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Photons of a laser beam driving the upper motional sideband of an optomechanical cavity can
decay into photon-phonon pairs by means of an optomechanical parametric process. The phononic
state can subsequently be mapped to a photonic state by exciting the lower sideband, hence creating
photon-photon pairs out of an optomechanical system. We here show that these pairs can violate a
Bell inequality when they are measured with photon counting techniques preceded by small displace-
ment operations in phase space. The consequence of such a violation as well as the experimental
requirements are intensively discussed.

PACS numbers: 03.65.Ud, 43.40.Dx

Introduction — Cavity optomechanics which de-
scribes a mechanical oscillator controlled by an electro-
magnetic cavity mode via a generalized radiation pres-
sure force, is the subject of intense research [? ? ? ].
Most recent progress includes the cooling of mechanical
oscillators down to the ground state [? ? ? ], the read-
out of the mechanical position with a readout impreci-
sion below the standard quantum limit [? ] as well as
optomechanical squeezing [? ? ] and entanglement [? ].
Reciprocally, the mechanical degrees of freedom can be
used to control the cavity light e.g. for fast and slow light
[? ? ], frequency conversions [? ? ], squeezing [? ] and
information storage in long-lived mechanical oscillations
[? ? ].

Optomechanical systems are also envisioned as test-
benches for physical theories [? ? ? ? ? ? ? ].
As a step in this direction, quantum correlations be-
tween light and mechanics have been observed recently
[? ]. In this experiment, quantum features have been
detected through an entanglement witness where one as-
sumes that the measurement devices are well character-
ized and where quantum theory is used to predict the
results of these measurements on separable states. It is
interesting to wonder whether the non-classical behavior
of optomechanical systems can be certified outside of the
quantum formalism, i.e. from a Bell test [? ]. This is par-
ticularly relevant to test post-quantum theories including
explicit collapse models [? ? ? ? ], where the assump-
tion that the system behaves quantum-mechanically may
be questionable [? ].

In this Letter, we show how to perform such a Bell
test in the experimentally relevant weak-optomechanical
coupling and sideband-resolved regime. Our proposal,
which starts with a mechanical oscillator close to
its ground state, consists of two steps. First, the
optomechanical system is excited by a laser tuned to
the upper motional sideband of the cavity to create
photon-phonon pairs via optomechanical parametric
conversion. Second, a laser resonant with the lower

sideband is used to map the phononic state to the cavity
field. The correlations between the photons generated
at the cavity frequency during the first and second
steps are then analyzed by photon counting preceded
by small displacement operations in phase space. We
show that they violate the Bell-CHSH inequality [? ],
revealing that the optomechanical state is non-local,
i.e. provides stronger correlations than entanglement
[? ]. This claim is device independent, i.e. holds
without assumptions on the dimension of the underly-
ing Hilbert space or on the precise alignement of the
measurement settings [? ]. While several requirements
are challenging to meet in practice, our proposal can be
seen as a natural extension of ongoing experiments [?
] performing photon counting in optomechanical cavities.

Principle of the optomechanical Bell test — The ba-
sic principle is inspired by Ref. [? ? ] and is represented
in Fig. ??. We use two laser pulses driving either the up-
per or the lower optomechanical sideband, at frequency
ω± which is the sum or the difference of the cavity (ωc)
and the mechanical (Ωm) frequencies. The optomechan-
ical Hamiltonian includes H0 = ~ωca†a + ~Ωmb

†b the
uncoupled cavity and mechanical systems with respec-
tive bosonic operators a and b, HOM = −~g0a

†a(b† + b)
the optomechanical interaction with g0 the optomechan-
ical coupling, and Hl = ~(s∗±e

iω±ta + s±e
−iω±ta†) the

driving laser with |s±| =
√
κP±/~ω±, P± being the laser

power and κ the cavity decay rate (assuming that the
intracavity loss is negligible). In the interaction picture,
the weak coupling limit g0 � κ and the resolved side-
band regime κ� Ωm, the dynamics are given by a set of
Langevin equations

da

dt
=
i

~
[H±, a]− κ

2
a+
√
κain (1)

db

dt
=
i

~
[H±, b]−

γ

2
b+
√
γbin (2)
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FIG. 1: A) Principle of the proposed Bell test. Starting with
the mechanical system in its motional ground state, a first
laser excites the blue detuned sideband to create correlated
photon-phonon pairs. A second laser then drives the red de-
tuned sideband to coherently convert the phonons into pho-
tons. The resulting photons pairs (mode A1 and A2) are
analyzed using a photon detector preceded by a displacement
in phase space. B) Cavity linewidth κ and its two sidebands
(ω±) detuned from the cavity frequency ωc by the mechanical
frequency (ωm). C) Pulse sequence in time : The first laser
resonantly excites the blue sideband while the second laser is
resonant with the red sideband.

with the linearized Hamiltonians H+ = −g+~a†b† + h.c.
for a blue detuned drive and H− = −g−~a†b + h.c. for
a red detuned drive. g± are the effective optomechan-
ical coupling rates enhanced by the intra-cavity photon
number g± = g0

√
n± = κP±

~ωc(Ω2
m+κ2/4) . ain is the vacuum

noise entering the cavity. We assume that the laser is
shot-noise limited, hence does not add contributions to
the input noise. bin is the thermal noise from a phonon
bath at temperature Tbath and mean occupation number
nth = kBTbath

~Ωm
. In the following treatment, we neglect the

mechanical decay which is well justified for timescales
smaller than the thermal decoherence time 1/γnth, γ be-
ing the coupling rate between the mechanical oscillator
and the thermal bath.
Consider first the case where the mechanics is driven by

a blue detuned laser. In the regime g+ � κ, the cavity
mode can be adiabatically eliminated and Eq. (??) leads
to a1 = 2

κ (ig+b
† +
√
κa1,in) (the subscript on the cavity

field operators is used to recall that we are considering
the first step). Further introducing the input/output re-
lation, a1,out = −a1,in +

√
κa1, we obtain

a1,out = a1,in + i
√

2ḡ+b
†, (3)

db

dt
= ḡ+b+ i

√
2ḡ+a

†
1,in (4)

where ḡ+ =
2g2

+

κ . To solve these coupled equations,
we follow Hofer et al. [? ] and introduce the tem-

poral modes A1,in(t) =
√

2ḡ+

1−e−2ḡ+t

∫ t
0
dt′e−ḡ+t

′
a1,in(t′),

A1,out(t) =
√

2ḡ+

e2ḡ+t−1

∫ t
0
dt′eḡ+t

′
a1,out(t

′). The solu-

tions of Eqs. (??) – (??) take the following sim-
ple forms A1,out(t) = eḡ+tA1,in(t) + i

√
e2ḡ+t − 1b†(0),

b(t) = eḡ+tb(0) + i
√
e2ḡ+t − 1A†1,in(t). These solutions

can be rewritten as A1,out = Ũ†1 (t)A1,inŨ1(t) and b(t) =

Ũ†1 (t)b(0)Ũ1(t) where the propagator is given by

Ũ1(t) = ei
√

1−e−2ḡ+tA†1,inb
†

(5)

×eḡ+t(−1−A†1,inA1,in−b†b)ei
√

1−e−2ḡ+tA1,inb.

When applied on the vacuum, this propagator leads to
the creation of photon-phonon pairs where the number

of photons equals the number of phonons, each of them
following a thermal statistics with mean excitation
number e2ḡ+t − 1.

Now consider the case where the mechanics is driven
by a red detuned laser, i.e. the dynamics is given by
the beam-splitter Hamiltonian H−. Following the same
procedure as before, Eqs. (??) – (??) become

a2,out = a2,in + i
√

2ḡ−b, (6)

db

dt
= −ḡ−b+ i

√
2ḡ−a2,in (7)

where ḡ− =
2g2
−
κ . Introducing the modes

A2,in(t) =
√

2ḡ−
e2ḡ−t−1

∫ t
0
dt′eḡ−t

′
a2,in(t′), A2,out(t) =√

2ḡ−
1−e−2ḡ−t

∫ t
0
dt′e−ḡ−t

′
a2,out(t

′) leads to the sim-

ple expression for the solutions of Eqs. (??)-(??)
at a time t after the beginning of the red detuned
pulse A2,out(t) = e−ḡ−tA2,in(t) + i

√
1− e−2ḡ−tb(0),

b(t) = e−ḡ−tb(0) + i
√

1− e−2ḡ−tA2,in(t). These solutions

can be rewritten as A2,out = Ũ†2 (t)A2,inŨ2(t) and

b(t) = Ũ†2 (t)b(0)Ũ2(t) where the propagator is given by

Ũ2(t) = ei
√
e2ḡ−t−1A2,inb

†
(8)

×e−ḡ−t(A
†
2,inA2,in−b†b)ei

√
e2ḡ−t−1A†2,inb.

This corresponds to a process converting a phonon into
a photon with probability 1− e−2ḡ−t.

Now consider an initial state where both optical
modes A1 and A2 are empty and where the me-
chanics is prepared in its ground state. Switching
on the blue detuned laser for a time T1, then the
red detuned laser for a time T2 leads to a photon-
photon state in mode A1,out, A2,out given by ρA1,A2 =

TrbŨ
2(T2)Ũ1(T1)|0, 0, 0〉A1,in,A2,in,b〈0, 0, 0|Ũ1†(T1)Ũ2†(T2).

In the ideal limit ḡ−T2 → +∞, the phonon-photon map-
ping is perfect and the state ρA1,A2 corresponds to a
two-mode squeezed vacuum. In the general case where
ḡ−T2 has a finite value, ρA1,A2

still corresponds to a
squeezed vacuum but where the mode A2 undergoes
loss. This loss can be modeled by a beam-splitter
with a transmission T = 1 − e−2ḡ−t. The next section
shows how to reveal the non-local content of such a state.

In order to test a Bell inequality with the modes
A1,out, A2,out, (the subscript 'out' is omitted below)
we consider a single-photon detector – which does not
resolve the photon number – combined with a displace-
ment operation D(α). We associate the outcomes +1
/ −1 to the absence of detection / to the detection
of at least one photon. In the subspace composed of
the vacuum and the single photon Fock state, such a
measurement corresponds exactly to the observable σz
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FIG. 2: CHSH values optimized over the measurement set-
tings (α1, α2) as a function of the optomechanical mapping
efficiency (T = 1 − e−2ḡ−t) for various detection efficiencies
η. The CHSH value is larger than the local bound 2 for unit
detection efficiencies when T ≥ 52% while for unit phonon-
photon mapping efficiency, η ≥ 66.8% is required.

for α = 0 while for α = 1 (α = i), it is a noisy σx (σy) [?
]. The potential of such measurements for non-locality
detection has been highlighted in Refs. [? ? ] for
example. Ref. [? ] has also shown how they can be used
for Bell tests in photonic experiments where two-mode
squeezed states are produced through spontaneous
parametric down conversion. More recently, they have
been used to reveal genuine path entanglement [? ].
Further note that a displacement is easy to implement in
practice as it requires a coherent state and an unbalanced
beamsplitter only [? ].

The joint probability P (+1 + 1|α1α2) to get the out-
comes +1 for both A1 and A2 when they are ana-
lyzed with photon counting with efficiency η preceded
by displacements with amplitude α1 and α2 for A1

and A2 respectively is given by P (+1 + 1|α1α2) =
Tr (ρA1,A2

Oη(α1, A1)⊗Oη(α2, A2)) where Oη(αi, Ai) =

D†(αi)(1 − η)A
†
iAiD(αi). Such a probability can be

computed easily by noting that loss and displace-
ment can be commuted by changing the amplitude of
the displacement. In particular P (+1 + 1|α1α2) =

Tr
(
ρ̄A1,A2Oη(α1, A1)⊗Oη′(α2

√
T ,A2)

)
where η′ = ηT,

and ρ̄A1,A2
= (1 − p)e−

√
pA†1A

†
2 |0〉A1,A2

〈0| e−
√
pA1A2 is

simply the two mode squeezed vacuum. (1−p = e−2ḡ+T1

is the probability that both modes are empty.) We find

P (+1 + 1|α1α2) =
(1− p)

1− p(1− η)(1− η′)
× (9)

e
− η|α1|

2(1−(1−η′)p)+η′|α2|
2T (1−(1−η)p)

1−p(1−η)(1−η′) e
ηη′√p(α∗1α

∗
2+α1α2)

√
T

1−p(1−η)(1−η′) .

Together with the marginals

P (+1|α1) =
(1− p)

1− p(1− η)
× e−

η(1−p)|α1|
2

1−p(1−η)

P (+1|α2) =
(1− p)

1− p(1− η′)
× e−

η′(1−p)|α2|
2T

1−p(1−η′)

we get the explicit value of the correlator Eα1,α2 =
1− 2(P (+1|α1) + P (+1|α2)) + 4P (+1 + 1|α1α2) to test
the Bell-CHSH inequality CHSH = |Eα1,α2 + Eα

′
1,α2 +

Eα1,α
′
2 − Eα′1,α′2 | ≤ 2, which holds for any local hidden-

variable model.
Fig. ?? shows the CHSH values obtained from the op-

timization over the measurement settings αi, α
′
i, i ∈ [1, 2]

as a function of the photon-phonon mapping efficiency
T = 1 − e−2ḡ−t for various detection efficiencies η. For

FIG. 3: CHSH values as a function of the optomechanical
mapping efficiency (T = 1 − e−2ḡ−t) for various mechanical
occupation numbers (n0) assuming unit detection efficiencies
(η = 1).

high enough T and η, we see that the CHSH inequality
is violated, hence showing that the correlations of modes
A1 and A2 cannot be reproduced by local hidden-variable
theories.

In the above discussion, we have assumed that the
mechanical system is prepared in its ground state. In
the more general case it is in a thermal state with mean
occupation number n0, the expressions of the joint
probability P (+1 + 1|α1α2) and the marginals P (+1|αi)
can be derived as before, c.f. Supplemental Material
part I. The CHSH values resulting from the optimization
over the measurement settings are given in Fig. ?? as
a function of the phonon-photon mapping efficiency for
various mean mechanical occupation numbers assuming
unit detection efficiencies. A substantial violation can
be obtained if n0 � 1.

Feasibility — In this paragraph, we discuss the
experimental feasibility of the proposed Bell test in
detail. The requirements for detecting non-locality are
(i) sideband regime κ � Ωm, (ii) weak coupling regime
g0 � κ, (iii) ground state cooling n0 � 1 and negligible
mechanical decoherence during the durations of blue
and red detuned laser pulses T1 + T2 � (γnth)−1. Given
that nth ∝ Ω−1

m , these conditions are easier to meet with
high Q and high frequency Ωm oscillators. While super-
conducting microwave optomechanical cavity systems
are promising [? ], we focus on an implementation of our
Bell test with a photonic crystal nanobeam resonator [?
? ? ] that distinguishes itself by a very high mechanical
frequency Ωm/2π = 5 GHz. This frequency together
with its optical linewidth κ/2π < 1 GHz places this
resonator in the resolved sideband regime [? ]. The
optomechanical coupling rate is large g0/2π ≈ 1 MHz
[? ] and mechanical coherence times of the order of 10
to 100 µs are expected at 4 K and below [? ? ]. With
a bath temperature Tbath ≈ 1.6K, an initial occupancy
of n0 = 0.01 can be achieved in 100 ns of sideband
cooling with 1000 (intracavity) photons corresponding
to a peak laser power of 150 µW [? ]. For almost
squared pulses with rising time of the order of 1ns,
we get pure and noiseless emissions as expected from
two-mode squeeezed states [? ]. For T1 = 25 ns and
T2 = 50 ns, we find CHSH= 2.19 assuming η = 90%
detection efficiency, fixing n− = 250 and optimizing the
CHSH value over n+ = 75, and over the measurement
settings. As the present scheme relies on the ability to
accurately and repeatedly address the opto-mechanical
sidebands, a continuous monitoring is required to correct
the unavoidable broadband frequency noise of the cavity.
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Furthermore, the scattered photon pairs have to be spec-
trally filtered from the pump lasers. To account for an
imperfect filtering of both the cavity locking and pump
lasers, we include a background noise in the detection
that we model as dark counts. We found that the CHSH
violation (CHSH= 2.19) is unchanged if the dark count
probability is of ≤ 10−3. This sets the constraints on
the quality of the filtering processes once the intrinsic
noise of the detector is determined. Note that for
state-of-the-art-detectors, the noise can be of the order
of 10−7 or 10−8 for detection windows of a few tens of ns.

Perspectives — Our results show how optomechani-
cal systems can be used to test a Bell inequality. They
provide an attractive perspective for the experiment
reported in Ref. [? ] where a mechanical system is com-
bined with photon counting techniques. Achieving high
overall detection efficiencies is facilitated by photons
emitted in a well defined spatial mode which may be cou-
pled into a single mode fiber with a very high-efficiency.
Moreover, the wavelength of photons at 1550 nm is an
appealing asset to perform the Bell test between distant
locations, i.e. to close the locality loophole, see Supple-
mental Material, part II. We also note that our results
can find interesting perspectives in quantum memory
experiments. In the context of light storage, off-resonant
Raman scattering can be used to create photon-spin
wave pairs in atomic ensembles [? ]. The spin-wave state
can then be mapped to photons using a resonant Raman
process – this mapping is made very efficient thanks
to a collective emission. Since the resulting photon-
photon state is analog to the one described in this
letter, the Bell test that we propose would allow one to
certify that the memory operates in the quantum regime.
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