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Abstract
Approximation algorithms are a commonly used tool for designing efficient algorithmic solu-

tions for intractable problems, at the expense of the quality of the output solution. A prominent

technique for designing such algorithms is the use of Linear Programming (LP) relaxations. An

optimal solution to such a relaxation provides a bound on the objective value of the optimal

integral solution, to which we compare the integral solution we return.

In this context, when studying a specific problem, two natural questions often arise: What is a

strong LP relaxation for this problem, and how can we exploit it? Over the course of the past

few decades, a significant amount of effort has been expended by the research community in

order to answer these questions for a variety of interesting intractable problems. Although

there exist multiple problems for which we have designed LP relaxations that achieve best-

possible guarantees, there still exist numerous problems for which we either have no strong

LP relaxations, or do not know how to use them. The main focus of this thesis is extending our

understanding of such strong relaxations.

We focus on designing good approximation algorithms for certain allocation problems, by

employing a class of strong LP relaxations, called configuration-LPs. For many such allocation

problems, the best-known results are derived by using simple and natural LP relaxations,

whereas configuration-LPs have been used successfully on several occasions in order to break

pre-existing barriers set by weaker relaxations. However, our understanding of configuration-

LPs is far from complete for many problems. Therefore, understanding and using these

relaxations to the farthest extent possible is a quite intriguing question. Answering this

question could result in improved approximation algorithms for a wide variety of allocation

problems.

The first problem we address in this thesis is the restricted max-min fair allocation problem.

Prior to our work, the best known result [19] provided an Ω(1)-approximation that ran in

polynomial time. Also, it was known [2] how to estimate the value of an optimal solution to the

problem within a factor of 1
4+ε , for any ε> 0, by solving the corresponding configuration-LP.

Our first contribution in this thesis is the design of a 1/13-approximation algorithm for the

problem, using the configuration-LP. Specifically, although our algorithm is fully combina-

torial, it consists of a local-search procedure that is guaranteed to succeed only when the

configuration-LP is feasible. In order to establish the correctness and running time of the

algorithm, it is crucial to use the configuration-LP in our analysis.

The second problem we study is the scheduling of jobs on unrelated machines in order to

minimize the sum of weighted completion times. For this problem, the best known approxi-
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mation algorithm [5] achieves a ratio of 3/2−ε, for some small ε> 0. Our second contribution

in this thesis is the improvement of this ratio to 1+�2
2 +ε, for any ε > 0, for the special case

of the problem where the jobs have uniform Smith ratios. To achieve this ratio, we design a

randomized rounding algorithm that rounds solutions to the corresponding configuration-LP.

Through a careful examination of the distribution this randomized algorithm outputs, we

identify the one that maximizes the approximation ratio, and we then upper bound the ratio

this worst-case distribution exhibits by 1+�2
2 +ε. Finally, we remark that our analysis of the

rounding algorithm is tight.

Key words: Approximation Algorithms, Linear Programming, NP-hard problems, Allocation

Problems
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Résumé
Les algorithmes d’approximation sont des instruments souvent utilisés pour concevoir des

solutions algorithmiques efficaces à des problèmes intraitables, au détriment de la qualité

de la solution produite. L’utilisation des relaxations de Programmation Linéaire (LP) est une

technique importante pour concevoir de tels algorithmes. Une solution optimale à une telle

relaxation nous donne une limite inférieure de la valeur objective d’une solution intégrale

optimale, limite à laquelle nous comparons la solution intégrale trouvée.

Quand on étudie un problème spécifique, on fait face à deux questions : (1) Quelle est la

relaxation LP la plus puissante pour ce problème ? et, (2) comment mieux l’utiliser ? Durant les

dernières décennies, la communauté de recherche a déployé beaucoup d’efforts pour résoudre

plusieurs problèmes intraitables intéressants. Bien qu’il y ait beaucoup de problèmes pour

lesquels on a conçu des relaxations LP qui fournissent des algorithmes avec les meilleures

garanties possibles, il y a de nombreux problèmes pour lesquels on n’a pas de relaxations

LP assez puissantes, ou on a de telles relaxations, mais on ne sait pas comment les utiliser

au mieux. L’objectif principal de cette thèse est de mieux comprendre de telles relaxations

puissantes.

Nous nous concentrons sur la conception d’algorithmes d’approximation efficaces pour

des problèmes d’allocation, en utilisant une classe de puissantes relaxations LP, nommées

configuration-LPs. Pour beaucoup de problèmes d’allocation, les algorithmes les plus puis-

sants sont conçus en utilisant des relaxations LP simples et naturelles, alors que des configuration-

LPs ont été utilisées à beaucoup d’occasions pour dépasser les limites fixées par des relaxations

LP moins fortes. Cependant, notre compréhension des configuration-LPs est loin d’être par-

faite pour de nombreux problèmes. Par conséquent, comprendre parfaitement et utiliser

ces relaxations reste une question importante. Répondre à cette question nous permettra

peut-être de concevoir des algorithmes d’approximation plus efficaces pour beaucoup de

problèmes d’allocation.

Le premier problème considéré dans cette thèse est le problème de restricted max-min fair

allocation. Avant notre travail, le meilleur algorithme connu [19] avait une garantie d’approxi-

mation de Ω(1). De plus, on savait [2] comment estimer la valeur d’une solution optimale avec

une garantie de 1
4+ε , pour toute ε> 0, en utilisant la configuration-LP. La première contribu-

tion de cette thèse est la conception d’un algorithme d’approximation qui s’exécute en temps

polynomial, et qui a une garantie d’approximation de 1/13. Bien que notre algorithme soit

combinatoire, il consiste en une procédure local-search qui s’exécute avec succès quand la

configuration-LP a des solutions faisables. Pour prouver que l’algorithme fonctionne correcte-
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ment et s’exécute en temps polynomial, l’utilisation de la configuration-LP dans notre analyse

est très importante.

Le second problème considéré est le problème de job-scheduling on unrelated machines dont

l’objectif est de minimiser la somme pondérée des temps d’achèvement. Pour ce problème,

le meilleur algorithme connu [5] a une garantie d’approximation de 3/2−ε, pour un petit ε.

La seconde contribution de cette thèse est la conception d’un algorithme avec une garantie

d’approximation de 1+�2
2 +ε, pour toute ε> 0, dans le cas de travaux ayant des Smith-ratios

uniformes. Pour atteindre cette garantie d’approximation, nous concevons un algorithme

randomisé qui arrondit des solutions de la configuration-LP. Pour analyser cet algorithme,

nous examinons toutes les distributions des travaux que l’algorithme peut produire, et nous

trouvons la distribution la moins efficace. Puis, nous calculons une limite supérieure de la

garantie d’approximation de cette distribution, qui est 1+�2
2 +ε.

Mots clefs : Algorithmes d’Approximation, Programmation Linéaire, Problèmes NP-hard,

Problèmes d’Allocation
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1 Introduction

Determining what tasks we can perform by using machines has always been a driving question

for computer science. Recent technological advances have enabled us to perform compu-

tations at a huge, ever increasing, scale. Computing machines are becoming stronger and

better interconnected every day, enabling us to carry out complex and cumbersome tasks,

that we would not have dared to dream of even a few decades ago. The nature, however, of

the computations we can perform, as well as the level of efficiency in doing so, has been

a question on its own. In fact, it was a question even before the design of the first digital

electronic computers, that have changed almost every aspect of our lives and the levels at

which this question is valid are multiple. Answering some of these questions, by providing

algorithmic solutions for specific problems, is the main focus of this thesis.

On the most fundamental (and perhaps philosophical) level, computer scientists have been

reassured by the universally accepted Church-Turing Thesis [46]. This is an informal proposi-

tion that states that every function, which can be computed by a human who is supplied with

infinite resources and a clear set of instructions, can also be computed by a Turing Machine, a

formal expression of the algorithmic concept. This proposition is oblivious, however, to the

resources we need in order to compute a specific function or to solve a specific problem. Hu-

mans will always have a limited supply of time; computers will always have a limited supply of

memory and power; computer networks will always have a limited bandwidth; and, in general,

the tasks we can perform on a computer will always be limited by our available resources.

Understanding some of the limitations on the problems that can be solved algorithmically is

one of our goals in this thesis.

The fact that computational resources are limited brings the problem of designing efficient

algorithms under the spotlight. The most common measure of efficiency of an algorithm,

and in fact the one around which this thesis will revolve, is time. However, what constitutes a

time-efficient algorithm varies according to context. Depending on the efficiency perspective,

such algorithms were designed to have, on average, good running times on all possible inputs,

or to perform well on input instances that often appear in practice.

1



Chapter 1. Introduction

Our approach is to design algorithms that exhibit good worst-case behaviour, i.e., algorithms

that provably terminate after a certain (preferably small) amount of time, depending on the

input size. One of the most important steps in the process of designing such an algorithm is

understanding the combinatorial structure of the underlying problem. This understanding

facilitates both the actual design of the algorithm and its analysis. Taking into account time

restrictions, the class of problems that we can efficiently solve on a computer, with provable

guarantees, is vastly restricted. In fact, one of the most popular perspectives on what problems

we can efficiently solve is given by the Cobham-Edmonds thesis [13, 16]: the class of efficiently

solvable problems is given by the class of problems belonging to P.

Fortunately, the class of problems, for which we have exact polynomial-time algorithms, is

large and contains quite a few very relevant problems in practice. Some of these problems we

understand in great depth, to an extent that we have designed theoretically optimal algorithms

that also perform well in practical settings. However, these do not represent all the problems

we would like to solve. Quite often, we encounter problems that we know we will never be

able to solve in polynomial time, or problems that we do not know whether we can solve in

polynomial time. Representatives of the latter are the problems we call NP-complete, which is

arguably the most natural (and interesting) superset of P for which we do not know whether it

admits efficient algorithms.

As NP-hard optimization problems often arise in practice, we are compelled to address them

and to design good algorithms for them. In the absence of a conclusive positive answer to the

P=NP question, we are forced to make certain compromises when designing such algorithms.

In general, there are three desiderata when designing algorithms for NP-hard optimization

problems:

a. Optimality: the designed algorithm outputs an optimal solution.

b. Universality: the designed algorithm performs correctly on all possible inputs.

c. Efficiency: the designed algorithm provably terminates in polynomial time.

Designing an algorithm that satisfies all of the above for an NP-hard optimization problem

would be equivalent to proving P=NP. Therefore, there are three general trends in designing

algorithms for such problems: these trends depend precisely on which condition we choose to

relax. The scope of this thesis is restricted to designing algorithms for which we have relaxed

the optimality criterion. Instead of outputting an optimal solution, such algorithms run in

polynomial time at the expense of outputting a suboptimal solution. Typically, the objective

value is provably within a multiplicative factor away from the optimal one; such algorithms

are called approximation algorithms.

2



1.1. Approximation Algorithms

1.1 Approximation Algorithms

In the course of designing an approximation algorithm for an NP-hard optimization problem,

we focus on two points: designing an algorithm that terminates in polynomial time, and

providing a formal proof that this algorithm always outputs a solution whose value is within

some factor of the optimum; this factor will be the approximation factor of the algorithm:

Definition 1.1.1. Let I be the set of input instances of an optimization problem Π, and let ΠI

be the optimal value of I ∈ I . Given an algorithm A , let AI be the value of the solution A

outputs on input I ∈I . If Π is a maximization problem, the approximation factor ρA of A is

ρA = inf
I∈I

AI

ΠI
,

whereas if Π is a minimization problem, the approximation factor ρA of A is

ρA = sup
I∈I

AI

ΠI
.

The above definition compares the value of an optimal solution to the one the approximation

algorithm outputs; notice that the approximation ratio is larger than 1 for minimization

problems, and smaller than 1 for maximization problems. As computing the optimal value of

every possible instance that could be the input to our algorithm is hard, one technique that is

commonly used in order to analyze the approximation ratio of a given algorithm is to compute

a weaker, but easier to find, bound on the optimal value. Given this bound, we then compare

it to the output value in order to estimate the approximation ratio of our given algorithm. It

is quite often the case that the choice of this bound is dictated by the original design of our

approximation algorithm. Consider the following example:

Example. Consider the maximum knapsack problem: Given a knapsack of size W and a set

of n items, where item i has value vi and weight wi ≤W , find a subset S of items such that∑
i∈S

wi ≤W and such that
∑

i∈S
vi is maximized.

Let ri = vi /wi , for any item i . Now consider the following algorithm: Sort the items in non-

increasing order of ri , and let k = argmaxi
∑
j≤i

w j ≤W . Out of the two sets {1, ...,k} and {k +1},

output the one with highest total value.

Let us now prove that the above algorithm achieves an approximation ratio of 1/2. Clearly, the

output set has value at least
∑

i≤k+1
vi /2. Now, it suffices to prove that

∑
i≤k+1

vi ≥ ∑
i∈S∗

vi , where

S∗ is an optimal solution to our instance. To see this, first observe the two following facts:

• rk+1 ≥ ri , for any i ∈ S∗ \ {1, ...,k +1}, since the items are sorted in non-increasing order

of ri .
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•
∑

i∈{1,...,k+1}\S∗
wi ≥ ∑

i∈S∗\{1,...,k+1}
wi , since

∑
i∈{1,...,k+1}

wi ≥W ≥ ∑
i∈S∗

wi .

These two facts combined imply that

∑
i∈S∗\{1,...,k+1}

ri wi ≤
∑

i∈S∗\{1,...,k+1}
rk+1wi ≤

∑
i∈{1,...,k+1}\S∗

rk+1wi ≤
∑

i∈{1,...,k+1}\S∗
ri wi

which directly implies that
∑

i≤k+1
vi ≥ ∑

i∈S∗
vi .

So, in the above example we used
∑

i≤k+1
vi as a bound on the instance’s optimal value. In gen-

eral, the better such bound we use when we design and analyze an approximation algorithm,

the better the algorithm’s approximation ratio will be. Often, we are able to come up with

good combinatorial bounds (such as the above), that give rise to combinatorial approximation

algorithms. In contrast, there exists a whole family of approximation algorithms that rely on

bounds that derived from linear programming relaxations; such algorithms will be the focal

point of this thesis.

1.2 Linear Programming and Approximation

The key fact behind the use of linear programming in the design of approximation algorithms

is the following simple observation: In many cases, given a maximization problem Π (the

approach for minimization problems is analogous), we are able to express the problem of

finding an optimal solution to an instance I of Π as the problem of finding an optimal solution

to an appropriately defined integer linear program (ILP):

max cT x

subject to Ax ≤ b

x ∈Zn

where x is a vector of n decision variables that correspond to the solution to the problem, c

is an appropriately defined weight vector, and A and b define a linear inequality system that

correspond to the constraints of the problem; clearly, n, A, b and c depend on I . Given such a

formulation, the optimum of I is equal to the optimum of the ILP, hence solving the ILP would

provide us with an optimal solution. Solving ILP-s is NP-hard in general; however, given such

an ILP, we can relax the integrality constraint to obtain the following linear program (LP):

max cT x

subject to Ax ≤ b

x ∈Rn

which we know how to solve in polynomial time (using, e.g., the ellipsoid method [29]).

Furthermore, as the set of feasible solutions to the ILP is a subset of the set of feasible solutions

to the LP, the optimum of the LP is at least that of the ILP, hence the optimum of the LP will
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serve as the bound to which we will compare our solution. Hence, if we are given such an LP

formulation, one general strategy to design an approximation algorithm is the following: We

solve the LP to retrieve a fractional optimal solution x∗, then round x∗ to an integral solution

x̂ in polynomial time, and output x̂. The ratio of the value of the rounded solution over that of

the optimal fractional solution will designate the approximation factor; in other words, our

approximation factor ρ will be

ρ = inf
I∈I

cT x̂

cT x∗

Now, the following question arises: What is the best approximation ratio ρ we can achieve

using the above strategy? To begin with, it cannot be better than

inf
I∈I

cT x̂∗

cT x∗

where x̂∗ is the optimal integral solution to our ILP. The above ratio is called the integrality

gap of our relaxation. In some sense, the integrality gap is a measure of how good a relaxation

is, as it places an absolute bound on the performance of any rounding algorithm for a given

relaxation. Therefore, determining it will often be as important as coming up with an actual

polynomial-time rounding scheme. Similarly, coming up with relaxations that have a good

integrality gap will often be as important as devising an appropriate rounding scheme.

To illustrate the above concepts, we provide a small example:

Example. Consider the following ILP for the maximum knapsack problem:

max
∑

i∈[n]
xi vi

subject to
∑

i∈[n]
xi wi ≤W

xi ∈ {0,1} ∀i ∈ [n]

where xi is a variable that should be set to 1 if we pick item i , and 0 otherwise, By relaxing the

integrality constraint, we get the following LP formulation:

max
∑

i∈[n]
xi vi

subject to
∑

i∈[n]
xi wi ≤W

0 ≤ xi ≤ 1 ∀i ∈ [n]

For simplicity, let us assume the value/weight ratios ri = vi /wi are unique. Let x∗ be an

optimal solution to the LP. First, we observe that there exists at most one variable in x∗ that

is not 0 or 1. To see this, assume there exist two non-integral variables xi and x j ; then, due

to the uniqueness of the value/weight ratios, increasing the variable with the larger ratio

and decreasing the one with the smaller ratio will produce a feasible solution with a better
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objective value, which is a contradiction1.

If there is no fractional variable in x∗, we output the set of items whose corresponding variable

is set to 1. Otherwise, let S ⊆ [n] be the set of variables that are set to 1, and let x j be the

variable that is non-integral. Our rounding algorithm is the following: out of the two sets S and

{ j }, output the one with the larger total value. Since max{v j ,
∑

i∈S
vi } ≥ ∑

i∈[n]
x∗

i vi /2, the above

rounding algorithm constitutes an 1/2-approximation algorithm. Consequently, we have also

proved that the integrality gap of the above relaxation is at least 1/2.

1.3 Allocation Problems

Let us now move on to the next focal point of this thesis: the study of allocation problems. As

the name suggests, we typically use this term to refer to problems where we are required to

distribute indivisible items to multiple entities. In doing so, our goal will be to optimize an

objective function that expresses some notion of balance or fairness.

Such problems often arise in practice, and their practical relevance motivates us to study

them. One prime example of such problems is balancing the load of processing jobs among

multiple processors/machines; there, we could have different notions of balancing, such as

ensuring that no machine is overloaded, or that no machine is left with too little load. Another

setting in which such problems arise is conducting combinatorial auctions, where we aim to

distribute items among agents such that the average happiness of the agents is maximized.

Similarly, another relevant setting is that of performing budgeted allocations, i.e., allocating

items to agents that pay for them, but under the constraint that no agent can pay more than

his prespecified budget.

Such problems often appear to be NP-hard, and a natural approach to solving them is to

employ linear relaxations. However, as we will see later on, it is often the case that many

natural relaxations have inferior integrality gaps, and that we will have to use less natural ones

in order to achieve good approximation guarantees.

1.3.1 LP Relaxations for Allocation Problems

A typical approach to designing an approximation algorithm for a given allocation problem is

to use a fairly natural class of LP relaxations, called assignment-LPs. This is a class of basic LP

relaxations that uses variables for the decision of allocating a single item to a single entity, and

then implements a set of basic constraints that force this allocation to be consistent.

For most of the classic allocation problems we are interested in, the assignment-LP has been

fully understood, in the sense that we know its exact integrality gap, and have rounding

1Observe that we only used the uniqueness of ratios to prove that there exists at most one fractional variable in
x; instead of making this assumption, we could have achieved the same by assuming x is a so-called extreme-point
solution.
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algorithms that achieve it. In order to achieve improved approximation guarantees, one

popular technique is to use a class of strong LP relaxations, called configuration-LPs. Their

main difference with assignment-LPs is that they employ variables that encode the decision

of allocating a set of items to a single entity, instead of just a single item. Contrary to the

class of assignment-LPs, our understanding of these stronger relaxations is far from complete.

Understanding how we can apply these relaxations to the design of better approximation

algorithms is one of the main questions that we address in this thesis.

Let us give an overview of what we know about these relaxations, for some fundamental

allocation problems (the definitions of these problems appear in Appendix B):

ρ A-LP (tight) C-LP (positive) C-LP (negative)
Restricted min-
max allocation

2 [31] 2 [31] 11/6 [24] 3/2 (implied by
[31])

Generalized
assignment
problem

1−1/e +ε [15] 1/2 [11, 39] 1−1/e +ε [15] 4/5 [15]

Maximum bud-
geted allocation

3/4+ε [25] 3/4 [43, 10] 3/4+ε [25] 0.828 [26]

Bin packing O(logn)[34]
(additive)

2 (folklore) O(logn) [34]
(additive)

1 (additive)
(folklore)

Restricted max-
min allocation

Ω(1) [14] unbounded [6] 1/4 [3] 1/2 [9]

Min-sum of
weighted com-
pletion times
scheduling

3/2−ε [5] 3/2� [5, 38, 40] 3/2−ε [5] 1+ε (implied by
[41])

Table 1.1: The first column contains the names of the problems, the second column contains
our best-known approximation guarantee, the third column contains our best-known bound
on the integrality gap of the assignment-LP (the displayed bounds are all tight), the fourth
one that of the configuration-LP, and the fifth one the best negative bound we have on the
integrality gap of the configuration-LP.
�: Here, there is no natural A-LP relaxation; instead, the ratio refers to two of the more natural
convex relaxations.

Inspecting the above table, the following three patterns emerge:

• For all the mentioned problems, we have tight bounds on the integrality gap of the corre-

sponding natural relaxations, which implies that our understanding of such relaxations

is complete in these cases.

• For all of these problems, the integrality gap of the configuration-LP is at least as good

as the best-known approximation guarantee, and even better in some cases.
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• Our understanding of the configuration-LP is complete for none of the problems we

mention.

Our main focus in this thesis is to study how the configuration-LP for such problems can be

used, in order to obtain improved approximation guarantees. This focus is set on the last two

problems of the above table: the restricted max-min allocation problem and the min weighted

completion time problem with uniform Smith ratios.

1.4 Our Contributions

In this section, we will conduct a brief overview of the main contributions of this thesis.

1.4.1 Restricted Max-Min Fair Allocation

In Chapter 3, we study the restricted max-min fair allocation problem. The problem is formally

defined as follows: we are given a set of agents P , and a set of items R, and a value vi j ∈ {v j ,0}

for each agent i and item j . We want to assign a set of items Si to each agent i , where Si∩S j =�
for all agents i and j , such that we maximize mini∈P

∑
j∈Si

vi j .

For this problem, we develop a local-search algorithm, that builds upon previous approaches

[4, 32] and achieves an 1/13-approximation ratio, which improves upon the previously best

known Ω(1)-approximation ratio [19, 14]. Although the algorithm is purely combinatorial, its

analysis is based on the strong configuration-LP relaxation for the problem. This LP relaxation

serves as the bound towards which we compare our tentative estimate of the optimal value; if

the local search algorithm fails, it means that the configuration-LP is infeasible for our current

estimate, that we subsequently update and reiterate. In order to prove polynomial-time

termination, we develop new tools, such as greedy agents and lazy updates, for conducting

our local search. These tools enable us considerably accelerate the local search, compared to

previous approaches.

Our results for the restricted max-min fair allocation problem were the result of joint work

with Chidambaram Annamalai and Ola Svensson; this work was published in SODA 2015 [1].

1.4.2 Scheduling Jobs with Uniform Smith Ratios on Unrelated Machines

In Chapter 4, we study the min sum of weighted completion times with uniform Smith ratios.

The problem is formally defined as follows: We are given a set of machines M , a set of jobs

J , a processing time pi j for each i ∈M and j ∈J , and a weight w j for each j ∈J , such that

pi j ∈ {w j ,∞} for all j ∈J and i ∈M . Our goal is to find an assignment of jobs to machines,

and a schedule of the jobs assigned to each machine, such that we minimize the sum of

weighted completion times
∑

j∈J
w j C j , where C j is the completion time of job j under the
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constructed schedule.

For this problem, we prove that the strong configuration-LP has an integrality gap of 1+�2
2 , by

designing a polynomial-time rounding algorithm. For this special case of the min weighted

completion time problem, our result improves upon the best-known approximation ratio

of 3/2 − ε [5]. Our approach towards solving this problem relies on using a randomized

rounding algorithm that achieves a strong concentration of the number of jobs assigned on

each machine, by defining ranges of job sizes, and then randomly picking one job from each

such range. Our analysis relies on finding, for each machine, the distribution of the assigned

jobs that satisfies the above constraint and maximizes the expected cost; in other words, we

find the worst-case output distribution. Then, we apply a sequence of transformations on this

distribution, in order to reach a specific type of distributions whose cost we can analyze and

whose cost is an upper bound on the cost of the original worst-case distribution. We remark

that our analysis is tight, i.e., there exist instances for which the ratio achieved by the rounding

algorithm is 1+�2
2 .

Our results for min sum of weighted completion times scheduling with uniform Smith ratios

were the result of joint work with Ola Svensson and Jakub Tarnawski. This work will be

published in SODA 2017 [27].
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2 Convex Relaxations for Allocation
Problems

In this chapter, we introduce and discuss the LP relaxations we will study throughout this

thesis. In order to describe the intuition behind these relaxations, let us go back to the basic

choices we made when designing a solution to an instance of an allocation problem.

As we have already stated, when faced with such a problem, we aim to distribute items among

different entities. This fact hints at the following way to formulate LP relaxations for such

problems: We introduce a decision variable xi j for every decision of the form “item j is

assigned to i ”. Then, we proceed to express the problem constraints with respect to these

variables. Such relaxations are typically called assignment-LPs, and using them is often the first

step towards designing an approximation algorithm for an allocation problem. In many cases,

these relaxations lead to quite good algorithms, and often they produce the best algorithms

we know for specific problems (a notable example is the problem of minimizing the makespan

on unrelated machines).

Indeed, we have a complete understanding of such relaxations for some of the most interesting

allocation problems; specifically, this means that for these problems we cannot achieve

improved approximation guarantees by using these relaxations. One way to bypass this

problem is to add more valid constraints to our relaxation, in the hope that these constraints

cut out the fractional solutions that exhibit the worst integrality gap: This process could be

done by looking into a specific problem and its inherent structure, or in a more general way,

by applying techniques such as LP/SDP hierarchies, that constitute an automated way to

reinforce a given relaxation.

Another approach that is sometimes available, instead of considering the decision of allocating

a specific item to some entity as a variable of our relaxation, is to consider the following

question: Should some entity i be receiving precisely the set of items C ? This decision is

naturally translated to a decision variable yiC , and the resulting LP relaxation, along with its

consistency constraints, is now a configuration-LP. Although there are many aspects of these

relaxations that we should and will discuss, perhaps the most appealing one is the following:

Given a fractional solution to a configuration-LP, when we focus on some entity i , we are
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given a local distribution over feasible integral assignments for i . Even though we cannot

jointly sample from these distributions for all entities, estimating the integrality gap of such

a relaxation amounts to measuring how much we lose in terms of our objective function by

trying to output joint distributions over assignments for all entities.

Following the above discussion, in the next two sections we introduce the LP relaxations we

will use for the two problems we study in this thesis.

2.1 Configuration-LP for the Restricted Max-Min Fair Allocation

Problem

We begin by defining the configuration-LP for the restricted max-min fair allocation problem.

First of all, this LP relaxation is what we call a feasibility LP, i.e., an LP without an objective

function, that we solve only to check if it admits a feasible solution. Specifically, let τ be an

estimate on the optimal value of our input instance. For any i ∈P , we define C (i ,τ) = {C ⊆
R :

∑
j∈C

vi j ≥ τ} to be the set of configurations (i.e., sets of items) that have total value at least τ

for i . Then, the configuration-LP for τ (abbreviated as C-LP(τ)) has a decision variable xiC for

all i ∈P and C ∈C (i ,τ), which ideally should be set to 1 if agent i receives precisely the items

in C , and 0 otherwise. Furthermore, C ∈C (i ,τ) contains two sets of constraints: The first set

of constraints states that every agent should receive at least one configuration of value at least

τ for him; and the second one states that every item should be assigned to at most one agent.

C-LP(τ) is described by the following system of linear inequalities:

∑
C∈C (i ,τ)

xiC ≥ 1 ∀i ∈P∑
i∈P

∑
C∈C (i ,τ): j∈C

xiC ≤ 1 ∀ j ∈R

0 ≤ xiC ≤ 1 ∀i ∈P ,C ∈C (i ,τ)

C-LP(τ) contains an exponential number of variables; however, it is known that we can

approximate the LP to any constant factor in polynomial time(see Appendix, [6]); specifically,

for any 0 < ε< 1, if C-LP(τ) is feasible, then we can find a solution to C-LP(τ(1− ε)) in time

which is polynomial in |R|O(1/ε) and |P |.

2.2 Configuration-LP for Min-Sum of Weighted Completion Times

Scheduling

Next, we introduce the configuration-LP for min-sum of weighted completion times schedul-

ing with uniform Smith ratios. Since in our special case we have that pi j ∈ {w j ,∞} for all i ∈M

and j ∈J , we let p j = w j . We further let Ji = { j ∈J : pi j = p j } denote the set of jobs that can

12



2.2. Configuration-LP for Min-Sum of Weighted Completion Times Scheduling

be assigned to machine i ∈M .

Consider an optimal schedule of the considered instance. Observe that the schedule partitions

the jobs into |M | disjoint sets J =C1 ∪C2 ∪·· ·∪C|M |, where the jobs in Ci are scheduled on

machine i (so Ci ⊆Ji ). As we will see in Chapter 4, the optimal cost of scheduling the set of

jobs Ci on machine i can be written as

cost(Ci ) = ∑
j∈Ci

p2
j +

∑
j �= j ′∈Ci

p j p j ′

2
.

The total cost of the considered schedule is
∑

i∈M cost(Ci ).

The configuration-LP models, for each machine, the decision of which configuration (set of

jobs) this machine should process. Formally, we have a variable yiC for each machine i ∈M

and each configuration C ⊆Ji of jobs. The intended meaning of yiC is that it takes value 1 if

C is the set of jobs that machine i processes, otherwise it takes value 0. The constraints of a

solution are that each machine should process at most one configuration and that each job

should be processed precisely once. The configuration-LP can be compactly stated as follows:

min
∑

i∈M

∑
C⊆Ji

yiC cost(C )

s.t.
∑

C⊆Ji

yiC ≤ 1 ∀i ∈M ,

∑
i∈M

∑
C⊆Ji : j∈C

yiC = 1 ∀ j ∈J ,

yiC ≥ 0 ∀i ∈M , C ⊆Ji .

This linear program has an exponential number of variables and is therefore non-trivial to

solve. However, Sviridenko and Wiese [45] show that, for any ε> 0, there exists a polynomial-

time algorithm that gives a feasible solution to the relaxation whose cost is at most a factor

(1+ε) more than the optimum. Hence, the configuration-LP becomes a powerful tool that we

use to design a good approximation algorithm for our problem.
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The results of this chapter are based on a joint work with Chidambaram Annamalai and Ola

Svensson; this work was published in SODA 2015 [1].

3.1 Introduction

In this chapter, we study the max-min fair allocation problem. Recall that this is the problem

of finding an assignment of items to agents, which maximizes the max-min fairness criterion.

Formally, we are given a set R of n indivisible items, a set P of m agents, and a valuation vi j

for each agent i and item j , which denotes how much i cares for receiving j . The goal is to

find an assignment of these items to the agents, such that the minimum total value any agent

receives is maximized; in other words, we want to find disjoint sets Si ⊆R for each agent i ,

such that we maximize

min
i∈P

∑
j∈Si

vi j .

The problem has also been called the Santa Claus problem, as it can be imagined that the

agents are children, the items are Christmas presents, and we are Santa Claus who wants

every child to receive at least a few presents. In this thesis, we are particularly interested in the

variant of the problem called the restricted max-min fair allocation problem. In this special

case, every item is interesting to only a subset of the agents and is valued the same by all these

agents; formally, we have that vi j ∈ {0, v j } for all j ∈R and all i ∈P .

Using techniques that exploit the structural similarities between the max-min fair allocation

problem, and the min-max scheduling problem, Bezáková and Dani [7] show that we can

round the corresponding assignment-LP for the problem, to get an assignment of value

OPT− vmax, where OPT is the LP value and vmax is the maximum value of any item for any

agent. However, since vmax can be arbitrarily close to OPT, this approach does not guarantee

any approximation ratio; in fact, the integrality gap of the assignment-LP for this problem can

be shown to be arbitrarily bad.
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In view of this fact, Bansal and Sviridenko [6] propose and study the configuration-LP for

the problem. Their first negative result states that the integrality gap of the configuration-

LP is O( 1�
m

) in general. On the positive side, Asadpour and Saberi [4] and Saha and Srini-

vasan [35] designed approximation algorithms that almost match this bound, providing ratios

Ω( 1�
m log3 m

) and Ω( loglogm�
m logm

) respectively.

Bansal and Sviridenko show that for the restricted max-min fair allocation problem, the

integrality gap improves to Ω( logloglogm
loglogm ). Even more interesting is that, Bansal and Sviridenko

show that a solution to a certain combinatorial problem would imply a constant integrality gap.

Feige [14] proved this was possible, by providing a proof that included multiple applications

of the Lovász Local Lemma, which meant that a polynomial-time approximation algorithm

was not immediately provided. To remedy this, Hauepler et al. [19] gave a constructive proof

of Feige’s result, which provided the first polynomial time approximation algorithm with a

constant approximation ratio for the problem. However, one issue remained: Due to the nature

of the result, the resulting approximation guarantee is fairly large, and though it provides proof

of concept of the fact that there should be an algorithm with a good approximation guarantee,

the gap between the known upper and lower bounds on the approximability of the problem

remained wide (notice that it is NP-hard to approximate the problem within a factor better

than 1
2 [7]).

Although the above results summarize what was known with respect to approximating the

restricted max-min allocation problem, they do not sum up the best bound we have on the

integrality gap of the configuration-LP for the problem. In fact, Asadpour et al. [2] provide an

algorithmic proof that the integrality gap is at least 1/4, albeit with an exponential running time.

Their approach displays similarities with the approach taken by Haxell [21] to provide sufficient

conditions for the existence of matchings on bipartite hypergraphs. These techniques were

extended by Polacek and Svensson [32] to provide a quasi-polynomial time approximation

algorithm, with an approximation ratio of 1
4+ε , for any ε> 0. Although in the following section

we will revisit the techniques used by Asadpour et al. and Polacek and Svensson, at this point

it is worth noting that the latter algorithm is combinatorial and only uses the configuration-LP

as a lower bound in the analysis.

Our Contributions The problem we approximate generalizes the maximum matching prob-

lem on bipartite graphs: it is a special case of the maximum matching problem on bipartite

hypergraphs. Therefore, it should come as no surprise that the techniques developed by

Asadpour et al. and Polacek and Svensson are in some sense an extension of the alternating-

path technique for extending a partial bipartite matching. By constructing an alternating

tree, whose levels alternate between containing agents and sets of items, their algorithms

iteratively increase the number of agents that are matched to a set that contains items that

have a significant total value. However, in both cases the running time of the alternating-tree

algorithm was super-polynomial. Designing a combinatorial polynomial-time algorithm,

which leads to a good approximation guarantee and is based on the idea of using alternating
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trees, is one of the main contributions of this thesis:

Theorem 3.1.1. For every ε> 0, there exists a combinatorial 1
(6+2

�
10+ε)

-approximation algo-

rithm for the restricted max-min fair allocation problem that runs in time sO(1/ε2 log(1/ε)), where

s is the size of the input instance.

Chapter Overview Throughout the following sections, we will prove the main result of this

chapter, Theorem 3.1.1. In order to do so, we will first describe and analyze an 1
4 -approximation

algorithm in Section 3.2, that was introduced by Asadpour et al. [2]. Even though this algorithm

will run in exponential time, it will serve to display the main structure of an alternating tree

algorithm, as well as the obstacles we will have to overcome to achieve a polynomial running

time. Then, we will design and analyze an 1
36 -approximation algorithm that runs in polynomial

time, in Section 3.3. Although this algorithm will use the ideas we sketched above to achieve

polynomial running time, it will require solving the configuration-LP for the restricted max-

min fair allocation problem, in order to facilitate the design of an algorithm that is as simple

as possible, at the extra cost of an inferior approximation guarantee. Finally, in Section 3.4, we

design and analyze the purely combinatorial algorithm promised by Theorem 3.1.1.

3.2 A Simple Alternating-Tree Algorithm

In order to expose some basic concepts behind the design and analysis of alternating-tree

algorithms, we start by describing a basic 1
4 -approximation algorithm for the restricted max-

min fair allocation problem. However, it runs in exponential time. Similar to the algorithm we

will describe in Section 3.4, this algorithm will be combinatorial, hence we will employ the

configuration-LP only as part of the analysis.

The main result of this section is the following:

Theorem 3.2.1. There exists an algorithm that, given an instance of the restricted max-min fair

allocation problem, and given τ> 0, either returns a solution of value at least τ/4, or asserts

that C-LP(τ) is infeasible; furthermore, the running time of this algorithm is O(n2m2m).

By applying binary search on the possible values of τ, it follows that the above theorem directly

implies an 1
4 -approximation algorithm that runs in O(n22mm logOPT) =O(s42s) time, where

s is the size of the description of the input instance.

3.2.1 Notation

We begin by introducing some basic notation. To begin with, we make the distinction between

fat and thin items; specifically, we partition the set of items R into the set of fat items R f =
{ j ∈ R : v j ≥ τ/4} and the set of thin items Rt = R \ R f . Remember that we say agent i is

interested in item j if vi j = v j > 0. Clearly, if we want to find a solution whose value is at
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least τ/4, then for any agent i , it suffices to assign to i a single fat item, among those that i is

interested in; otherwise, we should assign to him multiple thin items that he is interested in,

of total value at least τ/4.

As we have already mentioned in the previous section, we will design an alternating-tree

algorithm; the basic structure of this algorithm will be called an edge:

Definition 3.2.1. We call a pair (p,R), where p ∈P and R ⊆R, an edge, if R is a subset of items

of total value at least τ/4 that p is interested in.

Similar to how we distinguished between fat and thin items, we define fat and thin edges:

Definition 3.2.2. We call an edge consisting of a single fat item a fat edge.

Definition 3.2.3. We call an inclusion-wise minimal edge (i.e., an edge for which removing any

item would cause the total value of items to drop below τ/4) consisting of multiple thin items a

thin edge.

In fact, from now on we will only consider inclusion-wise minimal edges.

Finally, we define partial matchings:

Definition 3.2.4. We call a set M of pairwise disjoint fat and thin edges (i.e., edges that share

no agents or items) a (partial) matching. Furthermore, we will say that the agents that appear

in the edges of M are matched by M.

Observe that using the above notation, the purpose of Theorem 3.2.1 is to design an algorithm

that returns a matching that matches all agents. For any set of edges E , let P (E ) be the agents

that appear in some edge in E . The following lemma directly implies Theorem 3.2.1:

Lemma 3.2.1. There exists an algorithm that, given an instance of the restricted max-min

fair allocation problem, τ> 0, a partial matching M and an agent p0 ∉P (M), either returns

a partial matching M ′ such that P (M ′) = P (M)∪ {p0}, or asserts that C-LP(τ) is infeasible.

Furthermore, the running time of this algorithm is O(nm2m).

The algorithm behind Theorem 3.2.1 simply entails running the algorithm of Lemma 3.2.1

until all agents are matched, or until we terminate with failure, which would signify that our

guessed optimum τ was incorrect.

The rest of this section is dedicated to proving Lemma 3.2.1.

3.2.2 Algorithm Overview

Before proceeding to the formal definition and analysis the promised algorithm, we will

illustrate some of its basic concepts through an example, that appears in Figure 3.1.
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To begin with, we are given a partial matching M , and we are asked to extend this to match

agent p0. In order to do so, we check whether there exist items of total value τ/4, which do

not appear in any edge in M , that p0 is interested in. If this is the case, then we include the

induced edge in our matching. Otherwise, we find any minimal subset of items, of value at

least τ/4, which p0 is interested in, and try to add the corresponding edge into M ; this is the

gray edge in Figure 3.1(a). However, some of the items in this gray edge will appear in some of

the edges of M ; these are the white edges in Figure 3.1(a), and they block (the concept of a

blocking edge will be formally defined later on) the insertion of the gray edge to M .

In order to add the gray edge into M , we first need to free up the items it shares with the edges

that block it. In turn, in order to free up these items, we will have to match the agents that

appear in these blocking edges by using edges whose items are disjoint from the items in M .

We show this situation in Figure 3.1(b); we found a fat item that does not appear in any edge in

M , which we will use to satisfy the agent that appears in the first blocking edge. Therefore, we

will include this fat edge into M .

At this point, we are left with the edges that appear in Figure 3.1(c). Next, we need to find an

alternative way of satisfying the agent that appears in the remaining blocking edge. We take

up the same approach we did in order to satisfy agent p0: we find an edge we want to add into

M , and we consider the edges blocking its inclusion. This leaves us with the edges that appear

in Figure 3.1(d). By iterating this process, we will try to find new edges that satisfy the agents

that appear in the new blocking edges, and we continue until we are able to free up all the

items in the original gray edge (i.e., the one containing agent p0).

By observing the emerging structure, we can see where the term alternating-tree algorithm

stems from: the edges we want to include in M , and the edges that block them, form a tree of

hyperedges, where a gray edge is only connected to white edges, and vice versa.

Next, we proceed to formalize the process we sketched above.

3.2.3 A Basic Alternating-Tree Algorithm

In this section, we will design a procedure that starts from a partial matching M , and extends

it to include agent p0. Applying this process iteratively, we will be able to retrieve a matching

that matches all the agents.

State of the Algorithm At any point during its execution, the state of the algorithm can be

described by a tuple (M , p0, A,B): M is our tentative partial matching, p0 is the agent we want

to include in M , A is the set of edges we want to include in M , and B are the edges of M that

block the inclusion of the edges of A to M (i.e., they are the edges of M that intersect the edges

of A).

Before moving on to the formal description of the promised algorithm, we need to formally
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(a)

p0

(b)

p0

(c)

p0

(d)

p0

Figure 3.1: An example execution of our basic algorithm. In this figure, boxes correspond to
players, and circles correspond to resources.

define the concepts of addable, immediately addable and blocking edges:

Definition 3.2.5. Given the state (M , p0, A,B) of our algorithm:

• We call an edge e = (p,R) addable, if p ∈P (B)∪ {p0} and there exists no edge e ′ ∈ A∪B

such that e and e ′ have an item in common.

• We call an edge e = (p,R) immediately addable, if p ∈ P (B)∪ {p0} and there exists no

edge e ′ ∈ A∪B ∪M \ {e} such that e and e ′ have an item in common.

• We say that an edge e ∈ M is blocking for an edge e ′ if they share an item.

We are now ready to describe the promised algorithm, that was introduced by Asadpour et al.

[2]:

Initialization: Initially, A = B =�. If there exists an immediately addable edge e that contains p0, then
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M ← M ∪ {e}, and we terminate with success; otherwise, we choose an addable edge e

which contains p0, insert e into A and insert all edges that block e into B .

Iterative step: The iterative step consists of two phases:

Build phase: If there exists no agent p ∈ P (B)∪ {p0} that belongs to some addable edge, ter-

minate with failure; otherwise, choose an addable edge e that contains some

p ∈P (B)∪ {p0}. Then, insert e into A and insert all blocking edges of e into B .

Collapse phase: While there exists an immediately addable edge e in A, if P ({e}) = {p0}, insert

e into M and terminate with success. Else, consider the edge e ′ ∈ B such that

P ({e}) =P ({e ′}), and set M ← M \ {e ′}∪ {e} and B ← B \ {e ′}.

Iterate until there are no addable edges and all edges in A are blocked by at least one

edge in B , in which case we terminate with failure.

Next, let us explain the main steps of the algorithm. During the initialization phase, we set

initial values for A and B , and then we check whether there exists an immediately addable

edge for p0: If there is, then we can simply insert this edge into our partial matching M , which

would imply we extended our matching to include p0. If there exists no immediately addable

edge that contains p0, we choose an addable edge e that contains p0, and insert it into A:

this is an edge we want to include in M . However, in M there already exist edges that share

items with e, i.e., blocking edges for e; these edges we insert into B . Observe that, as we insert

addable edges into A, the items of any two edges in A will always be pairwise disjoint.

Next, the iterative step of our algorithm consists of two distinct phases: the build and collapse

phases. During the build phase, we choose an addable edge e that we insert into A, and we

insert all of its blocking edges into B . During the collapse phase, we find an edge e ∈ A that

is immediately addable: this is an edge we can insert into our partial matching M . To do so,

we remove the edge in M ∩B that contains the agent of e, and insert e into M . Notice that

the agents that are matched by M do not change. Furthermore, observe that as any edge e

that is introduced into M was previously immediately addable, the items of e are disjoint from

items in any edge in A∪M \ {e}. As the collapse phase is the only part of the algorithm that

modifies M , when the algorithm terminates the agents that are matched by M are those that

were initially matched, plus agent p0 if the algorithm terminated with success.

Let us now proceed with the analysis of the above algorithm. We need to ensure two facts:

(1) that the running time is O(nm2m) (as every execution of the iterative step takes O(nm)

time, it will suffice to prove that the iterative step is executed at most 2m times), and (2) that

termination with failure implies that C-LP(τ) is infeasible.

3.2.4 Running-Time Analysis

Throughout the execution of the algorithm, let us denote A = {a1...a|A|}, where i < j implies

that ai was inserted in A before a j . Furthermore, at any time during the execution of the
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algorithm, let mi be the number of edges that block ai . We will use {mi : i ∈ [|A|]} to mark the

progress our algorithm has made in the following way: at any time, we define the following

m-dimensional signature vector

M = (m1, ...,m|A|,m +1...,m +1)

In order to prove that the algorithm terminates in O(nm2m) time, we need to prove the

following two facts:

Fact 3.2.1. Throughout the execution of the algorithm, every possible configuration of the

signature vector appears at most once.

Proof. In order to prove this, it suffices to show that every iterative step decreases the lexico-

graphic order of the signature vector. On the one hand, let M1 (M2) be the signature vector

before (after) one execution of the build phase of any iterative step, and let A1 (A2) be the

set A of edges kept by the algorithm before (after) that execution of the build phase of the

iterative step. Furthermore, let M(i ) denote the i -th coordinate of a signature vector M . If

during the build phase, we introduced an addable edge to A1, then M1 and M2 are identical up

to position |A1|, and M1(|A1|+1) > M2(|A1|+1), as the addable edge that was inserted cannot

have more than m blocking edges.

On the other hand, let M1 (M2) be the signature vector before (after) one execution of the

collapse phase of any iterative step, and let A1 (A2) be the set A of edges kept by the algorithm

before (after) that execution of the collapse phase of the iterative step. If during the collapse

phase an immediately addable edge e was chosen, then either the algorithm terminates (if

the immediately addable edge contained p0), or there exists some e ′ such that e ′ belonged

to B at the beginning of the iterative step, but was replaced by e in M after the execution of

the iterative step. Consequently, if e ′ was blocking edge ai , then M1(i ) > M2(i ) and for all j < i

M1( j ) = M2( j ) (observe we only removed one blocking edge during this collapse phase, hence

the number of blocking edges of a single edge in A decreased). In both cases, the lexicographic

order of M2 is less than that of M1.

Fact 3.2.2. There exist at most 2m possible configurations of the signature vector.

Proof. The key observation behind this fact is that
∑
i

mi ≤ m at any time during the execution

of the algorithm, because there can be no more than m blocking edges. Then, the claim follows

by observing that we can put the set of all possible configurations of the signature vector in a

1-1 correspondence with {0,1}m ; specifically, we correspond M = (m1, ...,m|A|,m +1...,m +1)

with the 0-1 vector

0m1−110m2−11...0m|A|−110
m−∑

i
mi

Since the above vector contains m|A| ones and
∑

i≤m|A|
(mi −1)+m − ∑

i≤m|A|
mi = m −m|A| zeros,

its total length is m; therefore, there are at most 2m such vectors, hence, 2m corresponding
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signature vectors.

3.2.5 Correctness Analysis

Finally, in order to prove that the algorithm satisfies the requirements of Lemma 3.2.1, we will

prove the following lemma:

Lemma 3.2.2. Whenever the algorithm terminates with failure, the C-LP(τ) is infeasible.

Proof. Let us assume the algorithm terminates with failure, and let (M , p0, A,B) be the state of

our algorithm at that point. In order to prove that the C-LP(τ) is infeasible, we will use A and B

to construct a feasible solution for the dual LP of the C-LP(τ), whose objective value is strictly

positive. From the definition of the dual LP, it is clear that any solution with a strictly positive

objective value t , can be scaled by any c ∈R+ to obtain a solution of value ct ; in turn, this will

imply that the dual LP is unbounded, which in turn implies that the primal LP is infeasible.

First of all, let us write down the dual LP of the C-LP(τ):

max
∑

i∈P
yi − ∑

j∈R
z j

subject to yi ≤ ∑
j∈C

z j ∀i ∈P ,C ∈C (i ,τ)

yi ≥ 0 ∀i ∈P

z j ≥ 0 ∀ j ∈R

We define the following solution for the dual LP:

yi =
⎧⎨
⎩

3
4 , if i appears in some edge in A∪B

0, otherwise

z j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
4 , if j is a fat item that appears in some edge in A∪B
v j

τ , if j is a thin item that appears in some edge in A∪B

0, otherwise

Let us check that the solution (y, z) we described is feasible; clearly, we only have to focus

on agents i such that yi = 3
4 . Now, if we consider the constraint corresponding to any i such

that yi = 3
4 , and any C ∈ C (i ,τ) such that C contains a fat item, then from the definition of

(y, z) it immediately follows that the constraint will be satisfied, as all fat items that can be

assigned to i appear in A∪B (if such an item did not appear in A∪B , the assumption that the

algorithm terminated with failure would be wrong, since that item would constitute a valid

fat addable edge), whereas if we look at any constraint corresponding to some i and some
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C ∈C (i ,τ) consisting only of thin items, then
∑

j∈C
z j < yi would imply that

∑
j∈C ′

v j

τ
< 3

4

where C ′ ⊆C are the items of C that appear in an edge in A∪B . Then, this would imply

∑
j∈C \C ′

v j > τ

4

which is a contradiction. To see this, notice that (i ,C \C ′) constitutes a valid addable edge

we did not insert into A, thus the algorithm could not have terminated with failure without

including it.

Finally, let us prove that the objective value achieved by (y, z) is strictly positive: Let A f (At )

be the set of fat (thin) edges in A, and let B f (Bt ) be the set of fat (thin) blocking edges in B .

First, we observe that
∑

i∈P
yi = 3

4 (|B |+1), because p0 is the only agent that appears in an edge

in A ∪B , that does not appear in a blocking edge, and as there is no agent that appears in

multiple blocking edges: To see this last fact, observe that blocking edges belong to M , at the

beginning of our algorithm M is a valid partial matching, and according to the collapse phase

of our algorithm, any time we insert an edge e in M , we remove the edge that contains P (e)

from M . Furthermore, we observe that any thin edge in A contains items of total value at most
τ
2 . To see this, note that if it were not true, then the edge would not be inclusion-wise minimal,

as it would contain items of value greater than τ/2, each of which has value at most τ/4. Hence,

removing a single item leaves items of total value greater than τ/4, which is a contradiction.

Next, observe that any thin blocking edge contains items that do not appear in an edge in A

of total value at most τ
4 (again, the contrary would imply that blocking edge is not minimal

inclusion-wise). This, combined with the fact that, for thin items, z j = v j

τ , this implies that

the sum of z-values of the items contained in any thin edge in A is at most 1
2 , and that the

sum of z-values of all the items contained in any thin blocking edge that do not appear in

another edge in A is at most 1
4 . Finally, we observe that there are exactly |B f | fat items in

A∪B (because if there were an addable fat edge that was not blocked, the termination with

failure assumption would be contradicted), and that |At | ≤ |Bt | (because, for the algorithm to

terminate with failure, every thin edge must be blocked by some other thin edge). Therefore,

we have

∑
i∈P

yi −
∑
j∈R

z j ≥

3

4
(|B f |+ |Bt |+1)− 3

4
|B f |−

1

2
|At |− 1

4
|Bt | ≥

3

4
(|Bt |+1)− 3

4
|Bt | = 3

4
.

24



3.3. Utilizing Greediness and Laziness

As the objective value of the dual LP for solution (y, z) is strictly positive, the proof of Lemma

3.2.1 (and therefore of Theorem 3.2.1) is concluded.

3.2.6 Novel Concepts for Improved Running-Time

Next, we will discuss some of the new concepts that are introduced in this thesis, in order to

design an approximation algorithm for the restricted max-min fair allocation problem that

runs in polynomial time. To begin with, we should note that the algorithms we will describe in

the following section will again use the concept of constructing a hypergraph of addable and

blocking edges, and then use a signature vector argument in order to bound the running time.

The main question we will face, is how to design such an algorithm, in a way that the number

of possible signature vectors is small. In order to answer this question, the first new idea we

will introduce is that of greedy agents: These will be agents, whose addable edges contain items

of total value significantly more than ρOPT, where ρ is the approximation ratio we are aiming

for. The idea behind having such agents in our alternating tree is straightforward: As these

agents claim more items than they would be satisfied with, the rate of growth of the alternating

tree is boosted. To be more precise, the number of blocking edges that appear on each level

(i.e., the number of blocking edges at a specific distance from the root) of our alternating tree

will increase exponentially, which implies that the number of possible configurations of the

signature vector we might go through decreases drastically.

The second new idea we introduce, which will complement the existence of greedy agents, is

that of lazy updates: As we explained before, one of the main points of the alternating-tree

framework is that, whenever we find an addable edge e for an agent q that appears in a blocking

edge e ′, such that e contains no items that already appear in our partial matching, we are able

to substitute e ′ with e, therefore freeing up the items in e ′ and making progress. The main idea

behind performing lazy updates is that, instead of performing such an update whenever we

find an appropriate addable edge, we will postpone it until we are able to ensure that we can

perform such an update on a significant amount of the agents that simultaneously appear

in blocking edges. Consequently, we will go through fewer configurations of the signature

vector, because instead of making many small updates, we will make a few large ones. Thus,

combining this idea with the greedy agents idea, we will be able to ensure we only go through

a polynomial number of configurations of the signature vector.

3.3 Utilizing Greediness and Laziness

As we already mentioned in the introduction of this chapter, in order to expose the main

ideas behind our approach, in this section we will provide a polynomial-time approximation

algorithm, with an inferior approximation guarantee that will work on input instances that

have undergone some preprocessing (we will call these preprocessed instances clustered).

Formally, the main result of this section is the following:
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Theorem 3.3.1. There exists an 1
36 -approximation algorithm for the restricted max-min fair

allocation problem.

Naturally, we will start by describing what these clustered instances look like.

Clustered Instances The preprocessing step we will use was introduced by Bansal and

Sviridenko [6], and its functionality can be formally described as follows (we remark that, since

we are aiming for an 1
36 -approximation guarantee, in this section fat items will be those whose

value is at least τ/36, where τ is the guessed optimum):

Theorem 3.3.2 ([6]). If C-LP(τ) is feasible, we can partition the set of agents P into m clusters

N1, . . . , Nm in polynomial time such that

1. each cluster Nk is associated with a distinct subset of |Nk |−1 fat items from R f such that

they can be assigned to any subset of |Nk |−1 agents in Nk , and

2. there is a feasible solution x to C-LP(τ) such that
∑

i∈Nk

∑
C∈Ct (i ,τ) xiC = 1/2 for each

cluster Nk , where Ct (i ,τ) denotes the set of configurations for agent i comprising only

thin items.

As we can choose the agent that does not receive a fat item for each cluster independently,

in order to design an 1
36 -approximate allocation, it suffices to choose one agent from each

cluster to receive a thin edge of total value at least τ
36 . This is precisely the advantage of

this preprocessing: We can focus on assigning one thin edge for one agent for each cluster,

therefore we are able to design an algorithm that will be completely oblivious to fat items/edges.

Removing the clustered instance assumption, thus improving our approximation guarantee,

will be our focus in Section 3.4.

In this context, we need to redefine thin items, thin edges and partial matchings:

Definition 3.3.1. A thin item is an item whose value is at most τ/36; furthermore, we denote

the thin items by Rt , and the fat items R \Rt by R f .

Definition 3.3.2. A thin edge is a pair (p,R), where p is an agent and R is an inclusion-wise

minimal set of thin items p is interested in, of total value at least τ/36.

Definition 3.3.3. A partial matching M is a set of thin edges of total value at least τ/36, such

that no two edges in M contain the same item, and no two edges in M contain agents from the

same cluster.

We will say that M matches agent p (cluster Nk ) if M contains a thin edge that includes p (an

agent from Nk respectively).

Using arguments similar to those used in Section 3.2, we can see that in order to prove Theorem

3.3.2, it suffices to prove the following lemma:
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Lemma 3.3.1. There exists a polynomial time algorithm that, given a partial matching M, and

given a cluster N0 not matched by M, extends M to match N0 as well.

In the following sections, we show how to prove the above lemma. Before we proceed, however,

with describing and analyzing the promised algorithm, let us conduct an overview of how the

algorithm roughly works, through an example.

3.3.1 Algorithm Overview

For a particular guess τ, let us assume that C-LP(τ) is feasible. Our goal now is to satisfy each

cluster, i.e., allocate a disjoint collection of items of value at least τ/36 for exactly one agent in

each cluster. To this end, we design an iterative procedure that we will apply in order to find

such an 1/36-approximate allocation. The input to this procedure will be a partial matching

and an unmatched cluster N0. In order to satisfy the input cluster as well, our algorithm

will extend the partial matching. Thus, applying this procedure iteratively will satisfy all the

clusters.

Here, we illustrate some key aspects of this procedure through an example that appears in

Figure 3.2. Given a partial matching, we want to extend this to match agent p from cluster

N0. If there are free items (i.e., not already appearing in our partial matching) of total value

τ/36 for p, then we simply satisfy p by assigning those items to him. Otherwise, we find a

set of items whose value for p is at least 2τ/5; these items constitute an edge ep we would

want to include in our partial allocation in order to satisfy p. However, we cannot include this

edge immediately because in our partial allocation there already exist edges that share items

with ep : In other words, such edges block the inclusion of ep into our partial allocation. In

Figure 3.2(a), ep is the gray edge, and its blocking edges are the white ones.

At this point, we should note that the size of ep is considerably larger than our goal of τ/36;

this is by design and due to our greedy strategy. By considering edges whose sizes exceed our

goal, we are able to increase the rate at which blocking edges are considered by our algorithm;

indeed, in Figure 3.2(a), a single greedily constructed edge (ep ) introduced three blocking

edges. Ultimately, this enables us to bound the running time of our algorithm.

Now, as our goal is to include ep in our partial matching, we need to free up some of the items

of ep by finding an alternative way of satisfying the agents included in the blocking edges of

ep . The steps we take towards this end appear in Figure 3.2(b): for each agent in the blocking

edges of ep , we find in the same cluster a new edge for some agent, who we want to include

into our partial matching. In this figure, agents that belong to the same cluster are enclosed in

a dashed circle. However, these new gray edges might also be blocked by existing edges in our

partial matching. Therefore this step introduces a second layer of edges we want to include

in our allocation, and their corresponding blocking edges; in the example, these layers are

separated by dashed lines.
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(a)

p

(b)

p

(c)

p

(d)

p

Figure 3.2: An example execution of our algorithm for clustered instances. In this figure, boxes
correspond to players, and circles correspond to resources.

Next, we observe that two of the three gray edges in the second layer have many items that do

not appear in any blocking edge. In this case, as one can see in Figure 3.2(c), we select a subset

of free items from each edge of size at least τ/36 (drawn with dashed lines), and swap these

edges for the existing white edges in our partial matching. We call this operation a collapse of

the second layer, after which we are left with ep and a single blocking edge in the first layer.

The way we decide when to collapse a layer, is dictated by our strategy of lazy updates: As

in Figure 3.2(c), we will only collapse a layer if that would mean that a large fraction of the

previous layer’s blocking edges will be removed.

Finally, in Figure 3.2(d), a significant amount of items of ep has been freed up. Then, we choose

a subset of these items (again, drawn with a dashed line) and allocate them to p. At this point,

we have satisfied p and succeeded in extending our partial matching to satisfy one more agent

and one more cluster.

Next, we proceed with formally defining and analyzing the local-search algorithm we sketched
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above.

3.3.2 An Algorithm for Clustered Instances

The next step we take is to describe and analyze the algorithm for clustered instances. This

algorithm will be behind the proof of Theorem 3.3.1. Note that as we are working on clustered

instances, our algorithm will only pertain to constructing and assigning edges of thin items,

which will greatly simplify the algorithm’s design.

Let us now begin to introduce some of the definitions that are necessary to describe our

algorithm.

Parameters Throughout the description of our algorithm, we will use the following parame-

ters:

• ρ = 1/β= 1/36 is the approximation guarantee of our algorithm.

• α= 5/2 is the parameter that determines the how greedy our agents are.

• μ= 1/500 is the parameter that determines the laziness of our updates.

State of the Algorithm In order to describe our algorithm, we need the following definition:

Definition 3.3.4. For any δ ≥ 1, we call an edge (p,R) a δ-thin edge, or a δ-edge, if R is an

inclusion-wise minimal set of thin items that p is interested in, of total value at least τ/δ.

An important property of δ-edges that we will use later on is the following:

Remark 3.3.1. A δ-edge contains items of total value less than τ
δ + τ

β , due to its minimality.

Furthermore, given a thin β-edge (p,R), any strict subset of R contains items of total value at

most τ/β.

Now, we can define what a state of our algorithm is:

Definition 3.3.5. A state of the algorithm is a tuple (M , p0,	, {A0, ..., A	+1}), where:

• M is a partial matching.

• p0 is the agent we want to match.

• 	 is an index that keeps track of the depth of our search.

• Ai is a set of α-edges, with A0 =�.
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Similar to the algorithm in Section 3.2, the edges in some Ai correspond to edges we want to

include into our matching: Naturally, their inclusion might be blocked by edges that already

exist in our partial matching. Thus, for i > 0, let Bi be the set of edges of M that share items

with at least one edge in Ai ; we conventionally set B0 = {(p0,�)}.

Now, notice that although 	 denotes the depth of our search, in the state of the algorithm

we define Ai for all i ≤ 	+1. The reason for this disparity is that our algorithm will consist

of an iterative step, a main phase of which will be to find edges we want to introduce into

our matching. During this phase of each iteration, A	+1 will be initially empty, and we will

proceed to insert edges into it, one by one. After we are done inserting edges into A	+1, we will

increment 	 and proceed to the next phase of the iterative step. Therefore, A	+1 will only be

used (non-empty) at the first phase of each iteration, but for the sake of formality, we include

it into the definition of the state of the algorithm.

Our algorithm will try to match p0, by inserting into M a thin β-edge that contains p0. As

our end-goal is to start from an empty matching and to iteratively apply our algorithm until

all clusters are matched, and as our algorithm will only introduce β-edges into M , we will

maintain the following property for M :

Remark 3.3.2. M is a partial matching that only contains β-edges.

Algorithm Invariants For any collection of sets {S0,S1, ..., }, let S≤i = ∪ j≤i S j . Then, as we

will see later on, the state of our algorithm satisfies the following invariants at the beginning of

each iterative step:

(a) For any i ≤ 	, there is no edge e ∈ Ai that shares items with an edge in A≤i ∪B≤i−1

(b) For any i ≤ 	, any two edges in Ai contain agents from different clusters. Furthermore, if

agent p ∈ Nk appears in an edge in Ai , then there exists q ∈ Nk (not necessarily different

from p) that appears in an edge in Bi−1.

Later on, these invariants will help us show that the output of our algorithm will be indeed a

partial matching.

Algorithm Description Let us introduce some final notation, that will make the description

of our algorithm easier. Let Pi =P (Bi ). Similar to Section 3.2, we define addable, immediately

addable and blocking edges:

Definition 3.3.6. Given a state of the algorithm, we call an α-edge e = (p,R) addable, if (a)

there exists q ∈ P (B	) in the same cluster as p, and there exists no q ∈ P (A	+1) in the same

cluster as p, and if (b) R does not intersect any edge in A≤	+1 ∪B≤	.
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Definition 3.3.7. Given a state of the algorithm, we call an edge e = (p,R) immediately addable,

if e belongs to some Ai , and if there exists R ′ ⊆ R such that the total value of items in R ′ is at

least τ/β, and none of the items in R ′ appear in any edge in M.

Definition 3.3.8. Given a state of the algorithm, we call an edge e ∈ M that belongs to some

Bi a blocking edge; similarly, given an edge e ′ that belongs to some Ai and an edge e ∈ M that

shares items with e ′, we will say that e blocks e ′.

One of the new features of the algorithm we describe in this section is that we iteratively

construct a hypergraph of edges in layers:

Definition 3.3.9. Given a state of the algorithm, we let Li = (Ai ,Bi ) denote the i -th layer of our

algorithm.

Definition 3.3.10. Given a state of the algorithm, we call a layer Li collapsible, if Ai+1 contains

at least μ|Pi | immediately addable edges.

Naturally, we will call L≤	+1 the layered hypergraph maintained by our algorithm.

Now, we are ready to formally describe the layered hypergraph1 algorithm for clustered in-

stances:

Initialization: Select some agent p0 ∈ N0. Set A0 ←�, and 	← 0. Recall that B0 = {(p0,�)} by conven-

tion.

Iterative Step: The iterative step consists of two phases, that get repeated until N0 is matched by M .

Build Phase: Set A	+1 ←�. While there exists an addable edge e, we add it to A	+1. When there

are no more addable edges, increment 	.

Collapse Phase: If there exists a collapsible layer, then let Lt be the earliest collapsible layer. For

each edge (p,R) ∈ At+1, consider agent q ∈ Pt such that p, q belong to the same

cluster. If (p,R) is immediately addable, swap q ’s edge in M with (p,R ′), where R ′

is a τ/β-minimal subset of R that shares no items with any edge in Bt+1.

After we process all immediately addable edges, we discard all the layers with

index greater than t and set 	 to be t . As the collapse operation could have created

immediately addable edges in Lt , we repeat the collapse phase until there are no

collapsible layers.

Next, let us explain the main steps of the algorithm behind Lemma 3.3.1. In the initialization

phase, we choose an agent p0 from the cluster N0 we want to match: This will be the first

agent for which we will try to find an addable edge. As we introduce no edges into our layered

hypergraph in this phase, our two invariants trivially hold throughout it.

1In contrast to the algorithm in Section 3.2 that worked by building up an alternating tree, the algorithm we will
describe builds up a layered hypergraph.
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After the initialization phase, we proceed to our main iteration. Each iterative step consists of

two phases: the build and collapse phases. During the build phase, the algorithm tries to find,

for each cluster that contains an agent in P	, an addable α-edge for any agent in that cluster;

such edges are inserted into A	+1. Due to the definition of addable edges, the first invariant is

upheld during this step. Furthermore, as, according to the definition of addable edges and the

definition of the build phase, we only introduce into A	+1 at most one edge for each cluster

that contains an agent in P	, the second invariant is upheld.

During the collapse phase, we identify the lowest collapsible layer t . Then, for each immedi-

ately addable edge (p,R) in At+1, which corresponds to edge (q,S) in Bt (remember the second

invariant was upheld at the beginning of the iteration of the collapse phase), we replace (q,S)

with (p,R ′) in M , where R ′ ⊆ R is a minimal set of items of total value at least τ/β that shares

no items with any edge in Bt+1. Notice that every iteration in the collapse phase preserves the

first invariant, as (p,R ′) is disjoint from any edge in A≤t+1 (as (p,R) initially belonged to At+1

and the first invariant held at the beginning of the iteration of the collapse phase) and disjoint

from any edge in M (due to the definition of R ′ and Bt+1). Furthermore, every such iteration

also preserves the second invariant for all layers up to t , as At and Bt−1 are not modified

during any iteration. As after the last iteration of the collapse phase we discard all layers above

t , the second invariant is upheld overall.

Finally, observe that the collapse phase of the algorithm is the only part that modifies M , that

every edge inserted into M is disjoint from all other edges which already belong to M (due

to the first invariant, the definition of immediately addable edges and the way we choose

the induced edges we insert into M), and that the collapse phase does not change the set of

clusters that M matches: Consequently, M always constitutes a valid partial matching that

always matches the same clusters. Hence, if we ever find an immediately addable edge in

A1, (due to the second invariant) our algorithm will output a valid extension of M that also

matches cluster N0.

3.3.3 Analyzing the Algorithm for Clustered Instances

Let us now proceed with analyzing the running time and correctness of the above algorithm,

i.e., let us prove Lemma 3.3.1. The first thing we want to do is to quantify how fast the layers of

our algorithm grow: As we have already mentioned, our design goal was to guarantee that the

number of edges of a layer increases exponentially, as the layer index increases. The following

lemma quantifies this intuition:

Lemma 3.3.2. Assuming that C-LP(τ) is feasible, at the beginning of each iterative step, |Ai+1| ≥
|P≤i |/5 for each i = 0, . . . ,	−1.

Before proving the above lemma, we state a fact we will use in the lemma’s proof:

Fact 3.3.1. Let q be an agent from some cluster Nk . If an agent q is part of some blocking edge

in layer Li , i.e., q ∈ Pi , and furthermore, there exists no edge (p,R) in Ai+1 such that p and q
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belong to the same cluster Nk after the build phase of layer Li+1, then none of the agents in Nk

have a set of items of value at least τ/α that do not appear in any edge in the layered hypergraph.

This fact follows in a straightforward manner from the design of the build phase of our algo-

rithm: More specifically, it follows because during the build phase of layer Li+1, for each agent

p in Pi , we find an addable edge that contains an agent in the same cluster as p, unless there

exists no such edge. We proceed to prove Lemma 3.3.2:

Proof of Lemma 3.3.2. Notice that since the set Ai is initialized when Li is created and not

modified until Li−1 is collapsed, it is sufficient to verify the inequality after we construct

the new layer L	+1 in the build phase. The proof is now by contradiction. Suppose |A	+1| <
|P≤	|/5 after the build phase. Let N ⊆ {N1, . . . , Nm} be the clusters whose agents appear in

the layered hypergraph but do not have any agents in some edge in A≤	+1. We have that,

|N | = |P≤	|− |A≤	+1|, since for any j , our algorithm introduces at most one edge into A j for

each agent in P j−1.

Recall that Ct (i ,τ) denotes the set of those configurations for agent i , that only contain

thin items. From Theorem 3.3.2 we know that there exists an x that is feasible for C-LP(τ)

such that
∑

i∈Nk

∑
C∈Ct (i ,τ) xiC = 1/2 for each cluster Nk . Now, form the bipartite hypergraph

H = (N ∪Rt ,E) where we have vertices for clusters and thin items in R, and edges (Nk ,C )

for every cluster Nk and thin configuration C (i.e., configuration consisting of thin items) pair

such that xpC > 0 and p ∈ Nk . To each edge (Nk ,C ) in H assign the weight
(∑

i∈Nk
xiC

)∑
j∈C v j .

The total weight of edges in H is at least |N |τ/2. Let Z denote the thin items appearing in the

layered hypergraph and let v(Z ) =∑
j∈Z v j denote their value. Now, remove all items appearing

in the layered hypergraph from this hypergraph to form H ′ that has edges (Nk ,C \ Z ) for each

edge (Nk ,C ) in H . The weight of (Nk ,C \ Z ) is similarly defined to be
(∑

i∈Nk
xiC

)∑
j∈C \Z v j .

Let us upper bound the total value of the thin items appearing in the layered hypergraph, Z .

Consider some layer L j . The total value of items in thin α-edges in A j is at most (τ/α+τ/β)|A j |
by the minimality of thin α-edges. Next, because B j ⊆ M B j contains only β-edges (see Remark

3.3.2). Therefore, the value of items in B j not already present in some edge in A j is at most

(τ/β)|B j | by minimality of the thin β-edges in B j (see Remark 3.3.1). Therefore, v(Z ) is at most

v(Z ) ≤
	∑

j=1

(
(
τ

α
+ τ

β
)|A j |+ (

τ

β
)|B j |

)
+|A	+1|

(
τ

α
+ τ

β

)
< |A≤	+1|

(
τ

α
+ τ

β

)
+|P≤	|

τ

β
.

As the sum of the edge weights in H is at least (|N |/2)(τ), the sum of edge weights in H ′ is at

least |N |τ/2−v(Z ). And Fact 3.3.1 implies that the sum of edge weights in H ′ must be strictly

smaller than (N /2)(τ/α) (the contrary would imply the existence of at least one cluster whose

adjacent edges in H ′ have weight at least τ
2α , which implies that there exists an adjacent edge
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that contains items of total value at least τ/α). Thus,

(|P≤	|− |A≤	+1|)
2

τ−|A≤	+1|
(
τ

α
+ τ

β

)
−|P≤	|

τ

β
< (|P≤	|− |A≤	+1|)

2

τ

α
. (*)

Note that |A≤	+1| appears with a larger negative coefficient (in absolute terms) on the left-hand

side than on the right-hand side. Therefore if (*) holds, then it also holds for an upper bound

of |A≤	+1|. We will compute such a bound and reach a contradiction.

We start by computing an upper bound on |A j+1|, the number of addable edges in layer L j+1

for j = 0, . . . ,	−1. Since layer L j is not collapsible, it means that except for at most μ|P j | edges

in A j+1, the remainder have at least τ/α−τ/β value of items blocked by the edges in B j+1.

Using this,

(
τ

α
− τ

β

)(|A j+1|−μ|P j |
)≤ |P j+1|2τ

β

summing over j=⇒
(
τ

α
− τ

β

)(|A≤	|−μ|P≤	−1|
)≤ |P≤	|

2τ

β
.

Rearranging terms we have,

|A≤	| ≤ |P≤	|
2α

β−α
+μ|P≤	−1| ≤ |P≤	|

(
2α

β−α
+μ

)
.

Substituting this upper bound in (*) along with our assumption |A	+1| < |P≤	|/5 we get (after

some algebraic manipulations)

|P≤	|
(
1− 1

α
− 2

β

)
−|P≤	|

(
2α

β−α
+μ+1/5

)(
1+ 1

α
+ 2

β

)
< 0.

This is a contradiction because if we substitute in the values of α,β, and μ the left-hand side is

positive. Recall that α= 5/2,β= 36, and μ= 1/500.

Now, let us comment on the implications of the above lemma. As thin items are of value less

than τ/36, and each edge in A≤	 is a thin α-edge of value at least 2τ/5, this implies that if

layer Li−1 is not collapsible, then the number of blocking edges in Li must be quite large. This

means that the number of blocking edges will grow quickly when the layers of the layered

hypergraph are not collapsible: This fact will become crucial when we design our signature

vector, as it will enable us to use a logarithmic function of the sizes of the various layers as

signatures.

We have the following lemma that establishes an exponential rate of growth on the number of

agents per layer:

Lemma 3.3.3. Assuming that C-LP(τ) is feasible, at the beginning of the iterative step |Pi+1| >
13|P≤i |/10 for i = 0, . . . ,	−1.
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Proof. Fix an i such that 0 ≤ i < 	. By the definition of the algorithm, Li is not collapsible at

the beginning of the iterative step. This means that there are at least |Ai+1|−μ|Pi | many edges

in Ai+1 that are not immediately addable. As each addable edge of Ai+1 (except at most μ|Pi |
many) has items of value at least τ/α−τ/β that are blocked, we can lower bound the total

value of blocked items appearing in Ai+1 by

(
τ

α
− τ

β

)(|Ai+1|−μ|Pi |
)

.

Further, since each edge in Bi+1 is of value at most 2τ/β by minimality, the total value of such

items is upper bounded by |Pi+1| ·2τ/β. In total,

(
τ

α
− τ

β

)(|Ai+1|−μ|Pi |
)≤ |Pi+1|2τ

β
=⇒ |Pi+1| ≥ (β−α)(1/5−μ)

2α
|P≤i | > 13|P≤i |/10,

where we have used Lemma 3.3.2 to bound |Ai+1| by |P≤i |/5 from below.

Since the number of blocking edges grows exponentially from layer to layer, an immediate

consequence of Lemma 3.3.3 is that the total number of layers in the layered hypergraph

at any step in the algorithm is at most O(log |P |). This means that we have to encounter

a collapse operation after at most logarithmically many iterative steps. Since our collapse

operation updates a constant fraction (μ= 1/500) of the agents in Pi when layer Li is collapsed,

intuitively we make large progress whenever we update M during a collapse step. We prove

this by maintaining a signature vector s := (s0, . . . , s	,∞) during the execution of the algorithm,

where

si := �log1/(1−μ) |Pi |�.

Lemma 3.3.4. The signature vector always reduces in lexicographic value across each iterative

step, and the coordinates of the signature vector are always non-decreasing, i.e., s0 ≤ s1 · · · ≤ s	.

Proof. Let s and s′ be the signature vectors at the beginning and at the end of some iterative

step. We now consider two cases depending on whether a collapse operation occurs in this

iterative step.

Case 1. No layer was collapsed. Clearly, s′ = (s0, . . . , s	, s′
	+1,∞) has smaller lexicographic value

compared to s.

Case 2. At least one layer was collapsed. Let 0 ≤ t ≤ 	 be the index of the last layer that was

collapsed during this iterative step. As a result of the collapse operation suppose the

layer Pt changed to P ′
t . Then we know that |P ′

t | < (1−μ)|Pt |. Since none of the layers with

indices less than t were affected during this procedure, s′ = (s0, . . . , st−1, s′t ,∞) where

s′t = �log1/(1−μ) |P ′
t |� ≤ �log1/(1−μ) |Pt |�−1 = st −1. This shows that the lexicographic value

of the signature vector decreases.
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In both cases, the fact that the coordinates of s′ are non-decreasing follows from Lemma 3.3.3

and the definition of the coordinates of the signature vector.

Choosing the “∞” coordinate of the signature vector to be some value larger than log1/(1−μ) |P |
(so that Lemma 3.3.4 still holds), we see that each coordinate of the signature vector is at most

U and the number of coordinates is also at most U where U =O(log |P |). Thus, the sum of

the coordinates of the signature vector is always upper bounded by U 2. We now prove that the

number of such signature vectors is polynomial in |P |.

A partition of an integer N is a way of writing N as the sum of positive integers (ignoring the

order of the summands). The number of partitions of an integer N can be upper bounded by

eO(
�

N ) by a result of Hardy and Ramanujan [20]2. Using that the coordinates of our signature

vectors are non-decreasing, each signature vector corresponds to a partition of an integer

value at most U 2, and vice versa: given a partition of an integer of size 	, the largest number

of the partition will correspond to the 	-th coordinate, the second largest to the 	− 1-th

coordinate, and so on. Therefore, we can upper bound the total number of signature vectors

by
∑

i≤U 2 eO(
�

i ) = |P |O(1). Since each iteration of the algorithm takes only polynomial time

along with Lemma 3.3.4 this proves Lemma 3.3.1, and therefore Theorem 3.3.2.

3.4 Designing a More Efficient Algorithm

Finally, throughout this section we will design and analyze a more general polynomial-time

approximation algorithm for the restricted max-min fair allocation problem. This algorithm

will not make use of the clustering step we used in Section 3.3, hence it will achieve a superior

approximation guarantee.

New Ideas for a Combinatorial Algorithm To begin with, let us illustrate some of the new

ideas that are involved in the design of this algorithm. The first question we need to ask

ourselves is: What are the shortcomings in generalizing our clustering algorithm and in

enabling it to handle both fat and thin edges? In order to answer this question, we first have to

consider what options we have with respect to doing so.

The first approach we might consider, is to directly port the clustered instances algorithm

we designed to the general instances case, by simply considering the problem of assigning

addable edges that can be either thin or fat to agents, instead of assigning thin addable edges

to clusters. Taking this approach, however, will quickly lead to failure, once we begin analyzing

the running time of our algorithm. The main problem is that now we can no longer guarantee

that the number of layers is logarithmic (or even sub-polynomial). As now the layers are

allowed to include fat edges, there is no way to guarantee that there will be no long paths of

2The asymptotic formula for the number of partitions of N is 1
4N

�
3

exp

(
π
√

2N
3

)
as N →∞ [20].
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fat edges that will force the number of layers to explode, thus forcing our signature vector

argument to fail (remember that our argument crucially depended on the number of layers

being logarithmic in the number of clusters, which means that now it should be logarithmic

in the number of agents). Consider, for example, an instance of the restricted max-min fair

allocation problem, that contains a set P = T ∪F of m agents, where T consists of agents

that can receive thin items, and F consists of agents that can receive fat items, such that

|T | = Θ(m1/3), |F | = Θ(m2/3), and between any two agents t1, t2 ∈ T there is a path which

alternates between fat items and agents in F , of length Θ(m1/3). Clearly, a naive generalization

of the clustered instances algorithm will have Ω(m1/3) layers in this case.

Therefore, if we design a polynomial-time algorithm that follows the framework we have laid

out so far, this algorithm should in some sense be oblivious to the existence of paths of fat

items, by handling them in a way that enables our attention to be focused on thin edges. For

example, this was one of the achievements of Polacek and Svensson [32]: In their alternating-

tree algorithm, the authors avoided having to consider fat blocking edges in their signature

vector argument, by having fat edges to serve only as a way to introduce thin edges into the

alternating tree, i.e., if an agent wishes to receive an addable edge, their algorithm introduces

either a thin addable edge for that agent, or a path of fat edges to some other agent that then

receives a thin addable edge.

Now, though our approach will move in this general direction, we have to be careful when

doing so. Specifically, there will be some concerns, when we have to collapse a layer that

receives enough immediately addable edges. For each such immediately addable edge that

we want to introduce into our matching, we might need to use a path of fat edges in order to

connect the immediately addable edge to the edge it will replace in our matching. However,

there might be multiple such paths, and choosing the incorrect one might disable the inclusion

of other immediately addable edges into our matching. In order to remedy this situation, we

introduce the concept of Disjoint Path Networks: These networks will enable us to keep track

of how many edges we can introduce into our matching, using paths of fat edges. Therefore,

we can maximize the number of immediately addable edges we introduce into our layered

hypergraph.

After the above discussion, it is time to introduce the main contribution of this section. Let

0 < ε≤ 1 be a fixed parameter, and let τ be our guess on the optimal value; we will prove the

following:

Lemma 3.4.1. There exists a polynomial-time algorithm that, given a partial matching M of

agents to sets of items of value at least τ

2(3+�10)+ε >
τ

13+ε , extends M to include one more agent,

if C-LP(τ) is feasible; the running time of this algorithm is polynomial in n and m
1
ε2 log 1

ε .

As we have seen before, proving Lemma 3.4.1 is sufficient to prove Theorem 3.1.1. As in Section

3.3, we start by giving an informal overview of the algorithm behind Lemma 3.4.1. Then, we

will define some necessary concepts for the algorithm’s description and proceed to describe

and analyze it.
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3.4.1 Algorithm Overview

To begin with, the general framework of our combinatorial algorithm is similar to that of

the simpler algorithm we described in Section 3.3: We guess an optimal value τ for the

configuration-LP, and we then try to find an allocation of items which approximately satisfies

every agent, i.e., assigns to each agent a set of items of total value at least τ/13 for that agent.

To do so, we will again design a local search procedure whose purpose will be to extend a given

partial allocation of items, so as to satisfy one more agent.

An example execution of our combinatorial algorithm appears in Figure 3.3: There, given

a partial allocation of items to agents, we want to extend this allocation to satisfy agent p.

Naturally, if there is a set of items, which do not appear in the given partial allocation and

whose total value for p is at least τ/13, we will assign these items to agent p. Otherwise, we

find an edge ep whose total value for p is at least τ/2 (the bottom gray edge in Figure 3.3(a))

and consider all the edges in our given partial allocation that share items with that set (the

white edges intersecting ep in Figure 3.3(a)); these edges constitute the first layer that is shown

in Figure 3.3(a).

At this point, we should note that, as with to the simpler algorithm we described in Section

3.3, we will again be using a greedy strategy with respect to the edges we would include in our

partial matching. Specifically, even though we want to only assign items of total value at least

τ/13 to each agent, the gray edges we would include in our matching are significantly more

valuable (i.e., of total value at least τ/2). Again, this implies that every gray edge will intersect

with multiple white/blocking edges, which will help us prove that the algorithm’s running time

is polynomial in the size of the input.

Next, as with the simple algorithm we described in Section 3.3, we want to free up the items

that appear in edge ep . We do this by finding disjoint sets of items that satisfy the agents

that appear in the white edges of the first layer. Here, however, we encounter the first major

difference, compared to our previous algorithm: Some of the agents that appear in the white

edges of the first layer can be satisfied by using fat items, i.e., items whose value for their

corresponding agents is at least τ/13. As every fat edge we would include in our partial

allocation can only be blocked by exactly one edge that already belongs to our allocation,

alternating paths of fat edges are created. Such a path, which ends in a gray thin edge, is

displayed in Figure 3.3(b): If we are to include the gray edge that contains q2 into our partial

allocation, then we have to replace the white fat edges with the gray ones.

However, considering such alternating paths of fat edges brings up one issue: As, as is shown

in Figure 3.3(a), the alternating paths that originate at agents p1 and p2 end at two distinct

gray thin edges. Consequently, if we were to include both of these edges into our matching,

then we would have to guarantee that we will not use the same fat item to satisfy two different

agents. In order to do this, we will include the gray edges that contain agents q1 and q2 into

our partial allocation, only if the alternating paths that end in these agents are vertex-disjoint,

as is the case in Figure 3.3(c).
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Figure 3.3: An illustration of our combinatorial algorithm. In this figure, boxes correspond to
players and circles correspond to resources.

Next, as we have solved the problem of deciding if we can update our partial matching by

replacing white edges with gray ones, the question that arises is when should we do this. As

with our simpler algorithm, we will employ the strategy of lazy updates. In other words, we will

replace the white edges of some layer with gray ones (we collapse a specific layer), only if this

would mean that a significant amount of the white edges are replaced. Replacing a significant

amount of white (i.e., blocking) edges then implies that we make significant progress towards

matching agent p.

Finally, after we update our partial allocation, by inserting the gray edges containing agents q1

and q2, inserting the gray fat edges that belong to the corresponding alternating paths, and

removing the white fat edges that belong to the corresponding alternating paths, we free up a

significant amount of items of edge ep . Hence, we choose a subset of the items contained in

ep , whose total value is at least τ/13, and we include it in our partial allocation. At this point,

we have extended our partial allocation to include one more agent, namely, agent p.

In the following section, we proceed to formally describe the algorithm behind Lemma 3.4.1,
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after first defining some necessary concepts.

3.4.2 Combinatorial Algorithm

As in Section 3.3, we will design a local search algorithm whose purpose is to extend a given

partial matching to include one more agent. Not surprisingly, the way our algorithm will

achieve this is by constructing a layered hypergraph of addable and blocking edges. Further-

more, in order to handle fat items, our algorithm will employ disjoint path networks in order

to keep track of which updates to our partial matching are possible. Before formally describing

our algorithm, we first need to formalize all of the above concepts.

Parameters Throughout the description of our algorithm, we will use the following parame-

ters:

• ρ = 1/β= 1
2(3+�10)+ε is the approximation guarantee of our algorithm.

• α= 2 is the parameter that determines the how greedy our agents are.

• μ= ε/100 is the parameter that determines the laziness of our updates.

Thin and Fat Items In this context, we will need to redefine what a thin and a fat item (or

edge) is:

Definition 3.4.1. A thin item is an item whose value is at most τ/β; furthermore, we denote the

thin items by Rt , and the fat items R \Rt by R f .

Definition 3.4.2. A thin edge is a pair (p,R), where p is an agent and R is an inclusion-wise

minimal set of thin items p is interested in, of total value at least τ/β.

Definition 3.4.3. A fat edge is a pair (p, { f }), where p is an agent and f is a fat items p is

interested in.

Definition 3.4.4. For any δ ≥ 1, we call an edge (p,R) a δ-thin edge, or a δ-edge, if R is an

inclusion-wise minimal set of thin items that p is interested in, of total value at least δτ.

Similar to Remark 3.3.1, we have the following:

Remark 3.4.1. A δ-edge contains items of total value at most τ
δ + τ

β , due to its minimality.

Furthermore, given a thin β-edge (p,R), any strict subset of R contains items of total value at

most τ/β.

Similar to Section 3.3, we can now define what a partial matching is:
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Definition 3.4.5. A partial matching M is a set of edges of total value at least τ/β, such that no

two edges in M contain intersecting items, and no two edges in M contain the same agent.

We will say that M matches agent p if M contains an edge that includes p.

Disjoint Path Networks As we discussed in the overview of our combinatorial algorithm,

we need a way to ensure that the alternating paths we use to update our partial matching are

disjoint. We say that two paths are disjoint if they are vertex-disjoint. To do so, we employ a

structure called disjoint path networks.

Given a partial matching M , let HM = (P ∪R f ,EM ) be the directed graph defined as follows:

There is a vertex for each agent in P and each fat item in R f ; and, there is an arc from an

agent in p ∈P to a fat item f ∈R f if p is interested in f unless the edge (p, { f }) appears in M ,

in which case there is an arc ({ f }, p). Note that the graph HM depends only on the assignment

of fat items to agents in M .

Now, let S,T ⊆P be a set, respectively, of sources and sinks that are not necessarily disjoint.

Let FM (S,T ) denote the flow network we obtain if we place unit capacities on the vertices of

HM ; and use S and T as sources and sinks, respectively. Furthermore, let DPM (S,T ) denote

the value of an optimal solution, i.e., the maximum number of disjoint paths from the sources

S to the sinks T in the graph HM .

In our algorithm, S and T will contain only vertices in HM that correspond to agents in

P . However, to specify a sink we sometimes abuse notation and specify an edge as the

corresponding sink vertex can be deduced from it. For example, if we write DPM (X ,Y ), for

some set of agents X and some set of edges Y , then we mean the maximum number of disjoint

paths that start at an agent in X and end in an agent that appears in some edge in Y .

State of the Algorithm As in Section 3.3, we will formally define what state our algorithm is

in:

Definition 3.4.6. A state of the algorithm is a tuple (M , p0,	, {(A0,d0), . . . , (A	+1,d	+1)}, I ),

where:

• M is a partial matching.

• p0 is the agent we want to match.

• 	 is an index that keeps track of the depth of our search.

• For all i ≤ 	+1, (Ai ,di ) consists of a set of α-edges Ai and a positive integer di .

• I is a set of α-edges.
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As in the algorithm in Section 3.3, the edges in some Ai correspond to edges we would like to

include into our matching: Naturally, their inclusion might be blocked by edges that already

exist in our partial matching. Thus, for i > 0, let Bi be the set of edges of M that share items

with at least one edge in Ai ; we conventionally set B0 = {(p0,�)}. Furthermore, I will contain

the edges we would like to include into our matching, that contain a significant amount of

items that do not appear in any edge in M (more specifically, I contains α-edges that contain

items that do not appear in M of total value at least τ/β). Finally, di is a number that is not

required to formally state our algorithm, but whose use will be convenient in our analysis;

it corresponds to the number of edges in A≤i ∪ I that we could insert into our matching by

making use of disjoint paths.

We remark that, as in the algorithm in Section 3.3, even though we define (Ai ,di ) for all

i ≤ 	+1, A	+1 will be non-empty (and d	+1 will be non-zero) only during the first phase of

each iteration, and not used in the second phase of the iteration.

As in Remark 3.3.2, we maintain the following property of M :

Remark 3.4.2. M is a partial matching that only contains β-edges and fat edges.

Using the definition of the state of the algorithm, we can now define what is a layer in our

combinatorial algorithm:

Definition 3.4.7. Given a state of the algorithm, we let Li = (Ai ,Bi ,di ) denote the i -th layer of

our algorithm. Furthermore, let L = {L0, . . . ,L	+1}.

Naturally, we will call L the layered hypergraph maintained by our algorithm.

Canonical Decompositions We proceed to define the next concept necessary for describing

our combinatorial algorithm. Recall that we denote ∪i≤t Si by S≤t , for some sequence of sets

S0, . . .St , and that Pi denotes the agents that appear in Bi . Moreover, for set S of edges, we use

P (S) to denote the set of agents that appear in an edge in S, and we use R(S) to denote the

set of items that appear in a set of edges S.

Definition 3.4.8 (Canonical Decomposition of I ). Consider some state of the algorithm

(M , p0,	, {(A0,d0), . . . , (A	+1,d	+1)}, I ). We call a collection of disjoint subsets {I0, I1, . . . , I	} of I

a canonical decomposition if it satisfies the following conditions:

1. For i = 0,1, . . . ,	, |I≤i | = DPM (P≤i , I≤i ) = DPM (P≤i , I ).

2. There exists an optimal solution W to FM (P≤	, I ) such that, for i = 0,1. . . ,	, |Ii | paths in

W go from agents Qi ⊆ Pi to the sinks in Ii . We denote these paths by Wi . We also refer to

W as the canonical solution corresponding to the decomposition.

As we will see later on, canonical decompositions and solutions can be computed in polyno-

mial time.
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The Algorithm for General Instances As in Section 3.3, we proceed to define what an

addable, immediately addable, and blocking edge is:

Definition 3.4.9. Given a state of the algorithm, we call an α-edge e = (p,R) addable, if R does

not intersect any edge in A≤	+1 ∪B≤	∪ I and DPM (P≤	, A≤	+1 ∪ I ∪ {e}) > DPM (P≤	, A≤	+1 ∪ I ).

Definition 3.4.10. Given a state of the algorithm, we call an addable edge e = (p,R) immedi-

ately addable, if there exists R ′ ⊆ R such that the total value of items in R ′ is at least τ/β, and

none of the items in R ′ appear in any edge in M.

Definition 3.4.11. Given a state of the algorithm, we call an edge e ∈ M that belongs to some

Bi a blocking edge; similarly, given an edge e ′ that belongs to some Ai and an edge e ∈ M that

shares items with e ′, we will say that e blocks e ′.

Given the above definitions, we can define what a collapsible layer is:

Definition 3.4.12. Given a state of the algorithm (M , p0,	, {(A0,d0), . . . , (A	+1,d	+1)}, I ), and a

canonical decomposition {I0, I1, . . . , I	}, we call a layer Li collapsible, if |Ii | ≥μ|Pi |.

Finally, we are ready to describe the algorithm behind Lemma 3.4.1: This algorithm takes a

partial matching M and augments it to one of larger size. We start with a partial matching

M that assigns the maximum possible number of fat edges. Note that this can be done in

polynomial time by simply solving the maximum matching problem in the bipartite graph

where one partition corresponds to P and the other to R f , and edges signify an agent is

interested in a fat item. The input to our algorithm is then such a partial matching M .

Now, when we want to extend M , we do the following:

Initialization: Select an agent p0 not matched by M . The goal is to extend M so as to also match p0 in

addition to the agents already matched by M . Set I ←�, A0 ←� and d0 ← 0. The first

layer L0 is now defined by the tuple (A0,B0,d0). Set 	← 0.

Iterative step: The iterative step consists of two phases, the first of which is always executed:

Build Phase: Set A	+1 ←�. While there exists an addable edge e, we add it to I if e is imme-

diately addable, otherwise to A	+1. When this is no longer possible, set d	+1 ←
DPM (P≤l , A≤l+1 ∪ I ). Now set the new layer L	+1 ← (A	+1,B	+1,d	+1), increment 	

and proceed to the next phase of the iteration.

Collapse Phase: Compute the canonical decomposition I0 ∪·· ·∪ I	 of I . While there exists a col-

lapsible layer, let Lt be the earliest collapsible layer and do the following:

i. Compute the optimal solution W corresponding to the canonical decomposi-

tion of I and compute an optimal solution X to FM (P≤t−1, A≤t ∪ I≤t−1) whose

paths are disjoint from Wt , where Wt are the |It | paths that go from the agents

in Qt ⊆ Pt to sinks in It . For each path Π in Wt that ends at an agent pe with

an edge (pe ,R) ∈ It :

43



Chapter 3. Restricted Max-Min Fair Allocation

(Alternating along path Π) A. Set M ← M \ {(p, { f }) | ( f , p) ∈Π}∪ {(p, { f }) | (p, f ) ∈Π}.

B. Remove from M the edge containing the source of the path Π.

C. Add to M some β-edge (pe ,R ′), where R ′ ⊆ R is a set of thin items that

does not appear in any edge in M .

ii. Set I to be I0 ∪·· ·∪ It−1. For each edge a = (p,R) ∈ At that contains items of

total value at least τ/β that do not appear in any edge in M , set At ← At \ {a};

then, if X has a path that ends at a, set I ← I ∪ {a}3.

iii. Discard all the layers with index greater than t and set 	 to be t . Repeat the

collapse phase until there are no collapsible layers.

Repeat the iterative step until p0 is matched by M .

Similar to the algorithm we introduced in Section 3.3, our combinatorial algorithm preserves

the following invariants:

1. For i = 0, . . . ,	, Ai is a set of thin α-edges and each α-edge (p,R) ∈ Ai has R ∩R(A≤i ∪
B≤i−1 ∪ I \ {(p,R)}) =� (its items are not shared with edges from earlier iterations, edges

in Ai , or edges in I ).

2. For any edge (p,R) ∈ I , it holds that R ∩R(A≤	∪ I \ {(p,R)}) =� and R contains items of

total value at least τ/β that do not appear in M .

The similarities between these invariants and those of the simpler algorithm follow from the

same basic ideas. However, as the combinatorial algorithm we present in this section is more

involved, its analysis requires more invariants that we present in the subsequent sections.

Before proceeding with the analysis of our combinatorial algorithm, we explain its steps

in more detail and why the algorithm satisfies the above invariants. The algorithm begins

with a partial matching M and an agent p0 that we want to include in our partial matching.

Furthermore, we make sure that M contains a maximum matching between fat items and

agents. Every iteration of our algorithm involves two main phases: the build phase, and the

collapse phase.

During the build phase of layer 	+1, the algorithm finds, for the agents in P	, thin addable

α-edges that we then insert into either I (if the edge is immediately addable) or to A	+1. By

the design of our combinatorial algorithm, any edge that is inserted into A	+1 will be disjoint

from edges in A≤	+1 ∪B≤	∪ I ; the same holds for any edge (p,R) that is inserted into I , while

in addition we have items of total value at least τ/β that are disjoint from the items appearing

in edges in M . Therefore, the two invariants are preserved during the build phase.

3Notice that, after being removed from At and before being inserted into I , a actually satisfies the conditions of
an immediately addable edge.
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Furthermore, edges inserted into A	+1 or I need either to contain an agent from P≤	, or to

be the final edge in an alternating path that includes fat edges originating at an agent in P≤	.

Even though we will not store such alternating paths explicitly, according to the definition

of addable edges, it is required that after we insert any such thin α-edge into A	+1 or I , the

value of the flow network DPM (P≤	, A≤	+1 ∪ I ) be increased. This will ensure that there are

enough disjoint paths of fat edges to permit the inclusion of all such thin edges into our partial

matching M .

After the algorithm has finished the build phase, it proceeds to the collapse phase. We will

describe this phase in more detail and show that it maintains a valid matching and that it does

not introduce any violations of the two invariants.

The first step of the collapse phase is to compute a canonical decomposition of I and a

corresponding canonical solution W . Suppose that we have |It | ≥ μ|Pt | and that the algo-

rithm collapses layer t . The edges in It are the edges that we, using the paths of Wt , will

insert into our partial matching. Specifically, for each path Π of Wt , the algorithm proceeds

as follows. By definition of the sources and the sinks, Π is a path that starts with an agent

ps ∈ Pt and ends with an agent pe such that (pe ,R) ∈ It . Between ps and pe , the path al-

ternates between fat edges that belong to M and fat edges we want to insert into M , i.e.,

Π= (ps = p1, f1, p2, f2, . . . , pk , fk , pk+1 = pe ) where ps is interested in f1, pk+1 is currently as-

signed fk , and pi is currently assigned fi−1 and interested in fi for i = 2, . . . ,k. To update

the matching, we find a β-edge (pe ,R ′) with R ′ ⊆ R that is disjoint from the items of match-

ing M (guaranteed to exist by the second invariant) and we let (ps ,Rs) denote the edge in

Bt ⊆ M incident to agent ps . Step (i) of the collapse phase then updates the matching by

inserting (pe ,R ′) and (ps , f1), (p2, f2), . . . , (pk , fk ) to the matching while removing (ps ,Rs) and

(p2, f1), (p3, f2), . . . , (pt , fk ). This process is called alternating along path Π.

As a result of the collapse phase, some of the items of edges in At are freed up, and we move

these edges of At that have τ/β free items to I (Step (ii)). Finally, we discard all layers above

the one we collapsed. Let us now see why our first invariant is upheld after the collapse phase.

When we collapse layer t , we might remove edges from At , we discard all At ′ for t ′ > t and

we preserve At ′ for t ′ < t . As the first invariant was upheld before the collapse phase, for

any t ′ ≤ t there were no edges in At ′ that intersected any edge in A≤t ′ , B≤t ′−1 or I0 ∪ . . . It−1.

Furthermore, as any edge that was inserted into I during Step (ii) previously belonged to At ,

no edge inserted into I will intersect any edge in A≤t ∪B≤t−1 ∪ I0 ∪ . . . It−1. Therefore, after the

collapse phase, for any t ′ ≤ t every edge in At ′ is disjoint from edges in A≤t ′ ∪B≤t ′−1 ∪ I , and

the first invariant holds.

After the collapse phase, I contains the edges that belonged to I0∪. . . It−1 (call them old edges),

plus the edges that were inserted during Step (ii) (call them new edges). Concerning any old

edge e, as the second invariant held before the collapse phase, and as during the collapse

phase for any t ′ ≤ t we introduce no new edges into At ′ , the items of e continue to be disjoint

from the items of A≤t and the old edges. Moreover, e still contains items that, of total value at
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least τ/β, are disjoint from the items in M , as the items of the edges added to the matching

during the collapse phase are disjoint from R(e), where we use that the second invariant

held before this iteration, i.e., that the items of edges in I are disjoint. Hence, to verify the

second invariant we need to verify that any new edge (p,R) has items, of total value at least

τ/β, disjoint from the items in M (this follows immediately from Step (ii) of the collapse phase)

and to verify that its items are disjoint from the items of all old and other new edges and edges

in A≤t . This follows directly from the fact that any new edge belonged to At before the collapse

phase and that the first invariant held before the collapse phase. Hence, the second invariant

is satisfied after the collapse phase.

Now, let us see why the output of our combinatorial algorithm is a partial matching that

matches agent p0. Observe that we only update our partial matching during Step (i) and, as

explained above, we alternate along all paths in Wt during this step. As these paths are vertex-

disjoint and the edges in I have disjoint items (by the second invariant), these updates do not

interfere with each other. Moreover, note that when we alternate along a path, all previously

matched agents remain matched (albeit to new edges), and all fat items remain matched. This

means that our algorithm maintains a matching of the agents that were matched by the input,

and that this matching remains one of the many that maximize the number of assigned fat

items. By iterating until an edge that contains p0 is inserted into M , it follows that when our

combinatorial algorithm terminates, the output will be a valid matching that also matches p0,

in addition to the agents that were matched by the original matching that was given as input.

In the subsequent sections, we prove that the running time of each iteration is polynomial,

and that the total number of executed iterations is also polynomial.

3.4.3 Running-Time Analysis of each Iteration

We have yet to prove that if C-LP(τ) is feasible, the above algorithm extends M in polynomial

time. First of all, let us prove that every single iteration can be executed in polynomial time.

We begin by studying the build phase. In this phase, in each iteration of the while-loop, we

consider an addable edge (p,R). In doing so, we need to check whether adding p as a sink

to our flow network strictly increases its value, i.e., if the number of disjoint paths from the

sources in P≤	 to the sinks in A≤	+1 ∪ I ∪ {(p,R)} increases. Both these operations can be done

in polynomial time: Because (1) verifying whether such a set R exists for an agent p amounts

to simply calculating the total value of the items, currently not in the other relevant edges, that

p is interested in; and as (2) verifying whether the flow network increases its value reduces to a

standard maximum flow problem.

Next, we study the collapse operation. Here, we have two non-trivial operations: computing a

canonical decomposition at the beginning of the collapse phase, and Step (i) of the collapse

phase:

Lemma 3.4.2. Given a state (M , p0,	, {(A0,d0), . . . , (A	+1,d	+1)}, I ) of the algorithm, we can

find a canonical decomposition of I and the corresponding canonical solution in polynomial
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time.

Proof. We construct an optimal solution W to the flow network FM (P≤	, I ) with sources P≤	
and sinks I iteratively. We compute the maximum flow X (0) in the network FM (P≤0, I ). Let

Q0 ⊆ P0 be the set of sources appearing in the flow solution X (0). Observe that this solution

X (0) is also a valid flow in the network FM (P≤1, I ). Therefore, by using an augmenting flow

algorithm, we can augment the flow X (0) to a maximum flow X (1) in the network FM (P≤1, I ).

Let Q1 ⊆ P1 be the set of additional sources appearing in the flow solution X (1). We use here an

important property of the flow augmentation process, that states that the set of sources in X (1)

is precisely the disjoint union Q0 ∪Q1. In other words, a vertex, appearing as a source of a flow

path in a solution, continues to be present as a source of a flow path after an augmentation

step. Continuing this process, we end up with a flow solution X (	) in the network FM (P≤	, I ).

Let Wi be the flow paths in X (	) that serve the sources Qi ⊆ Pi for each i = 0, . . . ,	. Additionally,

let Ii ⊆ I denote the sinks of Wi .

By construction, |I≤i | = DPM (P≤i , I≤i ). Further, if DPM (P≤i , I≤i ) < DPM (P≤i , I ) then this im-

plies that X (i ) is not a maximum flow in FM (P≤i , I ). Hence, it can be augmented by one, thus

contradicting the definition of X (i ).

The flow paths W0,W1, . . . ,W	 collectively form the flow solution X (	) that is an optimal solu-

tion to FM (P≤	, I ). Thus, {I0, . . . , I	} forms a canonical decomposition (with the corresponding

canonical solution W0, . . . ,W	). It is also clear that the process outlined above, for the realiza-

tion of this decomposition, runs in polynomial time as the encountered flow networks have

unit capacities.

Next, we prove that Step (i) of the collapse phase can be executed in polynomial time:

Lemma 3.4.3. Consider a state (M , p0,	, {(A0,d0), . . . , (A	+1,d	+1)}, I ) of the algorithm and

a canonical decomposition {I0, I1, . . . , I	} of I together with the canonical solution W . For

i = 0, . . . ,	, let Wi be the |Ii | paths that go from the agents in Qi ⊆ Pi to sinks in Ii . Then, for

i = 0,1, . . . ,	−1, we can find in polynomial time an optimal solution X to FM (P≤i , A≤i+1 ∪ I≤i )

that is also an optimal solution to FM (P≤i , A≤i+1∪ I ) whose paths are disjoint from the paths in

Wi+1 and additionally uses all the sinks in I≤i .

Proof. Consider a fixed i . We form an optimal solution X to FM (P≤i , A≤i+1 ∪ I≤i ); it is also

an optimal solution to FM (P≤i , A≤i+1 ∪ I ), its paths are disjoint from the paths in Wi+1 and

it uses all the sinks in I≤i . The initial solution will be the set of unit flow paths W≤i from

the canonical solution W that has cardinality |I≤i |. We now augment this solution by using

augmenting paths to the set of sinks A≤i+1. As, throughout this execution, each vertex in

I≤i will be used as a sink by some path, X will use all these sinks. Further, the procedure to

calculate X clearly runs in polynomial time. We verify the remaining properties of X . First,

suppose towards contradiction that some iteration used an augmenting path P intersecting a

path in Wi+1. However, this would imply that there exists an augmenting path that uses a sink
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in Ii+1. We could then increase the set of disjoint paths from agents in P≤i to sinks in I to be

greater than I≤i which contradicts the property DPM (P≤i , I≤i ) = DPM (P≤i , I ) of the canonical

decomposition. Similarly, suppose X is not an optimal solution to FM (P≤i , A≤i+1 ∪ I ). Then

there exists an augmenting path to an edge in I \ I≤i which again contradicts the property

DPM (P≤i , I≤i ) = DPM (P≤i , I ) of the canonical decomposition.

Finally, as during a collapse operation we can collapse at most |P | layers, it follows that any

iteration of our combinatorial algorithm terminates in polynomial time.

3.4.4 Additional Invariants of Combinatorial Algorithm

In Section 3.4.2 we listed, along with the original description of our algorithm, certain in-

variants our combinatorial algorithm preserves that are similar to the simpler algorithm. We

argued why they hold, and how these invariants imply that the output of our algorithm is an

extended partial matching. In this section, we list two new invariants that will facilitate our

polynomial running-time proof.

Lemma 3.4.4. At the beginning of each iteration:

1. DPM (P≤	, I ) = |I |.

2. DPM (P≤i−1, A≤i ∪ I ) ≥ di for each i = 1, . . . ,	.

Proof. We prove the lemma by induction on the number of times the iterative step has been

executed. We observe that both invariants trivially hold before the first execution of the

iterative step. We assume that they are true before the r -th execution of the iterative step. We

now verify them before the r +1-th iterative step. We technically prove the stronger statement

that they hold after the build phase and after each iteration of the collapse phase.

(1) and (2) hold after the build phase. Let L	+1 denote the layer that was constructed during

the build phase. We start by verifying (1). If no edge is added to I during this phase, then

|I | ≥ DPM (P≤	+1, I ) ≥ DPM (P≤	, I ) = |I |. We suppose that a1, . . . , ak were the edges added to

the set I in that order. When edge ai was added to the set I , from the definition of addable

edges we have that

DPM (P≤	, A≤	∪ I ∪ {a1, . . . , ai−1}∪ {ai }) > DPM (P≤	, A≤	∪ I ∪ {a1, . . . , ai−1}),

which then implies that

DPM (P≤	, I ∪ {a1, . . . , ai−1}∪ {ai }) > DPM (P≤	, I ∪ {a1, . . . , ai−1})

To see this implication, observe that the first inequality implies that, for any flow in the network

FM (P≤	, A≤	∪ I ∪ {a1, . . . , ai−1}) (hence, for any flow in FM (P≤	, I ∪ {a1, . . . , ai−1})), there exists
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an augmenting path towards sink ai . Along with the induction hypothesis, these inequalities

imply that

DPM (P≤	+1, I ∪ {a1, . . . , ak }) ≥ DPM (P≤	, I ∪ {a1, . . . , ak }) = |I |+k = |I ∪ {a1, . . . , ak }|.

For (2), the inequality for i = 	+ 1 holds by the definition of d	+1 during this phase. The

remaining inequalities follow from the induction hypothesis since none of M ,P≤	 and A≤	
were altered during this phase and no elements from I were discarded.

(1) and (2) hold after each iteration of the collapse phase. If no layer is collapsed (i.e., there

is no It satisfying the condition of the while-loop), then there is nothing to prove. Now let t

denote the index of the layer that is collapsed. Let (M , p0,	, {(A0,d0), . . . , (At ′ ,dt ′)}, I ) denote

the state of the algorithm before collapsing layer t that satisfy (1) and (2) (t ′ ≥ t and t ′ = 	+1 if

this is the first iteration of the collapse phase). Let I ′ denote I0 ∪·· ·∪ It−1 ∪ {a1, . . . , ak } where

a1, . . . , ak are the edges added to I in Step (ii) of the collapse phase and let M ′ denote the partial

matching after Step (i.C) of the collapse phase. We have that (1), DPM ′(P≤t , I ′) = |I ′|, now

follows from Lemma 3.4.3. Indeed, the solution X used all the sinks in I0 ∪ . . . It−1 ∪ {a1, . . . , ak }

which equals I ′; and these paths form a solution to FM ′(P≤t , I ′) as they are disjoint from

the paths in Wt . Notice that we do not use the induction hypothesis in this case, i.e., that

(M ,	, {L0, . . . ,Lt ′}, I ) satisfied (1) and (2).

For (2), we need to verify inequalities for i = 1, . . . , t . When i < t , none of the sets Ai were

altered during this iterative step. Furthermore, although M and I change during the collapse

phase, according to Lemma 3.4.3 and the definition of the collapse phase, this change cannot

reduce the number of disjoint paths from P≤i−1 to A≤i ∪ I and therefore (2) remains true by the

induction hypothesis. Indeed, we select X in Step (i) of the collapse phase so as to make sure

that the update of the matching along the alternating paths in Wt does not interfere with an

optimal solution to the flow network with sources P≤i−1 and sinks A≤i ∪ I . For i = t , the claim

again follows since the number of disjoint paths from P≤t−1 to A≤t ∪ I cannot reduce because

of Step (ii) of the collapse phase in the algorithm that maintains X as a feasible solution by the

same arguments as for (1).

3.4.5 Bounding the Total Number of Iterations

In this final section, we will use the above invariants to show that our augmenting algorithm

performs a polynomial number of iterations, assuming C-LP(τ) is feasible. We begin with two

lemmas that show that di cannot be too small. The first holds in general, and the second holds

if C-LP(τ) is feasible.

Lemma 3.4.5. At the beginning of each iteration, we have di ≥ |A≤i | for every i = 0, . . . ,	.

Proof. We prove this by induction on the variable r ≥ 0 that counts the number of times the

iterative step has been executed. For r = 0 the statement is trivial. Suppose that it is true
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for r ≥ 0. We shall show that it holds before the r +1-th iterative step. If the r -th iteration

collapses a layer, then no new layer was added, and since di ’s remain unchanged and A≤i can

only decrease, the statement is true in this case.

Now, suppose that no layer was collapsed in this iteration and let L	+1 = (A	+1,B	+1,d	+1) be

the newly constructed layer in this phase. Again, we have di ≥ |Ai | for i = 0, . . . ,	 since none

of these quantities are changed by the build phase. Let us now verify that d	+1 ≥ A	+1. Let

A	+1 = {a1, . . . , ak } denote the set of edges added to A	+1 indexed by the order in which they

were added. When edge ai was added to the set A	+1, according to the build phase of our

combinatorial algorithm, we have that

DPM (P≤	, A≤	∪ I ∪ {a1, . . . , ai−1}∪ {ai }) > DPM (P≤	, A≤	∪ I ∪ {a1, . . . , ai−1}).

Using (2) of Lemma 3.4.4 and the induction hypothesis,

DPM (P≤	−1, A≤	∪ I ) ≥ d	 ≥ |A≤	|.

Using the previous inequalities,

d	+1 = DPM (P≤	, A≤	+1 ∪ I ) ≥ |A≤	|+k ≥ |A≤	+1|.

Lemma 3.4.6. Assuming C-LP(τ) is feasible, at the beginning of each iteration

DPM (P≤i−1, A≤i ∪ I ) ≥ di ≥ γ|P≤i−1|, where γ= 1

3
(
�

10−2),

for every i = 1, . . . ,	.

Proof. We will prove that di ≥ γ|P≤i−1| for i = 1, . . . ,	 as Lemma 3.4.4(2) then implies the claim.

Notice that di is defined only at the time when layer Li is created and not altered thereafter. So

it suffices to verify that, assuming di ≥ γ|P≤i−1| for i = 1, . . . ,	, then for the newly constructed

layer L	+1, d	+1 ≥ γ|P≤	| also.

Suppose towards contradiction that L	+1 is a newly constructed layer (and that no layer was

collapsed), such that

d	+1 = DPM (P≤	, A≤	+1 ∪ I ) < γ|P≤	|.

Then, as no layer was collapsed during the collapse phase of our algorithm, we have that

|Ii | <μ|Pi | for i = 0, . . . ,	, where {I0, . . . , I	} is the canonical decomposition of I considered by

the algorithm. Together with Lemma 3.4.4(1), this implies

|I | = DPM (P≤	, I ) <μ|P≤	|.
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Moreover, by Lemma 3.4.5 we have

|A≤	+1| ≤ d	+1 = DPM (P≤	, A≤	+1 ∪ I ) < γ|P≤	|.

Hence, we have that |A≤	+1 ∪ I | < (μ+γ)|P≤	|.

We devote the rest of the proof to showing that this causes the dual of the C-LP(τ) to become

unbounded, which leads to the required contradiction by weak duality. That is, we can then

conclude that if C-LP(τ) is feasible then d	+1 ≥ γ|P≤	|.

Consider the flow network FM (P≤	, A≤	+1 ∪ I ∪Z ) with P≤	 as the set of sources and A≤	+1 ∪
I ∪Z as the collection of sinks where,

Z := {p ∈P | ∃R ⊆R : R ∩R(A≤	+1 ∪ I ∪B≤	) =� and
∑
j∈R

vp j ≥ τ/α}.

Since, during the construction of layer 	+1 we could not insert any more edges into A	+1 and I ,

the maximum number of vertex disjoint paths from P≤	 to the sinks equals DPM (P≤	, A≤	+1∪I )

which, by assumption, is less than γ|P≤	|. Therefore, by Menger’s theorem there exists a set

K ⊆V of vertices of cardinality less than γ|P≤	| such that, if we remove K from HM , the sources

P≤	 \ K and the sinks are disconnected, i.e., no sink is reachable from any source in P≤	 \ K .

We now claim that we can always choose such a vertex cut so that it is a subset of the agents.

Claim 3.4.1. There exists a vertex cut K ⊆P separating P≤	 \ K from the sinks of cardinality

less than γ|P≤	|.

Proof. Take any minimum cardinality vertex cut K separating P≤	 \ K from the sinks. We

already saw that |K | < γ|P≤	|. Observe that every fat item that is reachable from P≤	 \ K must

have outdegree exactly one in HM . It cannot be more than one since M is a collection of

disjoint edges, and it cannot be zero since we could then increase the number of fat edges in

M , which contradicts that we started with a partial matching that maximized the number of

fat edges. Therefore in the vertex cut K , if there are vertices corresponding to fat items, we can

replace each fat item with the unique agent to which it has an outgoing arc, in order to obtain

another vertex cut also of the same cardinality that contains only vertices corresponding to

agents.

Now call the induced subgraph of HM −K on the vertices that are reachable from P≤	 \ K as

H ′. Note that by the definition of K , H ′ will not contain any sinks. Using H ′, we define the

assignment of values to the dual variables in the dual of C-LP(τ) as follows:
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yi :=
⎧⎨
⎩(1−1/α) if agent i is in H ′,

0 otherwise,

z j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v j /τ if j is a thin item that appears in A≤	+1 ∪ I ∪B≤	,

(1−1/α) if j is a fat item in H ′,

0 otherwise.

We first verify that the above assignment is feasible. Since all the dual variables are non-

negative we only need to verify that yi ≤ ∑
j∈C z j for every i ∈ P and C ∈ C (i ,τ). Consider

an agent i that is given a positive yi value by the above assignment. Let C ∈ C (i ,τ) be a

configuration for agent i of value at least τ; we will call C thin if it only contains thin items,

and fat otherwise. There are two cases we need to consider.

Case 1. C is a thin configuration. Suppose that
∑

j∈C z j < (1−1/α). Then, by our assignment of

z j values, this implies that there exists a set R ⊆C such that R is disjoint from the items

in A≤	+1 ∪ I ∪B≤	 and
∑

j∈R v j ≥ τ/α. Together this contradicts the fact that H ′ has no

sinks, since i is then a sink (it is in Z ).

Case 2. C is a fat configuration. Let j be a fat item in C . Since i was reachable in H ′, all the

sources in H ′ are assigned thin edges in M (which implies they have no incoming arcs),

and K is a subset of the agents, it follows that j is also present in H ′. Thus, by our

assignment, z j = 1−1/α.

Having proved that our assignment of yi and z j values constitutes a feasible solution to the

dual of C-LP(τ), we now compute the objective function value
∑

i yi −∑
j z j of the above

assignment. To do so, we adopt the following charging scheme: for each fat item j in H ′, we

charge its z j value against the unique agent i such that the outgoing arc ( j , i ) belongs to H ′.
The charging scheme accounts for the z j values of all the fat items except for the fat items

that are leaves in H ′. There are at most |K1| such fat items, where K1 ⊆ K is the set of agents to

which the uncharged fat items have an outgoing arc. Moreover, note that K1 only consists of

agents that are matched in M by fat edges. Since P≤	 does not have any agents matched by fat

edges in M , no agent in K2 := P≤	∩K is present in K1, i.e., K1 ∩K2 =�. Finally, note that no

agent in P≤	 \ K = P≤	−K2 has been charged. Thus, considering all agents in P but only fat

configurations, we have

∑
i∈P

yi −
∑

j∈R f

z j ≥ (1−1/α)(|P≤	|− |K2|)− (1−1/α)|K1|

= (1−1/α)
(|P≤	|− (|K1|+ |K2|)

)
> (1−1/α)(1−γ)|P≤	|.
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We now compute the total contribution of thin items, i.e.,
∑

j∈Rt
z j . The total value of thin

items from the edges A≤	+1 and the edges I is at most (1/α+ 1/β)|A≤	+1 ∪ I |, due to the

minimality of thin α-edges. Whereas, since B≤	 ⊆ M , B≤	 only contains β-edges (see Remark

3.4.2). Therefore, the total value of items appearing only in edges in B≤	 is at most (1/β)(|B≤	|−
1) < (1/β)(|P≤	|)4, by the minimality of β-edges (see Remark 3.4.1). Indeed, if an edge in B	

has more than τ/β items not appearing in an edge in A≤	+1 ∪ I then those items would form a

thin β-edge which contradicts its minimality.

Using |A≤	+1 ∪ I | < (μ+γ)|P≤	| we have

∑
i∈P

yi −
∑
j∈R

z j > (1−γ)

(
1− 1

α

)
|P≤	|− (μ+γ)

(
1

α
+ 1

β

)
|P≤	|−

1

β
|P≤	|.

Recall that, given any feasible solution to the dual of C-LP(τ), we can scale it by any positive

number, and it will remain feasible: This implies that if the optimum of the dual of C-LP(τ) is

positive, then the dual of C-LP(τ) is unbounded. Hence, the dual of C-LP(τ) is unbounded

when

(1−γ)

(
1− 1

α

)
− (μ+γ)

(
1

α
+ 1

β

)
− 1

β
≥ 0 ⇔ γ≤ αβ− (1+μ)(α+β)

αβ+α
.

Recall that β= 2(3+�
10)+ε, α= 2, and μ= ε/100. For ε> 0 the last inequality is equivalent to

206
�

10+3ε≤ 676, which is valid for ε≤ 1.

We remark that the above lemma states the only condition that needs to be satisfied for the

algorithm to run in polynomial time. Therefore, in a binary search over the possible values of

τ, the algorithm can abort if the above condition is violated at any time, because that violation

would imply that the configuration-LP is infeasible; otherwise it will terminate in polynomial

time.

We now use the previous lemma to show that, if we create a new layer, then the number of

agents in that layer will increase rapidly. This will enable us to bound the number of layers to

be logarithmic and also to bound the running time.

Lemma 3.4.7 (Exponential growth). At each execution of the iterative step of the algorithm, we

have

|Pi | ≥ δ|P≤i−1|, where δ := ε/100,

for each i = 1, . . . ,	.

Proof. Suppose towards contradiction that the statement is false and let t be the smallest

index that violates it, i.e., |Pt | < δ|P≤t−1|. Due to the definition of collapsible layers, |Ii | <μ|Pi |
4Remember B0 is conventionally set to {(p0,�)}.
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for 0 ≤ i ≤ t . Hence,

|I≤t | <μ|P≤t | <μ(1+δ)|P≤t−1|.

Further,

|A≤t |+ |I≤t | ≥ DPM (P≤t−1, A≤t ∪ I≤t ) = DPM (P≤t−1, A≤t ∪ I ) ≥ γ|P≤t−1|,

where the first inequality is trivial, the equality follows from the definition of canonical de-

compositions (Definition 3.4.8), and the last inequality follows from Lemma 3.4.6. This gives

us

|A≤t | >
(
γ−μ(1+δ)

) |P≤t−1|.

We now obtain an upper bound on the total number of edges in A≤t by counting the value of

items in each Ai and Bi ; observe that any thin β-edge has items of total value at most 2τ/β

due to minimality, whereas any thin α-edge in A≤t has items of value at least τ/α−τ/β that

are blocked, i.e., appear in some edge in B≤t (since otherwise this edge would be in I instead

of A≤t )5. Hence,

|Ai |
(
τ/α−τ/β

)≤ |Bi |
(
2τ/β

) summing over i and rearranging=⇒ |A≤t | ≤ |B≤t | 2α

β−α
.

Since |B≤t | < |P≤t | and |P≤t | < (1+δ)|P≤t−1| we have the bound

|A≤t | < 2α

β−α
(1+δ)|P≤t−1|.

Therefore we will have a contradiction when

2α

β−α
(1+δ) ≤ γ− (1+δ)μ.

It can be verified that for any ε> 0 the above inequality is equivalent to

22400+6
(
52+�

10
)
ε+3ε2 ≤ 9400

�
10,

which is true for ε ∈ [0,1] leading to the required contradiction.

We are now ready to prove that our algorithm executes a polynomial number of iterations. To

5Observe that all edges in Ai have all but at most τ/β items blocked. Otherwise, the edge is added to I in the
build phase; and if items have been freed up later, the edge is removed from Ai (and it can be added to I ) during
Step (ii) of the collapse phase.
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do this, we define the signature vector s := (s0, . . . , s	,∞), where

si := �log1/(1−μ)
|Pi |
δi+1

�

corresponding to the state (M , p0,	, {(A0,d0), . . . , (A	+1,d	+1)}, I ) of the algorithm. The signa-

ture vector changes as the algorithm executes. In fact, we prove that its lexicographic value

always decreases:

Lemma 3.4.8. Across each iterative step, the lexicographic value of the signature vector de-

creases. Furthermore, the coordinates of the signature vector are always non-decreasing.

Proof. We show this by induction as usual on the variable r that counts the number of times

the iterative step has been executed. The statement for r = 0 is immediate. Suppose it is

true for r ≥ 0. Let s = (s0, . . . , s	,∞) and s′ = (s′0, . . . , s′
	′ ,∞) denote the signature vector at the

beginning and at the end of the (r +1)-th iterative step. We consider two cases:

No layer was collapsed Let L	+1 be the newly constructed layer. In this case, 	′ = 	+1. By

Lemma 3.4.7, |P	+1| ≥ δ|P≤	| > δ|P	|. Clearly, s′ = (s0, . . . , s	, s′
	+1,∞) where ∞> s′

	+1 ≥ s′
	
= s	.

Thus, the signature vector s′ also has increasing coordinates and smaller lexicographic value

compared to s.

At least one layer was collapsed Let 0 ≤ t ≤ 	 be the index of the last layer that was collapsed

during the r -th iterative step. As a result of the collapse operation suppose the layer Pt

changed to P ′
t . Then we know that |P ′

t | < (1−μ)|Pt |. Indeed, during the collapse phase of

our combinatorial algorithm, at least a μ-fraction of the edges in Bt are replaced with edges

from I . Since none of the layers with indices less than t were affected during this procedure,

s′ = (s0, . . . , st−1, s′t ,∞) where s′t = �log1/(1−μ)
|P ′

t |
δt+1 � ≤ �log1/(1−μ)

(1−μ)|Pt |
δt+1 � ≤ �log1/(1−μ)

|Pt |
δt+1 �−1 =

st −1. This shows that the lexicographic value of the signature vector decreases, and that the

coordinates of s′ are non-decreasing follows from Lemma 3.4.7.

Finally, due to the above lemma, any upper bound on the number of possible signature vectors

is an upper bound on the number of iterations our combinatorial algorithm will execute; We

prove there is such a bound of polynomial size:

Lemma 3.4.9. The number of signature vectors is at most |P |O(1/μ·1/δ·log(1/δ)).

Proof. By Lemma 3.4.7, |P | ≥ P≤	 ≥ (1+δ)P≤	−1 ≥ ·· · ≥ (1+δ)	|P0|. This implies that 	 ≤
log1+δ |P | ≤ 1

δ log |P |, where the last inequality is obtained by using Taylor series, and that

δ ∈ [0,1/100].
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Now consider the i -th coordinate of the signature vector si . It can be no greater than

log1/(1−μ)
|P |
δi+1 . Using the bound on the index i and after some manipulations, we get

si ≤
(
log |P |+ (i +1)log

1

δ

)
1

log 1
1−μ

≤
(
log |P |+ (

1

δ
log |P |+1)log

1

δ

)
1

log 1
1−μ

= log |P | ·O
(

1

μδ
log

1

δ

)
,

where the final bound is obtained by again expanding using Taylor series around 0. Thus, if

we let U = log |P | ·O
(

1
μδ log 1

δ

)
be an upper bound on the number of layers and the value of

each coordinate of the signature vector, then the sum of coordinates of the signature vector is

always upper bounded by U 2.

Here, as in the simpler algorithm, we apply the bound on the number of partitions of an integer.

Recall that the number of partitions of an integer N can be upper bounded by eO(
�

N ) [20].

Since each signature vector corresponds to some partition of an integer at most U 2, we can

upper bound the total number of signature vectors by
∑

i≤U 2 eO(
�

i ).

Using the bound of U , we have that the number of signatures is at most |P |O(1/μ·1/δ·log(1/δ)).

As the number of possible signature vectors is polynomial, the number of iterations our

combinatorial algorithm will execute is also polynomial. Furthermore, as the running time of

each iteration is also polynomial, this completes the proof of Lemma 3.4.1, hence of Theorem

3.1.1.
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4 Scheduling Jobs with Uniform Smith
Ratios

The results of this chapter are based on a joint work with Ola Svensson and Jakub Tarnawski;

this work will be published in SODA 2017 [27].

4.1 Introduction

The problem we study is that of scheduling jobs on unrelated machines in order to minimize

the weighted sum of completion times. Formally, we are given a set M of machines, and

a set J of jobs, each with a weight w j ≥ 0, such that the processing time (also called size)

of job j on machine i is pi j ≥ 0. The objective is to find a schedule that minimizes the

weighted completion time,
∑

j∈J w j C j , where C j denotes the completion time of job j in

the constructed schedule. In the three-field notation used in scheduling literature [17], this

problem is denoted as R||∑w j C j .

The weighted completion-time objective, along with makespan and flow-time minimization,

is one of the most relevant and well-studied objectives for measuring the quality of service in

scheduling. Already in 1956, Smith [42] showed a simple rule for minimizing this objective on

a single machine: schedule the jobs in non-increasing order of w j /p j (where p j denotes the

processing time of job j on the single machine). This order is often referred to as the Smith

ordering of the jobs and the ratio w j /p j is called the Smith ratio of job j . In the case of parallel

machines, the problem becomes significantly harder. Already for identical machines (the

processing time of a job is the same on all machines), it is strongly NP-hard, and for the more

general unrelated machine model that we consider, the problem is NP-hard to approximate

within 1+ε, for a small ε> 0 [22].

Skutella and Woeginger [41] settled the approximability for identical machines by develop-

ing a polynomial time approximation scheme. That is, for every ε > 0, they gave a (1+ ε)-

approximation algorithm for minimizing the weighted sum of completion times on identical

parallel machines.

In contrast, there remains a notorious open problem in scheduling theory about settling the ap-
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proximability in the unrelated machine model (see e.g. “open problem 8” in [37]). First, Schulz

and Skutella [36], and independently Chudak [12], came up with (3/2+ ε)-approximation

algorithms, that employ a time-indexed LP relaxation for the problem. Shortly thereafter, the

approximation guarantee was improved to 3/2, by Skutella [40] and Sethuraman and Squil-

lante [38], by using a clever convex quadratic programming relaxation. All these results relied

on designing a convex relaxation and then on applying independent randomized rounding

with the marginal probabilities that were returned by the convex relaxation solution. The

analysis of these algorithms is in fact tight: it is not hard to see that any algorithm using

independent randomized rounding cannot achieve a better approximation guarantee than

3/2. Recently, Bansal et al. [5] overcame this barrier by designing a randomized rounding

scheme that informally enhances independent randomized rounding by introducing strong

negative correlation properties. Their techniques yield a (3/2−ε)-approximation algorithm

with respect to either a semidefinite programming relaxation, introduced by themselves, or

the configuration-LP relaxation introduced in [45]. Their rounding and analysis improve,

and they build upon methods used previously for independent randomized rounding. So

a natural question behind this work is, Can a different rounding approach yield significant

improvements of the approximation guarantee?

4.1.1 Our Results

Departing from previous rounding approaches, we propose to use the same elegant rounding

scheme for the weighted completion-time objective, as devised by Shmoys and Tardos [39] for

optimizing a linear function subject to makespan constraints on unrelated machines. We give

a tight analysis that shows that this approach gives a significantly improved approximation

guarantee in the special case where the Smith ratios of all jobs that can be processed on a

machine are uniform: that is, we have pi j ∈ {w j ,∞} for all i ∈M and j ∈J .1

This restriction, which has not been studied previously, captures the natural notion that any

unit of work (processing time) on a fixed machine has the same weight. It corresponds to the

class of instances where the order of jobs on a machine does not matter. Compared to another

natural restriction of R||∑w j C j – namely, the unweighted sum of completion times R||∑C j –

it is both computationally harder and more intuitive. It is computationally harder because

our problem inherits all the known hardness characteristics of the general weighted version

(see Section 4.1.2), whereas the unweighted version is polynomial-time solvable [23, 8]; and it

is more intuitive because it is reasonable to expect that larger jobs have larger significance.

Despite the negative results, our main theorem indicates that we understand this version far

better than we do the general case.

1This restriction could be seen as close to the restricted assignment problem. However, we remark that all
our results also apply to the more general (but also more notation-heavy) case where the weight of a job can
also depend on the machine. A general version of our assumption then becomes pi j ∈ {αi wi j ,∞} for some
machine-dependent αi > 0. Our results apply to this version because our analysis will be done locally for each
machine i . Therefore, we will only require that the Smith ratios be uniform for each machine separately.
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To emphasize that we are considering the case where the weight of a job is proportional to its

processing time, we refer to this problem as R ||∑p j C j (with p j as opposed to w j ). With this

notation, our main result can be stated as follows:

Theorem 4.1.1. For any ε > 0, there exists a 1+�2
2 + ε < 1.21-approximation algorithm for

R||∑p j C j . Moreover, the analysis is tight: there exists an instance for which our algorithm

returns a schedule with objective value at least 1+�2
2 −ε times the optimum value.

We remark that the ε in the approximation guarantee arises because we can only solve the

configuration-LP relaxation (see Section 4.2) up to any desired accuracy.

Interestingly enough, a similar problem (namely, scheduling jobs with uniform Smith ratios

on identical parallel machines) was studied by Kawaguchi and Kyan [28]. They achieve, by

using a greedy list-scheduling algorithm, the same approximation ratio as we do. In their

analysis, they reduce the problem of upper-bounding the output cost to that of estimating

the output cost of certain worst-case instances. Then, in order to analyze the output cost of

these instances, they use ideas similar to those we use for analyzing the output cost of the

worst-case instances of our algorithm.

As we use the rounding algorithm by Shmoys and Tardos, a pleasant side-effect is that our

algorithm can also serve as a bi-criteria (1+�
2)/2+ε-approximation for the

∑
p j C j objective

and 2-approximation for the makespan objective:

Theorem 4.1.2. For R||∑p j C j , there exists an algorithm that, given any makespan threshold

T > 0, returns a schedule with makespan at most 2T +ε and cost (i.e., sum of weighted com-

pletion times) within a factor (1+�
2)/2+ε of the lowest-cost a schedule among those with

makespan at most T can achieve.

Again, we remark that the ε in the cost and makespan guarantees arises because we can

only solve the corresponding configuration-LP relaxation (see Section 4.6) up to any desired

accuracy. This bi-objective setting was previously studied by Kumar et al. [30], who gave

a bi-criteria 3/2-approximation for the general weighted completion-time objective and 2-

approximation for the makespan objective.

Our main technical contribution is a tight analysis of the algorithm, with respect to the strong

configuration-LP relaxation. Configuration-LPs have been used to design approximation

algorithms for multiple important allocation problems, often with great success. Therefore, as

first noted by Sviridenko and Wiese [45], they constitute a promising direction to explore in

search for better algorithms for R||∑w j C j . We hope that our analysis can give further insights

as to how the configuration-LP can be used to achieve this.

On a high level, our analysis proceeds as follows. A fractional solution to the configuration-LP

defines, for each machine, a local probability distribution of the set of jobs (configuration)

that will be processed by that machine. At the same time, the rounding algorithm (naturally)
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produces a global distribution over such assignments, that inherits certain constraints on the

local distribution for each machine. Therefore, focusing on a single machine, we will compare

the local input distribution (i.e., the one defined by the configuration-LP) to the worst possible

(among those satisfying said constraints) local output-distribution that could be returned by

our randomized rounding.2 In order to analyze this ratio, we will put both distributions under

a series of transformations that can only worsen the guarantee, until we bring them into such a

form that computing the exact approximation ratio is possible. As the final form also naturally

corresponds to a scheduling instance, the tightness of our analysis follows immediately.

4.1.2 Lower Bounds and Hardness

All the known hardness features of the general problem R||∑w j C j transfer to our version

R||∑p j C j .

First, APX-hardness for R||∑w j C j was first proved by Hoogeveen et al. [22]. Skutella [40,

Section 7] gives a different proof, where the reduction generates instances with all jobs having

weights equal to processing times. Hence, APX-hardness for R||∑p j C j is established as well.

Furthermore, complementing the (1 +�
2)/2 upper bound on the integrality gap of the

configuration-LP that follows from our algorithm, we have the following lower bound, proved

in Section 4.5:

Theorem 4.1.3. The integrality gap of the configuration-LP for R||∑p j C j is at least 13/12.

To the best of our knowledge, this is also the best-known lower bound on the integrality gap of

the configuration-LP for R||∑w j C j .

Finally, recall that the 3
2 -approximation algorithms for the general problem R||∑ j w j C j , by

Skutella [40] and by Sethuraman and Squillante [38], are based on an independent randomized

rounding of a fractional solution to a convex programming relaxation. It was shown by Bansal

et al. [5] that this relaxation has an integrality gap of 3
2 and that no independent randomized

rounding algorithm can have an approximation ratio better than 3
2 . We note that both of these

claims also apply to our version. Indeed, the integrality gap example of Bansal et al. can be

modified to hold for R||∑ j p j C j (we discuss this integrality gap in Section 4.2). For the second

claim, their problematic instance already has only unit sizes and weights. Thus, to achieve

better than a 3
2 -approximation for our version, we cannot use independent randomized

rounding or the relaxation of [40, 38].

2For example, if we consider all distributions that assign 2 jobs to a machine, each with probability 1/2, then the
distribution that assigns either both jobs together or no job at all, each with probability 1/2, is the worst possible
distribution, i.e., the one that maximizes the expected cost.
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4.1.3 Chapter Overview

This chapter is structured as follows. In Section 4.2, we start by introducing some notation and

by restating the configuration-LP. Then, in Section 4.3, we describe the randomized rounding

algorithm, by Shmoys and Tardos [39], applied to our setting. We analyze it Section 4.4. Finally,

we present the proof of the lower bound on the integrality gap in Section 4.5, and the proof of

Theorem 4.1.2 in Section 4.6.

4.2 Preliminaries

Recall that pi j ∈ {w j ,∞} for all i ∈M and j ∈J , and that we let Ji = { j ∈J : pi j = p j } denote

the set of jobs that can be assigned to machine i ∈M . Given Ci ⊆Ji , then we know (as we

saw in the previous section) that scheduling the jobs in Ci on machine i by using the Smith

ordering is optimal. As the Smith ratios of all jobs are the same, then scheduling Ci in machine

i in any order achieves minimum cost. Hence, we have that

cost(Ci ) = ∑
j∈Ci

p2
j +

∑
j �= j ′∈Ci

p j p j ′

2
.

where cost(Ci ) is the cost of scheduling jobs Ci on machine i . To see this, note that if we

pick a random schedule/permutation of Ci , then the expected completion time of job j is

p j +∑
j ′ �= j∈Ci

p j ′
2 , and recall that the weight of j is w j = p j . The total cost of the considered

schedule is
∑

i∈M cost(Ci ).

Now, remember the configuration-LP for R||∑p j C j :

min
∑

i∈M

∑
C⊆Ji

yiC cost(C )

s.t.
∑

C⊆Ji

yiC ≤ 1 ∀i ∈M ,

∑
i∈M

∑
C⊆Ji : j∈C

yiC = 1 ∀ j ∈J ,

yiC ≥ 0 ∀i ∈M , C ⊆Ji .

Observe that one way to interpret this LP relaxation is to view it as, for each machine, defining

a local distribution over assignments of sets of jobs.

Comparison to Natural Convex Relaxation Now, let us provide some intuition about why

using the configuration-LP is a promising approach to designing a good approximation al-

gorithm for R||∑p j C j . We do this by describing a more natural quadratic programming

relaxation for R||∑p j C j , and by showing how the configuration-LP has significantly better

performance on the integrality gap instances of the natural relaxation. Let us first state the

convex relaxation that was used by Skutella [40], and Sethuraman and Squillante [38] (although
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originally used for R||∑w j C j , we display the convex program modified for R||∑p j C j ). The

relaxation contains a variable xi j for each i ∈M and j ∈J ; in an integral solution, xi j would

be set to 1 if job j was assigned to machine i , and 0 otherwise. Notice that in any feasible

solution of an instance of R||∑p j C j , every job is assigned to exactly one machine. Therefore,

any convex relaxation of R||∑p j C j should naturally ensure that, in an integral solution, for

each job j only one variable xi j is set to 1. The relaxation can be described as follows:

min z

subject to z ≥ cT x

z ≥ 1
2 cT x + 1

2 xT Dx∑
i∈M

xi j = 1 ∀ j ∈J

xi j ≥ 0 ∀i ∈M , j ∈J

where cT x = ∑
i∈M

∑
j∈J

p2
i j xi j and xT Dx = ∑

i∈M

∑
j∈J

xi j pi j (
∑

j ′∈J : j �= j ′
pi j ′xi j ′ + xi j pi j ). The relax-

ation includes two individual constraints, and one set of constraints (one constraint for each

j ∈J ): the first constraint lower bounds the cost by cT x, the second constraint lower bounds

the cost by 1
2 cT x + 1

2 xT Dx, and the set of constraints states that every job should be assigned

exactly once.

Let us now discuss why the above quadratic program (QP) is a convex QP-relaxation for the

R||∑p j C j problem. To begin with, the third set of constraints guarantees that every integral

solution to the QP is a valid assignment of jobs to machines. Furthermore, given an integral

assignment x, its cost is

∑
i∈M

∑
j∈J

xi j p j (
∑

j ′∈J : j ′ �= j
xi j ′pi j ′/2+xi j pi j ) = 1

2
(cT x +xT Dx) ≥ cT x

where we crucially used that x2
i j = xi j for xi j ∈ {0,1} (in general, cT x and xT Dx are incom-

parable). Finally, it can be proved (e.g. in [40]) that D is positive semi-definite, and hence

cT x + xT Dx is convex. Therefore, the QP we described is indeed a convex relaxation of

R||∑p j C j .

Let us now describe an instance of R||∑p j C j for which the integrality gap of the QP-relaxation

is 3/2; this instance is a modification of the instance provided by Bansal et al. (see [5, Claim 2.1])

for R||∑w j C j . The instance contains k +1 jobs J = { j1, . . . , jk+1} and k +1 machines M =
{i1, . . . , ik+1}. Jobs { j1, . . . , jk } have size 1 and can be assigned to machine i1, whereas job jk+1

has size k and can be assigned to machines {i2, . . . , ik+1}.

Now, consider the fractional solution to the QP-relaxation that assigns xi jk+1 = 1/k for all

i ∈ {i2, . . . ik+1} (clearly all the other jobs have to be integrally assigned to machine i1).

For this fractional solution, we have cT x = xT Dx = k2 +k, therefore z ≥ k2 +k, whereas any

integral solution has cost at least 3
2 k2. Furthermore, it is most interesting that the first job

contributes k2 to cT x and k to xT Dx, whereas the rest of the jobs contribute k to cT x and
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k2 to xT Dx. Therefore, the two lower bounds on the cost (cT x and xT Dx) perform badly for

two different types of solutions: cT x performs badly when most of the cost of the fractional

solution comes from machines that are assigned many (relatively small) jobs, while xT Dx

performs badly when the fractional assignment of jobs is spread out over many machines.

The configuration-LP does not display these disadvantages: given an assignment of a set

of jobs to a machine, the configuration-LP will estimate its cost accurately. Indeed, we can

see that the configuration-LP has integrality gap of 1 for the above instance. Therefore, the

only reason the configuration-LP might underestimate the optimal cost of an instance is it

might output a set of local distributions over assignments of jobs to machines, and these

distributions are not consistent, i.e., such that there exists no global distribution that produces

the same local distributions for each machine.

4.3 The Rounding Algorithm

Here, we describe our approximation algorithm. We will analyze it in the next section, yielding

Theorem 4.1.1. The first step of our algorithm is to solve the configuration-LP (approximately)

to obtain a fractional solution y�. We then round this solution in order to retrieve an integral

assignment of jobs to machines. The rounding algorithm that we employ is the same as that

used by Shmoys and Tardos [39] (albeit applied to a fractional solution to the configuration-LP,

instead of the so-called assignment-LP). We describe the rounding scheme in Algorithm 4.1;

see also Figure 4.1.

The first step is to define xi j =∑
C⊆Ji : j∈C y�

iC . Intuitively, xi j denotes the marginal probability

that job j should be assigned to machine i , according to y�. Note that, by the constraint that

y� assigns each job once (fractionally), we have
∑

i∈M xi j = 1 for each job j ∈J .

In the next steps, we round the fractional solution randomly so as to satisfy these marginals, i.e.,

so that the probability that job j is assigned to i is xi j . In addition, the number of jobs assigned

to a machine i will closely match the expectation
∑

j∈J xi j : our rounding will assign either

�∑ j∈J xi j � or �∑ j∈J xi j � jobs to machine i . This is enforced by creating �∑ j∈J xi j � “buckets”

for each machine i , and then matching the jobs to these buckets. More formally, this is

modeled by the complete bipartite graph G = (U ∪V ,E ) constructed in Step 2 of Algorithm 4.1,

where vertex ui ,t ∈U corresponds to the t-th bucket of machine i .

Observe that any integral matching in G that matches all the “job” vertices in V naturally

corresponds to an assignment of jobs to machines. Step 3 prescribes a distribution on such

matchings by defining a fractional matching z. The procedure is as follows: For each machine

i , we iterate over the jobs j ∈J in non-increasing order in terms of their size, and we insert

items of size xi j into the first bucket until adding the next item would cause the bucket to

become full. Then, we split that item between the first bucket and the second, and we proceed

likewise for all jobs until we fill up all buckets (except possibly for the last bucket). Having

completed this process for all machines i , we end up with a fractional matching z in G with
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Input :Solution y� to the configuration-LP
Output :Assignment of jobs to machines

1) Define x ∈RM×J as follows: xi j = ∑
C⊆Ji : j∈C

y�
iC .

2) Let G = (U ∪V ,E) be the complete bipartite graph where

• the right-hand side consists of one vertex for each job j , i.e., V = {v j : j ∈J },

• the left-hand side consists of � ∑
j∈J

xi j � vertices for each machine i , i.e.,

U = ⋃
i∈M

{ui ,t : 1 ≤ t ≤ � ∑
j∈J

xi j �}.

3) Define a fractional solution z to the bipartite matching LP for G (initially set to z = 0) by
repeating the following procedure for every machine i ∈M :

• Let k = �∑ j∈J xi j �, and let t be a variable originally set to 1.

• Iterate over all j ∈J in non-increasing order in terms of p j :

If xi j + ∑
j ′∈J

zui ,t v j ′ ≤ 1, then set zui ,t v j = xi j .

Else, set zui ,t v j = 1− ∑
j ′∈J

zui ,t v j ′ , increment t , and set zui ,t v j = xi j − zui ,t−1v j .

4) Decompose z into a convex combination of integral matchings z =∑
t λt zt and sample one

integral matching z∗ by choosing the matching zt with probability λt .

5) Schedule j ∈J on i ∈M iff z∗
ui ,t v j

= 1 for some 1 ≤ t ≤ � ∑
j∈J

xi j �.

Algorithm 4.1: Randomized rounding

the following properties:

• Every “job” vertex v j ∈V is fully matched in z, i.e.,
∑

i ,t zui ,t v j = 1.

• For every “bucket” vertex ui ,t ∈U , we have
∑

j zui ,t v j ≤ 1, with equality if t < �∑ j xi j �.

• The fractional matching preserves the marginals, i.e., xi j =∑
t zui ,t v j for all j ∈J and

i ∈M .

• We have the following bucket structure: if zui ,t v j > 0 and zui ,t ′ v j ′ > 0 with t ′ > t , then

p j ≥ p j ′ .

The last property follows because Step 3 considered the jobs in non-increasing order of their

processing times. This will be important in the analysis (see the last property of Fact 4.4.1).

Here, we want to randomly select a matching for G , which satisfies the marginals of z (re-

member that such a matching corresponds to an assignment of all the jobs to machines). We

know that the bipartite matching LP is integral and that z is a feasible solution for the bipartite

matching LP of G . Therefore, by using an algorithmic version of Carathéodory’s theorem (see

e.g. Theorem 6.5.11 in [18]), we can decompose z into a convex combination z =∑
t λt zt of
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1st bucket 2nd bucket 3rd bucket

2/3 1/3 2/3 2/3 1/3

⇒

Bucketing of machine i�

0 1/3 2/3 1

⇒

Input distribution on
configurations (patterns)
of machine i� (y in� g )

Fractional matching

Combination of matchings

2/3

1/3

2/3

1/3

1/3

1/3

⇓
1/3 ×1/3 × +1/3 × +

⇐

0 1/3 2/3 1

Output distribution on
configurations (patterns)
of machine i� (yout� f )

Figure 4.1: A sample execution of our rounding algorithm, restricted to a single machine i�.
Jobs are represented by a rectangle; its height is the job’s processing time and its width is its
fractional assignment to i�. Starting from an input distribution over configurations for i�, we
extract the fractional assignment of each job to i�, we create a bipartite graph consisting of
3 copies of i� and the jobs that are fractionally assigned to it, and then we connect the jobs
to the copies of i� by iterating through the jobs in non-increasing order of p j . Finally, we
decompose the resulting fractional matching into a convex combination of integral matchings
and we sample one of them. The shown output distribution is a worst-case distribution in
the sense of Section 4.4.2: it maximizes the variance of makespan, subject to the marginal
probabilities and the bucket structure enforced by the algorithm.

polynomially many integral matchings, and sample the matching zt with probability λt . Then,

if z∗ is the matching we have sampled, we simply assign job j to machine i iff z∗
ui ,t v j

= 1 for

some t . As xi j =∑
t zui ,t v j and

∑
i∈M xi j = 1 for all jobs j , z∗ will match all “job” vertices.3 The

above steps are described in Steps 4 and 5 of Algorithm 4.1.

The entire rounding algorithm is depicted in Figure 4.1.

3We remark that this is the only part of the algorithm that employs randomness; in fact, we can derandomize
the algorithm by choosing the matching zk that minimizes the cost of the resulting assignment.
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4.4 Analysis of the Rounding Algorithm

Throughout the analysis, we fix a single machine i� ∈M . We will show that the expected cost

of our algorithm on this machine is at most 1+�2
2 times the cost of the configuration-LP on

this machine. This clearly implies (by linearity of expectation) that the expected cost of the

produced solution (on all machines) is at most 1+�2
2 times the cost of the LP solution (which is

in turn within a factor (1+ε) of the fractional optimum).

Let C1,C2, ...,C2J be all possible configurations sorted by decreasing cost, i.e., cost(C1) ≥ . . . ≥
cost(C2J ). To simplify notation, in this section we let J denote the set of jobs that can be

processed on machine i� (i.e., Ji�).

Recall that the solution y� to the configuration-LP gives us an input distribution on configura-

tions assigned to machine i�, i.e., it gives us a vector y in ∈ [0,1]2J

such that
∑

i y in
i = 1. With

this notation, we can write the cost of the configuration-LP on machine i� as

∑
i

y in
i cost(Ci ).

In order to compare this expression with the expected cost of our algorithm on machine i�,

we observe that our rounding algorithm also gives a distribution on configurations. We denote

this output distribution by yout ∈ [0,1]2J

(where
∑

i yout
i = 1). Hence, the expected cost of our

algorithm on machine i� is

∑
i

yout
i cost(Ci ).

The result of this section, that which the approximation guarantee of Theorem 4.1.1, can now

be stated as follows.

Theorem 4.4.1. We have∑
i yout

i cost(Ci )∑
i y in

i cost(Ci )
≤ 1+�

2

2
.

Our strategy for bounding this ratio is, broadly, to work on this pair of distributions by trans-

forming it to another pair of distributions of special form, whose ratio we will be able to bound.

We transform the pair in such a way that the ratio can only increase. In other words, we prove

that no pair of distributions has a ratio worse than a certain worst-case kind of pair, and we

bound the ratio in this worst case.

After these transformations, our pair of distributions might no longer correspond to the

original scheduling problem instance, hence it will be convenient for us to work with a more

abstract notion that we define now.

66



4.4. Analysis of the Rounding Algorithm

4.4.1 Compatible Function Pairs

Given a distribution y ∈ [0,1]2J

with
∑

i yi = 1, we can build a corresponding function f from

[0,1) to multisets of positive numbers as follows: define f (x) for x ∈ [0, y1) to be the multiset of

processing times of jobs in C1, f (x) for x ∈ [y1, y1+ y2) to be the multiset of processing times of

jobs in C2, and so on.4 If we do this for both yout – obtaining a function f – and y in – obtaining

a function g (see Figure 4.1 for an illustration of f and g ), we will have produced a function

pair:

Definition 4.4.1. A function pair is a pair ( f , g ) of stepwise-constant functions from the interval

[0,1) to multisets of positive numbers. We will call these multisets patterns and the numbers

they contain elements (or processing times).

Notation. If f is such a function, define:

• f1 : [0,1) →R+ as the maximum element: f1(x) = max f (x) (set 0 if f (x) =�),

• size f : [0,1) →R+ as size f (x) = size( f (x)), where

size( f (x)) = ∑
p∈ f (x)

p,

• fr as the total size of the multiset after the removal of the maximum: fr (x) = size f (x)−
f1(x),

• cost( f ) =∫1
0 cost( f (x))d x as the fractional (expected) cost, where

cost( f (x)) = ∑
p∈ f (x)

p ·
( ∑

q∈ f (x),q�p
q

)

for an arbitrary linear order � on f (x).5

The function pairs we work with will have special properties that follow from the algorithm.

We argue about them in Fact 4.4.1. One such property comes from our algorithm preserving

the marginal probabilities of jobs:

Definition 4.4.2. We say that a function pair ( f , g ) is a compatible function pair (CFP) if the

fractional number of occurences of any element is the same in f and in g .6

Fact 4.4.1. Let ( f , g ) be a function pair obtained from (yout, y in) as described above. Then:

4Recall that C1,C2, ... are sorted by non-increasing cost. Thus, f can be thought of as a quantile function (inverse
cumulative distribution function) of the distribution y , except in reverse order (i.e., f (1−x) is a quantile function).

5This expression does not depend on �, as the Smith ratios are uniform, and it is equal to the cost of a
configuration giving rise to f (x).

6Formally, for each p > 0 we have:
∫1

0 multiplicity of p in f (x) d x =∫1
0 multiplicity of p in g (x) d x.
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• ( f , g ) is a CFP.

• cost( f ) =∑
i yout

i cost(Ci ) and cost(g ) =∑
i y in

i cost(Ci ).

• f has the following bucket structure: for any two patterns P and Q in the image of f and

for any i , the i -th largest element of P is no smaller than the (i +1)-th largest element of

Q.

Proof. That ( f , g ) is a CFP follows because our algorithm satisfies the marginals of the involved

jobs. Specifically, we know that for each job j ∈J , both distributions y in and yout have the

machine i� process a fraction xi� j =
∑

C� j y�
i�C of this job (where y� is the global configuration-

LP solution). For any p > 0, summing this up over all jobs j ∈J with processing time p j = p

gives the compatibility condition.

The equalities of costs are clear from the definition of cost( f ) and cost(g ).

For the bucket structure of f , recall the algorithm: A matching is found between jobs and

buckets, in which each bucket is matched with a job (except potentially for the last bucket

of each machine). For any pattern P in the image of f and for any i , the i -th processing

time in P is drawn from the i -th bucket that was constructed by our algorithm. Moreover,

all processing times in the i -th bucket are no smaller than those in the (i + 1)-th bucket,

because the algorithm orders jobs non-increasingly by processing times. (See Figure 4.1 for an

illustration of this process and of a function f satisfying this bucket structure.)

This was the last point in the analysis where we reasoned about how the algorithm rounds the

LP solution. Henceforth, we will think about elements, patterns and CFPs rather than jobs

and configurations.

To prove Theorem 4.4.1, we need to show that cost( f )
cost(g ) ≤ 1+�2

2 . As indicated above, we will

do this by proving that there is another CFP ( f ′, g ′) with special properties and such that
cost( f )
cost(g ) ≤

cost( f ′)
cost(g ′) . We will actually construct a series of such CFPs in a series of lemmas, obtaining

more and more desirable properties, until we can bound the ratio. Our final objective is a CFP

like the pair ( f ′, g ′) depicted in Figure 4.3.

4.4.2 The Worst-Case Output

As a first step, we look at how costly an output distribution of our algorithm can be (while

still satisfying the aforementioned bucket structure and the marginal probabilities, i.e., the

compatibility condition). Intuitively, the maximum-cost f is going to maximize the variance of

the total processing time, which means that larger-size patterns should select larger processing

times from each bucket. (See Figure 4.1 for an illustration and the proof of Lemma 4.4.1 for

details.) From this, we extract that the largest processing time in a pattern (the function f1)

should be non-increasing, and this should also hold for the second-largest processing time,

the third-largest, and so on. This implies the following properties:
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Lemma 4.4.1. If ( f , g ) is a CFP where f has the bucket structure described in Fact 4.4.1, then

there exists another CFP ( f ′, g ) such that cost( f )
cost(g ) ≤

cost( f ′)
cost(g ) and the functions f ′

1 and f ′
r are non-

increasing and size( f ′(1)) ≥ f ′
r (0).

The proof is a simple swapping argument.

Proof. For i = 1,2, ..., let fi (x) always denote the i -th largest element of f (x). As suggested

above, we will make sure that for each i , the function fi is non-increasing.

Specifically, we repeat the following procedure: as long as there exist x, y and i such that

size( f (x)) > size( f (y)) but fi (x) < fi (y), swap the i -th largest elements in f (x) and f (y).7

Once this is no longer possible, we finish by “sorting” f so as to make size f non-increasing.

Let us verify that once this routine finishes, yielding the function f ′, we have the desired

properties:

• The function f ′
1 is non-increasing.

• The same holds for the function f ′
r , since f ′

r = f ′
2 + f ′

3 + ... and each f ′
i is non-increasing.

• The procedure maintains the bucket structure, since we only swap patterns that belong

to the same bucket. This implies that f ′
i (x) ≥ f ′

i+1(y) for all i , x and y . Thus

size( f ′(1)) = f ′
1(1)+ f ′

2(1)+ ... ≥ f ′
2(0)+ f ′

3(0)+ ... = f ′
r (0).

• It remains to show that cost( f ′) ≥ cost( f ). Without loss of generality, assume there was

only a single swap (as the sorting step is insignificant for the cost). For computing the

cost of the involved patterns, we suppose that the involved elements went last (as the

order does not matter); let Rx = size( f (x))− fi (x) and Ry = size( f (y))− fi (y) be the total

sizes of the elements not involved. Then Rx > Ry , since x, y and i were chosen such that

size( f (x)) > size( f (y)) and fi (x) < fi (y), and we have

Δcost( f (x)) = fi (y)
(
Rx + fi (y)

)− fi (x)
(
Rx + fi (x)

)
= (

fi (y)− fi (x)
)

Rx + fi (y)2 − fi (x)2,

Δcost( f (y)) = fi (x)
(
Ry + fi (x)

)− fi (y)
(
Ry + fi (y)

)
= (

fi (x)− fi (y)
)

Ry + fi (x)2 − fi (y)2,

thus

Δcost( f (x))+Δcost( f (y)) = (
fi (y)− fi (x)

)(
Rx −Ry

)> 0.

7Formally, choose τ > 0 such that f is constant on [x, x +τ) and on [y, y +τ) and perform the swap in these
patterns.
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4.4.3 Liquification

One of the most important operations we employ is called liquification. It is the process of

replacing an element (processing time) with many tiny elements of the same total size. These

new elements all have a size of ε and are called liquid elements. Elements of a size larger than

ε are called solid. We should think that ε is arbitrarily small, much smaller than any p j , hence

we will usually work in the limit ε→ 0.

The intuition behind applying this process to our pair is that in the ideal worst-case setting

which we are moving towards, there are only elements of two sizes: large and infinitesimally

small. We will keep a certain subset of the elements intact (to play the role of large elements),

and liquify the rest in Lemma 4.4.2.

Our main claim in this section is that replacing an element with smaller ones of the same

total size (in both f and g ) can only increase the ratio of costs. Hence, we are free to liquify

elements in our analysis, as long as we make sure to liquify the same amount of every element

in both f and g ( f and g remain compatible).

Fact 4.4.2. Let ( f , g ) be a CFP and p, p1, p2 > 0 with p = p1 + p2. Suppose ( f ′, g ′) is a CFP

obtained from ( f , g ) by replacing p by p1 and p2 in subsets of patterns in f and g of equal

measures.8 Then cost( f )
cost(g ) ≤

cost( f ′)
cost(g ′) .

Proof. Consider a pattern P in which p was replaced. We calculate the change in cost Δ :=
cost(P \ {p}∪ {p1, p2})−cost(P ). As the order does not matter, the cost can be analyzed with p

(or p1, p2) being first, so

Δ= (p2
1 +p2(p1 +p2))−p2 = (p2

1 +p1p2 +p2
2)− (p1 +p2)2 =−p1p2 ≤ 0

and it does not depend on the other elements in P . Thus, if we make the replacement in a

fraction τ of patterns, then we have

cost( f ′)
cost(g ′)

= cost( f )+τΔ

cost(g )+τΔ
≥ cost( f )

cost(g )

since cost( f )
cost(g ) ≥ 1 to begin with (otherwise we are done) and Δ≤ 0.

By corollary, we can also replace an element of size p with p/ε liquid elements (of size ε each).

8Formally, suppose I f , Ig ⊆ [0,1) are finite unions of disjoint intervals of equal total length such that all patterns
f (x) and g (y) for x ∈ I f , y ∈ Ig contain p; in all these patterns, remove p and add p1, p2.
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0 m 1

f1(x)

f1(x)+ fr (0)

size( f (x))

size( f (x))− fr (0)

fr (0)

⇒
0 m 1

Figure 4.2: The main step in the proof of Lemma 4.4.2. The left picture shows f after the
liquification of all elements except one largest element ( f1) for x ∈ [0,m). The right picture
shows f after the movement of liquid elements between the striped regions. In both pictures,
the light-gray areas contain single large elements, and the dark-gray areas are liquid elements.
Note that there are two pairs of parallel lines in the pictures; the vertical distance between each
pair is fr (0). The threshold m is defined so that the striped regions have equal areas (thus f ′

r is
made constant by the movement of liquid elements) and so that moving the liquid elements
can only increase the cost. The height of the upper striped area is f1(x)+ fr (0)− size( f (x)) =
fr (0)− fr (x) for x ∈ [0,m) and the height of the lower striped area is size( f (x))− fr (0) for
x ∈ [m,1). All functions are stepwise-constant, but are drawn here using straight downward
lines for simplicity; also, the rightmost dark-gray part will “fall down” (forming a (1−m)× fr (0)
rectangle).

4.4.4 The Main Transformation

In this section, we describe the central transformation in our analysis. It uses liquification and

rearranges elements in f and g so as to obtain two properties: that fr is constant and that

f1 = g1. (The process is explained in Figure 4.2, and a resulting CFP is shown in the upper part

of Figure 4.3.) This greatly simplifies the setting and brings us quite close to our ideal CFP

(depicted in the lower part of Figure 4.3).

Lemma 4.4.2. If ( f , g ) is a CFP with f1 and fr non-increasing and size( f (1)) ≥ fr (0), then there

exists another CFP ( f ′, g ′) with cost( f )
cost(g ) ≤

cost( f ′)
cost(g ′) such that:

(a) f ′
r is constant.

(b) f ′
1 = g ′

1 and it is non-increasing.

(c) There exists m ∈ [0,1] such that:

• for x ∈ [0,m), f ′(x) has liquid elements and exactly one solid element,

• for x ∈ [m,1), f ′(x) has only liquid elements.

Proof. We begin with an overview of the proof. See also Figure 4.2.

Our procedure to obtain such a CFP has three stages:
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1. We liquify all elements except for the largest element of every pattern f (x) for x ∈ [0,m),

for a certain threshold m; at this point, fr (x) becomes essentially the size of liquid

elements in f (x) for x ∈ [0,1) (as no pattern contains two solid elements).

2. We move liquid elements in f from right to left, i.e., from f (y) for y ∈ [m,1) to f (x) for

x ∈ [0,m) (which only increases the cost of f ), so as to make fr constant.

3. We rearrange elements in g so as to satisfy the condition f ′
1 = g ′

1.

Now let us proceed to the details. First, we explain how to choose the threshold m. It is defined

so as to ensure that after the liquification, patterns in f have liquid elements of total size fr (0)

on average. Thus we can make all fr (x) equal to fr (0). More importantly, we can do this by

only moving the liquid elements “higher”, so that the cost of f only goes up. (See Figure 4.2 for

an illustration of this move.)

More precisely, m ∈ [0,1] is chosen so that

∫m

0
fr (0)− fr (x)d x =

∫1

m
size( f (x))− fr (0)d x (4.1)

(which implies fr (0) =∫m
0 fr (x)d x +∫1

m size( f (x))d x: the right-hand expression is the size of

elements that will be liquified next). Such an m is guaranteed to exist by non-negativity of the

functions under both integrals in (4.1), which follows from our assumptions on f (we have

size( f (x)) ≥ size( f (1)) ≥ fr (0), because size f = f1 + fr is non-increasing as f1 and fr are both

non-increasing).

Now we can perform the sequence of steps:

1. The liquification: for each element p > 0 which appears in a pattern f (x) \ { f1(x)} for

x ∈ [0,m) or in a pattern f (x) for x ∈ [m,1), we liquify all its such occurences, as well

as their counterparts in g .9 We have a bound on the ratio of costs by Fact 4.4.2, and f1

remains non-increasing.

2. Rearranging liquid elements in f : while there exists x ∈ [0,m) with fr (x) < fr (0), find

y ∈ [m,1) with fr (y) > fr (0) and move a liquid element from f (y) to f (x).10 (As we want

to make fr constant and equal to fr (0), we move elements from where fr is too large

to where it is too small. Note that as we liquified all elements in f (x) for x ∈ [m,1),

now size f is almost equal to fr on [m,1).) Once this process is complete, fr will be

constant by the definition of m.11 (See the right side of Figure 4.2.) Note that size f was

9Formally, let I f = {x ∈ [0,m) : p ∈ f (x) \ { f1(x)}}∪ {x ∈ [m,1) : p ∈ f (x)} and Ig = {y ∈ [0,1) : p ∈ g (y)}; by
compatibility of f and g , the measure of Ig is no less than that of I f . We liquify p in I f and in a subset of Ig of the
right measure. (If there were patterns where p appeared multiple times, we repeat.)

10Formally, let τ> 0 be such that fr (x′) < fr (0) for x′ ∈ [x, x +τ) and x +τ≤ m and fr (y ′) > fr (0) for y ′ ∈ [y, y +τ).
Move the liquid elements between these patterns f (y ′) and f (x′).

11As we operate in the limit ε→ 0, we ignore issues such as fr being ±ε off.
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non-increasing at the beginning of this step, hence we are always moving elements from

patterns of smaller total size to patterns of larger total size – This can only increase the

cost of f , as we are moving liquid elements from f (y) to f (x) where x < m ≤ y , and

therefore size( f (x)) ≥ size( f (y)) (if we consider the liquid element went last in both

patters, its contribution to the cost is larger when it moves to the larger pattern). Thus,

the ratio of costs increases. This step preserves f1.

3. Rearranging elements in g : At this point, as f and g are compatible, g only has solid

jobs that appear as f1(x) for x ∈ [0,m), but they might be arranged in g differently than

in f . We want them to have the same arrangement (i.e., f ′
1 = g ′

1) so that we can compare

f to g more easily. As a first step, we make sure that every pattern in g has at most one

solid element. To this end, while there exists x ∈ [0,1) such that g (x) contains two or

more solid elements, let p > 0 be one of them, and find y ∈ [0,1) such that g (y) contains

only liquid elements12. Now there are two cases: if size(g (y)) ≥ p, then we move p

to g (y) and move liquid elements of the same total size back to g (x). This preserves

cost(g ) (think that these elements went first in the linear orders on both g (x) and g (y)).

If size(g (y)) < p, then we move p to g (y) and move all liquid elements from g (y) to g (x).

This even decreases cost(g ).13

At this point, f and g have the same solid elements, each of which appears as the only

solid element in patterns containing it in both f and g . We can now sort g so that for

each solid element p > 0, it appears in the same positions in f and in g . This operation

preserves cost(g ), and thus the entire third step does not decrease the ratio of costs.

4.4.5 The Final Form

In the last transformation, we will guarantee that, in g , each large element is the only member

of a pattern that contains it. (Intuitively, we do this because such CFPs are the ones which

maximize the ratio of costs.) Specifically, we prove Lemma 4.4.3, a strengthened version

of Lemma 4.4.2; note that condition (c’) below is stronger than condition (c) of Lemma 4.4.2

(there, g ′ could have had patterns with both liquid and solid elements), and that condition (d)

is new. Figure 4.3 shows the difference between CFPs postulated by Lemmas 4.4.2 and 4.4.3.

Lemma 4.4.3. Let ( f , g ) be as postulated in Lemma 4.4.2. Then there exists another CFP ( f ′, g ′)
such that:

(a) f ′
r is constant.

12Such a y exists because f and g are compatible: the total measure of patterns with solid elements in f is m
and these patterns contain only one solid element each, so g must have patterns with no solid elements.

13Formally, select τ> 0 so that g is constant on [x, x +τ) and on [y, y +τ); for x′ ∈ [x, x +τ), replace g (x′) with
g (x′) \ {p}∪g (y), and for y ′ ∈ [y, y +τ), replace g (y ′) with {p}. The cost of g then decreases by τ(size(g (x))−p)(p −
size(g (y))) > 0.
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(b) f ′
1 = g ′

1.

(c’) There exists t ∈ [0,1] such that:

• for x ∈ [0, t ), f ′(x) has liquid elements and precisely one solid element,

• for x ∈ [t ,1), f ′(x) has only liquid elements,

• for x ∈ [0, t ), g ′(x) has precisely one solid element (and no liquid ones),

• for x ∈ [t ,1), g ′(x) has only liquid elements.

(d) The function sizeg ′ is constant on [t ,1) (i.e., the liquid part of g is uniform).

Moreover,

cost( f ′)
cost(g ′)

≥ min

(
2,

cost( f )

cost(g )

)
.

Proof. Let us begin by giving a proof outline; see also Figure 4.3 for an illustration.

• Our primary objective is to make g1 equal to sizeg on [0, t ) (where t is to be determined).

To this end, we increase the sizes of the solid elements in g (x) for x ∈ [0, t ) and while we

decrease the total sizes of liquid elements for these g (x) (which keeps sizeg unchanged).

To offset this change, we decrease the sizes of solid elements in g (y) for y ∈ [t ,m) (and

also increase the total sizes of liquid elements there). We also modify the sizes of solid

elements in f so as to keep f and g compatible and preserve the properties (a)-(b).

• The threshold t is defined so that after we finish this process, the solid elements in g (x)

for x ∈ [0, t ) will have filled out the entire patterns g (x), and the solid elements in g (y)

for y ∈ [t ,m) will have disappeared.

• Our main technical claim is that this process does not invalidate the ratio of costs.

• Finally, we can easily ensure condition (d) by levelling g on [t ,1), which only decreases

its cost.

Now we proceed to the details. First we define the threshold t ∈ [0,m] as a solution to the

equation

∫t

0
gr (x)d x =

∫m

t
g1(x)d x,

which exists because the functions under both integrals are nonnegative. The left-hand side

will be the total increase in sizes of solid elements in g (x) for x ∈ [0, t ) and the right-hand side

will be the total decrease in sizes of solid elements in g (y) for y ∈ [t ,m) (these elements will

disappear completely).
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⇓
0 m 1

f

f1

t

fr

0 m 1

f ′

f1

t

t0 m

g

g1 = f1

1

t0 m

g ′

g1 = f1

1

Figure 4.3: An example of two CFPs: ( f , g ) is produced by Lemma 4.4.2, whereas ( f ′, g ′) is
produced by Lemma 4.4.3. In this picture, the height of the plot corresponds to size( f (x)) for
each x, and the shaded and wavy parts correspond to the contributions of f1 and fr to size f ;
similarly for g . The wavy parts are liquid. In Lemma 4.4.3 we want to make f1 = g1 equal to
sizeg on an interval [0, t ), so we increase sizes of solid elements in g on that interval, while we
decrease those on the interval [t ,m). The striped regions in the pictures of g correspond to
these changes. (We repeat the same changes in f , and we also move liquid elements in g to
keep sizeg unchanged.) The threshold t ∈ [0,m] is chosen so that g1 becomes equal to sizeg

on [0, t) and the solid elements on [t ,m) are eradicated (i.e., so that the areas of the striped
regions in g are equal).

Here we will carry out the process that we announced in the outline. Specifically, while there

exists x ∈ [0, t ) with gr (x) > 0, do the following:

• find y ∈ [t ,m) with g1(y) > ε (i.e., g (y) where the solid element has not been eradicated

yet),

• increase the size of the solid element in g (x) by ε,

• do the same in f ,

• decrease the size of the solid element in g (y) by ε,

• do the same in f ,
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• move one liquid element (of size ε) from g (x) to g (y).

Formally, as usual, we find τ> 0 such that f and g are constant on [x, x +τ) and on [y, y +τ)

and we do this in all of these patterns.

Note that the following invariants are satisfied after each iteration:

• f1 = g1,

• fr does not change,

• sizeg does not change,

•
∫m

0 g1(x)d x does not change,

• g1 can only increase on [0, t ) and it can only decrease on [t ,m),

• f1(x) ≥ f1(y) for all x ∈ [0, t ) and y ∈ [t ,m).14

By the definition of t , when this process ends, the patterns g (x) for x ∈ [0, t) contain only

a single solid element, whereas g (x) for x ∈ [t ,m) (thus also for x ∈ [t ,1)) contain no solid

elements. Since f1 = g1, the patterns f (x) also have only liquid elements for x ∈ [t ,1). Thus

properties (a), (b) and (c’) are satisfied. We reason about the ratio of costs in the following two

technical claims:

Claim 4.4.1. In a single iteration, cost( f ) increases by 2α and cost(g ) increases by α, for some

α≥ 0.

Proof. The patterns have changed so that:

• f (x) had f1(x) increased by ε,

• f (y) had f1(y) decreased by ε,

• g (x) had g1(x) increased by ε and one liquid element removed,

• g (y) had g1(y) decreased by ε and one liquid element added.

Since the order of elements does not matter, in computing cost( f ) we think that the solid

element goes last in the linear order:

Δcost( f (x)) = ( f1(x)+ε)(size( f (x))+ε)− f1(x)size( f (x)) = ε
(
size( f (x))+ f1(x)+ε

)
,

Δcost( f (y)) = ( f1(y)−ε)(size( f (y))−ε)− f1(y)size( f (y)) = ε
(−size( f (y))− f1(y)+ε

)
,

14This is because f1 = g1 was initially non-increasing and since then it has increased on [0, t ) and decreased on
[t ,m).
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Δcost( f (x))+Δcost( f (y)) = ε
(
size( f (x))− size( f (y))+ f1(x)− f1(y)+2ε

)
= 2ε

(
f1(x)− f1(y)+ε

)
,

where in the last line we used that size( f (x))−size( f (y)) = f1(x)+ fr (x)− f1(y)− fr (y) = f1(x)−
f1(y) since fr is constant.

In computing cost(g ), we think that the solid element and the one liquid element that was

added or removed go first (and other elements are unaffected since sizeg is preserved):

Δcost(g (x)) = (g1(x)+ε)2 − (g1(x)2 +ε(g1(x)+ε)) = εg1(x),

Δcost(g (y)) = ((g1(y)−ε)2 +εg1(y))− g1(y)2.

Adding up, we have:

Δcost(g (x))+Δcost(g (y)) = ε
(
g1(x)− g1(y)+ε

)= ε
(

f1(x)− f1(y)+ε
)

,

where we used that f1 = g1. Thus we have that

Δcost( f (x))+Δcost( f (y)) = 2
[
Δcost(g (x))+Δcost(g (y))

]

and we prove the statement by setting

α= τ
(
Δcost(g (x))+Δcost(g (y))

)= τε
(

f1(x)− f1(y)+ε
)≥ 0

(recall that τ is the fraction of patterns where we increase g1; non-negativity follows by the last

invariant above).

Claim 4.4.2. Let ( f ′, g ′) be the CFP obtained at this point and ( f , g ) be the original CFP. Then

cost( f ′)
cost(g ′)

≥ min

(
2,

cost( f )

cost(g )

)
.

Proof. By Claim 4.4.1, we have cost( f ′) = cost( f )+2β and cost(g ′) = cost(g )+β for some β≥ 0

(which is the sum of α’s from Claim 4.4.1). Now there are two cases:

• if cost( f )
cost(g ) ≤ 2, then cost( f )+2β

cost(g )+β ≥ cost( f )
cost(g ) ,

• if cost( f )
cost(g ) ≥ 2, then cost( f )+2β

cost(g )+β ≥ 2 (even though the ratio decreases, it stays above 2).

Finally, as the last step, we equalize the total sizes of liquid elements in g (x) for x ∈ [t ,1)

(by moving liquid elements from larger patterns to smaller patterns, until all are equal), thus

satisfying property (d). Clearly, this can only decrease the cost of g (by minimizing the variance

of sizeg on the interval [t ,1)), so the ratio increases and Lemma 4.4.3 follows.
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Note that Lemma 4.4.3 does not guarantee that the ratio of costs increases; we only claim that

it either increases, or it is now more than 2. However, we will show shortly, in Lemma 4.4.4,

that the ratio is actually much below 2, so the latter is in fact impossible.

Now that we have our ideal CFP, we can finally bound its cost ratio.

Lemma 4.4.4. Given a CFP ( f , g ) as postulated in Lemma 4.4.3 (see the lower part of Figure 4.3),

we have

cost( f )

cost(g )
≤ 1+�

2

2
.

The proof proceeds in two simple steps: First, we argue that we can assume without loss of

generality that there is only a single large element (i.e., f1 = g1 is constant on [0, t )). Then, for

such pairs of functions, the ratio is simply a real function of three variables whose maximum

is easy to compute.

Proof. For a first step, we assume without loss of generality that there is only a single large

element (i.e., f1 = g1 is constant on [0, t)). This is due to the fact that both f and g can be

written as a weighted average of functions with a single large element. Formally, let 	1,	2, ...

be the step lengths of f1 on [0, t ), so that
∑

i 	i = t and f1 is constant on [0,	1), on [	1,	1 +	2)

and so on. Define f i to be f with the whole f1 on [0, t ) replaced by the i -th step of f1, i.e.,

f i (x) =
⎧⎨
⎩ f (	1 + ...+	i−1) for x ∈ [0, t ),

f (x) for x ∈ [t ,1).

Define g i similarly. By inspecting f , we observe that fr (x) is constant in [0,1), and equal

to size( f (x)) in [t ,1). Hence, cost( f (x)) is constant in [t ,1), whereas in [0, t) it is uniquely

determined by f1(x) and size( f (1)). Therefore, cost( f ) can be written as

cost( f ) =∑
i
	i cost( f (	1 + ...+	i−1))+ (1− t ) ·cost( f (1))

=∑
i

	i

t

[
t ·cost( f (	1 + ...+	i−1))+ (1− t ) ·cost( f (1))

]

=∑
i

	i

t
cost( f i )

and similarly cost(g ) =∑
i
	i
t cost(g i ). Thus, if we have cost( f i )

cost(g i )
≤ 1+�2

2 for each i , then

cost( f )

cost(g )
=

∑
i
	i
t cost( f i )∑

i
	i
t cost(g i )

≤
∑

i
	i
t

1+�2
2 cost(g i )∑

i
	i
t cost(g i )

= 1+�
2

2
.

So we assume that f1 is constant on [0, t ) (i.e., the shaded areas in Figure 4.3 are rectangles).

Let γ= f1(0) be the large element and λ be the total mass of liquid elements (the same in f as
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in g ), i.e., λ= f (1) = (1− t )g (1). In the limit ε→ 0 we have

cost( f )

cost(g )
=

t
(
γ2 +∫λ

0

(
γ+x

)
d x

)
+ (1− t )

∫λ
0 xd x

tγ2 + (1− t )
∫g (1)

0 x d x
=

t
(
γ2 +γλ+ λ2

2

)
+ (1− t )λ

2

2

tγ2 + (1− t )
(

λ
1−t

)2

2

= tγ2 + tγλ+ λ2

2

tγ2 + λ2

2(1−t )

and we need to prove that this expression is at most 1+�2
2 for all t ∈ [0,1), γ≥ 0 and λ≥ 0. So

we want to show

tγ2 + tγλ+ λ2

2
≤ 1+�

2

2

(
tγ2 + λ2

2(1− t )

)
,

that is,

λ2

(
1+�

2

4(1− t )
− 1

2

)
−λ · tγ+

�
2−1

2
tγ2 ≥ 0.

Note that 1+�2
4(1−t ) − 1

2 > 0 for t ∈ [0,1), so this is a quadratic polynomial in λ whose minimum

value (over λ ∈R) is

�
2−1

2
tγ2 − t 2γ2

4
(

1+�2
4(1−t ) − 1

2

) = tγ2

⎛
⎝�

2−1

2
− t

1+�2
1−t −2

⎞
⎠

and we should prove that this is non-negative. If t = 0 or γ = 0, then this is clearly true;

otherwise we multiply both sides of the inequality by 1−t
tγ2

(
1+�2
1−t −2

)
(a positive number) and

after some calculations we are left with showing

t 2 +
(�

2−2
)

t + 3−2
�

2

2
≥ 0

but this is again a quadratic polynomial, whose minimum is 0.

To conclude the proof of Theorem 4.1.1, we require the following lemma regarding the tightness

of our analysis of Algorithm 4.1, which we will prove shortly afterwards:

Lemma 4.4.5. For any δ> 0, there is an instance I of R||∑p j C j whose optimal value is c, and

an optimal configuration-LP solution whose objective value is also c, such that the rounded

solution returned by Algorithm 4.1 has cost at least ( 1+�2
2 −δ)c.

We conclude the proof of Theorem 4.4.1:

Proof of Theorem 4.4.1. It is straightforward to see that

1+�
2

2
≥ cost( f ′)

cost(g ′)
≥ min

(
2,

cost( f )

cost(g )

)
= min

(
2,

∑
i yout

i cost(Ci )∑
i y in

i cost(Ci )

)
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where ( f , g ) is produced from (yout, y in) as in Fact 4.4.1 and ( f ′, g ′) is produced from ( f , g )

by applying Lemmas 4.4.1, 4.4.2 and 4.4.3; the first inequality is by Lemma 4.4.4. It follows

that either 1+�2
2 ≥ 2 (false) or 1+�2

2 ≥
∑

i yout
i cost(Ci )∑

i y in
i cost(Ci )

. Together with Lemma 4.4.5, Theorem 4.4.1

follows.

Let us now prove Lemma 4.4.5:

Proof of Lemma 4.4.5. The intuitive explanation is that the bound in Lemma 4.4.4 is tight,

hence there exists a CFP in the final form (as postulated by Lemma 4.4.3) with ratio exactly
1+�2

2 . Furthermore, this CFP indeed almost corresponds to an instance of R||∑p j C j (except

for the fact that the parameters that maximize the ratio are irrational). We make this intuition

formal in the following.

Let

h(t ,γ,λ) = tγ2 + tγλ+ λ2

2

tγ2 + λ2

2(1−t )

be the function specifying the ratio of CFPs in the final form. In Lemma 4.4.4, we proved that

h(t ,γ,λ) ≤ 1
2 + 1�

2
for all t ,γ,λ ∈ [0,1]. To begin, let us fix the following maximizer (t�,λ�,γ�)

of h: t� = 1− 1�
2

, γ� = 1
2 and λ� =

�
2−1
2 ; we have h(t�,λ�,γ�) = 1�

2
+ 1

2 .

Let us choose a small rational η. Next, let us fix rationals t̃ ∈ [t�−η, t�], λ̃ ∈ [λ�−η,λ�] and

γ̃ ∈ [γ�,γ�+η] such that h(t̃ , γ̃, λ̃) ≥ 1+�2
2 −η. Then, there exist positive integers k, T and Λ

such that T = t̃k and Λ = kλ̃. Finally, select a small rational ε ≤ η such that ε = λ̃
k1(1−t̃ ) , for

some integer k1 > 0, and ε= λ̃
k2

, for some integer k2 > 0.

Next, we create an instance Iε of R||∑p j C j which consists of k machines, a set T of T jobs of

size γ̃ each, and a set L of Λ/ε jobs of size ε each; any job can be assigned to any machine.

An optimal solution to this instance will assign the jobs from T alone on T machines, and

distribute the jobs from L evenly on the rest of the machines (i.e., these machines will

all receive λ̃
(1−t̃ )ε jobs of size ε each). The fact that this is an optimal solution follows in a

straightforward manner from the following two observations:

• A solution that assigns a job from L on the same machine as a job from T is sub-

optimal: indeed, the average makespan is less than γ̃ (in fact, it is exactly t̃ γ̃+λ̃, which is

at most γ̃, due to the fact that t�γ�+λ� < γ� and due to the intervals which we choose

t̃ , γ̃ and λ̃ from), which implies that we can always reassign such a job to a machine

with smaller makespan, thus decreasing the solution cost.

• Similarly, in any optimal solution, jobs from T are not assigned on the same machine.
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4.5. Integrality Gap Lower Bound

Now, consider the configuration-LP solution yε that assigns to every machine a configuration

that consists of a single job from T (i.e., of cost γ̃2) with probability t̃ , and a configuration

that consists of λ̃
(1−t̃ )ε jobs from L (i.e., of cost

∑
1≤i≤ λ̃

(1−t̃ )ε

∑
1≤ j<i ε

2 = λ̃2

2(1−t̃ )2 + λ̃
2(1−t̃ )ε) with

probability 1− t̃ . Clearly, the cost of this LP solution is equal to that of any optimal integral

solution (in fact, the LP solution is a convex combination of all integral optimal solutions).

Furthermore, this LP solution is optimal (we can see this by applying the reasoning we used

for the integral optimum to all the configurations in the support of a fractional solution).

Algorithm 4.1 will assign to any machine a configuration that consists of a single job from T

and λ̃/ε jobs from L (i.e., of cost γ̃(γ̃+ λ̃)+∑
1≤i≤ λ̃

ε

∑
1≤ j<i ε

2 = γ̃(γ̃+ λ̃)+ λ̃2

2 + λ̃
2 ε) with proba-

bility t̃ , and a configuration that consists of λ̃/ε jobs from L (i.e., of cost
∑

1≤i≤ λ̃
ε

∑
1≤ j<i ε

2 =
λ̃2

2 + λ̃
2 ε) with probability 1− t̃ . To see this, first observe that every machine has a total fractional

assignment of jobs from T equal to t̃ , and a total fractional assignment of jobs from L equal

to λ̃
ε . Therefore, the first bucket created by Algorithm 4.1 for any machine will contain a

t̃-fraction of T -jobs and an (1− t̃ )-fraction of L -jobs, and the rest of the buckets will be filled

up with L -jobs (since λ̃
ε is an integer, the last bucket will be filled up to a t̃-fraction). This

implies that, in a worst-case output distribution, with probability t̃ any machine receives a

T -job and L -jobs of total size λ̃, and with probability (1− t̃ ) it receives L -jobs of total size λ̃.

Now, the ratio of the expected cost of the returned solution to the LP cost, for any machine, is

then

t̃ γ̃2 + t̃ γ̃λ̃+ λ̃2

2 + λ̃
2 ε

t̃ γ̃2 + λ̃2

2(1−t̃ ) + λ̃
2 ε

≥ t̃ γ̃2 + t̃ γ̃λ̃+ λ̃2

2

t̃ γ̃2 + λ̃2

2(1−t̃ ) + λ̃ ε
2

= h(t̃ , γ̃, λ̃)
t̃ γ̃2 + λ̃2

2(1−t̃ )

t̃ γ̃2 + λ̃2

2(1−t̃ ) + λ̃
2 ε

which is at least 1+�2
2 −δ if we pick ε and η small enough; since the cost of the LP solution is

equal to that of any optimal integral solution, the claim follows.

It is interesting to note that, given the instance and LP solution from the proof of Lemma 4.4.5,

any random assignment produced by Algorithm 4.1 will assign the same amount of small jobs

to all the machines, whereas it will assign a large job to a t̃-fraction of the machines. Therefore

derandomizing Algorithm 4.1 by picking the best possible matching (instead of picking one at

random) will not improve upon the 1+�2
2 ratio.

Theorem 4.4.1 and Lemma 4.4.5 together imply Theorem 4.1.1.

4.5 Integrality Gap Lower Bound

First of all, observe that Theorem 4.1.1, apart from establishing the existence of a 1.21-

approximation algorithm for R||∑ j p j C j , also implies an upper bound on the integrality

gap of its configuration-LP. Hence, we accompany our main result with a lower bound on the

integrality gap of the configuration-LP for R||∑ j p j C j :
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M3

M1

M4

M2

J12

J34

J13 J24

J23 J14

Figure 4.4: The 13
12 -integrality gap instance. In this picture, black circles correspond to ma-

chines, gray boxes correspond to jobs of size 3, and white boxes correspond to jobs of size 1.
An edge between a circle and a box means that the corresponding job can be assigned to the
corresponding machine.

Theorem 4.1.3. The integrality gap of the configuration-LP for R||∑p j C j is at least 13/12.

Proof. Consider the following instance on 4 machines M1, M2, M3, M4: for every pair {Mi , M j }

of machines there is one job Ji j that can be processed only on these two machines. Jobs J12

and J34 are large: they have weight and size 3, whereas the other four jobs are small and have

weight and size 1. (See Figure 4.4 for an illustration.)

First we show that any integral schedule has cost at least 26. Without loss of generality, the

large job J12 is assigned to machine M1 and the other large job J34 is assigned to machine M3.

The small job J13 must also be assigned to one of them, say to M1. This costs 9+9+4 = 22.

The remaining three small jobs J12, J14 and J24 cannot all be assigned to distinct machines

with zero makespan (since only M2 and M4 are such), so they will incur at least 1+1+2 = 4

units of cost.

The configuration-LP has a solution of cost 24. Specifically, it can assign to each machine Mi

two configurations, each with fractional value 1
2 : the singleton large job that can be processed

on that machine, or the two small jobs that can be processed on that machine. Then each job

is processed with fractional value 1
2 by each of the two machines that can process it. The cost

is 4 · ( 1
2 ·9+ 1

2 · (1+2)) = 24. Thus the integrality gap is at least 26
24 = 13

12 > 1.08.
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4.6 Bi-objective Approximation Algorithm

To begin with, in order to design a bi-objective approximation algorithm, we will need a slightly

different configuration-LP than the one we used for the min-sum of weighted completion

times problem. In particular, we need to restrict the support of our fractional solution to only

include configurations that respect the makespan constraint. Let Ci = {C ⊆Ji :
∑

j∈C
p j ≤ T };

we have the following configuration-LP relaxation:

min
∑

i∈M

∑
C∈Ci

yiC cost(C )

s.t.
∑

C∈Ci

yiC ≤ 1 ∀i ∈M ,

∑
i∈M

∑
C∈Ci : j∈C

yiC = 1 ∀ j ∈J ,

yiC ≥ 0 ∀i ∈M , C ∈Ci .

Again, we do not know how to solve this LP exactly, but we can approximately solve it up to

any desired degree of accuracy (see Appendix A).

The algorithm behind Theorem 4.1.2 is simply the application of Algorithm 4.1 to an (approx-

imately) optimal fractional solution of the modified configuration-LP. Then, Theorem 4.1.1

implies the cost guarantee of Theorem 4.1.2, whereas the original analysis of Shmoys and

Tardos [39] implies the makespan guarantee.
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5 Conclusions and Future Directions

In this final chapter, we discuss the main conclusions of this thesis and the possible directions

in which the results and techniques we provided can be extended.

5.1 Restricted Max-Min Fair Allocation

For the max-min fair allocation problem, we designed a polynomial-time 1
13 -approximation

algorithm. We did this by designing a local-search procedure that iteratively extended a partial

solution to include one more agent. The essential part of the design of this procedure is that,

throughout its execution, we made sure to update our partial solution only when this update

would affect a significant fraction of the involved agents. This design feature enabled us to

place a polynomial upper bound on the number of different states the local search might

enter.

5.1.1 Future Directions

When we study an NP-hard optimization problem, our main goal is to achieve matching

approximability and inapproximability results. Although the restricted max-min fair allo-

cation problem is NP-hard to approximate within a factor better than 1/2, in this thesis we

showed the problem can be approximated within a factor of 1/13 in polynomial time. Towards

achieving tight results, our work, and the techniques we used, point out two main directions:

(1) improving the approximation guarantee that we can achieve in polynomial time by using

the configuration-LP, and (2) improving the best known lower bound on its integrality gap.

Polynomial Time Algorithms In this direction, we need first to identify, in our approach, the

bottleneck that does not enable our ideas to produce a better approximation guarantee. After

inspecting our algorithm and its analysis, we can observe that the main bottleneck appears in

our refutation of the configuration-LP. Specifically, when we design a solution to the dual LP

that certifies the primal is infeasible, we have to "buy" all the items that appeared in the local
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search, whereas the only agents that "pay" for them are those for which our local search used

almost all of the items they can receive.

Previous approaches [32, 2] refuted the configuration-LP by having all agents that appear in

the local search pay for the items. This is the reason these approaches produce our best-known

bounds on the integrality gap of the configuration-LP. Our approach, however, uses only a

fraction of the agents to pay for the bought items (on the technical level, this is a result of

our design, because we introduce one addable edge per blocking edge, instead of many, and

we only update our matching when a layer has many immediately addable edges, instead of

one). This fact ultimately implies that we have to include fewer items per agent in our local

search, which implies that the value of the items each agent receives is reduced. Therefore, the

main question that arises is, How can we modify our approach in a way that ensures almost all

agents that are included in our local search pay for the items we use? In order to achieve this,

we might have to ensure that every agent receives multiple addable edges, while maintaining

a meaningful condition of updating the partial solution, i.e., a condition that will imply every

update implies significant progress.

Integrality Gap The second question that arises is, How can one achieve an improved

bound on the integrality gap of the configuration-LP for the restricted max-min fair allocation

problem? In this case, it is less clear what the most promising direction is. At this moment, our

best bounds are provided by local-search algorithms that run in super-polynomial time and

use the configuration-LP to argue that failure implies the guessed value is infeasible. Although

it is not clear how we can modify these approaches to achieve improved bounds (we would

have to ensure we include more items in our local search, and that the unassigned items in the

neighbourhood of each agent are less), one interesting and unexplored direction is to directly

round the configuration-LP. Although there is little understanding of how this task can be

carried out, successfully taking this approach might open up many interesting directions for a

multitude of allocation problems.

5.2 Min-Sum of Weighted Completion Times

For the min-sum of weighted completion times problem with uniform Smith ratios, we

provided a polynomial-time rounding algorithm for the configuration-LP that achieves a
1+�2

2 -approximation guarantee. We did this is by using a well-known rounding algorithm for

allocation problems, which achieves a strong concentration on the number of jobs assigned

to each machine. Furthermore, this rounding algorithm also implicitly introduces negative

correlations on the assignment of jobs of similar sizes to each machine. This enabled us to

establish the 1+�2
2 -approximation guarantee, through a series of modifications of the output

distribution of each machine, where the cost of each intermediate distribution is an upper

bound on the cost of the original one.
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5.2.1 Future Directions

When examining how we can extend our ideas to the general min-sum of weighted completion

times problem, or how we can develop new ones, we have to first identify our available tools

and the existing limitations. The configuration-LP is certainly such a strong tool: The fact that

it does not underestimate the cost of any assignment is essential, and leaves us only with the

problem of extending the local distributions over assignments defined by the configuration-LP

to a global distribution.

However, how we can achieve this is far from clear. It is hard to imagine how we can sig-

nificantly beat the 3/2-ratio by using independent rounding as our basic rounding scheme.

Furthermore, if we only modify the order in which the jobs are introduced into the buckets, we

will not be able to extend the rounding algorithm that we used to non-uniform Smith ratios. An

approach that could conceivably work is to design an algorithm that carefully constructs each

bucket separately (e.g., by including in each bucket jobs that increase the cost significantly

when assigned on the same machine), rather than by using a simple total order on the jobs.

Even then, it is not completely clear how far such an approach might go, as the rounding

algorithm we used inherently introduces very strong negative correlations for very small

groups of jobs, whereas it might be required that we do so for larger groups. One promising

technique in this direction is also the use of SDP hierarchies (e.g., see [5]); rounding solutions

to such relaxations in a way that we preserve some of the correlations the fractional solution

implies is a promising idea and is one that might be applicable in many other allocation

problems as well.

5.3 General Future Directions

Let us now discuss some research directions that are laid out by our work, but are less relevant

to the specific problems we studied. One first such direction is trying to use the configuration-

LP in order to produce solutions to other, weaker, but more well-understood LP-relaxations

that exhibit some extra useful properties. Then, we can use some already known algorithm to

round the solution to the weaker relaxation and use the properties of the configuration-LP to

establish an increase in performance. This approach was used to prove that the integrality gap

of the configuration-LP for the MBA problem is strictly better than 3/4 [26, 25], which is the

integrality gap achieved by the weaker assignment-LP. It is quite possible that this approach

can be extended to other similar problems: for example, we can prove that for a special case

of the GAP problem, configuration-LP solutions whose support contains configurations with

at most two items can be projected to assignment-LP solutions in such a way that a simple

modification of the algorithm by Shmoys and Tardos [39] achieves a 2/3-approximation

guarantee. Whether or not we can generalize this claim to any configuration-LP solution, and

subsequently to more allocation problems, is an intriguing question.

Another direction we would like to point out, is the design of algorithms that directly round
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solutions to the configuration-LP. So far, the configuration-LP has mostly been used either

in conjuction with some local search algorithm, or in order to design a solution to another

relaxation that exhibits some nice properties; one notable exception is the bin packing problem

[33, 34]. Although we still lack the understanding of how such a feat is possible, achieving

it would, at the very least, contribute to our understanding of the power and limitations of

the configuration-LP, and would hopefully provide better approximation results for various

allocation problems.

Finally, one general question that deserves some attention is how we can use local search in

order to design good approximation algorithms for allocation problems. So far, local search

has been instrumental in providing integrality gaps and approximation algorithms for the

min-max scheduling problem [44, 24] and the max-min fair allocation problem [2, 32, 1].

On one hand, the hardness of the constraints of these problems make local search a more

appealing technique. On the other hand, there is not much known on whether we can apply

such techniques on problems with softer constraints and different objective functions (e.g.

GAP, MBA). Our understanding of how local search can provide better guarantees than other,

more standard, techniques for these problems is limited, but this is certainly an interesting

question, whose importance is only amplified by the practical relevance of combinatorial local

search algorithms.
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A Solving a Configuration-LP

Over the course of this thesis, we established the existence of good approximation algo-

rithms for two different problems. Their existence relied on the existence of a corresponding

configuration-LP. On the one hand, our algorithm for the restricted max-min fair allocation

problem does not explicitly solve the appropriate configuration-LP, but rather uses it as a

lower bound in the accompanying analysis. On the other hand, the configuration-LP is indeed

explicitly solved as part of our approximation algorithm for the min-sum of weighted comple-

tion times problem. For the sake of completeness, we will be describing formally how to solve

the configuration-LP for the restricted max-min fair allocation problem, and for the min-sum

of weighted completion times with makespan constraints problem (we do not explain how to

solve the configuration-LP for the the min-sum of weighted completion times problem, since

that can be easily deduced from the solution to the version with makespan constraints).

A.1 Restricted Max-Min Fair Allocation

Let us start by describing how to solve the configuration-LP for the restricted max-min fair

allocation problem. Let us remind ourselves of C-LP(τ):

∑
C∈C (i ,τ)

xiC ≥ 1 ∀i ∈P∑
i∈P

∑
C∈C (i ,τ): j∈C

xiC ≤ 1 ∀ j ∈R

0 ≤ xiC ≤ 1 ∀i ∈P ,C ∈C (i ,τ)

The first thing we have to note is that solving C-LP(τ) is non-trivial since the LP involves an

exponential number of variables, and, as we will see later on, there is no trivial separation

oracle for its dual. In fact, solving C-LP(τ) exactly is actually (weakly) NP-hard: we can straight-

forwardly reduce the partition Problem to solving the configuration-LP for the restricted

max-min fair allocation problem. Specifically, consider an instance of the partition problem
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Appendix A. Solving a Configuration-LP

described by a multiset of numbers S and an integer k; we create an instance of the restricted

max-min fair allocation problem consisting of 2 agents i1 and i2, and one item of size l for

each l ∈ S. One can easily see that any feasible solution to C-LP(k) for the reduced instance

defines a solution to the original partition instance, since the existence of any configuration

of size greater than k in the support of such a feasible solution will immediately imply that

some other configuration in the support of the LP solution will have size less than k; hence, all

configurations in the support of a feasible solution must have the same size k.

In spite of the above, we will be able to design a polynomial-time algorithm which returns a

feasible solution to C-LP((1−ε)τ) if C-LP(τ) is feasible, for any ε> 0. Specifically, let Cε(i ,τ) be

the set of of configurations for agent i consisting of items of size at least τ/ε that include at

most 1
ε +1 items; furthermore, let R0 be the items with size at most τ/ε, let Rε =R \R0, let

Ri be the set of items that can be assigned to i (analogously we define R0
i and Rε

i ), and let

s(C ) = ∑
j∈C

p j .

Now, consider the following C-LP’(τ):

∑
C∈Cε(i ,τ)

xiC ≥ 1 ∀i ∈P

xiC s(C )+ ∑
j∈R0

i

xi jC p j ≥ xiCτ ∀i ∈P ,C ∈Cε(i ,τ)

∑
i∈P

∑
C∈Cε(i ,τ): j∈C

xiC ≤ 1 ∀ j ∈Rε

∑
i∈P

∑
C∈Cε(i ,τ)

xi jC ≤ 1 ∀ j ∈R0

xi jC ≤ xiC ∀i ∈P ,∀ j ∈R0
i ,C ∈Cε(i ,τ)

xi jC = 0 ∀i ∈P ,∀ j ∉R0
i ,C ∈Cε(i ,τ)

0 ≤ xiC ≤ 1 ∀i ∈P ,C ∈Cε(i ,τ)

0 ≤ xi jC ≤ 1 ∀i ∈P , j ∈R0
i ,C ∈Cε(i ,τ)

Observe that the above LP has O(|P ||R|1/ε) variables and constraints, and therefore we can

solve it in polynomial time. Furthermore, observe that any feasible solution to C-LP(τ) defines

a feasible solution to C-LP’(τ). Finally, given a feasible solution to the above LP, we can

transform it into a feasible solution for C-LP((1− ε)τ), by viewing the configurations in the

support of x as machines, on which the jobs of R0 are fractionally assigned. Then, applying

the rounding algorithm of Shmoys and Tardos [39] on these machines, will produce a fractional

assignment of R0 to the configurations in the support of x, where all xi jC are either 0 or xiC ,

and for all i ∈P and C ∈Cε(i ,τ),
∑

j∈R0
i

xi jC p j ≥ τ− s(C )−τ/ε (since every job in R0 has size at

most τ/ε). From this fractional assignment of items in R0 and the original values xiC for all i

and C , we can easily create a solution to C-LP(1−ε)τ.
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A.2 Min-Sum of Weighted Completion Times with Makespan Con-

straints

We now present how one can approximately solve the configuration-LP required for Theorem

4.1.2. First, let us restate the LP relaxation; we call the following linear program CLP(T ):

min
∑

i∈M

∑
C∈Ci

yiC cost(C )

s.t.
∑

C∈Ci

yiC ≤ 1 ∀i ∈M ,

∑
i∈M

∑
C∈Ci : j∈C

yiC = 1 ∀ j ∈J ,

yiC ≥ 0 ∀i ∈M , C ∈Ci .

where Ci = {C ⊆ Ji :
∑

j∈C
p j ≤ T } is the set of jobs that can be assigned to machine i whose

total size is at most T . We will state an LP-relaxation of CLP(T ), and then show how we can

use the relaxed LP to extract a solution whose cost is at most an 1+O(ε) factor away from the

optimal cost of CLP(T ), and such that all the configurations fractionally assigned to machine i

in the extracted solution belong to {C ⊆Ji :
∑

j∈C
p j ≤ T (1+2ε)}.

Let us first give some intuition behind the relaxation of CLP(T ): what we aim to do is replace

every variable yiC with a variable yiCk , where |C | ≤ 1
ε (let’s assume 1

ε ∈N for simplicity) and

kεsize(C ) ≤ T − ∑
j∈C

p j . Then, if yiCk would be set to 1 in an integral solution, it would mean

that we would assign the jobs from C to i , and use a “budget” of size kεsize(C ) to fractionally

assign to i jobs of size less than min j∈C p j . For each C and i , we will have a range of acceptable

budgets, each of which will correspond to a variable yiCk in our linear program. Furthermore,

we will have variables xi jCk that would be set to 1 if job j would be assigned to machine i

by using the kεsize(C ) budget of configuration C , and 0 otherwise; note that only a job that

is smaller than all the jobs in C could be assigned to i using this budget. It is important to

notice that we would include such variables only for configurations of cardinality exactly
1
ε (although it would make sense to assign some job j using the left-over budget of some

configuration C where |C | < 1
ε , we will always have the option of picking configuration C ∪ { j }

anyway). Intuitively, C corresponds to the 1
ε largest jobs we assign to a machine, and we have

an extra budget to include some smaller jobs as well; the cost induced by the jobs in C will be

estimated exactly by our LP, and since the size of the rest of the jobs is relatively small, we can

approximate the induced cost fairly well.

Let us now describe the relaxed LP formally. The LP will include two sets of variables. The

first set will include a variable yiCk for all i ∈ M , C ⊆ Ji :
∑

j∈C
p j ≤ T ∧ |C | ≤ 1

ε and k ≤ |Ji | :

kεsize(C )+ ∑
j∈C

p j < T (1+ε), except for those i ,C ,k where |C | < 1
ε and k > 0. The second set

of variables will include a variable xi jCk for all i ∈M , C ⊆Ji :
∑

j∈C
p j ≤ T ∧|C | = 1

ε , k ≤ |Ji | :
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kεsize(C )+ ∑
j∈C

p j < T (1+ε) and j ∈Ji : p j ≤ min j ′∈C p j ′ . If k > 0, we define the relaxed cost

costr (Ck ) = cost(C )+ (k −1)εsize2(C )+ ((k −1)εsize(C ))2

2

and for k = 0 we define

costr (C0) = cost(C ).

We define

C
f

i = {C ⊆Ji :
∑
j∈C

p j ≤ T ∧|C | = 1

ε
},

C e
i = {C ⊆Ji :

∑
j∈C

p j ≤ T ∧|C | < 1

ε
}

and

Ci =C
f

i ∪C e
i .

Given C ∈Ci , we define

KC =

⎧⎪⎨
⎪⎩

{0}, if C ∈C e
i .

{k ≤ |Ji | : kεsize(C )+ ∑
j∈C

p j < (1+ε)T }, if C ∈C
f

i .

Finally, we define R(C , i ) = { j ∈Ji : p j ≤ min j ′∈C p j ′}. The relaxation of CLP(T ) is the following:

min
∑

C∈Ci

∑
k∈KC

yiCk costr (Ck )

s.t.
∑

C∈Ci

∑
k∈KC

yiCk = 1 ∀i ∈M∑
i∈P

(
∑

C∈Ci : j∈C

∑
k∈KC

yiCk +
∑

C∈Ci : j∈R(C ,i )

∑
k∈KC

xi jCk ) = 1 ∀ j ∈J

xi jCk − yiCk ≤ 0 ∀i ∈M ,C ∈C
f

i ,k ∈KC , j ∈ R(C , i )∑
j∈R(C ,i )

xi jCk p j − yiCk kεsize(C ) ≤ 0 ∀i ∈M ,C ∈C
f

i ,k ∈KC

xi jCk = 0 ∀i ∈M ,C ∈C
f

i ,k ∈KC , j ∈C

yiCk ≥ 0 ∀i ∈M ,C ∈Ci ,k ∈KC

xi jCk ≥ 0 ∀i ∈M ,C ∈C
f

i ,k ∈KC , j ∈ R(C , i )

Observe that the relaxation contains a number of variables and constraints that is polynomial

in |M |, |J | and 1
ε . Specifically, the relaxation includes 5 sets of constraints (excluding the

non-negativity constraints). The first set of constraints states that every machine should

receive one set of jobs, while the second set of constraints states that every job should be

assigned to one machine. The third set of constraints states that a job can only use the budget

of assigned configurations, and the fourth constraint states that the total size of jobs using a

configuration’s budget cannot exceed that budget. Finally, the fifth set of constraints states

that a job cannot use the budget of a configuration the job already belongs to.

Next, notice that given any integral solution (y, x) to the relaxed LP, we can construct an integral
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solution y ′ to CLP(T (1+ε)) as follows: for each machine i , consider the unique variable yiCk

that is set to 1, and the set S of jobs j such that xi j ck = 1. Then, set yiC ′ = 1, where C ′ =C ∪S.

Observe that the cost of y ′ can only be greater than that of (y, x).

Let us now prove that for any optimal solution (y, x) to the relaxed LP of total cost OPT, there

exists a solution y∗ to CLP(T (1+2ε)), whose cost is at most (1+O(ε))OPT; applying Algorithm

4.1 to this solution would then imply Theorem 4.1.2, as we saw in Section 4.6.

Consider τ> 0 small enough, such that yiCk is an integer multiple of τ for all i ∈M , C ∈Ci ,

k ∈ KC , and such that
∑

C∈Ci : j∈R(C ,i )

∑
k∈KC

xi jCk is an integer multiple of τ for all j ∈ J . Given

optimal solution (y, x), let us assume that for all i ∈M , C ∈Ci and k ∈KC , we have yiCk ∈ {0,τ},

for some sufficiently small τ; this comes without loss of generality, since we could consider

some Ck is assigned multiple times to i .

Now, consider some yiCk = τ, where C ∈C
f

i ; then,

yiCk kεsize(C ) ≥ ∑
j∈Ji \C

xi j ck p j ≥ yiCk (k −1)εsize(C ),

since otherwise (y, x) would not be an optimal solution. We can view x as a fractional assign-

ment of jobs to machines, where each j ∈J corresponds to a job, each (i ,Ck ) corresponds

to a machine, and
xi jCk
yiCk

= xi jCk
τ

1 is the fractional assignment of j to (i ,Ck ). Now, applying

the algorithm of Shmoys and Tardos [39], we can extract an integral assignment of jobs to

machines that correspond to some (i ,Ck ). More formally, we can extract an assignment x1

such that x1
i jCk

∈ {τ,0} and such that (y, x1) satisfies all constraints of the relaxed LP, except

for the fourth set of constraints. Regarding the fourth set of constraints, the constraint that

corresponds to some i ∈ M ,C ∈ C
f

i ,k ∈ KC might be violated by an additive εsize(C ) ≤ εT

factor, due to the application of the algorithm by Shmoys and Tardos (since C contains 1
ε jobs,

for any job j ∈ R(C , i ) p j ≤ εsize(C )).

First of all, consider any i ∈ M , C ∈ C
f

i , k ∈ C such that yiCk is equal to τ. From x1, we can

extract a set of jobs C ′ (the jobs j that have xi jCk = τ), such that the total size of jobs in C ′ is at

most T (1+2ε) (an additive factor of εsize(C ) ≤ εT comes due to (y, x1) violating the fourth set

of constraints, and an additive factor of εT comes due to the definition of K (C )). Then, we

set y∗
iC∗ = τ, where C∗ =C ∪C ′. Now, since jobs in R(C , i ) have size at most εsize(C ), the cost

of C∗ can be upper bounded as follows:

cost(C∗) ≤ cost(C )+ (k +1)εsize2(C )+ (k+1)(k+2)
2 ε2 size2(C )

≤ costr (Ck )+2εsize2(C )+3kε2 size2(C )

≤ costr (Ck )+2εsize2(C )+3εsize2(C )

≤ costr (Ck )+5εsize2(C )

≤ costr (Ck )(1+O(ε))

1Here we use the fact that (y, x) satisfies the third set of constraints.
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since k ≤ 1
ε and costr (Ck ) ≥ cost(C ) ≥ size2(C )

2 .

On the other hand, given any i ∈M , C ∈C e
i such yiCk is equal to τ, we set y∗

iC = yiCk . In this

case, costr (C0) = cost(C ). Therefore, in total the cost of solution y∗ is at most OPT(1+O(ε)).

Finally, observe that since (y, x) satisfies the first two sets of constraints, y∗ is a valid solution

for CLP(T ).

Finally, a fine technical point is that for the above process to run in polynomial time, 1/τ should

be of polynomial size. We can make this assumption, by picking our original solution (y, x) to

be an extreme point (which implies (y, x) contains nO( 1
ε

) non-zero variables), and ignoring all

variables in the support of (y, x) whose value is less than 1
n

c
ε

, for some large constant c. Then,

applying Algorithm 4.1 on y∗ will produce a distribution that assigns all jobs with probability

at least 1− 1

nΩ( 1
ε )

; conditioning on the sampled solution assigning all jobs increases the cost by

a multiplicative 1+ 1

nΩ( 1
ε )

factor.
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B List of Problems

For completeness, we include a list of all the problems mentioned in the present thesis,

accompanied by a formal description.

Bin Packing

• Input: A multiset S = {si : 1 ≤ i ≤ n} of n rationals less than 1.

• Output: A number k and an assignment f : S → [k] such that
∑

s∈ f −1(i )
s ≤ 1, for all i ∈ [k].

• Objective: Minimize k.

Generalized Assignment Problem

• Input: A set P of m agents, a set R of n items, a value 0 ≤ vi j ≤ 1 for each i ∈ P and

j ∈R, and a weight 0 ≤ wi j ≤ 1 for each i ∈P and j ∈R.

• Output: An assignment f : R →P such that
∑

j∈ f −1(i )
wi j ≤ 1 for all i ∈P .

• Objective: Maximize
∑

i∈P

∑
j∈ f −1(i )

vi j .

Maximum Budgeted Allocation

• Input: A set P of m agents, a set R of n items, a value wi j ∈Q+ for each i ∈P and j ∈R,

and a budget Bi ∈Q+ for each i ∈P .

• Output: An assignment f : R →P .

• Objective: Maximize
∑

i∈P
min{Bi ,

∑
j∈ f −1(i )

wi j }.
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Maximum Knapsack

• Input: A multiset W = {wi : 1 ≤ i ≤ n} and a multiset V = {vi : 1 ≤ i ≤ n} of rationals less

than 1.

• Output: A subset S ⊆ [n] such that
∑

i∈S
wi ≤ 1.

• Objective: Maximize
∑

i∈S
vi .

Max-Min Fair Allocation

• Input: A set P of m agents, a set R of n items, and a value pi j ∈Q+ for each i ∈P and

j ∈R.

• Output: An assignment f : R →P .

• Objective: Maximize min
i∈P

{
∑

j∈ f −1(i )
pi j }.

• Variations: In the restricted max-min fair allocation problem, every item can be assigned

to a subset of the agents, and has the same price for all of them, i.e., pi j ∈ {0, p j } for all

j ∈R and i ∈P .

Minimum Knapsack

• Input: A multiset W = {wi : 1 ≤ i ≤ n} and a multiset V = {vi : 1 ≤ i ≤ n} of rationals less

than 1.

• Output: A subset S ⊆ [n] such that
∑

i∈S
wi ≥ 1.

• Objective: Minimize
∑

i∈S
vi .

Minimum Makespan Scheduling

• Input: A set M of m machines, a set J of n jobs, and a processing time pi j ∈Q+ for

each i ∈M and j ∈J .

• Output: An assignment f : J →M .

• Objective: Minimize max
i∈M

{
∑

j∈ f −1(i )
pi j }.
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Minimum Makespan Scheduling with Costs

• Input: A set M of m machines, a set J of n jobs, a processing time pi j ∈Q+ and a cost

ci j ∈Q+ for each i ∈M and j ∈J , and a target makespan T ∈Q+.

• Output: An assignment f : J →M such that
∑

j∈ f −1(i )
pi j ≤ T for all i ∈M .

• Objective: Minimize
∑

i∈M

∑
j∈ f −1(i )

ci j .

Min Sum of Weighted Completion Times Scheduling

• Input: A set M of m machines, a set J of n jobs, a processing time pi j for each i ∈M

and each j ∈J , and a weight w j for each j ∈J .

• Output: An assignment f : J →M of jobs to the machines, and a schedule σi : f −1(i ) →
[| f −1(i )|] of the jobs assigned on every machine i .

• Objective: Minimize the sum of weighted completion times

∑
i∈M

∑
j∈ f −1(i )

w j
∑

j ′∈ f −1(i ):σi ( j ′)≤σi ( j )

pi j ′ .

• Variations:

– In the restricted version of the problem, pi j ∈ {p j ,0} for each i ∈M and j ∈J .

– In the uniform Smith ratios setting, we have that pi j ∈ {w j ,∞} for each i ∈M and

j ∈J .

Partition

• Input: A multiset S = {si : 1 ≤ i ≤ n} of n integers.

• Output: YES, if there exists T ⊆ S such that
∑

s∈T
s = 1

2

∑
s∈S

s, NO otherwise.
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