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The desire to operate chemical processes in a safe and economically optimal way has 
motivated the development of so-called real-time optimization (RTO) methods [1]. 
For continuous processes, these methods aim to compute safe and optimal steady-
state setpoints for the lower-level process controllers. A key challenge for this task is 
plant-model mismatch. For example, in the case of a model that is assumed to be 
structurally identical with the plant but has unknown parameters, the so-called two-
step approach [2-4] has been proposed. It repeats two steps: In the first step, plant 
measurements are used to identify the parameters of the model. In the second step, the 
economically optimal setpoints for the updated process model are determined by 
solving an optimization problem. Unfortunately, a structurally correct process model 
is rarely available in practice. In that case, the optimal setpoints for the model 
determined by the two-step approach may not be optimal for the plant. To overcome 
this problem, the so-called modifier-adaptation (MA) methods have been developed 
[5]. In MA, no structurally correct model is required. Instead, plant measurements are 
used to formulate and solve a modified optimization problem at each iteration, such 
that, upon convergence, the first-order optimality conditions of the plant are 
guaranteed to be satisfied [5]. 
 
These and other available RTO methods usually treat the plant as a single entity, and 
compute the optimal setpoints in a centralized manner. However, this approach may 
be suboptimal or even infeasible for an increasing number of applications involving 
so-called interconnected systems. Interconnected systems are here defined as systems 
composed of subsystems that exchange material, energy or information, such as 
compressor networks, teams of autonomous vehicles or large industrial parks, in 
which different business units of a chemical company share certain resources. In these 
cases, distributed RTO methods can be employed, which utilize the available 
interconnection variables and exploit the inherent interconnection structure of the 
particular system. 
 
Only a few distributed RTO methods have been reported in the literature, including 
the methods proposed by Brdys and Tatjewski [6]. Just as in the two-step approaches, 
structurally correct models are assumed. In addition to identifying the model 
parameters, the methods also try to estimate the values of the interconnection 
variables. Consequently, these methods may not yield the plant optimum in the 
presence of structural plant-model mismatch. 
 
In this contribution, we propose a set of distributed RTO methods based on the 
modifier-adaptation framework for interconnected systems in the presence of 
structural plant-model mismatch. Thanks to the modifier-adaptation framework, all 



proposed distributed RTO methods are able to reach the plant optimum upon 
convergence despite possible plant-model mismatch. The proposed schemes employ 
different types of models, use different measurements, and differ in their algorithmic 
structure and required controller hierarchy, as well as in their communication 
topology, as detailed below. 
 
The first method utilizes a model of the local objective function, a model for the 
dependence of local outputs on the local setpoints and outputs of other subsystems, 
and a model for the interconnection structure of the system. The algorithm resembles 
a double-loop structure: In the simulation-based inner loop, the local MA-problems 
are solved in parallel until the interconnection constraints are satisfied. As soon as the 
inner loop has converged, the computed setpoints are applied to the plant in the outer 
loop. When the plant has reached a new steady state, measurements are taken to 
improve the performance at the next iteration. 
 
The second and third methods do not require a model of the interconnection structure 
of the system. Consequently, a single-loop algorithmic structure is sufficient. At every 
iteration, each subsystem computes local setpoints, which are immediately applied to 
the plant. At the corresponding steady state, plant measurements are taken to improve 
the performance at the next iteration. At this point, the second and third method 
proceed differently: The second method uses local measurements of the 
interconnection variables to each subsystem, whereas the third method additionally 
measures the local outputs. Consequently, the second method still uses a model 
describing the dependency of the local outputs on the local setpoints and local 
interconnection variables, whereas no such relationship is needed for the third 
method. 
 
Because of their different characteristics, each of these algorithms has its specific 
advantages regarding applications. For example, the first method requires each 
subsystem to have a complete model of the full system and its interconnection 
topology. If these models are good, then fast convergence of this scheme with few 
setpoint changes can be expected. In applications, where providing a full model of the 
system to every subsystem is feasible and does not raise any privacy concerns, the 
first scheme may be the method of choice. The second and third schemes, in contrast, 
do not require an interconnection model. Therefore, they may be preferred for 
applications where different subsystems do not want to disclose their models to other 
subsystems. This could be the case when the different subsystems are owned by 
competing companies. Moreover, the lack of an interconnection model may be 
advantageous in certain applications with changing interconnection topologies, such 
as power system networks. Another advantage of the second and third method is their 
reduced local modeling effort if accurate measurements are available. On the other 
hand, these methods may need significantly more iterations to converge than the first 
method if accurate models are available.  
 
In our contribution, we finally apply the proposed distributed modifier-adaptation 
schemes to numerical examples. The main features of each method are illustrated, 
revealing their potential for real-time optimization of interconnected systems with 
structural plant-model mismatch. 
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