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Abstract

The performance of crystalline materials varies depending on the considered scale. To

understand the size dependence of materials properties, the interaction and evolution of

defects are essential. As such, the role played by dislocations is crucial for modeling metallic

materials. In essence, a dislocation is a default in the crystalline periodicity that creates

long-range stress fields, which makes the modeling of dislocation dynamics a challenging

problem.

This thesis concentrates on the development of a novel multiscale method, which couples

concurrently dislocation dynamics at nano- and micro-scales. A version of this method, the

Coupled Atomistic and Discrete Dislocations (CADD), exists for two-dimensional problems. Its

three-dimensional extension (CADD3d) is developed theoretically, and then implemented

including the necessary parallel computing aspects. The proposed model requires two main

building blocks, which are linked to general dislocation properties.

The first component is the correction field of the linear elasticity solution for dislocation

cores. The core structures are pre-computed by modeling straight dislocations with arbitrary

mixed angles using atomistic simulations. The obtained results are validated by extending the

variational Peierls-Nabarro method. Finally, the templates including the core correction field

are generated from the calculated core structures.

The second building block is the mobility law of dislocations. The dislocation mobilities

for several orientations and temperatures are studied with atomistic simulations, and validated

by comparisons to theoretical models. The mobility law is characterized by two damping

mechanisms, the phonon viscosity and the phonon radiation effects.

CADD3d is then examined by studying several benchmark problems, which prove that

the CADD3d method is a valid approach to couple atomistic and discrete dislocation dynamics

including when multiple curved dislocations dynamics have to be considered.

Furthermore, to highlight the applicability of CADD3d for material plasticity problems, a

Frank-Read source in an aluminum alloy is studied. The application result provides interesting

insights on the mechanisms of solid-solution strengthening and grain-hardening effects at the

nano and micro scales.

Key words: Computational Materials Science, Concurrent Multiscale Modeling, Plasticity,

Size Effects, Dislocations, CADD, Molecular Dynamics, Discrete Dislocation Dynamics
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Résumé

Les performances des matériaux cristallins varient en fonction de l’échelle considérée.

Pour comprendre comment les propriétés des matériaux dépendent de la taille, l’étude de

l’interaction et de l’évolution des défauts est essentielle. En tant que tel, le rôle joué par les

dislocations est crucial pour la modélisation des matériaux métalliques. Une dislocation est

un défaut dans la périodicité cristalline qui crée des champs de contraintes à longue portée,

ce qui rend difficile la modélisation des la dynamique de dislocations un problème.

Cette thèse se concentre sur le développement d’une nouvelle modélisation numérique,

qui associe simultanément les échelles nano et microscopique. Une version de cette méthode,

Coupled Atomistic and Discrete Dislocations (CADD), existe pour des problèmes à deux di-

mensions. Une version en trois dimensions de la méthode CADD (CADD3d) est développée

théoriquement, puis mise en œuvre, en incluant les aspects de calcul distribué nécessaires. Le

modèle proposé nécessite deux constituants principaux, qui sont liés aux propriétés générales

des dislocations.

La première composante est le champ de correction de la solution d’élasticité linéaire

pour le coeur des dislocations. Les structures sont pré-calculées par la modélisation de dislo-

cations droites avec des angles mixtes arbitraires en utilisant des simulations atomiques. Les

résultats obtenus sont validés par l’extension de la méthode variationnelle Peierls-Nabarro. En-

fin, des modèles comprenant le champ de correction des coeurs de dislocation sont construits

à partir du calcul de coeur structures.

Le deuxième bloc de construction est la loi de mobilité des dislocations. Les mobilités de

dislocations avec plusieurs orientations et températures sont étudiées avec des simulations

atomiques, et validées par comparaisons avec des modèles théoriques. La loi de mobilité

se caractérise par deux effets d’amortissement : la viscosité des phonons et la radiation des

phonons.

La méthode CADD3d est ensuite examinée en étudiant plusieurs problèmes de réfé-

rence, qui prouvent qu’il s’agit d’une approche valable pour coupler des simulations de

dynamiques de dislocation atomiques et discrètes, y compris lorsque plusieurs dislocations

courbes doivent être considérées.

En outre, pour mettre en évidence l’applicabilité de CADD3d pour des problèmes de

plasticité, des sources Frank-Read dans un alliage d’aluminium sont étudiées. Les résultats

d’application fournissent des indications intéressantes sur les mécanismes de renforcement de

la solution solide et des effets de durcissement des grains aux échelles nano et microscopique.
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1 Introduction

Multiscale Modeling of Materials Strength

By increasing the performance (e.g. strength and ductility) of metals, more durable

metallic products can be obtained. High performance materials can be effectively designed,

and the developments of material-design techniques consequently permit applications for a

high quality of life, for instance in the domain of security and environment. During the last

decades, material-design techniques have been developed. Specifically, those techniques

focus on designing the composition of materials, and such a designing process starts from the

characterization of material performances, for which several measurement methodologies

exist. The most popular analysis is the tensile testing [Banabic (2000)]: a strip or cylinder

specimen is anchored at one end and subjected to an axial load at the other end. Several

mechanical properties are directly measured such as Young’s modulus and yield strength.

These mechanical parameters allow to select a material for a given application device.

The development of methods for the production of miniaturized mechanical devices

allows a wide range of new applications for transportation and communication systems:

Micro- and Nano-Electro-Mechanical Systems (MEMS and NEMS). In NEMS and MEMS,

it is possible to assemble complex shapes, such as levers, gears and pinwheels. At these

small scales, the loading conditions can be extreme. For instance, a cantilever acceleration

sensor, which is used as automotive airbag actuator, can experience severe stresses caused by

a traffic accident. Therefore, designing materials for such small-scales applications should be

considered carefully. However, the mechanical properties at these scales are poorly understood

if compared to the mainstream knowledge of meter-scale metallic objects. Thus, controlling

the stability of so small systems becomes extremely difficult.

One of the striking findings with nano- and micro-sized specimens is the size dependent

performance of materials. Specifically, as the intrinsic (i.e. micro-structural) or extrinsic

(i.e. sample size) length of the specimen decreases, the material strength increases [Wang

et al. (2006); Nix and Gao (1998); Greer et al. (2008); Gao et al. (1999)]. Those experimental

observations lead to the famous adage: smaller is stronger [Wang et al. (2006)]. As an example,
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Figure 1.1 shows the measured tensile stresses for different specimen sizes at the submicron-

scale [Kim and Greer (2009)]. We observe an increase of the tensile strength with the decrease

of the specimen size. The main reason behind such a size-dependent behavior is that, at the

Figure 1.1 – Stress-strain curves obtained from tension testing with submicro-sized gold
specimens. Figure from [Kim and Greer (2009)]

small scales (from nanometer to micrometer), plastic deformations are strongly governed

by crystalline structures and defect dynamics. Accordingly, to characterize the mechanical

behaviors of small specimens, it is required to consider crystalline defects and their move-

ments. Various defects exist, and these defects can be categorized by their spatial dimensions.

For example, voids, dislocations and grain boundaries can be represented as zero, one and

two dimensional defects, respectively. They show very different behaviors, and they are all

interacting with each other [Hirth and Lothe (1992); Hull and Bacon (2011); Hall (1951)].

There are many experimental observations of the size effects, and several theoretical

models have been proposed to describe defect dynamics. These models can be employed

in material-design processes to predict material behaviors. Conventionally, creating new

materials rely on a trial-and-error approach with a wide range of parameters. The number of

these parameters can be reduced by predicting material performance from theoretical models.

In general, the employed models are based on partial differential equations (PDEs), and their

solution can be evaluated by means of iterative methods. However, the solution of a PDEs

with a complex geometry is difficult to find in general. Classically, complex geometries are

subdivided into simpler parts, and the associated set of PDEs is assembled and solved. Because

such discretizations yield a large number of degrees of freedom, computational resources

have to be employed to find a solution. This methodology is the computational modeling of

materials.
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1.1. Multiscale Modeling of Materials Strength

Figure 1.2 presents different defects observable at several length and time scales [Roters

et al. (2010)]. Depending on the scale, the defects can be described differently. This is clearly

Figure 1.2 – Schematic of defect configurations for several of length and time scales. Figure
from [Roters et al. (2010)]

illustrated by Figure 1.2, where we can see that at the nano-meter scale (10−9m) a material is

described by a set of atoms whereas at the macroscopic scale a continuum representation is

usually preferred. Such differences lead to theories as well as computer simulation methods

often restricted to a single scale and specialized for specific defect types. This is a major

limitation of computer simulations for material modeling.

In fact, experimental observations of defect behaviors cannot be scale separated in

general. Accordingly, the information obtained from experiments cannot be compared directly

to simulation results. To palliate this issue, the computational modeling techniques should

consider different scales within a single framework. This is called a ”multiscale” approach

which allows to obtain material behaviors including fundamental physics at several scales.

The difficulty lies in the difference between the employed physical models, making their

connection a tedious process that should be considered carefully. Depending on the types of

inter-relation, such multiscale methods can be divided into two groups: indirect and direct

multiscale methods.

In an indirect multiscale model, the coupling is considered sequentially. More precisely,

several material parameters can be evaluated at the small/fine scales. These values are then

used as input parameters for larger scale models [Haghighat et al. (2011); Segurado and
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Lorca (2010); Wang and Beyerlein (2011); Martínez et al. (2008)]. For example, void formation

energies can be precisely measured by ab-initio calculations (10−9m), and can be used as the

critical energy to introduce new vacancies in a higher scale model. The indirect approach is

simple and accurate if only a weak/localized relation exists between the coupled models. On

the other hand, a direct multiscale model concurrently couples the different scale models.

For instance, this is crucial when various defects are strongly interacting with each other over

large distances/scales [Shilkrot et al. (2004); Shiari et al. (2005); Zhang et al. (2013)]. Because

any direct multiscale method requires to treat distinct theoretical models simultaneously, it is

generally more complicated than the indirect methods.

According to several experimental observations [Greer and Hosson (2011); Arzt (1998)],

the behavior of defects, which is important to understand the size effects, is strongly coupled

between the nano- and micro-scales (from 10−9m to 10−6m). One of the famous experimental

observations showing such fully conjugated behaviors is the grain boundary strengthening,

and it can be explained as follows: dislocations can be generated in a grain from several

nucleation sources, and these dislocations are trapped by the grain boundary. The tangled dis-

locations create stresses inside the grain which may prevent further nucleation. Consequently,

having smaller grains limits the plastic flow and increases the yield strengths. In fact, the

nucleation process is a local and atomistic phenomenon, while the long-range interactions

between the trapped dislocations and the nucleation sources occur beyond the micro-scale.

To the best of my knowledge, there is no satisfactory multiscale method directly coupling the

defects at these two scales.

In this thesis, a new concurrent multiscale methodology and its computer simulation

method for 3d dislocation dynamics will be developed and implemented. This thesis focuses

mainly on two of the necessary building components, which will be constructed by studying

general dislocation properties. With such constructed components, the multiscale methodol-

ogy will be validated and calibrated through several benchmark problems in cases where a

constant shear stress is imposed. Finally, a size effect due to the dislocation evolution occuring

at atomistic- and micro-scales will be studied with the proposed multiscale method.

Organization of Thesis

This thesis mostly focuses on dislocations in FCC crystalline materials among the other

types of defects and materials. Within this scope, this thesis is organized as follows.

Chapter 2 - Experimental Studies on Size Effects - presents several experiments demon-

strating size dependent performances. For each experimental observation, the main mech-

anism, which is related to dislocation dynamics, will be discussed. Moreover, the theories

proposed to describe such experimental observations will be briefly introduced.

Then, Chapter 3 - Computer Simulation Methods employed to study Size Effects - reviews

the computer simulation methods useful to study size effects. The main methods (finite-
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element method, discrete dislocation dynamics and molecular dynamics) as well as multiscale

methods are briefly presented. Their capabilities and limitations for describing size effects are

included. This part greatly motivates the development of the new 3d dislocation dynamics

multiscale method developed during my Ph.D work.

Chapter 4 - Coupled Atomistic and Discrete Dislocation Method in 3d (CADD3d) - de-

scribes the new 3d multiscale model. The main development challenge will be stated while

highlighting the needed innovations if compared to the existing 2d multiscale model. Then,

the coupling strategies and the detailed description of the implementation (code architecture)

will be discussed.

Two of the principal components of CADD3d are presented in the following two chap-

ters (Chapter 5 - Dislocation Core Structures, Peierls Stresses and Core Templates with Several

Character Angles in Aluminum - and Chapter 6 - Mobility law of dislocations in Aluminum). A

detailed description of their inclusion into the CADD3d framework will be provided. Further-

more, these components based on atomistic calculations, which will be validated thanks to

other theoretical models.

In Chapter 7 - Validation of CADD3d: Hybrid Dislocations, several 3d dislocation dynamic

simulations will be made with CADD3d in order to validate the coupling methodology. The

first test problem is a hybrid straight dislocation, made partly with atoms and partly with

discrete dislocation dynamics segments. The analysis of the results will allow us to evaluate

the sensitiveness of the coupling components of CADD3d. The second problem considers the

expansion of an hybrid dislocation loop due to homogeneous shear loading. For the third test

problem, CADD3d is put to the test for when a large number of dislocations are interacting.

Lastly, the evolution of a hybrid dislocation loop under a small shear loading is studied. This

result allows us to study the limitations of the CADD3d coupling scheme.

In Chapter 8 - Frank-Read Source Dynamics in Al and Al-5%Mg, CADD3d will be applied

on one interesting plasticity problem: a double Frank-Read source in Al and Al-5%Mg. The sim-

ulation results show two material strengthening effects: solute hardening and grain-boundary

strengthening. These results will highlight the potential usage of CADD3d for studying many

aspects of nano/micro scale plasticity including naturally size effects.

This thesis will be concluded with summary and outlook of the CADD3d method in

Chapter 9 - Concluding Remarks and Outlook.
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2 Experimental Studies on Size Effects

Among the three different types of defect described in the previous section, dislocations

are specially important to understand the size-dependent material behaviors. There is a vast

literature about the size effects occurring due to dislocation dynamics [Wang et al. (2006); Nix

and Gao (1998); Greer et al. (2008); Gao et al. (1999)], and several experimental observations

have been summarized in multiple recent reviews [Arzt (1998); Greer and Hosson (2011)]. In

this chapter, we begin our discussion by presenting the common terminology used to describe

crystal structures and dislocations. After such a brief introduction, we shall discuss the rela-

tionship between size effects and dislocations by reviewing several experiments. Furthermore,

a proposed theoretical model explaining the experimental observations will be described for

each of the size effects.

Crystal Structure

A crystal is an ordered arrangement of atoms determined by the force field due to elec-

trons and nuclei interactions. The three most common close-packed structures are:

1. FCC: Face-centered cubic (Aluminum, Copper, Gold)

2. BCC: Body-centered cubic (Chromium, Iron)

3. HCP: Hexagonal-closed-packed (Magnesium, Zinc).

Many crystallites may exist in a poly-crystalline material. The interface between two grains

(or crystallites) is called a grain boundary [Banabic (2000)]. More generally, a crystal may be

distorted by the presence of defects. Figure 2.1 is a schematic of a generic crystal structure

including several defects highlighted with red symbols. Depending on their spatial dimensions,

the defects can be categorized into three types as follows:

1. Zero dimension: point defects (vacancies, interstitial and substitutional atoms)
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Figure 2.1 – (a) Schematic of a crystalline structure including multiple grains and defects. The
gray region depicts the grain boundaries. (b) A Burgers circuit enclosing the dislocation. (c)
The same Burgers circuit in a perfect reference lattice. The special vector needed for closing
the circuit is the Burgers vector�b.

2. One dimension: line defect (dislocations)

3. Two dimension: plane defect (grain boundaries, stacking faults)

Among these three different types, let us focus on the line defect called dislocation. A

lattice structure around the dislocation is shown in Figure 2.1 (b) (shown with �). Around

the dislocation, a closed circuit (the red solid line with the arrows), i.e. 1→2→3→4→5, is

illustrated. If the same atom-to-atom sequence is made in a perfect crystal (Figure 2.1 (c)), the

circuit is not closed because the lattice including the dislocation has one more half atomic

plane. The vector required to complete the circuit is called the Burgers vector�b [Hull and

Bacon (2011)].

Depending on the angle between a line direction�ξ and the Burgers vector�b direction,

a dislocation can be categorized. The two most distinct dislocation types are shown in Fig-

ure 2.2: (a) an edge dislocation and (b) a screw dislocation. The Burgers vectors�b and the line

directions�ξ are given by the red and blue arrows, respectively. The angle between Burgers and

line directions is the character angle θ, which takes the values 0◦ and 90◦ degrees for the screw

and edge dislocations respectively. Character angles in the range 0◦ < θ < 90◦ lead to mixed

dislocations.

The application of an external shear stress σ (caused by any deformation, including the
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2.1. Crystal Structure

(a) (b)

�b

�ξ

�b

�ξ

Figure 2.2 – Three dimensional views of an edge (a) and a screw (b) dislocations. The Burgers
vectors�b are described with the red arrows, and the dislocation line directions�ξ are depicted
with the blue arrows.

presence of other defects) may induce the motion of a dislocation. The effective force acting

on a dislocation is always perpendicular to the dislocation line and is linked with the shear

stress component aligned with the Burgers vector direction�σr =σ ·�b (so-called the resolved

shear stress). The relationship between the force �f per unit dislocation length and the resolved

shear stress�σr can be determined by the Peach-Köhler formulation [Peach and Köhler (1950)]:

�f =σ ·�b ×�ξ=�σr ×�ξ (2.1)

The minimum external stress required to move a dislocation is the so-called Peierls stress�σp .

The Peierls stress is determined by the details of the dislocation atomistic core structure, and

consequently varies with the character angle.

A dislocation motion can be better understood with Figure 2.3, which shows an example

of edge dislocation motion. The movement of the dislocation is the consequence of the

additional plane of atoms (in blue) moving to the right. The final picture of the movement

shows a macroscopic plastic step of one atomic distance (|�b |). In real metals, a dislocation

motion is more complicated than the simplistic view illustrated in Figure 2.3, because a

distorted crystal lattice structure supporting a dislocation interacts with every other defects

at long distance through the elastic field of deformation. Thus, dislocations may glide, or be

pinned because of the presence of voids, dislocations, grain boundaries and with the applied

loads. Therefore, materials can become harder during their plastic flow, which is the source of

all strain hardening effects.

In general, dislocation movements yield various strengthening effects, and consequently

lead to size dependent plastic deformations (size effect) as discussed in the previous chapter.

In the next section, we will briefly review several experimental observations of such size effects
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σ

σ

Figure 2.3 – Sequences of slip by movement of an edge dislocation under an external shear
load σ. Shift of the upper half of the crystal is emerged after the edge-dislocation traveling.

with a focus on their links with dislocation motions. Moreover, the corresponding theoretical

models, which have been proposed to describe the experimental observations, will also be

discussed.

Size dependent strengths

Over the past decades, many experiments allowed to observe at the nano- and micro-

scales, that the crystalline strengths are inversely proportional to the sample sizes. Such size

dependent mechanical behaviors are observed for various material types (pure and alloy

metals), crystalline structures (single and poly-crystalline), and loading conditions (torsion,

indentation and compression). Those experiments have revealed that such size effects occur

as consequences of dislocation dynamics, and have tried to characterize their observations

by proposing theoretical models. In the following sub-sections, the three most important

mechanisms and models explaining the size effects are discussed.

Geometrically-Necessary-Dislocations

The first mechanism is a local mis-orientation effect. For example, in micro-indentation

experiments, scale-dependent material behaviors [Nix and Gao (1998); Zaafarani et al. (2006)]

are observed. In general, indentation size effects are due to the two factors: the decrease

of indentation depth or of the indenter size lead to a decrease of hardness. Figure 2.4 (a)

shows a specimen submitted to several indentations. The dislocation densities associated

with the deformations are shown in Figure 2.4 (b). We observe a high dislocation density

under the indented regions. These dislocations are due to non inhomogeneous strains and

are called geometrically necessary dislocations (GNDs) [Nye (1953)]. Such highly deformed

localized regions include many GNDs by necessity to accommodate for the volume of material
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(a)

(b)

Figure 2.4 – The indentation size effect and the density of geometrically necessary dislocations
(GNDs). (a) An experimental observation of a specimen with four indents. (b) The distribution
of the GNDs density below and around indents. Figures from [Zaafarani et al. (2006)]

displaced by the indenter. These GNDs can also be found with other types of loading, such as

bending and torsion, where inhomogeneous strains are created.

Based on multiple experimental observations of strain gradients and GNDs, Fleck et.

al. [Fleck et al. (1994)] proposed to introduce a length-scale parameter accounting for the

size of the region where the GNDs are nucleated. By carefully associating this parameter

to the loading types or the specimen dimensions, size effects due to GNDs can be better

predicted. For instance, in bending, the scale parameter can be related to half the thickness of

the beam, while it can be also related to the radius of the indenter in case of an indentation.

By considering this parameter in the crystal plasticity formalism, the so-called Strain Gradient

Plasticity theory (εGP) has emerged [Nye (1953); Ashby (1970)]. It has been implemented

within the Finite Element Method (FEM) to solve problems including complex boundary

conditions [Fleck et al. (1994); Gao et al. (1999)], and to successfully recover experimental size

effects. Details of the computational method εGP will be discussed in the next chapter.

Dislocation Starvation

Size effects can be also observed even without any significant strain gradient. When there

are only few defects (sources for dislocation emission), it can be brought closer to a mechanism

called the dislocation starvation effect. Because the total number of dislocation sources is in

general linked to the extrinsic material structure (specimen size), such a dislocation starvation

effect is frequently observed in experiments considering nano-scaled specimens [Wang et al.

(2006); Kim and Greer (2009); Greer and Hosson (2011)].

11
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Figure 2.5 (a) shows a nano-sized pillar, which includes multiple significant slipped

planes due to the employed homogeneous-compression loading. Figure 2.5 (b) shows the

(a) (b)

Figure 2.5 – (a) A compression test of a nano-sized pillar. (b) Strain-stress curves with different
pillar sizes. The strength increases with decreasing of the specimen size. These figures are
taken from [Greer and Hosson (2011)].

stress-strain curves obtained with different sizes for the nano-pillar. We clearly observe that

the smallest nano-pillar shows the highest compressive strength. Greer and Hosson [Greer

and Hosson (2011)] interpret this size effect with the following mechanism: when a specimen

is small, initially existing dislocations annihilate easily at the free surfaces, and let the crystal

sample starve for dislocations. In order to sustain higher loads, new dislocations have to be

nucleated requiring significantly higher stresses than when compared to nucleation stresses

from existing defects. The stress drop steps visible in Figure 2.5 reflect the creations of new

dislocations, which are attracted to the close free surfaces. This is the starvation-nucleation

effect.

To study this size effect, the dislocation nucleation process has to be accurately described.

Such a process can be studied by describing the atomistic nature of the specimen with Molecu-

lar Dynamics (MD) and a proper set of inter-atomic potentials. Such size effect studies realized

with MD will be discussed in Chapter 3.

Intrinsic Material Structures

Size effects can be also observed when the material has micro structures. We have to

consider that voids, substituted atoms in alloys, sessile dislocations and grain boundaries may

act as obstacles to dislocation motion. Figure 2.6 (a) shows a 2D schematic of a chain of dislo-

cations piling-up at a grain boundary, while an experimental observation of the dislocation

piling-up is presented in Figure 2.6 (b). The process is the following: during material deforma-

tion multiple dislocations are nucleated at dislocation sources, and driven by the loads they

12



2.2. Size dependent strengths

boundaryσ

dislocation

Grain

source

Figure 2.6 – (a) Schematic of a pileup of edge dislocations against a grain boundary. (b) An
experimental observation of piled-up mixed dislocations in a titanium alloy. Figure from
[Britton et al. (2015)]

approach grain boundaries. They eventually get arrested and are forced to pile-up against the

grain boundaries. Each of these piled-up dislocations create a long range stress field, and the

sum of them increases the backstress consequently, which is proportional to a number of the

piled-up dislocations. This backstress reciprocally interacts with the dislocation-nucleation

process. More precisely, the resolved stress acting on any dislocation source can decrease

with the increase of backstress. The backstress can be large enough to prevent the dislocation

sources to emit further dislocations: macroscopic hardening effect. Accordingly, with this

mechanism, we can explain the classical Hall-Petch effect: the increase of yield strength with

the decrease of grain size. This concept of anchored dislocation can be also used to understand

the size effect occurring due to any type of obstacle for dislocation motion [Fleck et al. (1994);

Greer and Hosson (2011); Arzt (1998)].

Conversely, nano-crystalline solids with nano-scale grains show an inverse hardening

effect (softening) which is due to the motion of grains (i.e. grain-boundary sliding and partial

dislocation emissions) rather than dislocations pile-up. In this thesis, we do not consider this

softening effect, and the interested reader should refer to the literature [Schiotz et al. (1998);

Jang and Greer (2011)].

Based on the experimental observation of dislocation-obstacle interactions, the Stress

Gradient Plasticity (σGP) has been proposed [Chakravarthy and Curtin (2011); Bai et al. (2014)].

This theory includes a material length scale parameter that considers the backstress applied

as a restriction on dislocation nucleation sources. Unlike for εGP, the length scale parameter is

chosen to match a structural dimension: the average size of the material intrinsic structures

(grains). On the other hand, this size effect can also be studied by considering individual

dislocation motions instead of employing such a length scale parameter. To that end, one can

use Discrete Dislocation Dynamics (DDD), which has successfully predicted several complex

dislocation interactions for various material intrinsic structures. The detailed implementation

of σGP and DDD will be given in Chapter 3.

In this chapter, we have reviewed the size effects with the three distinct mechanisms:

GNDs, dislocation starvation/nucleation and intrinsic material structures. To model those
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mechanisms, the four theories have been proposed: εGP, σGP, DDD and MD. In fact, there are

many experimental observations showing size effects as consequences of combinations of

these mechanisms. For example, when nano-scale pyramidal structures are compressed,GNDs

and starvation/nucleation processes are strongly associated to the observed size effects [Wang

et al. (2006)]. Therefore, complementary applications of the proposed models are necessary

to fully describe size dependent material behaviors. For this reason, in the next chapter, we

review these four models (εGP, σGP, DDD and MD) as well as multiscale methods with respect

to their application and limitations.
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3 Computer Simulation Methods em-
ployed to study Size Effects

In the previous chapter, we have presented various theoretical models that aim to account

for size dependent material behaviors. Each of these theories acknowledges the dislocation

contribution to strain hardening at a specific length scale. For instance, continuum plasticity

models were extended by introducing material length scale parameters, and more refined

mechanical descriptions were used to explicitly represent dislocations. To apply these models

on problems involving complex geometries and boundary conditions, several computer-based

approaches have been developed and employed during the last decades. Through numerical

approaches, researchers can analyze and predict the relationship between dislocation dynam-

ics and material plasticity. This chapter gives a brief non-exhaustive list of such computer

simulation methods. However, we state again that these simulations and models apply only

to the scale they were designed for. Describing the range of experimentally observed plastic

behaviors requires a numerical model that considers several scales: a multiscale method. We

will present such methods with a focus on one model, which was developed prior to this Ph.D

work. After reviewing all these methods, the development of our new multiscale method for

3d dislocation dynamics will be motivated.

Finite Element Analysis

One of the most used numerical methods for plasticity modeling is the Finite Element

Analysis (FEA) method [Hughes (1987)]. It finds approximated solutions of differential equa-

tions for a given spatial discretization. More precisely, a continuum domain is discretized

into small elements for which the differential equation is solved approximately. The main

advantage of such a discretization approach is to give the ability to solve mechanical problems

under complicated boundary conditions. This feature enables us to study various interesting

plastic-deformation problems.

To correctly describe plastic behaviors, several plasticity models have been incorporated

into FEA. Those models need constitutive equations, which relate strains ε and stresses σ, such

that hardening behaviors are effectively described. The first building stone is to decompose the
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Chapter 3. Computer Simulation Methods employed to study Size Effects

strain rate in its elastic and plastic contributions as for instance in small deformations [Huang

et al. (2004)]:

ε̇i j = ε̇e
i j + ε̇

p
i j (3.1)

with ˙εe
i j the elastic strain rate and ε̇

p
i j the plastic strain rate. These two rates can be defined by

the conventional J2-flow theory [Mises (1913)]:

ε̇e
i j =

1

2μ
σ̇

′
i j +

1

9K
σ̇kkδi j

ε̇
p
i j =

3ε̇p

2σe
σ

′
i j ,

(3.2)

where μ is the shear modulus, K is the bulk modulus, σ̇
′
i j = σ̇i j − 1

3 σ̇kkδi j is the deviatoric

stress rate, σe =
√

3
2σ

′
i jσ

′
i j is the von Mises effective stress, and ε̇p =

√
3
2 ε̇

p
i j ε̇

p
i j is the equivalent

plastic strain rate. According to the power-law visco-plastic model, the equivalent plastic

strain rate ε̇p can be defined as [Hutchinson (1976); Pan and Rice (1983); Kok et al. (2002)]:

ε̇p = ε̇

[
σe

σ f low

]m

, (3.3)

where ε̇ =
√

2
3 ε̇

′
i j ε̇

′
i j is the effective strain rate, σ f low is the plastic flow stress, and m is the

rate-sensitivity exponent. Consequently, the visco-plastic constitutive law can be written

as [Huang et al. (2004)]:

ε̇i j = 1

2μ
σ̇

′
i j +

1

9K
σ̇kkδi j + 3ε̇

2σe

[
σe

σ f low

]m

σ
′
i j (3.4)

Equation 3.4 can account for various strain hardening effects through the choice of the plastic

flow stress σ f low .

In fact, the elasto-plastic deformation occurs as the consequence of crystallographic

slip mechanisms. Therefore, by associating crystalline textures (i.e. Burgers vector and slip

system) with the plastic flow stress σ f low , more realistic hardening behaviors can be realized.

This approach is the so-called crystal plasticity, and it has been implemented into FEA frame-

work [Peirce et al. (1982)]. The classical crystal plasticity method considers dislocation slip

as the only deformation mechanism [Roters et al. (2010)]. When it is applied on small-scale

deformations, its constitutive equation is insufficient to describe size dependent material

behaviors.

Size effects can be introduced into the crystal plasticity framework by employing addi-

tional theories to model σ f low . In the last decades, two phenomenological theories have been

proposed: the strain-gradient plasticity εGP [Nye (1953)] and the stress-gradient plasticity
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3.1. Finite Element Analysis

σGP [Chakravarthy and Curtin (2011)]. These two models are briefly reviewed in the following

sub-sections with a special focus on the modeling of the plastic flow stress σ f low .

Strain-Gradient Plasticity

The first model is the strain-gradient plasticity (εGP) proposed by Fleck et al. [Fleck

et al. (1994)]. As discussed in sub-Section 2.2.1, the physical motivation of this method is

the geometrically-necessary dislocations (GNDs), where local lattice distortions (i.e. strain

gradients) are observed [Nye (1953); Ashby (1970)]. Therefore, Fleck et al. acknowledged

its associated hardening contribution into σ f low by introducing a material length scale l .

Although this theory was inspired by concepts in dislocation mechanics, the original theory

was isotropic and did not include any crystalline structure [Fleck et al. (1994)]. It has been

recently extended to refine the formalism to include crystallographic systems [Gao et al. (1999);

Huang (2000)], and the basic concept can be explained as follows.

The flow stress σ f low in terms of the dislocation density ρ is expressed as:

σ f low =C ′μ�b
	
ρ =C ′μ�b

√
ρS +ρG (3.5)

where ρS is the density of statistically stored dislocations (SSDs)1, ρG is the density of geomet-

rically necessary dislocations (GNDs), μ is the shear modulus, C ′ is an empirical constant, and
�b is the Burgers vector. Nye [Nye (1953)] showed that the density of GNDs ρG is related to the

curvature of plastic deformation (i.e. the strain gradient η):

ρG = η

�b
(3.6)

Its substitution into Equation 3.5 yields

σ f low =C ′μ�b
√
ρS + η

�b
(3.7)

In a homogeneous deformation (i.e. uniaxial tension), the strain gradient η is canceled out,

and the flow stress can be simplified as follows:

σY f (εp ) =C ′μ�b
	
ρS , (3.8)

where σY is the tensile yield stress, and σY f (εp ) is the hardening behavior for the uniaxial

tension. Then, the density of SSDs can be evaluated from Equation 3.8:

ρS =
[
σY f (εp )

C ′μ�b

]2

(3.9)

Finally, we obtain the flow stress accounting for the non-uniform plastic deformation associ-

1Dislocations generated during homogeneous plastic deformations of crystals.
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ated with GNDs by inserting Equation 3.9 into Equation 3.7:

σ f low =
√
σ2

Y f 2(εp )+C ′2μ2�bη=σY

√
f 2(εp )+ lη (3.10)

where

l =C ′2
(
μ

σY

)2
�b (3.11)

is the intrinsic material length scale, which depends on the material parameters μ, σY and�b.

For typical metallic materials, μ/σY is in the order of 102, and�b is in the order of 10−10 meters.

Consequently, the length scale is in the order of micro-meters (10−6). This fact is consistent

with the size effect observed at nano- and micro-scales. This model has been incorporated

into the FEA method, and has been successfully applied to predict size effects with several

loading conditions (i.e., bending, torsion and indentation) and material types (single crystal

and thin films) [Nix and Gao (1998); Fleck et al. (1994); Huang (2000)].

However, predicting every experiment for the same material and with the same length

scale parameter l does not always work [Evans and Hutchinson (2009)]. After all, the length

scale l is not a universal parameter which limits the applicability of εGP. Furthermore, recent

experiments showed size effects even though neither GNDs nor local-inhomogeneous lattice

distortions could be measured [Greer et al. (2008)]. This is clearly beyond the scope of εGP.

Stress-Gradient Plasticity

The previously mentioned limitation of εGP can be resolved by defining the plastic stress

flow with a physical length scale L associated with the employed sample. As discussed in

sub-Section 2.2.3, the interactions between dislocations and the surrounding obstacles are

important to understand size effects. With this concept, the parameter L can be chosen as

an averaged distance between obstacles, allowing to consider stress gradient contributions

to the yield strength. This idea leads to the so-called stress-gradient plasticity σGP theory,

and has reproduced favorably the size effects usually observed for bending and torsion loads

in poly-crystalline metals [Chakravarthy and Curtin (2011)]. The hardening mechanisms

considered in σGP can be explained with the dislocation source-obstacle model shown in

Figure 3.1. Under an applied shear stress σapp , a dislocation source (at x = 0) nucleates

dislocation dipoles which will pile-up because of the obstacles (at x =±Lobs/2). The resulting

stress is linearly varying with a stress-gradient parameter χ.

With the linear elastic continuum theory, the yield stress σ′
Y for this configuration can

be analytically computed as follows:

σ′
Y = σY

1−χLobs/4
with σY =

√
4μ|�b|

π(1−ν)

σobs

Lobs
(3.12)

18



3.2. Discrete Dislocation Dynamics (DDD)

σappχσapp

-Lobs
2 -Lobs

2

x
0

σ

Figure 3.1 – Dislocations are emitted from a source (x = 0), and are piled-up against obstacles
(±Lobs/2) under a shear stress σapp . Figure from [Chakravarthy and Curtin (2011)].

with σY the yielding stress under uniaxial tension, μ the shear modulus, ν the Poisson’s ratio

and σobs the obstacle strength. Consequently, the flow stress accounting for the stress gradient

χ can be evaluated as

σ f low =σ′
Y f (εp ) =

(
σY

1−χLobs/4

)
f (εp ) (3.13)

Equation 3.13 highlights the difference between εGP and σGP: the hardening contribution

due to the presence of the stress gradient χ is considered instead of the strain gradient η.

Finally, σGP describes the size effect due to the variation of the material strength σ′
Y , which is

inversely proportional to the distance between the obstacles Lobs .

Consequently, the σGP model can describe size effects driven by intrinsic material

structures. However, this model is only valid for domains with simple slip systems and modest

dislocation motions. For instance, a too large number of dislocations may pile-up against

an obstacles. In reality, dislocations may transfer to other slip planes (i.e. cross-slip) under

high temperatures or high applied stresses, and such complex dislocation motions cannot

be considered by σGP. In these situations, it is necessary to characterize dislocation motions

explicitly, which is usually done with the methods described in the next sub-sections.

Discrete Dislocation Dynamics (DDD)

In this section, we turn our attention to a method which explicitly represents dislocations

and their evolution in time: the so-called Discrete Dislocation Dynamics (DDD). By tracking

the motion of dislocations in response to local stresses from the externally applied loads

or the elastic interactions with the other dislocations, this method provides a full access to

realistic dislocation-driven material deformations. The typical length scale where this method

is applied is the micro-scale. At this specific scale, dislocations are individually observed as

curved lines with the Transmission Electron Microscopy (TEM).
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In the following sub-sections, we review the implications of using DDD with two di-

mensional [Kubin and Canova (1992)] and three-dimensional [Arsenlis et al. (2007)] systems.

There are significant differences between 2d and 3d which are crucial to understand the new

possibilities provided by this Ph.D work.

2d DDD

x

y

obstacle

source

�n

i

�vi

Figure 3.2 – Schematic of a single crystal system including multiple slip systems and disloca-
tions. Figure from [Van der Giessen and Needleman (1995)].

Figure 3.2 shows a planar DDD system with several slip systems. Due to the two

dimensional-nature of this system, only infinite straight dislocations (shown with the markers

⊥) are taken into account, and they can be viewed as point-wise objects.

Such dislocations are parallel to one another and perpendicular to the x − y plane such

that only one character angle θ can be considered. These dislocations interact with each other

through elastic fields. The effective force acting on such point-like entity is computed as the

energy variation associated with its position:

�fi =−∂etot

∂�xi
, (3.14)

where �fi is the force per unit length, etot is the total elastic energy per unit length (due to the

plane strain/stress hypothesis), and�xi is the coordinate of the point i . In order to compute

the evolution in time of these dislocations, the velocity �vi of every points can be determined

by the so-called mobility law:

�vi = B(θ,T )(I −�n ⊗�n)�fi = Bθ(T )(I −�n ⊗�n)�fi , (3.15)

where �n is the normal unit vector of a given slip plane, I is an identity matrix, and B(θ,T ) is a

dedicated damping parameter, which accounts for the energy dissipated during a dislocation

motion. Physically, this damping mechanism occur due to phonon-viscous drag forces in a

crystal lattice, and should be defined as a function of θ and T [Hirth and Lothe (1992)]. We note

that in 2d DDD only one character angle θ is considered, such that the damping parameter
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3.2. Discrete Dislocation Dynamics (DDD)

is reduced to the function of temperature Bθ(T ). In general, this damping parameter can be

evaluated either from experiments, theory or molecular dynamics simulations.

To describe size effects due to intrinsic material structures with 2d DDD, two more

ingredients (the nucleation sources and the obstacles) are required. Indeed, the creation

of new dislocations is realized when the resolved shear stress overcomes a critical stress at

predefined locations: the nucleation sources. In this circumstance a dislocation dipole is

introduced next to the loaded source. After the creations, the dislocations can travel according

to the mobility law previously described, but can also be pinned by the obstacles. The pinned

dislocations can only pass the obstacles when their resolved stresses exceed the blocking

obstacle strength.

On the other hand, when dislocations pile-up against obstacles, their associated stresses

add-up and increase the effective backstress in the entire domain. As already described in

the previous chapter, these pile-up structures can decrease the resolved stress on the sources

and lead to hardening by preventing emissions of new dislocations [Van der Giessen and

Needleman (1995); Devincre and Kubin (1994)]. This hardening mechanism that 2d DDD

takes into account is similar to the concept of σGP: piled-up dislocations increase the resolved

stresses acting on the dislocation sources. Like σGP, the 2d DDD method cannot represent

plastic hardening due to complicated dislocation motions as can be observed in nature. This is

because dislocations are generally curved objects and not straight, which invalidates the point-

like representation. Only three dimensional systems allow to consider realistic dislocation

structures and motions.

3d DDD

Again, to consider the generally curved shape that dislocations can take, 3d discrete

dislocation dynamics simulations are required. Figure 3.3 (a) [Arsenlis et al. (2007)] shows a

snapshot of a 3d DDD simulation: a BCC metal (Mo) cube of 10 μm3 under uniaxial tension.

We can find multiple arbitrarily shaped dislocations forming complex networks. Like the

2d DDD framework, these dislocations interact with each other through the elastic force

field, and move by following the mobility law. During their motion, some dislocations meet,

connect, and compose junctions (shown as red lines) according to pre-defined topological

operations. The junctions can form strong obstacles and impede other dislocations motions.

Consequently, the size effect due to pinned dislocations can naturally be obtained without the

need for ad-hoc obstacles as for 2d DDD.

Dislocation nodes, forces and mobilities

Figure 3.3 (b) [Bulatov and Cai (2006)] illustrates a generic topology accounted in 3d

DDD. We observe that the dislocation lines are made of a set of nodes connected by straight

segments. For a given node, a Burgers vector is defined. At a node, the sum of all incoming
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Figure 3.3 – (a) A snapshot of discrete dislocation dynamics simulation with a BCC metal of 10
μm3. Dislocations are colored by the Burgers vectors. Figure from [Arsenlis et al. (2007)]. (b) A
dislocation network is composed of a set of nodes (empty circles) interconnected by straight
lines. Figure from [Bulatov and Cai (2006)].

Burgers vectors matches the sum of all outgoing Burgers vectors.

Again, the effective nodal force acting on a node is evaluated with the negative derivative

of the total energy of the system with respect to the node coordinate.

�fi =−∂Etot

∂�xi
(3.16)

However, if compared to 2d DDD, 3d DDD requires additions for the computations of the nodal

forces and velocities because of the curved nature of dislocations. First, the total energy is

computed on a volume (while in 2d etot is an energy per unit length due to plane strain/stress

conditions). Furthermore, this nodal force �fi can be computed with the more convenient

Peach-Köhler contour integral [Peach and Köhler (1950); Bulatov and Cai (2006)]:

�fi =
∮

C

�fPK Ni dl with

�fPK =σ ·�b ×�ξ,
(3.17)

where Ni is a linear interpolation function, σ is the stress field of the system (due to all

dislocations as well as externally applied loads), and �ξ is the local tangent vector to the

dislocation line.

Both the total energy Etot and stress field σ can be obtained by employing the linear

elasticity theory. It is known that this linear elasticity theory predicts that Etot is diverging if we

account for the regions of space around dislocation cores. To avoid such an ill-posed condition,

core and far-field regions have to be distinguished. The most generally implemented approach

to effectively realize this separation for the far-field quantities is the non-singular dislocation
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theory, which removes the core singularity by spreading the Burgers vector using a distribution

function [Cai et al. (2006)]. In the end a nodal force takes the general form:

�fi =
#seg ment s∑

e=1

�fe,i +�f cor e
i +�f exter nal

i (3.18)

where �fe,i is the force created by segment e onto node i , where �f cor e
i is the part of the

self force created by the core energy term, and where �f exter nal
i is the force created by stresses

not due to the dislocation network, for instance such as the resultant of applied boundary

conditions.

Like for 2d DDD, the nodal velocity �vi is determined with the mobility law from the

nodal forces �fi . However, for a curved dislocation there are many character angles as shown in

Figure 3.3 (b). Therefore, both dependencies on θ and T have to be considered in the drag

coefficients B(θ,T ) in Equation 3.15. The details of such a mobility law will be discussed in

Chapter 6.

Although the 3d DDD model can describe complex dislocation motions, this model

does not include a physically-based dislocation nucleation process, which needs an atomic

description. Therefore, an ad-hoc treatment is required in 3d DDD. For instance by plac-

ing dislocations with an initial dislocation density or with sources capable of emitting new

dislocations. Consequently the size effect involving dislocation nucleations (i.e. dislocation

starvation discussed in sub-Section 2.2.2) cannot be studied with 3d DDD.

Classical Molecular Dynamics

Classical molecular dynamics (MD) is a simulation method representing materials at

the atomistic level [Frenkel and Smit (2001)]. A set of atoms interacts through a force field

derived from dedicated potentials. For instance embedded atom potentials [Daw et al. (1993)]

account for some electronic effects and allow a more accurate atomistic force field for metallic

materials. With a given force �fi , the motion of the atom i is determined by integrating in time

the Newton’s second law:

mi�̈ri = �fi (3.19)

with mi its mass and �̈ri its acceleration.

The MD principle is simple and can provide detailed information on plastic deformations

of materials. Thanks to the atomic representation, dislocations are explicitly described as

misfit structures. For example, Figure 3.4 (a) [Cho et al. (2015)] shows an edge dislocation with

MD in a perspective view. Only the atoms below the slip plane (Y = 0 plane) are shown and
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Chapter 3. Computer Simulation Methods employed to study Size Effects

colored by their Y coordinate levels. The corresponding top view is depicted in Figure 3.4 (b)

where the detailed dislocation core structure is highlighted. In particular the stacking fault

region is particularly visible (stacking faults in FCC aluminum will be studied in Section 5.2).

With accurate inter-atomic potentials, the dislocation nucleation process can be naturally

predicted with MD simulations. As an example, Figure 3.4 (c) [Junge (2014)] shows the dislo-

cations nucleated as a consequence of a nano-scratch test. The dislocation loops, which are

represented by red atoms, are naturally nucleated under the indented surface (white atoms).

We conclude that MD can be very useful to model size effects when the leading mechanism is

(a)

X

ZY

Y

ZX

(b)

(c)

Figure 3.4 – (a) A perspective view of a MD system including an edge dislocation. Only the
atoms below the slip plane are depicted, and are colored by the Y coordinate. Figure from [Cho
et al. (2015)]. (b) The dislocation structure in the top view of the slip plane. The misfit stacking-
fault sequence represents the edge dislocation structure in a FCC crystalline material. Figure
from [Cho et al. (2015)]. (c) A snapshot of dislocation nucleation process during a nano-scratch
simulation. Figure from [Junge (2014)]

the dislocation starvation (sub-Section 2.2.2).

However, the main constraint of MD is on the domain size, since the number of degrees

of freedom increase very quickly with the specimen dimensions. For example, the number of

atoms in a typical grain (1μm3) of aluminum is approximately 25×1012. Simulating so many

atoms with MD is generally out of reach even with nowadays super-computers. Furthermore,

the simulations with such a number of atoms are limited to short times. Consequently, crystal

plasticity with medium grain sizes cannot be studied with MD.
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3.4. Coupling Atomistic to Continuum Methods

Coupling Atomistic to Continuum Methods

In order to reduce the aforementioned computational cost it is possible to employ

multiscale coupling methods. To that end, we need to identify the regions in which the fine

scale resolution can be neglected and replaced with a cheaper representation, such as a coarser

continuum-based finite element solver. Any coarsening implies a removal of some degrees

of freedom. While it allows to manipulate a cruder solution, it however will inevitably cause

unintended and spurious effects. The concurrent multiscale methods existing in the literature

can be distinguished with the employed strategy to separate scales and to select the degrees of

freedom to eliminate. Classically, we can distinguish the sharp interfaces from the overlapping

ones.

The earliest approaches address the problem of scale decomposition by a sharp sep-

aration of atomic and continuum zones. The continuum is discretized on a mesh which is

usually unrefined far for the atomic region, thus reducing the overall computational time.

The discrete-continuum interaction is realized by exchange-type boundary conditions. The

pioneering work of Kohlhoff et al. [Kohlhoff et al. (1991)], of Tadmor et al. [Tadmor et al.

(1996)] and Abraham et al. [Broughton et al. (1999)] all employed this idea. Among them, the

QuasiContinuum [Miller et al. (1998); Shenoy et al. (1999); Miller and Tadmor (2002); Dupuy

et al. (2005)] (QC) is certainly the most famous atomic-to-continuum coupling method. It

has been employed to study many fundamental problems of deformation in crystalline solids

such as fracture [Miller et al. (1998)], grain boundary structure and deformation [Shenoy et al.

(1998, 1999); Sansoz and Molinari (2005)], nano-indentation [Tadmor et al. (1999); Shenoy

et al. (2000)] and three-dimensional dislocation junctions [Shenoy et al. (2000)].

In general, the difficulty of these methods lies in the difference in nature between the

forces/energies between atoms and finite element nodes: atomic forces are non-local and

non-linear, whereas the continuum mechanics theory usually considers a constitutive law

based on local deformations. Therefore, a sharp boundary cannot be defined without causing

side effects. In practice, we observe the emergence of ghost forces since local versus non-local

force fields cannot be in perfect equilibrium all along the coupling region. Adding permanent

configuration forces [Shenoy et al. (1999)] can help in reducing such ghost-forces. Concerning

the non-linearity issue, a nice improvement can be made with the CauchyBorn rule [Tadmor

et al. (1996)] which is a constitutive law based on the underlying crystal and inter-atomic

potential (used in the QC approach).

When it amounts to the study of transient processes a sharp transition leads necessarily

to wave reflections [Tadmor et al. (1996); Wagner and Liu (2003); Xiao and Belytschko (2004)].

Indeed, the mechanical waves coming from the atomic model cannot be transferred to a

coarser model properly. Also it has been recently demonstrated that several displacement

approaches are strongly unstable [Till et al. (2015)]. As stated, another strategy employs

overlapping regions where the two models are co-existing and glued together with adequate

operators. By spreading the coupling over space, the degrees of freedom removal can be made
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smooth through space and time scales.

The method developed by Liu et al. [Liu et al. (2006); Wagner and Liu (2003)] treats the

problem of wave reflections with Green functions [Liu et al. (2006)] in the fashion of perfectly

matching boundary conditions. This allowed to compute the atomic vibrations for the atoms

which have been replaced by a continuum representation. Another possibility is offered in

the work of S. Xiao et al. [Xiao and Belytschko (2004)] which extends the Arlequin method of

Ben Dhia [Hachmi and Rateau (2005)] to gradually mix the respective energy/influence of

atoms and finite elements. Several applications of this class of methods may be found in the

literature [Xiao and Belytschko (2004); Anciaux (2007); Anciaux et al. (2006); Xiao and Yang

(2006); Luan et al. (2006)]. While these approaches address transient cases, the treatment of

thermal fluxes through the interface needs additional treatments. Several methods [Wagner

et al. (2008); Anciaux et al. (2012); Mathew et al. (2011); Ramisetti et al. (2013, 2014)] intent to

handle heat in various ways, with a more or less important computational cost.

However, none of the previously presented methods address the challenge that defects

represent. In particular, mobile defects such as dislocations may approach the continuum

regions leading to artificial forces preventing accurate calculations. A proper treatment of

dislocations, including their transfer to a DDD representation is the topic of the next section

as well as this Ph.D thesis.

Coupled Atomistic and Discrete Dislocation Method in 2d (CADD2d)

DDD and MD permit to analyze dislocation dynamics and size effects at two different

length scales: micro for DDD and nano for MD. However, in order to catch the most general

size effect, we need to model both nucleations and long range elastic interactions. Thus,

a multiscale approach modeling from nano- to micro-scales and handling dislocations is

required.

The Coupled Atomistic and Discrete Dislocation Dynamics method (CADD2d) is a two

dimensional multiscale coupling method between 2d DDD and MD [Shilkrot et al. (2004);

Shiari et al. (2005)]. The key concept of the CADD2d method is a geometrical decomposition:

an atomistic domain is used where dislocation nucleations are expected, whereas in the

remaining zone DDD is employed. These two regions are mechanically coupled with each

other such that dislocations can propagate from one domain to the other without any spurious

force.

Figure 3.5 [Miller et al. (2004)] shows a snapshot of an indentation simulation realized

with CADD2d. Figure 3.5 (a) shows the MD region, where a circular indenter is applied. Several

dislocations were naturally nucleated, and moved away from the indented region. Once they

are more than few nano-meters from the region of indentation, atomistic treatments are not

necessary to describe their motions. Therefore, as depicted in Figure 3.5 (b) their behaviors

are considered with the cheaper continuum description model (2d DDD). In order to solve the
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Figure 3.5 – An indentation study with CADD2d. (a) A close-up view at the indented surface in
the MD domain. (b) A view of the complete CADD2d domain. Multiple dislocations nucleated
under the indenter in MD are successfully transferred into DDD. Figures from [Miller et al.
(2004)].

stress field solution of a finite boundary problem where the indentation and the free boundary

boundary conditions are applied, the FE domain (mesh) is coupled with the DDD domain.

To seamlessly pass MD dislocations to the DDD region, the coupling scheme (so-called

dislocation detection/passing) is conducted. This coupling scheme will be discussed in the

following chapter. Finally, the MD dislocations are replaced by point-wise dislocations which

travel in the DDD region as we described in sub-Section 3.2.1.

The two dimensional (plane strain) description of dislocations can be avoided by extend-

ing into three dimensional systems. Recently, a road map of the three-dimensional CADD

(CADD3d) was proposed [Junge (2014)]. In the next chapter, based on the road map, the author

presents the CADD3d methodology, which was extended and implemented into generic and

parallel computing frameworks during the Ph.D work.
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4 Coupled Atomistic and Discrete Dislo-
cation Method in 3d (CADD3d)

In the previous chapter, we found that CADD2d has the advantage to describe material

plastic deformations at nano- and micro-scales in a concurrent manner. This feature is

essential to study the size effects experimentally observed (cf. Chapter 2). However, those

are three-dimensional in nature. Thus CADD2d needs to be extended into three dimensional

systems: CADD3d. It is expected to be very useful not only to study size effects but also to

analyze many other plasticity problems such as indentations and crack blunting. Among the

three different domains (MD, DDD and FEM), in this thesis we focus on the coupling between

the MD and DDD domains, which has been developed as part of the CADD3d project 1. In

the following sections, the details of the development, implementation and algorithm of the

MD+DDD coupling scheme will be discussed.

Differences between CADD2d and CADD3d

Infinite Straight Dislocations

Let us discuss the differences between CADD2d and CADD3d features. We will highlight

the main development challenge for CADD3d. The key point of CADD2d is the scheme to

detect and pass dislocations between the MD and DDD domains [Shilkrot et al. (2004); Shiari

et al. (2005)]. The schematic procedure of this algorithm can be found in Figure 4.1. The MD

region consists of a set of atoms (the full circles), and the boundary atoms (the empty circles)

are linked with the DDD domain. As described in Section 3.5, to solve complex boundary

condition problems, the DDD domain is coupled with the FEA domain (mesh). The boundary

MD atoms are called pad atoms, and their motion are controlled by the displacements of

the FE mesh. Therefore, the pure MD atoms communicate with the continuum through the

displacement field of the pad atoms.

In two dimensional systems, a dislocation is represented as a point-like object, and

1Swiss national science foundation project conducted by three principal investigators, William Curtin, Jean-
François Molinari and Guillaume Anciaux.
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(a) (c)(b)

pad DDDMD detection

passing

Figure 4.1 – The procedure of the detection/passing scheme of CADD2d. (a) An infinite straight
dislocation approaches the DDD domain. The non-linear core region is shown as the grey
circular area. This dislocation can be detected in the detection zone near the interface. (b) A
repulsive spurious force applies on the MD dislocation because the DDD mesh cannot sustain
the highly distorted core structure. (c) A successful dislocation passing from MD to DDD.
This is done by introducing a DDD dislocation after the MD dislocation detection. The MD
dislocation can disappear at the interface by adding the displacement field of a dislocation
with the opposite sign.

such a point-wise dislocation may approach the DDD region as shown in Figure 4.1 (a). The

displacement field created by the dislocation can be distinguished into two parts: the nonlinear

core region (the grey circular area), where the linear elasticity theory cannot be used, and

the far-field region, where it will be accurate enough. When the dislocation gets close to the

interface as shown in Figure 4.1 (b), the nonlinear region includes not only the pure atoms but

also the pad atoms. In such circumstances, the FE mesh results in a linear response which is

too stiff. It brings artificial forces preventing the MD dislocation to get close to the continuum

region. To solve this issue, a DDD node is introduced when an atomistic dislocation is detected

in the detection zone (see figure 4.1 (a) and (c)). After such an introduction, there are two

dislocations which strongly repel each other. The final step in the CADD2d passing strategy is

to impose the displacement field of an image dislocation with an opposite Burgers vector, so

that the remaining MD dislocation is strongly attracted to the interface where it will disappear.

By this detection/passing scheme, the dislocation can effectively travel from MD to DDD.

A similar strategy allows to realize the passing from DDD to MD (not described in here for

conciseness).

Hybrid Dislocations

Such a detection/passing scheme cannot be applied in CADD3d since dislocations are

curved objects in reality. Figure 4.2 (a) shows a schematic for a typical CADD3d domain. A

MD region is employed where dislocation nucleation sources/defects exist, and is surrounded

by a DDD domain. The detailed configuration of the interface between MD and DDD will be

described in the following sub-section. Several dislocations are shown in Figure 4.2. When

a dislocation is modeled with MD (and DDD), it is shown with a red line (and a blue line,

respectively). It is important to note that a dislocation may cross the interface, and in this case

it will have the two representations (atomistic and discrete) in one single dislocation structure,
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MDHybrid dislocation

�text

�uext

DDD

Nucleation source
(e.g., crack tip)

Slaved DDD

Pad atoms

(a) (b)

Figure 4.2 – CADD3d-domain decomposition. The MD region contains a dislocation source,
while the remaining region is handled with DDD. Several dislocations are plotted. There is
one dislocation loop which is partly in the MD domain and partly in the DDD zone. Such
dislocation is the so-called hybrid dislocation.

which is called a hybrid dislocation.

Such hybrid dislocation requires particular features from CADD3d, which are not existing

in the CADD2d formulation. First, the two different descriptions need to glide smoothly as

one single dislocation structure. If they do not evolve in a similar manner, then a bi-material

interface is effectively simulated which leads to inaccuracies. Figure 4.2 (b) shows the close-up

view of the hybrid dislocation at the coupling interface. The MD atoms are bounded by pad

atoms, which are constrained atoms, and the DDD dislocation is ended with a slaved DDD

node. Therefore, by constraining the degrees of freedom in these boundary regions, the two

different representations will effectively communicate and behave consequently as one single

dislocation structure. We call this strategy the application of reciprocal boundary conditions,

and details of this coupling scheme will be discussed in sub-Section 4.2.2.

Second, a smooth transition between MD and DDD is required, which invalidates the

detection/passing scheme employed in CADD2d. Such smooth transition allows dislocations

traveling in the CADD3d domain with atomistic, hybrid and discrete-line representations

depending on their locations. We will achieve this behavior by the strategy called dislocation-

migration scheme that will be explained in sub-Section 4.2.2.

CADD3d

In the previous section, we have proposed two of the components of the CADD3d

coupling scheme: application of reciprocal boundary conditions and dislocation-migration
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DDD
ParaDiS

FEA
Akantu

MD
Lammps

CADD3d
LibMultiScale

Figure 4.3 – Three simulation engines are plugged-in LibMultiScale, which is currently be-
ing maintained and developed in house [Anciaux et al. (2006); LibMultiScale (2006)]. For
the molecular dynamics domain, Lammps, developed by Sandia national laboratory, is cho-
sen [Plimpton (1995); Lammps (1995)]. The plug-in for the discrete dislocation dynamics
domain is ParaDiS, which is maintained by Lawrence Livermore national laboratory [Arsenlis
et al. (2007); ParaDiS (2007)]. The last plug-in Akantu is chosen to describe the finite element
domain, and is maintained in house [Richart et al. (2010); Akantu (2007)].

scheme. Detailed explanations of these components and the implementation into an open-

source software will be given in this section.

Coupling Engine

LibMultiScale is a parallel C++ framework for multiscale coupling simulations [Anciaux

et al. (2006)], which is currently being developed and maintained by the Computational Solid

Mechanics Laboratory in EPFL [LibMultiScale (2006)]. As shown in Figure 4.3, LibMultiScale

currently includes three simulation engines for the three computational domains. Lammps

for molecular dynamics (MD), ParaDiS for discrete dislocation dynamics (DDD) and Akantu

for finite element analysis (FEA). By coupling these three software within LibMultiScale, the

Concurrent Atomistic/Discrete Dislocations method (CADD) can be realized [Junge (2014)].

The current status of CADD can be summarized as follows: the interface between MD

and FEA has been developed recently, and now supports static and dynamics coupling prob-

lems [Junge (2014)]. The interface between MD and DDD is the main theme of this thesis, and

will be described in details in this chapter. The coupling scheme between DDD and FEA has
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not been developed yet, and this can be considered as an objective for the future.

It is worth to mention that the DDD method needs the nodal forces to be computed by

taking into account all the other dislocation segments (see equation 3.18). When a MD region

replaces several of these segments, their influence on the nodal forces cannot be computed

anymore. In the original formulation of CADD2D, this was compensated by the resolution

of a linear elastic problem, providing an additional stress field matching the missing forces.

In principle CADD3D needs a coupling scheme between DDD and FEA to achieve the DDD

nodal force field calculation. To overcome such a limitation, the current CADD3d method is

simplified in two points: first, only a constant external shear loading will be considered and

second the DDD network needs to be known everywhere, including in the atomic region. The

details and implication of these two conditions will be shown in Section 7.2.

Coupling Algorithm

Figure 4.4 shows the detailed CADD3d algorithm where the MD (Lammps) and DDD

(ParaDiS) domains are highlighted (red box: MD processors; blue box: DDD processors). More

precisely, each of the MD and DDD domains is simply partitioned into sub-domains, and

each domain is assigned to a given processor. The parallel computation for each single-scale

method is realized thanks to its engine code. Particularly, to support the parallel coupling

calculations, the coupling algorithm has to be parallelized, which has been implemented with

the message-passing paradigm (MPI) [MPI (1993)].

In turn, the coupling code can be decomposed in eight sub-modules (inside the cyan

dashed-dot-lines) as shown in Figure 4.4. These modules are executed after the time integra-

tion of the MD and DDD domains. The coupling is called every update step (tupdate) which

does not have to be the same as the MD and DDD integration time steps. However, this update

step tupdate should be chosen properly, which will be clarified later. Let us tag the coupling

modules from 1© to 8©. We will refer to these numbers while providing the details of the

coupling algorithm in following.

Coupling Procedure

During the evolution of the hybrid dislocation, the reciprocal boundary conditions must

be maintained such that the two representations behave as a single entity. Figure 4.5 shows

how to apply the necessary reciprocal boundary conditions during the gliding motion of a

hybrid straight dislocation. Above a limiting finite shear load the hybrid dislocation will glide.

Without any coupling, the interface regions will remain at their positions. This is what happens

during an integration time-step before the coupling is actually enforced. Consequently, a

hybrid dislocation is first distorted close to the coupling interfaces because the reciprocal

boundary conditions are "outdated" as shown in Figure 4.5 (b). At this moment, the update

scheme of the reciprocal boundary conditions must be carried out as follows.
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Dislocation-
Detection

MD computation

Linear-Elasticity-
Displacements-on-Pad

MD initialization DDD initialization

Remesh

End

-Comm.1

t<tmax

t%tupdate=0

t=t+Δt t=t+Δt

t<tmax

Start

1©

6©

7©

3©

4©

Coupling

-Comm.2
Coupling

2©

5©

MD processors

DDD processors Coupling implementation

DDD implementation

MD implementation

t%tupdate=0

Core-Correction

DDD computation

Update-Slaved-
DDD-node

Introduce-DDD-Nodes

8©
MD+DDD

Figure 4.4 – Algorithm of the CADD3d method. MD and DDD processors are shown with the
red and blue solid lines, respectively, and their implementation components are surrounded
by the orange and the dark-blue dashed lines, respectively. The components of the CADD3d
implementation are placed inside the cyan dashed-dot-lines. Each of them are run on proces-
sor subsets handling either MD or DDD. The components running on the different processors
communicate with each other through the two steps labeled Coupling-Communication 1 and
Coupling-Communication 2.
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(a) (b)

(c) (d)
distortion

MD atoms

Pad atoms

MD dislocation Slaved DDD nodes

Detected cores DDD nodes
DDD MD

Figure 4.5 – Hybrid straight dislocation dynamics with the update of the reciprocal boundary
conditions. (a) At an initial stage, the MD and DDD boundary conditions are consistent with
each other. (b) By applying a shear load, the two dislocation sub-parts move, which lead to
mismatched boundary conditions. The update of the reciprocal boundary conditions consists
of the two steps: (c) update of the slaved DDD nodes and (d) update of the pad atoms.

1© Dislocation-Detection: First, the MD-sub-part dislocation is analyzed to find the

locations of the dislocation cores. One of the most common methods for this task

stands on the centro-symmetry criterion which can be employed to distinguish defects

from a perfect lattice [Kelchner et al. (1998)]. An alternative method is the Dislocation

Extraction Algorithm (DXA) developed by Stukowski and Albe [Stukowski and Albe

(2010)]. To employ this approach, the DXA algorithm has been recently implemented by

M.L. Hodapp 2 into LibMultiScale in a more compact and optimized way. The detected

dislocation cores are denoted in Figure 4.4 with the blue crosses on the MD sub-part in

Figure 4.5 (b).

2© Coupling-Communication1: The set of coordinates detected is dispatched from MD to

DDD. Each MD processor broadcasts its core coordinates to the DDD processors.

3© Update-Slaved-DDD-node: Based on the received data, the DDD domain updates their

slaved DDD nodes. Currently, we enforce the position of the slaved DDD node between

the two closest detected cores. By perpendicularly projecting a straight line onto the

2One of the CADD3d-project members associated in LAMMM, EPFL
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segments connecting these two MD cores, the next position of the slave DDD node can

be determined as shown in Figure 4.5 (b) with the black dashed lines.

4© Remesh: After the update of the slaved DDD nodes, the DDD networks may require

topological operations (not shown in Figure 4.5). For instance, the updated constrained

nodes do not meet the criterion for mesh coarsening. To avoid such situations, a

coarsening or refining procedure needs to be performed, and it is usually performed by

executing the remesh routines implemented in the ParaDiS engine.

5© Coupling-Communication2: After the remesh, the DDD nodal coordinates and their

connectivities are sent to the MD processors. More precisely, all the DDD nodes and

their connectivity information, which are distributed over the DDD processors, are

gathered in one single DDD processor. Then, this collected data is dispatched to the

MD processors meaning that only one DDD processor communicates with all the MD

processors.

6© Linear-Elasticity-Displacements-on-Pad: Then, with the received data, the MD

processors can compute the displacements of the pad atoms in order to provide a

matching boundary condition through the pad region. We employ the Barnett’s ap-

proach [Barnett (1985); Barnett and Balluffi (2007)] to obtain the linear elasticity dis-

placement solution for the pad atoms. According to the theory, we have to consider the

elastic displacement contributions from all the DDD segments for each pad atom, and

this total effect can be fulfilled thanks to the DDD data set gathered from the previous

module ( 5©).

7© Core-Correction: The linear elasticity theory diverges in core structures and thus it

is required to correct the analytic displacement field. The additional correction field is

evaluated by using the so-called the core template. Therefore, the core template should

be prepared in advance by studying dislocation core structures with offline MD. The

core template is the first building component, which will be described in details in

Chapter 5. After this step, the hybrid dislocation gains the correct boundary conditions

as shown in Figure 4.5 (d) matching the MD and DDD sub-parts

8© Introduce-DDD-Nodes: When a MD dislocation (or the MD part of a hybrid dislocation)

approaches a pad region as shown in Figure 4.6 (a), a smooth-transition into a DDD

dislocation should be realized. It can be achieved by introducing new DDD nodes at the

core positions detected from MD. This feature will be clarified below.

These eight steps constitute the coupling algorithm and enforce adequate reciprocal boundary

conditions. As already mentioned, it is possible to apply this coupling scheme at a different

frequency than the MD/DDD time-integration frequency. Particularly, by choosing a large

update step (tupdate), this can be helpful to save computational time. However, small distor-

tions of the dislocation lines can be observed at the transition from the atomic representation

towards the continuum one (a visual guide is provided as an example with the red dashed line
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in Figure 4.5 (d)). Such distortions increase when enlarging the update step, and spurious

forces may pollute the coupling simulations. Therefore, the update step (tupdate) has to be

chosen carefully, and this trade-off condition will be studied with a benchmark problem in

Chapter 7.

(b)

(d)

MD atoms

Pad atoms

MD dislocation Slaved DDD nodes

Detected cores DDD nodes
DDD MD MD+DDD

(c)

(a)

Figure 4.6 – A straight hybrid dislocation approaches the DDD domain. (a) The hybrid disloca-
tion moves forward, and needs to update the boundary conditions of MD and DDD. (b) The
reciprocal boundary conditions are updated. The MD sub-part will be completely impeded
by the pad atoms in front. (c) To migrate the hybrid dislocation to DDD, new DDD nodes are
introduced at the cores in the insertion (MD+DDD) zone. (d) The dislocation escapes the MD
domain, and the MD dislocation leaves a step at the outer-surface of the pad region.

Let us discuss in more details the hybrid dislocation migration that was briefly described

in the very last coupling step ( 8©). Figure 4.6 (a) shows a hybrid straight dislocation approach-

ing the DDD domain. As previously discussed along with Figure 4.5, the reciprocal boundary

conditions result in the situation shown in Figure 4.6 (b). In the presented case, a pad region

stands in front of the MD sub-part of the hybrid dislocation. If nothing is done, the atomic

representation will be impeded by the constrained pad atoms: this prevents the travel into the

DDD region. To avoid it, a new DDD node is effectively introduced when the MD dislocation

core is near the pad region. To that end, an additional region (the insertion zone) should be de-

fined near the coupling interface as shown in Figure 4.6 with the blue dashed box (MD+DDD).

When MD cores are detected in the insertion zone (MD+DDD), the corresponding DDD nodes
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are inserted (in step 8©) as shown in Figure 4.6 (c). The introduced DDD nodes should travel at

the same speed as the MD dislocation thanks to the matching mobility law. With this strategy,

the hybrid dislocation can smoothly transform into a DDD dislocation, and escape the pad

region as shown in Figure 4.6 (d).

It is worth being noted that this coupling scheme is only valid if the two dislocations

travel at the same pace, which relies on an accurate mobility law in the DDD domain. As

discussed in Section 3.2.2, a mobility law of FCC dislocations can be defined as a function of a

character angle θ and a temperature T [Hirth and Lothe (1992); Cai and Bulatov (2004)], and

can be constructed by a MD dislocation mobility study. This will be detailed in Chapter 6.

To summarize, we have given the main steps of the new CADD3d coupling scheme. This

method requires three components: the MD dislocation detection, the core templates, and the

mobility law. In the next two following chapters (Chapters 5 and 6), the last two components

will be evaluated with molecular dynamics, and be analyzed. This new information, which was

not previously available in the literature, will be used as input to this novel coupling method.
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5 Dislocation Core Structures, Peierls
Stresses and Core Templates with Sev-
eral Character Angles in Aluminum

This chapter is a modified version of the journal paper Toward a 3D coupled atomistic and

discrete dislocation dynamics simulation: dislocation core structures and Peierls stresses with

several character angles in FCC Aluminum published in the Advanced Modeling and Simulation

in Engineering Sciences on 2015 [Cho et al. (2015)] including a new section (Section 5.6:

Generation of Core Templates).

The coupling method proposed in the previous section needs two building components.

One of them is the core template, employed to enforce displacement boundary conditions at

the coupling interface. In this chapter, we compute this core template by means of molecular

dynamics simulations.

This chapter is organized as follows. In Section 5.1, a refined definition of the core

template is given. Since the core structure is angle dependent, its evaluation is needed for

virtually any character angle. Therefore, in Section 5.2 we provide comprehensive modeling

techniques to create a dislocation with a chosen mixed character angle. We also provide an

extended variational Peierls -Nabarro (PN) method [Bulatov and Kaxiras (1997)] to validate

the obtained MD core structures in Section 5.3. Interestingly, the extended PN method can

be used to predict core structures of mixed dislocations which cannot be obtained with MD

simulations due to the computational cost. With this successful extension of PN method,

we obtain core structures matching MD results, and the analysis of the details of dislocation

core structures for all the studied character angles in Section 5.4. We also measure Peierls

stresses for various mixed dislocations in Section 5.5, and show that Peierls stresses are largely

influenced by the atomistic structures of the dislocation cores. Finally, in Section 5.6, we

conclude this chapter by detailing the construction of the core templates from the obtained

MD core structures.
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rc

pad

θ

Non-liear core region:

Far-field region: linear elasticity �ue(�x0)

correction Δ�uc(�x0)
linear elasticity �ue(�x0) +

MD Pad DDD

Figure 5.1 – Schematic of a dislocation core in the pad. For most of the pad, the linear elasticity
displacement solution �ue is adequate. However, in the vicinity of the dislocation line (non-
linear core region), it is necessary to add the correction field Δ�uc obtained from the core
template to minimize spurious forces.

Core templates

A schematic of the core template principle is shown in Figure 5.1 with a hybrid dislocation

consisting of atomistic and discrete dislocations in the MD and DDD domains, respectively.

At the interface, the hybrid dislocation consists of the MD and DDD boundary conditions, and

they match each other (i.e. respective boundary conditions as discussed in Chapter 4). More

precisely, a correction field obtained from the core template is applied inside the nonlinear

dislocation core region (defined by a cut-off radius rc ) to correct the diverging nature of the

linear elasticity solution.

Such a correction Δ�uc (�x0) for an atom with an initial position�x0 is the difference between

the exact atomistic solution �uA(�x0) and the prediction provided by linear elasticity �ue (�x0):

Δ�uc (�x0) =�uA(�x0)−�ue (�x0) =�uA(�x0)−∑
j
�ue, j (�x0), (5.1)

where �ue, j is the contribution of the j -th discrete dislocation segment to the displacement

field. By assuming that the atomistic solution can be split into individual contributions due to

the discrete dislocation segments, we obtain this expression:

�uA(�x0) =∑
j
�uA, j (�x0), (5.2)

and consequently the correction Δ�uc can be expressed as a sum segment contributions:

Δ�uc (�x0) =∑
j
Δ�uc, j (�x0) =∑

j

[
�uA, j (�x0)−�ue, j (�x0)

]
. (5.3)

Far from any dislocation core, non-linear effects become negligible, and the small-strain linear
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5.2. Atomistic Dislocation Modeling

elasticity solution �ue converges to the atomic solution �uA. Also, the atomistic solution �uA, j can

be approximated in the core region of segment j with the displacement field due to a straight

dislocation:

�uA, j (�x0) ��uS
A(�x0,θ j ) ∀�x0 s.t D(�x0) ≤ rc (5.4)

where D(�x0) is the distance to the dislocation line, θ j is the local character angle of the j -th

segment, and �uS
A is the displacement of a straight dislocation. This approach is valid only if line

curvatures are much less than the considered core radius. Furthermore, the dislocation lines

should be far enough from each other to be able to neglect non-linear close-range interactions

between dislocations: this constrains the overall density of dislocations. The displacement

field around straight dislocations can be obtained by modeling straight dislocations with

MD. A rigorous and detailed setup for the atomic modeling of arbitrary mixed and straight

dislocations is provided in the following section.

Atomistic Dislocation Modeling

A straight single dislocation, as shown in Figure 5.2, is inserted in the simulation box

�d
�b

slip plane

core

x (PBC)
z (PBC)

y

θ θ

�b�d

slip plane

z (PBC)

x (PBC)

y

(a)

(b)

Figure 5.2 – (a) Schematic modeling of a straight dislocation with an arbitrary character angle.
(b) Top view of the slip plane. Lattice coordinate in y axis is [111], while the coordinates of x
and z axes vary with the character angle θ as shown in Table 5.1.

having periodic boundary conditions (PBC) both in the dislocation gliding (z) and line (x)

directions. As shown in Figure 5.2 (b), by setting the character angle θ as an arbitrary value,

we can model several mixed dislocations. For an edge (respectively screw) dislocation, the

dislocation line direction �d is defined as perpendicular (respectively parallel) to the slip

direction (Burgers vector�b) on the same slip plane. The edge (90◦) and screw (0◦) dislocations

in FCC are modeled by choosing the dislocation line direction as �d = [112̄] for edge and
�d = [11̄0] for screw with the same Burgers vector �b = 1

2 [11̄0]. Therefore, in order to create

intermediate angle dislocations (0◦ ≤ θ ≤ 90◦), one needs to choose the dislocation line

direction �d accordingly. We explain the detailed procedure to find a line direction �d for a

specific angle dislocation as shown in Figure 5.3.

41



Chapter 5. Dislocation Core Structures, Peierls Stresses and Core Templates with Several
Character Angles in Aluminum

�b

�d

�b40.893◦

�d

z
y[111]

x′ [1̄54̄]

z′ [31̄2̄]

z′ [31̄2̄]

x′ [1̄54̄]

(a) (b)

49.107◦

O O

z
y[111]

x[112̄]

z[11̄0]

Figure 5.3 – (a) Procedure to find lattice coordinates for a mixed dislocation based on the
atomistic representation used for edge dislocation (x = [112̄], y = [111] and z = [11̄0]). (b)
Result of the procedure (x ′[1̄54̄], y = [111] and z ′ = [31̄2̄]). The 49.107◦ mixed dislocation
can be created by choosing x ′ as the dislocation line direction. The full black circles are the
minimal number of atoms under the given coordinate system, and empty black circles are the
result of replications.
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5.2. Atomistic Dislocation Modeling

The empty/full circles in Figure 5.3 (a) are atomistic positions in the slip plane (111).

The full circles represent atoms contained in a chosen periodic unit cell, and its replications

in x and z directions generates the other atoms as empty circles. We select one atom in the

unit cell as a reference point O. Then, one of the neighboring atoms of O indicated by the

orange color arrow is chosen as shown in Figure 5.3 (a), which can be used to construct the

direction z ′ = [31̄2̄] by connecting it to O. The cross product of the y[111] and z ′[31̄2̄] directions

gives the remaining lattice coordinate x ′[1̄54̄] indicated by another orange arrow. Atomistic

positions constructed using the new lattice coordinate system (x ′, y and z ′) are shown in

Figure 5.3 (b). By choosing the dislocation line in x ′ direction with Burgers vector (�b = 1
2 [110]),

a mixed (49.107◦) dislocation can be modeled. Other neighboring atoms, defining other z ′

axes, provide lattice coordinates and associated angles for other mixed dislocations. In this

study, we have chosen eight representative cases which are presented in Table 5.1. It shows

that the sizes of minimum periodic unit cells vary with the character angles. For example,

the 90◦ (edge) dislocation has the periodic unit cell with dimensions DX =	
6a, DY =	

3a

and DZ =	
2a, while the size of the unit cell of the 49.107◦ (mixed) dislocation is DX =	

42a,

DY =	
3a and DZ =	

14a with a = 4.056Å (the lattice constant). Therefore, the number of

replicas need to be carefully chosen to balance evenly the number of atoms and the length of

the simulation box with respect to the desired character angle.

In order to insert a dislocation with a Burgers vector�b = 1
2 [11̄0], we employ the edge and

screw Volterra displacement fields (u0
x , u0

y and u0
z ) given by [Hirth and Lothe (1992)]

u0
x (z, y) = |�b|

2π
arctan

y

z
,

u0
y (z, y) =−|�b|

2π

(
1−2ν

4(1−ν)
ln(z2 + y2)+ z2 − y2

4(1−ν)(z2 + y2)

)
,

u0
z (z, y) = |�b|

2π

(
arctan

y

z
+ z y

2(1−ν)(z2 + y2)

)
(5.5)

θ (◦) x y z Replicas (x, y, z) Atoms
90 (edge) [112̄] [111] [11̄0] (6, 10, 60) 86040

70.893 [145̄] [111] [32̄1̄] (2, 10, 20) 66900
60 [011̄] [111] [21̄1̄] (10,10, 30) 71700

49.107 [1̄54̄] [111] [31̄2̄] (2 ,10, 20) 66960
40.893 [1̄32̄] [111] [51̄4̄] (4 ,10, 12) 80400

30 [1̄21̄] [111] [101̄] (6, 10, 60) 86220
19.107 [2̄31̄] [111] [415̄] (4, 10, 12) 80520

0 (screw) [1̄10] [111] [112̄] (10,10, 30) 72000

Table 5.1 – Selected eight angles, lattice coordinates, number of replicas and atoms of each
simulation box.
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where ν is Poisson’s ratio of the material. For a mixed dislocation, the displacements (u0
x , u0

y

and u0
z ) are rotated by the character angle θ as

�utotal(z, y) = (ux ,uy ,uz ) with

ux (z, y) = u0
x (z, y)cosθ,

uy (z, y) = u0
y (z, y)sinθ,

uz (z, y) = u0
z (z, y)sinθ.

(5.6)

The rotated total displacement �utotal is imposed on the perfect crystal. Figure 5.4 shows

the change of simulation box after imposing the displacement. The boxes before and after

imposing the fields are represented by the gray dot and black solid (dashed) lines respectively.

In order to create a straight boundary on the left side of the simulation box in direction z,

image dislocations are inserted additionally on the other side of z direction. The right side

of the simulation box violates the PBC in direction z. This violation can be simply fixed by

two additional geometric treatments. First, the step created by the edge displacement fields

z

y

x

z

x
y

�b sin θ

−�b cos θ

(b)

(a)

Figure 5.4 – Deformation of the simulation box after imposing the Volterra fields. (a) front
view and (b) top view. The initial configuration is denoted by the gray dot lines, and the box
after inserting the dislocation is described with the black solid lines. The dashed black lines in
(b) are the boundary of the bottom side in the y direction.

(uy and uz ) can be avoided by removing the extra plane (a slab of length �b sinθ). Second,

as seen in 5.4(b), the opposite boundaries in direction z mismatch each other by half of the
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5.3. Method: Variational Peierls -Nabarro Method

screw Burgers vector �b/2cosθ. The dashed black lines are the boundaries of the bottom

surface. This mismatch created by the screw displacement field (uz ) is fixed by tilting the

simulation box with respect to the y axis in the x direction by half of the corresponding screw

component −�b/2cosθ. Consequently, the PBC in the z direction is satisfied without any

change of the original elastic displacement field. Finally, the surfaces in the y direction remain

free boundaries.

In order to find the equilibrium state of dislocation core structures, the simulation box

has to be relaxed. We choose the latest Aluminum EAM potential (Mendelev et al. Mendelev

et al. (2008)) to evaluate the inter-atomic forces. The comparison of this potential with other

EAM ones will be described in Section 5.3. We relax by using a quenching process which is

stopped when a norm of forces of all the atoms is below 10−10 eV /Å.

Atomistic structures resulting from the relaxation are shown in Figure 5.5 for the cases

of 90◦ and 49.107◦ dislocations. The atoms are colored by the y coordinates (normal to the

slip plane). The initial dislocation line is dissociated into two partial dislocations. After the

dissociation, the regions far away from the dislocation core show the red (A) → yellow (B) →
cyan (C) → blue (A) color sequence while the area around the dislocation core shows the red

(A) → yellow (B) → blue (A)1 color sequence. The modified stacking sequence is known as a

stacking fault between two Shockley partial dislocations [Hirth and Lothe (1992)] (indicated by

the black arrows in the right side of Figure 5.5). These partials have dissociated from a perfect

dislocation (�b = 1
2 [11̄0] =�b1+�b2 with�b1 = 1

6 [12̄1] and�b2 = 1
6 [21̄1̄]) due to the energy landscape

of the FCC structure. We can see that the stacking fault width for the 49.107◦ dislocation is

smaller than for the 90◦ (edge) dislocation. Furthermore, the two partials are symmetric in

the case of the edge dislocation, but not for intermediate (49.107◦) dislocations. In order to

understand and validate these relaxed core structures, the variational Peierls -Nabarro model,

describing dislocation core structures with a continuum representation, is used in the next

section.

Method: Variational Peierls -Nabarro Method

Continuum theory of linear elasticity provides useful analytic solutions for dislocation

problems because the theory offers quite accurate dislocation structures when far from the

core. However, this theory cannot be employed anymore near the dislocation center, where

one finds highly distorted atomistic structures. These nonlinear atomic interactions can

be naturally captured by an atomistic model. For these reasons, simulations combining

the continuum and atomistic models can be useful not only for the far field but also for

the dislocation center. One of the available tools combining the continuum and atomistic

models is the variational Peierls -Nabarro (PN) method [Burgers (1940); Nabarro (1947)], which

generally has been used to calculate dislocation core structures by minimizing the total energy

1The stacking falut sequence of the dislocation core region (A→B→A) allows us to see the second layer of A
atoms. These atoms are not seen in the stacking sequence of perfect FCC crystal systems (A→B→C→A).
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90◦

49.107◦

(edge)

(mixed)

(a) (b)

z

x

z

x

z

x

z

x

Figure 5.5 – Atomistic structure of the edge (90◦) and mixed (49.107◦) dislocation in FCC Al.
(a) compact core structures after imposing the Volterra field / before the relaxation. (b) core
structures after relaxations. The atoms are colored by coordinates of the y axis. Red, yellow,
cyan, and blue atoms are placed on top, 2nd, 3rd and 4th layers in the y axis from the slip
plane. The initial compact dislocation lines dissociate into two Shockley partial dislocation
lines indicated by the black arrows.

46



5.3. Method: Variational Peierls -Nabarro Method

of the system. More precisely, the energy in the far field is captured by the energy formulation

of continuum linear elasticity theory, while the energy in the core region is obtained by using

the crystalline misfit energy and a spread displacement field on the slip plane. The total energy

is the sum of both these energy formulations, and the optimal dislocation core structures are

found when the total energy is minimum. The PN model is known as a tool providing good

descriptions of dislocation core structures in comparison with MD results [Bulatov and Cai

(2006); Bulatov and Kaxiras (1997); Schoeck (2012); Hunter et al. (2011); Ngan (1997)].

The original PN formulation starts from the total energy Etot:

Etot = Eel +Emsft,

where Eel is the elastic energy, and Emsft is the misfit energy. Because the original Volterra

displacement field �u is singular on the dislocation core, the original energy formulation is

ill-posed. Therefore �u has to be spread, which can be performed in two ways. In a first ap-

proach, the displacements are divided into edge uz and screw ux components using several

arc-tangent functions [Bulatov and Cai (2006); Bulatov and Kaxiras (1997); Schoeck (2012)].

A second method called phase field (PF) method is distributing the displacement �u into all

possible slip directions u1 = [01̄1], u2 = [101̄] and u3 = [1̄10] using scalar functions ζ(z) record-

ing the amount of slips [Hunter et al. (2011); Denoual (2007); Shen and Wang (2003, 2004)].

In this section, we choose the first approach without comparisons between the two methods

because the both methods are known to provide sufficiently good dislocation core structures

confirming the obtained atomistic simulation results. The two arc-tangent functional forms

for both edge u0
z and screw u0

x displacements as described in [Bulatov and Cai (2006)]:

u0
z = A1 arctan

z − z1

c1
+ A2 arctan

z − z2

c2
− b

2
,

u0
x = A3 arctan

z − z1

c3
+ A4 arctan

z − z4

c4

(5.7)

where Ak , ck and zk are the parameters obtained through minimization. By the principle of

superposition, we rotate u0
z and u0

x by the character angle θ to have slip and line directions in

z and x axes respectively:

uz = b

π
(u0

z sinθ−u0
x cosθ)− b

2
,

ux = b

π
(u0

x cosθ+u0
z sinθ).

(5.8)
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With the arc-tangent shape of displacements in hand (uz and ux ), we can construct analytically

the elastic energy Eel:

Eel =−Kedge

∞∫
−∞

∞∫
−∞

duz

d z

duz

d z ′ ln |z − z ′|d zd z ′

−Kscrew

∞∫
−∞

∞∫
−∞

dux

d z

dux

d z ′ ln |z − z ′|d zd z ′
(5.9)

where Kedge =μ/(4π(1−ν)), Kscrew =μ/4π.

The misfit energy Emsft can be constructed by using Equation (5.10) with the γ-surface

γ(uz ,ux ) obtained from independent MD simulations. The γ-surface are computed by con-

stant and rigid shifting of two crystals on the glide plane (111) against each other [Zimmerman

et al. (2000)]. The results of γ-surface of Mendelev et al. [Mendelev et al. (2008)] potential is

shown in Figure 5.6(a).

Emsft =−
∞∫

−∞
γ(uz (z),ux (z))d z (5.10)

For a dislocation in FCC materials, the generalized stacking fault (GSF) energy curve in x =
〈112̄〉 directions is important to understand dislocation slip behaviors. The GSF energy curve

was first suggested by Vitek [Vitek (1968)] to be composed of an intrinsic stacking fault energy

γI (ISF) and an unstable stacking fault energy γU (USF) [Hunter et al. (2011); Swygenhoven et al.

(2004)]. The ISF energy is the local energy minimum of partial dislocations, and the USF energy

is the minimum energy required in order to translate partials. The obtained GSF energy curve

in x = 〈112̄〉 is given in Figure 5.6 (b) with γU = 243.3m J/m2 and γI = 128.6m J/m2. When

compared DFT computations and Mishin & Farkas, our selected Mendelev et al. potential

provides an accurate description of γU and γI .

After constructing the total energy formulation, one can see that the only difference

between the arbitrary character angles is the amount of elastic energy Eel given by the terms

Kedge and Kscrew (see Equation 5.9), which differ by 1/(1−ν): the dislocations close to edge have

larger elastic energies than the dislocations around screw. The total energy Etot is minimized

numerically to get the optimal shape of the displacement fields �u over the slip plane.
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z[11̄0]

Mendelev et al.

γU

γI

(a) (b)

(mJ/m2)x[112̄]

Figure 5.6 – (a) Periodic γ-surface in the x and z directions of the Mendelev et al. EAM potential
[Mendelev et al. (2008)]. (b) GSF energy curves in 〈112〉 direction of several Al EAM potentials
[Angelo et al. (1995); Voter and Chen (1987); Oh and Johnson (1988); Mishin et al. (1999)] and
DFT computations Hartford et al. (1998)(figure was taken with agreement of copyright by
author [Zimmerman et al. (2000); Ercolessi and Adams (1994)] and IOP publishing). The blue
curve shows results obtained with the Mendelev et al. potential [Mendelev et al. (2008)]. We
reproduce one of author’s results shown by the red curve with Mishin and Farkas potential
[Mishin et al. (1999)].
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Results and Discussion: Comparison between the MD and PN Models

Core Structures

By dumping the displacements of all atoms located on the upper and lower slip planes

in the MD simulation, we can compare the displacements �u = (ux ,uz ) with the PN results as

shown in Figure 5.7. The MD results are represented with markers while the PN results are

described by lines. Clearly, the PN model predicts well the atomistic dislocation core structures.

The edge (90◦) dislocation is decomposed into the two symmetric Shockley edge and screw

partial dislocations. As the angle increases, the partial displacements are no longer symmetric

to each other, and finally become symmetric again at the angle of screw dislocation (0◦). The

PN, ux/|�b|
PN, uz/|�b|
MD, ux/|�b|
MD, uz/|�b|

70.893◦ 60◦90◦ (edge)

49.107◦ 40.893◦ 30◦

19.107◦ 0◦ (screw)

Figure 5.7 – The displacements uz (edge direction), ux (screw direction) over the z coordi-
nate (normalized by Burgers vector length) obtained from MD and PN methods for different
character angles (some MD atoms are excluded for better visibility).

mapping of PN results onto the perfect atoms located on the slip plane is shown in Figure 5.8

with blue crosses in the case of 49.107◦ dislocations. The equilibrium state of atomistic core

structures is represented in red circles. Again, both results are in good agreement in the core

region.

Next, we compare the strains with respect to z coordinates (d�u/d z) as shown in Figure

5.9. While the strains for the PN results can be derived analytically since the displacements

are represented by the two arc-tan functions, the strains for the MD results are obtained by

computing the slope between two neighboring points without any line interpolation. We

define the stacking fault width as the distance between the strain extremes, thus providing a

way to measure the widths as function of the different angles (see Figure 5.10). The width for

the edge dislocation is l = 3.4|�b|, and it is in reasonable range (2.8 ≤ l ≤ 13.4) when compared

to results obtained from other simulations and potentials [Mishin et al. (1999); Hunter et al.
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5.5. Peierls Stresses

Figure 5.8 – Comparison between MD with PN results with atomistic representation on the
slip plane (49.107◦ mixed dislocation).

(2013); Kuksin et al. (2008); Srinivasan et al. (2005)]. As the angle increases to screw dislocation

(0◦), the width decreases smoothly. It can be understood due to the decrease of the elastic

energy with increasing angle.

We see that the extended PN method produces dislocation core structures, at much

cheaper computational costs, that compare reasonably well with the atomistic core structures.

Therefore, we can employ the PN method to predict core structures of mixed dislocations

which cannot be obtained by atomistic simulations when the sizes of unit cells become large

enough to exclude an atomistic calculation.

Peierls Stresses

The Peierls stress is defined as the minimum stress required to translate a dislocation at

zero temperature [Hirth and Lothe (1992)], and it is known to be influenced by core structures

[Cai et al. (2004); Olmsted et al. (2001); Shin and Carter (2013); Srinivasan et al. (2005); Simmons

et al. (1997)]. Because we have obtained the details of the dislocation core structures e.g.,

lattice orientation and stacking fault widths, the influences of the core structures on the Peierls

stress can be studied in this section. Several articles [Olmsted et al. (2001); Shin and Carter

(2013); Srinivasan et al. (2005)] have been published regarding the Peierls stresses of FCC

Aluminum, measured using direct atomistic simulations. A wide range of results (1−13MPa

for an edge and 1−82MPa for a screw) is observed. Shin and Carter [Shin and Carter (2013)]

found that a dislocation dissociated into partials has a smaller Peierls stress than a compact

dislocation. Olmsted et al. [Olmsted et al. (2001)] studied Peierls stresses for mixed dislocations

(60◦ and 30◦) including the edge and screw character angles. They found that the screw and

60◦ dislocations are required to overcome a higher Peierls energy barrier than the edge and

30◦ dislocations. They argued that such results are due to the density of atoms in the motion
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PN, dux/dz/|�b|
PN, duz/dz/|�b|
MD, dux/dz/|�b|
MD, duz/dz/|�b|

70.893◦ 60◦

90◦ (edge)

49.107◦ 40.893◦ 30◦

10.107◦ 0◦ (screw)

Figure 5.9 – The strains (duz /d z and dux /d z) along z axis (normalized by Burgers vector
length) measured by MD and PN for the representative eight angles.

90
(edge)

80 70 60 50 40 30 20 10 0
(screw)

Figure 5.10 – Variation of stacking fault widths for the eight angles.
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direction (Simmons et al. [Simmons et al. (1997)] initially suggested this idea). To the best of

our knowledge, Peierls stresses have been studied only for the four character angles (90◦, 60◦,

30◦ and 0◦), whereas we selected other new character angles.

In Section 5.2, we constructed the dislocations based on the corresponding Volterra dis-

placement fields followed by relaxations. These relaxed fields are only valid when dislocations

locate at initial positions. As the dislocations change their positions on the gliding plane, the

following stresses are polluted by the artificial image stresses from the unmatched dislocation

surrounding fields [Olmsted et al. (2001)]. In order to avoid the unwanted effects from the

boundaries, we imposed linear displacement fields (ux,lin, uy,lin and uz,lin) on the atoms in

the top and bottom surfaces instead of the Volterra elasticity solution. By introducing these

linear fields, the boundary conditions are invariant with respect to the dislocation position.

The linear displacement fields for the top and bottom surfaces are chosen as follows:

u0
x,lin(z, y) = −sign(y)bscrew/2

LZ

(
z + LZ

2

)
,

u0
y,lin(z, y) = 0.0,

u0
z,lin(z, y) = −sign(y)bedge/2

LZ

(
z + LZ

2

)
.

(5.11)

with LZ the length of the simulation box in direction z. On the top surface, the negative

Burgers (−bedge and −bscrew) vectors are used, and the positive Burgers (+bedge and +bscrew)

are employed for the bottom surface. In order to consider the mixed character angles, the

linear displacements are rotated by the given character angle θ (Equation 5.6). The remaining

atoms are subjected to the Volterra fields, and are also rotated by θ as we described in Section

5.2. After imposing the various displacement fields on the atoms in each region, we relax the

simulation box, and measure the Peierls stress through quasi-static loading. Specifically, we

translate the atoms on the top surface along the Burgers direction in small steps, while we fix

the atoms on the bottom surface. After each translation, we minimize the bulk of atoms and

monitor the final energy value when the minimization finishes. Therefore, we can observe the

energy variation of the system as the dislocation moves to different positions along the gliding

direction.

Figure 5.11 (a) shows the dislocation displacement udis in the gliding direction z with

respect to the displacements of the top surface utop in the Burgers direction�b, and the cor-

responding potential energy variations ΔEpot of the system are given in Figure 5.11 (b). The

dislocations slowly change their position, and suddenly jump to the next positions as the

quasi-loading is incremented. The jump magnitudes of the edge dislocation are larger than

the mixed (40.893◦) dislocation. Consequently, the edge dislocation requires higher energy

accumulations (and reliefs) before (and after) jumps(respectively) as shown in Figure 5.11 (b)
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Figure 5.11 – (a) Dislocation displacements and (b) energy variations with respect to top
surface displacement of the edge (90◦) and mixed (40.893◦) dislocation.

than the mixed dislocation. We call each energy relief and peak point E l
pot and E u

pot respectively.

The Peierls stress is computed as follows [Cai (2001)]:

σp =
ΔE max

pot

bhz Lx
=

max
{(

E u,n−1
pot −E l ,n

pot

)
|n ∈ [1..N ]

}
bhz Lx

(5.12)

where Lx is the length of the simulation box in dislocation line direction x and ΔE max
pot is the

maximum energy release among N events, hz is the displacement of the dislocation in z

direction occurred by one Burgers�b slip. Cai [Cai (2001)] defined hz as the repeat distance for

which the system is translation invariant, and argued that hz can be defined geometrically

with respect to Dz (length of a primitive unit cell in gliding direction). Since the 90◦,60◦,30◦

and 0◦ dislocations were built based on the FCC primitive unit cells, hz can be defined as

hz = Dz (90◦)/4 in the case of FCC crystals. For example, hz is |�b|/2 for 90◦ and 30◦ dislocations,

and
	

3|�b| for 60◦ and 0◦ dislocations. These distances are represented in the energy variation

curves (Figure 5.11) as follows. The energy of the simulation box containing a edge (90◦)

dislocation varies with a period hz = |�b|/2 = 1.43Å. Particularly, the other mixed dislocations

(70.893◦, 49.107◦, 40.893◦ and 19.107◦) are constructed based on the periodic unit cells where

several primitive unit cells exist (see Figure 5.3). The repeat distances hz for those angles

cannot be defined with respect to the primitive unit cell. Since there are 28 atoms in the

given periodic unit cells meaning that 28 energy accumulation-release events happen as a

dislocation moves across an entire unit cell. As shown in Figure 5.11, the energy of 40.893◦

dislocation varies periodically by hz = Dz (40.893◦)/28 = 0.935Å. Using the corresponding value
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0◦
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70.893◦

Figure 5.12 – Variation of Peierls stresses for several angles with respect to the density of atoms
in the gliding direction. The corresponding Peierls stress value and the character angle are
denoted next to each marker.

of hz (Dz (θ)/4 or Dz (θ)/28), the Peierls stresses of all the character angles can be measured

with Equation 5.12. The measured Peierls stresses are shown in Figure 5.12 with respect to the

density of atoms in the gliding direction.

We can first compare Peierls stresses of the dislocations constructed with an equivalent

lattice orientation (but with a different character angle). As shown in Table 5.1, the edge

and 30◦, 70.893◦ and 49.107◦, 40.893◦ and 19.107◦, 60◦ and screw dislocations are modeled

based on the same lattice orientation. For each lattice orientation, the Peierls stress decreases

low as the character angle decreases. These observations were confirmed by Simmons et

al. [Simmons et al. (1997)], and it can be understood with the magnitudes of dislocation

dissociation [Shin and Carter (2013)]. As seen in the variation of stacking fault widths in Figure

5.10, the dislocations are dissociated into larger stacking fault widths when their character

angles become small. Consequently, the Peierls stress decreases as the character angle reduces.

In the case of 40.893◦ and 19.107◦ dislocations, the above argument is not valid, and we have

not found any reasons for the discrepancy.

Second, we confirm qualitatively the Peierls stresses of the dislocations between the

different lattice orientations as follows. The two dislocations (60◦ and 0◦) based on the lattice

orientation x =< 1̄10 >, y =< 111 > and z =< 112̄ > have higher Peierls stresses than the other

dislocations. It can be understood with the density of atoms in the gliding direction. We see in

Figure 5.12 that the densities vary with the lattice orientations of the slip plane. Therefore, the

dislocations built within the same family of lattice orientation having small density have high

Peierls stresses. Consequently, the 70.893◦ and 49.107◦ dislocations have small Peierls stresses

compared to the other dislocations.
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Generation of Core Templates

In this section, we generate the core templates from the obtained MD dislocation core

structures. According to the definition given in Section 5.1, the core template purpose is

to impose the difference (correction) between the fully nonlinear dislocation core structure

and the linear elasticity solution. Figure 5.13 shows the error maps ε(�x0) of the eight mixed

edge

screw

Figure 5.13 – The differences between the atomistic displacements and the linear elasticity
displacements around the dislocation cores (0, 0) for the eight character angles.

dislocations, which are evaluated with Equation 5.13, depicted onto the y − z plane, which is

normal to the dislocation line (x):

ε(�x0) = |�uA(�x0)−�ue (�x0)|
|�b| (5.13)

with �uA the displacement field of the relaxed atoms, and �ue the Volterra displacement field.

As expected, the analytic solution fails to predict all displacements due to dislocations
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(a) (b)

z

y

(c)

z

y

Figure 5.14 – Computation procedure of the core template of the edge 90◦ dislocation. (a)
Atoms around dislocation core. (b) The projected atoms on the y-z plane. (c) Two dimensional
mesh, the so-called core template, based on the projected atoms.

when close to the dislocation core. Especially, the radii of the non-linear core regions decrease

while increasing the character angle. This feature is consistent with the variation of the stacking

fault width shown in Figure 5.10. Since the edge dislocation shows the largest non-linear core

region, we can decide the size of the core template as ten times the magnitude of the Burgers

vector : rc = 10|�b|.

A detailed definition of the core template has been recently given by Junge [Junge (2014)].

From this definition, the core template extraction can be summarized as follows. First, the

atoms around the core are extracted with the cut-off rc = 10|�b| as shown in Figure 5.14 (a).

Second, the extracted atoms are projected on the plane normal to the dislocation line x.

Third, we construct a two dimensional mesh using a Delaunay triangulation of the projected

positions [Preparata and Shamos (1985)] as shown in Figure 5.14 (c). By employing linear

shape functions, the correction field can be interpolated [Hughes (1987)] at any point. During

the CADD3d simulations, those pre-computed templates are looked up, the corrections are

evaluated, and consequently the respective boundary conditions can be accurately imposed.

Let us recall the limitations of the template approach:

• Dislocation spacing: it is implicit in the template definition (Equation 5.3) that disloca-

tion lines in the pad are sufficiently separated from one another. If this assumption is

violated there will be spurious forces acting in the pad.

• Dislocation curvature: since we pre-compute the templates from offline MD calcu-

lation with straight dislocations, the local correction that we apply needs to be well

approximated. Again, this condition is valid only when the curvatures of dislocation

lines in the pad region are much less than the considered core radius rc .

• Accuracy and simplicity: The template is only useful if it can be pre-computed and

looked up during the simulation. This means that the displacement field for dislocation
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core of an arbitrary character angle needs to be interpolated accurately from a finite set

of pre-computed straight dislocation cores. With the assumption that core structures

continuously vary with the character angles, the dislocation field �uA(�x0,θ) of a mixed

angle θ can be evaluated with the linear interpolation:

�uA(�x0,θ) = θ−θ1

θ2 −θ1

{
Δ�uc (�x0,θ2)−Δ�uc (�x0,θ1)

}+Δ�uc (�x0,θ1)+�ue (�x0,θ) (5.14)

when θ1 < θ < θ2

where θ1 and θ2 are the closest pre-computed angles and Δ�uc (�x0,θ1) and Δ�uc (�x0,θ2)

are the core correction fields for the orientations θ1 and θ2 respectively.

Summary

In this chapter, we constructed one building component of CADD3d: the so-called

core template. It enforces the matching boundary conditions at the pad region through

the displacement correction field. To evaluate it, the dislocation core structures of arbitrary

character angles were studied with MD simulations. We could verify that a core structure has

a stacking fault width decreasing when the character angle increases. A variational PN model

was employed to validate the core structures computed with MD. To that end, the general

PN method was extended to consider arbitrary angles. This approach can be employed to

study any angles, including those that are difficult to obtain with periodic MD simulations

due to the computational cost. Thanks to the computed data, the Peierls stresses have been

measured, and we found that the magnitude of the dissociation into partials as well as the

density of atoms in the gliding direction determine the dislocation Peierls stress. Lastly, we

generated the core templates usable in CADD3d from the obtained core structures.
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6 Mobility law of dislocations in Alu-
minum

This chapter is a modified version of the journal paper Mobility law of dislocations with

several character angles and temperatures in FCC Aluminum accepted in the International

Journal of Plasticity in 2016 [Cho et al. (2016)].

The coupling method proposed in the Chapter 4 needs the two building components.

One of them is the core template, which was generated in the previous chapter, and the

remaining constituent is the mobility law. It is essential to impose the respective boundary

conditions at the correct locations defined by the DDD dislocation mobilities.. This can be

feasible by employing an accurate-mobility law in the DDD method.

In a pioneering work, Nabarro [Nabarro (1947)] studied dislocation mobility with a

continuum approach and showed that dislocations should not propagate at a velocity larger

than the shear wave speed. Much below this forbidden velocity, dislocation motions are

dragged by a phonon viscous force in a crystal lattice. This drag force is proportional to

temperature [Leibfried (1950); Hikata et al. (1971); Gorman et al. (1969)]. Eshelby [Eshelby

(1956)] found a distinct supersonic solution to the equation of a dislocation motion and

introduced the idea that during motion of a dislocation, both sub-sonic and super-sonic

waves can be emitted depending on the dislocation velocity. This mixed-wave dispersion

brings another dislocation drag mechanism, which explains how dislocations can loose energy

by radiations, besides the phonon viscous force. The transition from phonon-viscous dragging

to damping due to dispersive nature happens when the dislocation velocity becomes larger

than a critical velocity v0. Later, this critical transition-velocity has also been analyzed thanks

to lattice dynamics [Atkinson and Cabrera (1965); Ishioka (1973); Ramos de Debiaggi and Caro

(1987); Flytzanis et al. (1974)] based on a Frenkel-Kontorowa model [Frenkel and Kontorowa

(1938)].

Dislocation mobilities can also be investigated using MD simulations [Kang et al. (2012);

Martínez et al. (2008); Olmsted et al. (2005); Bhate et al. (2002)]. For example, Kang et al. Kang

et al. (2012) made recently computations of the BCC Peierls limits for various angles to derive

a kink-driven mobility law. To the best of our knowledge, direct measurements of mobilities
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Slip plane
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Free surface

z (PBC)
x (PBC)y

σ

∼ 60Å

∼ 20Å
Dislocation core

θ �b

Figure 6.1 – Schematic modeling of a straight dislocation with an arbitrary character angle
θ. The length of the simulation box along y axis is ∼ 200Å, while the dimensions along x
and z axes vary around 70Å and 350Å, respectively, with the lattice orientations determined
by the character angle θ [Cho et al. (2015)]. A finite temperature is imposed by Langevin
thermostats and a shear stress is applied on the free surfaces in the direction of the Burgers
vector�b = 1

2 [11̄0].

with MD remain limited to very few orientations (edge/screw for FCC [Martínez et al. (2008);

Olmsted et al. (2005); Bhate et al. (2002)] and screw/M111 for BCC [Kang et al. (2012)]). Indeed,

for FCC materials the mobility law employed in DD models is assumed to be a monotonically

varying function between the edge and screw dislocation mobilities [Arsenlis et al. (2007);

Cai and Bulatov (2004); Zbib et al. (2000)]. However, we will show that it is not the case. This

is an important contribution of this chapter, as it is known that the character angle impacts

macroscopic plasticity in FCC crystals, for instance through cross-slips [Hirth and Lothe

(1992); Martínez et al. (2008); Martínez and Hirth (2014)]. Consequently, having the correct

mobilities for multiple orientations is particularly crucial.

This chapter is organized as follows: dislocation mobilities for various mixed angles

and temperatures are extracted from atomistic simulations in Section 6.1. In Section 6.2,

the obtained mobility results are fitted to an Eshelby-Olmsted [Eshelby (1956); Olmsted et al.

(2005)] equation, and the outcome is discussed. In particular, we comment on the origin of

one important fitting parameter, called the critical velocity, which identifies a change in the

dislocation damping mechanisms. In Section 6.4, we finally construct a mobility law issued

from these findings and use it in DDD simulations.

Atomic dislocation modeling

The schematic modeling of a single dislocation is shown in Figure 6.1. At the center of

the simulation box, a dislocation with an arbitrary character angle θ is inserted. We choose

in total 8-character angles from screw (0◦) to edge (90◦) dislocations. Periodic boundary
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6.1. Atomic dislocation modeling

conditions (PBC) are imposed in the dislocation line direction (x) and in the gliding direction

(z). The details of the modeling procedures and the character angle selections have been

discussed in the previous chapter. We choose the Mendelev et. al. aluminum EAM/FS

potential [Mendelev et al. (2008)], which describes well the stacking fault energies obtained

from DFT calculations [Cho et al. (2015)]. We select three different temperatures T=100K ,

200K and 300K by relaxing the atoms using a Langevin thermostat [Schneider and Stoll (1978)].

Furthermore, we also expand the simulation box by 0.26%, 0.48% and 0.7% for the 100K , 200K

and 300K cases, respectively, during the relaxations in order to correct for pressures due to

thermal expansions.

In order to initiate the dislocation motion after the relaxation, a shear loading is applied

on the top and bottom free surfaces in the direction of the Burgers vector�b = 1
2 [11̄0]. The shear

loads have been chosen between 50MPa to 1000MPa. As the shearing occurs, the dislocation

glides smoothly on the slip plane and creates heat. In order to keep the system at a constant

temperature, Langevin thermostats with a damping constant τ= 10000Δt (10 ps) are used

close to the top and bottom surfaces. A large distance (60Å) separates the thermostat regions

from the dislocation core to limit the artificial frictional forces acting on the core region.

Consequently, the dislocation can glide in the direction z infinitely (thanks to PBC conditions),

while keeping a globally constant the targeted temperature.

Figure 6.2 (a) shows the temperature evolution around the slip plane for the 90◦ disloca-

tion and for several shear stresses at 100K. There are fluctuations during dislocation dynamics

which decay quickly. When the dislocation stabilizes, the absolute magnitudes of the fluctua-

tions are within 0.1% of the target temperature (100K). The temperature imprecision remains

within 10% (the maximum is 106K for the largest applied stress considered), which is accept-

able. Figure 6.2 (b) shows the velocity variations of 49.107◦ and 90◦ dislocations for an applied

shear stress σ= 300MPa at two different temperatures T= 100K and 300K. At time t = 0ps, the

dislocation escapes the stationary state, and starts to accelerate. At the beginning of gliding

(5ps< t <30ps), the dislocation dynamics are influenced by waves due to the sudden shear

loading applied on the top and bottom surfaces. After 30ps, the dislocation glides at a globally

constant velocity. By taking the average values at the steady-state dislocation velocity regimes,

the variation of dislocation velocities can be obtained.

The atomistic (virial) stress σ is measured during the dislocation dynamics. The stresses

are evaluated in a region of thickness 20Å around the slip plane (the blue hatching area in

Figure 6.1). These measured stresses are projected onto the Burgers vector direction�b. Finally

the reference stress σ0, obtained when the dislocation core is not subjected to any external

stress, is substracted. The magnitude of this stress is an effective stress σe f f defined by the

following:

σe f f = |σ ·�b −σ0 ·�b| (6.1)

The evolution of the effective stresses σe f f is shown in Figure 6.2 (c) for several applied
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Figure 6.2 – (a) Evolution of temperatures at the vicinity of the slip plane of the edge dislocation
with various shear stresses. The target temperature is 100K. (b) Velocity of dislocations (49.107◦

and 90◦) at 100K and 300K under 300MPa. (c) Variations of effective stresses around the slip
plane during edge dislocation motion. (d) Differences between the applied and effective
stresses as function of the dislocation velocity. (e) Variations of steady-state velocities for
49.107◦ and 90◦ dislocations as a function of shear force at 100K and 300K.
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6.2. Eshelby-Olmsted approach

shear stresses. We see that the applied stress σapp is not coinciding with the effective stress

σe f f acting on the dislocation. The difference is due to the thermostat’s friction force. More

precisely, the dislocation motion generates heat proportionally to the dislocation velocity.

Accordingly, the viscous forces sustaining the targeted temperature are proportional to that

velocity. This is confirmed with Figure 6.2 (d) which shows the relationship between the

magnitudes of the stress differences as function of the dislocation velocity: a linear correlation

clearly applies. Finally, we can construct the relationship between dislocation velocities and

the effective stresses. Figure 6.2 (e) shows this relationship for the 49.107◦ and 90◦ dislocations

at 100K and 300K. The simulations reveal that:

1. The dislocation velocities first increase linearly with the load, and progressively saturate

due to an increase of the effective drag force.

2. The dislocations in the hot systems (300K) glide slower than the dislocations in the cold

systems (100K).

3. This temperature effect is more important in the linear regime (for small applied shear)

than in the saturation regime.

4. The strength of this temperature effect depends on the character angle.

These observations are consistent with MD simulations in several publications [Martínez

et al. (2008); Olmsted et al. (2005); Bhate et al. (2002)] for screw (0◦) and edge (90◦) dislocations,

and can be rationalized by theoretical models [Nabarro (1947); Leibfried (1950); Eshelby (1956);

Hikata et al. (1971); Gorman et al. (1969)]. In the following section, we will investigate the

variation of the mobility law with respect to the character angle and compare it with the

aforementioned models.

Eshelby-Olmsted approach

Olmsted et. al. [Olmsted et al. (2005)] recently studied dislocation mobility laws using

atomistic simulations, and showed that their results were confirming previous theoretical ob-

servations [Nabarro (1947); Leibfried (1950); Eshelby (1956); Hikata et al. (1971); Gorman et al.

(1969)]. More precisely, they fitted their numerical findings to the following phenomenological

equation [Olmsted et al. (2005)]:

σres =
{

ATvd if vd ≤ v0

ATvd +D(vd − v0)3/2 if vd > v0
with σres =σe f f −σp (6.2)
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with vd the dislocation velocity, σres the resolved shear stress, σp the Peierls stress 12, T the

temperature, and A, D two fitting constants. This equation accounts for the transition of

dislocation damping mechanisms as a dependence on the dislocation velocity vd . When the

dislocation velocity vd is smaller than the critical velocity v0, only the phonon viscous term

ATvd is considered. The dislocation mobility in this linear regime (vd ≤ v0) can be described

by the damping constant A times the corresponding temperature T. For vd > v0, an additional

damping effect occurs due to supersonic wave emissions. Eshelby [Eshelby (1956)] showed

that this new contribution should increase non-linearly, taking the form (vd − v0)3/2, and thus

leads to the asymptotic dislocation velocities that we also observed. Following his argument,

the constant D should not depend strongly on the temperature T.

Figure 6.3 shows all the relations between dislocation velocity and the effective stress that

we have simulated. The data computed from MD simulations are denoted by dots, while the

solid curves are fits using Equation 6.2. For each character angle, a single parameter of A and

v0 is fitted, and three different constants D are used to fit the results of three temperature cases.

The results show a generally good agreement with the simulated data: we have a match within

a ∼ 7% error for all the character angles and temperatures investigated. However, Equation 6.2

yields a strong transition between the two different velocity regimes (damping mechanisms),

and does not capture well the smooth transitions as observed in the MD results.

Figure 6.4 (a) shows the fitting parameter A|�b|, where |�b| is the magnitude of Burgers vec-

tor, as function of the character angle θ. Screw-like dislocations (0◦ and 60◦)3 show the highest

damping values A|�b| implying large phonon viscous forces. According to experiments [Hikata

et al. (1971); Gorman et al. (1969); Vreeland and Jassby (1971)], the range of damping constant

A|�b| is between 1.8 and 7.0×10−8 [Pa · s ·K −1]. Other atomistic simulations [Bhate et al. (2002);

Olmsted et al. (2005)] provided damping parameters between 3.7 and 4.5 ×10−8 [Pa · s ·K −1],

and 6.0 and 7.5×10−8 [Pa · s ·K −1] for edge and screw dislocations, respectively. This reveals

that the damping parameters obtained from our atomistic simulations are within the range

of reported values. Figure 6.4 (b) shows the fitting parameters D|�b| and v0 for the studied

character angles θ and temperatures T. As could be granted to the Eshelby analysis, the fitted

parameter D depends weakly on temperature. Concerning the critical velocity v0, Marian and

Caro [Marian and Caro (2006)] recently argued that it can be defined from the reciprocal space

structure, and more precisely from the crystalline dispersion curves. This transition is thought

to be strongly correlated to the minimum phase velocity vmi n
p in the dislocation propagation

direction [Marian and Caro (2006)]. This last argument seems not general enough to explain

the value of v0 for every mixed angle, as can be observed from Figure 6.4 (c). In the following

section, we discuss the link between the critical velocity v0 and the dispersion relation.

1The employed values can be found in Section 5.5. We consider the Peierls stresses at 0K although the mobility
law describes dislocation mobilities in a finite temperature.

2Some authors [Martínez et al. (2008); Bhate et al. (2002)] prefer not to incorporate the Peierls stress definition
into the resolved shear stress.

3The two dislocations are constructed based on the same family of lattice orientation associated with screw
dislocations, x:{110} y:{111} and z:{112}.
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Figure 6.3 – Dislocation mobility for the various character angles and temperatures. The MD
results are described by the markers and the fits using Equation 6.2 are depicted by the solid
lines. For the 100K, 200K and 300K cases, the simulations and fits are denoted with the red,
blue and green colors. The critical velocities v0 are notified by the black-dashed lines.
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Figure 6.4 – (a) Variation of the damping parameter A multiplied by the magnitude of Burgers
vector |�b| for the various character angles. (b) Variations of damping constant D with respect
to character angle. The constants for 100K, 200K and 300K cases are represented by red
circles, blue squares and green triangles, respectively. (c) The fitted critical velocity v0 and
the minimum phase velocity vmi n

p in the dislocation propagation direction of the various
character angles.

Discussion: critical velocity

Many authors [Eshelby (1956); Bhate et al. (2002); Marian and Caro (2006); Atkinson and

Cabrera (1965); Ishioka (1973)] have discussed the existence of the critical velocity v0. A lot

of efforts aimed at understanding its origin by using lattice dynamics [Atkinson and Cabrera

(1965); Ishioka (1973); Ramos de Debiaggi and Caro (1987); Flytzanis et al. (1974)] based on

a Frenkel-Kontorowa model [Frenkel and Kontorowa (1938)]. All of these previous studies

identified critical regions in the reciprocal lattice, which can be described by the equation:

ω(k) = kvd (6.3)

with ω(k) the time frequency associated with the wave vector k and vd the dislocation velocity.

As Eshelby [Eshelby (1956)] noted, when ω(k)
k = vd then the wave equation can flip from

a rapidly decaying solution to an oscillatory one, which changes completely the damping

mechanism. The simple interpretation is that when the dislocation moves faster than the

phase velocity vp (k) = ω(k)
k , supersonic modes are created, and these waves radiate energy.

To apply Eshelby’s argument on our work, we need the 3d dispersion relations ω(k) for

the selected potential. These relations can be calculated by using the dynamical matrix, which

is derived from the equation of motion [Kittel (1986)]. To compute this matrix [Liu et al. (2006)],

a set of molecular dynamic simulations considering the fifth nearest neighbor atoms have

been employed. The computed dispersion relations have been validated in specific directions

by comparing to a published source [Tadmor et al. (2011)]. Figure 6.5 shows the curves ω(k)

for screw 0◦, mixed 40.893◦ and edge 90◦ dislocations directions. For each of these directions,
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Figure 6.5 – Dispersion curves in the propagation direction of screw 0◦, mixed 40.893◦ and
edge 90◦ dislocations. Three phonon branches exist for each wave number k. For each angle,
the minimum phase velocity vmi n

p corresponds to the slope of the black dashed line.

the three dispersion branches are presented.

Marian and Caro [Marian and Caro (2006)] studied dislocation mobilities of edge and

screw dislocations, and argued that minimum phase velocities vmi n
p computed from these

dispersion curves correspond to the critical velocities v0 used in Equation 6.2. For example,

a screw 0◦ dislocation propagates in the [112̄] direction, and the three dispersion branches

in that direction are shown in Figure 6.5 (a) by the blue curves. We see that these dispersion

curves are periodic over an interval L (depending on θ), so it is natural to use L/2 to compute

vmi n
p which leads to the formula:

vmi n
p = mi n

{
vp (k) = ω(k)

k
, k ∈ [0,L/2]

}
(6.4)

The computed vmi n
p for each angle corresponds to the slope of the black dashed line as shown

in Figure 6.5. The variations of vmi n
p with character angles are shown in Figure 6.4 (c) by

the green square-dot line. When compared to vmi n
p and v0, we conclude that Marian and

Caro [Marian and Caro (2006)] argument works well for edge-like (30◦ and 90◦) and for screw-

like (0◦ and 60◦) dislocations, but it fails to predict the critical velocities v0 for the other mixed

angles.

This can be rationalized by considering crystallography as discussed in Cho et. al. [Cho

et al. (2015)]. The size of the minimal periodic unit cell varies with the character angle. When

the axes of the FCC lattice are aligned with the x, y, z directions, the minimal lattice employed

is the FCC primitive unit cell. For completely arbitrary angles, the size of the minimal lattice

changes, and there are angles (irrational) for which the periodicity length is infinity. There is a

similar variation of the periodicity length in the reciprocal space, which brings the following

definition problematic: the pulsation ω(k) is a necessarily bounded quantity (ω(k) <ωmax )
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such that:

0 ≤ ω(k)

k
≤ ωmax

k
(6.5)

And consequently:

0 ≤ vmi n
p ≤ mi n

{
ωmax

k
, k ∈ [0,L/2]

}
= ωmax

L/2
(6.6)

The immediate consequence is that for a large periodicity length L of the reciprocal

space, vmi n
p becomes arbitrarily small. However, up to our knowledge, the transition velocity

v0 does not present such a behavior for any angle.

In reality, the assumption that excited phonons exist only in the dislocation propagation

direction is incorrect. After all, the motion of atoms at the dislocation core is mainly along

the Burgers vector�b with a complication due to the separation into Shockley partials [Hirth

and Lothe (1992)] which leads to all sorts of wave propagation directions. Consequently, the

assumption of unidirectionality suggested by Marian and Caro [Marian and Caro (2006)] is

insufficient to predict the critical velocities for general mixed dislocations in FCC crystalline

materials.

Implementation of mobility law

The obtained dislocation mobility law obtained now is implemented into a discrete dis-

location dynamics (DD) simulator, which is the well-known ParaDis software package [Bulatov

et al.; Arsenlis et al. (2007)]. In order to describe the effects of the mobility law on dislocation

dynamics, we simulate dislocation loops with three different mobility modules. The first

one is implemented in the present version of ParaDis. Currently, the mobility module of

ParaDis uses two damping parameters B90 and B0
4 for edge 90◦ and screw 0◦ character angles,

respectively, and interpolates linearly between these two constants to get damping values

for mixed angles [Bulatov and Cai (2006)]. With this strategy, the nodal velocity increases

linearly with shear loading, and the saturation regime is not considered. The second module

consists in exploiting the obtained parameters (A90, D90 and A0, D0) of edge 90◦ and screw

0◦ dislocations. The mobility law for a mixed angle is constructed by linear interpolation

between the edge and screw parameters. The last case uses the (proposed) complete mobility

law, which accounts for the 8-intermediate angles considered in this work. This law allows us

to refine the interpolated mobilities for the mixed angle dislocations.

Figure 6.6 shows the computational domain employed to model a single dislocation loop.

This dislocation loop is inserted onto the centered slip plane. Anisotropic aluminum material

4According to our proposed mobility law, Bθ is corresponding to AθT.
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slip plane

z

xy ∼120Å

∼80Å
�b=2.83Å

Figure 6.6 – Schematic modeling of a dislocation loop in a discrete dislocation simulation.
Infinite boundary conditions are employed in all directions. A constant shear stress σy z =
700MPa activates the dislocation loop expansion.

properties justify the initial ellipsoidal shape of the dislocation loop. The size of the ellipsoid

is small when compared to dislocation loops experimentally observed in aluminum. However,

the simulation setting employed here aims at highlighting the influence of the mobility law on

dislocation dynamics, which we believe applies also for larger dislocation loops. In order to

expand this small loop, a shear stress σy z = 700MPa is applied, which is large enough to avoid

any shrinking of the dislocation loop. The trapezoidal integration scheme is applied with a

timestep of 1 femto-second (10−15 second).

Figure 6.7 shows top-view snapshots of the slip plane at 0ps, 2.5ps, 5ps and 10ps with the

three different dislocation mobility strategies described above. Comparing the results shown

in Figures 6.7 (a) and (b), we can conclude that the current DDD engine cannot correctly

calculate the dislocation dynamics. As the loops expand, the effective stresses acting on DDD

segments increase due to the decay of self interactions, and describing the non-linear behavior

of the mobility low becomes important. This effect is comparable with the one described by

Kang et al. [Kang et al. (2012)] for BCC materials.

Consequently, two different dislocation structures are finally observed at 10ps. Also,

when comparing Figures 6.7 (b) and (c), it is clear that the mobility law accounting for interme-

diate angles produces large differences in the loops dynamics. In the latter case, the ellipsoidal

loop becomes an octagon with three distinct facets in the direction of edge, screw, and mixed

60◦ ∼ 70◦ dislocations. This contrasts with the rounded rectangle aligned with edge and screw

dislocation directions in the former case. Arguably, the octagon shape is a more favorable

dislocation loop structure since these shapes have been observed in experiments Wolfenden

(1972) dealing with FCC aluminum. These three simulation results show the necessity of

defining the anisotropic mobility law not only for discrete dislocation dynamics but also for

the CADD3d coupling scheme in order to minimize a source of error over the global dislocation

network evolution (described in Chapter 4).
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Figure 6.7 – Snapshots of dislocation loop dynamics at 0, 2.5, 5 and 10ps with three different
dislocation mobility laws: (a) A linear relation (A90 and A0) between dislocation velocity and
shear loading is considered and interpolated linearly from edge (90◦) to screw (0◦) angles. (b)
The linear and supersonic asymptotic regimes are considered by considering the mobility
parameters A90, D90 and A0, D0 for edge (90◦) and screw (0◦) dislocations. Intermediate
angles are interpolated linearly from edge to screw. (c) The new mobility law proposed, which
accounts for the linear and supersonic regimes and a total of 8-mixed angles.

Summary

In this chapter, the mobilities of straight dislocations in FCC aluminum were studied

using atomic simulations (MD) at several temperatures and for various character angles.

The obtained velocity-effective_stress curves were successfully fitted to the Eshelby-Olmsted

equation. We could distinguish the two velocity regimes following the damping mechanisms

due to phonon viscosity and (supersonic) wave radiations. The phonon viscosity regime

is characterized by the constant A that was shown to be in good agreement to other works

in the literature for edge and screw dislocations. The damping constant D, relevant to the

radiation regime, depends weakly on the temperature as was expected from Eshelby’s theory.

These two regimes are separated by the critical velocity v0. We could show that v0 cannot

simply be defined as the minimum phase velocity vmi n
p in the propagation direction of the

dislocation. Finally, the obtained mobility law, which is valid for several character angles,

has been implemented in a discrete dislocation dynamic engine. The results show the large

impact of having accurate mobilities on the dislocation dynamics.
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7 Validation of CADD3d: Hybrid Dislo-
cations

In Chapter 4, we have proposed the CADD3d method, and in Chapters 5 and 6, the neces-

sary coupling components have been generated. Finally, in this chapter the CADD3d method

is implemented and validated by studying various situations including hybrid dislocations.

The first test problem, given in Chapter 7.1, considers the dynamical propagation of a hybrid

straight dislocation with an arbitrary character angle. The analysis of the results allows to

evaluate the sensitiveness of CADD3d with respect to the coupling components (i.e. core

templates, mobility law and update step). In Section 7.2, CADD3d is tested with a hybrid

dislocation loop. In that case, CADD3d needs to couple two sub-parts of an arbitrary shaped

hybrid dislocation. Section 7.3 presents the coupling problem when multiple dislocations

exist and interact each other. Finally, Section 7.5 summarizes the validation results of the

CADD3d method.

Hybrid Straight Dislocations

In this section, the CADD3d methodology will be validated for straight dislocations. Fig-

ure 7.1 illustrates a hybrid straight dislocation with an arbitrary character angle in a perspective

view (a) and from a top view (b) of the slip plane. The character angle θ can be chosen between

the edge (90◦) and screw (0◦) dislocations. This dislocation is represented with atoms and

DDD segments both being fully coupled by the reciprocal boundary conditions as discussed

in Chapter 4. As shown in Figure 7.1, the pad atomic region surrounding the MD box has a

thickness 7Å.

In order to initiate the hybrid dislocation motion, a homogeneous external loading σ is

initially applied on the MD and DDD domains in the direction of the Burgers vector�b. For the

MD region, the atoms are displaced according to the strain ε=σ/μ with μ the shear modulus,

while for the DDD region, a homogeneous stress σ is applied [Arsenlis et al. (2007)]:
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Figure 7.1 – (a) A schematic modeling of a hybrid straight dislocation. At the center of the
domain, a MD system is introduced. A DDD domain is used in the remaining region. A
periodic boundary condition is applied in the x direction, while infinite boundary conditions
are employed in the other directions. (b) The hybrid dislocation from a top view of the
slip plane. The two dislocation subparts are coupled by imposing the reciprocal boundary
conditions with the pad atoms and the two constrained DDD nodes.

σx y =σcosθ

σy z =σsinθ

}
: DDD nodes

ux = εx y y = σcosθ

μ
y

uz = εy z y = σsinθ

μ
y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

: MD atoms

(7.1)

with θ the character angle considered.

During the simulation, those boundary conditions are constantly applied on the pad

atoms and DDD nodes to keep the constant external loading σ. Especially, for the pad atoms,

the displacements of the dislocation networks (including the core correction if necessary)

should be superimposed on the homogeneous strain field as discussed in Chapter 4. A detailed

description of the applied displacement field is provided in the next sub-Section.

The time integration is performed explicitly with the Verlet and trapezoidal schemes for

the MD and DDD methods respectively. While the two subparts of the hybrid dislocation move

they are synchronized at the frequency fupd ate = 1/tupd ate . In this problem the duration (the

so-called update step) tupd ate = 50Δt has been chosen with Δt the time step (1fs).

The synchronization procedure can be divided into two steps as proposed in Chapter 4.
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7.1. Hybrid Straight Dislocations

First, the discrete dislocation boundary nodes are constrained with the center of the detected

MD dislocation. Second, the pad atoms are displaced according to the current discrete

dislocation positions.

Displacements of Pad Atoms

As shortly described in Section 5.1, for the pad atoms far away from any dislocation

core, the imposed displacement can be computed by a superposition of the linear elasticity

solution with the displacement due to the imposed external shear loading (Equation 7.1).

For pad atoms close to a dislocation core, the sum of the linear-elastic and external strain

displacements has to be corrected to account for non-linear effects by applying the core

templates. For example, the displacement of the pad atom located at �x0 can be written as

follows:

�u(�x0) =
⎧⎨
⎩
∑#nodes

i=1

[
�ue,i (�x0)+Δ�uc (�x0,θi )

]+�ε ·�x0 if D(�x0) ≤ rc∑#nodes
i=1 �ue,i (�x0)+�ε ·�x0 otherwise

(7.2)

with #nodes the number of the DDD nodes, �ue,i (�x0) the linear elasticity displacement so-

lution [Barnett (1985); Barnett and Balluffi (2007); Fivel and Depres (2014)] of a segment

connecting i th and i +1th nodes , Δ�uc (�x0,θi ) the correction field of the core template of a

mixed angle θi , θi a local character angle of the i th segment, D(�x0) the distance to the i th seg-

ment, and�ε ·�x0 the external homogeneous strain field given in Equation 7.1. As demonstrated

in Section 5.6, the core template corrections are restricted to the pad atoms within ten times

magnitude of the Burgers vector (rc = 10|�b|) from the core D(�x0) ≤ rc .

Let us discuss the linear elasticity solution �ue . We employ Barnett’s approach [Barnett

(1985); Barnett and Balluffi (2007); Fivel and Depres (2014)] to obtain the analytic expression

of the displacement field �ue . One of the requirements of Barnett’s method is to consider

only closed dislocation loops. In other words, the sum of the Burgers vectors of all the DDD

segments has to be zero such that the dislocation networks are closed. Therefore, in order to

evaluate Barnett’s expression for the present problem, the straight DDD dislocation network

should be closed implicitly.

We actually close the DDD network in two steps. First, we have to close the external

boundary of the DDD segments. The straight dislocation can be considered as a part of the

rectangular dislocation loop as shown with a dotted line in Figure 7.2. This rectangular loop

considers two additional fictitious points (cross markers) far away from the MD box in the

gliding direction (z). These points are connected to the two outward boundary nodes. Second,

we have to connect the internal boundary region which should overlap the MD domain. The

two slaved nodes can be simply connected with a straight line which is comparable to the MD
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part of the hybrid dislocation as shown in Figure 7.2 (a). Another possibility is to introduce

segments on the dislocation line detected from the atomic arrangement as shown in Figure 7.2

(b). For the present problem, the first strategy (Figure 7.2 (a)) is employed to close the internal

x

z

y x

z

y

(a) (b)
(PBC)(PBC)

Figure 7.2 – The external boundary of the DDD nodes are closed by the two fictitious nodes
shown with the cross markers. The internal boundary regions of the two hybrid straight
dislocations are connected by (a) a straight line between the two slaved DDD nodes and (b)
the result of the MD dislocation detection.

part of the DDD network. The detection approach (Figure 7.2 (b)) will be used for the curved

hybrid dislocation in Section 7.2.

Results

The evolution of the hybrid dislocation positions (the MD and the DDD subparts) along

the gliding direction (z axis) are measured during the simulations, and the results are shown in

Figure 7.3 (a). For simplification purposes, only the results of two shear loading cases (100MPa

and 500MPa) are depicted. The dislocation velocity is evaluated by finite difference and are

shown in Figure 7.3 (b). The MD and DDD results are denoted by the markers and the dashed

lines respectively.

At the beginning of each simulation, the dislocation first accelerates. After some time

(∼ 4ps), the dislocation glides at a globally constant velocity. We note that effective masses

m have been pre-computed from independent atomistic simulations [Cho et al. (2016)] and

included in the mobility law of the DDD engine to account for the initial dislocation accelera-

tion. Although m is angle dependent, we employ an averaged value of 100MPa f s2

Å
in all the

simulations that will be conducted. The equation of motion employed in the DDD engine can

be written as follows:
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Figure 7.3 – Evolutions of (a) the displacement and (b) the velocity of the hybrid dislocations
with the selected eight character angles and the two shear stresses (100MPa and 500MPa). The
results of the MD sub-part of the hybrid dislocations are represented by the (red and blue)
circle-lines, and the (orange and cyan) dashed lines represent the results of the DDD sub-part
of the hybrid dislocations. 75
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σres = Bθv +mv̇ (7.3)

with σres the resolved shear stress defined in Equation 6.2, Bθ
1, the damping parameter

for a given character angle θ (See Section 6.4), v the current dislocation velocity, and v̇ the

acceleration computed with a finite difference approach: v̇ = (vn+1 −vn)/Δt . We note that if

the resolved shear stress is smaller than zero, the mobilities of DDD nodes are set to be zero.

By comparing the results of the atomistic and discrete dislocations, we can conclude

that the CADD3d methodology works well with a single hybrid straight dislocation. More

precisely, the coupling procedure does not yield to significant artificial forces at the coupling

interfaces between the two domains, and maintains the two sub-parts of the hybrid dislocation

as one single coherent entity. We want to emphasize that correct coupling results can only be

obtained when the core templates [Cho et al. (2015)], the mobility law [Cho et al. (2016)] and

the update step (tupd ate ) are correctly set. In the following subsection, we will demonstrate

this claim by varying purposely these crucial parameters.

Sensitiveness of the Coupling Parameters

In order to identify the influence of the parameters onto the hybrid dislocation behavior,

we will vary them independently in distinct simulations. We first employ the core templates

with a smaller cut-off radius rc = |�b| (Case1) than the previous one rc = 10|�b|. Second, the

mobility parameter will be changed to Bθ = 2Bθ (Case2) and Bθ = 1
2 Bθ (Case3) with Bθ the

damping constant. Case4 will set the effective mass to zero m = 0 which will remove any

inertial effects. Lastly, a lower update frequency will be used (tupd ate = 200Δt) in Case5

instead of tupd ate = 50Δt previously employed.

The snapshots of the hybrid dislocation dynamics at 0ps and 5.5ps for the two cases

(Case1 and Case2) with the reference simulation (the mixed 30◦ dislocation under 100MPa)

are shown in Figure 7.4. When compared to the reference simulation result ((a) and (b)), the

simulations with the coupling parameters incorrectly set show the hybrid dislocation motions,

where the mismatched structures are observed. More precisely, for the Case1, the compact

dislocation cores are observed at the coupling interface due to the insufficient correction of

the displacement field. Second, the different dislocation mobility leads to an artificial bending

of the line.

The evolution of the hybrid dislocations with the five cases is shown in Figure 7.5. Let

us focus on Case1 (d). The comparison indicates that a too small core template slows down

the hybrid dislocation motion. This occurs due to ghost forces created from the mismatched

dislocation core structure as shown in Figure 7.4 (d). Second, the comparison of Case2 (Case3)

1Bθ is the damping constant evaluated from Eshelby-Olmsted mobility law as follows: σ = Bθv = AT v + (v-v0)3/2.
A more detailed description can be found in Chapter 6.
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compact core
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(a): Reference (b): Reference (c): Case2 (d): Case1

Figure 7.4 – (a) Snapshots of the dynamics of a mixed 30◦ hybrid dislocation with 100MPa in a
perspective view (reference case). Only the atoms around the bottom slip plane are shown,
and are colored by the magnitude of the displacement. The DDD nodal points are shown
as big spheres. (b) Top view of the slip plane shown in (a) where the DDD nodes and the
atoms violating centro-symmetry are plotted. (c) Simulation result obtained with Bθ = 1

2 Bθ.

(d) Simulation result obtained with a small cut-off radius rc = |�b|. for the core correction. This
leads to smaller stacking fault widths as can be observed near the coupling interface.

MD

DD

Case1: rc = |�b|
Case2: Bθ = 2Bθ

Case3: Bθ =
1
2
Bθ

Case4: m = 0

Case5: tupdate = 200Δt

Reference case

Figure 7.5 – Sensitiveness studies of the coupling scheme with the five different simulation
settings (change of core template cut-off radius rc , of the damping parameter Bθ, of the
effective mass m and of the update step tupd ate ). The dislocation displacements are shown as
functions of time. These results can be compared to the reference results denoted by the red
circle-line and the black dashed line.
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Figure 7.6 – (a) A schematic modeling of a hybrid dislocation loop in a perspective view. Infinite
boundary conditions are applied in all directions. (b) The hybrid dislocation is shown from a
top view of the slip plane.

with the reference, is consistent with an artificial deceleration (acceleration) of the dislocation

imposed by the modified mobility parameter Bθ. Indeed, modifying the DDD mobility law

leads to mismatched MD-DDD velocities and a modification of the effective velocity of the

hybrid dislocation. These two last cases can be compared with Case4 to check influences of

the effective mass on the coupling simulation: after 2ps the MD and DDD dislocation subparts

travel at the same speed, and the influence of the effective mass disappears. Lastly, we achieve

wrong simulation results when a large update step (tupd ate = 200Δt) is employed. Such an

impact was expected since delaying the synchronization creates misfit configurations at the

coupling interface. With this sensitiveness study we can demonstrate that the aforementioned

CADD3d components need crucially to be correctly adjusted.

Hybrid Dislocation Loops

In this section, we validate the CADD3d coupling scheme with a curved dislocation shape.

Figure 7.6 shows a schematic modeling of a hybrid dislocation loop. A quarter of the domain

consists of atoms while the remaining region is modeled with DDD. The hybrid dislocation

loop is shown with a red solid line and blue circle-line for atomistic and discrete dislocation

models, respectively. The procedure employed to create this hybrid dislocation loop is the

following:

1. Impose the elasto-static displacement field of the complete dislocation loop on a MD

box.

2. Relax the MD box while a finite strain is imposed on the boundaries to avoid any
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Figure 7.7 – (a) Application of multiple core templates within the pad zone. The pad region is
decomposed to match each DDD segment. Based on this decomposition, the core templates
with three different angles (θ1, θ2 and θ3) are applied on the red, blue and orange colored
atoms, respectively. (b) Two strategies to close the loop between the two constrained DDD
end nodes of the hybrid dislocation loop. The first strategy is to connect the two nodes by
using a straight line as shown by the blue dashed line. The second strategy is to connect them
by employing a discrete line consisting of the MD dislocation cores.

shrinking of the dislocation loop.

3. Extract the atoms from a quarter of the MD box, and replace the remaining MD disloca-

tion with matching DDD nodes.

After the creation of the coupled model, a shear loading of 400MPa (strain for MD and

stress for DDD) is applied by following Equation 7.1. The MD and DDD boundary conditions

are synchronized every 50 steps (tupd ate = 50Δt), and the core templates with a radius rc =
10|�b| are employed. The geometrical evolution of this hybrid loop will be monitored and

discussed in section 7.2.2. Before doing so, we wish to highlight in the following section the

newly needed features to solve this coupling problem.

Additional Features of CADD3d for Curved Dislocations

If we compare to the case with the straight hybrid dislocation, there are additional

difficulties due to the curved dislocation structure. First of all, the application of the core

template needs to be done for many different character angles. As depicted on Figure 7.6 (b)

there are now four boundary surfaces for the MD region: Γ1, Γ2, Γ3 and Γ4. Since the Burgers

vector�b is aligned with the z axis, the edge and screw core corrections will be applied to the

regions Γ1 and Γ2, respectively. When the loop will be large enough, it will necessarily cross

Γ3 and Γ4 borders and then the angle will vary continuously. However, only a discrete set of

angles have been considered in the offline MD calculation of the core template (Chapter 5). In

practice, we will evaluate the correction field for a given angle by using the linear interpolation

between the discrete set of pre-computed core templates as discussed in Section 5.6.

Second, the angle can be so oblique that more than a single DDD segment may intersect

the pad region. Figure 7.7 (a) shows a snapshot of the simulation when multiple DDD nodes

are inside the pad region. In this situation several core templates have to be applied with
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different angles. The pad atoms are then subdivided into regions each associated with a

constant angle. Figure 7.7 (a) shows a typical decomposition with dashed lines. On this

example, the correction fields from core templates for θ1, θ2 and θ3 angles are applied on the

red, blue and orange atoms, respectively.

Third, as we did for the straight hybrid dislocation in Section 7.1.1, we have to implicitly

close the loop in order to compute the linear elastic displacements. As shown in Figure 7.6

(b), the DDD part of the hybrid dislocation is not closed between the two constrained nodes

(square markers). This part can be closed by employing either a straight line or a discrete set

of lines which follows the MD dislocation as shown in Figure 7.7 (b). For this problem, both

methods will be tried, and their influence on the coupling simulation will be analyzed.

Lastly, contrary to straight dislocations, curved dislocations generate self interactions

influencing the resolved shear stress calculations. As briefly mentioned in sub-Section 4.2.1, to

compute the nodal forces when some parts of the dislocation network is modeled by molecular

dynamics, a coupling scheme between DDD and FEM domains is needed. In the scope of this

thesis we have made the following simplification: we connected the two slaved DDD end nodes

by a set of constrained DDD nodes and segments. The positions of these new constrained

DDD nodes are re-assigned every update step by detection from the MD representation. This

strategy will provide a correct self interaction for the DDD sub-part of the hybrid dislocation

loop. However, this limits to simple situations where the dislocation network can be identified

without ambiguity (excluding nano-indentation for instance). In the following sub-Section,

we study this test problem with two different DDD dislocation networks, and two different

strategies to connect/detect the missing part of the studied dislocation loop.

Results

The snapshots of the simulation at 0ps, 1ps, 4.5ps and 5.5 ps in a perspective view are

shown on Figure 7.8 (a), and from a top view of the slip plane in Figure 7.8 (b) and (c). The

hybrid dislocation is shown by plotting the DDD nodes and by drawing only the atoms violating

centro-symmetry for the atomic part. If we compare the obtained loop shapes obtained with

the two possible ways to close the DDD loop in the MD region (Figures 7.8 (b) and 7.8 (c)), we

find that the influence of the connecting strategy on the MD sub-part dislocation is negligible

as demonstrated as follows.

In Figure 7.10 (a), the position of the hybrid dislocation with respect to time (along the

axis x =−z) is presented. Velocities are evaluated by finite difference of the displacement and

are shown in Figure 7.10 (b). We observe that the effect of the connectivity on the MD sub-parts

dislocation is small when the MD core (along the axis x =−z) exists far away from the pad

region. As the loop expands and the MD sub-part approaches the pad region, the influence of

the connectivity strategy increases. The influence on the hybrid dislocation motion is smaller

than 0.5% at maximum.
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Figure 7.8 – Comparison of the hybrid dislocation loop motions at 0ps, 1ps, 4.5ps and 5.5ps.
The DDD nodes are represented by the red circle markers, and the atomistic dislocations are
described by the small circles. (a) Snapshots of the simulation with a straight line-connection
strategy are shown in a perspective view. Only the atoms around the slip plane and the DDD
nodes are shown. The colors applied on the atoms represent the displacement magnitude in
the Burgers vector direction (z). (b) The same simulation (a) from a top view of the slip plane.
Only the atoms violating centro-symmetry and the DDD nodes are shown. (b) Simulation
with the discrete line consisting of the MD dislocation detection solution between the two
constrained node. (c) Simulation with the hybrid dislocation loop and the two fixed DDD
networks.
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Figure 7.9 – A schematic modeling of a hybrid dislocation loop and two fixed dislocation loops.
The Burgers vectors of these loops are same.

Interactions between Multiple Dislocations

In the previous sections, we studied the CADD3d method with a single dislocation, and

validated it with two different, yet simple, dislocation shapes, the straight line and the loop. In

this section, we will introduce more dislocations, in order to stress the coupling with regard

to dislocations interaction. Consequently, a hybrid dislocation loop is first inserted at the

center of the domain as shown in Figure 7.9. Then two fixed ellipsoidal discrete dislocation

loops are set to surround the hybrid dislocation. Because the Burgers vectors of the fixed

loops are identical to the one of the hybrid dislocation loop, all the loops repel each other. The

interaction force between the DDD nodes is computed by DDD engine while the interaction

between atoms and the fixed loops are enforced thanks to CADD3d. More precisely, when the

displacement field of the pad atoms is evaluated, the contribution of the fixed DDD loops will

be considered through the linear elasticity displacement field. Such a pad configuration will

generate repelling forces acting on the MD part of the hybrid dislocation loop.

A shear loading of 400MPa is applied to drive the hybrid dislocation motion. The two

DDD end nodes are connected by using a straight line since this simpler strategy was shown to

be accurate enough in sub-Section 7.2.2. We synchronize the coupling boundary conditions

every 50 steps (tupd ate = 50Δt ) with the the core templates (cut-off radius rc = 10|�b|).

Figure 7.8 (d) shows simulation snapshots at 0ps, 1ps, 4.5ps and 5.5ps from a top view of

the slip plane. As the hybrid dislocation expands and approaches the fixed DDD loops, the

repelling forces increase and the hybrid dislocation completely stops in front of the fixed loops.

The displacements and velocities as a function of time are shown in Figure 7.10. We find that

the two sub-parts of the hybrid dislocation travel as one single dislocation. Even the velocity
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Figure 7.10 – Displacement and velocity evolutions of the dislocation loops with the three
different simulation setting. The first two problems are the hybrid dislocation loops with the
two different connection strategies. The third problem is the hybrid dislocation loop with the
two fixed DDD networks.

profiles are similar which proves the quality of the CADD3d approach. The CADD3d method

was shown to be valid also in the case where multiple dislocation interactions are considered.

Contraction of hybrid dislocation loop

The last test problem considers a hybrid dislocation loop under the shear loading 70MPa,

which is smaller than the stress value maintaining static dislocation loop (370MPa). Such

shear loading lets the hybrid dislocation loop contract under the action of self stresses. Fig-

ure 7.11 shows a schematic view of the expected hybrid dislocation loop dynamics. As the

loop contracts, we observe that the curvature increases and the distance between the two core

templates (shown with the red hatching) decreases. As discussed in Section 5.6, this situation

does not fulfill the condition in which the core template approximation is applicable.

Figure 7.12 shows the displacement evolution of MD and DDD parts of the hybrid

dislocation loop along the x =−z axis. At the beginning of the simulation, the two sub-parts

contract with the same speed, but they behave differently when the loop curvature increases.

This test-problem result shows that, to provide a correct CADD3d-coupling prediction the

assumption of low curvature must be satisfied.

Summary

In this chapter, we presented various 3d dislocation dynamic simulations using the

proposed CADD3d method. The first considered problem introduced a hybrid straight dis-

location, made partly with atoms and partly with discrete dislocation dynamics segments.

The simulation was demonstrated to accurately model the dynamical evolution of a single
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Figure 7.11 – Contraction of the hybrid dislocation loop. As the loop contracts, the curvature
increases, and the spacing between the two core templates reduces.
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Figure 7.12 – Displacement evolution of the MD and DDD parts of the dislocation loop. As
the loop contracts, the difference in behavior between the two sub-parts of the loop increases
with time.
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hybrid straight dislocation such that it behaves as one single dislocation. The sensitiveness

of the coupling scheme has been analyzed with respect to three of the coupling parameters

(core templates, mobility law and update step), and we showed that they have to be adjusted

correctly in order to achieve accuracy. The second elected problem involved a hybrid dislo-

cation loop. If compared to the first problem, a major difficulty arose from the geometry of

the domain: the core structure needed at the coupling interface can be of multiple arbitrary

character angles. Nevertheless CADD3d successfully preserved the curved dislocation loop.

Furthermore, one have shown that the coupling also works as expected in the case where dif-

ferent dislocation loops interact through the coupling. Lastly, we have analyzed the limitation

of the core template application by studying the contraction of the hybrid dislocation loop

with a small shear loading. In consequence, we can conclude that the proposed CADD3d

method is a valid approach for coupling MD with DDD domains, which contain dislocations

with curved shapes and low curvatures in FCC aluminum.
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8 Frank-Read Source Dynamics in Al
and Al-5%Mg

After the successful validation of CADD3d shown in the previous chapter, we now apply

our method on a material plasticity problem, where hardening effects are influenced by the

intrinsic material structures at multi-scales. Let us quickly recall the original motivation

of this thesis: for small specimens a size dependent strength is observed because plastic

deformations are strongly governed by dislocation movements. To describe this effect, there

are two important mechanisms: the interaction with dislocation/obstacle and the dislocation

nucleation. These occur concurrently at the nano- and micro-scales. Thus to tackle such

problems a CADD3d-like (multiscale) method is necessary. In this chapter, a problem dealing

with these two dislocation processes will be studied thanks to CADD3d.

Frank-Read source in crystalline materials

A Frank-Read (FR) source is a defect that can emit multiple dislocations [Hirth and Lothe

(1992); Banabic (2000)]. Such sources can explain how a constant plastic flow can be achieved.

A FR source is a planar dislocation pinned between two points. The pinning constraint can

be caused by interaction with particular crystal defects, such as impurities, precipitates or

sessile dislocations [Hirth and Lothe (1992)]. Figure 8.1 (a) shows a FR source composed of

two sessile dislocations (A and B). A top view is depicted in Figure 8.1 (b) (instant 1).

The evolution of such a FR source can be summarized as follows: under a shear load,

the planar dislocation glides and bends (instant 2). As the bowing-out proceeds, two screw

oriented parts (pointed as C1 and C2) with opposite signs appear behind and around the

pinning points (instant 3). These screw parts of opposite signs contact and annihilate one

another (instant 4). Finally, a closed dislocation loop and a new dislocation segment (A and B)

emerge. The created dislocation loop can travel (instant 5) in the crystal, while the remaining

dislocation between A and B may form another dislocation loop with the same process we

have described.

In general, a FR source interacts with any other defects. Figure 8.2 shows an experimental
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Figure 8.1 – (a) Configuration of a Frank-Read source composing to two sessile dislocations
A and B. The segment between A and B is a dislocation on the glide plane. (b) A nucleation
process of a dislocation loop from the Frank-Read source.

observation of a FR source in an Al-Mg alloy [Amelinckx (1964)] within a grain of characteristic

size ∼ 5μm. As can be seen on the figure, other defects may exist around the FR source

(substitutions, interstitial, voids and dislocations). As said in Chapter 2, such defects may yield

short or long-range stress fields and can consequently influence the FR source evolution. For

example, dislocations can be stopped by obstacles as discussed in sub-Section 2.2.3. Such

impeded dislocations will induce a backstress which reduces the resolved stress acting on the

FR source. Finally, the FR source may cease to nucleate dislocations if the resolved shear stress

is completely compensated by the backstress. To maintain a constant plastic flow, dislocations

have to be nucleated with a higher shear load. Macroscopically, such mechanism are perceived

as strain hardening (also called work-hardening) effect.

Figure 8.2 reveals that we need to consider defects in numerical studies addressing

plasticity. However, in all previous numerical studies of FR sources [Maurice et al. (2003);

Shimokawa and Kitada (2014); Bulatov and Cai (2006); Verdier et al. (1998)], it was not possible

to evaluate quantitatively the strain hardening effect, even though they were considering the

simpler defect free case. Indeed, the grain sizes can vary from 10nm (small grains) to 10μm

(large grains) [Geipel and Banhart (1996); Amelinckx (1964)] while the nucleation process

remains local. Again, this requires a multiscale treatment. With the CADD3d method, we

can handle both nucleation and long range interaction, also when zero-dimensional defects

are included. In the following section, we detail a simulation setup to address FR sources in

aluminum (Al) and aluminum-5%magnesium (Al-5%Mg).

A Double Frank-Read Source in CADD3d

To analyze the hardening effect due to substitutions, we wish to compare a pure alu-

minum and an aluminum-5%magnesium materials. The considered domain is shown in

Figure 8.3. We insert a pair of FR sources with the following procedure: first, one atomistic
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Figure 8.2 – An experimental observation of a Frank-Read source and nucleated dislocation
loops in an Al-Mg alloy. Figure from [Amelinckx (1964)].
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Figure 8.3 – (a) A double Frank-Read source modeling in the CADD3d domain in a perspective
view. The MD domain boundary is shown with the red solid lines, and the DDD boundary is
indicated in the blue solid lines. The atomistic FR source consists of the two planar dislocations
connected with the two sessile dislocations. 5% of the MD atoms are defined as the Mg
substitution. (b) At each end of the planar dislocations, a cylindrical void is created to prevent
gliding motions of the sessile dislocations.
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rectangular layer located in the middle of the MD domain is removed (see Figure 8.3 (b)). It is

known that a FR source in a FCC material is not stable [Maurice et al. (2003); Weinberger and

Tucker (2012); Shimokawa and Kitada (2014); Xu et al. (2016)]. More precisely, as the planar

dislocation expands, the sessile dislocations, which are supposed to remain straight, may glide

as well. To maintain the FR source in the chosen slip plane, we introduce two voids at the

sides of the rectangle by removing the atoms in two cylinders with radii R=2|�b| and heights

H=a0
	

3 (a0 lattice constant) as suggested by Shimokawa and Kitada [Shimokawa and Kitada

(2014)]. Finally we relax the MD box to obtain the double FR source, actually made of two

planar dislocations connected by two sessile dislocations as shown in Figure 8.3 (a).

Then, we couple the relaxed MD domain with the DDD domain. As shown in Figure 8.3

(a), the pad region is defined to surround the MD box with a thickness of 7Å. Furthermore, to

describe dislocations piling-up against a grain boundary, the mobilities of DDD nodes are set

to be zero when they cross the out-most boundary. For the hardening study, three different

DDD domains LDD = {0.1μm, 0.3μm, 0.5μm} are considered. It is worth to mention that to

correctly mimic the grain boundary effect, a free boundary condition should be considered.

To support such a boundary condition, image dislocations and their force fields have to be

calculated, which are not accounted in the following. For the present problem, we employ a

different family of potentials for aluminum and alloy materials. To adapt these potentials for

CADD3d, the required building blocks are constructed in the following section.

Core Templates, Peierls Stress and Mobility Law of Dislocations in Al

and Al-5%Mg

As discussed in Chapter 7, the core template, mobility law and update step tupd ate

have to be adjusted correctly to obtain accurate CADD3d simulation results. Since the first

two components depend on the material properties, these can be evaluated in offline MD

simulations. In what follows, we employ the Ercolessi-Adams EAM potential [Ercolessi and

Adams (1994)] for the pure aluminum and the Liu-Adams EAM potential [Liu and Adams

(1998)] for the Al-5%Mg. We have to use the Ercolessi-Adams potential instead of the previously

employed Mendelev one [Mendelev et al. (2008)] since there are no alloy potentials available

in the literature where Al-Al interactions are computed with Mendelev based forces.

To obtain the core template, dislocation core structures with several character angles

are computed similarly to what was described in Chapter 5. However, in the considered

alloy the dislocation core structure will depend on the local stress variations induced by the

substitutions (Mg). To find core structures for the homogenized alloy, we employ another EAM

potential [Varvenne et al. (2016)] which considers the interactions between Al and 5%Mg atoms

in an average sense. More precisely, the homogenized potential was purposely built to describe

0K Al-5%Mg material properties (such as cohesive energy and bulk modulus [Noehring and

Curtin (2016)]). By following the procedure given in Chapter 5, we obtain dislocation core

structures for eight character angles (θ = 0◦, 19.107◦, 30◦, 40.893◦, 49.107◦, 60◦, 70.893◦ and
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Figure 8.4 – The strains duz /d z (edge direction), dux /d z (screw direction) over the gliding
direction z. The results derived from the aluminum are shown with the red and blue solid
lines, and the calculations obtained from the homogenized alloy are indicated in the green
and orange solid lines.

90◦). These results are presented in Figure 8.4 with the disregistry functions [Bulatov and

Cai (2006); Cho et al. (2015)], where the aluminum is denoted with red and blue solid lines,

while the homogenized alloy is denoted with green and yellow solid lines. For each character

angle, there are edge and screw components of the displacements because of the dissociation

into two (Shockley) partial dislocations [Hirth and Lothe (1992)]. We can observe that these

two materials give similar core structures for all the computed character angles with only

small (localized) differences. From these calculations, the core templates are generated as was

demonstrated in Section 5.6.

Also, Peierls stresses are measured for the considered materials by following the process

given in Section 5.5. The obtained results are shown in Figure 8.5. As discussed in Section 5.5,

the Peierls stresses vary largely with the character angles, which eventually depend on the core

structures. Furthermore, the comparison of the two materials shows that the dislocations in

the alloy need higher stresses to glide than in Al.

The second building block is the mobility law. To collect the dislocation mobilities,

we carried out a set of MD simulations with the same strategy as depicted in Chapter 6.
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Figure 8.5 – Variations of Peierls stresses for several character angles in Al and Al-5%Mg with
respect to the density of atoms in the gliding direction. The corresponding Peierls stress value
and the character angle are denoted next to each marker.

We conducted these for several character angles (0◦ ≤ θ ≤ 90◦) and shear stresses (50MPa≤
σ ≤1000MPa) with the two material potentials (Al and Al-5%Mg). Those simulations are

carried out at around 0K enforced by the Langevin thermostats as described in Chapter 6.

To account for distributions of the substitutions, we perform the MD simulations with ten

different crystal systems where the magnesium atoms are spread out randomly. The average

dislocation mobilities are presented in Figure 8.6 where the blue circles indicate the alloy

case, while the red circles denote the mobilities in Al. The alloy case includes the error bar

representing the deviations of the obtained mobilities with the ten different crystal systems.

Comparing the two materials shows that dislocations in the alloy have lower mobilities at low

shear stresses, which reveals higher phonon-based viscous forces. For larger shear stresses,

the dislocations mobilities are more alike. The mobility laws are constructed by fitting the

Eshelby-Olmsted equation as discussed in Chapter 6. The fitted results are shown with the

solid lines in Figure 8.6.

Definition of Pad Domain

The FR source modeled will nucleate several dislocation loops. These will accumulate

displacement steps which needs a special treatment for the pad atoms. In order to explain it,

let us consider a single FR source instead of the double one. Figure 8.7 (a) shows the evolution

of the MD box configuration (from a top view of the slip plane) after two dislocation loops (blue

circles) have passed through the pad region. The top and bottom parts of the MD domain are

displaced in opposite directions of the Burgers vector�b by half the Burgers distance each time

a dislocation loop escapes from the MD box. Thus, the respective distance is the magnitude

of the Burgers vector multiplied by the number of loops n. Accordingly, the pad region will

show steps to accommodate for plastic displacements. It is visible that some of the free atoms

will be exposed to the DDD domain once the total plastic displacement n|�b| becomes larger

than the pad length. Such atoms are not coupled and will feel influences of the free surfaces.
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Figure 8.6 – Dislocation mobilities of several character angles in Al and Al-5%Mg. The alu-
minum results are depicted in the red circle-lines, and the alloy outcomes are shown with the
blue lines. Continuous lines are fitted using the Eshelby-Olmsted equation.
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Figure 8.7 – Schematic of the evolution of the MD box during the evolution of a single Frank-
Read source. (a) The MD and DDD domains are shown from a top view of the slip plane.
The two DDD dislocation loops (blue circles) have been emitted previously from the FR
source (orange line) in the MD region. (b) Front view of the MD domain. The step is due to
the two dislocation loops that previously crossed the interface. (c) The FR source displaced
sufficiently to contact the pad atoms. (d) The atom re-insertion scheme action during the FR
source evolution. (e) Re-definition of the MD box to center the FR source. (f) Continuous FR
evolution as the result of the (d) re-insertion and (e) re-definition schemes in CADD3d.

To avoid such uncontrolled situation, the pad region has to be updated to include the steps

as shown in Figure 8.7 (b). However, even with this update, the FR source cannot maintain

a continuous evolution because as shown in Figure 8.7 (c) the FR source will get close and

contact with the pad (constrained) atoms.

To maintain a continuous FR source evolution, we have to carefully arrange atoms such

that the FR source stays in the MD region without the steps. This scheme can be achieved

through the following procedure:

• First, as shown in Figure 8.7 (d), the pad atoms have to be selected according to their

current positions in the region surrounding the MD domain (shown with the red solid

line).

• Second, the atoms moving out of the MD box must be removed from the simulation box.

On the contrary, new atoms should be created at places where the displacement field

would otherwise create an empty region.

• Third, as shown in Figure 8.7 (e) the MD atoms and the pad region need to be translated

such that the FR source stays at the center of the MD domain.
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(a) (b)

Figure 8.8 – Simplification of the DDD dislocation network. (a) The original dislocation loop.
(b) Segments within low curvature regions merged into longer straight segments.

Consequently, as shown in Figure 8.7 (f) a continuous dislocation emission can be realized.

For the present problem, due to the symmetrical MD domain, the second (deleting and

creating shown in 8.7 (d)) scheme can be simply achieved by employing the PBC strategy with

the pad length, which is thick enough to avoid communications between the two opposite

sides. The third scheme (translation shown in Figure 8.7 (e)) must be carried out based

on analysis of slip systems and dislocation structures. For the moment, we avoid this last

component by employing a MD domain, which is large enough to circumvent the contact of

the FR source with the pad atoms.

Dislocation Coarsening

We expect the FR source to emit multiple dislocation loops which eventually will pile-up

against the DDD boundary. Then, the computational cost will be mainly demanded for the

update of the reciprocal boundary conditions. More precisely, for the CADD3d coupling

scheme, we have to evaluate the (linear elasticity) displacements for every pad atoms by

considering the entire DDD dislocation network 1, this operation scales with the total number

of DDD segments and thus can become expensive.

As shown in Chapter 6, when a dislocation loop travels long distances in Al, an initially

curved (ellipsoidal) dislocation loop transforms into an octagon with distinct facets. Such a

geometry can be represented, with no loss of information, with only a few straight segments.

Figure 8.8 (a) shows such a DDD dislocation loop, and a similar loop with less DDD nodes has

been constructed by removing the segments with low curvatures as shown in Figure 8.8 (b).

By applying this coarsening strategy, the computational time of the coupling scheme can be

significantly reduced.

Consequently, in CADD3d, a coarsening strategy is implemented such that simplified

DDD networks are considered when the displacement of the pad atoms need to be computed.

1MD dislocation structures can also be considered (e.g. core template application) if necessary as described in
sub-Section 7.1.1
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57nm 57nm

z [11̄0]

y [111]

x [112̄]

Pad

Figure 8.9 – Modeling of a single Frank-Read source with (a) MD and (b) DDD.

The computational efficiency of this strategy will be discussed in Section 8.7.3.

Dislocation Nucleation from Frank-Read Source

In this section, we study the FR source using not only CADD3d but also single scale

methods with MD or DDD only. The considered models are shown in Figure 8.9. By comparing

these simulation results with each other, a necessity of MD for dislocation nucleation will be

highlighted. Such necessity will again confirm the fundamental reason for the development of

the CADD3d method.

To compare these simulations with one another, the pure MD simulation needs the

same boundary conditions (infinite boundary conditions) to be applied on the DDD or the

CADD3d domains. To enforce such boundary conditions, the modified CADD3d scheme

can be applied on the boundary of the MD domain as follows: first, we define the constraint

atoms in the region surrounding the MD domain (like pad in CADD3d) as shown in Figure 8.9

(a). The positions of those atoms are updated with the displacement field produced by the

entire dislocation network (steps 6© and 7© of CADD3d algorithm). As demonstrated in sub-

Section 4.2.3, by removing an insertion zone (MD+DDD), dislocations at the MD boundary will

naturally be stopped such that the displacements of the dislocations are effectively constrained.

Overall, such method is assumed to be comparable to the impenetrable DDD boundary

employed for the other cases.

Let us compare the simulation results calculated under the shear load 700MPa shown in

Figure 8.10. For better visibility, only the dislocations in the bottom parts are shown. We can

observe the snapshots of the simulations, which are shown from a top view of the slip plane,

at 5ps, 10ps, 17.5ps, 20ps, 25.5ps and 50ps. Figure 8.10 (a) shows the pure MD simulation

result, and Figure 8.10 (b) denotes the pure DDD result. Figures 8.10 (c) and (d) show the

CADD3d simulation results with two different MD domain sizes (LMD = 160Å and LMD = 320Å).

Respectively, the MD, and DDD boundaries are shown with the red and blue solid lines, and
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atomistic and discrete dislocations are depicted with the red (small) and blue (large) spheres.

The results can be summarized as follows:

• By comparing the full MD and the DDD simulation results (Figure 8.10 (a) and (b)), we

observe that the MD method emits less dislocations than the DDD method.

• Because the details of the FR source mechanics are considered with the MD region

LMD = 160Å (Figure 8.10 (a) and (c)), CADD3d allows to emit the correct number of

dislocation loops. Furthermore, the global FR source evolution is matching better the

pure MD simulation than the pure DDD one.

• The dislocation pile-up widths are different in the pure MD and in the DDD domains.

Specifically, the MD dislocations are piled-up with a width of ∼ 25Å, while the DDD

dislocations (in CADD3d) are stacked at ∼ 10Å. We believe that this discrepancy occurs

because of a mismatch in the calculation of the interaction forces acting on dislocations.

This last point needs to be precised: we speculate that the displacement field calculated

by the Barnett’s approach is insufficient. Because the anisotropicity of Al is low, the isotropy

prediction of Barnett et al. [Barnett (1985)] has been employed in every simulations shown

in this thesis. However, the results presented on Figure 8.10 call for a more sophisticated

anisotropic displacement field. Despite such limitations, we use in the next section the actual

CADD3d method to study qualitatively the hardening effects produced by a FR source in an

aluminum alloy.

Strain Hardening Effects with Frank-Read Source

A Frank-Read Source in Al-5%Mg Alloy

Like in the previous section, a quasi-static load is applied to generate the FR source

evolution. The coupling operations are performed every 50 time steps (tupd ate = 50Δt ).

Figure 8.11 shows snapshots of the FR source evolution (σ= 1000MPa and LDD = 0.5μm)

at 20ps and 140ps. In Figure 8.11 (a), the MD and DDD domain boundaries are represented by

the red and blue solid lines, respectively. The MD atoms and the DDD nodes are colored by

their Y coordinates. As expected, we see that multiple DDD dislocation loops are emitted from

the FR source, and are piled-up against the DDD boundary. In Figure 8.11 (b), a close-up view

of the MD domain is shown, where the magnesium atoms are the blurry gray spheres. Hybrid

dislocation loops are attached to the sessile dislocations. As expected, the two sub-parts of the

hybrid dislocations are correctly coupled through the coupling interface, and behave as single

dislocation structures.
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5ps

17.5ps

20ps

25.5ps

50ps

(a) (b) (c) (d)

10ps

Figure 8.10 – Snapshots of the simulations at 5ps, 10ps, 17.5ps, 20ps, 25.5ps and 50ps. The MD
and DDD domain boundaries are shown with the red and blue solid lines, respectively. The
MD atoms are depicted by the small red spheres, and the DDD nodes are plotted by the large
blue spheres. (a) and (b): single scale MD and DDD simulations, respectively. (c) and (d): the
CADD3d coupling simulations with the two different MD-box sizes.
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20ps (a) 20ps (b)

140ps (a) 140ps (b)

Figure 8.11 – (a) Multiple dislocation loops nucleated from the atomistic FR source are shown
with a perspective view. The MD box (red line) is located in the middle and the DDD boundary
(0.5μm) is shown with the blue lines. (b) A zoom of the MD domain. The MD atoms and DDD
nodes are colored by their Y coordinates. The magnesium atoms are shown with small and
transparent gray spheres.
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Figure 8.12 – Variations of numbers of the nucleated dislocation loops with different grain
sizes and the material types. (a) Grain hardening effect: small grains yield fewer dislocation
loops. (b) Solid solution hardening effect: the alloy emits less dislocation loops than for the
aluminum.

Hardening Effects

Let us discuss the observed strain hardening effects. As expected, all the CADD3d simula-

tions show that the FR sources cease to nucleate new dislocations when many other dislocation

loops are piled-up at the DDD boundaries. The final number of piled-up dislocations for

a given applied stress and a grain size is shown in Figure 8.12. We can observe the grain

boundary hardening effect in Figure 8.12 (a): for any shear stress, the number of piled-up

dislocations decreases if the DDD domain size decreases. In Figure 8.12 (b), we can see the

solid solution hardening effect: the FR source in the alloy emits less dislocations than in the

aluminum. In fact, some cases yield an odd number of piled-up dislocation loops due to the

asymmetrical FR evolution as shown in Figure 8.11 (b) at 140ps. Such a non-asymmetrical

evolution occurs because of the imbalance force field acting on the top and bottom FR sources,

and this force field is more likely to appear with the substitutions. Therefore, in Figure 8.12 (b)

we observe that the FR sources in the alloy yield more odd numbers of the dislocation loops

than when in the aluminum.

Recently, Srinath & Curtin [Chakravarthy and Curtin (2010)] proposed an analytic model

describing the dislocation piling-up for two dimensional systems. The dislocation density

n(x) obtained from this model can be written as follows:

n(x) =
⎧⎨
⎩

−σr es
iπ

√
(x−x0l )(x−x0r )
(x−Ll )(x−Lr ) , if Ll ≤ x ≤ x0l , x0r ≤ x ≤ Lr

0, otherwise
(8.1)

with σr es the resolved shear stress applied on the FR-source, x0l and x0r the hardening param-

eters, Ll and Lr the spatial dimensions of the domain. We used this model to fit the obtained

simulation results by changing the hardening parameter x0 = x0l = x0r with the conditions

L = Ll = Lr . More precisely, by integrating the density n(x) over half the domain (L/2 being

one side of the source) with the fitted parameter x0, the expected number of emitted disloca-
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Figure 8.13 – Evolution of a total number of the DDD nodes is shown by the blue circles.
The considered DDD points after the coarsening strategy for the coupling is shown with the
red circles. In this example, the coarsening strategy reduces the number of the DDD points
considered by 88% at most.

tion loops can be calculated. The fitting result is shown with dashed lines in Figure 8.12 for

each domain size. We observe that this analytic model can predict the CADD3d simulation

results, and finally these observations allow us to claim that the CADD3d method has the

potential to evaluate the hardening effects occurring by means of multiple scale interactions.

We emphasize that to predict a quantitative hardening effect, the spurious forces (certainly

due to the employed isotropic displacement field) will have to be corrected.

Coupling Performances

Figure 8.13 shows the evolution of the number of DDD nodes during the FR source

dynamics (shown in Figure 8.11). As the dislocation loop expands, the number of DDD nodes

increases significantly. As discussed in Section 8.5, to reduce the expensive coupling compu-

tation due to such a large number of DDD nodes, a coarsening strategy needs to be applied.

The real number of DDD nodes considered to evaluate the linear elasticity solution is shown

with the red circles in Figure 8.13. The proposed coarsening strategy reduces considerably the

number of DDD nodes, which are considered during the coupling, and consequently reduces

the computational cost of the coupling.

Let us discuss the computational efficiency of the multiscale approach if compared to

the single scale MD method. Table 8.1 compares the times for full MD and for CADD3d needed

to solve problem discussed in Section 8.6. We find that the number of degrees of freedom

(i.e. number of atoms × 3) is reduced by 84% and 68% by employing CADD3d with the MD

domains LMD = 160Å and LMD = 320Å respectively. The CPU times for such simulations

decreased by 80% and 64%, respectively. Therefore, we estimate that 4% of the CPU time is

consumed in coupling overhead (communications).
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Full MD CADD3d (LMD = 160Å) CADD3d (LMD = 320Å)
#D.O.F (million) in MD 13.5 2.19 4.35

CPU time/step (s) 7.8 1.6 2.8

Table 8.1 – Comparison between the full MD and CADD3d performances for the pre-validation
problem given in Section 8.6. We only compare the degrees of freedom employed in the MD
domains are compared between the full MD and CADD3d simulations. For CADD3d, the
averaged CPU time includes all the calculation times (for MD, DDD and CADD3d coupling).

Note that these performance data have been evaluated with the small CADD3d domain

(L =57nm). Therefore, we can expect more significant computational gains if we perform

CADD3d simulations with domains larger than L =57nm. In consequence, the main objective

of any multiscale concurrent coupling - being the decrease of the computational cost - is

fulfilled by our approach.

Summary

In this chapter, the CADD3d method was employed to study the FR source with the

two hardening effects: solid solution and grain boundary strengthening. To that end, the

successive generation of the dislocations was enabled by double Frank-Read sources in pure

Al and Al-5%Mg. Two coupling components (core templates and mobility law) have been

adjusted to this case. Comparably to what was done in Chapter 5, the Peierls stresses have been

measured. The pad atoms have been defined carefully with the two strategies (the Eulerian

definition and the deleting/creating of the pad atoms) in order to realize the continuous FR

source evolution. By comparing the FR sources calculated with the single scale methods

(MD and DDD) and CADD3d, we have demonstrated that a correct dislocation nucleation

process can be realized even with a small MD sub-domain. Based on those observations

and components, we studied two hardening effects with the CADD3d method, and observed

qualitative hardening effects: fewer dislocation loops are emitted within an Al-5%Mg alloy

or with small grain sizes. Lastly, we could show that the CADD3d method satisfies the main

objective of multiscale modeling by significantly decreasing the required CPU time.
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Summary

In this thesis, the author developed, implemented and studied the coupled simulation

method for 3d dislocation dynamics at nano- and micro-scales (CADD3d). The challenges of

the CADD3d development have been identified by pointing the differences between CADD2d

(two-dimensional CADD) and CADD3d features: dislocation networks, which are nucleated

from the MD domain, may partly belong to the MD domain, and partially to the DDD domain

as they approach the DDD zone. Such hybrid dislocations need to travel seamlessly over

the two domains without any spurious forces. To achieve such behaviors, two features were

introduced in the CADD3d method. First, when the pure MD dislocation approaches the DDD

domain, CADD3d introduces new DDD nodes such that the MD dislocation can be continu-

ously changed into the hybrid dislocations. Second, during the traveling of hybrid dislocations,

CADD3d periodically matches the boundary conditions of the MD and DDD descriptions

of the hybrid dislocations (i.e. the reciprocal boundary condition). The proposed coupling

scheme has been implemented within a parallel computing framework including molecular

dynamics (MD) and discrete dislocation dynamics (DDD) engines. Two key components were

necessary: 1) the correction of the linear-elasticity displacement field in the regions close to

dislocation cores and 2) an accurate mobility law for discrete dislocations, and the both were

computed by using offline MD simulations.

For the first component, dislocation core structures were studied by modeling straight dis-

locations with arbitrary mixed angles in MD. Moreover, a variational Peierls-Nabarro method

was extended to include arbitrary dislocation characters to provide secondary model to study

these core structures. Both methods showed comparable core structures and stacking fault

widths for all the considered mixed dislocations. Additionally, the MD formalism allowed to

measure Peierls stresses, showing that the core structure significantly influences the minimum

stresses required to initiate the motion of the dislocations. Finally, to utilize the obtained

results in CADD3d simulations, the atomistic data have been meshed in order to provide inter-

polation capabilities. This is the core template which is the first building block of CADD3d.

103



Chapter 9. Concluding Remarks and Outlook

Second, the dislocations mobilities for several temperatures and character angles were

studied by employing atomistic simulations. The obtained results were successfully fitted

to the Eshelby-Olmsted model, and the fitted constants show good agreements with other

published works. To mention an important detail, a critical velocity parameter predicted

by the analytic models is correlated to the material dispersive nature. We could revisit the

interpretation of this critical velocity by considering character angles that were not studied

previously. Finally, the obtained mobility curves were condensed in an angle-and-temperature-

dependent mobility law usable by a DDD engine, which forms the second building block of

CADD3d.

To validate the CADD3d method, various hybrid dislocation dynamics problems have

been studied. The first one considered is a hybrid straight dislocation with an arbitrary

character angle. Under a wide range of shear stresses, the two representations in the hybrid

dislocation are shown to travel as one single straight dislocation. The sensitivity of the coupling

scheme has been studied with respect to the core template, to the mobility law and to the

update frequency. The results showed that these components have to be adjusted correctly

to allow consistent coupling results. The second test problem is an expansion of hybrid

dislocation loop with a finite shear loading. The curved geometry of the dislocation is treated

well, and the correct dynamics have been achieved such that the MD and DDD sub-parts of

the hybrid dislocation loop expand as one single object. Furthermore, we have studied the

coupling problem where multiple dislocation loops interact through the coupling interface.

Again, a consistent dislocation dynamics evolution was demonstrated. Lastly, by studying the

contraction of a hybrid dislocation loop with a small shear load, the limits of application of

the CADD3d coupling scheme could be analyzed.

Finally, the dynamical evolution of a Frank-Read source in a pure/alloy aluminum crystal

was studied with CADD3d. Strain hardening effects, which require a multiscale approach at

nano- to micro-scales, have been qualitatively simulated. Again we had to prepare the two

main building components (core templates and mobility law) for aluminum and aluminum-

5%magnesium materials with offline MD runs. Compared to the pure aluminum, random

distribution of the alloy atoms should be taken into account when dislocation core structures,

stacking fault widths and dislocation mobilities are measured. The Frank-Read source evolu-

tion was calculated by using not only CADD3d but also single scale methods (MD or DDD)

with the aim to identify the net effect of the coupling. The comparison of these simulations

highlighted that an atomistic representation is necessary to get an accurate Frank-Read source

evolution. This confirms the need of the MD system for studying dislocation nucleation. When

compared to the full MD-single-scaled calculation, the CADD3d produces the similar result

with the CPU time significantly reduced. Based on these two observations, finally the CADD3d

method showed two hardening effects: fewer dislocation loops are emitted within the alloy or

with smaller grain sizes (solid solution hardening and grain boundary strengthening).
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Outlook

CADD3d method has been developed in this thesis. While the available tool has been

successfully applied on a plasticity problem, several simplifications of the models or of the

set-up were necessary. These simplifications call for improvements of the existing tool, which

in turn open the path for more complex material plasticity problems and new advances in

material engineering.

The first improvement would be to introduce a more sophisticated anisotropic displace-

ment field [Hirth and Lothe (1992); Emmanuel (2009); Shishvan and Van der Giessen (2013)].

In Chapter 8, we observed ghost force effects due to the insufficiently accurate displacement

field created by the dislocation segments, and which was applied on the coupling interface.

This improvement will solve the ghost force effects as well as it will open a new development

of CADD3d towards dislocation dynamics for BCC materials.

In the current version of CADD3d, only one MD domain is employed. In this framework,

several limitations regarding the modeling of dislocation-nucleation sources exist. For ex-

ample, dislocation sources should be concentrically located in one single MD domain. As

such, problems where several dislocation sources are randomly distributed cannot be studied.

Another limitation is that only dislocation-nucleation sources of small size can be considered.

For example, in Chapter 8, we have modeled the 10nm×10nm Frank-Read source. This is

a rather quite small FR source when compared to experimentally observed ones (10nm ∼
10μm [Geipel and Banhart (1996); Amelinckx (1964)]). Due to its small size, we consequently

had to apply a high shear stresses (∼800MPa at the minimum) to nucleate dislocation loops.

However, in real materials, such high stresses cannot be sustained because other plasticity

mechanisms would play a role, such as grain boundary sliding [Schiotz et al. (1998); Jang and

Greer (2011)], at lower stresses than 800MPa.

To resolve such limitations, multiple MD domains should be employed in CADD3d. For

example, Figure 9.1 shows the modeling of a Frank-Read source, which is made larger while

preserving the number of degrees of freedom. The MD domains are used around the sessile

dislocations, where an atomistic representation is required according to the discussion given

in Section 8.6. In this framework, the length between the sessile dislocations LF R can be

chosen large such that small critical shear stresses are expected. It will allow to study the FR

source evolution with shear stresses comparable to experimental conditions.

In view of more long-term goal, the implementation of the coupling between the DDD

and FEA domains [Weinberger and Cai (2007); Fivel and Depres (2014)] is the next development

step. The full version of CADD3d shown in Figure 4.3 can tackle material plasticity problems

for which complex boundary conditions should be accounted, such as nano-indentations

and compression of nano-pillars. According to [Weinberger and Cai (2007); Weinberger et al.

(2009)], the DDD+FEM coupling scheme becomes computationally demanding as the DDD

domain contains a large number of degrees of freedom. Therefore, a generic implementation

including all the three coupling pieces as well as an efficient parallel computing environment
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MD1

LFR

MD2

MD3 MD4

DDD

Figure 9.1 – Modeling of a double Frank-Read source with multiple MD sub-domains in
CADD3d.

have to be realized.

Final Remark

This thesis developed and validated a novel multiscale method for 3d dislocation dynam-

ics in FCC aluminum at nano- and micro-scales by coupling molecular dynamics and discrete

dislocation dynamics. This method requires to know precisely the atomistic core structures

and the mobility laws, which were obtained from offline MD simulations. Finally, this method

showed qualitatively several strain hardening effects occurring at the nano- and micro-scales,

which could not be studied previously with single scale methods.
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