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Abstract

Model predictive control schemes for power electronic applications are
characterized by a great variety of problem formulations. In this paper, we
consider a three phase voltage source converter with an arbitrary number
of voltage levels and derive a model predictive control scheme involving
a combination of optimized pulse patterns and the integral of squared pre-
dicted tracking error as a cost function. We obtain a nonlinear optimization
problem with the switching times as optimization variables, and solve it us-
ing gradient projection algorithm. To obtain an easier optimization problem
to be solved on-line, a linearization around nominal switching instants is per-
formed bringing the problem to a quadratic programming form. Simulation
results demonstrating the performance of the derived scheme are provided
for the case of a grid-tied converter with LCL filter.
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1 Introduction
Model predictive control (MPC) schemes developed for power electronic applica-
tions have demonstrated improved performance compared to the traditional state-
of-the-art control in power electronics [1]. The characteristics of power electronic
systems, such as the ability of an inverter to supply a finite number of voltage
levels and very limited computational power within the sampling intervals, have
caused the power electronic MPC schemes to be highly tailored to the applica-
tion and to be quite different from the standard MPC formulations studied in the
control community.

The aforementioned MPC power electronic schemes thus involve a great va-
riety of ”problem-tailored” cost functions. For example, the MPC in [2] involves
a cost which minimizes the converter switching frequency in order to indirectly
reduce the commutation losses of the power converter. Another MPC approach
for power electronics [3], involves a cost function which employs superposition of
correction pulses to eliminate an error vector over the prediction horizon. In [4],
[5], the cost function is formulated so that it directly addresses the commutation
losses of a power converter.

The goal of this paper is to develop a controller using the integral square track-
ing error as a cost function together with optimized pulse patterns (OPPs). The
OPPs are precomputed converter voltage waveforms optimized for high steady-
state performance with a fixed number of converter’s switchings [6], [7]. Integral
squared problem formulations for power electronic applications were previously
considered in [8, 9, 10] in combination with so-called fixed frequency pulse-width
modulation (PWM). The use of OPPs in this paper instead of PWM allows to fur-
ther reduce the harmonic distortion caused by the converter. In comparison to [3]
which provides an MPC scheme as well employing OPPs, our approach involves
a cost function that penalizes the squared tracking error along the prediction hori-
zon and is in addition applicable to a greater variety of power electronic systems,
though at the expense of more demanding computations.

The development considers the power electronics system in state-space rep-
resentation and thus covers a wide variety of power electronic configurations.
Nevertheless, to facilitate an easier exposition we consider a particular setting
common in power electronic applications, which involves a power converter con-
nected to the power grid via an LCL filter. By employing OPPs, the discrete deci-
sion variables coming from the finite number of converter voltage levels will get
eliminated, and the development results in a nonlinear optimization problem with
only switching times as continuous decision variables. The optimization problem
is solved by applying gradient projection (GP) algorithm operated based on cost
function descent. To allow a potentially more convenient optimization problem
for an on-line application, a linearization around the OPP switching times is per-



formed which brings the problem to the form of quadratic programming (QP),
with decision variables being the deviations from the OPP (nominal) switching
times.

The structure of the paper is as follows. Section 2 describes a model of the
system. Section 3 formulates the control optimization problem, and section 4 de-
scribes the GP and QP solution approach to it. Section 5 provides the simulation
results demonstrating the performance of the method. Section 6 provides conclu-
sion.

2 System Model
The configuration with power converter interconnected to the power grid via an
LCL filter is presented on Fig. 1. The model of the system consists of the LCL
filter, power grid, and the power converter.
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Figure 1: The configuration with a power converter connected to the power grid
via an LCL filter.

2.1 LCL filter
The state of the LCL filter is described in stationary abc frame with state vector

xf = [ifi,a ifi,b ifi,c ifg,a ifg,b ifg,c vf,a vf,b vf,c]
′ (1)

where for each phase p ∈ {a,b,c}, ifi,p, ifg,p and vf,p denote the inverter current,
grid current and capacitor voltage, respectively. The LCL filter dynamics are

ẋf(t) = Afxf(t)+Bfs(t)+Ffwg(t) (2)

where s = [sa,sb,sc]
′ ∈ R3 is the vector of converter switch signals (further mod-

eled in Section 2.4) and wg = [wga,wgb,wgc]
′ ∈ R3 is a vector representing the



grid voltage (further modeled in Section 2.2). The system matrices are obtained
by applying Kirchhoff’s circuit laws and have the form

Af =

−
Rfi
Lfi

I3×3 03×3 − 1
Lfi

I3×3

03×3 −Rfg
Lfg

I3×3
1

Lfg
I3×3

1
Cf

I3×3 − 1
Cf

I3×3 03×3

 ,

Bf =
1

Lfi

1
3


2 −1 −1
−1 2 −1
−1 −1 2

06×1 06×1 06×1

 vdc

2
, Ff =

 03×3
− 1

Lfg
I3×3

03×3

 ,
where the parameters correspond to the elements as illustrated in Fig. 1, and Im×m
and 0m×n are the identity and zero matrix of specified dimensions, respectively.
The DC side capacitor voltage vdc is assumed constant and is ”absorbed” into the
affine term Bf of the dynamics.

2.2 Grid voltage
The three-phase grid voltage wg = [wga,wgb,wgc]

′ is assumed (I) sinusoidal and
(II) three-phase symmetric:

(I) wga(t) =Vg sin(2π fgt +ϕg), (3)
(II) wga(t) = wgb(t−1/(3 fg)) = wgc(t +1/(3 fg)), (4)

where Vg is the voltage amplitude, fg is the frequency and ϕg is the initial phase of
the grid. An alternative possibility is to model the grid voltage as being constant
over the prediction horizon.

The sinusoidal three-phase symmetric voltage can be modeled in αβ coor-
diante system wgαβ (t) = [wgα(t),wgβ (t)]′ with

ẇgαβ (t) = R2×2 wgαβ (t), R2×2 :=
[

0 −ωg
ωg 0

]
, (5)

where ωg = 2π fg is the grid angular frequency. The three-phase voltage wg(t) is
then obtained from wgαβ (t) using

wg(t) = P−1
3×2wgαβ (t), P−1

3×2 :=

 1 0
−1

2

√
3

2
−1

2 −
√

3
2

 , (6)

where P−1
3×2 denotes the inverse Clarke transform [11].



2.3 State-space model
The state-space model is obtained by combining the LCL dynamics (2) and the
grid voltage model (5), taking the form

ẋs(t) = Asxs(t)+Bss(t) (7)

where

xs =

[
xf

wgαβ

]
, As =

[
Af FfP−1

3×2
02×9 R2×2

]
, Bs =

[
Bf

02×3

]
. (8)

2.4 Voltage source converter
The power converter [12] is modeled over the prediction horizon by the sequence
of voltage levels which it provides. The naming conventions introduced in the
sequel are illustrated with an example in Fig. 2. We assume the components
si(t), i ∈ {a,b,c}, of the switch vector s(t) take Nlvl distinct values

si ∈ {v1, v2, . . . ,vNlvl},

which correspond to the voltage levels the power converter can suply. In the MPC
problem we consider a prediction over the window [t0, t1], t0 < t1, and within it we
allow the total number of switches in all three phases be Nsw. Thus, Nsw = Na +
Nb +Nc where Ni, i ∈ {a,b,c} is the number of switchings in phase i. The switch
signal si(t) takes Ni +1 different values within the prediction window [t0, t1].

The transition time of the jth switch in phase i is denoted ti j where j∈{1, . . . ,Ni},
i ∈ {a,b,c}, and the convention is ti j ≤ ti j+1. The voltage level applied during the
time between ti j and ti j+1 is denoted `i j+1. Thus, the switch signals can be written
on the form

si(t) =



`i1, t ∈ [t0, ti1)
`i2, t ∈ [ti1, ti2)
...

...
`iNi, t ∈ [tiNi−1, tiNi)

`iNi+1, t ∈ [tiNi, t1]

(9)

where `i j ∈ {v1, v2, . . . ,vNlvl}.

3 Cost Function and Constraint Set
The cost function comprises an integral of squared difference between a reference
signal and predicted trajectory. The reference signals corresponding to desired
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Figure 2: An example of three-phase switch signal s(t), showing switching times
and discrete amplitudes. The example involves Nlvl = 3 and Nsw = 6.

active and reactive power injections to the grid are approximated by sinusoidal
shapes. The discrete-valued voltage levels are ruled out from decision variables
by using OPPs.

3.1 Sinusoidal steady-state reference
The steady-state reference for each state of the LCL filter (1) is approximated by a
sinusoidal shape. Assuming a three-phase symmetric and sinusoidal steady-state,
the reference vector xr ∈ R9 can be modeled in αβ coordinate frame by

ẋrαβ (t) = R6×6 xrαβ (t), R6×6 := blkdiag(R2×2,R2×2,R2×2), (10)

where

xrαβ =
[
ir,fiα ir,fiβ ir,fgα ir,fgβ vr,fα vr,fβ

]′ (11)

consists of LCL state references in αβ frame, and the R2×2 is the matrix defined
in (5). To convert the references from αβ to abc coordinate frame, one employs
the inverse Clarke transform (6) as

xr(t) = P−1
9×6xrαβ (t), P−1

9×6 := blkdiag(P−1
3×2,P

−1
3×2,P

−1
3×2). (12)

The initial values xrαβ (t0) of the model in αβ frame (10) at the beginning of
the prediction horizon t0 are determined from the specified active Pg and reactive



Qg power to be injected to the grid. These powers are equal to

Pg = 3VgIfg cos(θg), (13)
Qg = 3VgIfg sin(θg), (14)

where Vg is the grid voltage amplitude as in (3), Ifg is the grid current amplitude,
and θg is the phase lag between the grid voltage and current. This yields the
desired steady-state amplitude Ifg and phase lag θg:

Ifg =
1

3Vg

√
P2

g +Q2
g, θg = arctan

(
Qg

Pg

)
. (15)

Introducing a phasor Vg = wgα(t0)+ jwgβ (t0) where j =
√
−1, the phasor model-

ing the desired grid current is

Ifg = Ifgej{arg(Vg)−θg}. (16)

Using this value, the phasors of the desired capacitor voltage and inverter current
are

Vf = Vg + jωgLfgIg, Ifi = jωgCfVf + Ifg. (17)

The desired initial conditions of the xrαβ at the beginning of the prediction
horizon (time t0) are thus

ir,fiα(t0) = Re{Ifi} , ir,fiβ (t0) = Im{Ifi} , (18)

ir,fgα(t0) = Re
{

Ifg
}
, ir,fgβ (t0) = Im

{
Ifg
}
, (19)

vr,fα(t0) = Re{Vf} , vr,fβ (t0) = Im{Vf} . (20)

The desired sinusoidal inverter voltage which leads to the desired steady-state is

Vi = Vf + jωgLfiIfi. (21)

This voltage will correspond to the fundamental harmonic of the OPP employed
by the converter, as described in the section about OPPs in the sequel.

There are several aspects that support the approximation of references by si-
nusoids. It turns out that the actual deviations from sinusoidal shapes in steady-
state seem significant only for the inverter current, while for the grid current
and capacitor voltage the deviations are hardly visually noticeable. In case of
LCL filter parameters which cause more significant deviations from sinusoids,
one may introduce into the reference some higher harmonics, which are com-
putable from the corresponding higher harmonics of utilised OPP. Furthermore,
the small steady-state deviations from the ideal sinusoidal shapes do not seem
capable to cause perturbations larger than the errors coming form the inevitable
real-world non-idealities of the system such as variations of the DC link voltage,
temperature-dependent resistances, inverter’s non-idealities like dead-time, and
state-estimation errors.



3.2 Augmented state-space model
To take the model of sinusoidal references (10)-(12) into account, we augment the
state-space model (7) and obtain

ẋ(t) = Ax(t)+Bs(t) (22)

where

x =
[

xs
xrαβ

]
, A =

[
As 011×6

06×11 R6×6

]
, B =

[
Bs

06×3

]
. (23)

Since the goal is to minimize the integral of the squared tracking error, the output
is selected to be the deviation of state from the reference trajectory:

y(t) = Ex(t), E =
[
I9×9 09×2 −P−1

9×6

]
. (24)

3.3 Optimized pulse patterns
As described in Section 2.4, the switch signal s(t) ∈ R3 depends on switching
times ti j (continuous decision variables) and voltage levels `i j (discrete decision
variables). To avoid optimization over the voltage levels, we will copy them from
an off-line computed steady-state waveform (the OPP) whose fundamental volt-
age harmonic (the amplitude and phase) corresponds to the desired sinusoidal
steady-state voltage, which is the Vi from (21).

The OPPs [7], [3] are steady-state converter waveforms obtained by off-line
optimization for a specified number of switchings within the period 1/ fg and fun-
damental voltage harmonic Vi. The optimization minimizes a total harmonic dis-
tortion (THD) of grid current, the steady-state performance quantifier defined as

THD(Ifg) =

√
∑

∞
k=2 I2

fg,k

Ifg,1
, (25)

where the Ifg,k represents the k-th harmonic of the grid current in one of the phases.
The OPPs are commonly computed by assuming a quarter-wave symmetry, in
which case the number of switchings in the first quarter of the period is the same
as the number of the switchings in each of the other quarters and is called a pulse
number. To be able to select an OPP which has the fundamental component con-
veniently close to the desired sinusoid, the OPPs are calculated by gridding an
interval of magnitudes [Vi,min,Vi,max] which covers the operating range of the con-
verter.



3.4 Predicted state trajectory
To explicitly formulate the solution of the system (23) we need to fix the order
of the transitions of the switches of each phase with respect to one another. The
single phase voltage levels of s(t) are obtained from an OPP, and we also need to
determine what voltage levels are applied to the three phases in between transition
times. The sequence of three-phase voltage levels is determined by the sequence
of single phase voltage levels `i j, i∈ {a,b,c} and the sequence of switching times.
For example, we may consider the switching order illustrated in Fig. 2 where
Nsw = 6 and

t0 ≤ ta1 ≤ tc1 ≤ tb1 ≤ ta2 ≤ tc2 ≤ tb2 ≤ t1. (26)

The corresponding sequence of Nsw +1 three-phase voltage levels is`a1
`b1
`c1

 ,
`a2
`b1
`c1

 ,
`a2
`b1
`c2

 ,
`a2
`b2
`c2

 ,
`a3
`b2
`c2

 ,
`a3
`b2
`c3

 ,
`a3
`b3
`c3

 . (27)

We now proceed to introduce index vectors which represent the order of the
switching times and corresponding three-phase voltage levels. To describe the
transition times we introduce the index vector Ī which is a vector of dimension
Nsw containing the indexes i, j of the switch transitions in a given order:

Ī =
[
i j
]
, i ∈ {a,b,c} , j ∈ {1, . . . ,Ni}.

For example, the index vector Ī corresponding to (26) is

Ī =
[
a1 c1 b1 a2 c2 b2

]′
.

To handle the boundary conditions with compact expressions we augment the
index vector Ī with zero and one and define

I :=
[
0 Ī ′ 1

]′
.

The augmented index vector I has dimension Nsw +2. We let the index denoting
the entries of I start with zero so that

Ik =


0, k = 0
i j, k ∈ {1, . . . ,Nsw}
1, k = Nsw +1

.

The index set I defines the sorted vector of switching times

tI =
[
t0 tI1 tI2 . . . tINsw−1 tINsw

t1
]′
. (28)



To describe the three-phase voltage levels we introduce the index matrix J
defined as

J =
[
J0, . . . ,JNsw

]
where

J0 =
[
a1 b1 c1

]′
and the remaining columns are determined by treating the indices a,b,c as values
1,2,3, respectively, and using the relation

Jk = Jk−1 + e(Ik)1 · (01), k = 1, . . . ,Nsw

where e j ∈ R3 is the jth unit vector and where (Ik)1 denotes the first part (the ”i”)
of the kth entry of I. For example, the index matrix J corresponding to (27) is

J =

a1
b1
c1

 ,
a2

b1
c1

 ,
a2

b1
c2

 ,
a2

b2
c2

 ,
a3

b2
c2

 ,
a3

b2
c3

 ,
a3

b3
c3


The index vector Jk is mapped to the three-phase voltage levels by

Lk = Lk(Jk) =
[
`(Jk)1 `(Jk)2 `(Jk)3

]′
where (Jk)i denotes the ith entry of Jk.

We are now ready to derive an expression for the system solution. Given a
fixed switching order I, we split the prediction window into Nsw +1 subintervals
according to

[t0, t1] = [t0, tI1)∪ [tI1 , tI2)∪·· ·∪ [tINsw−1 , tINsw
)∪ [tINsw

, t1].

We proceed to derive an explicit expression for the (continuous time) state over
the subinterval [tIk , tIk+1). Define

xk := x(tIk), k = 0, . . . ,Nsw +1.

Using the equality

eApx+
∫ p

0
eA(p−τ)Bdτ =

[
In×n 0n×1

]
e

[
A B

01×n 01×1

]
p[x

1

]



where n is the dimension of the square matrix A, the solution of (23) over the
subinterval [tIk , tIk+1) can be written as

x(t) = eA(t−tIk )xk +
∫ t

tIk
eA(t−τ)BLkdτ (29)

=CeĀk(t−tIk )x̄k, t ∈ [tIk , tIk+1), k = 0, . . . ,Nsw, (30)

where we have introduced the definitions

C :=
[
In×n 0n×1

]
, Āk :=

[
A BLk

01×n 01×1

]
, x̄k :=

[
xk
1

]
.

The solution (29) can be written in a more compact form by eliminating the
state variables xk. It holds

x(t) =CeĀk(t−tIk )
k−1

∏
m=0

eĀm(tIm+1−tIm)x̄0, (31)

where t ∈ [tIk , tIk+1), k = 0, . . . ,Nsw.

3.5 Integral of squared predicted tracking error
We now formulate the cost representing the integral of the squared predicted devi-
ation between LCL states xf(t) and the references xr(t) over the prediction horizon
[t0, t1]:

Jc =
∫ t1

t0
y(t)′Qy(t)dt =

Nsw

∑
k=0

∫ tIk+1

tIk
y(t)′Qy(t)dt

=
Nsw

∑
k=0

∫ tIk+1

tIk

(
Ex(t)

)′Q(Ex(t)
)
dt

=
Nsw

∑
k=0

x̄′k

(∫ tIk+1

tIk
eĀ′k(t−tIk )

(
C′E ′QCE

)
eĀk(t−tIk )dt

)
x̄k. (32)

Using the results of [13], the cost function becomes

Jc =
Nsw

∑
k=0

x̄′k Nk x̄k (33)



where
Nk = F ′k3Gk2, k = 0, . . . ,Nsw, (34)

with Fk3 and Gk2 obtained by first computing

Âk =

[
−Ā′k C′E ′QEC

0(n+1)×(n+1) Āk

]
(35)

and then taking Fk3 and Gk2 as submatrices of

eÂk(tIk+1−tIk ) =

[
Fk2 Gk2

0(n+1)×(n+1) Fk3

]
. (36)

3.6 Cost function
The cost function depends on the continuous decision variables ti j within the pre-
diction horizon [t0, t1] denoted as

t̄ =
[
ta1 . . . taNa tb1 . . . tbNb tc1 . . . tcNc

]′
. (37)

The times ti j are selected so that they correspond to the nominal switching times
of the OPP. The cost has the form

Jtot(t̄) = Jc(t̄)+ Jd(t̄) (38)

where Jc is the integrated squared tracking error from (33), and Jd is a quadratic
penalty on deviations of switching times ti j from their corresponding nominal
switching times t∗i j of the off-line computed OPP:

Jd =
3

∑
i=1

N

∑
j=1

q (ti j− t∗i j)
2, (39)

with the values i = 1,2,3 corresponding to the phases a,b,c, respectively, and
q≥ 0. It should be noted that evaluation of the cost term Jc requires sorting of the
vector t̄ with switching times to the vector tI with monotonically non-decreasing
times, as described in Section 3.4.

3.7 Constraint set
The constraint involved in the optimization problem imposes the fixed order of
the switching times in each of the three phases idependently:

t0 ≤ ta1, ta1 +δ ≤ ta2, . . . , taNa +δ ≤ t1, (40)
t0 ≤ tb1, tb1 +δ ≤ tb2, . . . , tbNb +δ ≤ t1, (41)
t0 ≤ tc1, tc1 +δ ≤ tc2, . . . , tcNc +δ ≤ t1, (42)

where δ is the minimal allowed separation between any two consecutive switching
times in each phase, except between t0 and ti1, i ∈ {a,b,c}.



4 Solution Approaches
The control optimization problem consisting of the cost (38) and the constraint set
(40)-(42) is solved in two ways. The first applies GP algorithm, and the second
performs linearization of the state vectors x̄k to obtain a QP form.

4.1 Gradient projection
By denoting with X the poytopic constraint set defined by (40)-(42), the GP algo-
rithm [14] takes the form

t̄k+1 = PX
(
t̄k− sgp,k∇Jtot(t̄k)

)
, (43)

where t̄k ∈ RNsw is the vector of switching times as in (37) at k-th iteration of
gradient projection algorithm, PX : RNsw → RNsw denotes the projection on the set
X ⊂ RNsw , sgp,k > 0 is the stepsize at the iteration k chosen so that there holds

J(t̄k)− J(t̄k+1)≥ σ∇J(t̄k)′ (t̄k− t̄k+1) , (44)

with σ ∈ (0,1). The stepsize sgp,k satisfying (44) at iteration k can be found by
using backtracking, i.e., by examining for some fixed β ∈ (0,1) and sinit > 0 the
sequence of values {sinit,β sinit,β

2sinit,β
3sinit, ...} and taking as sk the largest one

for which (44) holds.
Iteration of GP in (43) requires the gradient ∇Jtot(t̄k) of the cost (38). To

compute the gradient of the component Jc(t̄) at t̄, it is necessary to perform a
conversion t̄→ tI , i.e., to arrange the switching times in a non-decreasing order as
explained in 3.4. Then for the computation of the partial derivative with respect
to a switching time ti j in vector t̄, we use its corresponding time tIm in vector tI .
Since t̄ and tI are essentially two vectors containing information about the same
switching times, with slight abuse of notation in the sequel we will ocasionally be
writing J(tI) instead of J(t̄).

By using the chain rule, the partial derivative of the function Jc(tI) in (33) with
respect to tI j , j ∈ {1, . . . ,Nsw}, is given by

∂Jc(tI)
∂ tI j

=
Nsw

∑
k=0

(
∂ x̄′k
∂ tI j

Nk x̄k + x̄′k
∂Nk

∂ tI j

x̄k + x̄′k Nk
∂ x̄k

∂ tI j

)
, (45)

and it as well represents the partial derivative of Jc(t̄) with respect to the coordi-
nate of t̄ corresponding to tI j .

The gradient expression (45) involves the partial derivatives ∂ x̄k/∂ tI j and ∂Nk/∂ tI j ,
whose expressions will be derived now. The expressions for the partial derivatives
∂ x̄k/∂ tI j are obtained from (31), and have the following form:



• For k > j+1

∂ x̄k

∂ tI j

=
k−1

∏
m= j+1

eĀm(tIm+1−tIm)(−Ā j)
j

∏
m=0

eĀm(tIm+1−tIm)x̄0+

k−1

∏
m= j

eĀm(tIm+1−tIm)Ā j−1

j−1

∏
m=0

eĀm(tIm+1−tIm)x̄0. (46)

• For k = j+1

∂ x̄k

∂ tI j

=(−Ā j)
j

∏
m=0

eĀm(tIm+1−tIm)x̄0+

eĀ j(tI j+1−tI j )Ā j−1

j−1

∏
m=0

eĀm(tIm+1−tIm)x̄0. (47)

• For k = j
∂ x̄k

∂ tI j

= Āk−1

k−1

∏
m=0

eĀm(tIm+1−tIm)x̄0. (48)

• For k < j
∂ x̄k

∂ tI j

= 0. (49)

The expressions for the partial derivatives ∂Nk/∂ tI j are obtained using (34)-
(36). By using (36) and denoting m := n+ 1 where n = 17 is the order of the
system (22), the Nk in (34) can be expressed as

Nk =
[
0 I

]
eÂ′k(tIk+1−tIk )

[
0 0
I 0

]
eÂk(tIk+1−tIk )

[
0
I

]
, (50)

where the I and 0 denote Im×m and 0m×m, respectively. By introducing

T1 :=
[
0 I

]
, T2 :=

[
0 0
I 0

]
, T3 :=

[
0
I

]
, (51)

the partial derivatives of Nk matrices are:

• For k = j

∂Nk

∂ tI j

= T1 ·
(
−Â′k

)
· eÂ′k(tIk+1−tIk ) ·T2 · eÂk(tIk+1−tIk ) ·T3+

T1 · eÂ′k(tIk+1−tIk ) ·T2 ·
(
−Âk

)
· eÂk(tIk+1−tIk ) ·T3. (52)



• For k+1 = j

∂Nk

∂ tI j

= T1 · Â′k · e
Â′k(tIk+1−tIk ) ·T2 · eÂk(tIk+1−tIk ) ·T3+

T1 · eÂ′k(tIk+1−tIk ) ·T2 · Âk · eÂk(tIk+1−tIk ) ·T3. (53)

• For k < j−1 or k > j

∂Nk

∂ tI j

= 0m×m. (54)

On the other hand, the partial derivative of the function Jd(tI) in (38) with
respect to tI j , j ∈ {1, . . . ,Nsw}, is given by

∂Jd(tI)
∂ tI j

= 2 qtI j . (55)

An appropriate choice of the initial iterate t̄0 ∈ RNsw for GP can be obtained
by using the vector composed of the nominal switching times

t̄∗ =
[
t∗a1 . . . t∗aNa

t∗b1 . . . t∗bNb
t∗c1 . . . t∗cNc

]′
. (56)

which correspond to the employed OPP.

4.2 Quadratic programming
In order to obtain a quadratic approximation of the cost term Jc(tI) in (33) with a
possibility of reducing evaluations of the matrix exponentials online, the vectors
x̄k are linearized around the nominal switching times t∗I from OPP:

x̄k(tI)≈ x̄k(t∗I )+∇x̄k(t∗I )∆tI, ∀k ∈ {0, . . . ,Nsw +1}, (57)

where ∆tI =
[
∆tI1 . . . ∆tINsw

]′ with elements ∆tI j = tI j − t∗I j
, ∀ j ∈ {1, . . . ,Nsw},

and the Jacobian ∇x̄k(t∗I ) has the form

∇x̄k(t∗I ) =
[

∂ x̄k
∂ tI1

(t∗I ) . . . ∂ x̄k
∂ tINsw

(t∗I )
]
, ∀k ∈ {0, . . . ,Nsw +1},

where the partial derivatives ∂ x̄k/∂ tI j are given in (46)-(49).
By introducing the linearizations (57) into the expression for Jc (33), its quadratic

approximation is obtained:

JcQP =
Nsw

∑
k=0

(
x̄k(t∗I )+∇x̄k(t∗I )∆tI

)′ ·Nk ·
(
x̄k(t∗I )+∇x̄k(t∗I )∆tI

)
= ∆t ′I HQP ∆tI +h′QP ∆tI + cQP, (58)



where HQP, hQP and cQP are obtained by sorting the terms.
By taking into account as well the term Jd, the quadratic approximation of the

cost Jtot in (38) is

JtotQP = JcQP +
Nsw

∑
k=1

q(∆tIk)
2 . (59)

Since the vectors x̄k are linearized around the nominal switching times t∗I , the
approximation JcQP is valid only when the sequence of times t̄I is kept unchanged
from the sequence of t∗I . This is imposed by introducing the sequence constraint
t0 ≤ tI1 ≤ tI2 ≤ ·· · ≤ tINsw−1 ≤ tINsw

≤ t1, and by modifying it to also incorporate the
minimal separation between the switching times δ we obtain the constraint

t0 ≤ tI1 , tI1 +δ ≤ tI2, . . . , tINsw
+δ ≤ t1. (60)

where tI j = t∗I j
+∆tI j , ∀ j ∈ {1, . . . ,Nsw}, as previously defined. Notice that this

sequence constraint is a subset of the constraint (40)-(42), which thus can be re-
moved.

Finally, since the linearizations (57) are valid only for small values of devia-
tions ∆tI , a box constraint is imposed as

lb ≤ ∆tIk ≤ ub, ∀k ∈ {1,2, . . . ,Nsw}. (61)

In summary, the optimization problem with quadratic approximation of the
cost involves the quadratic cost function (59) and the constraint set composed of
sequence and box constraint (60) and (61), respectively. It can be noticed that the
constraint set is a polytope.

4.3 Additional aspects of GP and QP approach
The GP approach requires evaluations of matrix exponentials. Since the number
of voltage levels L a power converter can supply is finite (equal to Nlvl), the
corresponding number of Ā and Â matrices is finite as well. Thus, one could
facilitate the evaluation of matrix exponentials by storing the offline computed
matrices eĀmτ and eÂmτ evaluated for values of the gridded interval [τmin,τmax].
The simulation experiments show that a relatively small number of GP iterations,
about 10, provides a sufficient computational power for even the most demanding
transients. It should also be noted that application of GP requires continuous
differentiability of the cost function, which is in our case not the case due to
the discontinuities obtained when two switching times in tI switch their order.
However, during computational experiments there were not detected any negative
consequences of this discontinuity.



Table 1: Converter, LCL filter and grid parameters.

Parameter Value
Converter’s number of levels Nlvl 3
Converter’s DC link voltage vdc 5200 V
LCL inverter-side inductance Lfi 600 µH
LCL inverter-side resistance Rfi 5 mΩ

LCL capacitance Cf 1 mF
LCL grid-side inductance Lfg 600 µH
LCL grid-side resistance Rfg 5 mΩ

Grid voltage Vg 3000 V
Grid nominal current Ig,n 1540 A
Grid frequency fg 50 Hz

The QP solution approach requires matrix exponentials eĀmτ and eÂmτ com-
puted only for τ being the differences of the nominal switching times, plus the
case in which the τ involves t0, i.e., τ = tI1 − tI0 . In all performed simulation
tests of the described method, the quadratic cost function was never detected to be
non-convex.

5 Simulation Results
The performance of the developed controller in steady-state and transients is ex-
plored by Matlab simulation, examining both the GP and QP solution approach.

5.1 System and controller parameters
The system parameters are taken from [15] and are given in Table 1. The controller
parameters are given in Table 2.

5.2 Steady-state performance of GP and QP approach
The steady-state performance is measured by using total harmonic distortion, as
defined in (25). Since the expression for the THD can be applied to each one of
the three phases, the average of the THD in each of the three phases is considered.
The steady-state simulations have been run for a range of referent apparent powers
to be injected to the grid of the form

Sg = κ(Pg,nom + jQg,nom), (62)



Table 2: Controller parameters for GP and QP approach.

Parameter Value
Controller’s sampling time Ts 25 µs
Switches in prediction horizon Nsw 9
Minimal separation of switches δ 27.5 µs
OPP number of pulses d 8
Penalties in Q for inverter current Qfi 0
Penalties in Q for grid current Qfg 100
Penalties in Q for capacitor voltage Qf 10
Penalties on deviations from nominal times q 100
GP’s number of gradient iterations NGP 10
GP’s sufficient cost decrease coefficient σ 5 ·10−3

GP’s backtracking coefficient β 0.3
GP’s initial backtracking stepsize sinit 1 ·10−11

QP’s lower bound of box constraint lb −50 µs
QP’s upper bound of box constraint ub 50 µs

where the paramater κ is varied from −1 to +1 in steps of 0.2, and we select
Pg,nom = Qg,nom = 8 MVA. The values of the THD obtained with GP and QP
approach are given in Table 3 and represented in Fig 3. It can be noticed that the
QP approach can cause a reduction of steady-state performance which is at some
operating points more significant than on the others.



Table 3: Steady-state THD values with GP and QP.

κ GP THD [%] QP THD [%]

1 0.14 0.27
0.8 0.20 0.40
0.6 0.30 0.28
0.4 0.58 0.72
0.2 1.26 1.25
-0.2 0.67 0.61
-0.4 0.45 1.65
-0.6 0.28 0.46
-0.8 0.24 2.42
-1 0.13 0.13

Figure 3: Steady-state THD values obtained with GP and QP.

5.3 Transient performance of GP and QP approach
The transient performance is tested by applying step changes of reference injec-
tion power. The reference power is again specified as in (62), and a step change
is introduced by the value of κ . The simulation results obtained by changing
κ = 1 to values 0.6 and 0 are given on Fig. 4. It can be noticed from simulation
results that for step changes of smaller sizes, the GP and QP solution approach
give similar transient behaviours. For larger step changes, the QP approach has



worse performance since the corrections ∆tI that it can apply are limited by the
box constraint.

6 Conclusion
In this paper we have developed an MPC scheme for power electronics application
which employs integral squared tracking error as its cost function and combines
it with OPPs. The combination of these two ingredients results in a controller
characterized by a great transient behaviour and steady-state performance. The
obtained optimization problem is approached by using GP algorithm and by lin-
earizing the cost function which brought the problem the form of QP. The perfor-
mance of the controller is examined by Matlab simulations. The future work will
further investigate the solution possibilities for the optimization problem involved
in the controller.
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