
TASTY Reference Manual

Version 0.06
9 April 2016
Martin Odersky
Dmitry Petrashko
Eugene Burmako

1 Preface

This reference manual describes the TASTY serialization format for typed syntax trees representing Scala
programs. A motivation and a short summary of the format is found in the companion document ​A TASTY
Alternative​.

Notation:

We use BNF notation. Terminal symbols start with at least two consecutive upper case letters.
Each terminal is represented as a single byte tag. Non-terminals are mixed case. Prefixes of the
form​ ​lower case letter*_​ are for explanation of semantic content only, they can be dropped without
changing the grammar.

2 Overall Layout and Vocabulary

 File = Header ​majorVersion_​ Nat ​minorVersion_​ Nat UUID

 ​nameTable_​ Length Name* Section*

A Tasty ​file​ consists of a header, a name table and a number of sections.

 Section = NameRef Length Bytes

 Length = Nat ​// length of rest of entry in bytes

Each section consists of:

- A reference to the name of the section.
- A length field indicating the number of bytes that follow.
- The data making up the section contents.

Numbers use a variable length encoding, defined as follows:

 LongInt = Digit* StopDigit ​// big endian 2’s complement, fits in a Long w/o overflow
 Int = LongInt ​// big endian 2’s complement, fits in an Int w/o overflow
 Nat = LongInt ​// non-negative value, fits in an Int without overflow
 Digit = 0 | ... | 127

http://drive.google.com/open?id=1Wp86JKpRxyWTqUU39H40ZdXOlacTNs20aTj7anZLQDw
http://drive.google.com/open?id=1Wp86JKpRxyWTqUU39H40ZdXOlacTNs20aTj7anZLQDw

 StopDigit = 128 | ... | 255 ​// value = digit - 128

That is, numbers are represented using base 128 digits with a stop bit indicating the end of a number.
Numbers can be signed (​Int​) or unsigned (​Nat​).

Some numbers are used for specific purposes. In particular, we distinguish:

 Length = Nat // A number indicating the number of bytes that follow in the current entry.
 NameRef = Nat // A number serving as an index into the name table.
 ASTRef = Nat // A number serving as a byte address which identifies the start of a
 // node in the typed trees section.

3 The Header

 Header = 5CA1AB1F

 UUID = Byte*16

The header consists of three parts:

1. 4 leading bytes with hex codes 5C, A1, AB, 1F.
2. The major and minor version of the file. Files with different major versions are treated as

incompatible. Formats with the same major version are required to be backwards compatible. That
is, a processor for version x.y is required to also understand Tasty files with version x.z for z < y.

3. The UUID. This is a random UUID which identifies a Tasty file uniquely.

4 The Name Table

The nametable defines all names used in a Tasty file. It implicitly gives an index to each defined name
according to its position in the name table. Indices start from 1. Everywhere else, names are represented by
their index in the name table.

A name in a name table is encoded in one of several formats, which are described in the next sections.

4.1 Simple Names

 Name = UTF8 Length UTF8-CodePoint*

A ​UTF8 ​entry encoded a simple name in unicode format. It comprises:
- A length field indicating the number of bytes that follow.
- A sequence of UTF8 codepoints.

Names defined by UTF8 entries are plain strings. Based on the context we can decide whether a name is a
type-name or a term-name. The same string can represent both.

4.2 Qualified Names

 Name = QUALIFIED Length ​qualified_​ NameRef ​selector_​ NameRef

A ​QUALIFIED ​entry represents a qualified name <prefix>.<selector>. It comprises:

- The index of the name <prefix>. This can be another qualified name.
- The index of the name <selector>.

4.3 Expanded Names

 Name = EXPANDED Length ​prefix_​ NameRef ​member_​ NameRef

An ​EXPANDED​ entry represents an expanded name, which makes a member name unique by prefixing it with
an encoding of the member’s location. It comprises the indices of the prefix and the member name.

4.4 Signed Names

 Name = SIGNED Length ​original_​ NameRef ​resultSig_​ NameRef ​paramSig_​ NameRef*

A ​SIGNED ​entry represents a name and a type signature. It comprises:
- The ​original_​ NameRef​ index of the name proper.
- The ​resultSig_​ NameRef​ index of the result type signature. For a normal type T,

the result type signature is the fully qualified name of the class that T erases to. For an array type
T[], it is the “S[]”, where S is the result type signature of T. For a method type MT, it is the result type
signature of MT’s final result type, skipping all type and value parameter sections.

- The ​paramSig_​ NameRef​ indices of the parameter type signatures. For a method type MT, the
parameter type signatures are the result type signatures of all its value parameters, where it does
not matter whether these parameters appear in curried form or in a single parameter section. For all
other types, the list of parameter type signatures is empty.

As an example, a reference to the method​ f ​defined as

 ​def f(x: Int => String, y: =>Long, z: Byte*): Unit

would have an original name ​f​, a result signature ​scala.Unit,​ and parameter signatures
scala.Function1​, ​scala.Function0​, and​ scala.collection.immutable.Seq​.

4.5 Shadowed Names

 ​Name ​ = SHADOWED Length ​original_​ NameRef

A ​SHADOWED ​entry represents the shadowed name of a class member which is shadowed by a ​private
member with the same name in a subclass. It comprises the original name of the class member.

Here is an example motivating this category of names. Say we have:

​class C { def x: Int }
class D extends C { val d: D; private def x: Int }

Then the reference ​d.x​ depends on the position of the observer. If the observer is inside ​D​, it refers to the
private member ​x​ of ​D​. If the observer is outside ​D​, it refers to the public member of ​C​. To obtain absolute
references that do not depend on the position of the observer, we use the reference ​d.“SHADOWED x”​ to
refer to the public member instead of the private one.

4.6 Other Forms of Names

Further names will be defined in the future. In particular, we plan to add:

 ​ Name = OBJECTCLASS Length ​object_​ NameRef

 Name = SUPERACCESSOR Length ​accessed_​ NameRef

 Name = DEFAULTGETTER Length ​method_N​ ameRef ​paramNumber_​ Nat

 Name = MANGLED Length ​mangle_​ NameRef ​name_​ NameRef

5 Standard-Section: Typed Trees

The typed trees section starts with a name reference to the string “ASTs”, and contains a list of top-level
statements, represented by ​TopLevelStat​ productions.

 TopLevelStat = PACKAGE Length Path TopLevelStat*

 Stat

A top-level statement is either a normal statement or a package definition. A package definition comprises

- A path representing the fully qualified name of the package as a ​TERMREF ​node.
- The top-level statements making up the contents of that package in the current file (this means that

packages can be nested).

5.1 Statements

Statements are represented by ​Stat ​productions.

5.1.1 Expression Statements

 Stat = Term

A statement can be an expression.

5.1.2 Value Definitions

 Stat = VALDEF Length NameRef Type ​rhs_​ Term? Modifier*

A ​VALDEF ​entry serializes a value definition ​<mods> val x: T = E​ or a variable definition
<mods> var x: T = E​. It comprises

- The name ​x​ of the defined value.
- The type ​T​ of the defined value.
- The right hand side ​E​, which is omitted for abstract value definitions ​val x: T​.
- The modifiers ​<mods>​ given for the definition. The modifier ​MUTABLE ​indicates a var.

5.1.3 Method Definitions

 Stat = DEFDEF Length NameRef TypeParam* Params* ​return_​ Type ​rhs_​ Term?

 Modifier*

 Params = PARAMS Length Param*

 Param = PARAM Length NameRef Type ​rhs_​ Term? Modifier*

A ​DEFDEF ​entry serializes a method definition ​<mods> def x……(…) : T = E​. It comprises:

- The name of the defined method x.
- The type parameters of the method.
- The value parameter sections of the method.
- The return type T.
- The right hand side E. Omitted for abstract method definitions def x ...: T.
- The modifiers <mods>.

5.1.4 Type Parameters

 TypeParam = TYPEPARAM Length NameRef Type Modifier*

A ​TYPEPARAM ​entry serializes a type parameter ​<mods> T <bounds>​. It comprises

- The name ​T​ of the type parameter.
- The bounds ​<bounds>​ of the type parameter, given as a ​TYPEBOUNDS ​type.
- The modifiers ​<mods>.

5.1.5 Parameter Sections

 Params = PARAMS Length Param*

 Param = PARAM Length NameRef Type ​rhs_​ Term? Modifier*

A ​PARAMS ​entry serializes a parameter section ​(P1, … Pn) ​consisting of a list of parameters. Each
parameter ​<mods> x: T ​is given in a ​PARAM ​entry. It comprises:

- The name ​x ​of the parameter.
- The type ​T​ of the parameter.
- The modifiers ​<mods>​ given for the parameter.
- Possibly a right hand side. The right hand side is given only for a value parameter in a template (see

below). If it is present, it indicates that the parameter is an alias of another parameter in a
superclass that is referenced by the right-hand side. Here is an example:

​class A(val x: Int)
class B(y: Int) extends A(y)

In this case, the parameter ​y ​in class ​B​ is known to be an alias of parameter ​x ​in class ​A​. It can be
represented internally as

​def y: Int = super.x

The serialized information of this parameter is as a ​Param ​with a right hand side of ​super.x​.

5.1.6 Type Definitions

 Stat = TYPEDEF Length NameRef (Type | Template) Modifier*

A ​TYPEDEF ​entry serializes a type definition ​<mods> type T <rhs>​ or a class or trait definition ​<mods>
class T <template>​ or ​<mods> trait T <template>​. It comprises

- The name ​T ​of the defined type.
- If it is a type definition, its right hand-side given as a ​TYPEBOUNDS ​type for an abstract type or

TYPEALIAS ​type for an alias type. Otherwise, for a class or trait, its template.
- The modifiers​ <mods>​ given for the type.

5.1.7 Templates

 Template = TEMPLATE Length TypeParam*​ ​ Param*​ ​ Parent*​ ​ Self?​ ​ Stat*

 Parent = Application

 Type

 Self = SELFDEF ​selfName_​ NameRef ​selfType_​ Type

A template represents the body of a class, trait, or object. It comprises:

- A list of type parameters. For objects, this is always the empty list.
- A list of value parameters. These parameters are not grouped into sections but appear as a single

list. For objects, that list is always empty. Value parameters carry the modifiers given in the class
definition. They can be aliases of superclass parameters as explained ​previously​.

- A list of parents of the template. Parents can be terms (indicating a constructor call) or types
(indicating a parent type without an associated passing of arguments). Term parents are always of
the form ​new T.<init>[targs](args)​, that is, they are selections of a constructor from an
instance creation node NEW, applied to zero or more type- and value arguments.

- An optional ​SELFDEF ​entry representing a self reference, indicating the name and type of the self
reference of the template.

- A sequence of definitions making up the body of the template. The first definition in the sequence is
always the primary constructor of the class.

The ​primary constructor​ of a class ​C​ is a ​DEFDEF ​entry representing a definition of the form

def <init>[tparams](params1)...(paramsN): C

Here:
- The name of the constructor is always ​<init>.
- The type parameters of the constructor are those of the class.
- The value parameters of the constructor are those of the class.
- The result type is the fully parameterized type of the class.

A primary constructor has no right hand side.

5.1.8 Import Clauses

 Stat = IMPORT Length ​qual_​ Term Selector*

 Selector = IMPORTED ​name_​ NameRef

 RENAMED Length ​from_​ NameRef ​to_​ NameRef

A​n ​IMPORT ​entry serializes an import clause ​import E <selectors>​. It comprises

- A qualifier term ​E​ from which is imported.
- A list of selectors. A selector is either ​simple​ or ​renaming​ .

Import entries are redundant for the interpretation and code generation of Tasty trees because all import
references have been resolved before. They are retained for the benefit of source-level frameworks such as
scala.meta.

A ​IMPORTED ​entry serializes a simple selector consisting of the name of the imported entity. Wildcard
imports are represented by the name “​_​”.

A ​RENAMED ​entry serializes a renaming selector ​x => y​. Again, wildcards are represented by “​_​”.

5.2 Constants

A ​Constant ​refers to a literal value. It is of one of the following forms.

 Constant = UNITconst

 FALSEconst

 TRUEconst

 BYTEconst Int

 SHORTconst Int

 CHARconst Nat

 INTconst Int

 LONGconst LongInt

 FLOATconst Int

 DOUBLEconst LongInt

 STRINGconst NameRef

 NULLconst

 CLASSconst Type

 ENUMconst Path

Notes:
- UNITconst​ represents the value ()
- The value represented by a ​FLOATconst​ is stored as a signed Int. The floating point value

can be recovered from it by a ​java.lang.Float.intBitsToFloat​ conversion.
- The value represented by a ​DOUBLEconst ​is stored as a signed long Int. The floating point

value can be recovered from it by a ​java.lang.Double.longBitsToFloat​ conversion.
- The value represented by a ​CLASSconst ​is a class literal which is referenced by a ​TYPEREF

type.
- The value represented by an ​ENUMconst ​is an enumeration value referenced by a ​TERMREF

type.

5.3 Paths

A ​Path ​refers to a single value; it can be used as a term and as a type.

5.3.1 Constant Paths

 Path = Constant

A path can refer to a constant value.

5.3.2 Term references

 Path = TERMREFdirect ​sym_​ ASTRef

 TERMREFsymbol s​ym_​ ASTRef ​qual_​ Type

 TERMREFpkg ​fullyQualified_​ NameRef

 TERMREF ​possiblySigned_​ NameRef ​qual_​ Type

There are four kinds of references to terms: By-name (​TERMREF)​, symbolic (​TERMREFsymbol)​, direct
(​TERMREFdirect)​, and package (​TERMREFpkg)​.

A ​TERMREF ​reference indicates a member of a qualifier type with a given name. A ​SIGNED ​name is used to
identify one of several possible overloaded alternatives uniquely.

A ​TERMREFsymbol ​reference indicates a member of a qualifier type with a given symbol. The symbol is
represented by an ​ASTRef ​pointing to the start address of the definition entry that defines the symbol. A
TERMREFsymbol​ entry should not be used as a way to refer to definitions in other compilation units because
such definitions can change upon recompilation.

A ​TERMREFdirect ​reference indicates a value represented directly by a local definition which is not a
member of any object.

A ​TERMREFpkg ​reference indicates a package with the given fully qualified name.

5.3.3 this References

 Path = THIS ​clsRef_​ Type

A ​THIS ​entry serializes a reference ​C.this​. It comprises a type reference indicating the class ​C​.

5.3.4 Skolem Types

 ​Path = SKOLEMtype ​refinedType_​ ASTRef

A ​SKOLEMtype ​entry serializes a this reference inside a refined type. It comprises the reference to the
enclosing refined type indicated by the this.

5.3.5 Shared Paths

 ​Path = SHARED ​path_​ ASTRef

A ​SHARED ​entry serializes a path by referring to a previously generated entry of the same path. ​SHARED ​can
also be used to alias a type or term.

5.4 Types

 Type = Path
 ...

A ​Type ​summarizes statically known information about a term or definition. ​Path ​is a subclass of ​Type.
Other forms of ​Type ​are listed below.

5.4.1 Type References

 Type = TYPEREFdirect ​sym_​ ASTRef

 TYPEREFsymbol ​sym_​ ASTRef ​qual_​ Type

 TYPEREFpkg ​fullyQualified​ _NameRef

 TYPEREF ​possiblySigned_​ NameRef ​qual_​ Type

As is the case for term references, there are four kinds of references to types: By-name (​TYPEREF)​,
symbolic (​TYPEREFsymbol)​, direct (​TYPEREFdirect)​, and package (​TYPEREFpkg)​.

A ​TYPEREF ​reference indicates a type member of a qualifier type with a given name. That name is never a
SIGNED ​name.

A ​TYPEREFsymbol ​reference indicates a member of a qualifier type with a given symbol. The symbol is
represented by an ​ASTRef ​pointing to the start address of the definition entry that defines the symbol. A
TYPEREFsymbol ​entry should not be used as a way to refer to definitions in other compilation units
because such definitions can change upon recompilation.

A ​TYPEREFdirect ​reference indicates a value represented directly by a local definition which is not a
member of any object.

A ​TYPEREFpkg ​reference indicates the companion class of a package with the given fully qualified name.

5.4.2 Super Types

 ​ Type = SUPERtype Length ​this_​ Type ​underlying_​ Type

A ​SUPERtype ​entry serializes a super reference ​C.super​ or​ C.super[M]​ that is used as part of a type. It
comprises:

- the serialization of ​C.this.​,
- the underlying type of the super reference. If a mixin qualifier ​M​ is given, the underlying type is the

trait referred to by ​M​. Otherwise the underlying type is the intersection of all parent types of the
class ​C​.

5.4.3 Refined types

 Type = REFINEDtype Length ​underlying_​ Type ​refinement_​ NameRef ​info_​ Type

A ​REFINEDtype ​entry serializes a refined type​ T { val x: U }​, ​T {def x…: T }​, ​or T { type x >: L <: U }​. It
comprises:

- The parent type ​T​.
- The name ​x​ of a member of type​ T
- A refinement type ​U​ which provides specific type information for x. If ​U​ is a ​TYPEBOUNDS​ or

TYPEALIAS​ type, ​x​ is taken as a type name, and ​U ​provides a bound constraint or alias for ​x​. If ​U
is some other type, ​x​ is taken as a term name, and ​U​ represents the refined type for ​x​.

5.4.4 Applied types

 ​Type = APPLIEDtype Length ​tycon_​ Type ​arg_​ Type*

An ​APPLIEDtype ​entry serializes an applied type ​T[U1, …, Un]​. It comprises
- The type constructor ​T.
- The type arguments ​U1​, …, ​Un​.

A wildcard argument ​_ >: S <: U​ is represented with a ​TYPEBOUNDS ​entry that indicates the bounds ​S​, ​U​.
Applied types can be seen as short forms of refinement types, where the type constructor is the parent type,
each concrete type argument ​U​ leads to a refinement ​{ t = U }​ of the corresponding type parameter ​t​ and
each wildcard argument ​_ >: S <: U​ leads to a refinement ​{ t >: S <: U }​.

5.4.5 Type Bounds

 Type = TYPEBOUNDS Length ​low_​ Type ​high_​ Type

A ​TYPEBOUNDS ​entry serializes the bounds ​>: S <: U​ of a type parameter, type definition, or wildcard
argument. It comprises:

- The lower bound ​S​. If none is given in the original source expression, ​scala.Nothing​ is used for
the serialization.

- The upper bound ​U​. If none is given in the original source expression, ​scala.Any​ is used for the
serialization.

5.4.6 Type Aliases

 ​ ​Type = TYPEALIAS Length ​alias_​ Type (COVARIANT | CONTRAVARIANT)?

A ​TYPEALIAS ​entry serializes an alias ​= U​. It comprises:

- the type ​U​.
- optionally, a flag ​COVARIANT ​indicating that the alias binds a covariant parameter, or a flag

CONTRAVARIANT ​indicating that the alias binds a contravariant parameter.

5.4.7 Annotated Types

 ​ ​Type = ANNOTATED Length ​underlying_​ Type ​fullAnnotation_​ Term

An ​ANNOTATED ​entry serializes an annotated type ​T @annot​. It comprises:

- The annotated type ​T​.
- An instance creation expression that when executed creates a new instance of the given annotation

@annot​.

5.4.8 And and Or Types

 ​ Type = ANDtype Length ​left_​ Type ​right_​ Type

 ORtype Length ​left_​ Type ​right_​ Type

An ​ANDtype ​entry serializes an intersection type ​T & U​. A ​ORtype ​entry serializes a union type ​T | U.
Either entry comprises the operand types ​T​ and ​U​.

5.4.9 Type Bindings

 ​ ​Type = BIND Length ​boundName_​ NameRef ​bounds_​ Type

When used as a type, a ​BIND ​entry serializes a type variable ​t​ which is defined in a type pattern. It
comprises

- The name ​t​ of the type variable.
- The inferred type of ​t​. This is always a ​TYPEBOUNDS ​or ​TYPEALIAS ​entry.

5.4.10 By-name Types

 ​ ​ ​Type = BYNAMEtype Length ​underlying_​ Type

A ​BYNAMEtype ​entry serializes the ​type => T​ of a call-by-name parameter. It comprises the argument type
T​.

5.4.11 Method Types

 Type = POLYtype Length ​result_​ Type NamesTypes

 METHODtype Length ​result_​ Type NamesTypes

 NamesTypes = ParamType*

 NameType = ​paramName​ _NameRef ​typeOrBounds​ _ASTRef

METHODtype ​and ​POLYtype ​entries are used as types of refinements. A ​METHODtype ​represents the type of
a method ​(P1,...,Pn)R​. It comprises:

- The method result type ​R​ (which can be another method type).
- The names and types of the parameters ​P1,...,Pn,​ represented as a list of interleaved names and

types.
A ​POLYtype ​represents the type of a polymorphic method ​[TP1,...,TPn]R​. It comprises:

- The result type ​R​ (which can be a method type).
- The names and bounds of the type parameters ​TP1,...,TPn​, represented as a list of interleaved

names and ​TYPEBOUNDS​ entries.

5.4.12 Parameter types

 ​ ​ ​Type = PARAMtype Length ​binde​ r_ASTref ​paramNum​ _Nat

A ​PARAMtype ​entry refers to a type or value parameter of an enclosing method type. It comprises:

- A reference to the type which binds the referenced parameter. This type is always serialized as a
POLYtype ​or a ​METHODtype.

- A natural number indicating the index of the referenced parameter in the list of defined parameters
of the binding type. Indices start at 0.

5.4.13 Shared Types

 Type = SHARED ​path_​ ASTRef

A ​SHARED ​entry serializes a type by referring to a previously generated entry representing the same type.

5.5 Terms

 Term = Path

 Application

 ...

A ​Term ​represents an expression or pattern. A ​Path ​is special form of a ​Term.​ Another subclass of ​Term ​is
Application.​ The possible forms of terms and applications are given in the following subsections.

5.5.1 Identifiers

 ​Term = IDENT NameRef Type

An ​IDENT ​node serializes an identifier ​x​. It comprises the name ​x ​and the identifier’s type. ​IDENT ​nodes
are usually omitted if an identifier ​x​ refers to a definition and the type of the identifier is the declared type of
the definition. In that case, a ​Term reference​ can be used instead.

5.5.2 Selections

 Term = SELECT ​possiblySigned_​ NameRef ​qual_​ Term

A ​SELECT ​node serializes a selection ​E.x​. It comprises the selector name ​x​ and the qualifier term ​E​. A
SIGNED ​name is used to identify one of several possible overloaded alternatives uniquely.

5.5.3 Applications

 Application = APPLY Length ​fn_Term arg_​ Term*

An ​APPLY ​entry serializes an application ​F(E1, …, En)​. It comprises:
- A function expression ​F​.
- Argument expressions ​E1, …, En​.

Functions in TASTY are always fully applied, and the order of arguments matches the order of formal
parameters.

5.5.4 Type Applications

 ​Application = TYPEAPPLY Length ​fn_​ Term ​arg_​ Type*

A ​TYPEAPPLY ​entry serializes a type application ​F[T1, …, Tn]​. It comprises:
- A function expression ​F​.
- Argument types ​T1, …, Tn​.

5.5.5 Instance Creation Expressions

 Term = NEW ​cls_​ Type

A ​NEW ​node serializes an instance creation new ​T​. It comprises the type of the node that’s created. The
node is always part of a constructor invocation; that is it is enclosed in a ​SELECT ​node, which in turn forms
part of an ​Application.

5.5.6 Super References

 Term = SUPER Length ​this​ _Term ​mixinTrait​ _Type?

A ​SUPER ​node serializes a super reference ​C.super[M]​ where ​C​ may be implied and ​[M] m​ay be missing. It
comprises

- the serialization of ​C.this​, and, optionally,
- a type referring to the class referenced by the mixin qualifier ​M​.

5.5.7 Pairs

 Term = PAIR Length ​left_​ Term ​right_​ Term

A ​PAIR ​entry serializes an unboxed pair ​(E1, E2)​, either as a term or as a pattern. It comprises the two
halfs of the pair ​E1 a​nd ​E2​. (Unboxed pairs are not yet implemented.)

5.5.8 Type Ascriptions

 Term = TYPED Length ​expr_​ Term ​ascription_​ Type

A TYPED entry serializes a type ascription E: T. It comprises:
- The expression E.
- The ascribed type T.

5.5.9 Named Arguments

 Term = NAMEDARG Length ​paramName_​ NameRef ​arg_​ Term

A NAMEDARG entry serializes a named function argument x = E. It comprises

- The parameter name x.
- The argument expression E.

Named arguments are redundant for the interpretation and code generation of Tasty trees because all
arguments are always given in same sequence as the formal parameters they correspond to. They are
retained for the benefit of source-level frameworks such as scala.meta.

5.5.10 Assignments

 Term = ASSIGN Length ​lhs_​ Term ​rhs_​ Term

An ASSIGN entry serializes an assignment E1 = E2. It comprises:
- The left-hand side term E1.
- The right-hand side expression E2.

5.5.11 Blocks

 Term = BLOCK Length ​expr_​ Term Stat*

A BLOCK entry serializes a block { S1; … Sn; E }. It comprises:
- The list of statements S1, …, Sn.
- The result expression E.

5.5.12 Lambdas

5.5.13 Term = LAMBDA Length meth_Term target_Type?

5.5.14 A LAMBDA entry serializes a function literal. It comprises:

- 5.5.15 A reference to the method implementing the closure.
- 5.5.16 Optionally, a target type, which must be a SAM (single abstract method) type. If a target type

it is given, it is the type of the closure. Otherwise, the type of the closure is the function type
corresponding to the implementation method.

5.5.17 Conditional Expressions

 Term = IF Length ​cond_​ Term ​then_​ Term ​else_​ Term

An IF entry serializes a conditional expression if (E1) E2 else E3. It comprises:
- The condition E1.
- The “then” part E2.
- The “else” part E3. Single side ifs if (E1) E2 have the unit literal () as an implied else part.

5.5.18 Match Expressions

 Term = MATCH Length ​sel_​ Term CaseDef*

 CaseDef = CASEDEF Length ​pat_​ Tree ​rhs_​ Term ​guard_​ Term?

A MATCH entry serializes a match expression sel match { case1 … casen }. value. It comprises:
- A selector expression sel.
- A list of cases.

Each case case pat => rhs or pat if guard => rhs is serialized by a CASEDEF entry, which comprises:
- The pattern pat.
- The right-hand side expression rhs.
- Optionally, a guard expression guard.

5.5.19 Try Expressions

 Term = TRY Length ​expr_​ Term CaseDef* ​finalizer_​ Term?

A TRY entry serializes a try expression try E1 catch { cases } finally E2 where the catch or finally parts may
be missing. It comprises:

- The body of the try expression.
- The list of cases in the catch part of the try expression.
- Optionally, a finalizer expression.

5.5.20 Return Expressions

5.5.21 Term = RETURN Length meth_ASTRef expr_Term?

5.5.22 A RETURN entry serializes a return expression return or return E. It comprises:
- 5.5.23 A reference to the method from which is terminated by the return
- 5.5.24 Optionally a return expression E. If none is given, the unit value () is assumed.

5.5.25 Repeated Arguments

 Term = REPEATED Length ​elem_​ Type ​elem_​ Term*

A REPEATED entry represents a list of arguments that is passed to a repeated formal parameter of type T*.
It comprises:

- The assumed type of the elements of the list (this is relevant if the list is empty)

- The list of arguments passed.

5.5.26 Variable Binding Patterns

 Term = BIND Length ​boundName_​ NameRef ​patType_​ Type ​pat_​ Term

A BIND entry in term position serializes a variable binding x @ P. It comprises:

- The name x of the defined variable.
- The inferred type of x.
- The pattern P to which x is bound.

5.5.27 Pattern Alternatives

 Term = ALTERNATIVE Length ​alt_​ Term*

An ALTERNATIVE entry serializes an pattern alternative P1 | … | Pn. It comprises the alternative patterns
P1, …, Pn.

5.5.28 Unapply Patterns

 Term = UNAPPLY Length ​fun_​ Term UnapplyArg* ​pat_​ Type ​pat_​ Term*

 UnapplyArg = UNAPPYarg ​arg_​ Term

An UNAPPLY pattern serializes an extractor call to an unapply or unapplySeq method. The most general
form of such a call is

 prefix.unapp[T1, …, Tm](_)(E1, …, Em),

where

- prefix is a reference to an extractor
- unapp is an unapply or unapplySeq method,
- T1, …, Tm are type arguments,
- the wildcard “_” is a placeholder for the selector against which the pattern is matched, and
- E1, …, En are additional arguments to the call (in Scala syntax, such arguments are necessarily

arguments to implicit parameters).
The entry comprises:

- The unapply call prefix.unapp[T1, …, Tm]. This is always a selection to a unapply or unapplySeq
method, possibly applied to type arguments.

- Any additional arguments E1, …, En represented as UNAPPLYarg entries.
- The inferred type of the pattern.
- The list of patterns matched by the unapply.

5.5.29 Shared Terms

 Term = SHARED ​term_​ ASTRef

A ​SHARED ​entry serializes a term by referring to a previously generated entry representing the same term.

5.6 Annotations

 Annotation = ANNOTATION Length ​tycon_​ Symbol ​fullAnnotation_​ Term

An ​ANNOTATION​ entry serializes an annotation of some definition. It comprises:

- A reference to the definition of the annotation class.
- An instance creation expression that when executed creates a new instance of the given annotation.

The reason for having both the class and the full annotation expression as parts of the entry is that full
annotations are read lazily, but the annotation class has to be available before the rest of the annotation is
read in order to avoid cycles.

5.7 Modifiers

 Modifier = Annotation

 …

A modifier gives some additional information of a definition. Annotations are a subclass of modifiers. Other
modifiers have fixed entry tags, which are explained below.

Tag Explanation

PRIVATE The ​private​ modifier is given for the definition

INTERNAL The ​internal​ modifier is given for the definition. This is currently reserved
for future usage.

PROTECTED The ​protected​ modifier is given for the definition.

ABSTRACT The ​abstract ​modifier is given for the class definition. Note that ​ABSTRACT​ is

only used for classes, never for fields, methods, or traits.

FINAL The ​final ​modifier is given for the definition.

SEALED The ​sealed ​modifier is given for the class definition.

CASE The ​case ​modifier is given for the class definition, or the definition is a ​ValDef

representing a ​case ​object.

IMPLICIT The ​implicit​ modifier is given for the definition.

LAZY The ​lazy ​modifier is given for the definition.

OVERRIDE The ​override​ modifier is given for the definition.

INLINE ​The ​inline​ modifier is given for the definition.

STATIC The definition should be implemented as a static member in Java.

OBJECT The definition is a ​ValDef ​representing an ​object ​or a ​ClassDef ​representing
the​ ​class of an ​object​.

TRAIT The definition is a ​TypeDef ​representing a trait.

LOCAL Always used in conjunction with ​PRIVATE ​or ​PROTECTED.​ If set, the definition has a

qualified ​private[this]​ or ​protected[this] ​modifier.

SYNTHETIC The definition is generated by the Scala compiler, it has no counterpart in the

original source.

ARTIFACT The definition should be tagged as ACC_SYNTHETIC when implemented in Java.

MUTABLE The definition is a ValDef representing a mutable var.

LABEL ​The definition is a DefDef representing a label method. Label methods are used

internally by the compiler to express control flow.

FIELDaccessor ​The definition is a compiler-generated getter or setter for a field.

CASEaccessor The definition is a getter for a parameter in the first parameter list of a case class.

COVARIANT The definition is a covariant type parameter or abstract type (marked “+”)

CONTRAVARIANT The definition is a contravariant type parameter or abstract type (marked “-”)

SCALA2X The definition was produced by a 2.xy compatible Scala compiler.

DEFAULTparameterized ​The definition is a method that has some default parameters. The

default values for any default parameters are given by separate methods with
DEFAULTGETTER names.

INSUPERCALL ​The definition is located in the argument of a constructor supercall

STABLE The definition is a stable method

The following two modifiers each take a qualifier type. It is foreseen that they will be removed and replaced
with ​internal.

PRIVATEqualified ​qualifier_​ Type
PROTECTEDqualified ​qualifier_​ Type

The modifiers are given for definitions marked private[Q] or protected[Q] for a qualifier Q. The entry
comprises the type of Q (which in the case where Q is a package or object is the associated class).

5.8 Encoding of Tree Tags

Tree tags are grouped into 5 categories that determine what follows, and thus allow to compute the size of
the tagged tree in a generic way.

Category 1 (tags 0-63): ​tag
Category 2 (tags 64-95): ​tag Nat
Category 3 (tags 96-111): ​tag AST

 Category 4 (tags 112-127): ​tag Nat AST
Category 5 (tags 128-255): ​tag Length <payload>

Here ​tag ​represents a one-byte entry, ​Nat ​represents a natural number, and ​AST ​represents a serialized
tree.

6 Standard Section: Positions

PositionsSection = filesize_Nat Assoc*

The positions section starts with a name reference to the string “Positions”. It contains
- the total length of the source file as a natural number, and
- a list of associations ​Assoc,​ which are defined as follows:

 Assoc = ​addr_​ Delta ​offset1_​ Delta ​offset2_​ Delta?

 Delta = Int

An association encodes the position of a tree node relative to its parent node. Positions are ranges
consisting of a start offset and an end offset. An association consists of 2 or 3 numbers (“deltas”), which are
encoded as variable length signed integers.

The first number, ​addr_​ Delta​, records the difference of byte address of the node referenced by the current
association relative to the node addressed by the immediately preceding association. ​addr_​ Delta
is always a non-negative number and can be 0 only for the first recorded association.

The third number, ​offset2_​ Delta​, if it is given, records the difference of the end offset of the referenced node
relative to the end offset of its parent node.

The second number, ​offset1_​ Delta​, has one of two possible meanings, depending on its sign and whether
offset2_​ Delta ​exists.

- If ​offset2_​ Delta​ exists or the number is >= 0, it records the difference of the start offset of the
referenced node relative to the start offset of its parent node.

- Otherwise, if ​offset2_​ Delta​ does not exist and the number is < 0, it records the difference of the end
offset of the referenced node relative to the end offset of its parent node.

The format is unambiguous as long as the delta of the end offset of a node relative to its parent node is
always negative or 0. This property needs to be assured by the serializer. Where positions do not fit this
scheme, (i.e. a node’s position ends later than the position of its parent node), one of the two end positions
has to be adapted before serializing.

