves as a proxy measurement of an initial void volume ratio. Procedures are

here briefly summarized and main results reported.

Fig. 3.3 presents a schematic of the geometry and orientation of metallographic specimens

cut out from tube to plate specimens used in Chapter 4.

Fig. 3.4 shows a convention followed for naming of the specimens used for determining the

inclusion content. The following region designations were used: BM - Base Material (BM);

W - Weld (W) material; WT - near Weld Toe (WT) of a loaded tube specimen. For WT

cases, unfortunately representative samples near the weld toe were hard to get, leading to

sampling away from the weld toe. This means that the statistics that are presented are closer

to the BM than to the actual weld toe. All specimens were cut and placed in a resin mold

and then polished to within 1μm of abrasive (diamond) particles. No etching was used. Two

types of analyses were conducted - see Fig. 3.5.
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L

T

S
LS face

T

S

area to grind
to get LT face

Figure 3.3 – Orientation of micrographs w.r.t. to tube sample

BM_LT_1
region

face

specimen number

Figure 3.4 – Specimen designation for metallographic analyses

The first is designated by Automatic Image Processing (AIP) and consists of a script that

for each micrograph of a given specimen executes the following procedure: 1 - opens the

file; 2 - removes the scale; 3 - converts the image to black and white; 4 - given a certain

threshold of greyscale (depends on the lighting conditions and the camera sensor of the

optical microscope) recognizes a certain pixel as being an inclusion and marks it as pure

black and all other pixels as white; 5 - counts the number of black pixels in the image and

divides it by the total number of pixels of that image to obtain an estimate of the void

volume fraction fAIP
0 . The total area surveyed with this method follows [ASTM, 2013a] i.e.

a minimum of 160mm2.

The second method consists of building a digital drawing file(e.g. dxf ) in a Computer-Aided

Design (CAD) software with demarcations of inclusions taken manually over the micrographs.

Two types of basic elements were used in the demarcations: circles and ellipses (for more

elongated inclusions). Using a script that is able to parse through the dxf file, one is able to

obtain key geometric information like the position and areas for circles (from the inclusion’s

diameter Dinc) as well as Aspect Ratio (AR) and orientation for ellipses (θell). Due to the

high number of inclusions in a certain micrograph only about 1 to 5% of the AIP area is
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L

T

automatic image processing (AIP)

CAD demarcation of inclusions

Dinc

θell

Lnn

Figure 3.5 – Steps in metallographic analyses of inclusions

covered.

A statistical analysis was carried out on the variables obtained with the CAD method and

probability distribution functions were fit to the observed data. Parameters for these functions

(namely Generalized Extreme Value (GEV) and Beta distributions) were obtained using maxi-

mum likelihood estimation integrated in the scientific library package SCIPY [Oliphant, 2007]

for the scripting language Python within the IPython environment [Pérez and Granger, 2007].

Probability-Probability (PP) plots and parameters can be found in Appendix B as well as

more detailed data. Nearest neighbor calculations were also conducted with SCIPY using

a spatial KDTree search, which organizes a set of spatial points according to the closest

euclidean distance (Lnn). Searches were conducted using both circles and ellipses drawn

over micrographs. For the definition of the inclusion ligament size ratio, i.e. the inclusion

diameter divided by its corresponding nearest neighbor distance (χinc), only circles were

used.

40



3.2. Inclusion content

Table 3.3 summarizes the data obtained for both methods by specimen. Fig. 3.6 gives an

example of the frequency of observed Dinc and compares it to a GEV probability density

function fit with maximum likelihood estimation to specimen BM_1_1.

Some key observations can made with the data from the CAD analyses. The inclusion

content does not vary significantly between weld and base material. The mean size of circular

inclusions is on the order of 5μm in diameter. The inclusion volume ratio for AIP revolves

around 3e − 3 but can vary significant w.r.t measurements done by CAD, chiefly because it

involves a smaller sample size. Elongated inclusions measured on LT faces do not have a

preferential orientation i.e. θell is just as likely to be found as 0 or 90 Deg. On LS (through

thickness) faces a slight tendency was found for ellipses to be oriented in the longitudinal

direction.

It is important at this stage to point out how this knowledge can be leveraged in micro

mechanical models. In Chapter 2 it was seen that these models rely on internal variables

such as the porosity, void aspect ratio, void orientation and intervoid spacing. One can now

quantify these variables.

For the porosity, the inclusion content can serve as proxy measurements because voids will

tend to nucleate and grow around them. Since not all inclusions will nucleate voids, it seems

reasonable to assume as an initial void volume ratio (f0) a value on the order of magnitude

of inclusion volume ratio, for example 1e − 3.

For the shape and orientation of the voids, since no preferential direction for ellipses was

clearly observed, the hypothesis will be made that the material behavior will be best described

by initially spherical voids.

In void coalescence models, such as the TBL presented in Chapter 2, a key quantity for

defining the limit load on the inter-void ligament is the ratio between the void and the

RVE’s radii. The statistics performed this section w.r.t. the void’s size and nearest neighbor

distance can arguably provide some insight into the order of ratios that can be considered in

coalescence criteria. According to Table 3.3 for base material that value should arguably be

around 0.2.
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3.3. Single notched round bar specimens

3.3 Single notched round bar specimens

This section presents the experimental program conducted on Single Notch (SN) round bar

specimens and the main observations from those tests.

A picture of the test setup of a cyclically loaded specimen (see detailed description in

Subsection 3.3.2) and a schematic of the geometry around the notch are presented in Fig.3.8.

Fig. 3.7 shows the convention followed in the designations of the specimens. Table 3.4

presents the nominal geometries of the specimens. Two different nominal geometries were

used in order to vary triaxialities at the center of the specimens.

T1M_7_1
specimen type

nominal dimensions

loading

specimen number

material

Figure 3.7 – Specimen designation for single notched specimens

Machining these specimens proved to be a delicate task given its steel grade. So much so that

the surface roughness of the delivered specimens was deemed unacceptable and additional

polishing of the notch area was required. This caused notch geometries to deviate significantly

from the nominal dimension in Table 3.4. Definitive geometries, including the measurement

height between DIC targets (hSN ), and triaxialities at failure obtained by FEM models

conducted in Chapter 5, are given in Appendix C for each specimen.

Tests were conducted in a 200 kN Walter and Bai (W+B) universal testing machine.

Results in this section will often be discussed in terms of the observed displacement; it is

important to clarify what is meant by this. All tests are conducted using displacement

control. But that displacement is controlled at the machine level, which is to say that it

does not take into account two relevant variables: slippage occurring on the grips and elastic

compliance of the specimen itself. In order to detach from those factors one needs to discuss

Table 3.4 – Single notch specimens nominal geometry

Type DSN (mm) DSN
n (mm) RSN

n (mm)

T1 6 3 1.5
T2 6 2 2.0
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Chapter 3. Material characterization and behavior

(a) Test setup view

hSN RSN
n

DSN
n

DSN

DIC target

(b) Schematic - nominal geometry

Figure 3.8 – Geometry of single notched specimen

test results using a more local displacement measure, like the one between two DIC targets.

This is the measure that is used throughout the rest of the thesis when displacement is

mentioned. It will be shown in Chapter 5 that FE models built with the length between

the DIC targets can accurately capture the elastic part of the loading, hence incorporating

implicitly the elastic compliance associated with that distance.

3.3.1 Monotonic loading

6 monotonic tests were conducted on single notch specimens. All tests were performed

using displacement control at the machine level. Speed of the tests were conducted such

that engineering strain rate using DIC targets is of the same order of magnitude as those

conducted on the smooth bar tests which is in accordance with [ASTM, 2013b] - i.e. between

0.05 and 0.5 mm/mm/min.

Fig. 3.9 shows force-displacement curves typically observed in these tests. Here one can

observe that shortly after elastic loading, once the specimens start to yield at about 0.1mm

displacement, the maximum force steadily decreases until a sudden change in slope occurs

(abrupt loss of stiffness). That steady decrease in force is due to the non-linear geometric

effect of cross sectional necking. This geometric effect is a phenomenon that can be modeled

quite accurately in FE analyses as will be seen in Chapter 5. The abrupt loss of stiffness

is associated with material failure, more specifically a transition between the more diffuse

damage mechanism of void growth to the coalescence of voids and the formation of a crack in

44



3.3. Single notched round bar specimens

the material (see [Pineau et al., 2016] and Chapter 2). This transition will be the definition

used for failure in monotonic tests - cf. Fig. 3.9 .
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Figure 3.9 – Example of monotonic force-displacement curves for single notched specimens

The fracture surfaces were observed to follow the typical cup-cone shapes widely reported

in literature. Fig. 3.13 shows the fractured surfaces for the examples above; they are

accompanied by cyclically loaded specimens for comparison. More comments on this subject

are given in subsection 3.3.2.

3.3.2 Large amplitude cyclic loading - ULCF

Exceedingly important in conducting cyclic loading in single notch specimens is assuring

their vertical alignment and minimizing slippage at the ends. The latter point will be evident

when one compares cyclic loading between single notch and double notch tests in subsection

3.4.2.

Fig. 3.10 shows the test setup used in the cyclic tests. The W+B testing machine consists of

a frame whose upper grip is fixed to the frame and the lower grip is attached to an hydraulic

actuator. Two plates were bolted to the grips: the upper plate to the upper grip, the lower

plate to the lower grip - see Fig. 3.10a. Both ends of SN specimens were threaded. A

threaded hole was made on the upper plate so as to screw a specimen directly in it. By

tightening a nut just below the upper plate one neutralizes the play in the threads between

the plate and the specimen. It is important to note that this assures perpendicularity and

close-to-fixed boundary conditions. On the lower end of specimen, a nut and its counter are
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screwed onto the specimen and then the nut and counter tightened against each other to

neutralize gaps in the threads. Then the lower end plate is raised by the hydraulic actuator

to touch the counter nut, introducing a residual amount of compression in the specimen

(around -0.1 to -0.2kN). Once this is achieved, a three-piece outer ring is placed around

the nut and counter nut and then bolted to the lower plate - see Fig. 3.10b. This ensures

that in tensile loading, tension goes through the specimen to the nut and counter nut, then

through the bolts and into the lower plate which is attached to the hydraulic actuator. In

compression, load is transferred directly from the counter nut to the lower plate.

Upper Plate

Nut

Specimen

Outer Ring

Lower Plate

Bolt

Washer

Nut &
Counter Nut

Threaded Ends

(a) Front view

Outer Ring

Bolt

SpecimenWashers

Nut & Counter Nut

(b) Cut facing the bottom

Figure 3.10 – Schematic of cyclic test-setup for single notched specimens

Specimens are loaded with a fixed displacement range at the machine level centered around

the initial configuration. Fig. 3.11 shows two typical hysteresis curves for single notched

specimens. Here, thanks to the setup, one can see that rigorous displacement ranges are

measured at the notch, until a drop in stiffness is observed that causes a greater local

displacement range at the notch level for the same machine level displacement range.

Of note is the fact that the stable cyclic behavior seen in Fig. 3.11b supports the statements

made in Section 3.1 that this material is characterized by limited to no isotropic hardening.

Also of note is the non-linear geometric behavior in compression. Notice the difference in

slope after yielding when compression is involved due to the enlargement of the diameter
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3.3. Single notched round bar specimens

of the notch versus the ever decreasing force after yielding in tension when the diameter is

reduced.
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Figure 3.11 – Example of hysteresis curves for single notched specimens

Definition of failure in these specimens is more subtle than in the monotonic case, especially

when discussing cases which involve more than five cycles (as the cases shown in Fig. 3.11).

Consider the case of a test with 10 cycles to failure - Fig. 3.12. In the close-up view of

the test (Fig. 3.12b) one can observe a gradual decrease in the load carrying capacity of

the specimen. It is an illustration of the problem of differentiating phenomena near the

boundaries of two categories - in this case between softening due to an increase in porosity

and the formation of an actual crack inside the specimen. To establish a definite criterion,

failure is defined as a 10% decrease in the load carrying capacity at constant amplitude. It is

considered that such a bound is indicative of the incipience of fracture (i.e. the following

cycle is characterized by a significant loss in stiffness).

As a side note, one can see a conspicuous artifact in the hysteresis curve in Fig. 3.12a in a

tension half-cycle between -0.1 and 0 mm of displacement. This was due to a problem in

the electronics of the W+B control system. It caused a very sudden jerk in the actuator

that loaded and unloaded the specimen within the sample rate of 10 Hz. At the end of that

sudden movement, the specimen was reloaded and resumed its path along the stable cycle.

With respect to fracture surfaces, consider Fig. 3.13. It depicts fractured single notch

specimens in monotonic and cyclic loading for the purposes of comparison.

Featured in Fig. 3.13 are the fracture surfaces of specimens whose load displacement curves
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(b) Close-up of the tension half cycles

Figure 3.12 – Hysteresis curve for specimen T2CA1_7_1

can be seen in Fig. 3.9 and 3.11. For the monotonically loaded specimens, as was mentioned,

one can observe a mix of flat and slant fracture reflected in the cup-cone shape. When

compared to specimens loaded cyclically, a key observation can be made about the fracture

surface at the center of the specimens: they are a shade of grey lighter than in the monotonic

case. This statement comes in fact as a consequence of the type of fracture surface.

Consider Fig. 3.14 that shows SEM micrographs of the fracture surface at the center of some

of the single notched specimens in Fig. 3.13. Cyclic loading fracture surfaces are observed to

be in general flatter than their monotonic counterparts which are more rugged or castellated.

For the monotonic case a smaller dimple diameter is observed w.r.t. to the cyclic loading in

Fig. 3.14b, suggesting that failure6 under monotonic loading happens at smaller porosities.

Support for this statement can be found in Fig. 3.12b where a gradual decrease in the stiffness

of the specimen suggests an increase in porosity which is quite stable. These observations,

however, constitute merely an hypothesis. In fact in literature one can find precisely the

opposite suggestion [Kanvinde et al., 2007]. Clarification of this issue is of interest for the

definition of more precise failure criteria in future works and can be achieved by performing

a series of interrupted tests7 under ULCF where, at different stages of loading, the notch

area would be cut and open and the evolution of porosity more objectively quantified.

Also observed in these fracture surfaces is the fact that dimples are in general shallower

in T2CA2_7_2 than in the monotonic case. This statement comes not only from vi-

6one recalls the definition of failure regarding a sizeable and abrupt loss in the stiffness of the specimen,
which in cyclic loading the 10% drop in load carrying capacity is taken to be representative of

7similarly to Fig. 2.6
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T1M_7_1

T2M_7_3

T1CA1_7_1

T2CA2_7_2

Figure 3.13 – Single notched specimen fracture surfaces

sual inspection of the micrographs but also from focal ’depth’ measurements in the SEM.

From ten randomly chosen measurements of dimple geometry on specimens T 2M_7_3 and

T2CA2_7_2 , the average aspect ratio (w) was 3.16 and 0.52, respectively. Reports of

shallower dimples as a result of ULCF in single notched specimens can also be found in

[Kanvinde and Deierlein, 2004]. This observation will be important in informing the cyclic

micromechanical model developed in Chapter 5. Shallower dimples intuitively also justify

the higher degree of light reflectivity observed. For more micrographs at different scales one

refers to Appendix C.1.

Turning back to Fig. 3.13, one can see for T 1CA1_7_1 an inner light grey circle surrounded

by a darker grey ring. One would be tempted to name this a zone of very shallow dimples, but

conferring with the hysteresis curve in Fig. 3.11a a more keen interpretation would be that

before the last tensile half cycle there was a compression half cycle in a cross section which

already possessed an internal full-fledged crack and so, in that compression half cycle, there

are two fracture surfaces being pressed together that smooth out the microscopic roughness

of the dimples. As such, in the case of T1CA1_7_1, one cannot state that the lighter grey

area is due to shallower dimples. It is the result of two separate surfaces being crushed - see

the flat planes in Fig. 3.14c. It seems to be, rather, a good measure of the internal crack size

in the penultimate tensile half cycle.
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(a) Monotonic - T 2M_7_3 (b) Cyclic - T 2CA2_7_2

(c) Cyclic with crushed fracture surface -
T 1CA1_7_1

Figure 3.14 – SEM micrographs of typical fracture surfaces at the center of single notched
specimens for high-strength structural steel S770QL under monotonic and large amplitude
cyclic loading

3.4 Double notched specimens

This section presents the experimental program conducted on Double Notch (DN) tubular

specimens. Tests were conducted in an MTS Tension-Torsion Fatigue machine at the

Laboratory of Applied Mechanics and Reliability Analysis (LMAF) in EPFL. The machine’s

ranges are +/- 100kN maximum load for tension and +/-1100Nm for torque. Machine grips

consist of a segmented circular ring that is hydraulically tightened around the surface of a

specimen. Load is transferred by friction in the grips.

As mentioned in Section 3.1, these specimens were cut out of a 219.1 × 22.2mm tube.

Specimens were 100mm in length. They were then machined to 15 mm diameter, drilled to

create a tubular section and then an external and an internal notch were machined. The

nominal dimensions of the notch area can be seen in Fig. 3.15.
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axis of revolution

tDN =2.5 tDN
n =1

0.25

RDN
n =1

0.25

RDN
n =1

RDN
int =5.0

RDN
ext =7.5

RDN
m =6.25

hDN
n ≈1.95

Figure 3.15 – Nominal notch geometry for double notched tube - cross-section cut (dimensions
in mm)

An adapter piece (40mm in diameter) was used to provide higher contact area between the

specimen (15mm in diameter) and the grips of the machine. This was an issue that came

up from the fact that the testing machine’s grips (15mm in diameter) could not achieve the

required friction to be able to reach the ultimate load of the tubes in torsion. To address

this problem, an adapter piece diameter was welded onto each specimen and a grip of 40mm

in diameter was used. Care was taken to ensure that the central zone of the specimen (i.e.
the notched part) was not heated up to values higher than 150 − 200◦C, so as not to temper

the micro-structure in this area. The resulting contact area was sufficient and testing was

resumed.

All tests were performed in displacement/rotation control at the machine level. 4 different

ratios were used. They were defined as follows. First tests in monotonic pure tension and

pure torsion were performed. Second, the average displacement and rotation at failure

was obtained for tension and torsion respectively (δDN,machine
f and θDN,machine

f ). Lastly,

with these values one can define the measures ρDN and P DN as path ratios given by the

expressions in Eq. 3.3.

P DN = 1 − 1
1 + ρDN

; θDN,machine = ρDN
θDN,machine

f

δDN,machine
f

δDN,machine (3.3)
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Table 3.5 summarizes the path ratios used.

Table 3.5 – Double notched - path ratios

����������Measure
Path 1 2 3 4

P DN 0 1 1/3 2/3
ρDN 0 ∞ 1/2 2

arctan
(
ρDN
)

(Deg) 0 90 26.6 63.4

Naming convention for double notch specimens can be found in Fig. 3.16. It is important to

remark that, unlike in single notch specimens, the number after the Constant Amplitude

(CA) label indicates the number of the proportional load path that was followed, not a

different amplitude.

DN7M1_1
specimen type

steel

load type

specimen number

load path

Figure 3.16 – Specimen designation for single notched specimens

Local measurements of displacement and rotation were captured using stereo DIC over a

speckled pattern. Like in the case of single notched specimens, local measurements near the

notch were used in the description of the loading that is applied to each specimen, as opposed

to the testing machine’s readings. This allows to remove the effects of slippage at the grip

level in the analysis, as well as reducing the levels of elastic deformation of the specimen

itself. The reference length used to measure the displacement and rotation is the same for

all specimens and has a value of 7.5mm - cf. Fig. 3.17.

One defines δDN as the vertical displacement in the gauge length hDN . To define a measure

of rotation one should turn one’s attention to Fig. 3.18. There one names θDN
sec the rotation

that a point on the surface goes through from the undeformed configuration to the deformed

configuration w.r.t. its axis of revolution. The DIC software used in these tests can perform

coordinate transformations and express displacement measures in cylindrical coordinates.

One can observe an example of this in Fig. 3.19 for a specimen loaded in pure torsion

(DN7M2_2). Standard calibration procedures were followed. Comparison of the elastic

loading part (subject to higher errors because displacements are so small) with FEM models

conducted with the same nominal geometry are a testament of the calibration procedure’s
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3.4. Double notched specimens

accuracy - c.f. Chapter 5.

hDN = 7.5mm

Figure 3.17 – Speckle pattern and gauge sections in DIC measurements for double notch
tube specimens - front view

undeformed
deformed

θDN
sec

Figure 3.18 – Schematic of a transverse cut of the tube and definition of rotation θDN
sec

θDN is defined as the difference between the average of θDN
sec along two horizontal lines on

the surface of double notch specimens above and below the notch (’L0’ and ’L1’ in Fig. 3.19,

respectively).

Figure 3.19 – Example of torque angle measurement with DIC. ’dTheta’ corresponds to θDN
sec

Axial force and torque measured in the load cell are denoted F DN and MDN
t , respectively.
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Average axial stress (σDN
n ) and shear stress (τDN

n ) over the notch section are defined by Eq.

3.4.

σDN
n =

F DN

2πRDN
m tDN

n

; τDN
n =

MDN
t

2π (RDN
m )2

tDN
n

(3.4)

Key load ratios kDN and kDN
T are defined in Eq. 3.5.

kDN =
σDN

n

τDN
n

; kDN
T =

σDN
n

τDN
n + σDN

n

(3.5)

Let δp,DN
n and θp,DN

n be the plastic part of the displacement and rotation over notch,

respectively, as defined by 3.6, where CDN
σ and CDN

τ are elastic compliances that can be

determined directly from test results. This expression assumes that all plastic deformation is

concentrated in the notch area.

δp,DN
n = δDN − CDN

σ F DN ; θp,DN
n = θDN − CDN

τ MDN
t (3.6)

The total displacement and rotation (δDN
n and θDN

n , respectively) over the notch, however,

still have contributions between the gauge section (g) and the notch (n). They are taken

into account in Eq. 3.7

δDN
n = δDN − CDN

σ

1 + CDN
σn /CDN

σg

F DN ; θDN
n = θDN − CDN

τ

1 + CDN
τn /CDN

τg

MDN
t (3.7)

Approximate expressions for CDN
σn /CDN

σg and CDN
τn /CDN

τg can be found in [Barsoum and Faleskog, 2007].

Defining ε̇p,DN
n and γ̇p,DN

n as the rate of axial plastic strain and rate of plastic distortion (Eq.

3.8), one can provide a measure for the average equivalent plastic strain rate at the notch in

3.9 (additive decomposition of deformation rate, cf. [Faleskog and Barsoum, 2013]).

ε̇p,DN
n =

δ̇p,DN
n

hDN
n + δDN

n

; γ̇p,DN
n =

RDN
m θ̇p,DN

n

hDN
n + δDN

n

(3.8)

ε̇p,DN
n,eq =

√√√√4
(

ε̇p,DN
n

)2
+
(

γ̇p,DN
n

)
3

(3.9)
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3.4. Double notched specimens

The average equivalent plastic strain over the notch then becomes Eq. 3.10.

ε̄p,DN
n,eq =

∫
˙̄εp,DN
n,eq dt (3.10)

3.4.1 Monotonic loading

A total of 12 monotonic tests were conducted on double notch tubular specimens, more

precisely three per path ratio.

Fig. 3.20 shows the load path as applied at machine level and measured with the stereo

DIC system. The differences in Fig. 3.20 are a clear example of the need to express tests on

notched specimens in terms of the local measurements.

Another pertinent observation can be made on Fig. 3.20b w.r.t. the specimen’s ability to

deform. It is apparent that the path ratio between δDN and θDN strongly influences its

ultimate fracture. For the purposes of comparison, one can express test results in terms

of normalized stress ratios (kDN
T ) and average plastic strain over the notch section. Since

tests were performed in displacement/rotation control, the ratio between axial and shear

stress is not assured to be kept constant throughout the test. A weighted average of kDN
T

with the equivalent plastic strain rate (k̄DN
T -see Eq. 3.11) was therefore used to express test

results of the monotonic DN tests. Fig. 3.21 compares the monotonic tests results with that

of [Faleskog and Barsoum, 2013] which were done on a similar type of high strength steel -

Weldox960.
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Figure 3.20 – Double notched specimen monotonic paths
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k̄DN
T =

∫ ˙̄εp,DN
n,eq kDN

T dt∫ ˙̄εp,DN
n,eq dt

(3.11)
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Figure 3.21 – Comparison of tests results to a similar type of steel

Average notch equivalent plastic strains were observed to be lower than that of Weldox 960.

This correlates with a lower nominal fracture strains on smooth round bars - S770QL8:ε̄f =

115%; Weldox 960: ε̄f = 127%. In both cases, there is a marked increase in ductility9 around

k̄DN
T = 2/3 in comparison to uniaxial tests (k̄DN

T = 1). In post-mortem inspections this was

found to be correlated to two different modes of fracture. Comparing Fig. 3.22 to Fig. 3.23,

one can see two different fracture surfaces: for the uniaxial case a slant fracture indicative

of failure by plastic instability (Fig. 3.24); for k̄DN
T = 2/3 a more rough and flat surface in

the middle of the specimen is indicative of ductile tearing (Fig. 3.25) which subsequently

becomes a slant type of failure. Also noteworthy in Fig. 3.24 is the fact that for a pure

tension test one can observe the presence of elongated dimples in the circumferential direction

of the tube, which is indicative of non-axisymmetric stress states (low Lode parameters).

The tendency of having rougher fracture surfaces associated with an increase in material

ductility was also observed in shear dominated loadings (compare Fig. 3.27 to 3.28) which is

natural considering it experiences more plastic deformation.

Fig. 3.26b shows the cross-section profile from a pure torsion test (load path 2). A clear

distinction can be made between this case, which exhibits a flat surface perpendicular to

the longitudinal axis of the tube, and tension dominated load paths (c.f. Fig. 3.24 and Fig.

3.25) where some form of slant fracture can be observed.

8the coefficients of the isotropic hardening law in that paper of the S770QL steel used in this study are
the following: n=0.076 εN =0.0179 εS=0.0

9taking ε̄p,DN
n,eq as a measure of the material’s ductility
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3.4. Double notched specimens

Figure 3.22 – Slant fracture in monotonic pure tension (path 1) double notched specimens

Figure 3.23 – Fracture surface in monotonic load path 3 in double notched specimens
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slant fracture

effect of a non-axisymmetric stress

state in void shape

circumferential
center line

edge

close-up of

ellipsoidal void

Figure 3.24 – Fractography of a double notched specimen loaded in monotonic pure tension -
DN7M1_1

(a) Plan view of the notched area (b) Section cut

Figure 3.25 – SEM micrographs of fracture surface for specimen DN7M3_1
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(a) Plan view of the notched area (b) Section cut

Figure 3.26 – SEM micrographs of fracture surface for specimen DN7M2_3

Figure 3.27 – Fracture surface in monotonic pure torsion (path 2) double notched specimens
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Figure 3.28 – Fracture surface in monotonic load path 4 in double notched specimens
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3.4. Double notched specimens

3.4.2 Large amplitude cyclic loading - ULCF

In the sense that it can be of value to report less successful testing campaigns, this section

presents some of the results under large amplitude cyclic loading in double notched tubes. 12

tests were performed with 3 tests per path ratio. A striking distinction in quality of results is

seen in comparison to single notched specimens largely because of end conditions in loading

the specimens. As can be seen in Fig. 3.29, this distinction comes from the difference in the

prescribed boundary conditions at the grip level and the conditions observed at the notch.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

δDN,machine (mm)

−6

−4

−2

0

2

4

6

θ
D

N
,m

a
c
h
in

e
(D

eg
)

Path 1

Path 2

Path 3

Path 4

(a) Machine level

−0.2 −0.1 0.0 0.1 0.2

δDN (mm)

−6

−4

−2

0

2

4

6

θ
D

N
(D

eg
)

Path 1

Path 2

Path 3

Path 4

(b) Local level

Figure 3.29 – Double notched specimen cyclic paths

As portrayed in Fig. 3.30, what were supposed to be constant amplitude grip level loading

conditions, because of varying degrees of contact conditions between specimens, became

significantly different loading histories applied to the notch. The smaller amplitudes of

displacement at the notch led naturally to higher number of cycles.

Mixed load paths exhibited different modes of failure with respect to monotonic loading.

This can be seen for path 3 in cyclic loading in Fig. 3.31 - to be compared with Fig. 3.23. A

slant type fracture for pure tensile loading was still present.

Due to insufficient data from this campaign one will make an inference based on literature

results and the data from the previous section under monotonic load. Consider, for example,

the work of [Yokobori et al., 1965] that tested small thin-walled tubes of annealed mild steel

in tension and torsion in low-cycle fatigue. These tests were conducted for numbers of cycles

to failure (Nf ) as low as 100 and it was concluded that results when expressed in terms of
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octahedral strains ranges vs Nf in double log-scale 10, torsion is associated with a higher

resistance curve than tension. From monotonic tests in the previous section that show the

same trend for pure torsion and pure tension in terms of ε̄p,DN
n,eq , one will assume that this

trend holds true also for the ULCF regime.
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Figure 3.30 – Comparison of hysteresis curves in double notch specimens for path 1

Figure 3.31 – Fracture surface in cyclic for load path 3 in double notched specimens

10octahedral strains (γ̇p
oct) are related to the equivalent plastic strain (ε̇p

eq) by a constant factor: γ̇p
oct =√

2ε̇p
eq
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3.5 Conclusions

This chapter presented the results of an experimental campaign on small scale specimens to

characterize key material properties of high strength S770QL steel.

Methods for obtaining key internal variables in micromechanical models for void growth and

coalescence such as porosity, aspect ratio and distance to nearest neighbor were presented

and quantified:

1. Inclusion volume ratio for base material was found to be on the average close to 3e − 3.

Since not all tend to nucleate voids, an order of magnitude for the initial void volume

ratio of 1e − 3 is assumed to be a reasonable estimate.

2. Based on statistics of elongated inclusions no clear preferential direction was observed.

Initial spherical voids are thus assumed.

3. An average inclusion ligament size ratio close to 0.2 is considered to be a reasonable

estimate.

An attempt to describe the fracture behavior of S770QL steel was made by performing tests

on single notch round bars and double notched tubes. Experimental observations corroborate

some of the findings reported in literature. Key takeaways are as follows:

1. It can be argued, although not conclusively, that critical porosity (i.e. leading to

failure) is higher in large amplitude cyclic loading than in monotonic loading of single

notched specimens. Interrupted tests under ULCF are of interest in order to clarify

this issue and in doing so provide better failure criteria.

2. Analysis of fracture surfaces show shallower dimples when compared to monotonic

loading in single notched specimens, which is in line with observations by

[Kanvinde and Deierlein, 2004].

3. Tests conducted in double notched specimens show a significant dependency of material

ductility on the stress state for monotonic loading. A greater ductility is observed

in pure shear cases than in pure tension. These findings are in accordance with

[Faleskog and Barsoum, 2013].
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4. Difficulties in carrying out reliable large amplitude cyclic loading in double notched speci-

mens were presented. As a result, observations such as the ones in [Yokobori et al., 1965]

that thin-walled tubes in pure torsion tests have a greater resistance than in tension in

low cycle fatigue, will be assumed to hold true for the ultra low cycle fatigue regime of

base material.
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4 Welded component behavior

The main objective of this chapter, as opposed to the work done on smaller scale specimens

described in the previous chapter, is to assess the impact of particular features of welded

components at a reasonable scale in estimating fatigue life at high strain amplitudes under a

variety of loading conditions. By reasonable scale it is meant that the thicknesses studied

in this chapter (8 mm) can be seen as being used in the base plate of liquid storage tanks,

for example. Though not at the scale of critical bridge components where one often sees

thicknesses three to four times as large.

The main features of welded components can arguably be summarized up in four fundamental

categories: the welding procedure (which is non obvious in high strength steels due to their

heat treated microstructure), residual stresses imposed by the welding process, the weld

profile (e.g. partial or full penetration welds and their resulting traits) and imperfections

(e.g. porosities or initial microcracks). It is important at this point to revisit the scope of this

work and underline some key assumptions. Insofar as from the structural engineering point

of view the main objective is to arrive at a satisfactory criterion for design, and even though

one recognizes the paramount importance of the welding procedure, it will be assumed (as

will be shown to be a satisfactory assumption in chapter 6) that the resistance provided by

the welding process is sufficient to attain yielding of the base material. Furthermore, due

to high strain amplitudes, i.e. amplitudes that significantly surpass elastic strains into the

plastic regime, the impact of residual stresses is assumed to be quite small and therefore will

be neglected in forthcoming analyses.

To study the problem of welded components a testing campaign was undertaken and the

results are presented herein. The chapter will start by describing the specimens, the testing

apparatus and measurement instruments. Afterwards, a description of the loading protocols

is given and is followed by the presentation of results and their discussion.
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Chapter 4. Welded component behavior

4.1 Test Setup

A welded tube to plate joint was chosen to study ultra low cycle fatigue (ULCF) behavior

under multiaxial states under constant and variable amplitude loading. The main reason to

use this kind of specimens is the uniformity with which one can apply a shear stress/strain

field thus avoiding issues that can arise from stress/strain risers (e.g. corners) in the load

transfer process in planar plate specimens.

The test setup consists of a welded circular tube (101.6×10mm) to plate (300×200×25mm)

specimen bolted1 to a stiffened HEB360 column. The tube is made of high strength S770QL

steel and, due to the unavailability of S770 steel plates, the base plate is made from S690 steel
2. Sketches of the test setup are presented in Figures 4.1, 4.2 and 4.3 with all dimensions in

figures are in millimeters).

∼ 30◦

210

540 285

∼ 400

101.6

Bending
actuator

Lever arm

Prestressed
M24 bolts

DIC system

Specimen

Inclinometer

Inclinometer

Figure 4.1 – Tube to plate test setup - side view

The specimen is loaded in bending and torsion with the use of two hydraulic actuators. These

actuators have +/- 200 kN nominal capacity and +/- 250 mm stroke.

The first actuator, used for bending, has a jack head with a circular opening of 105.0 mm

diameter through which the specimen can pass - see Fig. 4.4. This opening sits on a spherical

14 M30 bolts prestressed at 1600N.m coupling moment
2the undermatching of the base plate and the tube is deemed insignificant in the subsequent analyses

because all failures occurred at the weld toe on the side of the tube
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450
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Lever arm
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Bending actuator

Displacement sensors

Figure 4.2 – Tube to plate test setup - front view
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Figure 4.3 – Tube to plate test setup - front view cut just before tube inclinometer
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mount that is able to rotate on all three-axes. The difference between the diameter of the

tube and the diameter of the jack head leaves a 1.7mm gap around the tube and a total

clearance of 3.4mm when the tube is touching the surface of the jack’s head. For the bending

tests this difference is not at all negligible (as will be shown) and allowance in the treatment

of the data should be made for this gap 3.

Spherical mount

(105mm head)

Tube - 101.6x10mm

Gap - 1.7mm

Load cell

Piston

Head

Figure 4.4 – Detail of gap in the bending actuator’s head

Torsion is applied by a second actuator, residing in a plane perpendicular to the tube’s

longitudinal axis, through a lever arm - see Fig. 4.2. The nominal length between axes is 450

mm. The lever arm was custom built for this test setup. Torsion is applied by friction to the

tube with four massive blocks of steel carved with a circular concave shape of diameter equal

to the tube’s own. These pieces constitute two pairs of clamps that are then prestressed

together (each pair by 4 M24 bolts prestressed at 1000N.m torque moment) so as to be able

to mobilize a significant amount of friction between the surfaces of the blocks and the tube.

Each pair reside on opposite sides of the bending jack’s head. The blocks are then welded to

two ’I’ beams that make the span of the lever arm. At the end of the arm, the ’I’ beams are

stiffened by multiple plates between them so as to create an as rigid a block as possible - see

Fig. 4.5. An additional piece made up of steel plates is welded on the upper flanges of the

beams so as to make up for the height difference between the center of the tube and the axis

that passes through the torsion actuator’s head - see Fig 4.2 and 4.5.

3Incidentally, such a small gap of 1.7mm around the tube was not able to be corrected because one could
not arrive at an effective mechanism to do so. Ironically if the gap were larger it would have been much
easier since one could fabricate a system of tappered circular rings that would do trick
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Axis passing through
torsion actuator

Stiffeners Inner ’I’ section

Figure 4.5 – Schematic of the lever arm around the torsion actuator

In order to concentrate yielding near the weld region, the section was reduced from 10 mm to

8 mm according to the geometry outlined in Fig.4.6. A composite of nearly 800 micrographs

of the weld toe resulting in a 890MPx image can be seen in Fig. 4.7.

Base plate

Tube - 101.6x10mm
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Prestressed M30 bolts
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Base plate - 25mm thick

Tube wallWeld material

Figure 4.6 – Detail of weld region

With respect to instrumentation, each of the two actuators was equipped with a load cell

and displacement transducer. Two vertical and one horizontal displacement sensors were

used to quantify slipping of the base plate in relation to the column see - Fig. 4.3.

Due to the observed flexibility of the column to which the specimens were bolted on, two

inclinometers were also used: one attached to the base plate4 and another connected to a

4either glued or bolted
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Chapter 4. Welded component behavior

Figure 4.7 – Composite of micrographs around the weld toe - Nital 2%

section of the tube at approximately 210mm from each other - see Fig. 4.1. The difference in

rotation between the two provide an effective measure of the rotation the tubes are subjected

to - see Fig. 4.8. The rotation due to the flexibility of the support was found not to be as

insignificant as one might think. In fact in the first pure torsion tests that were conducted,

by using data from the displacement sensors at the base plate one could see that ∼ 40% of

the rotation measured at the 210mm section was lost due to this flexibility.

Fig. 4.9 illustrates schematically the deformation to which the welded tube to plate specimens

were subjected to.

4.2 Digital image correlation

Chiefly important in the resistance characterization of these tests is the use of digital image

correlation (DIC). Localized strain measurements were taken at the surface of the weld toe,

the results of which are of great importance in framing an appropriate failure criterion, as

will be shown in the results and discussion section.

This system was used to measure the geometry, surface strain history of the weld region and

to register any observable cracks within its field of view. Since the DIC’s field of view only

covers a small part of the perimeter of the tube one can expect that the critical crack leading

to failure will not always be within it - particularly in the case of pure torsion loading.
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Figure 4.8 – Definition of effective rotation θ

Figure 4.9 – Deformed view of the test setup

The DIC setup consists of two Manta G-504B/C cameras with a 2452 × 2056 pixel CCD

sensor used together with two Fujinon 50 mm focal length lenses. Images were processed

using the software Video Image Correlation in 3-D (VIC3D v7.0 - Correlated Solutions)

[McGowan et al., 2001].

Calibration of the system in order to identify the relative position between the two cameras

and their absolute distance to the weld toe was conducted with the help of a standardized

grid of 12 × 9 circular dots at 2mm spacing.
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Small variations in the position of the cameras with respect to the weld toe, the focal length,

aperture (because of lighting conditions) and the size of the camera sensor set the resolution

of the system to 1 pixel corresponding between [0.03, 0.045]mm. Key options step size and

filter size were set to 7 pixels and 7 data points, respectively 5, across all specimens so as to

provide a uniform basis of comparison. This essentially means that full-field calculations are

based on a grid of points spaced out of 7 pixels and then averaged over a window of 7 by 7

data points i.e. approximately [1.5, 2.2] by [1.5, 2.2] mm (49 by 49 pixels). Correlation of data

points between images in the reference and the deformed configuration is more dependent on

the speckle pattern on the surface of the tube, and thus subset size varies slightly between

specimens (around 27 by 27 pixels).

An adequate speckle pattern for high strain amplitudes and for the resolution level which one

has set is not an obvious thing to achieve. Firstly one has to properly prepare the surface of

the specimen so as to remove the mill scale without damaging the surface roughness and clean

any oily deposits with a solvent. This can be done with a sufficiently rough but non-abrasive

brush. Damaging the surface with abrasive materials runs the risk of localized reflections

on the surface rendering it useless for a DIC analysis. Secondly one has to select a paint

composition that is able to sustain large deformations. Acrylic-based paints are good in this

respect. Thirdly and perhaps most importantly is the pattern itself. A good pattern should

have two characteristics: good contrast between black and white, and a randomized set of

positions between black and white areas. Implementing this typically involves providing a

uniform colored base (usually white) and spraying black ink over that base. The problem

with this is that at high strains this uniform base layer is easily damaged. The solution

to this requires one to abandon the idea of a base layer. What follows unfortunately is a

procedure that is far from systematic and therefore involves a lot of trial and error. This

procedure consist of multiple and quite small spraying passes interchangeably between black

and white at a considerable distance from the area of interest (between half to one meter or

so). Its purpose: to have small and thin droplets of ink scattered on the surface. Luckily in

this setting, with the ink’s viscosity and the right spray nozzle one can arrive at suitable

droplet size (in the order of 0.1mm) and suitable density with respect to the subset size.

Here perhaps it is relevant to mention what is meant by suitability.

Consider Fig. 4.10 which shows strain measurements on a picture of an unloaded specimen

with respect to a reference picture (equally unloaded). Since both pictures (the reference

and the one shown) are at rest, the resulting strain field has to be noise in the signal and

thus provide a measure of the precision involved in the analyses. A range slighty higher

than what is shown in Fig. 4.10 of ±0.08% was what was typically observed in the DIC

5background to comprehend these key options is given in chapter 2
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analyses. Though not irrelevant when compared with elastic strains of 0.4% for this steel, at

the levels of plastic strain amplitudes that these specimens were submitted to this is deemed

acceptable.

noise

Figure 4.10 – Precision in εyy DIC measurements for specimen B7CA1_3 - pictures at rest
vs reference picture

There is another source of measurement error that is palpable in some cases, though it is not

easily quantifiable, and has to do with the performance of the speckle pattern during loading.

Debonding of the paint from surface of the specimen is a legitimate concern for the high

strain levels at which these tests were operated, though the risk is significantly diminished

with the procedure outlined above. Moreover the presence of small cracks that are not

sufficiently large to invalidate the full-field calculations have a tendency to inflate the strain

values. Put this way, the reader might indeed be skeptical of these measurements and rightly

so in the author’s opinion. The question then becomes whether one can make meaningful

predictions with these measurements even taking into account the facts aforementioned. In

the results and discussion section a reasonable case is presented that one can.

4.3 Loading protocols

Let us define δ as the displacement of the bending actuator minus the average displacement

of the two vertical displacement sensors6 and the 3.4mm maximum clearance in the spherical

mount, and θ as the difference between the angles measured in the two inclinometers. Tests

were conducted under displacement and rotation control: the controlling variable for the

bending actuator was its piston’s displacement (not δ); the displacement of the torsion

actuator was controlled by θ. It is worth emphasizing that tests were indeed performed

6this accounts for slipping
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discounting the torsional flexibility of the support by controlling the test with the difference

between the two inclinometers. In the few tests (two that were conducted without an

inclinometer at the base plate), the test was controlled solely with the inclinometer at 210mm

from the support. The effective rotation in these cases was calculated ad hoc using the

displacement sensors at the base plate.

The following structure for specimen designation will be followed,

A7CA1_1
load path type

steel type → 7 ≡ S770QL

load protocol type

specimen numbering

protocol numbering

Figure 4.11 – Specimen designation for welded tube to plate tests

Table 4.1 presents the test matrix with 56 tests in constant amplitude (CA) loading. Five

different ratios (A,B,C,D and F) between δ and θ in proportional loading were used and are

represented graphically in Fig. 4.12a. Additionally 9 tests (labelled E) were conducted under

a non-proportional load path with ranges of Δδ and Δθ similar to load type C - see Fig.

4.12b.

Table 4.1 – Constant amplitude test matrix

Type Amp. Δθ (Deg) Δδ (mm) # specimens
A (Torsion) CA1 5.50 0.00 5
A (Torsion) CA2 4.10 0.00 4
A (Torsion) CA3 8.15 0.00 1
A (Torsion) CA4 2.20 0.00 1
B (Bending) CA1 0.00 38.50 5
B (Bending) CA2 0.00 33.50 4

C CA1 4.10 36.00 4
C CA2 3.50 31.00 6
C CA3 2.60 24.00 2
D CA1 5.60 32.00 5
D CA2 4.00 23.00 4
D CA3 4.55 26.25 1
E CA1 4.00 36.50 5
E CA2 3.50 32.00 4
F CA1 4.70 14.00 2
F CA2 3.40 10.00 3

Total 56

Variable amplitude (VA) tests were conducted under two types of load histories: VA1
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Figure 4.12 – Constant amplitude load paths

alternates between two different range levels and VA2 performs block loading of 3 cycles

between ranges. 3 specimens under both VA1 and VA2 for load ratios A,B,C and D were

performed, totaling 24 VA tests. Table 4.2 presents the range levels of δ and θ and Fig. 4.13

illustrates graphically the load protocols VA1 and VA2.

Table 4.2 – Variable amplitude test matrix

Type Amp. Δθ1 (Deg) Δδ1 (mm) Δθ2 (Deg) Δδ2 (mm) # specimens
A VA1 5.50 0.00 4.00 0.00 3
A VA2 5.50 0.00 4.00 0.00 3
B VA1 0.00 33.00 0.00 29.00 3
B VA2 0.00 33.00 0.00 29.00 3
C VA1 4.00 36.00 3.55 31.50 3
C VA2 4.00 36.00 3.55 31.50 3
D VA1 5.55 32.00 4.00 23.50 3
D VA2 5.55 32.00 4.00 23.50 3

Total 24

Even though the grand total of CA and VA is 80 tests, due to problems during testing (e.g.
an inclinometer unglued from the base plate or paint on the surface of specimen was of

insufficient quality) only 64 tests are considered valid for use in fatigue life estimation 7.

7a few others were used to assess initiation life as defined in the results and discussion section
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Figure 4.13 – Variable amplitude load protocols

4.4 Results and discussion

As one can gather due to the large amount of information collected in the testing campaign,

only a few representative cases will be discussed in detail in this section. Relevant information

on all the tests that were conducted can be consulted in annex E.

One begins by considering the case of a simple bending test (specimen B7CA1_3) to illustrate

the importance in the interpretation of results for the definition of what constitutes the

failure of the specimen.

Fig. 4.14 shows two hysteresis curves for B7CA1_3. The first shows the data as was collected

from the test setup at the 5th cycle of loading. As one can see the 3.4mm clearance due

to the gap shown in Fig. 4.4 has a very noticeable effect. The second shows the corrected

hysteresis curve. In Fig. 4.14b one can observe a stable hysteretic loop on the part of the

component. However, if one turns one’s attention to Fig. 4.15, it can be seen that at the

very same cycle a surface crack at the weld toe is detectable.

It is useful to underline two factors involved in the detection of a surface crack. The first is

that this was done exclusively with pictures taken by the DIC system, which means that

undetected cracks might have developed elsewhere along the periphery of the weld toe. The

second is that there is a limitation in the perception of what is a crack. At the scale the

pictures were taken, this limit can be stated to be in the order of 0.1mm of surface opening.

It can therefore be argued that since surface cracks were detected before any noticeable drop

in the load carrying capacity of the component, establishing crack initiation as a criterion for
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4.4. Results and discussion

failure underestimates ULCF life estimations. This seemingly innocuous statement has a

tremendous impact if one wishes to apply micromechanical ductile fracture criteria to welded

steel components. Since the main justification to use micromechanical models is rooted in

the fact that it is physics based (i.e. is representative of the physical process underlying

fracture) and that the behavior it purports to capture is initiation 8, the unsuitability of

such models become apparent in the presence of high strain gradients and the emergence of

surface cracks with no drop in the resistance typically observed in the testing of large scale

structural components.
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Figure 4.14 – Impact of gap in bending jack head in the hysteresis of specimen B7CA1_3

first visible crack

Figure 4.15 – First visible crack in specimen B7CA1_3 at picture number 520 - 5th cycle

8in this context, the coalescence of an interligament crack between adjacent voids or second-phase particles
under a fairly uniform strain field
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Chapter 4. Welded component behavior

At this point one needs to establish a definition of what constitutes failure of a specimen

to guide the interpretation of the results. A resistance based criterion is used henceforth

that establishes failure as a 10% drop in load carrying capacity of the specimen. Such a

small threshold is used in order to limit the effects of significant crack propagation within

the specimen - see Fig. 4.16. Fig. 4.17 shows a typical striation pattern that underlines

significant crack propagation.
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Figure 4.16 – Hysteresis curve for specimen B7CA1_3

1 mm weld toe

Figure 4.17 – Crack propagation on specimen B7CA2_2

Considering that the number of cycles to which a crack was detected in DIC system is a
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more than reasonable upper bound on the number of cycles to initiation (Ninit), one can

define as initiation ratio Ninit divided by the number of cycles to failure (Nf ). Fig. 4.18

plots this ratio for all specimens.

0 10 20 30 40 50 60 70

Specimens

0.0

0.2

0.4

0.6

0.8

1.0

In
it
ia
ti
o
n
ra
ti
o

CA, A

CA, B

CA, C

CA, D

CA, E

CA, F

VA, A

VA, B

VA, C

VA, D

Figure 4.18 – Initiation ratios for tube to plate tests by test type

As one can see, it can be reasonably concluded that the initiation process constitutes at most

and in rough terms only half to a third of the total life of this component; propagation then

accounting for half to two thirds of the total life. Also worth taking note is the fact that for

pure torsion tests it is much harder to detect a surface crack due to both limited surface

opening and higher probability of a critical crack happening outside the field of view of the

DIC system.

Without a meaningful way to link micromechanical models to failure of large scale components,

it seems justifiable to fall back to more classical approaches to the problem such as types of

relationships that relate strain to total life. Here, a pressing question arises: what strain

measure to use in the presence of strain risers (e.g. the geometry imposed by the weld profile)

and in the context of multiaxial fatigue? To begin formulating an answer to this question

one should first consider the information that the DIC system can provide.

Fig. 4.19 shows an example of the full field measurement of εyy in B7CA1_3 and Fig. 4.20

measurements of the geometry, εyy and a strain quantity ε∗
eq to be defined shortly, through a

section parallel to the longitudinal direction of the tube and passing through the point of

maximum εyy.

The geometric effect of the weld is quite blatant in the strain concentrations observed at the

weld toe. Strain gradients in this case are between 5 to 10 % per mm. Considering that these
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Figure 4.19 – εyy DIC measurements for specimen B7CA1_3 at the peak of the first load
excursion - picture number 50
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Figure 4.20 – DIC measurements at section through point of maximum εyy for specimen
B7CA1_3 at the peak of the first load excursion - picture number 50

values are averaged over a window of around 1.5 × 1.5mm2 (cf. section on DIC), local values

can conceivably be higher. As an additional example of how fortuitous strain distributions

can be when geometric effects are combined with the certain types of loading, consider Fig.

4.21 which depicts a 3D view of the weld geometry of specimen C7CA1_2, as well as full

field measurements of principal strain ε1 and the crack pattern at failure. Here, noticeable

striations on the weld’s surface can be seen in the 3D representation. As minor as these

surface depressions caused by the welding process can be, strain concentrations can be seen

along the troughs of those ridges.
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Figure 4.21 – Influence of geometry on strains at weld toe for specimen C7CA1_2

Damage is a concept that often has different meanings depending on the context in which it is

used. In fatigue it is commonplace to associate it with the counting of cycles and a quantity

that is representative of the process leading to failure (e.g. stress ranges for high-cycle

fatigue and strain amplitudes for low-cycle fatigue). Other approaches might define it as a

critical crack length within the context of linear elastic fracture mechanics (LEFM), relating

crack growth rates to stress intensity factor ranges. In the case of ultra-low cycle fatigue in

multiaxial conditions, it necessary to define such a quantity in order to define damage. Here,

intuitively, one will follow the proposition that the work dissipated by plastic straining is

representative of that process. In a perfectly plastic material, a measure of that dissipation

can be in fact the work conjugate of any stress measure. For the Von Mises stress, the

equivalent plastic strain defined by the rate in Eq. 4.1 is such a measure. It should be noted

that this measure is closely related to the octahedral shear strain (they differ by a factor of
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√
2) used in [Yokobori et al., 1965].

ε̇p
eq =

√
2
3

ε̇p
ij ε̇p

ij (4.1)

Consider also the introduction of another strain quantity, the equivalent strain ε∗
eq, given by

Eq. 4.2.

ε∗
eq = sign(εkl,rel)

√
2
3

εijεij (4.2)

Note the differences between Eq. 4.2 and Eq. 4.1. Firstly Eq. 4.2 is expressed in terms of

the total strain tensor (εij = εe
ij + εp

ij), which assumes that the elastic strain tensor is small

when compared with the plastic strain. Secondly it expresses a base quantity as opposed

to a rate quantity. Lastly, it is endowed with the sign of the most relevant strain tensor

quantity with respect to the loading - e.g. for a pure torsion loading occurring in plane xy,

εkl,rel ≡ εxy. The sole reason for this is to allow to keep track of the direction of the strain

tensor with respect to the loading.

With equivalent strain defined in such a way, it is possible to define a time history from

DIC surface measurements in the following way: keeping in mind the assumption that

elastic strains are small with respect to the plastic, one can evoke the condition of volume

conservation which states that trace(εp) = 0 to approximate the strain depth component;

secondly since there is no yielding in shear components except the one in the circumferential

direction these are taken to be zero. All subsequent analyses are conducted with these

assumptions and whenever point measurements are mentioned they always refer to the point

in the full field measurements that shows the maximum equivalent strain range. Finding this

point is the same as finding the points of maximum principal strain and therefore in the case

of specimen C7CA1_2 this point is found in the weld’s striations.

A typical time history analysis taken the DIC system for the point of maximum strain can

be seen in Fig. 4.22 for specimen B7CA1_3.

The fact that local measurements are used instead of nominal section estimations, gives ε∗
eq

added significance even if for no other reason than the added resolution in capturing the

behavior, i.e. when taking local measurements one is also taking into account local features

that can affect significantly Δε∗
eq.
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Figure 4.22 – DIC point measurements for specimen B7CA1_3

Consider the Manson-Coffin type relation in Eq.4.3.

Δε∗
eq

2
= b(2Nf )c (4.3)

where, b is the fatigue ductility coefficient and c the ductility exponent (between -0.5 and

-0.7 in many metals [ASM International, 1996] ).

Fig. 4.23 shows the results of constant amplitude proportional tests according to the

assumptions previously stated - results in table form can be consulted in Appendix E as

well as individual test reports. An important detail to mention is that the equivalent strain

range can only be established by DIC within the initiation regime defined earlier for two

main reasons: the first, once a surface crack starts to form these strains no longer meaningful

(see e.g. Fig. 4.22 where the subtle increase from the 4th to the 5th cycle is due to the crack

in Fig. 4.15); the second, with successive cycles paint might peel off. Therefore, the Δε∗
eq in

Fig. 4.23 is obtained only within early cycles and then assumed to hold its relevancy in the

estimation of total life according to Eq.4.3. Number of cycles over which Δε∗
eq is averaged is

noted for each test in Appendix E as Nave.
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Figure 4.23 – Equivalent strain - life curve for tube to plate CA tests using slope from
proportional (P) loading tests

Also depicted in Fig. 4.23 is the linear regression in log-scale of Eq. 4.3 in fitting the

test results, as well as the 10th and 90th percentiles of the regression. The mean ductility

coefficient was found to be around 0.458, whereas the ductility exponent c was found to be

�-0.6, well within expected bounds found in literature. This in itself is a surprising result,

both justifying the assumption that this quantity is representative of the failure process and

bringing closer this evaluation procedure to an already well established approach.

It is worth emphasizing that the fact that in this representation no noticeable distinctions

between load types can be made, says nothing about the mechanisms leading to failure

themselves. They are surely different if one thinks of them in the micromechanical sense and

from what was concluded in Chapter 3. What this approach seems to indicate, however, is

that they are sufficiently close to be considered together, statistically speaking. Justifications

can be found in a number of factors that are not explicitly controlled. The effects of weld

geometry associated with the load type, like the ones illustrated in Fig. 4.21, can be one

of those factors. In this case location can play an important role as cracks can initiate in

weld material or in the heat affected zone. Another is the different crack tip constraint

conditions in mode-I and mode-II once a full-fledge crack is formed on the specimen. Here,

again, location can play an important role as the crack can propagate in weld material, HAZ

or in base material. However, bearing in mind that one of the main objectives of this thesis

is to provide a simple but suitable criterion for design purposes, this approach is deemed

acceptable.

For constant amplitude non-proportional loading (load type E), however, it does not seem
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so reasonable to consider proportional together with the non-proportional tests - see Fig.

4.24 whose values can be consulted in Appendix E. Considering the same slope of -0.6,

the mean ductility coefficient would be around 0.324, lower than 90th percentile for the

proportional tests of 0.36. This suggests the failure mechanism is non-negligibly different for

a non-proportional and worse.
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Figure 4.24 – Equivalent strain-life curve for tube to plate CA tests with non-proportional
(NP) loading tests with a fixed slope of -0.6

With an acceptable basis for CA tests established, the problem of VA can be addressed in the

form of a linear damage sum (Palmgren-Miner’s rule - D) following Eq.4.4, where N |Δε∗eq,i

should be read as the number of applied cycles at ’i-th’ constant amplitude level of ε∗
eq, and

Nf given by Eq. 4.3 at the very same level.

D =
∑

i

N |Δε∗
eq,i

Nf |Δε∗
eq,i

(4.4)

Fig. 4.25 shows the damage accumulation for both CA and VA loadings. The average value of

damage for all tests is 1.03 with a coefficient of variation (CoV) of 29.15%. These results are

consistent with damage sum distributions in high-cycle fatigue reported by [Wirsching, 1984],

where it is recommended for fatigue reliability analyses to have D as a random variable with

a log-normal distribution of mean 1.0 and CoV of 30%.
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Figure 4.25 – Damage following Miner’s rule in Manson-Coffin model for tube to plate tests

4.5 Conclusion

This chapter presented the methodologies and the results obtained in the experimental

program designed to study the behavior of a welded structural component in high-strength

steel S770QL. The following concluding remarks are given:

1. One of the main observations of this test campaign was that in a large scale components

one can observe surface cracking before any significant drop in the load carrying capacity

of the specimen. This implies that physics based micromechanical models that are

more suitable for fracture initiation are in principle unsuitable to describing these types

of problems because a significant part of the component’s life is spent in propagation.

2. Initiation accounts for one third to a half of the life of a welded tube-to-plate specimen.

Conversely, propagation is responsible for half to two thirds of ULCF life.

3. It was shown that classical approaches like the Manson-Coffin relationship for low cycle

fatigue, that expresses fatigue resistance in total life 9 can be used for welded structural

components using local digital image correlation measurements of strains.

4. Multiaxial loadings can be adequately represented in equivalent strain-life terms for pro-

portional constant amplitude using local DIC measurements in high-strength structural

steel.
9here failure arguably implies both initiation and propagation, though how much is spent in propagation

is unclear since usually low-cycle fatigue tests that determine the ductility parameters are defined by the
detection of a surface crack
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4.5. Conclusion

5. Equivalent strain-life curves for proportional loadings with DIC measurements were

observed to follow a slope of -0.6 which is well within the bounds found in literature

for most metals [ASM International, 1996].

6. Non-proportional loading histories were found to be more damaging than proportional

ones.

7. Variable amplitude time histories were found to be satisfactorily taken into account by

linear damage sum according to Palmgren-Miner’s rule.
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5 A cyclic micromechanical mate-

rial model

This chapter presents the development of a micromechanical material model to describe

ductile fracture under large amplitude cyclic strains. It is divided by into three main

sections. The first describes an extension of the GLD model to kinematic hardening and its

implementation in a user-defined material model in Abaqus (UMAT). The second presents

the validation of the material model through comparison with the UMAT implementation of

Keralavarma-Benzerga (KB) material model presented in [Keralavarma and Benzerga, 2010]

and implemented in Abaqus in [Kweon et al., 2016]. The third presents the performance of

the material model using experimental data gathered in Chapter 3.

The main objective of this extension of the GLD model to incorporate kinematic hardening

is to study void shape effects in a material’s response to cyclic loading, particularly its

effects in porosity ratcheting and therefore fracture incipience. Incorporating kinematic

hardening in a porous material law is not an obvious task. A well-know issue, for example, is

the influence of the hardening law’s curvature under non-proportional loading as discussed

in [Mear and Hutchinson, 1985]. Another is the choice of the backstress evolution law

whose influence will be shortly presented. The extension submitted in this chapter will

be phenomenological in nature with the objective of approximating as much as possible

the behavior of the current GLD model for monotonic isotropic hardening w.r.t. both the

evolution of the porosity and the void’s aspect ratio. Having achieved this, the analysis of

small scale specimens for both monotonic and cyclic loading will be presented.

A limit load on the inter-void ligament (the TBL model) will be used as a coalescence

criterion and assumed to be representative of the incipience of fracture.
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Chapter 5. A cyclic micromechanical material model

5.1 An extension of the GLD model to nonlinear kine-

matic hardening and its implementation

All the relevant quantities subsequently described should be interpreted as being incrementally

rotated, following the hypoelastic formulation explained in Chapter 2. More specifically

it should be underlined that these quantities follow Eq. 2.24 at the start of each step.

Macroscopic quantities are represented by upper case letters (e.g. the plastic strain tensor

becomes Ep).

GLD yield criterion with backstresses

From Eq.2.47 one redefines the GLD function φGLD (Σ, σy, f, w, Υ) to take into account the

backstress (A → φGLD (Σ, A, σy, f, w, Υ)), as shown in Eq. 5.1.

φGLD = C
‖Σ′ − A′ + ηΣhQ‖2

σ2
y

+

2q (g + 1) (g + f) cosh
(

k
(Σ − A) : X

σy

)
−

(g + 1)2 − q2 (g + f)2 (5.1)

with Σh = (Σ − A) : X, ‖S‖ =
√

3/2S′ : S′ and q a factor fit to unit cells calculations

similarly to Eq. 2.63. In this thesis no corrections using q were used (i.e. q = 1.0 in all

calculations).

Residuals and implicit integration scheme

Consider a strain increment (Eq. 2.14) defining the total strain En+1 = En +ΔE, with strain

assumed to be additively decomposed in elastic and plastic parts, following an associated flow

rule for ΔEp (ΔEp = λ ∂φGLD/∂Σ). For a material to adhere to these assumptions, the

following conditions (known in the context of convex optimization as the Karush-Kuhn-Tucker

(KKT) conditions) have to be met,

λ ≥ 0 (5.2)

φGLD ≤ 0 (5.3)

λφGLD = 0 (5.4)
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implementation

In succinct terms, these conditions ensure that when the step is elastic (φGLD < 0), by Eq.

5.4 no plastic strain occurs (λ = 0), but when plastic strain occurs, also by Eq. 5.4, one must

be on the yield function (φGLD = 0).

Let us define residual R∗
n+1 as the error one makes in quantity ∗ between configuration n

and n + 1 as the following,

REp

ij,n+1 ≡ −Ep
ij,n+1 + Ep

ij,n + λ
∂φ

∂Σij

∣∣∣∣
n+1

(5.5)

Rφ
n+1 ≡ φ|n+1 (5.6)

When the strain increment violates the KKT conditions, one must then get back to the

yield surface, i.e. one must allow some part of the strain increment to be plastic1 in order

to decrease the value of the yield function so that Eq. 5.4 is satisfied. This is achieved by

linearizing Eqs. 5.5 and 5.6 to obtain Eqs. 5.7 and 5.8,

REp

kl,n+1 +
∂REp

kl,n+1
∂Σij

dΣij +
∂REp

kl,n+1
∂Aij

dAij +
∂REp

kl,n+1
∂σy

dσy+

∂REp

kl,n+1
∂f

df +
∂REp

kl,n+1
∂w

dw +
��������

Neglected

∂REp

kl,n+1
∂Υij

dΥij = 0 (5.7)

Rφ
n+1 +

∂Rφ
n+1

∂Σij
dΣij +

∂Rφ
kl,n+1

∂Aij
dAij +

∂Rφ
kl,n+1
∂σy

dσy+

∂Rφ
kl,n+1
∂f

df +
∂Rφ

kl,n+1
∂w

dw +
��������

Neglected

∂Rφ
kl,n+1

∂Υij
dΥij = 0 (5.8)

Since A, σy, f and w can be defined as a function of the plastic strain increment, one can

write the solution of the set of Eq. 5.7 and 5.8 as,

dΣij = Ξijkl

{
−R

Ep

kl − ∂R
Ep

kl

∂λ
dλ

}
(5.9)

dλ =
−φ + ∂φ

∂Σij
ΞijklR

Ep

kl

∂φ
∂λ − ∂φ

∂Σij
Ξijkl

∂REp

kl

∂λ

(5.10)

where Ξ is the algorithmic tangent stiffness matrix defined in Eq.5.11 with C being the elastic

1An important detail in this scheme is the direction in which that plastic increment is taken. In this
implicit algorithm, normality is enforced at the end of the step cf. Eq. 5.5
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stiffness matrix and,

Ξ =
[
C−1 + λ

∂2φ

∂Σ2

]−1

(5.11)

∂REp

kl

∂λ
=

∂REp

kl

∂Akl

∂Akl

∂λ
+

∂REp

kl

∂σy

∂σy

∂λ
+

∂REp

kl

∂f

∂f

∂λ
+

∂REp

kl

∂w

∂w

∂λ
(5.12)

∂φ

∂λ
=

∂φ

∂Akl

∂Akl

∂λ
+

∂φ

∂σy

∂σy

∂λ
+

∂φ

∂f

∂f

∂λ
+

∂φ

∂w

∂w

∂λ
(5.13)

This constitutes the core of the return-mapping algorithm [Simo and Hughes, 1998]. Deriva-

tives are given in Appendix A. The implementation is also supplemented with a backtrack

line search for increased numerical stability [Boyd and Vandenberghe, 2004].

Rates and increments

Stress, strain and plastic multiplier at iteration ’it’ using Eqs. 5.10 and 5.9 are as follows,

Σit
n+1 = Σit−1

n+1 + dΣ (5.14)

λit
n+1 = λit−1

n+1 + dλ (5.15)

EP,it
n+1 = EP,it−1

n+1 + C−1dΣ (5.16)

EP,it
eq,n+1 = EP

eq,n + χλit
n+1 (5.17)

with χ given by Eq. 5.18.

χ =
√

2
3

∂φ

∂Σ
:

∂φ

∂Σ
(5.18)

Internal variables are initiated as follows,

Σ0
n+1 = ΔΛΣnΔΛT + CΔE (5.19)

A0
k,n+1 = ΔΛAnΔΛT (5.20)

σ0
y,n+1 = σy,n; f0

n+1 = fn; w0
n+1 = wn (5.21)

Υ0
n+1 = ΔΛΥnΔΛT (5.22)
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Backstresses - A

Nonlinear kinematic hardening is incorporated using the Chaboche model. Here, there exists

two options in terms of backstress rates. The first following Eq. 2.38 (Eq. 5.23) the second

following [Mear and Hutchinson, 1985] (Eq. 5.24)

Ȧk =
(

2
3

Ck
∂φ

∂Σ
− γkAχ

)
λ̇ (5.23)

Ȧk =
(

Ck

σy
(Σ − A) − γkA

)
χλ̇ (5.24)

where ’k’ is the k-th backstress and A =
∑

k Ak. Because of the yield surface’s dependency

on the hydrostatic pressure, the use of the rate in Eq. 5.23 reinforces the rate of change

of the porosity leading to significant differences with respect to isotropic hardening. The

rate in Eq. 5.24 mitigates this issue, updating internal variables much in the same way as

isotropic hardening - see Section 5.2 on results. The algorithm is an implicit Newton method

integration scheme, this means the derivatives in the final iteration are taken to be constant

during the integration step (see Eqs. 5.5 and 5.6). With this and the differential equation in

Eq. 5.24, it can be shown that the k-th backstress in step it (Ait
k,n+1) is given by,

Ait
k,n+1 =

∗
A −
{

∗
A −
(

Ck

σy
+ γk

)
Ak,n

}
e

−
(

Ck
σy

+γk

)
χλit

n+1

Ck

σy
+ γk

(5.25)

with,

∗
A =

Ck

σy

(
Σit

n+1 − An + Ak,n

)
(5.26)

∗
A is the variable that dictates the change in direction in which the step is taken and is

constant throughout the increment step.

In so far as the evolution law for the backstress is postulated phenomenologically, a keen

observer might take issue with the fact that it depends on the macroscopic equivalent plastic

strain increment and not the microscopic one. By the Hill-Mandel lemma in Eq. 2.44

they differ by a factor of (1 − f). The use of the macroscopic plastic strain rate Dp to

define the backstress evolution law is not unprecedented in phenomenological adaptations to

kinematic hardening of the Gurson model cf. [Klingbeil et al., 2016]). There, however, the

final backstress is multiplied by a factor of (1 − f) to ensure that it vanishes in the limit of

f → 1. Although no such considerations are made here, for the porosities used in this study
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Chapter 5. A cyclic micromechanical material model

this factor is deemed negligible. This issue is, nonetheless, important to bring to the reader’s

attention.

Yield stress - σy

Nonlinear isotropic hardening was chosen to take the form of Eq.2 5.27.

σit
y,n+1 = σy,0 + K

(
Ep,it

eq,n+1

)n

(5.27)

Porosity - f

From homogenization the rate of change of porosity is defined as,

ḟ = (1 − f)
∂φ

∂Σkk
λ̇ (5.28)

Following the same reasoning as in the backstress sub-section, the porosity at iteration it is

given by,

f it
n+1 = 1 − (1 − fn)e

∂φ
∂Σkk

λit
n+1 (5.29)

For cyclic loading, in the absence of a mechanism to incorporate particle-void interaction, a

heuristic was implemented so that f is not smaller than the initial porosity f0 - Eq. 5.30. If

indeed this were to be true, this would imply that the inclusions around which the voids

form, would lose volume. ⎧⎪⎨⎪⎩f it
n+1 = f it

n+1 , f it
n+1 > ε.f0

f it
n+1 = f0 , f it

n+1 ≤ ε.f0

(5.30)

where ε is a number close to unity (e.g.=0.9999) to ensure one is always tightly bound by

the initial porosity level.

Aspect ratio - w

Defining S = ln(w), the rate of change of S is taken from Eq. 2.52 as to be as Eq. 5.31

Ṡ = Z :
[
(1 + kwkf kT )

∂φ

∂Σ
+
(

1
f it

n+1
Xv − X

)
∂φ

∂Σkk

]
λ̇ (5.31)

2n as a superscript is associated with the material’s hardening exponent
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An important heuristic is here introduced. Following experimental observations in Chapter 3

and in [Kanvinde and Deierlein, 2004] that voids under ultra low cycle fatigue tend to be

shallower than in monotonic cases, the rate of change of the aspect ratio is adjusted according

to Eq. 5.32

Ṡcyclic =

⎧⎪⎨⎪⎩Ṡ , ∂φ
∂Σkk

> 0

�Ṡ , ∂φ
∂Σkk

≤ 0
(5.32)

In cases where the average volume increases (given by ∂φ/∂Σkk) , one falls to the GLD’s rate

of change. When the void decreases in volume, however, one changes the rate by a constant

proportionality factor �. The aspect ratio at the end of the step is, therefore, given by,

wit
n+1 = wneṠcyclicλit

n+1 (5.33)

Void orientation

If the void is approximately spherical i.e. 0.99 ≤ w ≤ 1.01, as per [Kweon et al., 2016], the

void’s orientation given by Υ follows the eigenvectors of the void’s plastic strain tensor incre-

ment ΔtDv with n3 being the maximum stretch direction (corresponding to the maximum

eigenvalue) with,

ΔtDv =
[
(1 + kwkf kτ )

∂φ

∂Σ
+
(

1
f it

n+1
Xv − X

)
∂φ

∂Σkk

]
λ (5.34)

Outside this range two options present themselves as discussed in chapter 2. For the

Jaumman-Zaremba rate, one should take care to correct for plastic distortions induced by

the void. For the Green-McInnis-Naghdi rate, in the absence of a better approximation,

one considers that voids rotates with the material, i.e. it follows Eq. 5.22 with Eq. 2.29.

Simulations presented in this Chapter will only use the Green-McInnis-Naghdi rate. The

choice to use this rate is justified with the increased sensitivity to shear oscillations in the

Jaumann-Zaremba rate for shear loadings when kinematic hardening is used (illustration

given in the validation section - Section 5.2, Fig. 5.6 ).

Convergence criterion

Convergence is said to be achieved when the residuals are within a specified tolerance. That

tolerance is defined in this UMAT by ‖REP ‖/‖Ep‖ < Tol and φGLD < Tol. Tolerance used

was 1e − 5.
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Void coalescence

Void coalescence was implemented as a failure indicator with the TBL model. Stresses are

put into the void’s frame of reference first by rotating tensor Σ − A back to the undeformed

frame of reference, then changing the reference frame to match the void’s orientation - see

Eq. 5.35

Σv = ΥT ΛT (Σ − A)ΛΥ (5.35)

Two important assumptions will be made. The first concerns the size of the void considered in

TBL’s RVE: given a cylindrical void with radius RT BL whose volume is defined by V T BL
v =

2πwT BL
(
RT BL

)3, one stipulates that the change in the void’s volume is approximately equal

to the change in the porosity defined by the GLD model (f). This is expressed in Eq. 5.36.

f

f0
≈ V T BL

v

V T BL
v,0

(5.36)

The second assumption will be that the distance between voids RVE’s remains roughly the

same during loading i.e. LT BL=LT BL
0 , and that the aspect ratio of the void in the GLD

model is the same as in the TBL model. From Eq. 5.36 one can then arrive at Eq. 5.37.

χT BL = 3

√
f

f0

w0
w

χT BL,0 (5.37)

This assumption arose from the need to have a criterion that provided good estimates in

both monotonic and in cyclic loading, in which no obvious proposition can be made. Some

justification, however, can be found in the fact that in a 2D random distribution of voids,

the cells in its corresponding Dirichlet tessellation have an average aspect ratio of 1 and stay

1 throughout loading simply due to the random nature of the tiling [Benzerga, 2000].

TBL’s yield function is then evaluated (φT BL (Σv, χT BL, w) - see Eq. 2.58) and failure is

defined in the FEM models when φT BL = 0 i.e.when φT BL goes outside the elastic domain

defined by its yield function.
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Structure of the UMAT

Abaqus Standard supplies the following useful quantities: Σn, DROT , Fn, Fn+1 and SDV

a vector for the user to store internal variables (ξ). The stress tensor Σn as supplied by

Abaqus, is already incrementally rotated by the Jaumann-Zaremba rate (DROT ). The first

step in the analysis is to neutralize this rotation by Eq. 5.38 - superscript ˜ means the

rotated configuration from n to n + 1.

Σn = DROT T Σ̃n DROT (5.38)

Subsequently relevant quantities like the strain increment ΔE and incremental rotation ΔΛ

are calculated with the deformation gradient Fn and Fn+1 following what was outlined in

Chapter 2.

Then quantities like the plastic strain tensor, the backstresses and Λ from the previous

iteration that are stored in SDV are rotated following incremental objectivity.

The trial stress tensor is subsequently calculated and if the KKT conditions are violated, the

step is plastic and one has to use the return mapping algorithm outlined previously to get

back to the yield function.

Once on the yield function, voids are rotated and φT BL evaluated. All relevant quantities at

the end of the step (f ,w,Ep
eq,ηv, E, A,Ep,Υ,Λ, Ak and φT BL are then stored in SDV , the

new stress supplied to Abaqus and one is now ready for the next step.

This procedure is summarized in Fig. 5.1
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Input from Abaqus

Material properties and initial conditions, Σ̃n,Fn,Fn+1,DROT , and
ξn(fn, wn, En, Ep

n, Ep
eq,n, An, Ak,n, Λn, Υn, ηv,n, φT BL

n )

Neutralize Abaqus’s automatic
incremental stress rotation

Σn = DROT T Σ̃nDROT

Get strain and rotation increments from deformation gradients (gtObQ)

ΔE = ΔtDn+ 1
2

= 1
2 f̄T

n+ 1
2

[
I −
(
fn+1fT

n+1
)−1
]

f̄n+ 1
2

Green-McInnis-Naghdi

polar decomposition of F → Λn = Rn, Λn+ 1
2

= Rn+ 1
2
, Λn+1 = Rn+1

Jaumann-Zaremba (only used for comparison in validation section)

ΔΛ = expΔtŵ
n+ 1

2 ; Δtŵn+ 1
2

= 1
2

[
hn+ 1

2
− hT

n+ 1
2

]
; hn+ 1

2
= (Fn+1 − Fn) F−1

n+ 1
2

Rotate variables from step n to n + 1 with selected incremental rotation tensor

[̃.] = ΔΛ [.] ΔΛT → Σ̃n,Ẽn,Ẽp
n,Ãk,n,Λ̃n+1,Υ̃n+1

Do elastic trial step

∗
Σ̃n+1 = Σ̃n + C : ΔE ;

∗
Ẽn+1 = Ẽn + ΔE ;

∗
Ẽp

n+1 = Ẽp
n

;
∗
Ãk,n+1 = Ãk,n ;

∗
fn+1 = fn ; ∗

wn+1 = wn; ∗
wn+1 = wn

Is the trial step admissible?
i.e.

Are the KKT conditions satisfied?

Proceed to return
mapping algorithm

(gtBack)

Orient stress in voids axis and calculate coalescence criterion

Σv
n+1 = ΥT

n+1ΛT
n+1Σ̃n+1Λn+1Υn+1 → φT BL(Σv

n+1, χT BL,n+1, wn+1)

Σ̃n+1,ξn+1 → Output to Abaqus

No

Yes

Figure 5.1 – Structure of the gld UMAT
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5.2 Validation and additional comments

This section presents validation tests conducted on the UMAT developed for cyclic loading

presented in the previous section. Validation is mostly achieved through comparison with the

UMAT implementation of the KB material model presented in [Keralavarma and Benzerga, 2010]

and implemented in an Abaqus UMAT discussed in [Kweon et al., 2016]. This material model

is based on an extension of the GLD model to an anisotropic Hill matrix. To compare

the performance of the two formulations, all anisotropic coefficients were set such that the

material behavior is isotropic.

All comparisons have the same material response associated with it. By that statement, it is

meant that whenever Isotropic or Kinematic hardening terms are employed the coefficients

describing the hardening have been fit to material presented in Table 3.1. This includes

backstress coefficients in the Chaboche model Ck and γk.

Validation tests were carried out on a single 3D cubic element (8 nodes) with reduced

integration (C3D8R). The outcomes shown subsequently are results in the integration point

of that element. Two loading cases are presented in Fig. 5.2. Although most of the examples

shown will use only tension since there is a difference in the rotational formulation between

this study and [Kweon et al., 2016], one example is made illustrating the difference between

using the Jaumann-Zaremba stress rate and the Green-Mcinnis-Naghdi rate.

One begins, however, to illustrate a salient point in the kinematic hardening formulations

of micromechanical models. It pertains to the choice of hardening direction presented in

equations 5.23 and 5.24 (i.e. between the first term being in the direction of Σ − A and Ḋp,

respectively). Consider Fig. 5.3 in which the choices are compared. There it can be observed

that Ḋp leads to significantly different predictions on the porosity. This is justified by

considering that micro-mechanical models of porous ductile media are inherently not volume

preserving (i.e. Ekk �= 0). If the term Ekk �= 0 then this has the most visible effect of self-

reinforcing the porosity rate. Σ−A is the same as presented in [Mear and Hutchinson, 1985].

Henceforth, Eq. 5.24 will be used.

To show that this implementation of the GLD model with kinematic hardening is behaving

well in the limit of the Gurson model, one need only to show that for a circular void (S = 0)

and for Ṡ = 0 this model offers the same predictions as the Gurson model as implemented in

Abaqus. This is done successfully in Fig. 5.4.

To include void shape effects, the GLD model will be compared with the KB UMAT. Table

5.1 presents the case studies performed for this comparison. Full presentation of the results
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Chapter 5. A cyclic micromechanical material model

(a) Element (b) Loading 1 - L1 - tension

(c) Loading 2 - L2 - simple shear

Figure 5.2 – Element(C3D8R) and loading cases used in validation of gld Umat in Abaqus

are too lengthy and referred to Appendix A. One presents however a representative case

in Fig. 5.5 for tension load transverse to a prolate void. Small differences are attributed

mostly to the disparities in the integration scheme and the derivatives between the two

formulations. They are deemed acceptable for the purposes of this study, i.e. they capture

with sufficient accuracy the interactions between porosity and void shape effects for initially

spherical, oblate and prolate voids with loadings parallel and transverse to their main axis.

Lastly, one should comment on the choice of the Green-McInnis-Naghdi rate for this for-

mulation. Consider the case of a loading in simple shear and the material response with

the two different rates shown in Fig. 5.6. Here, one can observe the extent to which the

Jaumann-Zaremba rate is more sensitive to shear oscillations than the Green-McInnis-Naghdi

rate 3.

3The detection of this problem arose in an attempt to model the double notched tubes in Chapter 3 in a
2D axisymmetric model enriched with an extra degree of freedom that allows for torque. The material model
used was the nonlinear kinematic hardening supplied with Abaqus. The methodology is similar to the one
followed by [Faleskog and Barsoum, 2013]. Even though the intended material law was an ever increasing
power law, material softening was observed.
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Figure 5.3 – Comparison between hardening directions
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Figure 5.4 – Comparison between GLD Umat and Abaqus’s implementation of the Gurson
model

Table 5.1 – Designation for internal variables used in the validation procedure with KB
UMAT

Designation # f0 S0 Υ
1 1.0e-3 0.0 n3 ≡ [0, 1, 0]
2 5.0e-3 1.0 n3 ≡ [1, 0, 0]
3 1.0e-2 -1.0 -
4 1.5e-2 - -
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5.3 Analysis of small scale tests

This section discusses the application of the material model presented before. It first begins

by discussing the results from the application to single notched tensile specimen followed by

a discussion on its application to the double notched tubular specimens. In the latter case,

it will be seen that its applications proved challenging, mainly for computational reasons

and, as such, their results constitute merely a qualitative interpretation of the model. All

finite element models follow the formulation shown in Section 5.1, i.e. a full 3D element

formulation. All models are conducted solely with kinematic hardening. The Chaboche

coefficients used in all models can be consulted in Table A.1, which were fit to the half cycle

data shown in Table 3.1 with 8 backstresses.

5.3.1 Single notched bar specimens

One begins by describing the geometry of the models for single notched specimens. Geometric

characteristics for all models follow caliper measurements for the notch area as well as scaled

pictures (c.f. Section 2.2) from the target DIC data to calculate the local displacement at

the notch. Since targets were not layed at precise distances for all specimens, loading was

obtained for all specimens individually and so each test constitutes a single finite element

model; distances from the center of each target to the corresponding notch edge were taken

into account in its definition.

For computational reasons, only a quarter of the specimen was modeled. Boundary conditions

were set as follows: the base corresponding to the lower DIC target was kept fixed, while at

the upper top, the displacement measured by the difference between the DIC targets was

applied to all nodes using a master-slave node formulation. Vertical boundary conditions at

the sides of the model followed double symmetry.

Mesh size was kept constant throughout the notch cross section to avoid mesh dependency

issues when comparing between different test results. Linear 3D cubic reduced integration

isoparametric elements (C3D8R) of 50μm and aspect ratio of approximately of 1 (cube) were

used in all models. An example of a typical model is depicted in Fig. 5.7.
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(a) FEM model (b) Porosity contours (SDV1≡ f)

Figure 5.7 – FEM model and a typical porosity contour map for a single notched bar test
(T2CA1_7_1 at the 17th half cycle)

Monotonic

Fig. 5.8 presents the load displacements curves from the 6 monotonic tests that were

conducted. The curves approximate tests to within a reasonable accuracy - consider the

transition from the elastic regime into plasticity taking into account the non-linear drop in

stiffness caused by necking of notch.

In Fig. 5.8 is also represented a coalescence criterion given by the condition set by the

TBL micromechanical model (φT BL = 0). Parameters governing this criterion were set as

follows. First micro-mechanical internal variables were set using the observations presented

in Section 3.2 : f0 = 1e − 3, w0 = 1.0. Subsequently, one test (T2M_7_2) was picked where

the objective was to find the initial ligament ratio (χT BL,0) that corresponded φT BL = 0

through the heuristic outlined previously. The result was a ligament ratio of 0.25. This quite

close to the estimate obtained in Section 3.2 for the inclusion ligament size ratio (χinc).

Table 5.2 shows a summary of the monotonic test results where a comparison is made between

the failure displacement (as defined by a significant drop in stiffness in the necking phase)
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Table 5.2 – Data summary for monotonic tests

Specimen δSN,test
f (mm) δSN,T BL

f (mm) δSN
f % diff. T̄ Ep,T BL

eq,f Ep,T est
eq,f

T1M_7_1 0.608 0.506 16.7 1.02 0.47 0.6
T1M_7_2 0.554 0.479 13.5 1.03 0.45 0.54
T1M_7_3 0.519 0.482 7.1 1.02 0.48 0.52
T2M_7_1 0.561 0.580 3.6 0.89 0.70 0.66
T2M_7_2 0.598 0.595 0.5 0.89 0.70 0.70
T2M_7_3 0.655 0.608 7.1 0.88 0.74 0.8

f0 = 1e − 3,w0 = 1.0,χT BL,0 = 0.25, and T̄ taken similarly as Eq. 3.11

and the displacement estimated by the FEM model with the TBL criterion. Also presented in

Table 5.2 is the weighted average of the triaxiality during loading and the equivalent plastic

strain as measured in the FEM models at the failure displacement estimated by the TBL

criterion (Ep,T BL
eq,f ) and the test (Ep,test

eq,f ). Average error in assessing Ep
eq,f between TBL and

tests for T1 is on the order of 15.7%. The maximum percentage difference in displacement

of 16.7% is justified by a greater error in assessing the elastic stiffness of the specimen. A

model with smaller elastic stiffness would have a smaller Ep,T BL
eq,f , which is in line with the

TBL estimates. These differences are considered acceptable for the purposes of this study.

Cyclic loading

Having established a reasonable criterion for monotonic failure, one proceeds to analyze the

results of cyclic loading on single notch specimens.

One begins by presenting a hysteresis curve of a typical test with the GLD UMAT in Fig. 5.9.

Artifact in test result was explained in Chapter 3. It is considered that the GLD UMAT with

non-linear kinematic hardening as described by the Chaboche model accurately represents

the hysteresis response.

Consider now Fig. 5.10 which depicts the evolution of the failure criterion φT BL, the porosity

f and the aspect ratio as measured by S = ln(w) as a function of the correction � to the

GLD evolution law of the aspect ratio. A range of +/- 10% of φT BL is also plotted for visual

guide.

With no correction, there is no noticeable effect on the range in which the void’s shape and

porosity change their values. However, when one adds a small correction to Ṡ in compression

one immediately notices its effect on the evolution of f and S. Corrections on the other

order of 10% to the compression evolution law of S are sufficient to reach φT BL = 0 within

an acceptable number of half cycles. This is due to two important effects of this correction:
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Figure 5.8 – Simple notched tensile tests - experimental results vs modeling
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1 - an exponential increase in the porosity; 2 - the formation of shallower voids. The former

is a typical behavior in ULCF, because it implies an exponential decrease in resistance (c.f.
Section 2.4). The latter is supported by experimental observations in Chapter 3 and in

[Kanvinde and Deierlein, 2004].

Fig. 5.11 shows results through the notch cross section for � = 1.125 at the end of the last

three half cycles. There one can observe that the length in which φT BL = 0 is activated

increases significantly between half cycles close to that failure criterion, suggesting that

adding a material length scale (as suggested by [Kanvinde and Deierlein, 2004] with the

factor l∗) would not change the interpretation of results in a significant way.

Defining failure in tests as a 10% drop in the load carrying capacity of the specimen, one can

compare results in terms of half cycles to failure. Performing an analysis for all cyclic tests

using the same values of initial porosity, aspect ratio, void size, void spacing and � = 1.125

yields the summary Table 5.3. The results in this table show the that the exponential

decrease in resistance with amplitude as captured by this correction is able to approximate

the failure half cycle to within an acceptable level of accuracy - see Fig. 5.12.

Discriminated results for each specimen can be found in Appendix C.
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Figure 5.9 – Example of comparison of hysteresis curves between tests and the GLD UMAT -
� = 1.125

Information in Table 5.3 is displayed graphically in Fig. 5.12

As much as it is useful to point out the good properties of this material model, it is also

important to underline its shortcomings. Chiefly among them is the behavior that can be
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Table 5.3 – Data summary for cyclic tests

Specimen ΔδSN,test (mm) HF EM
c Htest

c

T1CA1_7_1 0.35 9 11
T1CA2_7_1 0.41 5 7
T1CA2_7_2 0.48 3 5
T2CA1_7_1 0.24 19 21
T2CA1_7_2 0.20 27 29
T2CA1_7_3 0.22 23 31
T2CA2_7_1 0.44 7 9
T2CA2_7_2 0.39 9 11

f0 = 1e − 3,w0 = 1.0,χT BL,0 = 0.25,� = 1.125
Hc stands for half cycle

100 101 102

Hc - GLD UMAT

100

101

102

H
c
-
T
es
t

Figure 5.12 – Predicted number of half cycle versus experimental results

observed in Fig. 5.9b. The progressive decline in the ultimate load of the test, if not due to

geometric non-linearities, could be explained by material softening subsequent to an increase

in porosity. While one is able to capture an increase in the porosity of the material due to

cyclic loading, this does not translate into a significant drop in the far-field measurement of

the reaction force. Adding to this, significant assumptions were also made w.r.t. particle-void

interactions, the coalescence criterion and the heuristic factor �. The most consequential of

them is arguably the adoption of the same coalescence criterion for ULCF as for monotonic

loading which is, again arguably, at odds with the experimental observations in Fig 3.14 that

seem to suggest a higher critical porosity in ULCF4.

4to be noted that this is merely an hypothesis based on larger sized dimples in ULCF. The extrapolation
to higher porosities cannot be made conclusively without a series of interrupted ULCF tests in which the
notch of SN specimens is opened and the porosity quantified
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This model remains, therefore, merely an indicator for ULCF resistance for the way that it

takes into account the interaction between void shape and porosity in cyclic loading which

induces porosity ratcheting, not an actual full-fledged description of the physical process

as manifested by Fig. 5.9b. This approach complements current cyclic micromechanical

approaches that are able to reproduce qualitatively porosity ratcheting in unit cell models

through time history dependent parameters as discussed in Section 2.4.

More refined models are envisioned where different coalescence criteria are adopted so as

to either allow greater porosities inside the material through higher � coefficients in the

cyclic GLD model (thereby capturing the material softening mentioned previously) or the

implementation of two yield surface models, where growth and coalescence mechanisms

compete for the material description. In the latter option, coalescence models, like the

TBL, would be supplemented with their own evolution laws to capture this behavior more

accurately.

5.3.2 Double notched tubular specimens

This section presents some results on the application of the GLD UMAT to the double

notched tube experiments described in Chapter 3.

3D finite element models were built with the nominal geometry displayed in Fig. 3.15 with

height equal to the DIC gauge length (hDN ). Rigid boundary condition were set by a

master-slave node disposition on the top and bottom of model. Master nodes were located on

the axis of revolution separated by the gauge height. Slave nodes consisted of all the bottom

and upper nodes, for the bottom and upper master node, respectively. Fixed conditions

were set for the bottom master node, while loading in the form of displacement and rotation

as measured by DIC over the gauge length, was set for upper master node. Similarly to

single notched simulations, 8-node 3D reduced integration isoparametric elements (C3D8R)

were used. However, due to the size of the model, larger elements than in the single notched

specimens had to be employed. Elements in the notch region had a length of 100μm through

the cross section (i.e. radially), 160μm circumferentially and 80 μm in height. The through

cross-section size is double than the one used in SN specimens. Accurate estimates of plastic

strain are, therefore, not expected. However, qualitative interpretations of those simulations

will be given because they are judged to be of value. An illustration of the finite element

model can be seen in Fig 5.13 with typical results in 5.14.
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(a) Full model (b) Horizontal cut

Figure 5.13 – FEM model for double notched tubes

(a) Porosity (SDV1) for loading path 3

(b) Equivalent plastic strain(SDV3) for loading path 3

Figure 5.14 – Typical FEM results for a double notched tube simulation - DN7M3_1 at
load step corresponding to fracture in experiments
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Monotonic

One begins the discussion by taking note of the comparisons between force-displacement

and moment rotation curves (in correspondence with the local loading level presented in Fig.

3.20b) in tests and in their corresponding finite element model using the GLD UMAT - see

Fig. 5.15. Micromechanical variables used in the analysis were the same as in SN specimens.

Notable in all these analyses is the correspondence of elastic stiffness as measured by the

DIC system and the nominal geometry of the specimen described in the FEM - a testament

to the precision of the DIC system.

For tensile loading (loading path 1) loss of stiffness due to necking of the cross-section is

not sufficiently well modeled. This is due to an insufficient amount of elements in the cross

section that don’t fully capture the extent of plastic deformation across the notch.

For loading path 3, the apparently bizarre jumps in stiffness in the load-displacement/moment-

rotation curves from the FEM are justified with the fact the local loading does not follow

exactly a proportional path. Here the path was approximated in piece-wise linear segments

and those jumps correspond to changes in the direction of load.

For loading path 4, although less perceptible, the load path was almost approximated by

segments. After yielding there is a stark difference in the stiffness in both force-displacement

moment-rotation curves. The over-stiffness in the moment-rotation from the FEM model

corresponds to under stiffness in the force-displacement curve. This is possibly due to

anisotropic plastic behavior of the material that could be addressed using a micromechanical

model like the one in [Keralavarma and Benzerga, 2010].

Modeling pure torsion tests (loading path 2) remained unsatisfactorily resolved and will not be

presented in this work. The large amounts of plastic deformation in shear (upwards of 40% if

one takes loading 4 as a reference or even 120% if one is to take [Faleskog and Barsoum, 2013]

tests on high-strength steel) for such a relatively coarse mesh tended to concentrate plasticity

in only one element, leading to large element distortions and unrealistic plastic deformations.

With those caveats in mind, lets turn our attention to Fig. 5.16, 5.17 and 5.18 where the main

focus is the performance of φT BL. These figures show the loading history up to fracture of

the integration point of the element with highest φT BL at fracture. For load paths 3 and 4 it

is also shown a measurement of how much these voids rotate as given by ηv, which is defined

as the angle of the principal axis of the void from the initial to the current configuration. The

initial axis of the voids was set to be parallel to the axis of revolution of the tube. However

since voids are initially spherical, as soon as the material starts to yield and the void starts

changing its shape, its axis will be changed and follow the direction of principal stretch as
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discussed in the void orientation part of Section 5.1.

In Fig. 5.16 the performance of the coalescence criterion under-predicts fracture. One

possible explanation is that one is not modeling plastic deformation properly5. Another

however can be seen in the Lode parameter which is close to zero throughout most of the

loading. This fact becomes more clear when one compares this loading to load path 3 whose

loading happens with a higher Lode parameter. The performance of φT BL here is much

better.

Another notable observation is that for load path 4 when Lode parameters are close to zero

but stress triaxialities are also close to zero, φT BL also performs relatively well w.r.t. load

path 1.

Cyclic

For cyclic loading no results are deemed worthy of reporting. Modelling ULCF in non-

axisymmetric conditions using the micromechanical model developed herein proved to be

challenging even in monotonic loading.

5although the results here are somewhat puzzling because simulations with a quarter of the model and
twice the number of elements through the thickness of the notch, yield essentially the same predictions in
terms of load-displacement, plastic strain and φT BL values. One possible explanation is that one is not
capturing the evolution of the slant mode of failure correctly (see Fig. 3.22)
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Figure 5.15 – Double notched tube tests - experimental results vs modeling
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Figure 5.18 – Load history at the integration point of element of highest φT BL for specimen
DN7M4_3
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5.4 Conclusion

In this chapter a phenomenological extension of the Gologanu-Leblond-Devaux microme-

chanical model to non-linear kinematic hardening was developed. Its implementation in an

Abaqus user defined material sub-routine was discussed and validated using an established

UMAT in literature comparable to the GLD model. The gist of the matter is as follows,

1. A hypoelastic co-rotational implementation of the GLD model with kinematic hardening

using the Green-McInnis-Naghdi stress rate was presented.

2. Backstress evolution laws have a significant impact in the evolution of internal variables.

3. An evolution law for the backstress was chosen so as to best approximate the be-

havior of the GLD model for isotropic hardening (co-directional with Σ − A as per

[Mear and Hutchinson, 1985]).

4. This model was compared with similar implementations6 and found to reasonably

approximate the GLD behavior for monotonic loading

5. Porosity ratcheting is modeled by different rates of change of voids aspect ratios,

which is supported by experimental observations conducted in Chapter 3 and in

[Kanvinde and Deierlein, 2004]

6. The following assumptions were also made:

(a) Voids rotate with the material as per the Green-McInnis-Naghdi rate;

(b) Porosity is enforced to have at minimum the initial void volume fraction;

(c) The same coalescence criterion for monotonic and cyclic loading with the TBL

model was adopted by assuming an equal aspect ratio as in the GLD model and

an equal ligament size at the beginning and at the end of the loading.

The performance of this model was assessed using experimental data from single notched

and double notched test results.

For the single notched tests, key findings are as follows,

1. Micromechanical models that incorporate the interaction between porosity and void

shape effects are able to capture a key characteristic of ULCF behavior: an exponential

decrease in material resistance with cyclic loading.
6Abaqus’s implementation of the Gurson model and the Keralavarma-Benzerga model implemented in a

UMAT described in [Kweon et al., 2016]
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2. An increased rate of change of voids aspect ratio in compression induces shallower

voids and porosity ratcheting under cyclic loading.

3. The coalescence criterion with the assumptions outlined previously and with a �

calibrated on only one specimen provided a good estimate for the number of cycles to

failure in single notched specimens with different amplitudes and notch geometries.

4. Despite this fact, this failure criterion remains an approximation to the physical

mechanisms observed in the tests because does not capture the insidious decrease in

load carrying capacity observed in specimens with a higher number of cycles (cf. Fig.

5.9b).

Application of this material model in the double notched tube tests proved challenging and

no meaningful conclusive remarks can be offered. The discussion of monotonic tests are

however of interest for their qualitative observations. The most relevant are the difficulty of

modeling the tension tests which include a slant type of fracture and the relatively better

performance of the TBL model as a fracture indicator in combined tension-torsion load paths

(higher Lode parameters i.e. close to axisymmetric stress state).
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structural components

In Chapter 4 a procedure to evaluate ultra-low cycle fatigue (ULCF) resistance using

digital image correlation (DIC) full-field measurements was presented. This method for

characterizing resistance is intrinsically a local approach to fatigue. In high-cycle fatigue, local

methods like the hot-spot ([Niemi et al., 2006]), effective notch stress ([Radaj et al., 2006]),

or [Xiao and Yamada, 2004] methods are to date quite established. In fact, the hot-spot

method is allowed in high-cycle fatigue verifications in Eurocode 3 instead of using nominal

stresses [European Committee for Standardization, 2005].

The main objective of this chapter will be to propose a local modeling approach that suitably

approximates the full-field strain measurements of the DIC system. Since ULCF resistance

can be characterized using local DIC data, one can arguably design for ULCF if one can

reproduce the essence of those strain histories appropriately.

One will focus on the finite element representation of the tube to plate tests in chapter 4.

Considering that for design purposes one should make things as simple as possible one is

expected to make certain concessions on the modeling approach. The chapter will start

by describing those root hypotheses and the modeling process as a whole. Following that

introduction, a section on the results and their discussion will be presented and it will end in

a short section summarizing the main conclusions of that discussion with an emphasis on the

range and scope of the methodology.

6.1 Description of the modeling approach

When it comes to the finite element modeling of the tube to plate tests, there are several

things that should be taken into account. The first is the description of the physical object,
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Chapter 6. Design approach for welded structural components

which invariably leads to a discussion of its geometric and material properties. The second,

the load and boundary conditions to which it is subjected to. The third is the scope of the

finite element method (FEM) model itself, which by definition attempts to describe physical

objects by partitioning them in discrete pieces. As will be shown, how they are partitioned

and how those pieces (or elements) approximate the continuum mechanics problem is not

insignificant for the issue at hand.

A successful estimation of strain histories with FE analyses requires two conditions: the first,

an accurate simulation of the component level force-displacement/torque-rotation hysteresis

curves; the second, reproducing the strain history measured by DIC with sufficient accuracy.

Starting with the simulation of the hysteresis curves, consider Fig. 6.1 that shows the FE

representation of the tube to plate tests. The geometry of the model follows essentially the

dimensions presented in chapter 4 with the exception of the base plate that, for simplicity,

is generated along with the tube by a 360 degree revolution. Additionally, a detailed

representation of the weld is both impractical and impossible 1 and, therefore, only the

thickness and slope (a and ψ in Fig. 4.6, respectively) of the weld were explicitly taken into

account when modeling different specimens - see Tables E.1 to E.3 . All other geometric

properties such as the reduction of thickness near the weld toe are the same for all simulations

and taken as nominal values - see Fig. 4.6.

Another simplification in these simulations concerns the material model used for plastic-

ity. Here, the nonlinear kinematic hardening defined by the analysis software Abaqus

[Dassault Systèmes, 2011] was used and not the material model developed in Chapter 5.

Even though, as seen in previous chapters, this is based on the Chaboche model using the

Jaummann-Zaremba stress rate, at the strain amplitudes in which the welded tube-to-plate

tests were conducted shear oscillations are deemed to be negligible and therefore Abaqus’s

model was deemed acceptable to use - see Fig. 2.3 where the finite rotation of an element in

simple does not significantly affect the material law for εp
eq < 50%. Furthermore, a single

material was defined for the whole model using backstress parameters calibrated for the

base metal law defined in chapter 3. It is important to underline this assumption, i.e. the

fact that one is neglecting the material behavior of the weld metal and the heat affected

zone (HAZ). Later it will be shown that this is justifiable due to the adequate simulation of

the hysteresis curves using solely this material law. The hardening coefficients used in the

Chaboche model are based in half-cycle data presented in Table 3.1 and can be consulted in

Table A.1.

With respect to loading and boundary conditions, let’s turn our attention to Fig. 6.2 that

1DIC measurements were only made for a small portion of the perimeter of the tubes
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Y X

Z

Figure 6.1 – FEM model of tube to plate test - general view, all elements C3D8R

depicts a cut of the FEM model and three notable points along its revolution axis. All

three points act as master nodes with the nodes at their corresponding cross section (i.e.
perpendicular to the ’Y’ axis) acting as slave nodes. Master and slave nodes are connected

together by rigid ties, which means that slave nodes will follow the displacement imposed on

the master node as well as turn about it as their center of rotation. The node at the tip of

the tube (indicated in Fig. 6.2 by δ) is located at approximately the same distance as the

centerline of the bending jack (cf. Fig. 4.1) is from the support. The node tied to the double

arrow, where rotation θ is applied, is at a distance approximately from the tube inclinometer

to the support (cf. Fig. 4.1 and 4.8). The support master node is tied to all the nodes at

the back of the base plate. It is at the support master node that the boundary conditions for

the model are set and their reactions compared with the forces measured in the tests. Of

note on this point is the fact that the column support’s flexibility is not something that can

be discarded. Flexibility associated with bending imposed by δ is taken into account in the

model by an elastic rotational spring around the ’X’ axis - Kδ. For the flexibility associated

with the torque imposed by θ much of it is already taken into account because θ is defined

by the difference between base plate and tube inclinometers. Nevertheless, some elastic

flexibility in the modeling was observed which can be explained by some minor flexibility of

the plate itself. This was also modeled by a rotational elastic spring at the support master

node but around the ’Y’ axis - Kθ. Values for Kδ and Kθ are presented in Table 6.1
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Figure 6.2 – FEM model of tube to plate test - cut and boundary conditions

All models with the tube to plate connection modeled explicitly (named henceforth as global
models), have been meshed as can be seen in Fig. 6.1 and 6.2. It consists of a relatively

coarse mesh from δ to θ whose sole purpose is to carry the bending moment between those

two points. From θ to the base plate, a more refined mesh of 2.5mm 3D 8-node linear reduced

integration elements is used. Even though this was observed to be sufficient to capture the

behavior of the hysteresis curves of force-displacement/torque-rotation, for the weld toe

strain time history comparison with a much finer mesh was needed. Due to computational

constraints, a submodelling approach was adopted whereby a small portion around the weld

was extracted from the global model; the boundaries shaping this submodel were subjected

to the displacement field of the global model on those very same boundaries. A graphical

depiction of the submodel can be seen in Fig. 6.3. In the subsequent section a convergence

study will be presented on the element size and type that was found to best fit the DIC

measurements. This approach is similar to the one presented in Chapter 2 suggested by

[Myers et al., 2009].
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Figure 6.3 – FEM submodel of weld toe region

6.2 Results and discussion

One will begin by showing results for a simple bending test: first for the global model and

later for the submodel. Fig. 6.4 shows the hysteresis curves on test B7CA1_3 - here ’force in
bending jack’ should be read as the vertical reaction in the FEM model. Rotational stiffness

of the support (’X’ direction; Kδ) was fit to a value of 5e6 N.mm/rad. Both curves can be

seen to match sufficiently well, by which one means that the elastic stiffness is approximately

correct and the work dissipated in each cycle is also approximately the same. Here one

should bear in mind that the plastic work associated with each cycle is mainly occurring

on the top and bottom parts of the tube near the weld (reduced thickness region). This

concentration increases the sensitivity of the weld strains to meshing and loading conditions

as well as material properties. The small difference in the maximum load that can be seen in

compression between the model and the test is therefore expected to have some consequences

when one begins to inquire into the submodels.

Consider Fig. 6.5 and 6.6 that show a vertical cut (’YZ’ plane) along the tube’s axis at

the first and second load reversal and the corresponding equivalent strain measurements in

both DIC and the FEM models. For clarification and in order to be consistent with DIC

measurements, ε∗
eq was computed in the FEM with the total strain tensor (the logarithmic or

Hencky strain). One can observe in these pictures distributions of ε∗
eq taken from the nodal

results (i.e. extrapolated from the integration points and averaged) for different element sizes

and type2 in the weld region. Weld geometry was approximated in the FEM model linearly

between the weld toe and the base plate with the angle ψ taken from the DIC measurements

2LinR ≡ linear 3D 8-node reduced integration element with enhanced hourglass control (C3D8R); QuadR
≡ quadratic 20-node reduced integration element (C3D20R)
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Figure 6.4 – FEM comparison of hysteresis curves for specimen B7CA1_3

- c.f. Tables E.1 to E.3. A sharp transition was used instead of a radius because for shallow

angles (less than 30 degrees) this has a negligible influence on the equivalent plastic strain

[de Castro e Sousa and Nussbaumer, 2015].
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Figure 6.5 – Comparison of DIC measurements and FEM results for specimen B7CA1_3
through a cut at weld toe at first displacement reversal (tensile)

The influence of size and type of elements are immediate in the figures shown above.

Commenting on the results from the global model, where a fairly coarse mesh (with respect

to the weld’s size) was used, one notices that the strain concentration at the toe is barely
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Figure 6.6 – Comparison of DIC measurements and FEM results for specimen B7CA1_3
through a cut at weld toe at second displacement reversal (compression)

noticeable. As the mesh size decreases one can detect a corresponding increase in ε∗
eq. It can

also be observed that the type of element has a significant influence in the strain evaluation.

Turning one’s attention to Fig. 6.7, the time history of the point with maximum ε∗
eq amplitude

is shown along with the corresponding point in the FEM submodel with 0.6mm size quadratic

reduced integration (C3D20R). It can be seen that although DIC and the FEM submodel

do not match perfectly 3, their amplitudes only differ slightly (around 1.25% in percentage

difference) which is considered to be an adequate reflection of the dissipation of the global

model and the DIC measurements. An anecdotal indication that this size of an element is a

natural selection to base further analyses is the fact that the distance between integration

points is of the same order as the distance between data points in the DIC (7px ≈ 0.3mm).

This distance is also within the range of the characteristic length l∗ for most structural

steels as given by [Kanvinde and Deierlein, 2004] (between 60μm and 500μm). As shown

in Chapter 2, the element type is the same as used in [Myers et al., 2009], although with

roughly double the element size. The element size in [Kanvinde and Deierlein, 2004] was

fixed so as to be within the range defined by [Myers et al., 2009]. Here element type and

size are fixed with direct surface measurements made by DIC. One will proceed with these

analyses by considering the same mesh size and type for subsequent submodels and comment

on the consequences.

In pure torsion tests (load path A) it was also found that an additional rotational elastic

spring should be considered in the model to account for some flexibility of the base plate
3presumably due to the initial small difference in the global model’s first reversal
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Figure 6.7 – Comparison of DIC measurements and FEM results for specimen B7CA1_3 -
time history of point at the weld toe

to torque. Fig. 6.8 presents the torque-rotation hysteresis curve for test A7CA1_3 and the

FEM global model with a stiffness of 1.5e7 N.mm/rad in the ’Y’ direction - Kθ. The results

are quite encouraging on the global model. Having calibrated the elastic stiffness with the

stiffness of the support, the plastic behavior matches equally well, lending some justification

to the approximation of using the same material model for the weld as for the base material.
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Figure 6.8 – FEM comparison of hysteresis curves for specimen A7CA1_3

Consider the results in Fig. 6.9 that depicts the time history of ε∗
eq for A7CA1_3 from a

submodel using the same mesh size and element type as the one used in the simple bending
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test. Here, it can be seen that the strain time history matches remarkably well. This

observation seems to lead to the following conclusion: if one captures the hysteretic global

behavior of the component accurately, the submodelling technique with 0.6mm quadratic

elements will provide a representative time history of the strains at the weld toe with respect

to the DIC measurements.
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Figure 6.9 – Comparison of DIC measurements and FEM results for specimen A7CA1_3 -
time history of point at the weld toe

Following the consequences of that statement, additional FEM models were conducted for

other load paths and amplitudes but keeping the same modeling principles. Not all tests

were modeled due to time constraints. Representative tests for different amplitudes and load

paths were performed (8 CA and 1 VA). Fig. 6.10 depicts the results from the CA tests

simulations and Table 6.1 summarizes their key quantities.

Table 6.1 – Summary of CA FEM parameters and results

Specimen Kδ Kθ Δε∗
eq,DIC Δε∗

eq,F EM pdif,ε∗
eq

DDIC DF EM

A7CA1_3 - 1.5e7 14.01 13.22 5.94 0.76 0.70
A7CA2_2 - 1.5e7 5.29 6.40 -17.47 0.62 0.85
B7CA1_3 5e6 - 16.44 16.24 1.23 0.94 0.92
C7CA1_1 5e6 1.5e7 23.12 20.29 13.96 1.24 1.00
C7CA3_2 5e6 1.5e7 5.33 4.70 13.50 1.60 1.30
D7CA1_2 1.35e7 1.5e7 28.55 25.16 13.57 1.34 1.09
F7CA1_1 4e7 1.5e7 8.80 11.09 -20.70 0.75 1.10
F7CA2_2 4e7 1.5e7 5.86 5.58 4.96 0.51 0.47

Δε∗
eq - % taken over Nave; K - N.mm/rad; pdif ≡ percentage difference - %

As can be seen in Fig. 6.10, the results from the FEM simulations provide a reasonably
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Figure 6.10 – Manson-Coffin curve for proportional constant amplitude tests with FEM
results

close description of the model given by Eq. 4.3 because it is precisely descriptive of the

DIC measurements. The maximum percentage difference between Δε∗
eq, as taken by DIC or

FEM, in Table 6.1 of −20.70% is acceptable given the power law nature of the model, as

shown by the differences in Fig. 6.10 when depicted in double log-scale. Damages calculated

using FEM strain amplitudes with Eq. 4.3 and Eq. 4.4 are naturally also quite acceptable.

The average value of DF EM is 0.93 with a sample standard deviation of 0.24, i.e. a CoV of

26.0%.

At this point one should discuss the conspicuously different bending rotational stiffnesses

used for the global models of test paths ’D’ and ’F’. For this it is necessary to observe Fig.

6.11 that shows the force history of the bending and torsion jacks, and their sum (total

vertical reaction) for test F7CA1_1. Here, taking stiffness roughly speaking as the bending

jack force divided by its displacement δ, one can see a sudden change in this stiffness because

of the gap in the jack’s displacement, i.e. the loss of contact between the jack’s head and the

tube causes the force in it to be zero. The tube itself is moving at the δ section, but only

due to the displacement imposed by the movement of the torsion jack. The loss of contact

indicates that the stiffness of both acting together is different from just the torsion jack

acting by itself. This maybe to due to the fact that the lever arm’s size is not inconsequential

with respect to the test setup and specimen size thereby conferring an additional stiffness.

To simplify this potentially complicated situation the following judgment was made. Consid-

ering that the rotational stiffness associated with the torque is unambiguously defined by

the elastic stiffness of the plate, this, once defined, should be kept constant throughout all
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Figure 6.11 – Illustration of the bending stiffness issue for test F7CA1_1 through loading
history

the simulations. Moreover, the most important feature in modeling the global component

behavior lies in respecting the time history of the forces measured during the test. This

implies that at rotation θ one should have in the model the same vertical reaction as the one

measured in the test. With this in mind, the bending rotational stiffness (Kδ) was adjusted

so as to provide the best match to this time history. An example of this can be seen in Fig.

6.12 for specimen F7CA1_1, where the torsion jack force compares with the torque reaction

in FEM model divided by the lever arm length.
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Figure 6.12 – Comparison of loading history and FEM results for test F7CA1_1
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An additional simulation with variable amplitude loading was conducted to assess if this

methodology also holds for these cases. Fig. 6.13 shows the hysteresis torque-rotation curves

for specimen A7VA1_2 and the corresponding global model results, and Fig. 6.14 the time

history of ε∗
eq as measured by DIC and in the FEM submodel.
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Figure 6.13 – FEM comparison of hysteresis curves for specimen A7VA1_2
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Figure 6.14 – Comparison of DIC measurements and FEM results for specimen A7VA1_2 -
time history of point at the weld toe

With respect to the Fig. 6.13, the global model was calculated maintaining the same rotational

stiffness for torque of 1.5e7 N.mm/rad and the resulting hysteresis curve in matches test

results sufficiently well. The average ε∗
eq ranges that can be extracted from Fig. 6.14 have
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the following values: Δε∗
eq,1,DIC = 12.18%, Δε∗

eq,1,F EM = 11.6%, Δε∗
eq,2,DIC = 5.98%,

Δε∗
eq,2,F EM = 5.92%. Damage values calculated on the mean curve in Fig. 6.10, given by Eq.

4.3, with DIC and FEM strain amplitudes yields: DDIC = 0.56 and DF EM = 0.52. With the

proximity of such results one concludes that the method is suitable to be applied to variable

amplitude loading.

A relevant question therefore arises: among a significant amount of simplifications, is a model

that underestimates ULCF life by 50% (e.g. the damage sum computed for A7VA1_2) accept-

able? To give an answer to this question one will take the point of view of code requirements in

the design of high cycle fatigue, namely the Eurocode [European Committee for Standardization, 2005].

A typical design in high cycle fatigue is carried using a nominal stress approach, whereby the

code defines the characteristic resistance (FAT) according to the type of component being

loaded. Resistance can be said to follow Eq. 6.1. The code sets three values for each type of

detail: m, Δσ and its corresponding Nf (the last two are equivalent to defining the constant

CF AT ).

Nf = CF AT Δσm (6.1)

For the sake of argument, let us consider a specific detail: a longitudinal attachment, which

consists of a plate loaded on its longitudinal direction, and welded perpendicular to it is

another plate of length L greater than 100mm. Fig. 6.15 depicts a sketch of this detail as well

as a collection of over 700 test results that can be found in literature (c.f. [Baptista, 2016]

for a complete list of references) and serve as the basis for the code’s category definition of

56MPa stress range at 2e6 cycles (FAT56) with slope -3 4. As one can see, the variability

is considerable and if one equivalently plots the damage (with respect to the mean curve)

for each specimen one can see that this approach, even though it is sanctioned by the

code, typically yields values below 50%. The same conclusion could arguably be reached

by selecting subsets from that database. In order words, such variability in fatigue is both

expected and accepted. The reason for this is because one cannot in practical terms take

into account all the relevant parameters that can influence this behavior in design.

It is, therefore, for this reason that the approach outlined in this chapter presents itself as a

reasonable method for design. Fig. 6.17 shows the suggested design values based on the CA

proportional tests given by a 5% probability of failure(pf ) with a 75% confidence interval

on the mean (CImean) [IIW-JWG-XIII-XV, 2013]. Table 6.2 summarizes the recommended

design values for S770QL steel to be used in this local approach with Eq. 4.3.

4which, parenthetically, is the same as the one commonly used for steels in Paris Law
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Figure 6.16 – Damage following Miner’s rule in SN curve for longitudinal attachment

It should be noted that from what was concluded in Chapter 4 regarding VA loading, namely

that the Palmgren-Miner’s damage sum was sufficient for VA loading (c.f. Fig. 4.25), and

considering that the submodeling approach also captures sufficiently well strain amplitudes

under ULCF, the design curve in Fig. 6.17 is also valid for VA loading.

It is also important to discuss the scope and range of application of this methodology. Due

to the fact of being a local method its objective hopes to give an estimate to ultra low

cycle fatigue life that is decoupled from particular geometric effects imposed by different
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Figure 6.17 – Manson-Coffin curve for constant amplitude proportional tests and design value

Table 6.2 – Design values of M-C curve for local approach for components with thicknesses
below 10mm under proportional loading histories for S770QL

Material b c
S770QL 0.31 -0.6

cf. Eq. 4.3

components. In principle, its greatest advantage lies in the fact that for components where a

high degree of geometric nonlinearity is expected, failure can be decided locally at certain

critical points. That being said, it’s limitations arise from the simplifications involved in the

evaluation process.

First and foremost is the fact that resistance is a function of total life (i.e. comprising both

initiation and propagation). The fact that propagation accounts for a significant part of the

total life, means that one will inexorably come across some sort of scale effect because the

load carrying capacity of a structural component is intrinsically related to the relationship of

the thickness of its constitutive parts and its overall geometry. Quantifying this effect is not

straightforward and further testing on components of a different scale and nature is needed

to assess the impact of this issue. This explains the limit on Table 6.2.

Another relevant factor is the material properties of the steel in question. Since different

microstructures have different plastic dissipation capacities, it is both conceivable and

expected that the steel type will have a noticeable impact on the ULCF resistance.

Lastly, one would be remiss if no comment on non-proportional loading cases was given. In
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Chapter 6. Design approach for welded structural components

chapter 4, one observed that for non-proportional load path ’E’ the average value of the

ductility coefficient was 0.32 which is roughly the design value that one obtained for all

the proportional constant amplitude tests. As was previously stated, this suggests that the

mechanisms involved in the deterioration of the component’s resistance are significantly worse

than those present in the proportional load paths. Therefore, it is unsuitable to consider

these loading cases when using the resistance curve defined by Table 6.2 and further research

should be made on this subject.

6.3 Conclusion

This chapter provided a framework for the assessment of ULCF resistance in welded steel

joints. Essential features of this approach are as follows,

1. The presence of stress/strain risers such as welds lead to significant strain gradients close

to those notches. Continuum-based FEM are known to suffer from mesh sensitivities

close to discontinuities. To mitigate those effects, and using detailed 3D FEM at the

area close to the notch, a specific mesh size and type was calibrated with surface strains

measurements made by DIC (cf. Chapter 4). Those are,

(a) 3D 20-node quadratic reduced integration elements, in line with [Myers et al., 2009]

(b) Approximately cubic in aspect ratio with 0.6 millimeters in size.

2. The use of base material hardening properties and a simplified weld geometry in the

FEM submodel was sufficient to yield estimates close to the mean resistance curve of

the Manson-Coffin law (cf. Fig. 6.10).

3. Design values for the high-strength S770QL steel are given in Table 6.2

4. This approach was tested in proportional constant and variable amplitude ULCF

loading conditions and deemed acceptable when compared to current design practice

for high cycle fatigue.

5. Nonproportional load paths cannot be used in the same design curve and further

research should be conducted to mitigate this weakness.

Although this design framework is based on local strain measurements and therefore less

dependent on specimen geometry, there is the risk it will suffer from the same component

dependent deficiencies as other models because so much of the fatigue life is spent in

propagation. Further analysis is needed to bound the application range of this approach.

Prominently among those concerns are,
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1. The weld profile, because the weld angles in this detail are not very aggressive (ψ <

30Deg)

2. The component thickness, which is of natural interest when so much of the fatigue life

spent in propagation

3. The material properties, mainly for two reasons:

(a) The high-strength steel studied in this thesis exhibits little to no isotropic harden-

ing, limited ductility and a small hardening exponent. Steels with other charac-

teristics can have significantly different hysteretic behaviors which can affect a

clear evaluations of strain amplitudes.

(b) As pointed out by [Kanvinde and Deierlein, 2004] fracture is usually defined as

happening within a minimum volume of material associated with its microstruc-

tural properties. This is what leads to the definition of a characteristic length

of material (l∗). In this approach that characteristic length is something that

is implicitly taken into account in the mesh size and in the choice of the DIC

parameters. Although the volume spanned by the integration points in the element

size of this approach fall within the values recommended for most structural steels

in [Kanvinde and Deierlein, 2004], care should be taken for significantly different

materials.
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7 Conclusion and future work

The work presented in this thesis had the main objective of understanding the behavior of

welded structural components in situations susceptible to multiaxial ultra low cycle fatigue

and provide suitable method for their design. The material studied in this document is the

high-strength structural steel S770QL.

Summary and conclusions from Chapter 2

This chapter provided some background on topics such as finite strain plasticity which are

important under large scale yielding and thus quite relevant for ULCF. Also discussed are the

basic principles in digital image correlation to understand key aspects of the experimental

programs in this document. Finally a review of a continuum mechanics approach to ductile

fracture and ULCF was given.

From that presentation the following remarks are deemed important:

1. Finite rotations can have a sizable impact on the plastic behavior of material models.

Kinematic hardening models are particularly sensitive to this issue.

2. Under monotonic loading there a strong dependency of fracture strain to the stress

state has been reported in literature. This is commonly measured by two parameters:

the triaxiality and the Lode parameter. The former provides a measure of the ratio of

hydrostatic to the deviatoric part of the stress state and the latter a measure of the

state of axisymmetry. Investigations into the effects of low triaxialities and the Lode

parameter are fairly recent developments in the state of the art of ductile fracture.

3. Differences on the low-cycle fatigue resistance between tension and torsion tests in

small thin walled tubes of base material have been reported in literature.
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4. From the continuum mechanics perspective, there are two common choices on how to

approach the problem of ULCF:

(a) Empirical formulae associated with Manson-Coffin type expressions

(b) A more physical oriented approach through micromechanical models based on the

nucleation of voids around impurities in the material and their subsequent growth

and coalescence.

Summary and conclusions from Chapter 3

Here, the results of an experimental campaign on small scale specimens to characterize key

material properties of high strength S770QL steel was presented. They can be summarized

as follows,

1. Internal variables in micromechanical models for void growth and coalescence such as

porosity, aspect ratio, and inclusion ligament size ratio were determined.

2. SEM micrographs of the fracture surfaces of single notched specimens suggest two

important conclusions:

(a) The presence of shallower voids under cyclic loading w.r.t. monotonic, in line with

[Kanvinde and Deierlein, 2004].

(b) It can be argued, although not conclusively, that critical porosity (i.e. leading to

failure) is higher in large amplitude cyclic loading than in monotonic loading of

single notched specimens.

3. Tests conducted on double notched tubular specimens confirmed the dependence of

material ductility (as measured by the fracture strain) on the stress state.

Summary and conclusions from Chapter 4

This chapter presented methodologies and results of a welded tube-to-plate connection loaded

in bending and in torsion. Different ratios of longitudinal and shear strain were applied by

varying the ratio between bending and torsion. Results were mostly interpreted by the use of

digital image correlation measurements on the surface of the joint near the weld toe region.

The following points summarize the main conclusions of that chapter,

1. One can detect surfaces cracks on the welded component without a large decrease in

the load carrying capacity of the connection.
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2. This initiation phase was found to be within a third to a half of the life of the specimen.

Conversely, propagation can be from half to almost to two thirds of the total ULCF

life.

3. To the extent that a continuum mechanics based approach can approximate total life

(i.e. initiation plus propagation1), empirical methods such as Manson-Coffin are worth

considering.

4. The suitability of a Manson-Coffin approach using an equivalent strain measure deduced

from DIC was tested and it is was found that this approach does indeed provide a good

estimate for total life under proportional constant amplitude multiaxial loadings.

5. In contrast to the tests of base material on the double notched tubes presented in

Chapter 3, the dependence of ULCF life on the stress state in welded joints of high-

strength steel was found to be negligible

6. The application of the Palmgren-Miner’s rule for variable amplitude loading was found

to be a suitable approach

7. Nonproportional load paths were found to be more severe than proportional ones.

Summary and conclusions from Chapter 5

In this chapter a micromechanical model that incorporates kinematic hardening was presented

that allows for the consideration of void shape interactions with the porosity. This model is

a heuristic extension of the GLD micromechanical model. Main conclusions are as follows,

1. The decrease in fracture strain observed for cyclic loading w.r.t. to monotonic loading

can be modeled by porosity ratcheting induced by progressively shallower voids. This

assertion is supported by the experimental observations presented in Chapter 3.

2. A simplified approach considering as a coalescence criterion another micromechanical

model (the TBL model) was presented. Although it provides reasonable estimates for

ULCF in single notched tests, by virtue of its assumptions a complete description of

the ULCF phenomenon remains elusive (cf. Chapter 5 for more details).

3. Difficulties in modeling double notched tubular specimens were registered. Of particular

interest is the mode of failure associated with pure tension tests. Here, a pronounced

slanted fracture surface can be observed in the tests and is associated with low Lode
1which is arguably better modeled by a fracture mechanics approach - e.g. cohesive zone modeling or

J-integral approaches
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parameters in the notched section as obtained through FEM modeling. The non-

axisymmetry of the stress state in pure tension is further confirmed with elongated

dimples along the circumferential direction that can be seen in the fractography

presented in Chapter 3 (c.f. Fig. 3.24). It is in this context that the FEM models

presented in this Chapter tend not to perform so well under pure tension load paths.

However, under increased Lode parameters, results are more encouraging as the models

tend to perform better.

Summary and conclusions from Chapter 6

This chapter presented a design approach for the assessment of ULCF resistance in welded

steel joints. This approach is inspired by the work of [Myers et al., 2009] albeit a different

failure criterion is recommended (the Manson-Coffin approach). The gist of this design

proposal is as follows,

1. The presence of stress/strain risers such as welds lead to significant strain gradients close

to those notches. Continuum-based FEM are known to suffer from mesh sensitivities

close to discontinuities. To mitigate those effects, and using detailed 3D FEM at the

area close to the notch, a specific mesh size and type was calibrated with surface strains

measurements made by DIC (cf. Chapter 4).

2. A design curve to be used in models following those specific mesh requirements was

given for the high-strength S770QL steel (cf. Chapter 6 for more details on the range

of application).

3. This approach was tested in proportional constant and variable amplitude ULCF

loading conditions and deemed acceptable when compared to current design practices

for high cycle fatigue.

Future work

With respect to micromechanical models the following recommendations are made,

1. Given the experimental observations that fracture under ULCF have shallower voids

than under monotonic loading and the effectiveness of the fact observed in Chapter 5

that increasingly oblate voids induce higher porosities, a unit cell study to quantify

these effects on the heuristic factor � introduced in Chapter 5 is warranted.

2. It’s worth noting that ratcheting can also be achieved by history dependent parameters

in the hardening laws of the deviatoric and hydrostatic components of the GLD criterion
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similarly to [Leblond et al., 1995]. This can be used as complement to induce porosity

ratcheting if unrealistic aspect ratios are observed.

3. A more precise failure criterion in ULCF is needed. The physical mechanisms involved

in this phenomenon are, however, less clear. Interrupted tests under ULCF are of

interest in order to clarify this issue and would provide guidance on the definition of

better failure criteria.

4. A comprehensive study of the influence of hardening parameters in the hysteretic

behavior of both the porosity, the void aspect ratio and the failure criterion can also

be of worth for selecting materials for specific applications involving ULCF.

5. For non-axisymmetric conditions, an extension to kinematic hardening of void growth

models that include void shape effects for ellipsoidal voids (like [Madou and Leblond, 2013a],

[Madou and Leblond, 2013b]) is also of interest for ULCF applications.

Concerning the more practical approach to design with Manson-Coffin type laws in welded

joints, the following lines of inquiry are suggested,

1. Given the successful application of DIC measurements in assessing strains at the weld

toes of components subjected to ULCF, different weld geometries are recommended to

validate the expect increase in plastic strain as predicted by FEM in the presence of

more aggressive weld toe geometries and validate mesh size requirements.

2. Due to the significant weight of crack propagation in ULCF, size effects related to plate

thickness are expected and should be investigated

3. The impact of material properties is also deemed worthy of further investigation. The

fact that a specific mesh was used, albeit calibrated with DIC measurements, has

implicitly defined a length scale associated with fracture process of the material. To

which extent this would change the mesh requirements is worth investigating using the

same methodology for different materials. This would allow the development of a more

systematic approach using a non-local method for added robustness (e.g. where the

length scale would be defined by a volume averaging and not a specific mesh size).

4. Although no visible difference was registered using an equivalent strain approach in

evaluating ULCF resistance of welded joints of high-strength steel under multiaxial

loading, material properties could have an influence on this behavior, and should thus

be examined
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5. The effects of non-proportional loading should also be investigated. Here energy

methods like [Garud, 1981] or critical plane models like [Fatemi and Socie, 1988] can

provide insights for addressing this issue.
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A UMAT

A.1 Cyclic GLD yield function and defining parameters

The cyclic yield function and defining parameters were adapted from [Benzerga and Leblond, 2010].

f is the porosity and w is the aspect ratio of spheroidal void with principal axis n3. w < 1

are oblate voids. w > 1 are prolate voids. S = ln w.

φGLD (Σ, A, σy, f, w, Υ) = C
‖Σ′ − A′ + ηΣhQ‖2

σ2
y

+

2q (g + 1) (g + f) cosh

(
k

(Σ − A) : X
σy

)
−

(g + 1)2 − q2 (g + f)2 (A.1)

with, Σh = (Σ − A) : X

g = 0 (w > 1) , g = f

(
1 − w2) 3

2

w
(w < 1) (A.2)

e1 and e2 are defined as the eccentricities of the void and the representative volume element

of the GLD, respectively. Numerical implementations of e2 can be done with approximate

closed form solutions but they are generally numerically unstable for prolate voids. In this

UMAT implementation e2 is determined by a numerical root finding algorithm using Halley’s
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method.

e1 =

⎧⎪⎨⎪⎩
√

1 − exp (−2S) , (w > 1)√
1 − exp (2S) , (w < 1)

;
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2
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2
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1
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(
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1
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e3
1

; n =
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1
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(A.3)
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⎧⎪⎪⎨⎪⎪⎩
[

1√
3 + 1
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, (w < 1)

(A.4)

gf =
g

g + f
, g1 =

g

g + 1
(A.5)

α1 =

⎧⎪⎨⎪⎩
[e1−(1−e2

1)tanh−1e1]
2e3

1
, (w > 1)[

−e1(1−e2
1)+

√
1−e2

1sin−1e1
]

2e3
1

, (w < 1)
(A.6)

α2 =

⎧⎪⎨⎪⎩
1+e2

2
(1+e2

2)2+2(1−e2
2) , (w > 1)

(1−e2
2)(1−2e2

2)
(1−2e2

2)2+2(1−e2
2) , (w < 1)

(A.7)

αG
1 =

⎧⎪⎨⎪⎩
1

3−e2
1

, (w > 1)
1−e2

1
3−2e2

1
, (w < 1)

(A.8)

H∗ = 2(α1 − α2) ; Q∗ = 1 − f ; sh = sinh(kH∗) ; ch = cosh(kH∗) (A.9)

η = −2
3

kQ∗(g + 1)(g + f)sh

(g + 1)2 + (g + f)2 + (g + 1)(g + f)[kH∗sh − 2ch]
(A.10)

C = −2
3

k(g + 1)(g + f)sh

(Q∗ + 3
2 ηH∗)η

(A.11)
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A.2 TBL yield function and defining parameters

Yield function and defining parameters can be found in [Torki et al., 2015].

φT BL,mod =

⎧⎨⎩
(|Σ33|−tΣsurf )2

b2(Σvol)2 + 4 Σ2
31+Σ2

32
l2τ2 − 1 , | Σ33 |≥ Σsurf

4 Σ2
31+Σ2

32
l2τ2 − 1 , | Σ33 |≤ Σsurf

(A.12)

with, Σvol, Σsurf

Σvol =
σy√

3

[
2 −
√

1 + 3χ4
T BL ln

1 +
√

1 + 3χ4
T BL

3χ2
T BL

]
(A.13)

Σsurf =
σy

3
√

3
χ3

T BL − 3χT BL + 2
χT BLwT BL

(A.14)

τ =
2σy√

3
(
1 − χ2

T BL

)
(A.15)

χT BL =
RT BL

LT BL
, wT BL =

hT BL

RT BL
, λT BL =

HT BL

LT BL
(A.16)

t =
(t0 + t1χT BL) wT BL

1 + (t0 + t1χT BL) wT BL

(A.17)

TBL parameter values in the UMAT are set as follows: t0 = −0.84,t1 = 12.9,b = 0.9,l = 1.0

A.3 Derivatives in return mapping algorithm

∂REp

ij

∂Akl
= λ

∂2φGLD

∂Σij∂Akl
;

∂REp

ij

∂σy
= λ

∂2φGLD

∂Σij∂σy
(A.18)

∂REp

ij

∂f
= λ

∂2φGLD

∂Σij∂f
;

∂REp

ij

∂w
= λ

∂2φGLD

∂Σij∂w
(A.19)

Σh = (Σ − A) : X ; Σ′
kl = Σkl − 1

3 Σmmδkl ; ∂Σ′
kl/∂Σij = δikδjl − 1

3 δijδkl
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Since there are a great deal of coefficients on φGLD that depend on f and w, numerical

estimates using a complex step derivative approximation [Martins et al., 2003] were used for

the derivatives in Eq. A.26.

∂φGLD

∂f
;

∂φGLD

∂w
;

∂2φGLD

∂Σij∂f
;

∂2φGLD
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(A.26)
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∂w

∂λ
=

∂w

∂Scyclic

∂Scyclic

∂λ
= w

∂Scyclic

∂λ
(A.32)

A.4 Hardening parameters

The material model used throughout the thesis is based solely on nonlinear kinematic

hardening with the Chaboche model except where otherwise explicitly indicated. The

coefficients for this model can be seen in A.1 which are in correspondence with Table 3.1 and

Fig. 3.2 up to sufficiently high equivalent plastic strains (here taken at 400%).

Table A.1 – Chaboche model backstress coefficients used throughout the thesis

Backstress # C (MPa) γ

1 100465.56 1107.87
2 16124.16 460.41
3 6492.09 142.14
4 2613.95 44.098
5 1055.04 13.20
6 435.25 3.97
7 189.27 0.99
8 81.47 0.126

A.5 Validation

Table A.2 – Numbering for internal variables used in the validation procedure

# f0 S0 Υ
1 1.0e-3 0.0 n3 ≡ [0, 1, 0]
2 5.0e-3 1.0 n3 ≡ [1, 0, 0]
3 1.0e-2 -1.0 -
4 1.5e-2 - -
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A.5. Validation

(a) Cube (b) Loading 1 - L1

(c) Loading 2 - L2

Figure A.1 – Element(C3D8R) and loading cases used in validation of gld Umat in Abaqus
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Figure A.4 – Comparison between gld and kb Umats for loading: Tension; direction: Parallel
to voids; initial void shape: Prolate
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A.5. Validation
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Figure A.5 – Comparison between gld and kb Umats for loading: Tension; direction: Parallel
to voids; initial void shape: Oblate
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Appendix A. UMAT

0

200

400

600

800

1000

1200

1400
Σ

v
m

0.00

0.05

0.10

0.15

0.20

f

0.0 0.5 1.0 1.5 2.0

Ep
eq

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S

gld L1 f0,1 w0,2 Υ0,2

gld L1 f0,2 w0,2 Υ0,2

gld L1 f0,3 w0,2 Υ0,2

gld L1 f0,4 w0,2 Υ0,2

kb L1 f0,1 w0,2 Υ0,2

kb L1 f0,2 w0,2 Υ0,2

kb L1 f0,3 w0,2 Υ0,2

kb L1 f0,4 w0,2 Υ0,2

Figure A.6 – Comparison between gld and kb Umats for loading: Tension; direction: Trans-
verse to voids; initial void shape: Prolate
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A.5. Validation
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Figure A.7 – Comparison between gld and kb Umats for loading: Tension; direction: Trans-
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B Summary of data from metallo-

graphic analyses

B.1 Specimen designation and definitions

BM_LT_1
region

face

specimen number

Figure B.1 – Specimen designation for metallographic analyses

Region designations: BM - base material; W - weld material; WT - near weld toe of a loaded

tube specimen. For WT cases, unfortunately representative samples near the weld toe were

hard to get, leading to sampling away from the weld toe (around 2.5 to 5 mm). This means

that the statistics presented herein are closer to the BM than to the actual weld toe.

The following distributions were used:

1. Generalized extreme value (GEV) distribution cumulative distribution function,

F (x; μGEV , σGEV , ξGEV ) = exp

{
−
[
1 + ξGEV

(
x − μGEV

σGEV

)]−1/ξGEV
}

(B.1)

2. Beta distribution probability density function for 0 < x < 1 and shape parameters
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Appendix B. Summary of data from metallographic analyses

L

T

S
LS face

T

S

area to grind
to get LT face

Figure B.2 – Orientation of micrographs w.r.t. to tube sample

αbe > 0 and βbe > 0,

f (x; αbe, βbe) =
xαbe−1 (1 − x)βbe−1∫ 1

0 uαbe−1 (1 − u)βbe−1
du

(B.2)

Nearest neighbor calculations were conducted with SCIPY using a spatial KDTree search,

which organizes a set of spatial points according to the closest euclidean distance. Searches

were conducted using both circles and ellipses drawn over micrographs.

B.2 Summary tables
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B.2. Summary tables
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Appendix B. Summary of data from metallographic analyses

Table B.3 – Summary of circular inclusions statistics

Inclusion diameters (Dinc) - GEV
Specimen Q0.05 (μm) Q0.50 (μm) Q0.95 (μm) ξGEV μGEV σGEV

BM_LT_1 1.80 4.71 12.02 -0.1676 3.91 2.11
BM_LS_1 1.80 2.84 5.11 -0.0983 2.57 0.74
BM_LT_2 3.46 5.91 11.95 -0.1594 5.24 1.77
BM_LS_2 2.59 5.47 17.11 -0.3894 4.59 2.24
BM_LS_3 1.76 3.89 9.20 -0.1634 3.31 1.54
W_LT_1 2.33 4.16 8.65 -0.1536 3.66 1.32
WT_LT_1 2.02 3.13 5.18 -0.0140 2.85 0.77
WT_LT_2 2.95 5.15 10.58 -0.1576 4.55 1.59
WT_LS_1 2.83 5.30 17.47 -0.4790 4.51 1.97
Qx stands for quantile x of the distribution

Table B.4 – Summary of distance to nearest neighbor statistics

Distance to nearest neighbor - Lnn - GEV
Specimen Q0.05 (μm) Q0.50 (μm) Q0.95 (μm) ξGEV μGEV σGEV

BM_LT_1 13.94 55.89 135.76 -0.0332 45.20 29.01
BM_LS_1 5.57 31.88 93.78 -0.1357 24.79 18.86
BM_LT_2 7.84 31.82 78.04 -0.0392 25.69 16.62
BM_LS_2 6.32 30.38 94.66 -0.1963 23.69 17.60
BM_LS_3 16.14 49.52 106.04 0.0244 41.28 22.60
W_LT_1 4.72 19.40 135.41 -0.6896 14.25 12.37
WT_LT_1 8.18 28.16 66.09 -0.0320 23.07 13.81
WT_LT_2 7.08 28.08 67.16 -0.0222 22.76 14.46
WT_LS_1 5.94 35.27 100.85 -0.1111 27.48 20.85
Qx stands for quantile x of the distribution

Table B.5 – Summary of aspect ratios statistics

Aspect ratio (AR) - Beta
Specimen Q0.05 Q0.50 Q0.95 αbe βbe

BM_LT_1 0.33 0.66 0.90 4.219 2.308
BM_LS_1 0.17 0.42 0.70 3.519 4.770
BM_LT_2 0.28 0.52 0.76 5.570 5.182
BM_LS_2 0.28 0.57 0.83 4.406 3.363
BM_LS_3 0.37 0.61 0.82 6.989 4.550
W_LT_1 0.25 0.55 0.82 3.921 3.309
WT_LT_1 0.17 0.43 0.72 3.378 4.405
WT_LT_2 0.32 0.60 0.84 5.209 3.570
WT_LS_1 0.27 0.58 0.84 4.013 3.049
Qx stands for quantile x of the distribution
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B.2. Summary tables

Table B.6 – Summary of inclusion ligament ratio (χinc) statistics

Inclusion ligament ratio χinc - GEV
Specimen Q0.05 (μm) Q0.50 (μm) Q0.95 (μm) ξGEV μGEV σGEV

BM_LT_1 0.03 0.10 0.52 -0.574864 0.072830 0.056501
BM_LS_1 0.04 0.10 0.50 -0.603674 0.077643 0.051500
BM_LT_2 0.08 0.21 0.77 -0.399571 0.169522 0.105326
BM_LS_2 0.06 0.20 0.93 -0.485679 0.157258 0.115961
BM_LS_3 0.03 0.09 0.35 -0.442155 0.069974 0.045710
W_LT_1 0.05 0.21 1.15* -0.577493 0.155311 0.126154
WT_LT_1 0.05 0.12 0.44 -0.414294 0.102356 0.057191
WT_LT_2 0.08 0.22 0.78 -0.386716 0.175160 0.108744
WT_LS_1 0.06 0.19 0.92 -0.540647 0.143446 0.105816

Qx stands for quantile x of the distribution
* - not physically admissible (GEV isn’t bounded, but Beta led to a worst fit in this region)
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C Summary of data from single

notched bar tests

This annex presents a summary of the data gathered in the single notched round bar tests.

Fig. C.2 presents the designations in describing the geometry of each specimen. Displacement

at time t is defined as the difference between hSN (t) and hSN (t0) and is denoted as δSN .

When the designation FEM is evoked in this annex it is referring to the model described in

chapter 5 and annex A.

T1M_7_1
specimen type

nominal dimensions

loading

specimen number

material

Figure C.1 – Specimen designation for single notched specimens
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Appendix C. Summary of data from single notched bar tests

hSN
edge

hSN
n

hSN

RSN
notch

RSN

axis of revolution

DIC target

Figure C.2 – Geometry of single notched specimens
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Table C.1 – Data summary for monotonic tests

Specimen hSN hSN
edge hSN

n RSN RSN
notch δSN,test

f δSN,F EM
f % difference

T1M_7_1 10.71 3.35 5.05 3.07 1.37 0.608 0.506 16.7
T1M_7_2 9.84 3.19 4.82 3.03 1.40 0.554 0.479 13.5
T1M_7_3 15.29 5.78 7.37 3.05 1.33 0.519 0.482 7.1
T2M_7_1 10.70 3.76 5.83 3.09 1.02 0.561 0.580 3.6
T2M_7_2 11.52 4.10 6.18 3.12 1.04 0.598 0.595 0.5
T2M_7_3 11.67 3.96 6.07 3.10 1.01 0.655 0.608 7.1

f0 = 1e − 3,w0 = 1.0,χ0 = 0.25; all dimensions in mm

Table C.2 – Data summary for cyclic tests

Specimen hSN hSN
edge hSN

n RSN RSN
notch ΔδSN,test HF EM

c Htest
c

T1CA1_7_1 8.13 2.64 4.23 3.02 1.53 0.35 9 11
T1CA2_7_1 7.29 1.92 3.49 3.05 1.43 0.41 5 7
T1CA2_7_2 7.65 2.00 3.64 3.09 1.36 0.48 3 5
T2CA1_7_1 8.93 2.17 4.39 3.14 1.02 0.24 19 21
T2CA1_7_2 8.60 2.25 4.28 2.99 1.02 0.20 27 29
T2CA1_7_3 8.45 2.15 4.34 3.13 1.02 0.22 23 31
T2CA2_7_1 8.29 1.99 4.17 3.08 1.02 0.44 7 9
T2CA2_7_2 8.75 2.26 4.36 3.06 1.03 0.39 9 11

f0 = 1e − 3,w0 = 1.0,χ0 = 0.25,� = 1.125; all dimensions in mm
Hc stands for half cycle to failure
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Appendix C. Summary of data from single notched bar tests

C.1 SEM micrographs

(a) (b)

(c) Center of the specimen (d) Center of the specimen

Figure C.3 – SEM micrographs of fracture surface for specimen T1M_7_1
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C.1. SEM micrographs

(a) (b)

(c) Center of the specimen (d) Center of the specimen

Figure C.4 – SEM micrographs of fracture surface for specimen T2M_7_3

(a) (b)

(c) Center of the specimen (d) Center of the specimen

Figure C.5 – SEM micrographs of fracture surface for specimen T2CA1_7_2
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Appendix C. Summary of data from single notched bar tests

(a) (b)

(c) Center of the specimen (d) Center of the specimen

Figure C.6 – SEM micrographs of fracture surface for specimen T2CA2_7_2

(a) (b)

(c) Center of the specimen (d) Center of the specimen

Figure C.7 – SEM micrographs of fracture surface for specimen T1CA1_7_1
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D Summary of data from double

notched tube tests

D.1 Fracture surfaces

D.1.1 Monotonic

Figure D.1 – Slant fracture in monotonic pure tension (path 1) double notched specimens
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Appendix D. Summary of data from double notched tube tests

Figure D.2 – Slant fracture in monotonic pure torsion (path 2) double notched specimens

Figure D.3 – Fracture surface in monotonic for load path 3 in double notched specimens
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D.1. Fracture surfaces

Figure D.4 – Fracture surface in monotonic for load path 4 in double notched specimens
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Appendix D. Summary of data from double notched tube tests

D.1.2 Large amplitude cyclic loading

Figure D.5 – Slant fracture in cyclic pure tension (path 1) double notched specimens

Figure D.6 – Fracture surface in cyclic for load path 2 in double notched specimens
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D.1. Fracture surfaces

Figure D.7 – Fracture surface in cyclic for load path 3 in double notched specimens

Figure D.8 – Fracture surface in cyclic for load path 4 in double notched specimens
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Appendix D. Summary of data from double notched tube tests

D.2 SEM micrographs

D.2.1 Monotonic loading

slant fracture

effect of a non-axisymmetric stress

state in void shape

circumferential
center line

edge

close-up of

ellipsoidal void

Figure D.9 – Fractography of a double notched specimen loaded in monotonic pure tension -
DN7M1_1
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D.2. SEM micrographs

(a) (b)

(c)

Figure D.10 – SEM micrographs of fracture surface for specimen DN7M2_3

(a) (b)

(c) (d)

Figure D.11 – SEM micrographs of fracture surface for specimen DN7M3_1
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Appendix D. Summary of data from double notched tube tests

(a) (b)

Figure D.12 – SEM micrographs of fracture surface through cross section for specimen
DN7M3_1

(a) (b)

(c) (d)

Figure D.13 – SEM micrographs of fracture surface for specimen DN7M4_3

180



D.2. SEM micrographs

D.2.2 Large amplitude cyclic loading

(a) (b)

(c) (d)

Figure D.14 – SEM micrographs of fracture surface for specimen DN7CA1_1
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Appendix D. Summary of data from double notched tube tests

(a) (b)

(c)

Figure D.15 – SEM micrographs of fracture surface for specimen DN7CA2_1

(a) (b)

(c) (d)

Figure D.16 – SEM micrographs of fracture surface for specimen DN7CA3_1
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D.2. SEM micrographs

(a) (b)

(c) (d)

Figure D.17 – SEM micrographs of fracture surface for specimen DN7CA4_1
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E Summary of data from tube to

plate tests

This annex provides a summary of each tube to plate test.

Figure E.1 – Photograph of tube-to-plate test setup
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Appendix E. Summary of data from tube to plate tests
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Appendix E. Summary of data from tube to plate tests
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Glossary

A

macroscopic backstress tensor. 32, 90

a

weld thickness as defined in Fig. 4.6. 69

α

microscopic backstress tensor. 15

α1

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 26

αG
1

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 26

α2

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 24

B

set defining the volume of a body. 9

CAW S
eq

Equivalent carbon content as defined by the American Welding Society. 42

CIIW
eq

Equivalent carbon content as defined by the International Institute of Welding. 42
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Glossary

C

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 24

χ

equivalent plastic strain proportionality coefficient associated with the plastic multiplier

λ, given by Eq. 5.18. 92

χinc

ligament size ratio as measured by the inclusion diameter divided by its corresponding

nearest neighbor distance. 40, 106

χT BL

inter-void ligament ratio in the TBL model. 28

CDN
σ

axial elastic compliance in double notch tubular specimens. 54

C

fourth-order elastic stiffness tensor. 13

CDN
τ

torsional elastic compliance in double notch tubular specimens. 54

D

damage according to Palmgren-Miner’s rule. 85

δDN

difference in the displacement (w.r.t. to undeformed configuration) between the average

of two section above and below the notch for double notch specimens - see Fig. 3.17.

At failure a subscript f is added.. 52

δDN,machine
f

displacement at failure as measured at the machine level in double notch tubular

specimens. 51

δ

the displacement of the bending actuator minus the average displacement of the

two vertical displacement sensors (to account for slipping) and the 3.4mm maximum

clearance in the spherical mount, in welded tube to plate tests. 73
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Glossary

Dinc

inclusion diameter. 39, 41

δDN
n

displacement over the notch in double notch tubular specimens, i.e. component from

elastic displacement over the unnotched area between the gauge length is removed. 54

δp,DN
n

plastic part displacement over the notch in double notch tubular specimens. 54

d

microscopic spatial rate of deformation tensor. 11

DROT

incremental rotation tensor as supplied by Abaqus Standard. 97

δSN

difference in displacement between current and undeformed position of DIC upper and

lower sights in single notched specimens. At failure a subscript f is added.. 167

ε

uniaxial microscopic logarithmic strain. 37

εp
eq

equivalent plastic strain. 15

ΔL/L0

Elongation to fracture. L stands for the length between two DIC targets - in single

notched specimens this corresponds to hSN . 36

Emod

Young’s modulus. 36

η

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 24

ηcyclic
f

void growth index at fracture in cyclic loading. 30
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Glossary

ηmon
f

void growth index at fracture in monotonic loading. 29

ηv

angle between the principal axis of void from the initial to the deformed configuration:

ηv = arccosn3,0.n3/ (‖n3,0‖2‖n3‖2). 115

ε̄f

uniaxial round bar logarithmic strain given by 2 ln D0/Df , where D0 is the initial

diameter and Df the diameter after failure. 36

fAIP
0

initial void volume fraction estimated from inclusion content through Automatic Image

Processing. 39

F DN

axial force in double notched specimens. 53

F

deformation gradient. 10

f

void volume fraction or porosity defined by the ratio of void volume to the total volume

of an RVE. 23

f

relative deformation gradient. 11

g

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 24

hDN

difference between upper and lower sections in stereo correlated DIC for doubled

notched specimens. Equal to 7.5mm centered at the notched height. 52, 53, 113

hDN
n

notch height in double notched specimens. 51
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Glossary

hSN

difference between upper and lower DIC sights in single notched specimens. 43, 44, 168

HT BL

half the height of the cylindrical RVE in the TBL model. 27

hT BL

half the height of the cylindrical void in the TBL model. 27

K

linear coefficient for isotropic hardening power law. 36

Kδ

stiffness of the support in tube to plate global model associated with bending moment.

125, 127

kDN

ratio between average axial stress and the shear stress at the notch in double notched

specimens. 54

k

parameter defined by the geometry of a spheroidal void in the GLD model given in

Appendix A. 24

kDN
T

bounded ratio between average axial stress and the shear stress at the notch in double

notched specimens. 54

Kθ

stiffness of the support in tube to plate global model associated with bending moment.

125, 130

λD

parameter describing the rate of exponential decay in ULCF resistance under the cyclic

void growth model. 30

Λ

general rigid body rotation. 12

λ

plastic multiplier. 15
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Glossary

Lnn

distance of an inclusion to its nearest neighbor. 40

L

Lode parameter. 20

L

spatial velocity tensor. 11

l∗

material characteristic length. 30, 129, 139

LT BL

radius of the cylindrical RVE in the TBL model. 27

Δεp

2

plastic strain amplitude in M-C expression. 28

MDN
t

torque in double notched specimens. 53

n

exponent for isotropic hardening power law. 36

Nave

number of cycles over which the DIC measurements are averaged in welded tube-to-plate

tests. 83, 131

Nf

number of cycles to failure. 28, 79

Ninit

number of cycles to which a crack was detected in DIC system (approximately 0.1mm

surface opening). 79

Ω

rotation rate tensor. 12

P DN

load path ratio as defined by Eq. 3.3. 51
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Glossary

ϕ

mapping function between point X in the undeformed configuration and x in the

deformed configuration. 10

ψ

weld angle w.r.t. to tube as defined in Fig. 4.6. 69

RDN
ext

radius of the double notch tube from axis of revolution to the external part of the wall.

51

ρ

parameter between 0 and 1 that weighs the amount of isotropic and kinematic hardening.

32

ρDN

load path ratio as defined by Eq. 3.3. 51

RDN
int

radius of the double notch tube from axis of revolution to the internal part of the wall.

51

RDN
m

radius of the double notch tube from axis of revolution to the mid-thickness of the wall.

51

RDN
n

radius of internal and external notch in double notched specimens. 51

R

rigid body rotation tensor from the polar decomposition of F. 11

RT BL

radius of the cylindrical void in the TBL model. 27

σ

uniaxial microscopic Cauchy stress also know as true stress. 37

σDN
n

average axial stress at the notch in double notched specimens. 54
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Glossary

σh

hydrostatic stress. 21

σ′

deviatoric stress tensor, where the apostrofe implies S′ = S − 1
3 SkkI. 14

σvm

Von Mises stress. 14

Σv

stress tensor expressed in the void’s frame of reference. 28

σu

Microscopic ultimate stress - maximum Cauchy stress measured in uniaxial round bar

tensile test i.e. up to necking. 36

σy

Microscopic yield stress. 14, 36

τDN
n

average shear stress at the notch in double notched specimens. 54

tDN

thickness of double notch tube. 51

θDN

difference in the rotation (w.r.t. to undeformed configuration) between the average of

200 points along two horizontal lines on the surface of double notch specimens above

and below the notch - see Fig. 3.17 and 3.19. At failure a subscript f is added. 53

θDN,machine
f

rotation at failure as measured at the machine level in double notch tubular specimens.

51

θDN
sec

rotation (w.r.t. to undeformed configuration) of a point on the surface of a double

notch specimens - see Fig. 3.17, 3.18 and 3.19. At failure a subscript f is added. x, 52,

53
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Glossary

θell

angle between the horizontal (either T- transverse or S - thickness) and the main axis

of an ellipse that approximates the geometry of an inclusion. 39

θDN
n

rotation over the notch in double notch tubular specimens, i.e. component from elastic

rotation over the unnotched area between the gauge length is removed. 54

θp,DN
n

plastic part of the difference in rotation above and below the notch over the gage length

in double notch tubular specimens. 54

θ

the difference between the angles measured in the two inclinometers in welded tube to

plate tests. 73

tDN
n

thickness of the notch in double notch tube. 51

T

stress triaxiality. 20

Υ

matrix storing the orientation of spheroidal void, where the columns represent the unit

vectors of the void’s principal directions. 24

U

right stretch tensor from the polar decomposition of F. 11

�

heuristic factor that scales the rate of change of the aspect ratio of a spheroidal void in

the GLD model to distinguish the rate between tension and compression. 95

V

left stretch tensor from the polar decomposition of F. 11

w

aspect ratio of a spheroidal void, defined as the ratio between the height along the

principal axis with the width along one of the other secondary axes.. 24
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Glossary

W

material spin tensor. 11

wT BL

aspect ratio of the cylindrical void in the TBL model. 28

X

can define two quantities depending on the context: 1 - a point belonging to set B
that in the undeformed configuration; a tensor parameter defined by the geometry of a

spheroidal void in the GLD model. 9, 24

Ξ

algorithmic tangent stiffness matrix as defined by Eq.5.11. 91

ξ

vector representing internal variable storage in the UMAT. 97

x

point belonging to set B that in the deformed configuration. 9
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Acronyms

AIP

Automatic Image Processing. 39

AR

Aspect Ratio. 39

BM

Base Material. 38

CA

Constant Amplitude. 52

CAD

Computer-Aided Design. 39

CT

Compact Tension. ix, 21, 22

DIC

Digital Image Correlation. 5, 17, 36, 52, 205, 207

DN

Double Notch. 50

EDX

Energy Dispersed X-ray Spectroscopy. 36

FEM

Finite Element Method. 16
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Acronyms

GEV

Generalized Extreme Value. 40, 41

GLD

Gologanu-Leblond-Devaux. viii, 24, 90, 91, 93, 95, 97

HAZ

Heat Affected Zone. 30

KB

Keralavarma-Benzerga. 89, 99

KKT

Karush-Kuhn-Tucker. 90

M-C

Manson-Coffin. 3, 28, 29

PGSL

Probabilistic Global Search Lausanne. 38

PP

Probability-Probability. 40

PSO

Particle Swarm Optimization. 38

RVE

Representative Volume Element(s). 23

SEM

Scanning Electron Microscope. x, 36, 50

SN

Single Notch. 43

TBL

Torki-Benzerga-Leblond. 27, 41, 89
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Acronyms

ULCF

Ultra Low Cycle Fatigue. 1

UMAT

user defined material model. 6

W

Weld. 38

WT

Weld Toe. 38
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