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Abstract
The thesis describes the computational study of structural, electonic and transport properties

of monolayer transition metal dichalcogenides (TMDs) in the stable 2H and the metastable

1T’ phases. Several aspects have been covered by the study including the electronic properties

of the topological quantum spin Hall (QSH) state in the 1T’ monolayer phase as well as the

effects of strain, periodic line defects, interfaces and edges of monolayer TMDs. The electronic

properties of the bulk monolayer phases were described by the ab-initio density functional

theory (DFT) framework while the electronic and transport properties of 1D defects were

calculated using the non-equilibrium Green’s function (NEGF) formalism and its extensions.

A specific focus was made on the transport of spin-polarized charge carriers across line defects

in the monolayer 2H phase. Subject to energy, pseudomomentum and spin conservation, the

size of the transport gap is governed by both bulk properties of a material and symmetries of

a line defect. Outside the transport gap energy region, the charge carriers are discriminated

with respect to their spin resulting in the spin polarization of the transmitted current.

Next, the properties of the metastable monolayer 1T’ phase, its edges and interfaces with the

2H structural phase were studied. The presence of a sufficiently large band gap is important

for the observation of the QSH phase in the family of materials by probing the topologically

protected boundary states. The meV-order band gaps of the 1T’ phase of monolayer TMDs

were found to be sensitive to materials’ lattice constants suggesting the control of the band gap

size by strain. In particular, the electronic band structure and the size of the band gap in mono-

layer 1T’-WSe2 were found to be in agreement with experimental spectroscopy studies. The

topologically protected states at the edges of the monolayer 1T’ phase as well as at the bound-

aries between the topological 1T’ phase and the trivial 2H phase of monolayer TMDs were

studied. The dispersion of edge bands depends on the atomic structure of the boundary/ter-

mination. Specific atomic structure configurations were suggested to observe experimentally

the topological protection of the charge carrier transport against back-scattering.

Finally, in the context of lateral semiconducting device engineering, the electronic and trans-

verse transport properties of phase boundaries between the 2H and the 1T’ phases as well as

the dimerization defects in the 1T’ phase were investigated. Both kinds of defects considered

exhibit a relatively large transmission probability for the charge carriers crossing the defects.

However, the differences between the shapes of bulk bands of the two phases open a sizeable

transport gap for charge carriers crossing periodic domain boundaries between the monolayer

2H and 1T’ phases. The calculated formation energies of dimerization defects were found to

be relatively low suggesting their high concentration in real samples of monolayer 1T’-TMDs.
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Additionally, the thesis includes studies of magnetic dopants on the surface of Bi2Te3 and

atomic vacancies in monolayer 2H-MoSe2 where the electronic properties of point defects

were calculated and compared to experimental results. The two possible adsorption sites of

Fe on the surface of Bi2Te3 both show a large out-of-plane magnetic anisotropy in agreement

with experiments. The calculated local electronic properties of Se vacancies in monolayer 2H-

MoSe2 show the presence of in-gap states which are not observed in experiment. Nevertheless,

the combination of theoretical and experimental scanning tunneling microscopy images

allowed the unambiguous identification of the vacancy defect.

Keywords: 2D materials, transition metal dichalcogenides, TMDs, line defects, domain bound-

aries, spin-orbit coupling, density functional theory, ballistic transport, non-equilibrium

Green’s function, NEGF, spin current, quantum spin Hall effect, QSH, topological insulators.
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Résumé
Cette thèse décrit l’étude computationnelle des propriétés structurelles, électroniques et de

transport des dichalcogénures de métaux de transition (TMDs) monocouches, tant dans

la phase stable 2H que dans la phase métastable 1T’. Plusieurs aspects ont été couverts en

étudiant les propriétés électroniques dans l’état topologique de l’effet Hall quantique de

spin (QSH) dans la phase 1T’ monocouche, ainsi que l’effet de la pression, de défauts de

ligne périodiques, d’interfaces et d’effets de bord. Les propriétés électroniques des phases

immaculées ont été décrites par la théorie ab-initio de la fonctionnelle de la densité (DFT),

alors que les propriétés électroniques et de transport des défauts 1D ont été calculées à l’aide

du formalisme des fonctions de Green hors équilibre (NEGF) et ses extensions.

Une attention particulière a été portée au transport de porteurs de charge polarisés de spin

au travers de défauts de ligne dans la phase 2H monocouche. Sujette à la conservation de

l’énergie, du pseudo-moment et du spin, la taille du gap de transport est gouvernée à la fois

par les propriétés de la phase immaculée que par les symétries du défaut de ligne. En-dehors

de la région d’énergie du gap de transport, les porteurs de charge sont discriminés par rapport

à leur spin, résultant en une polarisation de spin du courant transmis.

Ensuite, les propriétés de la phase métastable 1T’, ses bords et interfaces avec la phase structu-

relle 2H ont été étudiées. La présence d’une bande interdite suffisamment large est importante

pour l’observation de la phase QSH dans cette famille de matériaux en sondant les états

de bord topologiquement protégés. Les bandes interdites de l’ordre de quelques meV de la

phase 1T’ des TMDs monocouches se sont révélés être sensibles aux constantes de réseau des

matériaux, suggérant un contrôle de la taille de la bande interdite par des effets de pression.

En particulier, la structure de bandes électronique et la taille de la bande interdite dans la

monocouche du matériau 1T’-WSe2 calculés sont en bonne correspondance avec des études

expérimentales de spectroscopie. Les états topologiquement protégés localisés sur les bords

dans la phase 1T’ monocouche, ainsi qu’à l’interface avec la phase triviale 2H, ont été étu-

diés. La dispersion des bandes de bord dépend de la structure atomique à la terminaison et

l’interface, respectivement. Des configurations atomiques spécifiques ont été suggérées afin

d’observer expérimentalement la protection topologique des porteurs de charge contre la

rétrodiffusion.

Finalement, dans le contexte d’ingénierie de dispositif latéraux semi-conducteurs, les proprié-

tés électroniques et de transport de frontières entre les phases 2H et 1T’, ainsi que des effets de

défaut de dimérisation dans la phase 1T’, ont été étudiées. Les deux types de défaut considérés

ont révélé comporter une haute probabilité de transmission pour les porteurs de charge à
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travers les défauts. Cependant, les différences entre les formes des bandes dans les deux

phases ouvre un gap de transport de taille pour les porteurs de charge traversant les frontières

de phase périodiques entre les phases 2H et 1T’ monocouches. Les énergies de formation

calculées des défauts de dimérisation se sont révélées relativement petites, suggérant une

forte concentration dans des échantillons réels de monocouches de TMDs dans la phase 1T’.

En plus, cette thèse comporte des études de dopants magnétiques sur la surface du Bi2Te3 et de

vacances atomiques dans le 2H-MoS2 monochouche, où les propriétés de défauts ponctuels

ont été calculées et comparées avec des résultats expérimentaux. Les deux sites d’absorption

possible du Fe sur la surface de Bi2Te3 révèlent une forte anisotropie magnétique hors du

plan, en accord avec les expériences. Les propriétés électroniques locales de vacance de Se

dans le 2H-MoS2 monocouche révèlent la présence d’états dans la bande interdite qui ne sont

pas observés expérimentalement. Néanmoins, la combinaison théorique et expérimentale

d’images de microscopie à effet tunnel ont permis une identification non-ambiguë de la

vacance.

Mot clés : matériaux 2D, dichalcogénures de métaux de transition, TMDs, défauts de ligne,

limites de domaines, couplage spin-orbite, théorie de la fonctionnelle de la densité, transport

ballistique, fonctions de Green hors équilibre, NEGF, effet Hall quantique de spin, QSH, isolants

topologiques.
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1 Introduction

1.1 Modern electronics: successes and problems

Advances in modern technology are sometimes associated with the development of electronic

devices. They are built of electric circuits where currents serve a particular purpose: supply a

power for mechanical motion, light sources, heaters, etc. In the digital era a very simple idea

was developed: an electric current may carry information. The information is simply encoded

in the fact of the presence of the current: [switch is on = current flows = the bulb is lighted =

1] versus [switch is off = no current = the bulb is not lighted = 0]. The transfer of information

requires constantly switching circuits on and off done by electronic logic devices. Higher

switching speeds are reached by minimizing the power consumption of devices. The most

straightforward way to do it is to reduce the device size increasing resistances and reducing

currents according to Ohm’s law,

Resistance ∼ device length

section area
.

Such approach and above law work well for ’classical’ devices larger than several nanometers

(nm, 1 nm = 10−9m) where electron is a classical particle (ball) having position and velocity.

At the time of writing this thesis (2016) this approach is almost depleted: the most advanced

consumer devices hit a feature size of 14 nm[1]. Thus, qualitatively new developments with

deeper understanding of electron properties are demanded.

Soon after discovering the electron particle (1897) it was realized that it behaves differently

in different materials. This led to a concept of an electronic structure of a solid material. Not

only the material itself but it’s temperature, impurities and defects influence the electronic

structure. This fact is widely used in modern silicon electronics where a single material

(Si) acts as a conductor (conducts electrons), an insulator (blocks electron transport) and

a semiconductor (switchable conductor). An example of a Si-based device is presented in

Fig. 1.1. There, different regions of Si have different roles resulting in a rather complicated

1



Chapter 1. Introduction

device consisting of multiple (up to 1010) blocks.

The bulk Si is, probably, the most studied material so far where the most important electronic

structure properties (the band gap magnitude and the charge carrier concentration) can be

varied precisely within certain ranges. On the other hand, the Si approaching 1 nm thickness

(or atomically thin Si) demonstrates completely different electronic properties[2] because

electrons become extremely confined along one of the dimensions. Thus, to be able to

compete with Si an insight is required into material properties in 2D.

While novel materials promise quantitative performance boost, the qualitative changes are

preferred. The last breakthrough in this field happened in 1947 with the invention of a solid-

state transistor[4] used till now. Researchers, however, discuss various possibilities to operate

information by using light or electron spin. This would not only raise existing performance

limits but also re-think of what information actually is: from binary representation (on/off)

one would have a quantum superposition of “on” and “off” states. Thus, existing algorith-

mic problems can be be solved in a completely different manner commonly referred to as

“quantum computing”. The basic building block of a quantum computer, electron spin, is

introduced in the following chapter.

1.2 Electron spin

While it is a well-known fact for the general public that an electron carries the electric charge,

it is a little bit less known about what electron spin is. Conventionally, spin is presented as

an arrow attached to electron and pointing upward or downward. Unlike charge, spin is an

additional degree of freedom of elementary particles: it creates a magnetic moment, thus, it

can be changed by magnetic field. A rigid definition is given in Ref. [5], for example:

Spin is an intrinsic form of angular momentum (vector) carried by elementary particles,

composite particles (hadrons), and atomic nuclei.

The size of the spin is the same across all particles of a given kind. Thus, elementary particles

are classfied by the magnitude of spin: fermions have half-integer spins (1/2 for electron) while

integer values of spin are attributed to bosons (1 for a photon). Fermions and bosons have

fundamentally different properties in terms of particle statistics and commutation relations in

quantum physics.

The most intriguing fact about spin is that it cannot be measured completely: quantum

mechanics prohibits such experiment. It is possible to project the spin onto arbitrary direction

and obtain its value (+1/2 or −1/2 for electron) with a well-defined quantum mechanical

probability. Such measurement necessarily changes the spin and destroys the initial quantum

mechanical state of an electron. This fact is widely used in quantum cryptography providing a

way to track eavesedropping.
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1.2. Electron spin

Figure 1.1 – An example of an integrated circuit (IC): TL431 voltage regulator. (a) Photographs
of IC inside a package as it appears in consumer electronic devices reproduced with permission
from Ref. [3]. (b) IC under microscope. The different tones of pink/purple denote silicon with
different doping. The light colors correspond to metallic coating acting as connector wires.
The red labels specify basic building blocks of an IC: resistors, capacitors and transistors. (c)
An equivalent scheme of the TL431 with the corresponding elements from (b).

As it is evident from the above, the idea of a spin (or, more general, a quantum mechanical

state) carrying information attracted a lot of attention and evolved into quantum computing[6].

There, primitive data types (integers, floats) and operations (sums, products) are replaced by

vectors and linear operators. Interestingly, quantum informatics already has its own appli-

cations without any proof of a sizeable “quantum computer” have been built. For example,

3



Chapter 1. Introduction

Figure 1.2 – A next-generation integrated circuit prepared from a bilayer MoS2. The charge
carrier channel thickness approaches 1 nm. The image is reproduced with permission from
Ref. [8].

the Shor’s algorithm for factorization of numbers[7] demonstrated weaknesses of existing

cryptographic protocols and stimulated development of different algorithms.

The spin is being used in conventional electronics since 1951: the information stored on

magnetic tapes, floppy disks and hard disc drives is essentially a macroscopic magnetization

formed by electron spins. From the performance point of view it is more efficient to use a

single spin instead of magnetization. To be able to operate spin by all-electric means under

normal conditions suitable materials are desired.

1.3 Novel materials for applications in electronics

There is no simple answer to the question whether 2D or any other novel material are better

than the well-established silicon framework for electronics applications. It has been pointed

out, however, that Si is used to the maximum of its possibilities, thus, it has to be replaced by

another material. 2D materials are promising candidates which can be prepared relatively

easily and stacked on top of each other to form an electronic device (Fig. 1.2) similarly to

existing industrial protocols for Si.
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1.3.1 2D materials

The term “2D material” was introduced in 2005[9] and now approximately 100 materials

are known to exist in 2D. Graphene is the first material isolated from its bulk counterpart

(graphite) by Novoselov and Geim in 2004 (Nobel prize in physics 2010) using the Scotch tape

exfoliation[10]. Graphene is also similar to other 2D materials from multiple perspectives so it

is worth reviewing it briefly.

Graphene is formed by carbon atoms arranged into a hexagonal lattice, Fig. 1.3(a). In graphite

the 2D graphene flakes interact weakly by Van der Waals forces. In contrast, the in-plane sp2

bonding between carbon atoms is stronger than sp3 in diamond making graphene one of the

most stable materials so far.

The charge carriers in 2D materials and, particularly, graphene are confined to the material

plane. The fundamental interest in graphene is due to its electronic properties: the low-energy

charge carriers in graphene have a linear dispersion law:

E(~k) =±ħkvF ,

where E is the charge carrier energy, ~k is the wave vector of a charge carrier and vF is a

material constant (Fermi velocity). This has several important consequences. First, graphene

is a semimetal: it has no band gap but the density of electronic states at the Fermi level

vanishes[11]. Second, the charge carriers in graphene behave similarly to photons, the light

particles. They travel with no mass at a constant speed (group velocity) vF. The particles

sharing such property are referred to as massless Dirac fermions: in graphene they are located

at K and K’ valleys of the hexagonal Brillouin zone forming two “Dirac cones” in the electronic

band structure Fig. 1.3(b). Being convenient to study, graphene demonstrates a number

of unique properties and presents interest for fundamental research. On the other hand,

graphene faces criticism with regard to its applications in electronics: it is a semimetal with

no sizeable band gap possible. Thus, electron transport in graphene cannot be switched

off completely which is a major difficulty for constructing a logic device. Nevertheless, the

discovery of graphene gave rise to interest in other layered materials which may be exfoliated

similarly.

Molybdenum disulfide (MoS2) is one of the materials where monolayers can be produced by

similar exfoliation techniques[12]. Both MoS2 and graphene are hexagonal materials though

the atoms in MoS2 are arranged into 3 parallel planes, Fig. 1.3(c). Unlike graphene, MoS2 is a

semiconductor with a band gap of around 2 eV[13] and is readily suitable for devices[14, 15, 8].

The direct band gap in MoS2 is located at K and K’ valleys as schematically illustrated in

Fig. 1.3(d) which builds one more parallel with graphene. Unlike in graphene, though, the

spin degeneracy in non-centrosymmetric MoS2 is lifted due to spin-orbit coupling. The

hole charge carriers at the top of the valence band in MoS2 are spin polarized depending

on the pseudomomentum (spin-valley coupling in MoS2 [16]). This interesting feature of an
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Chapter 1. Introduction

Figure 1.3 – Atomic and electronic structures of 2D materials. (a) Atomic structure of graphene.
(b) Electronic band structure of graphene from Ref. [11]. The Dirac cones are located in the
corners of the hexagonal Brillouin zone. (c) Atomic structure of a monolayer molybdenum
disulfide. (d) Schematic illustration of the electronic band structure of a monolayer MoS2.
The hexagon represents the Brillouin zone of MoS2. The color represents spin polarization of
electrons (spin-up blue and spin-down red).

electronic band structure of MoS2 was confirmed by several optical experiments[17, 18, 19].

More 2D materials can be derived by using elements of the same atomic group. For example,

carbon, silicon and germanium belonging to group 14 form graphene, silicene and germanene

in Fig. 1.4. Similarly, molybdenum and tungsten from group 6 together with sulfur, selenium

and tellurium from group 16 form six transition metal dichalcogenides (TMDs). Inside each

group of materials the electronic properties differ mostly quantitatively. Apart from graphene

and MoS2, many other 2D materials have already been found suitable for electronic devices,

for example, WSe2 [20] and silicene[21]. Further developments in 2D material applications are

associated with conceptually new ways to encode information in the charge carrier quantum
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Figure 1.4 – Representatives of 2D materials family reproduced with permission from Ref. [22]
including graphene, silicene, germanene, boron nitride, transition metal dichalcogenides and
halides and functionalized versions of above. All materials presented here have a hexagonal
lattice structure.

numbers such as switching from electron charge to electron spin or valley.

1.3.2 Topological insulators

Massless Dirac fermions and the Dirac cone in the electronic band structure are not particular

to graphene. They also appear on surfaces or 2D interfaces of topological insulators[23, 24,

25, 26, 27, 28, 29, 30] (TIs). There are many other reasons to study topological insulators

due to unique electronic properties such as protection of surface/interface states, perfect

charge carrier transmission along boundaries, spin texture of edge states, Majorana fermions,

superconducting effects. The 2016 Nobel Prize in Physics was awarded to David Thouless,

Duncan Haldane and Michael Kosterlitz “for theoretical discoveries of topological phase

transitions and topological phases of matter”.

As it is evident from the naming, TIs are insulators, i.e. they have a finite positive band gap.

Historically, the first topological insulator phase observed was named as the quantum Hall

effect (QHE). There, a 2D electronic system subject to low temperatures and high normal

magnetic fields demonstrates quantization of the Hall conductance

σx y = Ix

Vy
= νe2

h
,

where Ix is the current along x direction, Vy is the voltage measured along y direction, e2/h

is the quantum of conductance and ν is an integer often referred to as the Chern number.

The topological origin of this quantization was not emphasized until the discovery of the
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Figure 1.5 – Band structures of the QSH phase (left) and the topologically trivial phase (right)
of the Kane-Mele model reproduced with permission from Ref. [23]. The QSH phase (left)
hosts gapless states: one per spin and per edge (the model contains 2 edges). In contrast, the
trivial phase (right) does not host any in-gap states. The middle inset shows the parameter
space of possible phases.

quantum spin Hall effect (QSHE) in 2005[23] by Charles Kane and Eugene Mele. Specifically,

the authors considered a simple model of graphene with spin-orbit interactions. Depending

on the model parameters it has been shown that the system can be driven into two distinct

topological phases. In the paper, the authors emphasized the importance of the bulk-boundary

correspondence. Particularly, both Chern number in the QHE and the Z2 topological index1 in

the QSHE are bulk properties of a material that define the number of gapless states localized

at the boundary (surface, interface) as illustrated in Fig. 1.5. The detailed considerations show

that in the QHE the number of “protected” boundary modes may be arbitrary (i.e. integer Z )

whereas QSHE supports 0 or 1 protected boundary modes per electron spin. Unlike any other

interface or boundary mode, the existence of “protected” modes is guaranteed by the topology

of the bulk electronic structure.

QHE and QSHE have a different physical origin. Nevertheless, both these effects can be viewed

as particular cases of a more general problem: topology of the electronic structure of a solid

subject to a set of symmetries. As such, the most common physical symmetries (time reversal,

particle-hole and chiral) can be combined into a periodic table of topological insulators[31]

where for each set of symmetries a topological index (Z , Z2 or none) is assigned. It is more

instructive to show it under a single-particle approximation where a solid is described by

Bloch Hamiltonian H (k) in the Brillouin zone. Provided {H } is a topological space of Hermitian

matrices, the Bloch Hamiltonian H(k) becomes a 1D, 2D or 3D loop. Two Bloch Hamiltonians

H1(k), H2(k) are homotopic if the 2 corresponding loops can be deformed into each other

continuously. Homotopy yields equivalence classes in the topological space where all elements

1Z2 = {0,1} means integer modulo 2
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of the same class are topologically equivalent. Thus, it is possible to define a topological

invariant (Chern number, Z2 index, winding number, etc.) which is same for topologically

equivalent Hamiltonians and different for inequivalent ones. The number of classes roughly

characterizes the topological space: for example, only two classes exist for QSH Hamiltonians:

a trivial one and a non-trivial one. Conventionally, all Hamiltonians similar to the vacuum2

are assigned a trivial class.

As an instructive example of the topological characterization of Bloch Hamiltonians consider

a two-band tight-binding model. The most general way to write it is to use Pauli matrices

σx,y,z :

H(~k) = E0(~k)+ ∑
i=x,y,z

hi (~k) ·σi . (1.1)

For simplicity, let’s assume that the energy origin E0(~k) = 0. With this condition it becomes

possible to perform a one-to-one mapping of a 2x2 Hermitian matrix H(~k) onto the 3D space

where each point has real coordinates {hi }. The two eigenvalues of the matrix are simply

distances from the origin to a particular point:

E(~k) =±
√

h2
x (~k)+h2

y (~k)+h2
z (~k) (1.2)

At this point one usually states the intention to characterize topology of gapped Hamiltonians.

Here, we assume that the system has a single electron per unit cell, thus, out of the two bands

E1,2(~k) only one is occupied. Without any loss of generality, the Fermi level is set at zero. All

of the above is expressed in a single condition E(~k) 6= 0 for any~k. It excludes origin from the

mapped 3D space.

Provided H is equivalent to a single point in the 3D space, the multitude of H(~k) for all possible
~k defines some shape. Being a point in the Brillouin zone,~k is a cyclic coordinate in all its

dimensions. Thus3, H(~k) is a 1D loop if~k has a single component (1D Brillouin zone) and the

surface of a torus if it has 2 components (2D Brillouin zone).

Let’s now consider the classification of Hamiltonians in a 1D Brillouin zone represented by

loops in a 3D space. The loops cannot go through the origin, still, it is intuitively clear that any

loop can be deformed into another one continuously without “crossing” the origin. Thus, all

1D Hamiltonians are topologically equivalent.

To demonstrate the case of a non-trivial topology let’s consider 2D Hamiltonians~k = (kx ,ky )

represented by tori. It appears that not every torus can be continuously deformed into

another one without crossing the origin. Thus, there are topologically nonequivalent 2D

Hamiltonians. An illustration is given in Fig. 1.6 where the origin point is enclosed by the

torus. The topological invariant for the 2D Hamiltonian (winding number) is equivalent to the

2Vacuum may be viewed as a solid with an infinite band gap
3Provided H(~k) is continuous
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Figure 1.6 – Torus enclosing the origin point (black) as an illustration to topologically non-
trivial Bloch Hamiltonian. The origin points representing the gap closing cannot be continu-
ously transferred outside the torus without pinning it. It is equivalent to the statement that
topologically non-trivial Hamiltonian cannot become topologically trivial without closing the
gap.

number of times the torus wraps the origin4. Since no Hamiltonian symmetries have been

considered this picture corresponds to the QHE where the winding number is Chern number.

The Kane-Mele model is a model of a band insulator. Practically, to understand whether a band

insulator is in its trivial state or not one calculates the corresponding topological invariant

as it was done by Kane and Mele. The vast majority of real insulating materials, however, are

trivial in terms of the band topology. Thus, one has to make an intelligent choice to discover

TIs, such as focusing on compounds with large relativistic effects. There, reordering of atomic

orbitals caused by the interaction with heavy atomic nuclei may induce a topological phase.

Upon leaving the topological insulator phase and entering the trivial one the band order has

to be restored such that the gap closes and reopens again. Thus, there exist boundary gapless

modes. These states are decoupled from the bulk states by a bulk band gap. In the case of

a 2D Z2 topological insulator there is a single spin-up and a single spin-down in-gap mode,

Fig. 1.5(left). They have opposite group velocities, the fact known as spin-momentum locking.

Provided there are no spin-flip processes, the edge of a TI acts as an ideal nanowire: most

scattering processes become prohibited due to the lack of a counter-propagating mode.

The first transport experiment confirming the edge states was preformed with 2D HgTe quan-

tum wells where a quantized conductance was observed[24]. It was shown that above certain

thickness dc ∼ 60Å the quantum well is driven into topologically non-trivial state yielding edge

states.

While 2D topological insulators host edge modes, 3D topological insulators host 2D surface

states. Among the first candidates to host the 3D TI phase are bismuth calcogenides Bi2Se3

and Bi2Te3 showing gapless modes in angle-resolved photoemission spectroscopy (ARPES)

experiments reported in Refs. [32, 33, 34, 35, 36, 37] where electronic structure of TI surface

4Provided self-crossings are allowed, a torus may wrap a particular point an arbitrary number of times.
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was probed. The states are located at the Γ point and behave similarly to the ones in graphene:

they form a Dirac cone with a linear dispersion law. Unlike in graphene, though, the states

lack spin degeneracy and are helical meaning that the direction of spin polarization is locked

to the group velocity[38] of the charge carrier as in 2D TIs.

Overall, TIs are materials with unique electronic properties suitable for electronic applica-

tions. The TIs are characterized by band inversions caused by relativistic effects and the

appearance of edge modes. The transport with boundary modes may find applications in

both conventional and next-generation electronics where the scattering processes limit device

performance otherwise. The spin polarization of the states may also be useful for spintronics

or quantum computing.

1.3.3 Defects in materials

The materials presented on Figs. 1.3,1.4 are crystals: the atoms forming materials are arranged

in a lattice with a long-range translational order. The order may be complemented by a

local structural disorder known as crystal defects. Defects modify electronic properties of a

material in various ways: scatter charge carriers, absorb or donate electrons, change electronic

structure of the material. Thus, it is important to understand how the defects are formed and

what is their role in structural and electronic properties of a material.

An infinitely large number of possible defects can be characterized by two key parameters:

defect type (intrinsic or impurity defect) and dimensionality (0D, 1D or 2D). Intrinsic defects

may be atomic vacancies, antisites, domain boundaries while impurities come from envi-

ronment, for example, oxidation and hydrogenation. Point, line and planar defects refer to

dimensionality.

Each defect has an energy associated with its formation. This energy has to be introduced

to the system for the defect to be formed: for example, to form a vacancy one breaks several

atomic bonds. The sources of such energy are perturbations: thermal, chemical or induced

by the light or an electric current. If it appears that the formation energy is negative than the

existing atomic structure of the material is globally unstable. To derive formation energy one

usually calculates potential energy of a system with a defect E1 and compares it to the one

without E0

Edefect = E1 −E0 .

While the definition is very simple, calculating E1 and E0 is sometimes associated with a num-

ber of difficulties. To be meaningful, the formation energy implicitly assumes an underlying

process where the number of atoms does not change. For the hydrogen adatom on graphene,

for example, this means taking H2 molecule from a gas, breaking the hydrogen bond and

attaching both atoms to carbon. Alternatively, the source of H atom may be liquid (such as acid
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solution) with different energies E0 and E1. Thus, Edefect is not universal. The solution here is

to introduce the chemical potential of particles[39] µ which depends on the environmental

conditions. In the example of hydrogenated graphene one writes the following definition

instead

Edefect = E1 −NCµC −NHµH ,

where µ and N are the chemical potential and the particle number of corresponding (carbon,

hydrogen) atoms. The advantage of such definition is that it does not involve initial state energy

E0 explicitly. However, provided such state is known, one may write additional conditions for

chemical potentials. For example, if all carbon atoms come from graphene, then the chemical

potential is equilibrated to the total energy of graphene Egraphene:

Egraphene = NCµC .

Similarly, if all hydrogen atoms come from H2 molecule sthen

EH2 = 2µH .

The formation energy of defects is important for the thermodynamic description of mate-

rial equilibrium with the surrounding environment. There are defects, however, which are

rather described by kinetics than thermodynamics. The formation energy of line and plane

defects is roughly proportional to the size of the defect and may reach arbitrarily high values.

These defects are usually formed during material growth which is typically a non-equilibrium

process.

For example, a grain boundary in 2D is a line defect. In chemical vapor deposited (CVD) MoS2

line defects originate from crystalographic misalignment of bulk MoS2 grains. There, multiple

MoS2 crystals start growing on same substrate. A crystallographic orientation of each grain,

however, is chosen at the beginning of the process randomly. Once two grains extend towards

each other the mismatch in the initial orientation is compensated by a line defect. A model of

such defect is presented in Fig. 1.7(a). Since crystallographic orientations are bulk properties,

this defect cannot be removed without destroying one of the bulk domains completely. In

contrast, the sulfur vacancy line can be avoided by adding missing sulfurs locally, Fig. 1.7(b).

There, bulk crystal orientations coincide.

In experiments, the defects in 2D are identified using microscopy techniques such as scan-

ning tunneling microscopy (STM), transmission electron microscopy (TEM), atomic force

microscopy (AFM). An example of resulting images is given in Fig. 1.8 where different kinds of

defects (point and line) in a monolayer MoS2 are presented.
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Figure 1.7 – Models of line defects in MoS2, top and side views. (a) The inversion domain
boundary is formed on the boundary between two MoS2 crystals with opposite crystallo-
graphic orientations, blue arrows. Lattice constant of the bulk material a is indicated. (b) The
sulfur vacancy line defect is formed by sulfur vacancies arranged into a line. The crystallo-
graphic orientation of the leads is same in this case.

Other extended defects in 2D and 3D include terminations (surfaces, edges), dislocations,

disclinations and stacking faults. Defects and their properties are widely used in modern

electronics: defects dope semiconductors with electrons or holes, act as light emitting centers

in solid-state lasers and sense gases[42, 43]. Each of the above applications boils down to

interactions of charge carriers with a defect. Understanding such interactions is of particular

importance.

1.3.4 Charge carrier transport in solid state

Charge carriers moving through a solid form electric current I = dQ/d t where the right

hand side is a time change of an electric charge in the reservoirs. Current is an averaged

quantity directed along the bias V , I =G ·V , where conductance G is a constant representing

transparency of the media for the charge carriers. Conductance G is reduced if charge carriers

scatter on defects and various quasi-particles populating a material such as phonons and

magnons. Usually, under normal conditions, the scattering dominates in charge carrier

transport: electrons propagate in arbitrary directions while the applied voltage causes drift of

electron gas as a whole. This transport regime is called diffusive: charge carriers diffuse and

scatter inside the material similarly to Brownian particles. Electrons are assumed to propagate

freely between scattering events. This defines the charge carrier mean free path λ. Thus, for

diffusive transport λ is small: λ¿ l where l is the device size (distance between the leads).

In the Ohmic regime conductance is proportional to the mean free path, G ∝ λ. Thus, to

increase conductance G one improves mean free path λ, thus, making electron scattering

less frequent. It can be done by several means: reducing the temperature, producing cleaner

materials and decreasing a device size. At some point electrons start travelling between leads

without scattering λ> l and transmission G saturates. This transport regime is called ballistic.
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Figure 1.8 – Defects observed in MoS2. (a) Point defects (left), periodic line defects (middle)
and regular edges (right) from Ref. [40]. (b) Grain boundary from Ref. [41].

For example, ballistic transport occurs in superconductors where scattering is prohibited by

energy conservation (superconducting energy gap). In the ballistic transport regime wave

properties of electrons can be exploited. Provided a small amount of disorder, an electron

becomes delocalized between electrodes. Thus, it becomes a purely quantum mechanical

object with all relevant attributes such as abilities to tunnel, carry phase and interfere.

Ballistic transport is one of the exciting charge carrier transport phenomena in solid-state

physics. In 2D the ballistic transport regime can was achieved in graphene[44] where charge

carriers have a mean free path of the order of micrometers even at room temperature. Other

charge carrier transport phenomena include superconductivity, sub-barrier tunneling, magne-

toresistance, spin-polarized transport, non-linear current-voltage dependence in semiconduc-

tors, skin effect, transport in systems with smaller dimensionality (such as a 2D free electron
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gas or a 1D nanowire transport), transport through quantum dots, Coulomb blockade, Kondo

effects and many more. Most of these phenomena are already implemented in real devices

making the study of electron transport one of the most important topics in the solid-state

physics and materials science.
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2 Methodology

2.1 Density functional theory (DFT)

Density functional theory (DFT) is a tool to describe and calculate electronic, mechanical and

optical properties of materials and molecules. It is usually referred to as ab-initio (Latin “from

the beginning”) to make contrast with empirical approaches relying on experimental data1.

DFT starts from properties of individual elementary particles (electrons, protons) to form a

complete description of a material. This section is dedicated to key points about DFT and the

role of charge density in description of materials’ electronic properties.

2.1.1 Kohn-Sham equations

Electronic properties include different aspects of behavior of electrons: motion, interaction,

correlations. In solid state, electrons are found only in the vicinity of positively charged

atomic nuclei of the solid forming a Coulomb potential well. The mass of a single atomic

nucleus is 3-4 magnitudes larger than the mass of an electron. Thus, any kind of excitation

will cause electrons to reach equilibrium much faster than heavy atomic nuclei. This means

that above certain time scale (femtoseconds), electrons are in equilibrium with an underlying

atomic structure which may be considered to be “pinned” to the surrounding space. Thus,

the atomic nuclei can be simplified to classical point objects with mass and charge, the Born-

Oppenheimer approximation. The quantum mechanical nature of the atomic nucleus is

completely neglected. This allows to write the following electronic Hamiltonian:

H = T +V +U =
N∑
i

(
− ħ2

2mi
∇2

i

)
+

N∑
i

V (~ri )+
N∑

i< j
U (~ri ,~r j ) , (2.1)

where T is the kinetic energy of electrons, V is the external potential created by nuclei and

U is the interaction between electrons. Above equation works well in solid state but still too

difficult to solve unless a very special case occurs (such as U = 0). The reason for that lies in

1Modern DFT, however, often includes empricial constants in approximate exchange-correlation functionals
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the quantum mechanical nature of electrons: each of them exists in a dedicated space such

that for N electrons one has a 3N -dimensional wavefunction to be found: ψ(r1,r2, ...,rN). The

complexity to solve Eq. 2.1 grows exponentially with the number of electrons and is commonly

believed to be too high. A rather obvious simplification here is to limit consideration from

3N -dimensional space to 3D with a single-particle picture of electron interactions. Two of

the three terms in Eq. 2.1 are single-particle terms: both kinetic energy and external potential

are defined for a single electron. In contrast, the third term U representing electron-electron

interaction is meaningless for a single electron. The mean-field approximation overcomes

this issue.

The mean-field approximation takes different forms in different solid-state problems but the

idea is always the same: replace the two-particle potential by interaction of a particle with a

particle density. The mean field captures all classical aspects of interaction and is a starting

point for more advanced methods (such as the configuration interaction approach). Under

the mean-field approach, the Coulomb interaction U in Eq. 2.1 becomes an interaction with a

charge density, a spin exchange interaction becomes an interaction with magnetic moments

and so on. The mean-field approximation is usually designed in a way to be able to reproduce

exact interaction in non-correlated systems which can be solved exactly.

In DFT, the mean field is presented by the exchange-correlation functional replacing the

electron-electron interaction term and depending on the charge density ρ(r) in the most

general way[45]. The Hamiltonian becomes a functional of the charge density ρ(r):

HKS(ρ(r))ψi =
(
− ħ2

2m
∇2 +V (r)+µxc

[
ρ (r)

])= Eiψi , (2.2)

where µxc is the exchange-correlation functional of the charge density ρ. This Hamiltonian is

a Kohn-Sham Hamitlonian introduced in 1965[46]. It is complemented by the corresponding

charge density in the real space

ρ(r) =∑
i

f (Ei )
∣∣ψi (r)

∣∣2 (2.3)

where f (E) is the Fermi-Dirac energy distribution function. Above two equations are Kohn-

Sham equations to be solved self-consistently. Resulting solution minimizes the Kohn-Sham

total energy functional Etot(ρ) and is an exact ground state charge density with an exact total

energy Etot according to Hohenberg-Kohn theorems.

2.1.2 Limitations of DFT

So does DFT solve the many-body problem in general? The answer is “no” because the exact

exchange-correlation functional and, thus, the Hamiltonian are unknown2. However, there

2Knowing exact exchange-correlation functional makes no sense anyway: computing it will likely involve as
much resources as the original problem Eq. 2.1 does.
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are reasonable approximations to the contribution Exc of electron exchange and correlation

effects to the total energy called local density[46] and generalized gradient[47] approximations

(LDA and GGA):

E LDA
xc =

∫
εLDA(ρ(r))ρ̇(r) dr , (2.4)

E GGA
xc =

∫
εGGA(ρ(r),∇ρ(r))ρ̇(r) dr . (2.5)

The symbol ε(...) is a simple function, thus, both approximations are local. These approxima-

tions provide a reasonable description of an overwhelmingly large number of experimentally

available systems. Otherwise more advanced techniques can be used, such as hybrid func-

tional approaches, the GW approximation, DFT+U schemes, etc. Some of these techniques

include empirical terms to fit experimental data. Moreover, the sole fact of the choice between

approximations makes DFT empiric as reflected in several studies[48, 49].

Without knowing an exact exchange-correlation functional DFT is rather an empiric model

than a formally valid approximation: it is difficult to estimate and systematically reduce errors

of the total energy or any other quantity computed by DFT. In other words, it is impossible

to know how good LDA, GGA or any other approximation solves the electronic Hamiltonian

Eq. 2.1.

The Hohenberg-Kohn theorems stating existence of an exact total energy functional Etot(ρ(r))

are not practical either: they refer to the ground state only and do not guarantee existence of

expressions for other important quantities to compute (such as excited states of a solid, for

example). Thus, the single-particle states ψi in Eqs. 2.2,2.3 lack physical meaning, especially

for strongly-correlated systems.

Nevertheless, DFT describes well most nanoscale systems without strong correlations. This in-

cludes crystals and isolated systems, conductors and insulators, systems with magnetic order,

disordered systems including liquid, amourphous materials and alloys, materials with defects

and many more. The success of DFT may be attributed to the fact that it is relatively simple to

understand and undemanding; the solutions of Eq. 2.2 can be predicted and reproduced. This

makes DFT a leading computational tool and a gold standard in material science, solid-state

physics and chemistry fields.

2.1.3 DFT in crystals, the Bloch theorem and the Brillouin zone

Crystal is a solid material extending infinitely in one or more directions with atoms preserving

long-range translational order. Inside a crystal, a lattice can be defined where atoms occupy

well-defined positions, such as a hexagonal lattice in graphene, Fig, 1.4. Crystalline lattices

are periodic: the atoms occupying lattice cites can by exchanged by simply shifting the whole
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lattice by some vector ~d . All such possible vectors are called translation vectors referring to

the translational symmetry of the lattice. Depending on whether a lattice is 1D, 2D or 3D

there exist D = 1,2 or 3 linearly independent lattice vectors ~ai forming a basis set for possible

translations:

~d = {ni } = ∑
i=1..D

ni ~ai , (2.6)

where ni are integers. The vectors ~ai form a unit cell of the lattice while various sets of vectors
~d form supercells. However, the choice of vectors ~ai and a unit cell is not unique. For example,

negative vectors −~ai also satisfy Eq. 2.6, thus, they form another unit cell having the same

volume.

A unit cell of a crystal contains a finite amount of atoms, for example, 2 carbon atoms in

graphene and a single molybdenum atom together with 2 sulfur atoms in MoS2. Thus, a

periodic crystal is described by a single unit cell with a few atoms inside it. For the quantum

mechanical treatment, it is possible to replace an infinite crystalline solid by a single unit cell

by using the Bloch theorem. It gives an integral of motion, the pseudomomentum k, for an

electronic wavefunction in a periodic environment. Mathematically, the Bloch theorem allows

to diagonalize an infinite matrix with a periodic structure. For example, consider following

tridiagonal matrix H which may be viewed as a single-band model Hamiltonian of an infinite

atomic chain where each atom with the energy ε interacts with nearest neighbors only through

the hopping integral λ:

H =



. . . . . . . . . . . . .

. . . ε λ 0 0 . . .

. . . λ∗ ε λ 0 . . .

. . . 0 λ∗ ε λ . . .

. . . 0 0 λ∗ ε . . .

. . . . . . . . . . . . .


. (2.7)

Hamiltonian H is Hermitian though it is not important for the Bloch theorem. The eigenvalue

equation Hψ= Eψ results in the following equation for the wavefunction element ψi

λψi−1 +εψi +λ∗ψi+1 = Eψi , (2.8)

where i is the index of an atom, an arbitrary integer. Generally, to solve the above system

of equations one needs to fix 2 arbitrary values of ψ (boundary conditions) as well as the

energy E . Or the other way, for each energy E the wavefunction ψ is a linear combination of

two orthogonal functions, i.e. all states are doubly degenerate. To find both states a Fourier

transform is performed such that

ψi+1 = cψi , (2.9)
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yielding following quadratic equation

λc−1 +ε+λ∗c = E . (2.10)

The above quadratic equation has two solutions in general3. Thus the ansatz, Eq. 2.9 diagonal-

izes the Hamiltonian Eq. 2.7. The eigenstates are simply ψi = c iψ0, the fact known as Bloch

theorem for |c| = 1. In the latter case, a complex phase κ is gained for the wavefunction in

each cosequetive unit cell

ψn =ψ0e i nκ . (2.11)

Finally, if |c| 6= 1 the state ψ cannot be normalized: it grows to infinity in positive or negative

direction. Such states may exist in a finite system but they are usually irrelevant for bulk

crystals. By substituting Eq. 2.11 into Eq. 2.8 it is possible to derive the energy dispersion as a

function of κ

E(κ) = ε+2Reλ ·cosκ+2Imλ · sinκ . (2.12)

The quantity κ is a Bloch wave number, the integral of motion of Hamiltonian Eq. 2.7.

To complete the picture of the Bloch approach, consider a real space periodic Hamiltonian

originating from, for example, DFT description of a crystalline solid. There, the translational

invariance is expressed as H (~r ) = H (~r + ~d) where ~d is a lattice vector. The shifted wavefunction

gains phase

ψ(~r + ~d) =ψ(~r ) ·e i~k·~d . (2.13)

Re-writing above gives

ψ(~r2) =ψ(~r1) ·e i~k·(~r2−~r1) , (2.14)

where~r1,2 correspond to same point in different unit cells of the crystal. Finally, the Bloch

function φ is defined as

ψ(~r2)e−i~k·~r2 =ψ(~r1) ·e−i~k·~r1 =φ(~r2) =φ(~r1) . (2.15)

As it is evident, it is periodic in solid and differs from the wavefunction by a Bloch factor e i~k·~r

ψ(~r ) =φ(~r )e i~k·~r . (2.16)

The Bloch function is an eigenstate of the Bloch Hamiltonian defined as a Fourier transform

3Including infinitely large solutions. Cases with coinciding solutions (ε−E)2 = 4|λ|2 correspond to band edges
and are not considered.
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Figure 2.1 – The periodic reciprocal space for a 2D hexagonal lattice such as graphene. The
reciprocal unit cell is highlighted in blue while the (first) Brillouin zone is a green hexagon.
The high-symmetry points Γ, M, M1,2, K, K’ are indicated.

of the periodic Hamiltonian inside the unit cell (U.C.):

H(~k) =
∫

U.C.

d~r e i~k·~r ·H(~r ) . (2.17)

Calculating the Hamiltonian in real ~r -space and transforming it into reciprocal ~k-space is

often a part of self-consistent procedure to solve DFT Eqs. 2.2,2.3.

Diagonalizing H(~k) yields energy eigenvalues En(~k) depending on the wave vector~k and the

band index n. En(~k) is usually referred to as electronic band structure, examples are given in

Fig. 1.3 (b,d). Since H(~k) is periodic in reciprocal space it is possible to define the reciprocal

unit cell. The (first) Brillouin zone is defined on the basis of the reciprocal unit cell, see Fig. 2.1

as an example. The Brillouin zone has its center~k = 0 and contains locus of points that are

closer to the origin than to any other periodic replica of Γ. Though both the reciprocal unit

cell and the Brillouin zone can be used to describe reciprocal space, the former one usually

contains more relevant symmetries such as the hexagonal symmetry in the example in Fig. 2.1.

The Bloch description is essentially a Fourier transform of the Hamiltonian given in Eq. 2.17.

It simplifies the eigenvalue equation, however, many more problems have to be solved during

the self-consistent cycle. One more example where the Fourier transform gives unbeatable

performance is the calculation of a Coulomb potential Vc (~r ) from periodic charge density ρ(~r ).

The Laplace equation connecting both has the following form

∆Vc (~r ) = ρ(~r ) , (2.18)

where ∆ is the Laplace second derivative operator. Depending on the boundary conditions,

different methods can be used to solve it. The simplest case, however, is when periodic
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boundary conditions are assumed. In this case, it is possible to transform the above equation

into reciprocal space where it becomes a trivial expression

Vc (~k)

k2 = ρ(~k) . (2.19)

In 3D, the time needed to perform the Fourier transform scales with the number of grid points

along one of the dimensions N as N 3 log N which is much better than if boundary conditions

would have been located at infinity with time scaling of N 6. Thus, even isolated systems

without PBC are usually considered to be periodic within large enough unit cell to avoid

interaction between replicas.

2.1.4 Core electrons and pseudopotentials

As it was described in the previous section, a typical subject of the DFT is a periodic unit of a

solid – the unit cell containing several atoms. The number of electrons in a unit cell is a sum

of atomic numbers of all unit cell atoms Zi . Sometimes this number is small (there are 24

electrons per unit cell of graphene for example), but may also grow to thousands if a more

complex problem is considered. A further simplification was developed to reduce the number

of electrons considered called the pseudopotential approximation.

To understand the pseudopotential approximation, consider an atomic nucleus with Z protons

creating a Coulomb potential V (~r ) = −Z /|r |. It is known since Niels Bohr (1913) that such

potential hosts discrete electronic orbitals with energies varying from tens to fractions of eV.

Electrons with smaller energies form the valence shell of an atom while the rest of electrons

are localized around the nucleus (core electrons). The size of the corresponding orbitals is

much smaller than the interatomic distance, thus, the core electrons do not participate in

most properties such as chemical bonding, low-energy excitations and transport. The idea

behind pseudopotential approximation is to remove core electrons from the consideration by

replacing Coulomb potential with a pseudopotential.

To construct a pseudopotential one performs the following steps:

1. Choose an atom and perform an all-electron calculation of electronic states ψae
i and

corresponding energies Ei within selected DFT formalism;

2. Choose an energy threshold Ethreshold and assign all states below this energy Ei <
Ethreshold to be core states:

• smaller Ethreshold includes more electrons in the valence, thus, the pseudopotential

becomes more exact and more computationally expensive;

• larger Ethreshold includes more electrons in the core instead: these electrons be-

come “frozen” and the pseudopotential becomes less transferrable but also com-

putationally cheaper;
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3. Pick a core radius rc above which the valence electronic wavefunction of the future

pseudopotential ψps
i matches exactly the corresponding all-electron wavefunction

ψae
i (r ) =ψps

i (r )|r>rc . This parameter discards properties of the valence wavefunctions

inside the core similarly to the core states being discarded. Thus:

• the core radius rc should be smaller than, literally, half of the bond length between

atoms in a solid;

• but it should be larger4 than the distance to the outermost radial node of ψae
i ;

• larger rc gives more freedom to construct a “softer” pseudopotential with smoother

wavefunctions and better convergence properties;

• in contrast, smaller rc in hard pseudopotentials will reproduce bonding better for

the cost of performance. Resulting pseudopotential becomes more universal and

transferable between different solids;

• rc may be chosen individually for each state ψps
i ;

4. Construct pseudowavefunctions ψps
i inside the core matching various conditions such

as softness, conservation of norm and matching of logarithmic derivatives. This step

ensures various physical quantities such as lattice constant, binding energy, etc are

reproduced correctly.

5. Restore the pseudopotential by calculating Vps = ∑
i
|ψps

i 〉Ei 〈ψps
i | −T , where T is the

kinetic energy operator. For Vps to be local one has to take necessary measures at the

previous step.

6. For convenience, one also has to remove Hartree and exchange-correlation contribu-

tions which will be taken into account when this pseudopotential is used in a calculation

of a solid.

As it was pointed out, the pseudopotential has to be transferable: it should reproduce as many

experimentally available quantities as possible. Constructing such pseudopotential, however,

is a trial and error process.

2.1.5 Electron spin and spin-orbit coupling in DFT

The physics of an electron spin σ=↑,↓ in DFT may be presented by spin-dependent charge

density ρσ(~r ) and wavefunctions ψσ(~r ). In the simplest case of a scalar-relativistic approxi-

mation, the whole Kohn-Sham Hamiltonian is split into two spin-dependent parts Hσ solved

separately. In spin-neutral systems the Hamiltonians become equal: H↑ = H↓. In this case,

every electronic state is at least doubly degenerate and hosts pairs of electrons with opposite

spins. Upon adding magnetic field or spontaneous spin polarization the energy levels become

4To make the pseudopotential local the nodes ψ(r )ae = 0 cannot be reproduced by the pseudowavefunction
ψ

ps
i , see Fig. 2.2
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Figure 2.2 – A sketch of a pseudopotential Vps and the corresponding wavefunction ψps versus
Coulomb potential of the atomic nucleus and the all-electron wavefunction ψae (dashes).

split: one of the spin occupies a more energetically favorable configuration while the other

one stays at higher energies, the effect named after Dutch physicist P. Zeeman. Corresponding

energy gain is

∆=−~µB ·~B , (2.20)

where ~B is a vector of magnetic field or an exchange field and µB is Bohr’s magneton: electron

magnetic moment. According to the above formula, the vector field causes a non-zero spin

polarization.

The Zeeman term, however, is the consequence of a more general relativistic Dirac Hamil-

tonian for an electron traveling at relativistic speeds. It was proposed in 1928 and has the

following form

iħdψ

d t
= (

c~α ·~p +βme c2)ψ , (2.21)

where ħ is the Planck’s constant, ψ is a four-component wavefunction, c is the speed of light,

~p is a momentum of an electron, me is electron mass and α, β are 4x4 matrices

αx,y,z =
[

0 σx,y,z

σx,y,z 0

]
, β=


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , (2.22)

σi are Pauli spin operators

σx =
[

0 1

1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0

0 −1

]
. (2.23)
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The external electromagnetic field is introduced via a scalar potential φ and a vector potential
~A interacting with electron charge q

iħdψ

d t
= (

c~α · [~p −q~A]+βme c2 +qφ
)
ψ . (2.24)

To identify the most important terms, the wavefunction is split into a couple of two-component

spinors ψ1, ψ2 (electron and positron wavefunctions). It becomes possible to write down the

following system

iħdψ1

d t = c~σ · [~p −q~A]ψ2 +
(
me c2 +qφ

)
ψ1

iħdψ2

d t = c~σ · [~p −q~A]ψ1 +
(−me c2 +qφ

)
ψ2 .

(2.25)

Its time-independent form is

0 = c~σ · [~p −q~A]ψ2 +
(−E +qφ

)
ψ1

0 = c~σ · [~p −q~A]ψ1 +
(−E −2me c2 +qφ

)
ψ2 .

(2.26)

Note that me c2 is a constant energy shift. Taking me c2 to be the largest energy scale in the

problem, it is possible to expand the above two equations in powers of 1/c. The solution of

the system up to the second order is the following

[
(~p −q~A)2

2me
+qφ− ħq

2me
~σ ·~B − p4

8m3
e c2

+ ħ2q

8m2
e c2

∆− ħq

4m2c2
~σ · [(~p −q~A)×∇]]

ψ1 = Eψ1 ,

(2.27)

where ~B = ∇× ~A - magnetic field, ∆ - Laplace operator. The first three terms in the above

constitute a non-relativistic Hamiltonian of an electron in electric and magnetic fields. In

particular, the third term is the Zeeman term introduced in the beginning of the section. The

rest of the terms are known as relativistic corrections to the energy: mass, Darwin and spin-

orbit couplings (the last term). The spin-orbit term, in particular, couples electron spin and

momentum. It is non-local and, thus, cannot be reduced to magnetic field action. The wave-

functionψ=ψ1 is the spinor wavefunction containing superposition of the electronic spin-up

and spin-down states. Thus, the general form of the Kohn-Sham spin-orbit Hamiltonian is

non-local in spin Hσ,σ′ 6= 0. Similarly, the charge density matrix ρσ,σ′ has spins coupled.

Relativistic treatment is especially important for solids with heavy atoms where electron

momentum p is large. There, the spin-orbit coupling causes energy splittings in the band

structure and spin polarization of bands like in the case of MoS2 illustrated in Fig. 1.3(d).

2.1.6 Single-electron basis in DFT

To be able to solve Kohn-Sham equations numerically one has two write every relevant quan-

tum mechanical operator in some basis set. The most popular basis sets used in existing
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Plane waves Localized basis sets Mixed basis sets

Origin eigenstates of the mo-
mentum operator p

atomic or atomic-like
(gaussian) wavefunc-
tions

both types of states
form the basis

In r -space e i k0r localized both
In k-space δ(k −k0) quasi-delocalized both

Parameters cutoff kmax specifying
number of plane
waves

various parameters de-
scribing the number
and shapes of wave-
functions

both

Completeness when kmax →∞ non-systematic as in plane waves
Orthogonality 3 7 7

Pros Easy to introduce; sys-
tematic convergence
with respect to kmax;
describes well valence
and free electrons; no
overhead with respect
to the Fourier trans-
form

Compact flexible basis
sets for both small
and large systems;
work well for isolated
molecules; natu-
ral basis for orbital
analysis and all-
electron calculations;
computationally
undemanding

Combines the ad-
vantages of both; de-
signed for description
of complex systems
such as a molecule on
a metallic surface

Cons Impossible to use
without pseudopoten-
tial approximation;
isolated, truncated
systems such as sur-
faces and molecules
require significantly
larger basis sets

No systematic con-
vergence; free-like
electrons require
additional basis func-
tions; the number of
parameters to tweak is
roughly equal to the
number of electrons
in the system; numer-
ical problems related
to non-orthogonality

The steepest learning
curve; numerical
problems related to
non-orthogonality;
efficient implemen-
tation requires enor-
mous effort; introduc-
tion of new features
is delayed because of
the above

Table 2.1 – Comparison of basis sets used in DFT simulations.

DFT simulation programs in materials science are either plane waves, localized basis sets or a

mixture of both. Table 2.1 contains a short summary on the three options.
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Figure 2.3 – A schematic illustration of a two-terminal ballistic transport setup. The sulfur
vacancy line defect in MoS2 plays a role of a potential barrier for ballistic charge carriers. The
incoming mode from one of the leads is split into reflected mode as well as the transmitted
mode traveling to another lead.

2.2 Ballistic transport at nanoscale with DFT

While DFT is a study about ground state properties, experimental spectroscopic studies probe

materials by driving them into an excited state and reading out the response. A number of

extensions to DFT have been developed to simulate different kinds of a non-equilibrium state

which also includes particle transport phenomena. As it was already pointed out previously,

DFT does not guarantee correctness of any other quantity except total energy and charge

density unless exchange and correlation effects can be neglected. It is the case in the ballistic

transport regime where two-particle scattering effects are rare. While the concept of ballistic

transport was introduced previously in this section practical some aspects are covered.

The ballistic transport regime is defined as a regime where the distance between charge carrier

reservoirs (contacts, leads) is smaller than the mean free path (the mean distance between

charge carrier two-particle scattering events). The leads host electronic states which are the

endpoints for electronic transport. The states in the leads are referred to as lead modes in

Fig. 2.3. Ballistic charge carriers are transmitted between lead modes via channels in the

scattering region. The channels define the charge carrier current resistance R which can be

measured. Once a voltage is applied the charge carriers will start moving towards negative bias

and will soon reach a dynamical equilibrium resulting in a stationary regime for the charge

density in the scattering region.

Depending on resistance R, some charge carriers will reflect from the scattering region back

to the origin lead. The rest of the charge carriers will transmit further. The probability of being

transmitted through the scattering region is called transmission probability T . Transmission

probability is a function of various parameters such as energy of the charge carrier, shape of

the lead modes and electrostatic potential in the scattering region. Transmission probability
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has no units and takes values from 0 (no transmission, all charge carriers reflected) to 1 (all

charge carriers transmitted). Based on values of T , the scattering region is characterized to

be reflective or transparent by analogy with reflection of light. The resistance R is inversely

proportional to the sum of transmission probabilities of all channels Ti

R = h

e2 ∑
i

Ti
. (2.28)

The quantity 2e2

h combining electron charge e and Planck’s constant h is called conductance

quantum: a maximum possible conductance achieved by a single charge carrier transmis-

sion channel. The resulting charge carrier current is computed using the Landauer-Buttiker

formula

I = e

h

∫
dET (E) f ′(E) , (2.29)

where f ′(E) is the perturbation to the equilibrium distribution function and T is the sum of

transmission probabilities at a given energy.

The total energy E of a ballistic charge carrier is conserved if no inelastic processes are present.

For 2D (atomic layers) and 3D (bulk) leads we will also consider conservation of the pseudo-

momentum~k|| orthogonal to the transport direction provided the entire system is a subject to

periodic boundary conditions. For example, the pseudomomentum along the periodic line

defect shown in Fig. 2.3 is conserved. After integrating out all conserved quantities the scatter-

ing problem becomes a 1D quantum mechanical problem for a particle traveling through the

barrier. It can be solved efficiently using the Green’s function formalism.

2.2.1 Green’s function formalism

The Green’s function formalism is widely adopted for calculation of ballistic transport proper-

ties, see Refs. [50, 51, 52] for examples. It allows to take into account semi-infinite leads in an

exact way via their surface Green’s functions and self-energies. This method is general enough:

it does not make any assumptions of the underlying structural and electronic properties such

as the presence of band gap, magnetic ordering, dimensions of the setup or number of leads.

There are several pre-requisites that have to be satisfied, though:

1. The leads are assumed to be ideal: all defects are present in the scattering region only.

2. The setup should be effectively one-dimensional. The treatment of 2D and 3D systems

is also possible by introducing conserved projections of the pseudomomentum.

3. The Hamiltonian should be written in a tri-block-diagonal form. Practically, this means

that the basis set for the Hamiltonian is localized and Hamiltonian matrix elements are

truncated at a finite distance.
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Figure 2.4 – Ideal and defective 2D systems. (a) A pristine graphene monolayer possessing
a periodic atomic structure. The nearest neighbor tight-binding Hamiltonian of graphene
without spin-orbit coupling λSO = 0 from Ref. [23] consists of 5 Hamiltonian matrices hi

expressed in a localized atomic-like basis set (p orbitals of carbon). Corresponding hopping
vectors ~Ri in Eq. 2.30 are expressed in terms of lattice vectors: ~R0 = 0, ~R1 =~a2, ~R2 =~a1, ~R3 =
−~a2, ~R4 =−~a1. (b) A line defect in monolayer MoS2. The setup with a regular line defect is
periodic only along its line. To describe a periodic line defect in MoS2 one should consider
conservation of pseudomomentum along the defect line k||.

Procedure described further follows the mode matching approach from Ref. [53] while certain

aspects of it have been simplified, improved and generalized by the author of this thesis. The

recipe is outlined below.

Step 0: Integrate out projected pseudomomentum k||

Before proceeding to the Green’s function approach to electron transport dimensions of the

system have to be reduced. This is done by integrating out projection of the pseudomomentum

k|| commuting with the initial Hamiltonian.

The Bloch form of a bulk periodic Hamiltonian expressed in a localized basis set is a finite sum

of blocks with Bloch pre-factors

H(~k) =∑
i

hi e i~k~Ri , (2.30)

where hi are finite-sized Hamiltonian matrices describing interactions between the unit cell

at the origin and its displaced replica translated by the vector ~Ri

Ri = ni~a1 +mi~a2 +ki~a3 = (n,m,k)i , (2.31)

where ~ai are unit cell vectors, see also Fig. 2.4(a).

In the bulk geometry, Fig. 2.4(a), the pseudomomentum ~k is a conserved quantity. In the

device (defect) geometry, Fig. 2.4(b), one of the translation symmetries is no longer present.
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It is still possible to apply the Fourier transform expressed in Eq. 2.30 to other dimension(s).

The pseudomomentum ~k becomes projection of the pseudomomentum onto the defect
~k|| = (k2,k3), Fig. 2.4(b). In this way a 2D or a 3D problem is reduced to a 1D problem H(k||).

The latter can be viewed as nanowire with a point defect where~k|| is an external parameter.

Further in this section dependence on~k|| is omitted.

Step 1: Prepare the 1D device problem

Notation

• i index of the lead

• j index of the unit cell inside the lead; 0 stands for the unit cell in close proximity

to the device region; runs to +∞
• r index of the lead mode (eigenstate)

• E energy of the charge carrier

• H infinite Hamiltonian matrix

• hd finite diagonal part of H corresponding to the device (scattering region)

• hi finite diagonal part of H corresponding to the lead i

• S infinite right-hand-side overlap matrix of the generalized eigenvalue equation

(GEE) for the Hamiltonian written in a non-orthogonal basis set Hψ= ESψ

• ψ arbitrary (right) solution of the GEE at energy E

• ψ̃ arbitrary left solution of the GEE at energy E

• ψd part of ψ in the device region

• ψi , j part of ψ in the unit cell j of lead i

• φ(i ,r ), j r -th mode of the lead i in the unit cell j

• c(i ,r ) Bloch factor of the eigenmode r in the lead i

• W matrix present in the single-side form of GEE Wψ= 0: W = H−ES

• wd finite diagonal part of W corresponding to the device

• wi finite diagonal part of W corresponding to the unit cell of the lead i

• ai finite upper-diagonal part of W corresponding to interactions between

neighboring unit cells of the lead i

• bi finite lower-diagonal part of W corresponding to interactions between neigh-

boring unit cells of the lead i

• ai d finite upper-diagonal part of W corresponding to interactions between the

device and the closest unit cell j = 0 of the lead i
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Figure 2.5 – Structure of a nanowire device Hamiltonian. (a) Schematic picture of the transport
device setup. Several semi-infinite nanowires (leads) are connected to the same device. (b)
A semi-infinite tri-block-diagonal Hamiltonian matrix of the setup is presented in panel (b)
with a close-up of the device region in panel (c). The color of Hamiltonian blocks corresponds
to leads’ and device color on panel (a). The white color represents zeros in the Hamiltonian
matrix.

• bi d finite lower-diagonal part of W corresponding to interactions between the

device and the closest unit cell j = 0 of the lead i

• F±
i Bloch matrices for positive and negative modes in the lead i

Consider a ballistic setup where a nanoscale device connected to several semi-inifite periodic

leads, Fig. 2.5(a). It is possible to express this setup in a semi-infinite Hamiltonian, Fig. 2.5(b)

where ballistic charge carriers are the eigenstates of this Hamiltonian delocalized over multiple

leads. Thus, the eigenstates of such Hamiltonian provide transport channels for the charge

carriers.

As outlined previously, the Hamiltonian is expected to be in a tri-block-diagonal form where

the main diagonal in Fig. 2.5(c) corresponds to interactions within unit cell of the leads hi , i is

the lead index, and within the device region hd . The off-diagonal blocks couple leads and the
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device region in the nearest-neighbor manner including “forward” coupling terms between

neighboring leads ai and coupling of the closest lead unit cell to the device ai d . Similarly, the

backward coupling terms bi , bi d are defined. Since Hamiltonian is Hermitian, h = h†, a† = b.

The nanowire device problem is the eigenvalue equation Hψ= Eψ. An alternative way to write

it is the following

(H−E)ψ= (H−E ·1)ψ= W(E)ψ= 0 . (2.32)

The matrix W(E) is tri-block-diagonal as well:

Wψ=



... ... ... ... ... ... ... ... ... ... ...

... wi ai

... w2 a2

... w1 a1

... bi wi ai

... b2 w2 a2

... b1 w1 a1

... bi wi ai d

... b2 w2 a2d

... b1 w1 a1d

... bi d b2d b1d wd



·



...

ψi ,2

ψ2,2

ψ1,2

ψi ,1

ψ2,1

ψ1,1

ψi ,0

ψ2,0

ψ1,0

ψd



= 0 , (2.33)

where w = h−E . The formal symbolic expression of the above equation consists of three types

of equations:∑
i

bi dψi ,0 =−wdψd , (2.34)

biψi ,1 +ai dψd =−wiψi ,0 (2.35)

and

biψi , j+1 +aiψi , j−1 =−wiψi , j , j > 0 . (2.36)

The last type of equations correspond to bulk modes of lead i and are of the same form as

Eq. 2.8. It is easy to show5 that above equations need
∑
i

Ni boundary conditions, Ni being

number of rows (columns) in hi . In the transport problems the boundary conditions are

amplitudes of the leads’ modes. Thus the next step is to consider leads separately.

5For example, specify all ψi ,0
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Step 2: Find the lead modes

The lead modes are modes of an infinite 1D lead subject to periodic boundary conditions. To

find them, one writes Eq. 2.36 for arbitrary integer j :

biφi , j+1 +aiφi , j−1 =−wiφi , j , j ∈ Z . (2.37)

Then, the Bloch ansatz is written from Eq. 2.9:

φi , j+1 = ciφi , j : (bi ci +ai c−1
i +wi )φi , j = 0 . (2.38)

The above is a quadratic eigenvalue equation with eigenvalues c(i ,r ) and eigenvectors φ(i ,r ), j .

Since several modes are expected to fulfill the above equation index r is used to enumerate

the solutions6. Eq. 2.38 can be reduced to a generalized eigenvalue equation for double-size

matrices written as[
0 1

ai wi

]
·
[
φ(i ,r ), j

φ(i ,r ), j+1

]
= c(i ,r )

[
1 0

0 −bi

]
·
[
φ(i ,r ), j

φ(i ,r ), j+1

]
. (2.39)

The latter can be solved with standard routines (ZGGEV in LAPACK[54], for example). A right-

hand side matrix can be eliminated if b−1
i exists and finite:[

0 1

−b−1
i ai −b−1

i wi

]
·
[
φ(i ,r ), j

φ(i ,r ), j+1

]
= c(i ,r )

[
φ(i ,r ), j

φ(i ,r ), j+1

]
. (2.40)

The matrix on the left of above equation is called the transfer matrix, described in Ref. [55].

Provided the size of matrices wi ,ai ,bi is equal to Ni there will be 2Ni possible (right) eigen-

states φ(i ,r ), j with (right) eigenvalues c(i ,r ). If either of the matrices ai ,bi has a zero eigenvalue,

corresponding eigenstates will also be eigenstates of Eq. 2.38 with diverging c(i ,r ) = 0,∞ eigen-

values. For a Hermitian matrix W growing and decaying modes are closely related: if c is an

eigenvalue of a decaying mode |c| < 1 then (c∗)−1 is an eigenvalue corresponding to a growing

mode7 |(c∗)−1| > 1. Thus, the number of growing and decaying modes is exactly equal.

The propagating states |c| = 1 can also be split into two equal groups: incoming and outgoing.

The incoming modes have a positive group velocity and transfer charge carriers to the lead

while outgoing modes transfer charge carriers away from the lead. The group velocity v(i ,r )

(energy units) is defined by the pseudomomentum k, c(i ,r ) = e i k , as

v(i ,r ) =
∂E(i ,r )

∂k
=φ†

(i ,r )

∂Hi(k)

∂k
φ(i ,r ) =φ†

(i ,r )

(
−i ae−i k + i be i k

)
φ(i ,r ) , (2.41)

6 The lead index i and the mode index r can be combined into a single index (i ,r ): the lead Hamiltonian
matrices hi in the matrix in Fig. 2.5 can be merged into a single (large) block equivalent to a single lead connected
to the device. The brackets are used to emphasize this fact.

7To derive it, apply a Hermitian conjugate to Eq. 2.38 and use the fact that “left” and “right” eigenvalues are
same, see appendix A.1.
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2.2. Ballistic transport at nanoscale with DFT

or,

v(i ,r ) = iφ†
(i ,r )

(
bc(i ,r ) −ac∗(i ,r )

)
φ(i ,r ) . (2.42)

The number of incoming modes vi < 0 is equal to the number of outgoing modes vi > 0.

The group velocity calculated using Eq. 2.42 for non-propagating modes is zero. To show it

consider φn , cn and φm and cm is an arbitrary pair of solutions of Eq. 2.38 (the lead index i

and the unit cell index j are omitted):{
(bcn +ac−1

n +w)φn = 0

(bcm +ac−1
m +w)φm = 0 .

(2.43)

Multiplying the first equation to the left by φ†
m and the second one by φ†

n yields{
φ†

m(bcn +ac−1
n +w)φn = 0

φ†
n(bcm +ac−1

m +w)φm = 0 .
(2.44)

Provided H is Hermitian, the conjugate operation applied to the second equation results in

φ†
m(bc−1∗

m +ac∗m +w)φn = 0 . (2.45)

Subtracting the first equation in the system from the above eliminates w

φ†
mbφn

(
c−1∗

m − cn
)+φ†

maφn
(
c∗m − c−1

n

)= 0 . (2.46)

Finally, multiplying the above equation by cnc∗m yields

φ†
mbφn · cn

(
1− cnc∗m

)+φ†
maφn · c∗m

(
c∗mcn −1

)= 0 ⇔[
φ†

mbφn · cn −φ†
maφn · c∗m

]
· (1− cnc∗m

)= 0 .
(2.47)

For n = m the quantity in square brackets is the group velocity up to i multiplier

v(i ,r )(1−|c(i ,r )|2) = 0 . (2.48)

Thus, all modes having |c| 6= 1 do not transmit charge carriers since the corresponding group

velocity v(i ,r ) = 0. A generalized velocity vnm will be used further. It is defined as

vnm = iφ†
m

(
b · cn −a · c∗m

)
φn . (2.49)

vnm has a property

vnm(1− cnc∗m) = 0 , (2.50)

where both n and m identify modes, i.e. contain lead i and mode r indices.

35



Chapter 2. Methodology

Figure 2.6 – Boundary conditions and unknown amplitudes in the transport setup. Each
square represents an amplitude of the mode r in the lead i Ar

i . The entire row represents
a wavefunction in one of the leads: it consists of incoming modes (green), outgoing modes
(blue) and growing/decaying modes (red). The total number of amplitudes needed to describe
the wavefunction in the lead i is equal to 2Ni . In the transport setup half of all amplitudes are
fixed (left-hand side) while the other half is calculated. The source of electrons is represented
by a sole incoming mode represented by the unity amplitude indicated by the arrow.

To sum up, a generic wavefunction of the lead i in the unit cell j , ψi , j , is expressed as a sum of

2Ni eigenmodes with complex amplitudes A(i ,r )

ψi , j =
2Ni∑
r=1

A(i ,r ) ·
(
c(i ,r )

) j ·φ(i ,r ),0 =
∑

growing,|c|>1
+ ∑

decaying,|c|<1
+ ∑

incoming,v>0
+ ∑

outgoing,v<0
. (2.51)

In the transport setup some of the A(i ,r ) are boundary conditions, while, the other ones are

unknown. Specifically, all growing modes are discarded A(i ,r )> = 0: they diverge in the leads,

thus, lack physical meaning. To be able to calculate transmission probabilities, one assumes

that there is a single positive mode (i ,r )+s from the source lead with a unity amplitude

A(i ,r )+s = 1. Otherwise all other positive modes are absent: A(i ,r )+ = 0, (i ,r )+ 6= (i ,r )+s . It is

easy to see that the number of amplitudes defined so far is exactly equal to required number of

boundary conditions
∑
i

Ni , see Fig. 2.6. Thus, it is possible to derive another half of amplitudes

for decaying A(i ,r )< and outgoing A(i ,r )− modes.

Since all amplitudes Ar
i are split into two equal groups, the boundary conditions and the

unknown amplitudes in Fig. 2.6, it is also possible to split the wavefunctionψi , j into two terms

ψi , j =ψ+
i , j +ψ−

i , j , (2.52)

where each term groups half of the sum from Eq. 2.51

ψ+
i , j =

∑
growing,|c|>1

+ ∑
incoming,v>0

=∑
r

c j
(i ,r )φ(i ,r ),0 =

(
F+

i

) j ·ψ+
i ,0 ,
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2.2. Ballistic transport at nanoscale with DFT

ψ−
i , j =

∑
decaying,|c|<1

+ ∑
outgoing,v<0

=∑
r

c j
(i ,r )φ(i ,r ),0 =

(
F−

i

) j ·ψ−
i ,0 .

The quantities F are the Bloch matrices having the same combined spectrum as the transfer

matrix in Eq. 2.40

F+
i = ∑

r∈{>,+}
φ(i ,r ), j · c(i ,r ) · φ̃†

(i ,r ), j , F−
i = ∑

r∈{<,−}
φ(i ,r ), j · c(i ,r ) · φ̃†

(i ,r ), j . (2.53)

The row vector φ̃†
(i ,r ), j is reciprocal to lead modes φ̃†

(i ,r ), j ·φ(i ,r ′), j = δr,r ′ provided the states

selected form a complete basis (proof omitted). It is easy to show that the above definitions do

not depend on the chosen j . The powers of Bloch matrices are simply(
F±

i

)p = ∑
r∈{...}

φ(i ,r ), j · cp
(i ,r ) · φ̃†

(i ,r ), j . (2.54)

The Bloch matrices satisfy the following matrix equation:

bi F±
i +ai

(
F±

i

)−1 +wi = 0 , (2.55)

A final note on the Bloch matrices is related to the velocity expression in Eq. 2.49 which can be

re-written as:

vnm = iφ†
m

(
bi F+

i − (
F+

i

)† ai

)
φn , n,m ∈ {+} , (2.56)

vnm = iφ†
m

(
bi F−

i − (
F−

i

)† ai

)
φn , n,m ∈ {−} . (2.57)

The expression includes self-energies of the lead i defined as

Σi = bi F−
i . (2.58)

The quantity i
(
bi F−

i − (
F−

i

)† ai

)
= i

(
Σi −Σ†

i

)
is the gamma-function

Γi = i
(
Σi −Σ†

i

)
, vnm =φ†

mΓiφn . (2.59)
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Step 3: Solve the nanowire device problem

The next step is to determine all ψ−
i , j for given ψ+

i , j by solving the corresponding system of

linear equations. To demonstrate it, Eqs. 2.34,2.35 are written using Eqs. 2.52 for j = 0∑
i

bi dψ
−
i ,0 +wdψd =−∑

i
bi dψ

+
i ,0 , (2.60)

(bi F−
i +wi )ψ−

i ,0 +ai dψd =−(bi F+
i +wi )ψ+

i ,0 = ai
(
F+

i

)−1
ψ+

i ,0 , (2.61)

where the right-hand side of the second equation was simplified using Eq. 2.55. Explicitly,


bi F−

i +wi ai d

b2F−
2 +w2 a2d

b1F−
1 +w1 a1d

bi d b2d b1d wd

 ·


ψ−

i ,0

ψ−
2,0

ψ−
1,0

ψd

=


ai

(
F+

i

)−1
ψ+

i ,0

a2
(
F+

2

)−1
ψ+

2,0

a1
(
F+

1

)−1
ψ+

1,0

−∑
i

bi dψ
+
i ,0

 . (2.62)

The left-hand-side matrix is the inverse of the Green’s function G of the scattering region. It

includes lead self-energies Σi from Eq. 2.58. This result is the same as the one presented in

Ref. [53] Eq. 19, except the right-hand-side term Q0c0(+) with Q0 defined in Eq. 14 of the above

reference. There, the lead-device matrices ai d , bi d are implicitly assumed to be projected

versions of ai bi such that

ai d = ai ·pi , bi d = qi ·bi (2.63)

where pi , qi are rectangular projection matrices, pi = q†
i . Such notation change substituted

into Eq. 2.61 yields

piψd = (
F+

i

)−1
ψ+

i ,0 +
(
F−

i

)−1
ψ−

i ,0 =ψi ,−1 , (2.64)

where ψi ,−1 is the lead mode as if the lead is continued to j = −1. Collecting above two

substitutions into Eq. 2.60 or Eq. 2.34 and replacing ψi ,0 in favor of ψi ,−1 by means of Bloch

matrices Eq. 2.52 results in the following∑
i

qi biψi ,0 = ... =∑
i

qi bi

[
F+

i ψ
+
i ,−1 −F−

i ψ
+
i ,−1 +F−

i piψd

]
=−wdψd . (2.65)

In the above equation, ψ+
i ,−1 play the role of boundary conditions, similarly to ψ+

i ,0 in Eq. 2.62,

while ψd is an unknown. By moving ψd to the left and using self-energies from Eq. 2.58 a

simpler form of Eq. 2.62 is recovered[
wd +∑

i
qiΣi pi

]
ψd =∑

i
qi bi

(
F+

i −F−
i

)
ψ+

i ,−1 . (2.66)
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Similarly to Eq. 2.62, the left-hand-side matrix is the inverse of the Green’s function matrix G

G =
[

wd +∑
i

qiΣi pi

]−1

=
[

wd +∑
i

bi d b−1
i Σi a−1

i ai d

]−1

. (2.67)

Note that usually qi , pi are dropped from the above expression assuming the former ones are

simple matrices consisting of zeros and ones. This creates unnecessary confusion especially

when considering real implementations: it usually requires to “include” a unit cell of each lead

into the scattering region matrix wd and to use special indexing rules.

Step 4: Calculate transmission probabilities

To calculate transmission probabilities one takes a special form of the right-hand-side vector

in Eq. 2.62 or Eq. 2.66 in accordance with Fig. 2.6

ψ+
i , j = 0, i 6= is ; ψ+

i , j =φ(i ,r+)s , j , i = is , (2.68)

where the incoming “+” mode rs of the lead is is taken as a source of electrons. The charge

carriers scatter into an outgoing drain mode (i ,r−)d of the lead id with an amplitude

A(i ,r+)s→(i ,r−)d = φ̃†
(i ,r−)d , jψ

−
id , j . (2.69)

For id 6= is , Eq. 2.64 yields pidψd = ψid ,−1 = ψ−
id ,−1, thus, Eq. 2.66 results in the following

amplitude

A(i ,r+)s→(i ,r−)d = φ̃†
(i ,r−)d ,−1

(
pid Gqis

)
bis

(
F+

is
−F−

is

)
φ(i ,r+)s ,−1 . (2.70)

Note that j =−1 is taken: while the amplitude A generally depends on the unit cell j where

the above projection is performed, its magnitude is constant for the propagating modes. The

amplitude of reflected waves can be found in a similar fashion. Reflected modes belong to the

source electrode, thus Eq. 2.64 reads

pisψd =ψis ,−1 =ψ−
is ,−1 +φ(i ,r+)s ,−1 . (2.71)

To derive the amplitude, the outgoing part of the wavefunction in the source ψis ,−1 should be

projected onto one of the outgoing states φ(i ,r−)s ,−1

A(i ,r+)s→(i ,r−)s = φ̃†
(i ,r−)s ,−1

(
pid Gqis

)
bis

(
F+

is
−F−

is

)
φ(i ,r+)s ,−1 − φ̃†

(i ,r−)s ,−1φ(i ,r+)s ,−1 (2.72)
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Transmission and reflection probabilities are proportional to the absolute of the above ampli-

tude squared:

tn→m = vm

vn
|An→m |2 . (2.73)

It is normalized by velocity and takes values from 0 to 1. The total transmission from the

source to the drain lead includes the sum over incoming and outgoing modes in these leads

Tis→id = ∑
n ∈ {(i ,r+)s , |c| = 1}

m ∈ {(i ,r−)d , |c| = 1}

tn→m . (2.74)

The above formulas together with Eq. 2.28 are sufficient to calculate a two-terminal resistance.

It is instructive, however, to recover Caroli expression[56, 57] for the total transmission

Tis→id = Tr Γid pid GqisΓis pis G†qid . (2.75)

The above equation and Eq. 2.70 essentially use the same components: the Green’s function G

and the gamma-functions Γ in the form of velocities vn , see Eq. 2.59. The main issue, however,

is that Eq. 2.70 together with Eq. 2.73 give a non-zero transmission probability for growing or

decaying modes φ, φ̃. Writing transmission probability explicitly yields

tn→m = vm

vn
· φ̃†

m

(
pid Gqis

)
bis

(
F+

is
−F−

is

)
φn ·φ†

n

(
bis

(
F+

is
−F−

is

))† (
pid G†qis

)
φ̃m . (2.76)

Above expression is zero if m denotes a decaying mode since vm =φ†
mΓidφm = 0 in this case,

see Eq. 2.50. It diverges, however, if φn is a growing mode: vn = 0. A workaround is to consider

a part of the above expression bis

(
F+

is
−F−

is

)
φn

bis

(
F+

is
−F−

is

)
φn =

(
bis F+

is
−Σis

)
φn =

(
bis F+

is
+ iΓis −Σ†

is

)
φn =

iΓisφn +
(
bis F+

is
−Σ†

is

)
φn = iΓisφn +

(
bis F+

is
−

(
F−

is

)†
ais

)
φn .

(2.77)

The operator in brackets multiplied by an incoming mode is always zero(
bis F+

is
−

(
F−

is

)†
ais

)
φn = 1

(
bis F+

is
−

(
F−

is

)†
ais

)
φn =∑

j∈{−}
φ j φ̃

†
j

(
bis F+

is
−

(
F−

is

)†
ais

)
φn = ∑

j∈{−}
φ j

[
φ̃†

j

(
bis F+

is
−

(
F−

is

)†
ais

)
φn

]
=∑

j∈{−}
φ j

[
φ̃†

j

(
bis cn − c∗j ais

)
φn

]
= ∑

j∈{−}
φ j vn j = 0

(2.78)
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since n is an incoming mode while j denotes outgoing and decaying modes such that 1−cnc∗j 6=
0 in Eq. 2.508. Proceeding with Eq. 2.76,

tn→m = vm

vn
· φ̃†

m

(
pid Gqis

)
Γisφn ·φ†

nΓ
†
is

(
pid G†qis

)
φ̃m . (2.79)

Using Eqs. 2.59,2.50 it is a rather simple task to prove that Γisφn = vnφ̃n . Canceling velocities

vn yields

tn→m = vm · φ̃†
m

(
pid Gqis

)
φ̃n ·φ†

nΓ
†
is

(
pid G†qis

)
φ̃m . (2.80)

Also, Γidφm = vmφ̃m such that

tn→m = φ̃†
m

(
pid Gqis

)
φ̃n ·φ†

nΓ
†
is

(
pid G†qis

)
Γidφm . (2.81)

The above expression produces the same exact values for transmission probabilities between

propagating modes as Eq. 2.76. However, it has an advantage of all non-physcial transmission

probabilities between growing and decaying modes being zero:

Γφ= vφ̃= 0, |c| 6= 1 ⇔ v = 0 . (2.82)

The total transmission becomes

Tis→id = ∑
n ∈ {(i ,r+)s , |c| = 1}

m ∈ {(i ,r−)d , |c| = 1}

tn→m = ∑
n ∈ {(i ,r+)s}

m ∈ {(i ,r−)d }

tn→m =

∑
m,n

φ̃†
m

(
pid Gqis

)
φ̃n ·φ†

nΓ
†
is

(
pid G†qis

)
Γidφm =∑

m
φ̃†

m
(
pid Gqis

)∑
n
φ̃n ·φ†

nΓ
†
is

(
pid G†qis

)
Γidφm =∑

m
φ̃†

m
(
pid Gqis

)
1Γ†

is

(
pid G†qis

)
Γidφm = Tr

(
pid Gqis

)
Γ†

is

(
pid G†qis

)
Γid .

(2.83)

The above is the Caroli expression from Eq. 2.75 up to Γ†
is
= Γis and a circular permutation of a

matrix product under the trace operation.

Extension to non-orthogonal basis sets

Using the bracket notation, the Schroedinger equation is

H |〉 = E |〉 , (2.84)

8For a more rigorous proof one has to show that the basis {φ j } is full and consider possible degeneracies of
eigenvalues c in Eq. 2.50. The latter is done in Ref. [53] while the former is also required to construct Bloch matrices
in Eq. 2.53
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where |〉 is an eigenstate, E is its energy. Consider a non-orthogonal basis {|i 〉} with a conjugate

basis {
∣∣ĩ〉} such that

〈
ĩ
∣∣i〉 = δi j , δ is the Kronecker symbol. Expressing |〉 in the above non-

orthogonal basis set yields

|〉 = 1 |〉 =∑
i

∣∣i〉〈ĩ
∣∣〉=∑

i
ψi |i 〉 . (2.85)

Substituting it into Eq. 2.84 gives

H
∑

i
ψi |i 〉 = E

∑
i
ψi |i 〉 , (2.86)

which, in turn, has the matrix form〈
j

∣∣∣∣∣H∑
i
ψi

∣∣∣∣∣i
〉
=∑

i
H j iψi = E

∑
i

S j iψi , (2.87)

where S j i =
〈

j
∣∣i〉 is the overlap matrix of the basis set and H j i =

〈
j
∣∣H∣∣i〉 are Hamiltonian

matrix elements. Both matrices are Hermitian. Looking back at Eq. 2.32 one extends it to

include the overlap matrix

Hψ= ESψ⇔ (H−ES)ψ= 0 ⇒ W = H−ES . (2.88)

In the case of S = 1 the basis set is orthogonal. Thus, all quantities expressed in terms of the

matrix W, including the Caroli expression, remain valid.

On iterative algorithms and the imaginary energy

The implementation suggested in the present section consists of several steps:

1. Integrate out the pseudomomentum k|| using the Fourier transform

2. For each lead:

(a) calculate modes at a given energy E by solving Eq. 2.38 or Eq. 2.39 or Eq. 2.40;

(b) calculate mode velocities using Eq. 2.42;

(c) group modes into positive and negative according to their velocities and Bloch

coefficients;

(d) construct Bloch matrices F, self-energiesΣ and Gamma-functionsΓusing Eqs. 2.53,2.58,2.59.

3. Calculate the Green’s function G using Eq. 2.67 and the total transmission using Eq. 2.75.

Common implementations, however, obtain lead self-energies without preceding steps using

iterative solution of the corresponding matrix equation[58, 59, 52] equivalent to Eq. 2.55:

F = (−w−bF)−1 a (2.89)
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While more advanced techniques have been developed for iterative solutions of an above

equation the most straightforward way to do it is to calculate the right-hand side iteratively:

Fi+1 = (−w−bFi )−1 a , (2.90)

where i denotes the iteration step with an arbitrary initial guess F0. The quantity lim
i→+∞

Fi is

expected to converge to one of the solutions of Eq. 2.55. The convergence criterion can be

derived by considering a small deviation from the solution Fi = Fsol +∆i such that

∆i+1 = (−w−b [Fsol +∆i ])−1 a−Fsol =
(
aF−1

sol −b∆i
)−1

a−Fsol . (2.91)

To the first order in ∆ it reads

∆i+1 ≈ Fsola
−1b∆i Fsol . (2.92)

The above, generally, does not vanish with increasing i unless all eigenvalues of Fsol are less

than one by modulus. Thus, there are two important properties of the iterative algorithm

described above. First, the iterative algorithm does not converge if there is a single propagating

state present at a given energy. Second, the iterative algorithm finds only one9 of the solutions

F−. The convergence problem is solved by introducing an imaginary part to the energy E − iη

in Eqs. 2.32,2.88 such that the resulting matrix is no longer Hermitian W 6= W† and propagating

states start growing or decaying. To be consistent, however, the perturbation is required to

transform outgoing states into decaying ones. To show that it is indeed the case, consider a

perturbation to Eq. 2.38([
b+β]

[c +∆c]+ [a+α] [c +∆c]−1 + [w+ω]
)[
φ+dφ

]= 0 , (2.93)

where α,β,ω are small deviations from the corresponding matrix blocks, α† =−β, ω† =−ω.

∆c and dφ are small perturbations of eigenvalues and eigenvectors respectfully. The above

equation in the first order of the small parameter reads

(
bc +ac−1 +w

)
dφ+

(
b∆c −a

∆c

c2

)
φ+ (

βc +αc−1 +ω)
φ= 0 . (2.94)

Following the usual procedure for the development of the perturbation theory one multiplies

the above equation by φ† from the left side. Provided φ is a propagating state c∗ = c−1 the first

term becomes zero. Thus,

∆c =−φ
†
(
βc +αc−1 +ω)

φ

φ†
(
b−a/c2

)
φ

=−i c
φ†

(
βc +αc−1 +ω)

φ

v
, (2.95)

9To find F+ one has to iterate an equivalent (reverse) equation F =−b−1 (
w+aF−1)
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where v is the group velocity defined in Eq. 2.42. For orthogonal basis sets, α = β = 0 and

ω= iη1 such that

∆c = c
η

v
. (2.96)

Provided η > 0, v < 0, the sum |c +∆c| < 1 i.e. outgoing states become decaying ones. This

argument also holds for non-orthogonal basis sets provided all eigenvalues of an overlap

matrix S in Eq. 2.88 are greater than zero.

To summarize this section, the Green’s function method allows calculation of transmission

probabilities and electrical conductivity in a multi-terminal device configuration provided

proper boundary conditions and a tight-binding single-particle Hamiltonian.

2.2.2 Transport of electron spin

The charge carriers in solids carry not only charges but also magnetic moments (spins). The

Green’s function method described previously can also be applied to calculating spin transport

properties and more. To do that, slight modifications of Eq. 2.75 are necessary.

Consider the wavefunction of the outgoing wave in the lead i to be ψ−
i , j , j is the index of a

unit cell. Provided a spin (or any other quantity) operator is O, the expectation value of the

operator in the unit cell j is

o
(

j
)=ψ−†

i , j Oψ−
i , j . (2.97)

Does o
(

j
)

indeed depend on the unit cell j ? The general answer is yes. To show it, one writes

the above expression as an explicit function of j using Eq. 2.53:

o
(

j
)= ∑

r,r ′
c j∗

(i ,r )c
j
(i ,r ′)φ

†
(i ,r ),0Oφ−

(i ,r ′),0 =
∑
r,r ′

(
c∗(i ,r )c(i ,r ′)

) j
φ†

(i ,r ),0Oφ−
(i ,r ′),0 . (2.98)

The complex phase of c∗(i ,r )c(i ,r ′) is, generally, arbitrary for r 6= r ′. Thus, its mean value over j is

zero. The mean value of quantity O becomes

〈o〉 =∑
r

∣∣c(i ,r )
∣∣2 j

φ†
(i ,r ),0Oφ−

(i ,r ),0 . (2.99)

For decaying modes
∣∣c(i ,r )

∣∣< 1, thus,
∣∣c(i ,r )

∣∣2 j → 0, j →∞. This has a simple physical interpre-

tation: away from the scattering region there are no decaying modes, thus, the summation

can be performed over propagating states only. The current of quantity O transported into the

drain lead may be introduced in a fashion similar to Landauer-Buttiker current Eq. 2.29

jO = 1

h

∫
dE

∑
m,n

t {O}m→n(E) · f ′(E) , (2.100)
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2.2. Ballistic transport at nanoscale with DFT

where

t {O}m→n(E) = tm→n(E) ·φ†
nOφn , (2.101)

with the corresponding notation taken from Eq. 2.81. The quantity in Eq. 2.101 may be

viewed as a transmission “colored” by the operator O in the drain lead. In the case of spin

O = 1
2 sz , the above quantity takes values in the interval [−1/2,1/2] depending both on the

transparency of the device and polarization of the spin, thus, having properties of a spin

current. Provided the lead Hamiltonian is scalar-relativistic, however, it is more convenient to

split the corresponding lead matrices into two non-interacting parts in spin space W↑ and W↓
and to use the usual Caroli formula.

The quantity φ†
nOφn does not necessarily need to be an operator in brackets: it can be any

kind of a “coloring” function. For example, the valley polarization νn considered further can

be presented as

νn = sgn Arg φ†
nF−φn .

2.2.3 Optimizing computational costs with the Green’s function method

The device in the previous sections was accounted for via a finite-size matrix wd . The most

computationally demanding step for calculating transport properties, however, is the inversion

in Eq. 2.67 to obtain the Green’s function. The latter has the same shape as wd . Thus, to

improve the performance of DFT for (non-equilibrium) Green’s functions (NEGF) one has to

optimize calculations involving the device matrix wd .

The supercell approach

In the simplest case, the device is a defect in otherwise periodic structure: for example, a line

defect in Fig. 2.4(b). The defect perturbs the structure locally as can be seen, for example,

by calculating deviations from equilibrium atomic positions. The latter typically decays

with the distance to the defect but it is never exactly zero. Thus, one has to make a choice

and to consider a region in the vicinity of the defect (the scattering region) where lattice

deformations are important for a given problem. The lattice outside this region is assumed

to be unperturbed. Even if lattice deformations can be neglected completely there are local

perturbations of charge and potential distributions affecting charge carrier transport. The

scattering region should be large enough to include important perturbations.

The size of the scattering region is a simple numeric parameter which can be converged. Thus,

a typical work flow would involve calculations with larger and larger scattering regions until

the desired error in quantities of interest is reached. Typically, among the latters are the charge

carrier transmission probability, the electronic band structure of the device, relaxed atomic

45



Chapter 2. Methodology

Figure 2.7 – A supercell model for the transport calculations. A line defect in a monolayer
2H-WSe2 is shown as an example (side view). The key regions in the transport setup are
indicated.

positions, or other parameters.

The NEGF DFT generally requires much more computational resources than conventional

DFT in periodic boundary conditions (PBC) for the same number of atoms. There are two

basic reasons for such behavior:

1. Compared to the conventional DFT, the NEGF DFT treats the energy E as an external

parameter and requires a significant amount of resources to perform integrations over

the energy.

2. The solution of the Poisson’s equation for the electrostatic potential φ: ∆φ= ρ (ρ is the

charge density) is less computationally expensive than the one under fixed boundary

conditions corresponding to left and right leads.

Thus, one would prefer to employ PBC DFT for large calculations. It becomes possible through

the supercell approach.

The supercell is a structure containing the scattering region together with an additional

amount of bulk leads. The periodic boundary conditions in this case are satisfied if bulk

structures of the leads are exactly the same (it is usually the case for inversion-symmetric

materials). Otherwise an additional complementary defect has to be introduced as shown in

Fig. 2.7. The size of the supercell is roughly twice that of the scattering region such that the 2

defects do not interact. The supercell should also be large enough to allow the lead material

away from the defects to have bulk-like electronic and structural properites.

The supercell approach can be used to replace “expensive” NEGF DFT at various computation
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stages. It is typically used at the first stage when relaxing the atomic structure of the device. The

second stage is to calculate the self-consistent Hamiltonian of the defect where the supercell

approach can also be applied. Specifically, the large Hamiltonian of the supercell is cut into

corresponding matrices related to device hd , leads hi and their interaction ai d . At the last

stage, the above matrices are used to calculate transmission probabilities and currents.

Model Hamiltonians

The model Hamiltonians are constructed in a way to have a minimum possible number of

electronic basis functions, yet, to capture the relevant physics in a given system. An example

is a tight-binding model of graphene including two π orbitals only. The reduced number of

bands allows calculation of charge carrier transport properties in larger systems or systems

with a larger periodicity. On the other hand, model Hamiltonians are not universal: they are

usually constrained to an atomic structure of a bulk material, thus, they may fail to describe

the device region containing surfaces, defects, etc.

One of the most popular ways to create a model Hamiltonian is to express selected bands

in terms of maximally localized Wannier functions[60]. The method allows construction

of a tight-binding Hamiltonian from the ab-initio electronic structure of the material. The

tight-binding Hamiltonian is written in localized basis set of orthogonal molecular orbitals of

the solid. Provided a good initial guess, the “wannierization” procedure makes the basis set as

local as possible, thus, reducing the number of neighbors of each orbital to, ideally, nearest

neighbors only.

2.3 Simulating scanning tunneling microscopy (STM) images

STM is a very common atomic microscopy technique where the surface of a material is probed

by an atomic-sized tip in the real space. The resolution of the method approaches the size of

an atom which is a major advantage over, for example, optical methods. The STM images are

used to identify atomic structure and electronic properties of 2D materials and surfaces. In the

present work, several point defects were identified by comparing experimental and simulated

STM images. Following is a brief introduction into the method.

The key object in STM is the metallic tip scanning the surface of a material. The tip can move in

the surface plane (an angstrom-scale displacement is typically done by piezoelectric crystals)

and adjusts its height according to the underlying surface structure. This is possible via the

feedback mechanism provided by the tunneling current value depends exponentially on the

tip vertical coordinate. The characteristic length is of the order of an interatomic distance and
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is defined by the work function of an electron φ

λ= ħ
8mφ

∼ 1Å , (2.102)

where m is the electron mass.

The practical realization of an STM microscope is rather simple and can be done with a

reasonable effort from commonly available electronic components. The main idea is to supply

the voltage bias between the sample and an atomically sharp tip, measure the small tunneling

current I and to displace the tip by adjusting the voltage bias to piezoelectric crystals Vpiezo.

By keeping I constant one recovers Vpiezo as a function of the spacial position of the tip which

gives a topographic image of the surface in the “constant current” mode.

To simulate STM images by ab-initio methods one essentially needs to perform a transport

simulation of the tunneling current. However, since the tip and the sample are only weakly

coupled it is possible to perform the perturbation theory with a small sample-tip coupling

operator M, the Tersoff-Hamann approach[61]:

I = 2πe

ħ
∑
µ,ν

f
(
Eµ−EF

)(
1− f (Eν+eV −EF )

)∣∣〈µ∣∣M∣∣ν〉∣∣2
δ(Eµ−Eν) , (2.103)

where V is the voltage applied, EF is the Fermi level, f is Fermi distribution function and the

sum is taken over tip states µ and sample states ν. As a further assumption, one sets
〈
µ
∣∣M = 〈r |

where the right-hand-side is the eigenstate of a coordinate operator (i.e. delta-function in

real space). This is approximately valid for tips with a single atom and a single s orbital at the

Fermi level. The resulting expression at zero temperature becomes proportional to the local

density of states integrated over the voltage bias

I ∼
EF∫

EF−eV

dE
∑
ν

|〈r |ν〉|2δ(Eν−E) . (2.104)

Calculation of the above quantity is typically implemented in modern DFT codes as a sum-

mation in the reciprocal space where the Hamiltonian is diagonalized on the k-point grid,

and states which match the energy region are added to the total weight. This method usually

provides a reasonable zeroth approximation and is commonly used in ab-initio studies solely

or in comparison with experimental data. More advanced methods such as an aforementioned

NEGF transport simulation provide quantitative improvements to the images simulated[62] at
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a considerably higher computational cost.
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3 Spin and valley transport across reg-
ular line defects in semiconducting
TMDs
As introduced previously, the monolayer 2H-TMDs (M X2, M = Mo,W, X = S,Se,Te) are 2D

semiconducting materials for novel applications in electronics and beyond. So far these

materials have been considered mostly in the context of conventional electronics[15, 14, 63]

and photovoltaics[64, 20] where the electronic band gap 1 to 2 eV[12, 13, 65, 66] is exploited.

However, more recent optical experiments[17, 18, 19] revealed that the low-energy charge

carriers in these materials belong to one of the two degenerate valleys in the Brillouin zone: K

and K’. By coupling to the circularly polarized light it becomes possible to excite the charge

carriers from one of the valleys selectively while keeping the other one intact. This opened

a new prospect for exploiting another degree of freedom of an electron which is the valley

degree of freedom.

The valleys are specific to the electronic band structure of the material. Typically, the mul-

tivalley material has a pair of valence band maxima in the case of an insulator or a pair of

electron/hole pockets in the case of a semimetal connected by a symmetry, such as time-

reversal. The valley degree of freedom can be used to store information[67, 68] in a similar

fashion to the electron spin in spintronics[69, 70, 71, 72]. Unlike spins-polarized electrons,

however, electrons belonging to one of the valleys exist only in the valley-supporting material

and once the charge carrier leaves the bulk of this material it loses this degree of freedom

and becomes indistinguishable from the rest of charge carriers. This is not the case for the

spin degree of freedom causing charge carriers to carry a magnetic moment regardless of

the surrounding media. Thus, spintronics is more universal in terms of applications than

valleytronics.

Having both valley and spin indexing for the charge carriers in material is beneficial for

applications. Surprisingly, such scenario is realized in monolayer 2H-TMDs where the bands

at K and K’ valleys are spin-split and, thus, the spin and valley indexes are coupled[16]. The

effect of the spin-orbit coupling, however, is much larger for holes: the charge carriers in

a rather large energy region close to the valence band maximum prefer to align their spins

perpendicular to the material plane either upwards or downwards depending on the valley.

Thus, any kind of discrimination with respect to the charge carrier valley results in the spin
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Chapter 3. Spin and valley transport across regular line defects in semiconducting TMDs

imbalance which can be used as a source of spin-polarized charge carriers.

Though several optical experiments[17, 18, 19] demonstrate selective population of valleys

by the hole quasiparticles there is no direct evidence of spin polarization or magnetism

induced in the material. Such evidence could be obtained in optical transport experiments

where the charge carriers get excited by the light and eventually decay into the magnetic

lead. Depending on the light polarization one expects different values of the charge carrier

current due to magnetoresistive effects. It is more practically convenient, however, to perform

transport experiments where the spin polarization of current is operated by all-electric means.

Being the basic building blocks of a 2D device, the line defects are expected to discriminate

charge carriers with respect to their valleys in graphene[73]. As we have shown in Ref. [74]

a similar idea for monolayer 2H-TMDs results in spin- and valley-polarized currents. This

chapter is dedicated to a more detailed detailed discussion of the results presented previously.

3.1 Bulk properties of monolayer 2H-TMDs

As demonstrated in previous sections, understanding bulk properties of materials is the first

step to study charge carrier transport phenomena. This section discusses key features of

electronic structures of monolayer 2H-TMDs and differences between them.

The monolayer 2H-TMDs are semiconducting materials in the hexagonal lattice. The unit

cell of monolayer 2H-TMDs is a rhombus and contains 3 atoms: one high-symmetry position

is occupied by a metal and the other one hosts a pair chalcogens, see Fig. 3.1(a). The third

high-symmetry position of the hexagonal lattice remains unoccupied. The metallic atoms

are 6-coordinated to the nearest chalcogens while latter have 3 neighboring metals and one

chalcogen. The plane hosting metallic atoms is symmetrically sandwiched between the two

parallel atomic planes with chalcogen atoms. The largest inter-plane distance h indicated in

Fig. 3.1(a) deviates slightly across the family of materials as summarized in the following table.

Table 3.1 – Equilibrium lattice parameters a and h of monolayer 2H-TMDs (PBE-DFT level of
theory).

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

a,Å 3.140 3.273 3.497 3.145 3.275 3.504
h,Å 3.116 3.331 3.613 3.133 3.350 3.630

As one can see from the above table the lattice parameters and, especially, the lattice constant

a are mainly influenced by the choice of the chalcogen rather than the metal.

The monolayer 2H-TMDs naturally exist in a 3D bulk form where 2D layers of these materials

are weakly coupled by the van der Waals interaction. The crystalline phases are characterized

by different stacking orders and periodicities, such as 2 layers per unit cell in the 2H phase

and 3 layers per unit cell in the 3R phase[75]. The 2D layers of monolayer 2H-TMDs can be

exfoliated similarly to other 2D materials such as graphene.
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Figure 3.1 – The crystal structure and symmetries of monolayer 2H-TMDs. (a) Top and side
views of monolayer 2H-TMDs. The unit cell is shown in bold. The 2 lattice parameters, a
and h, are indicated. (b) The D3h point group to which materials’ atomic structure belongs
to. There is a σh mirror symmetry plane (gray) and a three-fold rotational symmetry C3 with
an axis perpendicular to the plane. Other symmetries are 3 2-fold rotational symmetries C2

and 3 mirror symmetry planes σv containing the C3 axis. (c) The reciprocal unit cell (dashed
rhombus) and the (first) Brillouin zone (hexagon). The same color is used for equivalent areas
in the reciprocal space. The 6 high-symmetry points Γ, K, K’, M1,2,3 are indicated.

The crystal structure of monolayer 2H-TMDs belongs to the D3h point group displayed in

Fig. 3.1(b). The relevant symmetries are the C3 axis and the mirror symmetry in the material

plane. There is no inversion symmetry in this material. Thus, monolayer 2H-TMDs are polar

materials where the metallic atoms donate electrons to chalcogens. Correspondingly, the

covalent bonds formed between neighboring metals and chalcogens have a slightly polar

character.

The symmetries described are also relevant to the reciprocal space of the crystal lattice. The

first Brillouin zone (BZ) displayed in Fig. 3.1(c) is a hexagon where the two non-equivalent K

and K’ points (valleys) are its vertices. The time-reversal symmetry in this family of materials

protects the spin degeneracy of bands at time-reversal invariant points Γ and M1,2,3 as well

as all three Γ−M lines[76]. In the rest of the BZ, the lack of inversion symmetry in the lattice

yields a pronounced spin character of bands such that the K and K’ valleys host charge carriers

with opposite spins. The lattice mirror symmetry results in the spin polarization of states to

be perpendicular to material’s plane.

There is a large spin-orbit splitting in the valence band of these materials caused by relativistic

effects induced by heavy atomic cores, see Fig. 3.2. The effect is most pronounced at the afore-

mentioned K and K’ valleys. There, tungsten-based compounds exhibit approximately twice

larger band splitting ∆ESO of valence bands compared to molybdenum-based compounds.
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Figure 3.2 – Electronic band structures of 6 2D TMDs. The electronic band gap Eg and the
largest spin-orbit splitting in the valence band ∆ are indicated in each case.

The spin-orbit effects are not uniform across the band structure: while the hole charge carriers

at K, K’ points are split by hundreds of meV in energy, their electron counterparts exhibit a

splitting less by an order of magnitude. There are also high-symmetry directions connecting Γ

and M points in the reciprocal space where energy levels are spin-degenerate. Thus, all 3 M

points are equivalent. As already outlined, it is not the case for K and K’ points: while the band

dispersion there is same, the spin textures of the bands are opposite.

Both p- and n-type doping is possible for monolayer 2H-TMDs. Chalcogen vacancies are typi-

cally identified under metal-rich conditions resulting in the positive doping. This effectively

shifts the Fermi level into valence bands such that hole pockets appear at the K and K’ points

in the Brillouin zone, Fig. 3.3 (bottom row). Being a circle at low doping levels, the constant

energy contours possess a 3-fold rotational symmetry and become triangular-warped deeper

in the valence energy region. The electron pockets appearing at negative doping levels also

exhibit a nearly circular shape, Fig. 3.3 (top row). Increased doping levels lead to rather hexag-

onal shape of Fermi surfaces which is also in agreement with the 3-fold symmetry. It is also

possible to identify additional electron pockets at points with lower symmetry for EF = 200

meV which are believed to be responsible for the charge density wave structural transitions in

this family of materials[77].

Overall, monolayer 2H-TMDs are similar both in terms of atomic and electronic structures.

There are quantitative differences in terms of lattice constants, the band gap magnitudes,

spin-orbit splitting values, effective masses of charge carriers and the energy levels at Γ and K,

K’ valleys. The direct band gap in monolayer 2H-TMDs, however, is always found at K and

K’ high-symmetry points in the reciprocal space. Thus, a similar charge carrier transport
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Figure 3.3 – Fermi surfaces in monolayer 2H-MoS2 at different doping levels. The top row
corresponds to the negatively doped material (the Fermi level is indicated with respect to the
bottom of the conduction band) while the bottom row corresponds to the positive doping
(valence band top is set as the origin for EF). Both reciprocal unit cell (black) and the frist
Brillouin zone (grey) are shown.

behavior is expected in all materials.

3.2 Line defects in monolayer 2H-MoS2 and other TMDs

Several kinds of line defects have been observed in monolayer 2H-TMDs[78, 40, 79, 80, 81].

For example, in a monolayer 2H-MoS2 the line defects occur between domains with different

orientations as shown in Fig. 1.8. Among them, the simplest ones are inversion domain

boundaries with examples given in Fig. 3.4(c,d). Inversion domain boundaries occur between

domains with opposite crystallographic orientations. It is not the case of a sulfur vacancy line

defect presented in Ref. [78]. There, the defect was created within the same crystallic domain

of a monolayer 2H-MoS2 in a controlled manner using an electron beam.

The relaxed SVL, IDB1 and IDB2 defect structures presented in Fig. 3.4 are consistent with the

corresponding microscopy images. Missing sulfur atoms in the SVL defect induce a tensile

strain in the corresponding atomic layer and bend the material plane. The under-coordinates

molybdenum atoms tend to form a covalent bond in this case reducing the interatomic

distance from 3.2 Å to 2.9Å. Unlike SVL, the IDB1 defect keeps the mirror symmetry in the

material plane intact. There, the sulfur sublattice is effectively defect-free while molybdenum

atoms occupy different high-symmetry positions at both sides of the defect and, thus, form

the defect. The distance between Mo atoms at the defect is decreased down to 2.6 Å, thus,

suggesting strain in the material plane. Otherwise, the coordination between molybdenum
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Figure 3.4 – Atomic structures of periodic line defects in monolayer 2H-MoS2. (a) Models
of the sulfur vacancy line (SVL) and inversion domain boundaries (IDB), top and side views.
The models are periodic along the zigzag direction of the lattice (blue arrows). (b-d) Atomic
microscopy images of the prototype defects. The periodicity vector (blue) together with bulk
lattice vectors (white) are indicated. The scale bars are 1 nm. Parts of images are reproduced
with permissions from Refs. [78, 40].

and sulfur atoms remains bulk-like for atoms close to the defect. However, it is not the case for

the third defect, the IDB2, where the molybdenum atoms at the defect are under-coordinated

compared to the bulk values. There is also a slight out-of-plane distortion of the atomic lattice

in this case. Based on the coordination numbers, it is possible to deduce a Mo-rich local

composition of all three defects.

All defect models considered are periodic along the defect line. The periodicity vector ~d

introduced in previous sections takes the smallest possible (1,0) value as shown in Fig. 3.4

(blue arrows). In real samples, however, the line defects are quasi-periodic: the regular defect

pattern may be interrupted as in the case of an IDB2 defect shown in Fig. 3.4(d). This effectively

causes violation of conservation laws (pseudomomentum and spin) in transport and will be

discussed later.

A final remark is given on the robustness of domain boundaries against local changes in atomic

structure. In particular, the relative angle between equivalent lattice vectors of monolayer

2H-MoS2 domains plays a role of an invariant protecting the existence of the defect. Provided

the angle is not a multiple of 2π/3 the domains remain non-equivalent in terms of their

56



3.3. Ballistic transport across periodic line defects in a monolayer 2H-MoS2

orientation. Thus, the corresponding inversion domain boundary is guaranteed to exist and

the local changes of the atomic structure cannot terminate or eliminate the defect without

destroying one of the bulk crystals completely. Such topological protection is the case for

most of intrinsic line defects in monolayer 2H-MoS2 and inversion domain boundaries in

particular. In contrast, a pristine monolayer 2H-MoS2 flake can be recovered from the SVL

model by simply donating the missing sulfur atoms.

3.3 Ballistic transport across periodic line defects in a monolayer

2H-MoS2

The ballistic transport in monolayer 2H-TMDs is particularly interesting from the point of view

of interplay between conservation laws (energy, pseudomomentum, spin), the spin texture of

bulk bands and the spin-valley coupling. The simulations show that all (1,0) defects presented

in Fig. 3.4 are non-magnetic, thus, the whole setup is spin-neutral. This eliminates several spin

relaxation channels (spin waves, relaxation on local magnetic moments) suggesting a larger

spin lifetime in monolayer 2H-TMDs. On the other hand, the periodicity of defects imposes

certain conditions on the charge carrier pseudomomentum and, thus the valley index. Finally,

the whole picture is complemented by the spin-valley coupling discussed previously. The

excess of conditions to be satisfied may prohibit the charge carrier transmission at the level of

symmetries and may cause a transport gap.

3.3.1 The transport gap

To understand the role of the conservation laws in the charge carrier ballistic transport con-

sider 2 cases schematically illustrated in Fig. 3.5(a,b). The first case corresponds to, for example,

the SVL defect where the leads have a matching crystallographic orientation. There, the bal-

listic transport channels connect bulk wavefunctions with exactly the same spatial and spin

character. In particular, the transport channels corresponding to the K and K’ points of the BZ

transmit charge carriers without changing spin. However, provided the drain lead is rotated

with respect to the charge carrier source, the endpoint of the transmission channel is changed.

This generally reduces the transmission probability: naively, the overlap between incoming

and transmitted states becomes non-unity. In the case of IDBs, however, the reduction of

transmission probability is exaggerated up to no charge carrier transmission at all because the

single-particle bulk states corresponding the channel are orthogonal in the spin space. This

is schematically illustrated in Fig. 3.5(b) where the same channel connects bulk states with

different spin and valley character. An alternative point of view on this process is following:

the rotation of one of the leads in real space causes rotation of the corresponding BZ such that

the K and K’ points are swapped. The charge carriers, however, tend to conserve their spin

and, thus the valley due to the spin-valley coupling. The conflict between these two processes

prohibits charge carrier transport.
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Chapter 3. Spin and valley transport across regular line defects in semiconducting TMDs

Figure 3.5 – The transport gap for charge carriers travelling across line defects. (a) A schematic
illustration of a non-topological line defect (top) and the corresponding band diagram of the
charge carrier transmission (bottom). The matching colors in the bottom panel indicate the
value of spin polarization of the two topmost valence bands in leads. The arrows indicate
allowed charge carrier transport channels. (b) The topological line defect case. The opposite
orientations of bulk lattices in the top panel cause mismatch of spin in transport indicated with
colors in the bottom panel. The crossed arrows indicate closed ballistic transport channels.

The above transport gap argument can be summarized in the following picture of the electronic

band structure of a defect. Consider a defect with a periodicity vector ~d . This vector can be

expressed as a sum of bulk unit vectors ~a,~b with integer pre-factors n,m for both left (L) and

right (R) leads:

~d = nL~aL +mL
~bL = nR~aR +mR

~bR . (3.1)

The periodicity vector ~d in the real space defines the 1D Brillouin zone of the defect. The

only coordinate of the reciprocal space of the defect is the aforementioned projection of the

pseudomomentum k||. To discover the spin-conserving and spin-flip channels one projects

the leads’ modes onto the 1D BZ, see Appendix A.5 for the details. Examples of such projection

for both leads are demonstrated in Fig. 3.6. While the Γ point can be projected onto k|| = 0 only,

there are several possibilities for other high-symmetry points K and K’. They can be projected
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3.3. Ballistic transport across periodic line defects in a monolayer 2H-MoS2

Figure 3.6 – A schematic illustration of bulk states of a monolayer 2H-MoS2 in the leads
projected onto the 1D BZ of the defect. The color indicates spin polarization of states at a
given E , k||: red and blue are spin-up and spin-down states only while magenta indicates that
states with both spin polarization are available. (a) The case of a small defect periodicity vector
with a large 1D BZ. (b) The case of a large defect periodicity vector with a small 1D BZ. The
transport gap Et is indicated in both cases.

either onto ± 4π
3d or onto Γ, depending on n and m (d =

∣∣∣~d ∣∣∣):

(n −m) mod 3 = 0 : k|| (K) = k|| (Γ) = 0 ;

(n −m) mod 3 = 1 : k|| (K) = 2π
3d ;

(n −m) mod 3 =−1 : k|| (K) =− 2π
3d .

(3.2)

The transport gap occurrs if

(nL −mL) mod 3 6= (nR −mR ) mod 3 , (3.3)

i.e. if K valleys hosting spin-up states from different leads are projected differently. The

resulting magnitude of the transport gap Et is defined as the maximum possible energy where

the charge carrier transmission is restored:

Et = min

[
∆ESO,∆EK−Γ,

h2

72m?a2

a

d

]
, (3.4)

where the effective mass of charge carriers m?, the lattice constant a and the Planck constant

h are included. The details of the above expression can also be found in Appendix A.5.

The Eq. 3.4 claims the transport gap to be inversely proportional to the defect periodicity d .
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Chapter 3. Spin and valley transport across regular line defects in semiconducting TMDs

This is a formal illustration of the fact that in the limit of a non-periodic line defect when

d →+∞ the pseudomomentum is not conserved, thus, the charge carriers are always allowed

to scatter to the preferred valley hosting bulk states with the spin required. The intermediate

case of a large but finite d is illustrated in Fig. 3.6(b). There, the BZ gets smaller while the

valleys effectively overlap more allowing an intra-valley scattering at energies close to the

Fermi level.

Another remark is related to the Γ valley where bulk states are spin-degenerate. As illustrated

in Fig. 3.6(a) the highest-energy states at the Γ valley set the lower limit for the transport gap,

though, according to band structures presented in Fig. 3.2 it is not a relevant factor in both

selenides and tellurides where ∆ESO <∆EK−Γ.

The discussion above is based on the fact that the non-magnetic defects do conserve spin of

charge carriers. This is not exactly true: there is an out-of-plane easy axis for charge carrier

spins in monolayer 2H-TMDs. If the defect is bent, the axis is changed accordingly to match

the local effective plane of a monolayer material. For example, both SVL and IDB2 defects

in Fig. 3.4 are subjects to out-of-plane deformations. Thus, a charge carrier approaching

these defects with an out-of-plane spin will form a non-zero overlap with charge carriers from

the opposite valley with an opposite spin due to spin precession around a local easy axis.

The non-zero overlap between spin states assists charge carrier transmission via a spin-flip

channel which is otherwise closed. The ab-initio simulations presented further provide a

qualitative measure to this effect.

3.3.2 Transport simulations and the spin polarization of charge carrier current

As outlined in the beginning of this chapter, the valley and, thus, spin polarization of charge

carriers in monolayer 2H-MoS2 can be induced by light. Another opportunity to induce

the valley polarization using transport across line defects was suggested for graphene[73].

There, otherwise equivalent valleys are discriminated by allowing ballistic currents to cross

the periodic line defect at oblique angles. This results in the valley polarization of the current

flowing across the defect. In monolayer 2H-TMDs, the valley polarization of hole charge

carriers is equivalent to the spin polarization due to the spin-valley coupling. Thus, a similar

setup in monolayer 2H-TMDs is expected to give rise to spin currents (the physical background

of the original proposal and its relevance to monolayer 2H-TMDs are given in Appendix A.2).

The argument is supported by the results of ab-initio transport simulations presented in this

section.

In particular, three defects from Fig. 3.4 were considered. Each defect was relaxed following the

NEGF1 transport simulations described in the previous chapter. Other details of simulations

are given in Appendix A.3.

1While the NEGF abbreviation stands for the non-equilibrium Green’s function the actual calculations were
carried out under zero voltage bias which may be viewed as an equilibrium setup.
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3.3. Ballistic transport across periodic line defects in a monolayer 2H-MoS2

Figure 3.7 – Transport properties across line defects in monolayer 2H-MoS2 from Fig. 3.4. (a)
The k|| and energy-resolved transmission function of corresponding line defects. The color
represents values of transmission ranging from 0 to Tmax with individual values of Tmax for
holes and electrons indicated on the plots. The contour lines indicate band edges while the
horizontal dashed lines indicate band energy extrema. (b) The value of the spin polarization
of transmitted charge carriers as a function of energy and the charge carrier incidence angle θ
defined in Eq. 3.5. The white color indicates equal contributions of spin-up and spin-down
charge carriers to the total transmission. The valence band maximum is placed at zero.

Fig. 3.7 summarizes the results of ballistic transport simulations. There, for each line defect

from Fig. 3.4 the transmission function calculated using Eq. 2.75 is presented in panel (a) and

the mean spin polarization of transmitted charge carriers is presented in panel (b). The latter

is defined as

Pσ =
∑

i Tiσi∑
i Ti

, (3.5)

where σi is the out-of-plane spin polarization of the bulk outward state i and Ti is the cumu-

lative transmission probability into the state i . In bulk 2H TMDs σi =±1 though this is not

required for the actual formalism, see Appendix A.4 for details.

In terms of the leads’ bulk properties, the SVL defect corresponds to the case (a) in Fig. 3.5.

Thus, one expects a non-zero transverse transmission probability for this defect provided the

existence of bulk states at a given (k||,E). The argument is in agreement with the calculated
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Figure 3.8 – The single-particle Hartree potential of monolayer 2H-MoS2 defects presented
in Fig. 3.4. The horizontal axis correponds to the distance to the line defect in the transport
direction. The potential is averaged in parallel planes.

transmission function presented in Fig. 3.7(a) and bounded by the bulk monolayer 2H-MoS2

bands. The defect is transparent for holes E < 0 with the total transmission Tmax = 2 approach-

ing the maximum possible value equal to the bulk band degeneracy at these energies. The

charge carrier transmission function at the Γ valley k|| ≈ 0 is very uniform and does not depend

significantly on parameters (E ,k||) in contrast to transmission probabilities at K and K’ valleys.

Unlike the hole charge carriers, the transmission function for electrons is significantly lower.

The transmission function close to the bottom of valence bands barely reaches 10−2. It can

be explained by considering classical particles in a bending electrostatic potential: provided

SVL is a negatively charged defect, holes are effectively attracted by the defect while electrons

get reflected from it. An effective single-particle potential plotted in Fig. 3.8 for all defects

confirms the argument. There, depending on the effective charge, the potential bends upwards

or downwards resulting in a better transparency either for holes or for electrons.

The values of the spin polarization of transmission Pσ presented in Fig. 3.7(b) indicate a strong

discrimination of charge carriers with respect to their spin and incidence angle. The fact

that spin-up charge carriers prefer positive incidence angles while spin-down charge carriers

transmit better in the mirror-symmetric direction,

Tσ (θ) = T−σ (−θ) , (3.6)

is consistent with a similar conclusion for graphene [73]. However, the resonant features in

the transmission function cause a non-uniform behavior of the spin polarization value at a

given angle: depending on the charge carrier energy, the spin polarization may vanish (white

regions close to the Fermi level) or even change its sign. The value of |Pσ| is almost saturated at

the value of 0.99 indicating the fact that the SVL defect can be used as a spin polarizing device.

In particular, the spin filtering is possible if a small bias not exceeding 50 mV is applied to the

device based on a positively doped monolayer 2H-MoS2. At larger voltages, the channels at

the Γ valley may become open producing a large spin-degenerate charge carrier current and
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3.4. Ballistic transport across inversion domain boundary in monolayer 2H-MoSe2

resulting in a much lower value of |Pσ|. It is also possible to achieve significant values of Pσ for

electron charge carriers though the transparency of the defect in this case is much lower.

Unlike the SVL defect, both IDBs satisfy Eq. 3.3 and, thus, correspond to the transport gap

case schematically illustrated in Fig. 3.5. Thus, there is no transport of low-energy hole charge

carriers in this case. The argument is in agreement with the corresponding simulation results

presented in Fig. 3.7(a). Deeper in the valence energy region spin-conserving channels become

available and the charge carrier transmission is restored there. The relevant channels releasing

the ballistic transport regime are first found at the Γ valley for the IDB2 defect while in the

case of IDB1 the transmission probabilities there are relatively low.

The aforementioned transport gap is reproduced perfectly for the IDB1 defect. Instead, the

IDB2 case shows a small residual transmission in the energy gap region presented in Fig. 3.7(a).

There, the spin-flip transmission channels are open. As discussed, both defects are non-

magnetic, however, the IDB2 defect violates the out-of-plane direction as an easy spin axis due

to bending of the defect structure. The bulk spin-up and spin-down states become coupled in

this case.

One more feature related to the charge carrier transport is the fact that the IDB1 and the

IDB2 defects accumulate opposite effective charges. The over-coordinated sulfur atoms in

the first case gain an additional positive charge while under-coordinated molybdenum atoms

in the second defect are charged negatively compared to their bulk counterparts. This is in

agreement with the single-particle potential profiles presented in Fig. 3.8.

3.4 Ballistic transport across inversion domain boundary in mono-

layer 2H-MoSe2

As a part of a joint project together with experimental groups of Ute Kaiser at the University of

Ulm and Andras Kis at EPFL as well as the theoretical group of Arkady V. Krasheninnikov at

the Aalto University the transport properties of an inversion domain boundary in monolayer

2H-MoSe2 were studied. The defective material exhibited crystalline monolayer 2H-MoSe2

flakes with various orientations separated by ordered line defects as shown in the microscopy

images in Fig. 3.9. Among the line defects observed are the simplest (1,0) inversion domain

boundary shown in Fig. 3.9(b) and small-angle domain boundaries presented in the original

work[80]. The inversion domain boundary is similar to the IDB1 defect considered in the

previous section for a monolayer 2H-MoS2. Thus, similar transport properties are expected.

To verify this, the NEGF calculations have been carried out of the relaxed defect model.

The resulting transmission function, Fig. 3.10(a), and the potential profile, Fig. 3.10(b) strongly

resemble those of the monolayer 2H-MoS2 IDB1 model presented in Figs. 3.7(a),3.8. The

atomic structure of the defect presented in Fig. 3.10(b) does not show any new qualitative fea-

tures either. Both defects are charged positively resulting in a better transmission probability

for electrons. Similarly to the defect in monolayer 2H-MoS2, transmission probabilities at the
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Chapter 3. Spin and valley transport across regular line defects in semiconducting TMDs

Figure 3.9 – Atomic microscopy images of defective monolayer 2H-MoSe2 showing polycrys-
talline structure of the sample. (a) A large-scale microscopy image of monolayer 2H-MoSe2.
The different colors correspond to different crystallographic orientations of monolayer 2H-
MoSe2 grains. (b) Inversion domain boundary in monolayer 2H-MoSe2 imaged. A schematic
atomic structure is overlaid.

Figure 3.10 – Electronic and transport properties of an inversion domain boundary in MoSe2.
(a) k||-resolved transmission function values (left) and the integrated transmission (right) as a
function of a charge carrier energy E . (b) The single-particle Hartree potential profile across
the inversion domain boundary averaged over planes. The top view of the relaxed atomic
structure is also shown.

Γ valley for the monolayer 2H-MoSe2 model are rather small. The expected transport gap in

these calculations that did not focus on spin- and valley-polarized transport is not captured

by the model: the spin degree of freedom for the Kohn-Sham wavefunction was ignored in

favor of simplicity of the description. According to Eq. 3.4 as well as the bulk band structure

data presented in Fig. 3.2 the magnitude of the transport gap expected in monolayer MoSe2 is

rather defined by the spin-orbit splitting value ∆ESO = 184 meV being smaller than the value

of ∆Ek−Γ for this material.

To summarize, the inversion domain boundary defects in monolayer monolayer 2H-MoS2

and MoSe2 are very similar from the point of view of electronic and transport properties.

The simulations do not show any qualitative differences between the defect models despite

being done at a slightly different methodological level. Nevertheless, the transport gap in a

monolayer 2H-MoSe2 is expected to be substationally larger compared to the one in monolayer
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2H-MoS2 due to lower energies of holes at the Γ valley. This also suggests better spin filtering

capabilities of a monolayer 2H-MoSe2 where the spin-degenerate ballistic charge carrier

current originating from the Γ valley is irrelevant.

3.5 Conclusions

As demonstrated, the ballistic charge carrier transport across periodic line defects in a mono-

layer 2H-MoS2 is governed by several conservation laws. The conservation of spin together

with the spin-valley coupling cause charge carrier transport properties to be strongly discrimi-

nated with respect to the spin value. For non-topological defects, high spin polarization of

charge carrier currents are predicted. For inversion domain boundaries, the conservation

of spin causes suppression of spin-flip channels resulting in a transport gap extended into

the valence energy region. The defect orientation and periodicity plays a defining role in this

process. The electric charge accumulated on line defects causes discrimination of transmitted

charge carriers with respect to their energy. The conclusions are also applicable to other mono-

layer 2H-TMDs with qualitatively same structural and electronic properties. The transmission

probabilities obtained for an inversion domain boundary in monolayer 2H-MoSe2 show a

qualitatively same picture. Overall, the phenomena discussed may find applications in 2D

electronics and spintronics where line defects could constitute a lateral device.
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4 Electronic properties of the distorted
1T structural phase in monolayer
TMDs
The 2H structural phase is the thermodynamically stable phase of monolayer MoS2, MoSe2,

MoTe2, WS2, WSe2. However, monolayer WTe2 as well as other monolayer TMDs such as ReS2

realize a different atomic structure. There, one of the chalcogen atoms shifts inside the unit

cell parallel to the material plane resulting in the 1T lattice structure presented in Fig. 4.1.

However, monolayer 1T-TMDs are usually not stable. They are subjects to a spontaneous

breaking of the translation symmetry accompanied by the formation of metallic zigzag chains

and a slight change of unit cell vectors. The resulting 1T’ lattice structure is illustrated in

Fig. 4.1.

The spontaneous breaking of the translation symmetry leading to the 1T’ phase may occur

along one of the three equivalent crystallographic directions of the hexagonal lattice. The

resulting 1T’ unit cell contains six atoms compared to three atoms in the unit cell of the

1T phase. The ratio between 1T’ lattice constants a and b shown in Fig. 4.1 resembles the

original hexagonal symmetry: a/b ≈p
3. Unlike the original 2H lattice, both 1T and 1T’ lattice

structures contain inversion centers indicated in Fig. 4.1. Combined with the time reversal

symmetry preserved by the material, the inversion symmetry results in the two-fold spin

degeneracy of all bulk states in monolayer 1T’-TMDs.

Among the monolayer TMDs being discussed, the 1T’ phase is a ground state phase for

WTe2 only, however, other TMDs can be stabilized in this phase by n-doping the material via

lithium or sodium intercalation[82, 83, 84, 85]. Depending on the details of an experimental

realization, the undistorted 1T phase was also reported in observations[79, 86].

The monolayer 1T’ phase is widely discussed in terms of its electronic properties. Having

the same chemical composition, monolayer 1T’ TMDs make a good lateral contact with the

semiconducting monolayer 2H phase[87]: the low Schottky barrier at the interface results in a

high transparency of the junction to transverse charge carriers. A non-trivial band ordering

of the monolayer 1T’ phase[88] attracts interest in the topological insulator community. The

quantum spin Hall (QSH) phase predicted for the family of materials may find applications

provided the bulk band gap of the monolayer 1T’ phase is large enough. By the time of
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Chapter 4. Electronic properties of the distorted 1T structural phase in monolayer TMDs

Figure 4.1 – Structural phases of 2D TMDs: 2H, 1T and 1T’, top and side views. The lattice unit
vectors are indicated.

writing the thesis no experimental confirmations of the topological insulator phase have been

published.

4.1 Bulk properties of the monolayer 1T’ phase

While the atomic structures of monolayer 2H- and 1T’-TMDs are closely related, there are

substational differences in their electronic properties. Unlike the semiconducting monolayer

2H phase, the 1T’ phase is a semimetal or a semiconductor with a ten meV-order band gap

with corresponding electronic band structures presented in Fig. 4.2. DFT calculations predict

the largest band gap at equilibrium lattice constants in the monolayer 1T’-MoS2: 48 meV.

Apart from MoS2, the selenides MoSe2, WSe2 exhibit a slightly smaller electronic band gap

while WS2, MoTe2 and WTe2 are semimetals.

The band gap in monolayer 1T’-TMDs is opened by the spin-orbit interaction. The spin-

orbit interaction in tungsten is larger, however, in terms of the band gap magnitude there

is an opposite trend: tungsten-based materials demonstrate a smaller band gap compared

to molybdenum compounds. This indicates the fact that the formation of the band gap is a

complex process with several factors such as the band shape affecting the band gap magnitude.

According to the DFT simulation results, the maxima of valence bands (VBM) and minima

of conduction bands (CBM) are different across the family of materials and can be found at

various locations in the BZ as summarized in Table 4.1.

Most of the band extrema occur at the Γ point or along the high-symmetry Γ−Y direction

(kx = 0) in the BZ. The only exception is the CBM in WS2 which is away from high-symmetry

directions. This was overlooked in previous studies and may be the reason why WS2 was

predicted to have a positive band gap[88] while, by fact, DFT predicts a semimetallic band

structure.
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Figure 4.2 – Electronic band structures of monolayer 1T’-TMDs projected onto the largest
reciprocal vector ky . Colors are used to indicate high-symmetry paths Y−Γ−Y (red) and
A−X−A (green) shown on the inset illustrating the rectangular BZ.

Table 4.1 – Properties of a band gap in monolayer 1T’-TMDs: locations of band extrema
(VBM,CBM), magnitudes of the band gap Eg and magnitudes of the band gap at the Γ point
∆Γ.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

CBM Γ−Y Γ−Y Γ−Y elsewhere Γ−Y Γ−Y
VBM Γ−Y Γ−Y Γ Γ Γ (flat band) Γ

insulator 3 3 7 7 3 7

Eg (meV) 48 35 −184 −44 29 −84
∆Γ (meV) 500 780 543 125 649 1017

In semimetals, the band extrema correspond to the location of hole and electron pockets in

the 2D BZ shown in Fig. 4.3. There, WS2 indeed shows 4 relatively small symmetric electron

pockets and a single hole pocket at the Γ point. Two larger electron pockets are predicted for

MoTe2 and WTe2 showing similar behavior in terms of electronic band strcutres.

Semiconducting monolayer 1T’-TMDs were predicted to be topological insulators[88] in the

non-trivial QSH phase. The corresponding topological invariant classifies band insulators

under the time-reversal symmetry and takes two possible values ν=±1 depending on whether

the band order is vacuum-like, ν = 1, or not, ν = −1. The bulk-boundary correspondence

discussed previously induces at least two gapless modes at the edge of a topological insulator

or wherever the topological phase changes. The edge modes of the QSH phase are time-

reversal-symmetric and usually have opposite spins. This causes various phenomena specific

to the boundary of the QSH phase such as the spin-momentum locking or Majorana fermion

69



Chapter 4. Electronic properties of the distorted 1T structural phase in monolayer TMDs

ky

k x

WS2

ky

k x

MoTe2

ky

k x

WTe2

Figure 4.3 – Electron (red) and hole (blue) pockets in semimetallic monolayer 1T’-TMDs. The
plot box corresponds to the Brillouin zone dimensions.

quasiparticles. For actual applications, it is better to have edge states decoupled from the bulk

ones in the energy domain. This fact stimulates the search of robust QSH insulators with a

large band gap.

In monolayer 1T’-TMDs, the QSH phase is caused by multiple inversions of chalcogen p

and metallic d states in the energy domain[89]. The Z2 topological invariant for inversion-

symmetric materials is a product of parities of Bloch states calculated at time reversal-invariant

momentum (TRIM) points in the BZ: points Γ, X, Y and A. For monolayer 1T’-TMDs the parity

product calculated at the Γ point has a different sign compared to the rest of parities. This

intuitively suggests that the relevant band inversions occur at the Γ point. Thus, the value

of the band gap at the Γ point ∆Γ can be used as a measure of the robustness of the QSH

phase. The calculated values of the ∆Γ presented in Table 4.1 indicate that the band inversion

is robust in all materials except WS2 where ∆Γ = 125 meV.

4.1.1 Electronic structure properties of monolayer 1T’-WSe2

Different levels of theory do not agree on the band gap magnitude in monolayer 1T’-TMDs as,

for example, reported for monolayer 1T’-MoTe2. The standard DFT simulations of the bulk

material presented in Ref. [88] as well as in Fig. 4.1 predict the material to be a semimetal. In

contrast, simulations with a hybrid exchange-correlation functional yield a band gap as large

as 70 meV[90].

We collaborated with the group of Michael Crommie at University of California, Berkeley to

investigate the properties of the 1T’ monolayer phase in WSe2. Specifically, our colleagues

provided an experimental spectroscopic evidence of the band gap in monolayer 1T’-WSe2.

First of all, the zigzag distortion of monolayer 1T’-WSe2 was confirmed by the STM experiment,

Fig. 4.4(a). There, the pattern formed by parallel lines of the topmost selenium atoms provides

a clear signature of the zigzag distortion specific to the monolayer 1T’ phase. Second, the

electronic structure of the monolayer material was probed by the angle-resolved photoemis-

sion spectroscopy (ARPES), Fig. 4.4(b), as well as by scanning tunneling spectroscopy (STS),

Fig. 4.4(c). ARPES, generally, does not capture conduction electronic states, thus, the presence
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4.1. Bulk properties of the monolayer 1T’ phase

of the band gap cannot be deduced from Fig. 4.4(b) directly. Instead, the STS data clearly

shows a deep depression close to the Fermi level in Fig. 4.4(c).

Figure 4.4 – Experimental observation of the monolayer 1T’ phase in WSe2. (a) STM image
of the monolayer 1T’-WSe2. The high-contrast regions correspond to the topmost chains
of selenium atoms. (b) Angle-resolved photoemission spectroscopy (ARPES) data of the
monolayer 1T’-WSe2 electronic structure in the valence energy region. The corresponding
calculated bulk bands are overlaid. The white arrow indicated two minima of conduction
bands (two electron pockets in experiment) connected with a nesting vector. (c) The scanning
tunneling spectroscopy (STS) data of the monolayer material (experiment) compared to the
calculated density of states (theory). (d) The quasiparticle interference pattern measured for
the monolayer 1T’-WSe2 at energies 100 meV above the top of the valence bands. The Brillouin
zone is marked by a yellow frame. The corresponding simulated interference signal is shown
in the green frame.

To support the experimental observations, I performed calculations of electronic band struc-

ture properties of the monolayer 1T’-WSe2 using DFT. Specifically, the electronic band struc-

ture, the density of electronic states and the autocorrelation function of the band structure in

k-space were computed to compare to the experimental data.
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As introduced in the previous section, the monolayer 1T’-WSe2 is a semiconductor with a

30 meV band gap also present in the DOS plot in Fig. 4.4(c). The electronic band structure

showing the band gap location agrees well with the ARPES data, Fig. 4.4(b). The quasiparticle

interference (QPI) pattern gives an information on possible nesting vectors in the reciprocal

space of monolayer 1T’-WSe2. It provides an important information about the dispersion of

the conduction band. Practically, the QPI signal is as simple as a Fourier transform of the STS

data at a given energy. Thus, the corresponding theoretical analogue can be obtained directly

from the calculated band structure as, for example, described in Ref. [91]. The QPI pattern

for monolayer 1T’-WSe2 is presented in Fig. 4.4(d). It strongly resembles the corresponding

simulated image (green frame) with 3 similar regions of a large signal displaced along the ky

reciprocal vector. The displacement roughly corresponds to the length of the reciprocal vector

connecting electron pockets shown in Fig. 4.4(b).

The combination of experimental and theoretical evidences allows one to conclude that

monolayer 1T’-WSe2 is indeed a semiconducting material in the QSH phase. The presence

of the band inversion at the Γ point is confirmed by the ARPES data being in agreement with

the theoretical predictions. During the theoretical ab-initio investigation of its properties,

however, it was found that the band gap obtained in the relaxed material is highly sensitive to

the level of methodology similar to the aforementioned issue of monolayer 1T’-MoTe2. The

closing of the band gap, however, may destroy the topological phase in the family of materials.

Thus, it is important to study possible mechanisms of the band gap closing and to investigate

inconsistencies between different methodologies.

Specifically, the variations of materials’ lattice parameters were found to have a major impact

on the presence and the magnitude of the band gap. The following section discusses the

electronic properties of monolayer 1T’-TMDs under strain from the theoretical perspective.

The study is also presented in Ref. [92].

4.1.2 Properties of monolayer 1T’-TMDs under strain

The monolayer 1T’-WSe2 discussed previously is a semiconductor under the DFT-PBE (Perdew-

Burke-Ernzerhof[93]) approach. The LDA exchange-correlation functional[94], however, re-

sults in a semimetallic band structure for this material. The major difference between simu-

lated electronic band structures may be due to the smaller unit cell predicted under the local

density approximation. This hypothesis was verified by performing simulations of electronic

properties of the four monolayer 1T’-TMDs: MoS2, MoSe2, WS2, WSe2 across the range of

lattice constants.

A series of DFT electronic structure simulations of monolayer 1T’-TMDs has been performed

with varying bulk lattice constants. The maximum deviation of lattice constants was set to

5% of the equilibrium values predicted at the PBE level of theory. The whole range of lattice

constants was sampled on a 19x19 mesh. At each point of the lattice parameter space, atomic

structures of bulk materials were relaxed and electronic band structures were calculated on a
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4.1. Bulk properties of the monolayer 1T’ phase

60x90 k-point grid to capture the band gap location and magnitude accurately. Additionally,

equilibrium structural and electronic properties were calculated for both LDA and PBEsol[95]

exchange-correlation functionals. The latter is commonly used for a more accurate description

of structural and electronic properties of 3D materials’ surfaces and 2D materials.

The calculated magnitude of the band gap is presented in Fig. 4.5(a-d). The former is found

to be sensitive to lattice constants in all four materials. The semiconducting phase spans an

island-like region in the lattice parameter space. Thus, a relatively small deformation may

close the band gap in monolayer 1T’-TMDs. The required deviations from equilibrium PBE

lattice constants may be as small as 0.5% in the case of monolayer 1T’-WSe2 or as large as 4%

in the case of monolayer 1T’-MoS2.

The difference in predicted lattice constants between methodologies, however, is larger, as in-

dicated in Fig. 4.5(a-d). This results in the aforementioned inconsistency between predictions.

Specifically, the exchange-correlation functionals considered agree in terms of the band gap

magnitude only for monolayer 1T’-WS2 where semimetallicity is predicted. Otherwise LDA

always predicts a material to be a semimetal while PBE claims semiconductivity. According to

Fig. 4.5, the PBEsol exchange-correlation functional results in intermediate lattice constants

corresponding to either a finite band gap or no band gap depending on the material. The

problem of inconsistency between predictions of the band gap magnitude is resolved by cal-

culating the electronic band structure in a fixed unit cell using all three exchange-correlation

functionals. Such calculation yields surprisingly good agreement in terms of the band gap

magnitude. This confirms our initial hypothesis that the difference in values of the band gap

magnitude is mostly due to the difference between equilibrium lattice structures predicted

by exchange-correlation functionals. Thus, for a proper comparison with experimental data

experimental lattice structures should be used in DFT simulations.

For the possible applications of the QSH phase, one is interested in increasing the magnitude

of the bulk band gap. According to Fig. 4.5, the bulk band gap can be increased by applying

strain. A moderate strain along the largest lattice vector a may tune the band gap magnitude

in monolayer 1T’-MoS2 to slighty larger magnitudes up to 57 meV. Though the predicted band

gap magnitude in non-strained monolayer 1T’-TMDs is maximal in MoS2, other materials of

the family exhibit larger band gap magnitudes with the strain applied. According to Fig. 4.5(d)

a band gap as large as 120 meV is found in strained monolayer 1T’-WSe2. The maximal band

gap encountered in monolayer 1T’-MoSe2 is 30 meV smaller and requires larger deformations,

though, this value is not saturated. To open the band gap in monolayer 1T’-WS2 a compressive

strain is required which may limit applications of the gapped phase in this material. Otherwise

the maximal band gap magnitude in monolayer 1T’-WS2, 63 meV, is comparable to the one in

monolayer 1T’-MoS2.

The mechanism of a semiconductor-semimetal transition in the materials depends on the

direction of strain. Fig. 4.5(e) illustrates electronic band structures of monolayer 1T’-MoS2 as

an example. There, the band gap closing occurs at various points of the BZ. The monolayer
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Figure 4.5 – Evolution of the electronic properties of monolayer 1T’-TMDs upon the change of
lattice parameters a and b. (a-d) The magnitudes of electronic band gaps in monolayer 1T’-
MoS2, MoSe2, WS2 and WSe2. The boundaries of the semiconducting and the quantum spin
Hall phase in the parameter space are shown by black and red lines, respectfully. Equilibrium
lattice constants obtained using LDA, PBE and PBEsol exchange-correlation functionals are
indicated together with the maximal band gap. (e) Electronic band structures of monolayer
1T’-MoS2 undergoing the semimetallic-semiconducting-semimetallic transition. The corre-
sponding path in the lattice parameter space is shown by arrows in subplot (a). The red and
green bands stand for high-symmetry paths in the BZ, Y−Γ−Y and A−X−A, respectfully.

1T’-MoS2 at around 4% tensile strain has its conduction band crossing the Fermi level at the X

point of the Brillouin zone while the band gap closing at 3% compressive strain is different:

instead of forming an electron pocket at the X point four symmetric electron pockets emerge

similar to the ones in monolayer 1T’-WS2 shown in Fig. 4.3. This leads to an observation of the

fact that not only the magnitude of the band gap but also its location is sensitive to materials’

lattice constants. The simulations show that the maximum of valence bands is always located

along the Y−Γ−Y path. In contrast, the minimum of conduction bands is found at various

locations in the BZ. The most symmetric location of the CBM is the X point of the BZ while
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Figure 4.6 – The location of the conduction band minimum (CBM) in the Brillouin zone
of monolayer 1T’-TMDs as a function of lattice parameters a and b. The color represents
high-symmetry directions where the CBM is located: the red color corresponds to the Γ−Y
direction (kx = 0, ky 6= {0, π/b}), the green color corresponds to the A−X direction (kx =π/a,
ky 6= {0, π/b}) and the blue color is the high-symmetry X point (kx = π/a, ky = 0). The grey
color corresponds to the rest of the BZ as shown in the inset. Equilibrium lattice constants,
semiconducting regions and the maximum band gap values are indicated.

other locations include the Y−Γ−Y path (except both Γ and Y) and the A−X−A path (except

A and X) encoded with colors in Fig. 4.6. All semiconducting monolayer 1T’-TMDs except 1T’-

WS2 have their CBM located mostly along the Y−Γ−Y path. The semiconducting monolayer

1T’-WSe2 has its conduction bands lowered at the X point when deformed along lattice vector

b. The location of the CBM of monolayer 1T’-MoS2 is found away from the Y−Γ−Y path

regardless of the strain direction. The location of the CBM in this material may be switched

multiple times before closing the band gap completely. The monolayer 1T’-WS2 is the most

uncharacteristic material in the family. There, high-symmetry points and directions are the

least preferred ones for the CBM location. The monolayer 1T’-WS2, strained or unstrained, is

a semimetal with 4 electron pockets in most of the cases.

Robustness of the QSH phase in strained monolayer 1T’-TMDs

The semiconducting regions in Fig. 4.5 host the QSH phase which is supported by calculations

of the topological invariant in Ref. [88]. The topological insulator phase cannot be changed

without closing the band gap. However, the closing of the band gap does not necessarily

change the topological invariant. Specifically, the topological invariant persists as long as
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Figure 4.7 – The topological invariant phase in strained monolayer 1T’-TMDs. Top row: the
Z2 invariant calculated for valence bands as a function of lattice parameters in the 5% strain
range. Grey color stands for the QSH phase. Bottom row: the magnitude of the band gap at Γ
as a function of lattice parameters in the 5% strain range.

valence and conduction bands are isolated from each other:

Ei (k) 6= E j (k), ∀k ∈ BZ, i ∈ {V (alence)}, j ∈ {C (onduction)} , (4.1)

where En(k) is the n-th Bloch band. The above condition guarantees a non-zero band gap

at each point in the BZ, but not globally. Thus, some semimetallic systems may also be

characterized by topological invariants.

Specifically, semimetallic monolayer 1T’-MoTe2, WTe2 as well as WS2 were characterized in

Ref. [88]. To complete the picture of the QSH phase in strained monolayer 1T’-TMDs an

explicit calculation of the Z2 invariant ν was performed using wavefunction parities[27] with

the results presented in Fig. 4.7. The QSH phase in both monolayer 1T’-MoSe2 and WSe2 was

found to be robust in the whole range of lattice parameters. The topological phase transition

was found in monolayer 1T’-WS2 and MoS2 shown in Fig. 4.5. It occurs independently of the

semiconductor-semimetallic phase transition and at larger strain values. However, the strain

required to break the QSH phase in monolayer 1T’-WS2 is relatively small due to the fact the

band gap magnitude at Γ ∆Γ is the smallest one in the family.

The relevance of the quantity ∆Γ to the topological phase transition was confirmed by plotting

it together with the value of the Z2 invariant ν as a function of lattice parameters in Fig. 4.7.

There, the change of the Z2 invariant is always accompanied by vanishing ∆Γ = 0 while the

opposite relation is, generally, not valid.

4.1.3 Summary

According to DFT predictions, monolayer 1T’-TMDs are prototypical two-dimensional topo-

logical insulators. The magnitude of the band gap in these materials is sensitive to lattice

parameters: the small band gap in monolayer 1T’-TMDs is increased significantly with strain.
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The largest magnitude of the band gap obtained occurs in selenides. It is also possible to

close the band gap at various points in the BZ depending on the strain direction. The induced

electron pockets appear either along high-symmetry directions in the BZ or away from them.

The latter scenario was completely overlooked in previous studies where the band gap for

both relaxed and strained materials was determined from electronic band structures along

high-symmetry paths only. As a result, monolayer 1T’-WS2 was claimed to be a semiconductor

while, by fact, it is a semimetal. Moreover, the possibility for a strain-induced semiconducting

phase is very limited in this material. The band inversion at the Γ point was found to be

responsible for the QSH phase in all monolayer 1T’-TMDs. The observed topological strain-

induced phase transition is accompanied by the closing of the band gap at the corresponding

point.

4.2 Edges of monolayer 1T’-TMDs

The edges of a topologically non-trivial QSH phase in monolayer 1T’-TMDs may host topo-

logically protected boundary modes. They are characterized by various unique properties

such as protected charge carrier transport, the spin texture of states and Majorana fermions.

The local conditions at the boundary play a crucial role in the above properties. For example,

a termination carrying a non-zero magnetic moment breaks the topological protection and

the underlying time-reversal symmetry. The edge mode may also cross the Fermi level more

than once lifting protection of the charge carrier transport. Depending on the local atomic

structure of a termination, various scenarios can be realized. Thus, the study of electronic

properties of particular terminations is crucial for understanding how topological insulators

can be used in practice.

The suggested edges to consider are periodic terminations along the shortest lattice vector

in monolayer 1T’-TMDs: the zigzag edges. The latter include six different structures with a

(1,0) periodicity corresponding to balanced, metal-rich and chalcogen-rich conditions and

presented in Fig. 4.8(a). Within each pair, one of the structures is terminated closer to the

zigzag chain while the other one includes an additional metallic atom. To investigate possible

atomic reconstruction effects at the edges the structural relaxation calculations were carried

out. A brief summary of simulation details are given in Appendix A.6.

The relaxed structures presented in Fig. 4.8(a) demonstrate only slight distortions compared

to the bulk lattice. The most significant structural changes are found in balanced terminations

(1) and (2) as well as in the chalcogen-rich termination (c1) where chalcogen atoms at the

edge are undercoordinated. There is also a significant structural distortion at the metal-rich

termination (m1) where the 3 rows of metallic atoms clusterize.

The six terminations considered differ in their formation energies Eb defined as

Eb = 1

2

(
Eribbon −NMµM −NCµC

)
, (4.2)
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Figure 4.8 – Atomic structures of zigzag terminations in monolayer 1T’-TMDs and their for-
mation energies. (a) Top and side views of atomic structures. (b) Formation energies of the
boundary Eb as a function of a chemical potential of the metal atom µM for the six mono-
layer 1T’-TMDs considered. The colors of lines correspond to a particular defect in (a). The
values the chemical potential µM are given with respect to the bulk bcc molybdenum for
molybdenum-based compounds and with respect to bcc tungsten for tungsten-based ones.

where Eribbon is the total energy of the nanoribbon with two equivalent edges, NM,C are

numbers of metallic and chalcogen atoms in the model and µM,C are the corresponding

chemical potentials. The chemical potentials are constrained by the formation energy of the

corresponding bulk containing six atoms per unit cell

2µM +4µC = Ebulk . (4.3)

The formation energy is presented as a function of the chemical potential of the metal µM

in Fig. 4.8(b) where the reference of the chemical potential is taken from the corresponding

bulk body-centered cubic (bcc) structure µM = Ebcc. There, pairs of parallel lines indicate the

fact that the corresponding two terminations have the same stoichiometry, however, one of

them has a smaller formation energy compared to the other one. For example, among metal-

rich terminations (m1) and (m2) the latter is always preferred from the point of view of the

formation energy Eb. Thus, the aforementioned clusters of metallic atoms require additional

energy. The chemically-balanced terminations (1) and (2) are almost equal in their formation

energies for sulfides and selenides while tellurides clearly prefer the second structure. The

preferred terminations under chalcogen-rich conditions primarily depend on chalcogens:

tellurides prefer the first structure, (c1), sulfides prefer the second structure, (c2), while the

difference in formation energies of the structures for selenides is much smaller.

The electronic structures of zigzag edges differ significantly as confirmed by simulations of the
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Figure 4.9 – The k-resolved density of states localized at the energetically preferred zigzag
terminations of the six monolayer 1T’-TMDs presented in Fig. 4.8. The blue and red colors
in each plot represent the contribution of out-of-plane spin-polarized states, spin-up and
spin-down, to the total weight. The corresponding labels of atomic structures from Fig. 4.8
are indicated in each plot. The full range of plots including non-preferred terminations is
presented in Appendix A.7.

local k-dependent density of electronic states presented in Fig. 4.9. The latter was calculated

as an imaginary part of the Green’s function trace from Eq. 2.67

n (E) =−Im Tr G (E) (4.4)

Up to eight spin-polarized modes are identified at the boundary. The character and the disper-

sion of edge modes depends on the termination structure. Thus, experimental observations

of the local electronic structure at the boundary, such as STS, may be able to identify the kind

of a boundary precisely. Specifically, chemically-balanced zigzag edges host only few modes

mostly away from the Fermi level. Instead, metal-rich boundaries demonstrate a rather high

density of electronic states close to the band gap. The electronic structure of a chalcogen-rich

termination in monolayer 1T’-TMDs depends on the kind of preferred termination: while

the (c1) termination hosts a pair of bands crossing the Fermi level, it is not the case for the

(c2) termination. Thus, the choice of a material also influences the electronic structure of a

boundary by means of the structure preferred. Provided the same atomic structure of the edge,

however, the electronic structures of different materials presented in Fig. 4.9 (see also Fig. A.3)

are very similar.

Most of the edge states are spin-polarized out of the material plane as indicated by color in

Fig. 4.9. The spin polarization is usually preserved along a particular band selected. Both

observations, however, are not the case for metal-rich termination (m2) especially in tungsten-
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Figure 4.10 – Momentum-resolved localized density of electronic states of zigzag terminations
suitable for the protected charge carrier ballistic transport experiment. The corresponding
zigzag termination structure label is indicated in both plots. The horizontal lines are examples
of energies at which the ballistic charge carriers are protected from backscattering.

based compounds. There, pairs of bands in the conduction energy region become spin-

hybridized resulting in a non-uniform spin character of the band. The easy spin axis for

hybridized edge states is away from the normal direction.

The topologically protected spin modes are identified for all boundaries by the odd number

of Fermi level crossings. It is in agreement with the bulk-boundary correspondence of the

QSH phase. The time-reversal symmetry is preserved by all zigzag edges. Thus, no magnetic

moments are present and the spin degeneracy at TRIM points Γ and Y remains protected.

Depending on the particular dispersion of the edge modes, the edge may support protected

charge carrier ballistic transport. From this point of view, the most promising zigzag edges

are those of monolayer 1T’-WSe2 where two counter-propagating spin modes are present in

the bulk band gap energy region as shown in Fig. 4.10. For both chemically balanced and

chalcogen-rich terminations there exist ballistic charge carriers which are protected from

backscattering. To identify them, one has to choose the energy of charge carriers carefully as,

for example, illustrated by horizontal lines in Fig. 4.10. At the energies indicated, there exist

only two quasiparticles with opposite spins and group velocities. Spin-neutral perturbations

(such as local non-magnetic impurities, for example) do not couple these states. This, in

turn, results in a completely suppressed back-scattering of the edge charge carriers and the

protected charge carrier transport phenomena.

4.2.1 Summary

Periodic zigzag edges of monolayer 1T’-TMDs have been characterized in terms of structure,

formation energy and electronic properties. For each material, among six terminations consid-

ered, three have a lower formation energy. These edges host localized gapless modes protected

by the topologically non-trivial QSH phase and the underlying time-reversal symmetry. The

spin texture of the corresponding modes as well as the odd number of Fermi level crossings
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confirm that the states observed have a topological origin. As such, the protected charge

carrier transport becomes possible provided the material and the edge are chosen carefully.

Specifically, the two suggested zigzag edges in monolayer 1T’-WSe2 are prototypical ideal

nanowires where the charge carrier back-scattering is suppressed in a rather narrow energy

region inside the band gap.

4.3 Electronic properties of structural phase boundaries in mono-

layer WSe2

The topologically protected modes at the zigzag edges of monolayer 1T’-TMDs discussed

in the previous section indicate the change of the topological invariant when leaving a 2D

material bulk towards vacuum. The latter plays a role of a trivial insulating medium, however,

it can be replaced by any topologically trivial insulating material with a finite band gap. The

topologically protected edge states should persist as long as the trivial insulating material

respects the symmetries of the corresponding topological classification. For example, the 2H

structural phase of monolayer TMDs is in a trivial insulating QSH state under time-reversal

symmetry and can complement the 1T’ phase to induce topologically protected edge states.

The phase boundary between monolayer 2H- and 1T-TMDs prefers zigzag directions of the

crystal lattice according to several experimental studies[87, 79, 86]. Also, recently, multiple

2H-1T’ phase boundaries were observed in monolayer MoS2 separating strips of the two

phases parallel to the zigzag direction in the 2H phase[96]. The above studies mostly focus

on transverse transport properties of a 2D metal-insulator interface. A relatively low Schottky

potential barrier developed at the boundary allows an efficient injection of charge carriers

into the semiconducting 2H phase of the material compared to more common contacts to

gold or other bulk metals. The “patterning” of the metallic phase from the semiconducting 2H

phase in TMDs is a practical way to build a lateral 2D device which is a major advantage over

other materials.

The topological aspects of the phase boundary, however, have not yet been discussed. This

section is dedicated to electronic structure properties of 2H-1T’ interfaces in WSe2 – a rep-

resentative material where the band gap of the QSH phase can be tuned towards the largest

values in the family.

As discussed, the 1T’ phase of monolayer TMDs is formed from the stable 2H phase by shifting

one of the chalcogen planes towards the previously unoccupied high-symmetry position in the

hexagonal lattice. Thus, it is reasonable to expect that the lateral junction of the phases involves

only a minor distortion of the other two atomic planes. There are only several configurations

of a periodic phase boundary along the zigzag direction summarized in Fig. 4.11 where eight

possible relaxed phase boundary structures are presented. Among them, four structures

contain a 7-coordinated metal atom at the boundary (chalcogen-rich conditions) and four

other structures contain a 5-coordinated tungsten atom (metal-rich conditions). Another
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Figure 4.11 – Atomic structures of the 2H-1T’ phase boundaries along the zigzag direction
of monolayer WSe2: top and side views. The colored line indicated tungsten-rich (blue) or
selenium-rich (yellow) conditions.

degree of freedom to consider is the possibility to choose the crystallographic orientation

of the polar monolayer 2H-TMD: panels (1-4) in Fig. 4.11 contain atomic structures with

the same orientation of the monolayer 2H phase while panels (5-8) illustrate cases with the

opposite orientation. Lastly, the boundary may or may not contain unpaired metal atoms

which would otherwise form zigzag chains in the monolayer 1T’-phase1.

The starting point for the description of electronic properties of the interface is the relative

alignment of bulk bands presented in Fig. 4.12(a). In contrast to 3D materials, the band

alignments in 2D do not generally depend on the interface structure. Thus, the relative

alignment of bulk bands in 2D can be found by preforming bulk calculations and matching

the vacuum levels. In the case of WSe2, this results in a type-III heterojunction: the small band

gap of the 1T’ phase remains at lower energies and does not overlap with the band gap of the

2H monolayer phase. The supercell configurations with a phase boundary, however, result

in the Fermi level of the 1T’ phase material2 to be inside the band gap energy region of the

2H phase. The problem of the mismatch was previously reported for non-polar materials[97]

and, essentially, is due to long-range electrostatic potentials spanning the supercell model.

The weak logarithmic behavior of the potential prevents reasonably-sized supercell models to

correctly reproduce the bulk band alignment. In experimental setups, however, the long-range

potential is typically screened by localized charge carriers in the material or by the substrate.

The bulk states of both 2H and 1T’ monolayer phases can also be identified in Fig. 4.12(b)

where the local density of states at the phase boundary is presented. The overall picture of the

electronic structure is quite complicated since spin-degenerate bulk states of the 1T’ phase

overlap with spin-polarized bulk states of the 2H phase together with several spin modes

localized at the boundary. Compared to the “clean” bands presented in Fig. 4.10, neither of

1This possibility, however, may effectively result in a strain applied across the phase boundary: for example,
atomic and electronic structures 1 and 3, 6 and 8 presented in Figs. 4.11, 4.12(b) respectfully are very similar.

2The Fermi level is fixed to the middle of a small band gap in monolayer 1T’-WSe2
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Figure 4.12 – Electronic structure of phase boundaries in monolayer WSe2 displayed in Fig. 4.11.
(a) Local densities of electronic states projected onto the direction perpendicular to the phase
boundary. The DOS is presented in side plots. The Fermi level (red) of the 1T’ phase as well as
valence and conduction band edges of the 2H phase (blue) are indicated. (b) k-resolved DOS
with the color (red,blue) indicating spin-up or spin-down character of the density.

monolayer WSe2 phase boundaries are suitable for charge carrier protected transport along

the boundary. Nevertheless, all spin-polarized bands in Fig. 4.12(b) cross the Fermi level

an odd number of times indicating the topological phase boundary. The spin character of

boundary modes is not necessarily uniform and may change along the mode (see, for example,

the second plot in Fig. 4.12(b)) similarly to edge modes of the 1T’ phase discussed previously.

Some of the spin modes presented in Fig. 4.12(b,6-8) originate from the bulk spin-polarized

states belonging to K and K’ valleys of monolayer 2H-WSe2.

The ballistic transport properties of periodic phase boundaries are governed by energy and

pseudomomentum conservation laws. The calculated transmission functions T
(
E ,k||

)
are

presented in Fig. 4.13 together with bulk bands of both 2H and 1T’ monolayer phases. As

expected, the transmission function is non-zero only where bulk modes are available. In the

case of the 2H monolayer phase, the bulk modes are mostly concentrated at K and K’ valleys

projected onto different points of the 1D BZ of a (1,0) phase boundary. Compared to the

monolayer 2H-MoS2 considered previously, the hole states originating from the Γ valley in

monolayer 2H-WSe2 are significantly lower in energy. The bulk modes of the 1T’ monolayer

83



Chapter 4. Electronic properties of the distorted 1T structural phase in monolayer TMDs

phase reside at the Γ valley of the corresponding rectangular BZ. Thus, there is a mismatch of

the projected pseudomomentum k|| between leads’ modes resulting in a non-zero transport

gap Et in addition to the bulk band gap of the 2H monolayer phase Eg . The latter in WSe2

is as large as Eg = 1.3 eV. The magnitude of the transport gap depends on the relative band

alignment of the phases, which, according to Fig. 4.12(a), depends on the actual atomic

structure of the phase boundary. In all cases, the major contribution to the transport gap

comes from the valence energy region while conduction bands contribute less. This results in

a transport gap varying between 280−370 meV as summarized in the following table.

Table 4.2 – The magnitude of the transport gap Et for charge carriers traveling across zigzag
phase boundaries in monolayer WSe2. The contributions to the transport gap in the valence
energy region E (V)

t and in the conduction energy region E (C)
t of the monolayer 2H phase are

indicated.

Structure 1 2 3 4 5 6 7 8
Et, meV 280 340 350 340 280 350 370 360

E (V)
t , meV 200 320 350 340 200 350 370 360

E (C)
t , meV 80 20 0 0 80 0 0 0

The good transparencies of phase boundaries reported previously are in agreement with the

ballistic transport simulation results presented. However, this statement does not directly

follow from the plots presented in Fig. 4.13 where most transmission probabilities are exactly

zero due to the absence of bulk states at a given k|| and E . Thus, it is instructive to consider

only those charge carriers which, according to the conservation laws, are able to transmit.

Such charge carriers are found at the overlap between bulk bands presented in Fig. 4.13 where

both 2H and 1T’ bulk modes have the same k|| and E . It is possible to assign the maximum

possible value of the transmission function for these charge carriers defined as

Tmax (E) =
∫

dk|| min
[
n2H

(
E ,k||

)
,n1T′

(
E ,k||

)]
, (4.5)

where n
(
E ,k||

)
corresponds to the number of bulk modes of a specific phase at a given point

in the parameter space. The ratio T /Tmax, T = ∫
dk||T (E ,k||), may be viewed as a measure of

the transparency of a non-periodic phase boundary. The calculated values of the above ratio

are presented in Fig. 4.14 (blue lines). The ratio typically exceeds 0.1 indicating good transport

properties of the phase boundaries considered. Close to band edges, however, the ratio may

drop down to 10−2 or even below which is typical for modes with a small group velocity.

Finally, another indicative quantity is T /Tmax,2H with Tmax,2H defined as

Tmax,2H (E) =
∫

dk||n2H
(
E ,k||

)
. (4.6)
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layer WSe2 displayed in Fig. 4.11. The color indicates the value of transmission normalized
by the corresponding maximum indicated in each subplot. The contours of bulk 2H and 1T’
monolayer phase bands are shown in each plot.

It is proportional to a maximum possible conductance in the 2H monolayer phase in the

ballistic transport regime. Thus, the above ratio can be used to compare different materials

in terms of their contact properties to the semiconducting 2H phase. The calculated ratio is

presented in Fig. 4.14 as a function of the energy E using red lines. Obviously, T /Tmax,2H <
T /Tmax though both values are of the same magnitude. As a result, T /Tmax,2H is typically

between 10−1 and 10−2, however, it may reach higher values away from the band gap region.

4.3.1 Summary

The zigzag boundaries between monolayer 2H and 1T’ phases of WSe2 were evaluated from

the point of view of structural, electronic and transport properties. The topological character

of the boundary is found be consistent with the number, spin character and energy dispersion
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of electronic bands at the boundary. The possibility of employing 2H-1T’ phase boundaries

for topologically protected charge carrier transport, however, is unclear since multiple in-gap

states contribute to transport properties inside the bulk band gap of monolayer 1T’-WSe2.

Otherwise the high transparency of boundaries for transverse charge carriers is confirmed by

the transport calculations. The contribution to the transport gap of around 300 meV is found

to be consistent with alignment of bulk bands of both monolayer phases in WSe2.

4.4 Electronic properties of dimerization defects in monolayer 1T’-

WSe2

Several previous sections were dedicated to line defects and domain boundaries in the 2H

phase as well as phase boundaries between the 2H and 1T’ phases of monolayer TMDs. To

complete the family of line defects in monolayer TMDs, the dimerization defects in the 1T’

phase have been studied.

Unlike the line defects considered, the dimerization defects in the monolayer 1T’ phase are

stoichiometric. Stoichiometric defects are characterized by lower formation energies and

higher concentrations under thermodynamic equilibrium. In the context of the previous

discussion, the semimetallic 1T’ phase plays a role of a lateral contact in a semcindocting 2D

device. Thus, the electronic properties of the 1T’ monolayer phase are important. The high

defect concentration may affect the properties of the monolayer 1T’-TMDs. From the point

of view of applications, one would also expect a quasi-amorphous phase of the monolayer

1T’ phase where the concentration of dimerization defects is maximal. Such phase may

demonstrate completely different properties compared to the crystalline monolayer 1T’-TMD.

This gives an additional degree of freedom when engineering a 2D device similar to crystalline
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4.4. Electronic properties of dimerization defects in monolayer 1T’-WSe2

Figure 4.15 – Atomic structures of 1T’ periodic dimerization defects in monolayer WSe2: top
and side views. (1) A dimerization defect along the shortest unit cell dimension (zigzag). (2) A
dimerization defect along the longest unit cell dimension (armchair). (3) A 120◦ dimerization
defect separating domains with different orientations of the monolayer 1T’-WSe2 lattices.

and amorphous silicon currently used in nanoelectronics.

At the time of writing of this thesis, not much information exists on dimerization defects

in the 1T’ phase of monolayer TMDs. A quasi-crystalline phase of a sodium-intercalated

multilayer 1T-MoS2 observed in Ref. [84] provides a hint of how a 1T’ dimerization defect could

look like. In particular, the dimerization defect may join domains with different directions

of the zigzag distortion as shown in Fig. 4.15(3). This case corresponds to approximately

120◦ rotation of corresponding crystallographic directions at both sides of the defect. Other

possibilities include breaking of the zigzag distortion without rotating the lattice as illustrated

in Fig. 4.15(1,2). There, periodic dimerization defects are parallel to the shortest or to the

longest vector of a monolayer 1T’-TMD unit cell. All defects keep the underlying monolayer

1T phase intact, thus, the relaxed structures presented in Fig. 4.15 experience only slight

structural distortions at the defect. For consistency with the previous section, the discussion

further is constrained to monolayer 1T’-WSe2 only.

The “zigzag” dimerization defect illustrated in Fig. 4.15(1) originates from a single unpaired

line of tungsten atoms. The relaxed structure, however, prefers to form a triple metallic chain

by merging the single and the bulk-like double chains. Thus, tungsten atoms in the middle

become over-coordinated. The corresponding distance between tungsten atoms 3.04 Å slightly

exceeds the corresponding bulk value of 2.81 Å but is still much smaller than the off-chain

W-W distance in the bulk 4.05 Å.

The “armchair” dimerization defect illustrated in Fig. 4.15(2) breaks metallic chains and rejoins

them in a zip-like manner. As introduced, the periodicity vector for the line defect is bigger in

this case: it is equal to the largest dimension of the unit cell. Both zigzag and armchair defects
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Table 4.3 – Formation energies of dimerization defects in monolayer 1T’-WSe2. The ener-
gies are given per unit length. Formation energies of chemically balanced zigzag edges of
monolayer 1T’-WSe2 from Fig. 4.8 are given for comparison purposes.

Zigzag defect (1) Armchair defect (2) 120◦ defect (3) Edge 1 Edge 2
Eform, meV/Å 265 131 58 286 200

connect domains of monolayer 1T’-WSe2 with the same crystallographic orientation. Thus,

they can be avoided by a parallel shift of atoms at one side of the defect. It is not the case for

the 120◦ dimerization defect, Fig. 4.15(3). Unlike the previous defects, it does not possess an

inversion symmetry at the defect line: it joins two 2D crystals rotated with respect to each

other by approximately 120◦. As such, the directions of dimerizations in the two crystals are

different in this case and require a rotation in real space to match.

The dimerization defects considered differ significantly in terms of their formation energies,

Eform in Table 4.3. The most preferred defect is the 120◦ dimerization defect with the for-

mation energy as low as 58 meV per angstrom. The armchair defect is more than two times

expensive in energy while the zigzag defect requires four times more energy to form. This

observation has two important consequences. First, the relatively low formation energy of the

120◦ dimerization defect may cause its high concentrations in real samples as argued in the

beginning of this section. Second, the breaking of the zigzag dimerization of metallic atoms

in the zigzag defect as well as in certain zigzag edges, Fig. 4.8(a), requires significantly more

energy. Compared to chemically-balanced zigzag terminations, the dimerization defects break

less chemical bonds, thus, are expectedly lower in their formation energies3.

All three periodic dimerization defects considered result in different 1D defect Brillouin zones

both in terms of its size and orientation with respect to the leads. The largest BZ is for the

zigzag defect while the smallest one is for the 120◦ dimerization defect. The high-symmetry

points Γ, X, Y of the monolayer 1T’ phase BZ are projected differently as indicated in respective

panels in Fig. 4.16(a). There, either Γ and X or Γ and Y or X and Y are projected onto the same

point of the 1D BZ. This fact prevents the direct comparison of electronic structure properties

of the three defects.

Among the three dimerization defects, only the zigzag dimerization defect shows a clear

presence of localized gapless modes shown in Fig. 4.16(a,1). In contrast, the dimerization

defect along the armchair edge does not cause closing of the small band gap. In both cases,

all localized states are spin-degenerate due to the presence of time-reversal and inversion

symmetries. The 120◦ dimerization defect is different from this perspective: the states localized

at the defect have a pronounced spin character as shown in the inset in Fig. 4.16(a,3). It is

possible because of the lack of an inversion symmetry in the atomic structure. The band gap

is closed or less than the imaginary part of the energy used in Green’s function calculations, 5

3While the formation energy of the edge presented in Table 4.3 belongs to a single monolayer bulk phase of a 1T’
TMD, the formation energies of dimerization defects are “split” between the two grains connected by the defect.
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Figure 4.16 – Electronic structure properties of dimerization defects in monolayer 1T’-WSe2

from Fig. 4.15. (a) The k-resolved density of electronic states. The blue and red colors on the
third panel indicate the spin-up and spin-down character, respectively, of the density for the
non-inversion-symmetric grain boundary. The inset shows density of states in the vicinity of
the band gap. (b) The k-resolved charge carrier transmission functions T for charge carriers
traveling across dimerization defects. The color indicates the value of transmission. The bulk
bands plotted along high-symmetry directions are shown for the first defect.

meV in this case.

The calculated transmission functions for transverse charge carriers indicate a high trans-

parency of all three defects, Fig. 4.16(b). This can be attributed to the fact that all 3 defects

preserve the lattice structure and stoichiometry to a large extent. Moreover, unlike the mono-

layer 2H phase, the 1T’ phase is non-polar and has a much smaller band gap, thus, the small

charges accumulated at the defects are screened effectively. This reduces the effects of an

electrostatic repulsion in the charge carrier transport. While, looking at Fig. 4.16(b), the trans-

mission across the first defect is subjectively smaller, it effectively corresponds to the smallest

period among all three defects. Thus, the pseudomomentum conservation law for this defect

is pronounced most: there is a large region in the (k||,E) space bounded by the band edges

(red lines in the figure) where no bulk modes are present and no charge carriers transmit.

4.4.1 Summary

The structure, electronic and charge carrier transport properties of simplest stoichiometric

dimerization defects in the 1T’ phase of monolayer WSe2 were investigated. The relaxed

structures of dimerization defects exhibit only moderate structural reconstruction such as the

formation of a triple line of metallic atoms at the line defect along the shortest lattice vector.
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Otherwise local environments of atoms at the defects do not change. Nevertheless, a clear

presence of localized modes at the zigzag defect was observed. In the case of an armchair

defect, however, the modes do not close the band gap in the material. The absence of an

inversion symmetry for the 120◦ dimerization defect lifts the spin degeneracy and causes

localized modes to be spin-polarized. The charge carriers, both holes and electrons, exhibit

high transmission probabilities across all defects considered. It is attributed to the fact that

the monolayer 1T’ phase is non-polar and has a small band gap causing additional charges

accumulated at defects to be screened effectively.

4.5 Conclusions

The 1T’ phase of monolayer TMDs attracts interest from various perspectives. On the one

hand, being semimetallic, it complements the semiconducting 2H phase with applications in

lateral 2D devices. On the other hand, it is a topologically non-trivial phase in the QSH regime

with applications in spintronics and quantum computing. The studied sensitivity of the band

gap and the band order in the 1T’ phase to strain provides a way to both maximize the band

gap and to close it, depending on application requirements. For gapped systems, the QSH

phase was confirmed by studying edges of monolayer 1T’-TMDs. The spin-polarized edge

modes were also confirmed for semimetallic tellurides as well as WS2 which was previously

considered to be a semiconductor. Specific edges of the monolayer 1T’ phase were suggested

for protected transport experiment making TMDs to be the first realistic QSH insulator.

The study of structural and electronic transport properties of phase boundaries between the

2H and 1T’ monolayer phases as well as line defects in the 1T’ phase complements the study

of line defects in the 2H semiconducting materials presented in the previous chapter. The

transparency of 2H-1T’ boundaries for transverse ballistic charge carriers is affected by the

transport gap caused by the difference between shapes of bands of the two phases. Both phase

boundaries and line defects in the monolayer 1T’ phase are transparent for charge carriers

though the relative alignment of bands of the two phases does play a role in the transport

process. The good transparency of defects is in agreement with previous experimental studies

and the fact that the charges in narrow-band-gap materials are screened effectively.
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5 Simulating STM images of point de-
fects in spin-orbit systems

Scanning probe microscopies such as scanning tunneling microscopy (STM) provide an

important insight into the surface structure and properties at the atomistic-scale level. As

described in one of previous sections, such level of spatial resolution is possible with the

help of an atomically sharp tip scanning the material and measuring tunneling conductance.

As a result, a topographic image is recovered where individual atoms and molecules can be

recognized.

An image generated by STM may still be a challenge to interpret due to the fact that a rather

complicated process of electron tunneling is involved in its generation. For example, the

same surface defect may have a qualitatively different contrast in images taken under different

conditions of the STM setup. However, by combining different experimental and theoretical

techniques it becomes possible to identify the defect atomic structure and its electronic

properties.

This chapter describes results of research performed in a close collaboration with experimental

groups towards identifying point defects in two systems: a surface of a Bi2Te3 topological

insulator and a monolayer 2H-MoSe2.

5.1 Magnetic adatoms on the surface of Bi2Te3

As discussed in previous chapters, 3D TIs, such as Bi2Te3, host topologically protected metallic

states on the surface. However, if the time reversal symmetry is broken, the topological

protection is lifted and the electronic band gap on the surface may be opened[98]. One of the

ways to break the time-reversal symmetry is to introduce local magnetic moments. This can

be done by depositing magnetic adatoms, such as Fe, on the surface of a 3D TI. The properties

of such dopants motivated the joint research presented in Ref. [99] where I contributed the

structural identification of dopants and calculations of their magnetic properties.

Two kinds of dopants were identified in the STM experiment. The dopants were observed

as triangular and trefoil-shaped features, see Fig. 5.1. The underlying sublattice formed
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Figure 5.1 – Fe dopants on the surface of Bi2Te3 in 3 possible configurations: H3 (Fe above Te),
T4 (Fe above Bi) and FeBi (Fe substituting topmost Bi). The relaxed structures are presented
on the left. The simulated STM images together with corresponding STM images observed
in experiment are presented on the right. The STM bias voltage from experiment −0.4 V
corresponds to the simulated local density of hole-like states. White scale bars are 1 nm.

by the topmost Te atoms is also visible in the experimental images. This allows assigning

dopants to different high-symmetry positions of the lattice: H3 (on top of the tellurium atom

in the third topmost layer) and T4 (on top of the bismuth atom in the second topmost layer).

To identify which high-symmetry position corresponds to which STM image the electronic

structure calculations and simulations of STM images have been performed. By comparing

experimental and simulated images in Fig. 5.1 it is possible to assign the atomic structure of

the H3 adatom to the trefoil-shaped signal and the one of the T4 structure to the triangular-

shaped signal. As expected, the iron atom in the H3 configuration relaxes deeper into the

surface of Bi2Te3, thus, producing a less intense signal in the STM image. In contrast, the

second topmost layer of Bi atoms in the T4 configuration prevents further depression of Fe

into the material resulting in a bright spot in the image. To verify that the Fe adatom in the T4

configuration does not replace the underlying Bi we also performed simulations with the latter

removed from the atomic structure. The resulting STM image, bottom row of Fig. 5.1, shows a

very weak signal from the impurity which was not identified in the original experimental data.
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5.1. Magnetic adatoms on the surface of Bi2Te3

5.1.1 Thermodynamical properties of adatoms

The adatoms deposited in the experiment were found to be immobile at cryogenic tempera-

tures of T = 10 K. The concentration of Fe adatoms in the H3 atomic configuration, however,

was found to be slightly larger. As reported in Ref. [99], the ratio between concentrations

ρH3/ρT4 ≈ 3/2. These two facts suggest that the H3 configuration is thermodynamically more

stable than the T4 configuration, while the potential barrier between the configurations is too

large for thermally-activated transition between them.

To verify this hypothesis the total energy profile between the H3 and the T4 configurations

was plotted using the nudged elastic band (NEB) method[100]. The calculation details are

given in Appendix A.8. The resulting potential profile shown in Fig. 5.2(a) implies that the

H3 configuration to be more energetically favorable. Depending on the inclusion of the

on-site Coulomb repulsion term for the d-states of Fe[101] U = 3 eV, the energy difference

between the configurations is 0.25 eV (without) or 0.37 eV (with the Coulomb repulsion).

The energy barrier separating configurations is around 1 eV. The barrier is too high for the

thermal diffusion at T = 10K, thus, under experimental conditions the Fe atoms are immobile.

The relative concentrations of the impurities are rather defined by the kinetic aspect of the

deposition process and, in principle, are not related directly to the relative energies of the two

configurations.

5.1.2 Electronic and magnetic properties of adatoms

As mentioned earlier, magnetic impurities may open a band gap1 in the surface Dirac cone

via exchange interaction with helical surface states[98, 35, 37] depending on the direction of

the magnetic moment. The electronic structure results of the STS experiment did not show

any evidence of coupling of helical spins and magnetic moments of Fe adatoms. On the other

hand, the x-ray absorption spectroscopy and x-ray magnetic circular dichroism experiment

results[99] show an out-of-plane magnetic anisotropy of Fe adatoms which, in principle, is

expected to open the band gap in the Dirac cone. To provide an additional insight into the

electronic propertie of Fe adatoms on the surface of Bi2Te3 ab-initio DFT simulations were

carried out.

The electronic band structures calculated for both H3 and T4 atomic configurations and

presented in Fig. 5.2(c,d) do not allow any definitive conclusions with regard to the band gap

since the Dirac cone at the Γ point is buried in a multitude of metallic states due to impurity.

This is due to a relatively small 2x2 supercell employed in the calculations: the Fe adatom

interacts with its images resulting in dispersive bands with a high weight of Fe orbitals shown

in Fig. 5.2(c,d). Similarly, the densities of electronic states plotted in Fig. 5.2(b) do not exhibit

any sharp peaks either.

To understand the magnetic properties of adatoms several DFT simulations were performed.

1Provided the Fermi level is at the Dirac cone touching point

93



Chapter 5. Simulating STM images of point defects in spin-orbit systems

Figure 5.2 – Electronic properties of Fe adatoms on the surface of Bi2Te3. (a) The energy profile
between H3 and T4 configurations. The horizontal direction is a generalized coordinate. (b)
Electronic densities of states near the Fermi level. (c,d) Electronic band structures of 3x3
supercell slab models with Fe adatoms. The red color corresponds to bands with a high
contribution of Fe orbitals.

Specifically, the spin axis for Fe was constrained to in-plane and out-of-plane directions.

Without inclusion of the Coulomb repulsion, the energy difference between the two magnetic

configurations is rather small: of the order of µeV. However, the magnetic anisotropy of iron

adatoms is usually underestimated by the conventional DFT and the inclusion of additional

Coulomb repulsion terms is necessary. Thus, a series of LDA+U calculations was carried

out. The results of the calculations show a clear trend for the magnetic moments to align

out-of-plane: the in-plane configurations are higher in energy by 12.2 meV for the H3 site

and 9 meV for the T4 site per Fe adatom (the magnetic anisotropy value K in Ref. [99]). This

is in agreement with the experimental data, Fig. 3 of Ref. [99]. The orbital mL and spin mS

out-of-plane magnetic moments calculated for Fe adatoms are summarized in the following

table.
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Table 5.1 – Magnetic properties of Fe adatoms on the surface of Bi2Te3: magnetic moments
and anisotropies calculated by projecting occupied Bloch states onto atomic orbitals.

mS (µBohr) mL (µBohr) K (meV)
H3 2.7 0.7 12.2
T4 2.5 0.3 9

5.1.3 Conclusions

Results of our theoretical simulations of Fe impurities on the surface of Bi2Te3 are well in

line with experiments. Simulations of STM images allowed us to assign unambiguously H3

and T4 atomic configurations of Fe adatoms to the corresponding experimental results. As

confirmed by the NEB method, the large energy barrier separating two configurations allows

simultaneous observation of both kinds of impurities at experimental conditions. While

there is no conclusive agreement on electronic properties of Fe adatoms, their magnetic

properties are in a good agreement between theory and experiment. The calculated orbital

and spin magnetic moments suggest that Fe adatoms are in a high-spin state. The out-of-

plane magnetic anisotropy of Fe observed in this work is also in agreement with previous

predictions[102, 103] and observations[104].

5.2 Selenium vacancies in monolayer 2H-MoSe2

As discussed in previous chapters, 2D materials are susceptible to various structural defects in-

cluding line and point defects. Our experimental colleagues from Lawrence Berkeley National

Laboratory observed several kinds of point defects in MoSe2 with STM signal changing both

qualitatively and quantitatively as a function of the voltage applied to the STM tip. Surprisingly,

the defects did not show any sign of in-gap states in STS measurements. In contrast, all defects

in a sister material MoS2 are predicted to have in-gap states[105]. We attempted to perform a

similar study for monolayer 2H-MoSe2: to identify the defects and to calculate their electronic

properties.

For 2D MoS2, the most expected point defect predicted[105] is the sulfur vacancy VS. Ac-

cordingly, the selenium vacancy VSe is the most expected point defect in MoSe2. Provided

the stoichiometric balance between molybdenum and selenium atoms is shifted towards

selenium-deficient conditions, one may also expect a defect configuration of a molybdenum

atom substituting one MoSe or two Mo2Se selenium atoms. I performed electronic structure

calculations of the above defects in a supercell geometry (computational details are given in

Appendix A.9) with results presented in Fig. 5.3.

As expected, all defects induce in-gap states localized at the defect, last column in Fig. 5.3.

The defects induce several empty and occupied states in the band gap energy region as

demonstrated in the corresponding DOS plots in Fig. 5.3. The simulated STM images also

indicate the presence of defect states in all cases. The largest intensity obtained during
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Figure 5.3 – Atomic structure and electronic properties of point defects in monolayer 2H-
MoSe2. For the three defects considered, VSe, MoSe and Mo2Se, top and side views of an atomic
structure (left), simulated STM images (middle) and electronic densities of states (DOS) (right)
are plotted. The turquoise color in images of the atomic structure corresponds to molybdenum
atoms while orange circles are selenium atoms. The color scale across simulated STM images
is different. The scale bar is 1 nm. Occupied and empty states correspond to integrated DOS
100 meV below the bulk valence bands maximum and 100 meV above the bulk conduction
bands maximum respectfully. The zero energy level in DOS plots is fixed to the top of valence
bands of pristine monolayer 2H-MoSe2. The horizontal green lines indicate Fermi levels of
defective systems.

simulations corresponds to the MoSe defect where the Mo atom protrudes from the material

plane significantly. The Mo2Se defect induces significant distortion of electronic density on a

larger length scale.

The defects observed in STM and atomic force microscopy (AFM) images preserve the 3-fold

symmetry of the ideal MoSe2 lattice. The simulations show that both atomic structure and the

density of electronic states presented in Fig. 5.3 have the same symmetry only in the case of the

selenium vacancy VSe. This implies that all defects observed are Selenium vacancies located

at one of the two chalcogen planes of monolayer 2H-MoSe2. Correspondingly, two types of
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5.2. Selenium vacancies in monolayer 2H-MoSe2

intensity signatures corresponding to the VSe defect are visible in STM: one corresponds to

the vacancy just below the STM tip (the vacancy side) and the other one corresponds to the

vacancy below the material plane (the back side).

5.2.1 Electronic properties of Se vacancies

To further understand electronic properties of Se vacancies in MoSe2 additional electronic

structure simulations were performed. Motivated by the STS data showing no in-gap states

of the defect, the specific focus was made on defect electronic states. As shown in Fig. 5.3,

a single selenium vacancy hosts localized electronic levels close to the edge of conduction

band. For the charge-neutral system these states remain unoccupied. Upon adding electrons

to the system these states start getting populated and the Fermi level of the system moves

up in energy. To understand, whether this is the only effect on the electronic band structure,

additional simulations were carried out.

To simulate a charged selenium vacancy two additional models were considered. The first

model, VSe +e, included an additional electron explicitly such that the total charge of the

supercell model was equal to the electron charge −e. The second model, HSe, realized another

possibility of a hydrogen adatom absorbed by the defect. The latter donates an electron to

the defect, thus, only minor change in electronic properties compared to the VSe +e case is

expected. Both models were relaxed prior to calculating the density of states.

The calculated densities of electronic states presented in Fig. 5.4 show that the localized

states are still present in the band gap energy region in all cases considered. As expected, the

Fermi level shifts towards the conduction band. In the case of a hydrogen adatom, the spin

degeneracy of states is lifted and the total magnetic moment of the model is equal to µBohr.

Four separate peaks corresponding to localized states at the defect are visible in Fig. 5.5. In

either case, charging of defects does not explain the absence of in-gap states in experiment.

There is a good agreement between experimental and simulated STM images in Fig. 5.5. All

vacancy-side images, experimental and simulated, exhibit a contrast depression correspond-

ing to the defect center. The contrast peaks have the same symmetry when comparing the

simulated and the experimental images. The agreement between the images corresponding

to the back side of the defect, however, is not uniform. Specifically, the simulated signal

depressions and peaks corresponding to the positive bias (empty states) are quite similar to

those obtained in experiment. Instead, the images obtained at the negative tip bias (occupied

states) disagree both in terms of location of signal peaks and their symmetry.

5.2.2 Conclusions

Though the results of experiments and theoretical simulations do not agree in terms of the

presence of in-gap states, they do provide an insight into electronic properties of Se vacan-

cies in MoSe2. The Se vacancy can be identified unambigously via the three-fold symmetry
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Figure 5.4 – Density of electronic states for the selenium vacancy defect in monolayer 2H-
MoSe2. The four plots correspond to pristine monolayer 2H-MoSe2, the selenium vacancy
model VSe, the hydrogenated selenium vacancy HSe and the negatively charged vacancy VSe +e
in a non-magnetic configuration. The Fermi level is indicated in each case.

preserved by the defect. The DFT predicts in-gap localized defect states regardless of defect

kind and its charge state. However, no clue of localized in-gap states was observed in the

experiment. One of the reasons for such behavior may be low tunneling rates between the

defect state and bulk valence bands as explained in Ref. [106]: the charge carriers may prefer

to tunnel directly into the bulk states while the charge carriers localized at the defect are,

effectively, immobile. Further experiments as well as charge carrier tunneling simulations

may provide additional understanding of the effect.

98



5.2. Selenium vacancies in monolayer 2H-MoSe2

Figure 5.5 – Experimantal and simulated STM images of the selenium vacancy in monolayer
2H-MoSe2. Brighter colors correspond to larger signals.
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6 Outlook

Though the 2D materials remain “hot” topic in a modern materials science, the attention

to the first monolayer material, graphene, seems to saturate. From this perspective, the

recently-discovered family of monolayer materials with a large enough band gap is a promis-

ing discovery with applications in the nanoscale electronics. The relatively short history of

monolayer transition metal dichalcogenides (TMDs) partially resembles the one of graphene

with a particular research focus on the most important properties for applications in electron-

ics: structure, defects, transport properties. However, there are also structural, optical and spin

phenomena which have not been observed in any other material making monolayer TMDs

unique. Among such phenomena is the role of electron spin and the spin-orbit coupling in

materials’ electronic and transport properties.

Each of the spin phenomena considered in the present study is related to a particular applica-

tion, namely, the spin-valley coupling in monolayer 2H-TMDs provides a way to convert the

charge carrier valley into its spin. The transport gap may be exploited in the engineering of

a lateral semiconducting logic device where the domain boundaries either allow or prohibit

charge carrier transport depending on symmetries of a line defect. The spin filtering of charge

carriers is useful for spintronics: as demonstrated, the line defects in monolayer 2H-MoS2 can

be used to generate spin-polarized currents in a non-magnetic media by all-electric means.

Thus, from the experimental perspective, it is of a primary importance to achieve high-quality

material samples suitable for ballistic transport devices. On the theoretical side, the study of

charge carrier scattering mechanisms in monolayer TMDs is required for a better understand-

ing of the diffusive transport in these materials. In particular, the conservation laws being

in the core of the phenomena studied (spin polarization of current, transport gap) have to

be adjusted to the diffusive transport regime accessible experimentally. The methodologi-

cal part could be extended towards a better description of ballistic transport properties in

semiconducting materials. The existing density functional theory non-equilibrium Green’s

function technique has to be extended towards a better description of transport properties of

materials with a band gap. Specifically, the charge accumulation at the defect, the treatment

of long-range electrostatic potentials and the incorrect band alignment of materials in contact
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are known issues to overcome.

Another very popular topic in solid-state physics, the topology of electronic states, was also

discussed in the thesis on the example of a metastable structural 1T’ phase of monolayer

TMDs. The electronic properties of the quantum spin Hall phase as well as the transport

properties of phase boundaries presented are well in line with the experimental results. The

study can be extended in several ways. First, the line defects presented are rather a “good guess”

of what can be observed in experiment. Consecutively, a more complete study of possible

line defects should be performed with a particular accent on the comparison with the future

experiments. Second, the existence and the magnitude of the small band gap in monolayer

1T’-TMDs remains an open question. While a number of DFT, GW and hybrid functional

studies of the monolayer 1T’ phase are published, still no agreement is available. One of the

possible sources of the disagreement was discussed in the thesis, namely, the sensitiveness

of the band gap magnitude to the lattice constants. Further investigations, including the

investigation of many-body effects in the electronic properties of monolayer 1T’-TMDs, are

yet to be done.
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A Appendix

A.1 On left and right eigenvalues

For a Hermitian matrix H = H† the left and right eigenstates are simply connected via a

Hermitian conjugation

Hψ= Eψ ⇒ ψ†H =ψ†E∗ . (A.1)

This gives a well-known fact that a Hermitian matrix has real eigenvalues

E =ψ†Eψ=ψ†(Eψ) =ψ†(Hψ) = (ψ†H)ψ=ψ†E∗ψ= E∗ . (A.2)

As a consequence of the above, the eigenvalues of left eigenstates E∗ are the same as eigenval-

ues of right eigenstates E .

The above proof does not hold for non-Hermitian matrices A 6= A†. As a result, the left and

right eigenstates of non-Hermitian matrices are different. Does this also mean that “left” and

“right” eigenvalues are different as well? The answer is no, however, it is impossible to show it

in a matrix-only way: a determinant property is used. Specifically,

Aψ=λψ⇔ (A−λ)ψ= 0 ⇔ det(A−λ) = 0 . (A.3)

Left equation similarly leads to

ψA =ψλ⇔ψ(A−λ) = 0 ⇔ det
(
[A−λ]T)= 0 . (A.4)

The determinant of a matrix and the one of its transpose are exactly equivalent, thus, the

above polynomial equations are exactly the same. Their roots are the same as well, thus, the

sets of left eigenvalues and right eigenvalues are equal. Importantly, this holds for an arbitrary

kind of an eigenvalue equations

F(λ)ψ= 0, ψF(λ) = 0 (A.5)
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including generalized eigenvalue problem

Aψ=λBψ⇔ F =λB−A (A.6)

and higher-order eigenvalue equations

Aψ+λBψ+λ2Cψ= 0 ⇔ F = A+λB+λ2C . (A.7)

For this reason there is no need in “left” and “right” eigenvalues: they are the same.

A.2 Valley filtering with line defects

In the original work[73] of Daniel Gunlycke and Carter White the valley-polarized charge carrier

transport across a line defect in graphene was predicted. Since the idea of spin-polarized

transport in TMDs is based on similar concepts I will briefly review the results of their study.

Consider a mirror-symmetric line defect in graphene such as the one in Fig A.1. How does the

symmetry affect the eigenstates in this system? To answer this question the authors propose

to split the entire lattice into two sublattices colored by blue and gray1 in Fig. A.1. There are

two possible ways to do it as illustrated on the left-hand side and on the right-hand side of the

figure. Because of the mirror symmetry, however, these color schemes are equivalent. Thus,

an operator cross-mapping the sublattices in graphene commutes with the single-particle

Hamiltonian of the entire system. Such operator is presented by the Pauli matrix σx coupling

sublattices A and B in the original study. For more complete description it is possible introduce

the following operator

M =

0 1 0

1 0 0

0 0 1

 , (A.8)

where M1,2 = M2,1 = 1 cross-maps blue A and gray B sublattices and M3,3 = 1 maps graphene

atoms M in the middle (black in Fig. A.1) onto themselves. By above symmetry arguments,

this operator commutes with the Hamiltonian. Thus, both can be diagonalized with the same

set of eigenstates. There are two families of eigenstates of M corresponding to eigenvalues

m =±1. They can be expressed as

ψm=1 = c1 (|A〉+ |B〉)+ c2 |M〉 , ψm=−1 = 1p
2

(|A〉− |B〉) , (A.9)

1Note that the coloring is not mirror-symmetric
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A.2. Valley filtering with line defects

Figure A.1 – A mirror-symmetric line defect in graphene. The two graphene sublattices are
colored by blue and gray colors. The right image is an equivalent mirror-symmetric version of
the left image. The black atoms correspond to the symmetry line.

where |A〉, |B〉 and |M〉 are wavefunctions with non-zero amplitudes at the A, B and M sublat-

tices respectfully and c are complex numbers. The main feature of the second wavefunction

in the above equation is that it has zero amplitudes on the M cites. In the nearest-neighbor

tight binding limit, such states do not contribute to the transport because the transmission of

charge carriers is impossible without hopping onto M cites. Thus, the focus is made on the

wavefunctions of the first type which are symmetric with respect to sublattices A and B .

The second important step performed by the authors is to consider low-energy eigenstates in

the bulk graphene located at K and K’ valleys

|ν,θ〉 = 1p
2

(
|A〉+ i e−iνθ |B〉

)
, (A.10)

where ν=±1 is the valley index and θ refers to the direction of the group velocity of the charge

carrier: it is the angle between the velocity vector and the armchair direction, see Fig, A.1. The

defect-symmetric and the defect-antisymmetric parts of the above wavefunction are

|ν,θ〉 = 1+ i e−iνθ

2

|A〉+ |B〉p
2

+ 1− i e−iνθ

2

|A〉− |B〉p
2

. (A.11)

As it was noted above, the second part does not contribute to the transmission. The easiest

way to understand it is to consider the limiting case i e−iνθ =−1 where only antisymmetric

part survives. The amplitude of the scattering state at M sites vanishes exactly and there is no

transmission across the defect. In the intermediate case i e−iνθ 6= −1 an upper estimate of the

charge carrier transmission probability can be written as the amplitude of the first term in
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Eq. A.11 squared2. It is, essentially, the main result of Ref. [73]

T (ν,θ) < Tmax =
∣∣∣∣∣1+ i e−iνθ

2

∣∣∣∣∣
2

= 1+ sinνθ

2
. (A.12)

To emphasize the upper estimate the "<" sign is used: the transmission probability can be

lower and, in principle, vanish completely in a rather artificial case where left and right parts

of the system are spatially decoupled. Provided, however, a good transparency of the defect

T ≈ Tmax it is possible to estimate the “valley polarization” of transmission as

Pν (θ) = T (1,θ)−T (−1,θ)

T (1,θ)+T (−1,θ)
= sinθ . (A.13)

The latter is symmetric about the origin θ = 0. The ansatz is summarized with the following

statement: the charge carriers originating from one of the valleys prefer to transmit in one

of the directions while the charge carriers from the other valley prefer a mirror-symmetric

direction.

Unfortunately, these results cannot be applied directly to line defects in 2D TMDs. The

operator of mapping demonstrated in Fig. A.1 for graphene does not commute with the

Hamiltonian of a mirror-symmetric line defect in a monolayer 2H-TMD (such as an inversion

domain boundary) because the sublattices there are not equivalent. For example, in MoS2,

such mapping would swap Mo and S atoms producing a different kind of an inversion do-

main boundary. However, since MoS2 and other TMDs have a lower symmetry compared to

graphene there is no additional symmetry argument to constrain Pν (θ) ≡ 1. Thus, one expects

valley and spin polarization of charge carriers traveling across line defects in these materials.

A.3 Simulation details: charge carrier transport in monolayer 2H-

MoS2

The DFT simulations of ballistic charge carrier transport across line defects in MoS2 have been

performed in several steps:

1. Determine equilibrium atomic and electronic structures of the bulk. This step was done

using the Quantum ESPRESSO distribution[107] with ultrasoft pseudopotentials from

Ref. [49]. Other most important parameters of calculations are following:

2Because |A〉+|B〉p
2

and |A〉−|B〉p
2

form an orthonormal basis.
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wavefunction cutoff 80 Ry

density cutoff 1000 Ry

k grid 18x18

energy convergence criterion 10−6 Ry

force convergence criterion 10−5 Ry
aBohr

pressure convergence criterion 1 bar

size of the unit cell in the vacuum direction 2 nm

2. Determine the equilibrium atomic structure of the defect. The structural optimization

calculations were done in supercell configurations where the line defects were separated

by at least 1.5 nm in the transport direction, see the atomic structure presentid in Fig. 2.7

for an example.

3. Determine transport properties using NEGF technique. The last step was performed

using the OpenMX code[108]. The size of the unit cell in the vacuum direction was

increased to 10 nm for the correct description of electrostatic effects. The localized basis

set Mo:s2p2d2f1 S:s2p3d1 was found to correctly reproduce the bulk band structure

obtained previously. The scattering regions where deviations from the bulk charge

density and potential are allowed were 3-5 nm large along the transport direction.

The electrostatic potential obtained in the Dirichlet boundary conditions was used to

obtain transport properties including transmission. The leads’ bulk states were perfectly

aligned in energy: the voltage bias was assumed to be zero.

A.4 Simulation details: spin polarization of the transmission prob-

ability in monolayer 2H-MoS2

In 2D systems with a 1D defect, the total transmission function value T defined by the Caroli

expression, Eq. 2.75, is a function of the pseudomomentum projection k||. In Lanauer-Buttiker

formula, Eq. 2.29, this dependence was omitted. To include it, one typically assumes the

contacts to be much larger than the size of the device and takes the transmission function

average

T (E) =
0.5∫

k||=−0.5

dk||T (E ,k||) , (A.14)

where k|| is a coordinate in the BZ expressed in reciprocal lattice units.

However, to be able to generate spin-polarized currents using line defects in MoS2 one has to

break the k|| –
(−k||

)
symmetry because otherwise

Pσ(E) =
0.5∫

k||=−0.5

dk||Pσ(E ,k||) = 0 , (A.15)
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where Pσ(E ,k||) is defined in Eq. 3.5. This is done by considering an opposite limiting case

where contacts’ size is much smaller than the distance between them. This allows to force the

ballistic current to propagate along some well-defined direction θ within small angle dθ. The

corresponding Lanauer-Buttiker formula is

d I = dθ · e

h

∫
dE ·τ(E ,θ) f ′(E) , (A.16)

where the angle θ is calculated for a given lead mode

θ = arctan
v||
vtr

= arctan
∂E/∂k||
∂E/∂ktr

, (A.17)

where E(~k) is a dispersion of the energy band the state belongs to and ktr is a projection of

the pseudomomentum along the transport direction. The τ function resembles the total

transmission for a given angle θ. For consistency, after integrating Eq. A.16 the original current

value should be recovered

I = e

h

∫
dθ

∫
dE ·τ(E ,θ) f ′(E) . (A.18)

The above expression is very similar to the original Eq. 2.29 with Eq. A.14 substituted

I = e

h

∫
dk||

∫
dE ·T (E ,k||) f ′(E) . (A.19)

Thus, it should be possible to define τ by corresponding the above two equations using the

Dirac δ-function. The problem, however, is that neither map k|| → θ nor θ→ k|| exist as a

function. Thus, one has to split integration into branches shown as colored arcs in Fig. A.2.

Within each branch, the bulk states can be parametrized by both k|| and, more importantly, θ.

Eqs. A.18, A.19 can be written as

I = e

h

∫
dE f ′(E)

∑
b∈{branches}

θmax
b∫

θ=θmin
b

dθ ·τb(E ,θ) (A.20)

and

I = e

h

∫
dE f ′(E)

∑
b∈{branches}

kmax
b∫

k||=kmin
b

dk|| ·Tb(E ,k||) . (A.21)

The above equations are satisfied, for example, if

τb(E ,θ) = ∂k||(θ)

∂θ
Tb(E ,k|| (θ)) . (A.22)

By taking the sum over specific branches, see Fig. A.2(c), the angle-dependent transmission is
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Figure A.2 – An illustration of Fermi surfaces, branches and bulk states used in the calculation
of angle-dependent properties. (a) Valence states of monolayer 2H-MoS2 participating in
transport close to the top of the valence bands. The blue arcs correspond to branches of
outgoing modes in the drain lead while the gray arcs correspond to incoming modes. The
two modes corresponding to different branches with same group velocity direction (light blue
arrows) are indicated by red dots. The corresponding pseudomomentum projections of states
k1,2 are indicated. (b) A more complex case of a Fermi surface having a hexagonal symmetry.
There, a single band produces 11 branches with outgoing states marked with color. The gray
color corresponds to incoming states. (c) A schematic illustration of angles covered by each
branch in (b). Depending on θ, three or five branches out of 11 contribute to angle-dependent
properties.

defined

τ(E ,θ) = ∑
b∈{branches(θ)}

∂k||(θ)

∂θ
Tb(E ,k|| (θ)) . (A.23)

For the simplicity of description, however, an assumption
∂k||(θ)
∂θ = 1 has been made for Eq. 3.5

as well as the results presented in Fig. 3.7. The resulting workflow for determining the angle-

dependent spin polarization is

1. Determine the transmission probabilities tn→m
(
E ,k||

)
on a k|| – E grid using Eq. 2.81;

2. Sum transmission probabilities belonging to the same outgoing mode tm
(
E ,k||

) =∑
n tn→m

(
E ,k||

)
;

3. Determine θm
(
E ,k||

)
for each outgoing mode using Eq. A.17;

4. Determine branches bm
(
E ,k||

)
based on such criteria as:

• overlap of lead modes belonging to neighboring k||;

• closeness of ktr for modes with neighboring k||;
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• smoothness and extreme points of function θ
(
k||

)
;

This step requires a heuristic analysis on a fine enough grid of k||;

5. Combine above quantities into θb
(
E ,k||

)
and tb (E ,θ). The latter should be interpolated

on a grid of values of θ within an interval
[
θmin

b ,θmax
b

]
. The quantities θmin,max

b are either

extreme points of θ
(
k||

)
or equal to ±π/2;

6. Calculate
∂k||(θ)
∂θ by inverting function θb

(
E ,k||

)
or assume the former to be equal to one;

7. Calculate the total transmission using Eq. A.23 as well as the spin transmission using a

modified expression

τσ(E ,θ) = ∑
b∈{branches(θ)}

∂k||(θ)

∂θ
Tb(E ,k|| (θ)) ·σb

(
E ,k||(θ)

)
. (A.24)

8. Calculate Pσ(E ,θ) = τσ(E ,θ)/τ(E ,θ).

A.5 Projected3 band structure in monolayer 2H-MoS2 and other 2D

materials

To understand the charge carrier transmission across a periodic line defect one has to consider

the interplay between bulk states of the leads. This is done by projecting the bulk band

structure onto a 1D Brillouin zone of a line defect. In other words one has to map the 2D BZ
~K = (kx ,ky ) to the 1D BZ k||. This is closely related to the “folding”4 of the band structure. A

brief mathematical introduction is given further.

Consider a (crystal) basis A such that the Cartesian coordinates ~R are related to the crystal

coordinates~r via the following matrix-vector product

~R = A~r . (A.25)

The matrix A has unit vectors of a crystal as its columns. Similarly, the corresponding reciprocal

basis B having reciprocal unit vectors as its columns connects Cartesian coordinates of a wave

vector ~K and its reciprocal crystal coordinates~k

~K = B~k . (A.26)

The defining relation between the real and the reciprocal basises is the inverse-transpose

operation (an optional 2π factor is omitted)

B = (
A−1)T

. (A.27)

3Not to confuse with orbital-projected band structure
4The term “folding” rather means producing shifted replicas in the context of the discussion
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Though the basis A contains unit vectors it is possible to define another basis A′ to, for example,

describe a supercell. The general relation between the basis and its alternate version is the

matrix product

A′ = AN , (A.28)

where the square matrix N contains integers similar to Eq. 2.6. The new basis A′ may describe

a unit cell or a supercell, depending on available symmetries and values in N. In either case its

reciprocal counterpart is described by the matrix

B′ =
(
A′−1

)T
. (A.29)

Provided A′ is a supercell basis, the electronic band structure of a material gets “folded” such

that multiple points in the original BZ are projected onto the same point in the new BZ. Lets

find the mapping. Consider ~K = (kx ,ky ) having the same reciprocal Cartesian coordinates in

both basis sets

~K = B~k = B′~k ′ . (A.30)

The new reciprocal lattice coordinates~k ′ are simply

~k ′ = (
B′)−1 B~k = A′TB~k = NTATB~k = NT~k . (A.31)

As a relevant example, consider the hexagonal lattice of monolayer 2H-TMDs. The lattice unit

cell can be defined as

A = (~a1,~a2) =
[

a a/2

0
p

3
2 a

]
. (A.32)

The reciprocal unit cell demonstrated in Fig. 3.1(c) is

B = (
A−1)T =

[
1/a 0

−1/
p

3a 2/
p

3a

]
. (A.33)

It is easy to identify the crystal coordinates of points K and K’ to be

k (K) =
[

1/3

2/3

]
, k

(
K′)= [

2/3

1/3

]
. (A.34)

The 1D Brillouin zone of a defect can be obtained in the limit when one of the supercell vectors

approaches infinity. It can be written symbolically for the left lead as

A′ = AN = A

[
nL ∞
mL ∞

]
, (A.35)
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where nL , mL are integer coordinates of the defect periodicity vector defined in Eq. 3.1. Using

Eq. A.31 it is deduces that

~k ′ (K) =
[

k|| (K)

·

]
=

[
nL mL

∞ ∞

][
1/3

2/3

]
=

[
nL+2mL

3

·

]
. (A.36)

Since the reciprocal lattice is periodic the reciprocal crystal coordinates are defined up to an

arbitrary integer i

{
k|| (K)

}= {
nL +2mL

3
+ i , i ∈ Z

}
=

{
(nL −mL) mod 3

3
+ i , i ∈ Z

}
. (A.37)

Similarly,

{
k||

(
K′)}= {

(mL −nL) mod 3

3
+ i , i ∈ Z

}
= {−k|| (K)

}
. (A.38)

Above equation results in Eq. 3.2 up to a factor π.

Finally, the size of the transport gap is simply deduced by looking at Fig. 3.6. Under the first

approximation, the quasi-free hole charge carriers at K and K’ exhibit the following dispersion

law

E =−ħ2 |δk|2
2m∗ , (A.39)

where m∗ is the positive effective mass and δk is a small distance to K or K’ in the reciprocal

space. The spin-conserving channels are released either at the edges of a 1D BZ (if neither K,

K’ point is projected onto k|| = 0) or at k|| = 2π
6d (if one of the leads has its K,K’ points projected

onto k|| = 0). In either case the corresponding δk = 2π
6d which immediately yields expression in

Eq. 3.4.

A.6 Simulation details: periodic zigzag terminations of monolayer

1T’-TMDs

The structures of zigzag terminations were obtained by relaxing inversion-symmetric zigzag

nanoribbons of various widths up to 7 nm using the Quantum ESPRESSO distribution[107]

with non-relativistic ultrasoft pseudopotentials from Ref. [49]. The nanoribbon images were

decoupled by, at least, 1 nm in the material plane and by 2 nm away from it. Other most

important parameters of simulations are following:

wavefunction cutoff 65 Ry

density cutoff 1000 Ry

k points 12

energy convergence criterion 10−6 Ry

force convergence criterion 10−3 Ry
aBohr

(default)
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A.7. Local densities of states at the zigzag terminations of monolayer 1T’-TMDs

To calculate local densities of states presented in Fig.4.9 the nanoribbon Hamiltonian was

expressed in the localized basis set by means of the OpenMX code[108]. Afterwards, one of

the equivalent nanoribbon edges was replaced by a semi-infinite bulk material. The resulting

structure was used to obtain the local density of states of the edge using the NEGF technique.

A.7 Local densities of states at the zigzag terminations of monolayer

1T’-TMDs

The local densities of electronic states of all zigzag terminations are presented in Fig. A.3.

A.8 Simulation details: Fe adatoms on the surface of Bi2Te3

The models of Fe adatoms on the surface of Bi2Te3 were relaxed in 2x2 supercells of Bi2Te3

slabs using the Quantum ESPRESSO distribution[107]. The slab contained 3 quintuple layers

of Bi2Te3 resulting in 60 atoms per supercell plus one Fe adatom. Other most important

parameters of simulations are the following

wavefunction cutoff 50 Ry

density cutoff 300 Ry

k grid 2x2

energy convergence criterion 10−4 Ry (default)

force convergence criterion 10−3 Ry
aBohr

(default)

size of the unit cell in the vacuum direction 2.5 nm

Hubbard U 3 eV

The nudged elastic band calculations were carried out with five images (one “climbing”

image[109]).

A.9 Simulation details: point defects in MoSe2

The models of point defects were relaxed in 5x5 supercells of monolayer 2H-MoSe2 using the

Quantum ESPRESSO distribution[107] with nonrelativistic ultrasoft pseudopotentials from

Ref. [49]. The most important parameters of the simulations are the following

wavefunction cutoff 65 Ry

density cutoff 1000 Ry

k grid 3x3

energy convergence criterion 10−6 Ry

force convergence criterion 10−3 Ry
aBohr

(default)

size of the unit cell in the vacuum direction 2 nm

The simulated STM images presented in Fig. 5.3 were obtained by integrating the local
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Figure A.3 – The local density of states of the six zigzag terminations presented in Fig. 4.8. The
blue and red colors on each plot represent the contribution of the out-of-plane spin-up and
spin-down polarized states to the total weight. Those plots already presented in Fig. 4.9 are
marked by blue frames. Side plots present the density of states integrated over k.

(coordinate-dependent) density of states (LDOS) from the Fermi level to the two different

values corresponding to 100 meV below the top of valence bands and 100 meV above the

bottom of conduction bands. The images plotted correspond to the value of LDOS 1.5 Å above

topmost atom in the corresponding atomic structure.

The densities of electronic states were obtained from band structure calculations on a fine

50x50 k-point grid using the OpenMX code[108] with the relaxed atomic coordinates.
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