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Summary
Understanding the epidemiology of cholera, when and where it occurs and how it spreads,

is key to its prevention and control. Models can help to apprehend cholera outbreaks by

providing insight into critical epidemiological processes, and may be used to evaluate alter-

native intervention strategies or to predict the future course of epidemics. This thesis aims

at advancing the evolution of spatially explicit epidemiological models of cholera outbreaks

through methodological developments and practical applications.

Over 160 years after John Snow first analyzed the spatial pattern of cholera cases in London

and identified water as its pathway of contagion, the disease remains a major public health

threat in many regions around the globe. It causes an estimated number of 2.86 (1.30 – 4.00)

million cases and 95000 (21000 – 143000) deaths in 69 endemic countries every year.

A set of metapopulation and individual-based, mechanistic and semi-mechanistic epidemio-

logical models has been developed to tackle epidemiological questions at the country, sub-

national and city scale. The models explicitly take into account the spatial variability of

epidemiological processes such as the spread of the disease through hydrological connectivity

and human mobility, or the high resolution spatiotemporal clustering of cases. A method to

extract large-scale mobility fluxes from mobile phone call records and directly incorporate

them into a model has also been established. Different environmental drivers of cholera

epidemics have been taken into account. The models have been applied to recent cholera

outbreaks in Haiti, Senegal, Chad and the Democratic Republic of the Congo.

Results highlight the important part played by human mobility in the spreading of the disease

and the influence of rainfall and other climatic variables as drivers of disease dynamics in

several settings. Applications demonstrate how models can inform epidemiological policy

and show the effect of alternative intervention strategies on the course of an epidemic. The

evaluation of the preventive allocation of oral cholera vaccine, antibiotics and/or water, san-

itation and hygiene interventions within a given radius around reported cases in densely

populated areas shows that such interventions are effective and efficient alternatives to mass

intervention campaigns. Moreover, an alternative type of oral rehydration solution proves to

have a significant effect on the course of a simulated epidemic.

This thesis concludes that the explicit treatment of spatial heterogeneity at an appropriate

scale is crucial to reproduce real-world dynamics of cholera outbreaks. It highlights how

suitable models can address relevant questions about the dynamics of the disease, provide

insights into ongoing epidemics, may aid emergency management and complement current

epidemiological practice.
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Résumé
La compréhension des mécanismes épidémiologiques du choléra, quand et où il apparaît et

comment il se propage, est primordial afin de pouvoir planifier des mesures de prévention de

manière ciblée et contrôler la maladie. La modélisation permet d’aider à saisir les processus

épidémiologiques essentiels et peut être utilisée afin d’évaluer l’efficacité de différents scénarii

d’intervention ou de produire des prévisions à court terme sur le développement et la propa-

gation d’épidémies. Cette thèse prétend à contribuer à l’avancée de la modélisation distribuée

du choléra à travers des développements méthodologiques ainsi que par des applications

pratiques.

Plus de 160 après que John Snow ait analysé en pionnier la distribution spatiale des cas de

choléra à Londres et identifié l’eau en tant que principal vecteur de contagion, la maladie

reste une préoccupation primaire en santé publique dans beaucoup de pays tout autour du

monde. Parmi les 69 pays où la maladie est endémique, on dénombre quelques 2.86 (1.30 –

4.00) millions de cas d’infection dont 95000 (21000 – 143000) mortelles.

Un jeu de modèles, basés sur le principes de métapopulation ou sur l’individu, a été développé

dans ce travail afin de répondre aux questions épidémiologiques à l’échelle de pays, de

régions ou de villes. Les modèles prennent en compte la variabilité spatiale des processus

épidémiologiques tels que la propagation de la maladie à travers le réseau hydrologique ou les

flux de mobilité humaine, ou les phénomènes spatiotemporels d’accumulations multiples de

cas (clustering). Une nouvelle méthode permettant d’extraire les flux de mobilité humaine à

large échelle à partir de données d’appels téléphonique sur le réseau mobile a été développée,

et intégrée dans les modèles. Des applications à des épidémies récentes en Haïti, au Sénégal,

au Tchad et en République Démocratique du Congo sont également présentées.

Les résultats relèvent le rôle important de la mobilité humaine dans la propagation de la

maladie, ainsi que l’influence des précipitations et autres variables climatiques sur la dyna-

mique de propagation dans différentes situations. Les applications démontrent comment

les modèles peuvent être utilisés pour extraire des informations qui influencent la pratique

épidémiologique et permettent d’appréhender les effets de différentes stratégies de lutte au

cours d’épidémies. On peut par exemple citer l’évaluation de stratégies de lutte préventive

utilisant des vaccins ou des antibiotiques, des interventions assurant l’accès à l’eau potable ou

aux installations sanitaires dans un rayon défini autour de nouveau cas dans des zones den-

sément peuplées. Les bénéfices significatifs d’un nouveau type de solution de réhydratation

administrée par voie orale ont également été démontrés dans le cas d’une épidémie simulée.

Cette thèse conclue que le traitement explicite de l’hétérogénéité spatiale à une échelle ap-
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Résumé

propriée est cruciale afin de reproduire les dynamiques d’épidémies de choléra de manière

adéquate. Elle relève comment des modèles appropriés permettent de répondre à des ques-

tions sur la dynamique de la maladie, à amener à mieux comprendre les épidémies en cours, à

aider à la gestion d’urgence et à compléter les pratiques épidémiolgiques classiques.

Mots clefs : choléra, modélisation distribuée, hétérogénéité spatiale, échelles, maladies in-

fectieuses, épidémiologie, interventions, traitement, prédiction, santé publique, mobilité

humaine
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Zusammenfassung
Das Verständnis der Epidemiologie der Infektionskrankheit Cholera, d.h. wo und wann sie

auftritt und wie sie sich ausbreitet, ist für die Prävention und die Bekämpfung von Ausbrüchen

von grosser Wichtigkeit. Mathematische Modelle können zu einem erweiterten Verständnis

entscheidender epidemiologischer Prozesse führen und somit dazu beitragen Epidemien

besser zu verstehen. Solche Modelle können des Weiteren dazu genutzt werden, verschiedene

Bekämpfungsstrategien abzuwägen oder gar den zukünftigen Verlauf von Epidemien vorher-

zusagen. Das erklärte Ziel dieser Dissertation ist es, die Entwicklung von räumlich verteilten

epidemiologischen Modellen von Choleraausbrüchen mittels der Erweiterung bestehender

Methoden sowie praktischer Anwendungen voranzutreiben.

Mehr als 160 Jahre nachdem John Snow das räumliche Auftreten von Cholerafällen in London

analysiert und erstmals (Trink-)Wasser als den primären Ansteckungsweg identifiziert hat,

stellt die Krankheit noch immer eine wesentliche Gefahr für die öffentliche Gesundheit vieler

Länder und Regionen rund um den Globus dar. Jährlich erkranken geschätzt 2.86 (1.30 – 4.00)

Millionen Personen in den 69 Ländern in denen Cholera endemisch ist. In 95000 (21000 –

143000) Fällen ist der Verlauf tödlich.

Zur Beantwortung epidemiologischer Fragen verschiedener räumlicher Grössenordnungen,

von national über regional bis urban, wurde ein Satz mathematischer, auf Metapopulationen

oder Individuen basierender, mechanistischer und semi-mechanistischer Modelle entwickelt.

Die Modelle schliessen die skalierbare räumliche Heterogenität epidemiologischer Prozesse

mit ein, insbesondere die Ausbreitung der Krankheit über das hydrologische Netzwerk und

durch die Mobilität der Bevölkerung sowie die hochaufgelöste räumliche und zeitliche Häu-

fung von Cholerafällen. Zudem wurde eine Methode zur Herleitung von Bewegungen der

Bevölkerung anhand von Mobiltelefonanrufdaten zur direkten Anwendung in epidemiolo-

gischen Modellen entwickelt. Des Weiteren sind verschiedene Umwelt- und Klimafaktoren,

die die Ausbreitung von Epidemien beeinflussen, miteinbezogen worden. Die Modelle ka-

men in kürzlich aufgetretenen Choleraausbrüchen in Haiti, im Senegal, in Chad und in der

Demokratischen Republik Kongo zur Anwendung.

Die Resultate verdeutlichen den grossen Einfluss der Mobilität der Bevölkerung, des Nieder-

schlags und anderen klimatologischen Faktoren auf die Ausbreitung der Krankheit. Konkrete

Anwendungen zeigen auf, wie solche Modelle zur Verbesserung epidemiologischer Grundsätze

und Richtlinien beitragen können und welche Auswirkungen von neuartigen Bekämpfungs-

strategien zu erwarten sind. Ein Beispiel stellt die Beurteilung präventiver Strategien dar, im

Rahmen derer die Bevölkerung in urbanen, dicht besiedelten Gebieten in einem gewissen
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Radius um gemeldete Cholerafälle zu impfen, mit Antibiotika zu behandeln oder mit Trinkwas-

ser, Sanitäreinrichtungen und hygienischer Grundbildung zu versorgen sind. Diese Strategien

haben sich als effektiver und effizienter im Vergleich mit Massenimpfungen und andere Mas-

seninterventionen herausgestellt. Des Weiteren wurden die Vorteile einer neuen Art oraler

Rehydrationslösung untersucht, wobei sich gezeigt hat, dass diese einen bedeutenden Einfluss

auf den Verlauf simulierter Epidemien hat.

Abschliessend führt diese Dissertation aus, dass die räumliche Heterogenität in Modellen

ausdrücklich und im richtigen Masstab miteinzuziehen ist, um den realen Verlauf von Cholera-

ausbrüchen nachvollziehen zu können. Sie hebt hervor, inwiefern passende Modelle relevante

Fragen zur Dynamik der Krankheit beantworten, Einblicke in andauernde Epidemien ver-

schaffen, dem Notfallmanagement Hilfestellung leisten und die aktuelle epidemiologische

Praxis komplementieren können.

Stichwörter: Cholera, Modellierung, verteilte Modelle, Skalierbarkeit, räumliche Heterogeni-

tät, Infektionskrankheiten, Epidemiologie, Bekämpfung, Behandlung, Vorhersagen, Gesund-

heitswesen, Bewegungsprofile
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Sommario
La corretta comprensione di quando e dove un’epidemia di colera si verifica, assieme al modo

in cui si diffonde, sono elementi essenziali per la sua prevenzione e controllo. L’utilizzo di

modelli permette di facilitare il processo di comprensione delle epidemie, fornendo una stima

dei processi chiave, consentendo la valutazione delle strategie di intervento e fornendo la

previsione di scenari futuri. Questa tesi mira a far progredire l’evoluzione dei modelli spazial-

mente espliciti di diffusione del colera, attraverso sia sviluppi metodologici che applicazioni

pratiche.

Più di 160 anni dopo gli studi di John Snow che per primo analizzò lo sviluppo spaziale dei casi

di colera a Londra, identificando l’acqua come principale percorso di contagio, la malattia

rimane una grave minaccia per la salute pubblica in molte regioni del mondo. Essa provoca

un numero stimato di 2,86 (1,30 – 4,00) milioni di casi e 95000 (21000 – 143000) morti in 69

paesi endemici ogni anno.

Un insieme di modelli epidemiologici di tipo ‘metapopulation’ e ‘individual-based’, meccani-

cistici e semi-meccanicistici viene qui sviluppato per affrontare problemi epidemiologici a

scala nazionale, regionale e municipale. I modelli tengono esplicitamente conto della variabi-

lità spaziale dei processi, come la diffusione della malattia attraverso le reti idrologiche o la

mobilità umana, o il raggruppamento spazio-temporale dei casi. Inoltre, è stato sviluppato un

metodo per estrarre i flussi di mobilità su larga scala a partire da dati di telefonia mobile, con la

possibilità di includerli direttamente all’interno dei modelli. Diversi controlli ambientali sulle

epidemie sono stati presi in considerazione e i modelli sono stati applicati a recenti epidemie

di colera ad Haiti, in Senegal, Ciad e nella Repubblica Democratica del Congo.

I risultati mettono in evidenza l’importante ruolo svolto dalla mobilità umana nella diffusione

della malattia e l’influenza delle precipitazioni e altre variabili climatiche come promotori

delle dinamiche di contagio. Le applicazioni mostrano come i modelli possono aiutare le

politiche in tema epidemiologico e mostrare l’effetto di diverse strategie di intervento sul corso

di un’epidemia. Tra gli esempi, viene valutata la ripartizione preventiva del vaccino per via

orale, degli antibiotici e/o dell’acqua, dei servizi igienico-sanitari e degli interventi di igiene

mirati alle aree densamente popolate, che si dimostrano essere una valida alternative alle

campagne di intervento di massa. Inoltre, vengono illustrati i vantaggi di un tipo alternativo

di soluzione reidratante orale, che si è rivelato avere un effetto significativo sull’evoluzione

dell’epidemia secondo le simulazioni virtuali.

Questa tesi conclude che il trattamento esplicito delle variabilità spaziali ad una scala adeguata

è fondamentale per riprodurre le effettive dinamiche delle epidemie di colera. I risultati
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evidenziano come un modello appropriato possa affrontare problemi di rilievo sulla dinamica

della malattia, fornire informazione sulle epidemie in corso, essere di aiuto nella gestione

delle emergenze e complessivamente completare la pratica epidemiologica attualmente in

uso.

Parole chiave: colera, modelli, spazialmente esplicito, eterogeneità spaziale, malattia infettiva,

epidemiologia, interventi, trattamento, previsione, salute pubblica, mobilità umana
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Introduction

Cholera

Vibrio Cholerae and the human host

Cholera is a waterborne infectious disease caused by the bacterium Vibrio cholerae (Figure

1) and may lead to severe diarrhea and serious dehydration [e.g. Kaper et al., 1995; Nelson

et al., 2009]. The species V. cholerae is subdivided into serogroups, serological subtypes and

biotypes (Table 1). Strains that have the potential to cause epidemic cholera and thus are of

public health significance belong to serogroups O1 or O139 and produce cholera toxin (CT),

the main virulence factor [Kaper et al., 1995; Nelson et al., 2009]. They are thus said to be

toxigenic. Non-toxigenic strains of V. cholerae, mostly belonging to other serogroups, may

cause disease, but are not associated with epidemic diarrhea [Kaper et al., 1995]. Toxigenic

and non-toxigenic strains can be found in the environment and belong to the bacterial flora

of estuaries (see below), with non-toxigenic strains being more abundant [Colwell and Spira,

1992; Colwell et al., 1977; Gil et al., 2004; Hill et al., 2011; Huq et al., 1983; Kaper et al., 1995;

Roberts et al., 1982; Tamplin et al., 1990].

The ingestion of an infectious dose of V. Cholerae (108 to 1011 pathogens in healthy North

American volunteers [Nelson et al., 2009]) can lead to a variety of symptoms, with severity

ranging from asymptomatic colonization to cholera gravis, marked by severe diarrhea, vom-

iting, fluid loss and dehydration, which may result in death [Kaper et al., 1995; Nelson et al.,

Table 1 – Serogroups, serotypes, biotypes and cholera toxin (CT) production by the species V.
cholerae. (Adapted from Kaper et al. [1995] and Nelson et al. [2009].)

Serogroup CT production Epidemic spread Serological sub-

types (no.)

Biotypes (no.)

O1 Yes Yes 3 (Inaba, Ogawa,

Hikojima)

2 (classical,

El Tor)

O2–O138 No No None 1

O139 Yes Yes None 1

O140–O200 No No None 1
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Figure 1 – Scanning electron microscope image of Vibrio cholerae bacteria. (Ronald Taylor, Tom
Kirn, Louisa Howard. http://remf.dartmouth.edu/imagesindex.html (accessed on December
6, 2016). Image in public domain.)

2009]. Only a minority of infections are severely symptomatic (i.e. lead to cholera gravis), with

the proportion varying between strains [Kaper et al., 1995], age and endemicity of the disease

[Nelson et al., 2009]. Estimates of the proportion of asymptomatic cases are highly uncertain

and range from 3 to 100 asymptomatic per symptomatic infection [Kaper et al., 1995; King

et al., 2008; Mccormack et al., 1969; Van de Linde and Forbes, 1965] The incubation period is

estimated to be around 1.4 days (90% Confidence Interval (CI) 0.5 to 4.4), depending on the

strain [Azman et al., 2013] and the ingested bacterial dose [Hornick et al., 1971; Kaper et al.,

1995]. Stool shed by severely symptomatic individuals typically contains 1010 to 1012 vibrios

per liter [Nelson et al., 2009] and shedding can last for 1-2 weeks [Kaper et al., 1995]. Mildly

and asymptomatically infected individuals shed significantly less and for a shorter duration

[Nelson et al., 2009]. Bacteria can then infect a new host via the fecal-oral route, mainly medi-

ated by contaminated water, or may enter the aquatic environment. A hyperinfectious state,

which causes freshly shed vibrios to be more virulent, is believed to exist, its epidemiological

relevance is subject to current research [Butler et al., 2006; Merrell et al., 2002; Nelson et al.,

2009]. V. Cholerae can persist in aquatic environments and can associate with different forms

of plankton and biofilms [Faruque et al., 2006; Huq et al., 1983; Islam et al., 2007; Nelson et al.,

2009; Tamplin et al., 1990]. It is known that periodic introduction of aquatic V. cholerae into

human populations may cause outbreaks [Kaper et al., 1995; Nelson et al., 2009; Rebaudet

et al., 2013a; Vezzulli et al., 2010], long-term persistence of the disease in certain areas might

however also result from infected humans as a reservoir [Bompangue et al., 2011; Rebaudet

et al., 2013c]. Severely symptomatic patients acquire a high level of immunity to subsequent

infections, with protection possibly lasting for 3 years or more [Kaper et al., 1995; Levine et al.,

1981; Nelson et al., 2009], whereas mild and inapparent infections may also confer immunity,

2
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Figure 2 – Annual number of cholera cases in endemic countries. (reproduced from Ali et al.
[2015] with permission). Note that Haiti is hardly visible due to its size, but the estimated
number of annual cholera cases there is above 50000.

which is thought to be much shorter [King et al., 2008].

Epidemiology

In 2015, a total of 172454 cholera cases were reported in 42 countries, 41% of which in Africa,

37% in Asia and 21% in Hispaniola (Central American island) [World Health Organization,

2016a]. In the same period, 1304 deaths were reported [World Health Organization, 2016a].

Those numbers only include cases that have been reported by national surveillance systems,

actual figures are believed to be orders of magnitude higher. The worldwide annual number

of cholera cases has been estimated to lie between 1.3 and 4 million in 69 cholera-endemic

countries, with an estimated number of deaths between 21000 and 143000 (Figure 2) [Ali et al.,

2015]. Areas with a particularly high burden of cholera are Sub-Saharan Africa, the Indian

subcontinent, and Haiti [Ali et al., 2015; World Health Organization, 2016a].

Cholera is endemic in countries adjacent to the Bay of Bengal, and particularly in Bangladesh,

where it occurs periodically with a clear seasonal pattern [Glass et al., 1982; Kaper et al.,

1995]. V. cholerae is believed to be autochtonous in the estuarine, brackish-water ecosystems

in this region [Colwell and Spira, 1992], the environmental reservoir playing a part in the

seasonal revamping of epidemics and possibly even contributing to sustain transmission

during epidemics [Colwell, 1996; King et al., 2008; Vezzulli et al., 2010]. Other major factors

leading to seasonal patterns in the region are thought to be environmental drivers of cholera

transmission, such as rainfall, floods, river discharge and monsoon [e.g. Bertuzzo et al., 2012;

Bouma and Pascual, 2001; Koelle et al., 2005; Pascual et al., 2002]. Endemicity of cholera in the

region leads to high immunity within the population, which results in an age distribution of

cases skewed towards young ages [Kaper et al., 1995; King et al., 2008].

Since the 1800s cholera spread around the globe in several pandemics, all originating on the
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Indian subcontinent and in particular the delta of the Ganges, Meghna and Brahmaputra rivers

in modern Bangladesh [Kaper et al., 1995]. Recent phylogenetic analyses have shown that

the current (seventh) pandemic took its origin in Bangladesh in 1961 from where it reached

Sout-East Asia, the Middle-East and Africa, and finally spread to South-America, probably

through infected travelers [Chun et al., 2009; Kaper et al., 1995; Mutreja et al., 2011; Valia et al.,

2013]. This pandemic is caused by the El Tor biotype of serogroup O1, but variants combining

features of classical and El Tor strains have also been observed (Table 1) [Longini et al., 2002;

Nelson et al., 2009; Valia et al., 2013].

The current cholera pandemic first got introduced to Africa in 1970. Since then, several re-

introduction events have happened [Kaper et al., 1995; Mutreja et al., 2011]. It has become

endemic in more than 40 countries in Sub-Saharan Africa [Ali et al., 2015] and is present

in coastal as well as in inland regions, exhibiting complex dynamics with inland regions

responsible for three quarters of cases between 2009 and 2011 [Rebaudet et al., 2013a, b]. In

coastal areas, estuaries, lagoons and mangrove forests seem to play a major part in the disease

dynamics, together with large coastal cities [Rebaudet et al., 2013a], whereas in inland regions

many major outbreaks have happened in regions adjacent to lakes and rivers [Bompangue

et al., 2008; Rebaudet et al., 2013b]. Although many cholera outbreaks have been associated

to coastal and lakeside areas, the persistence of toxigenic V. cholerae in the environment of

the African continent outside outbreak periods has not been proven, which increases the

plausibility of the alternative hypothesis of the human host as the principal reservoir [Rebaudet

et al., 2013a, b]. Sanitary condition and access to clean drinking water have been shown to

be key factors in both settings. Climate driven seasonality and interannual fluctuations have

been observed in both, coastal and inland Africa. Disease spread within and among countries

is thought to happen mostly through human movement [Rebaudet et al., 2013a, b].

Cholera is known to cause explosive outbreaks when reaching new geographic areas inhabited

by cholera-naive populations, i.e. populations with no prior exposure or acquired immunity to

the pathogen, such as Peru in the early 1990s [Kaper et al., 1995; Levine, 1991; Ries et al., 1992;

Swerdlow et al., 1992]. In Haiti, the disease has been introduced in October 2010 [Chin et al.,

2011; Frerichs et al., 2012; Hendriksen et al., 2011; Piarroux, 2011], leading to one of the largest

cholera outbreaks in recent years. The outbreak started in the valley of the Artibonite river,

before expanding to the entire country within months (Section 1.1). Since then, outbreaks

alternating with lull phases have been recorded every year [Rebaudet et al., 2013c]. Rainfall

has been identified as an important driver [Eisenberg et al., 2013; Gaudart et al., 2013]. A

major role of environmental reservoirs in persistence of the disease has, to date, not been

confirmed, even if environmental sampling campaigns have lead to increasing numbers of

isolates of toxigenic V. cholerae over time [Alam et al., 2015, 2016, 2014; Azarian et al., 2016;

Morris, 2016; Rebaudet et al., 2013c]. As of September 25, 2016, the Ministry of Public Health

and Population had reported more than 790000 cases since the introduction [Ministère de la

santé publique et de la population (MSPP), 2016], which corresponds to an average cumulative

attack rate of around 8%. With more than 9400 deaths, the resulting cumulative case fatality

rate is 1.2%. In October and November 2016, an important outbreak has been recorded after
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Haiti had been severely hit by hurricane Matthew, with a total of 8916 cases according to

the Panamerican Health Organization (http://ais.paho.org/phip/viz/ed_haiticoleracases.asp,

accessed on December 8, 2016) [Ivers, 2016a].

Treatment and prevention

The general treatment of cholera patients consists in replacing lost fluids and electrolytes

through the administration of intravenous or oral rehydration solutions (ORS). The majority

of patients, those with mild or moderate symptoms, are generally treated using so-called

oral rehydration therapy (ORT). For the latter purpose, the administered solution contains a

mixture of several compounds that were designated oral rehydration salts, including sodium,

chloride, and potassium ions as well as a carbon source (e.g. glucose) [Kaper et al., 1995;

Nelson et al., 2009]. More severe cases can be treated with antimicrobial agents, which shorten

the duration of the diarrhea as well as the bacterial shedding, and reduce the severity of the

disease [Kaper et al., 1995; Leibovici-Weissman et al., 2014; Nelson et al., 2009, 2011; Reveiz

et al., 2011].

As for any disease spread via the fecal-oral route, providing access to clean drinking water,

appropriate sanitation facilities as well as education about hygiene practices are key to sustain-

able cholera prevention. The number and diversity of possible water, sanitation and hygiene

(WaSH) interventions is large and ranges from teaching people to wash their hands with soap

over the provision of sewage treatment facilities to providing water supply infrastructure or

promoting point-of-use water treatment [Fewtrell and Colford, 2004; Fewtrell et al., 2005].

The choice of the most appropriate type of intervention for a given situation is complex and

depends on many factors, such as e.g. available resources and time, the socio-economical

situation of the target population or the expected short- and long-term benefits. Their ex-

ploration is beyond the scope of this thesis. Reactive campaigns, i.e. with the goal to halt

or slow down ongoing cholera outbreaks, in most cases with little resources available, are

often limited to providing drinking water or means to make available water safe to drink,

e.g. through chlorination, as well as educating people about hygiene behavior and the ways

cholera spreads [Farmer et al., 2011; Tappero and Tauxe, 2011; Walton and Ivers, 2011].

Recent developments of new oral cholera vaccines (OCV) added another, complementary

and cost-effective option to the quiver of cholera prevention [Desai et al., 2016; Mogasale

et al., 2016]. They can be used in preemptive (i.e. before an outbreak) or reactive (i.e. after

the start of an outbreak) vaccination campaigns [Azman et al., 2015]. According to vaccine

trials in Kolkata, India, they provide a vaccine efficacy higher than 65% during at least 5 years

[Bhattacharya et al., 2013; Sur et al., 2009, 2011] in addition to significant herd immunity [Ali

et al., 2013b]. Current OCVs have been licensed for two-dose schedules, the two doses being

administered with an interval of two weeks. The administration of a single-dose, however,

in addition to doubling the number of people who can be targeted with a given number of

vaccines, has been shown to have logistical advantages [Azman et al., 2015]. In vaccine trials, a
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single-dose of OCV has been shown to provide a vaccine efficiency comparable to two doses

up to at least 6 months after administration [Azman et al., 2016; Qadri et al., 2016]. In 2013, a

global stockpile of OCV has been established in order to make the vaccine more easily available

[Desai et al., 2016; Martin et al., 2012]. The stockpile was successfully used for the first time

in South Sudan in 2014 [Abubakar et al., 2015], and subsequently, among other outbreaks, in

Haiti in 2016 [Ivers, 2016b; World Health Organization, 2016b].

Modeling cholera epidemics

Epidemiological models of infectious diseases can be defined as a simplified formulation of

epidemiological processes in mathematical terms, with the goal to simulate epidemics and to

gain insights about their real-world counterparts. Simulating epidemics by the means of a

model, at the disadvantage that processes must be simplified, can have several benefits. Other

than in the real-world, all processes and variables can be observed in time and space, which

allows to gain critical insights into the course of an epidemic. Simulations can be repeated

under the same or different conditions and/or with different parameters, aiming at identifying

the influence of incorporated stochasticity or altered conditions. In practical terms, the

possible goals of epidemiological models can be formulated as follows: 1) understanding the

influence of different epidemiological processes on the model outcome, usually the number

of cases over time, and thus determining which processes are relevant in a particular case,

2) understanding the way altered conditions, such as those created by various interventions,

influence epidemics, 3) predicting the future course of epidemics (Figure 3). Model parameters

have to be calibrated in order to match the desired epidemiological characteristics. This is

often done using data from past outbreaks. Usually models are validated to ensure that they do

not only reproduce the particular epidemiological datasets which they have been calibrated

to, but rather represents a generalization of epidemiological processes with wider applicability.

The three processes of model formulation, calibration and validation can be repeated until the

predictive power of the model during validation is satisfactory and thus the model formulation

can be considered to reproduce the relevant epidemiological processes (Figure 3).

Epidemiological cholera models

In the literature, two main modeling approaches have been followed. The first consists of

predictive empirical models relying on environmental drivers which influence the ecology of

V. cholerae [Bouma and Pascual, 2001; Lipp et al., 2002; Matsuda et al., 2008; Pascual et al., 2002;

Ruiz-Moreno et al., 2007], often using remotely-sensed information [Akanda et al., 2009, 2013;

de Magny et al., 2008; Ford et al., 2009; Jutla et al., 2010, 2013a, b; Leckebusch and Abdussalam,

2015; Lobitz et al., 2000; Ngwa et al., 2016]. Such methods, suited in particular to regions where

cholera is endemic, but applied to predict other infectious disease outbreaks as well [Ford

et al., 2009], have been shown to relate changes in climatological and biological variables

to interannual and annual cyclic patterns of infections [de Magny et al., 2008; Emch et al.,
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Figure 3 – Processes involved in model development and application.

2008; Jutla et al., 2013b; Matsuda et al., 2008]. For cholera, such variables often consist of

chlorophyll a (a proxy for plankton concentration, which in turn may promote growth of

V. cholerae (see above), sea surface temperature (SST), sea surface height, precipitation, air

temperature and other covariates of global and local climatic conditions (see below). Predictive

empirical models have contributed new epidemiological perspectives, however, their use for

the understanding, prediction and control of waterborne disease outbreaks is challenged by

the fact that they do not explain the underlying ecological and epidemiological mechanisms

but merely represent a probabilistic link between observed environmental variables and

reported cases.1

Another type of approach relies on mechanistic models of disease spread, either deterministic

or stochastic. They often rely on metacommunity based approaches, usually called SIR-

models, where a population is subdivided into compartments keeping track of the number

of susceptibles, infected and recovered over time by the means of a system of differential

1This paragraph has been adapted from Finger et al. [2014].
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equations [Anderson and May, 1992]. Other compartments, for example one describing the

bacterial concentration in the local environment [Codeço, 2001], can be added. Note that the

addition of a bacterial compartment does not necessarily mean that cholera transmission

has to exclusively follow an environmental route through natural water bodies in the sense

of Colwell [1996], as a short environmental route through the contamination of stored water,

food, hands, surfaces etc. always exists for fecal-oral diseases [Morris, 2016]. In so-called

individual- or agent-based models, instead, the epidemiological status (e.g. susceptible,

infected, recovered) of every individual is followed over time [Arifin, 2016]. In addition,

models can be categorized by the way they address spatial heterogeneity (see below). They

can give key insights into the course of an ongoing epidemic [Bertuzzo et al., 2016], explain

processes influencing past outbreaks [Ali et al., 2013a; Azman et al., 2012; Tien et al., 2011],

provide predictive frameworks [Abrams et al., 2013; Koepke et al., 2016; Pasetto et al., 2016] and

potentially aid emergency management in allocating health care resources, also by anticipating

the impact of alternative interventions [Azman et al., 2015; Kim et al., 2016; Lewnard et al.,

2016]. A selection of recent applied cholera models and their main characteristics is presented

in Table 2.2

Spatially explicit models

In mechanistic approaches, modeling an entire country as a single spatial unit means im-

plicitly assuming homogeneous mixing of the whole population, i.e. every person can be

infected by every other person in the country with equal probability, which may lead to

important shortcomings and invalidate model results. In addition, key factors such as the

epidemiological status of the population, environmental conditions and climatic drivers may

be heterogeneously distributed in space [Gatto et al., 2012, 2013; Grad et al., 2012].

A spatially explicit approach, made possible by the now widespread access to geographically

distributed data of reported cases, population distribution, transportation infrastructure,

environmental and hydrological drivers can overcome those issues by incorporating their

heterogeneity in the model and, in addition, address the spatiotemporal evolution of disease

propagation. In particular, spatial phenomena are bound to become fundamental when the

disease propagation through networks of human mobility or hydrologic connectivity is to be

described. In metacommunity models this can be achieved by subdividing a population into

compartments by geographical location and linking those compartments according to the

networks. For human mobility, this can be done by allowing the exchange of susceptibles

and infected between locations, for example through a gravity model [Erlander and Stewart,

1990; Mari et al., 2012a; Rinaldo et al., 2012]. Hydrologic connectivity can be incorporated

by allowing V. cholerae of the bacterial compartment to be propagated to downstream com-

munities [Bertuzzo et al., 2008; Rinaldo et al., 2012]. Whereas the optimal spatial scale for

a model should ideally be selected to match the heterogeneity of underlying processes (e.g.

neighborhoods, cities, districts, departments, countries, regions), in practice the choice is

2This paragraph has been adapted from Finger et al. [2014].
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Modeling cholera epidemics

Table 2 – Summary of a selection of recently published applied cholera models. (Table adapted
from Finger et al. [2014]).
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Lobitz et al. [2000] BoB × × ×
Pascual et al. [2000] BoBa × × ×
Koelle et al. [2005] BoBa × × ×
Longini et al. [2007] BoBa × × ×
de Magny et al. [2008] BoBa × × ×
Bertuzzo et al. [2008] S. Africa × × ×
Fernández et al. [2009] Zambia × × ×
King et al. [2008] BoBa × × ×
Matsuda et al. [2008] BoBa × × ×
Pascual et al. [2008] BoBa × × ×
Akanda et al. [2009] BoBa × × ×
Islam et al. [2009] BoBa × × ×
Andrews and Basu [2011] Haiti × × ×
Bertuzzo et al. [2011] Haiti × × ×
Chao et al. [2011] Haiti × × ×
Mukandavire et al. [2011] Zimbabwe × × ×
Reyburn et al. [2011] Zanzibar × × ×
Tuite et al. [2011] Haiti × × ×
Tien et al. [2011] Great Britain × × ×
Mari et al. [2012b] S. Africa × × ×
Gatto et al. [2012] Haiti × × ×
Rinaldo et al. [2012] Haiti × × ×
Reiner et al. [2012] BoBa × × ×
Azman et al. [2012] Guinea-Bissau × × ×
Eisenberg et al. [2013] Haiti × × × ×
Jutla et al. [2013b] BoBa × × ×
Jutla et al. [2013a] BoBa × × ×
Mukandavire et al. [2013] Haiti × × ×
Righetto et al. [2013] Haiti × × ×
Akanda et al. [2013] BoBa × × ×
Abrams et al. [2013] Haiti × × ×
Ali et al. [2013a] BoBa × × ×
Sardar et al. [2013] Zimbawe × × ×
Kühn et al. [2014] Haiti × × ×
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Finger et al. [2014] DRCb × × ×
Mari et al. [2015a] Haiti × × ×
Leckebusch and Abdussalam [2015] Nigeria × × ×
Kirpich et al. [2015] Haiti × × ×
Azman et al. [2015] (multiple) × × ×
Ngwa et al. [2016] Cameroon × × ×
Pasetto et al. [2016] Haiti × × ×
Finger et al. [2016] Senegal × × ×
Bertuzzo et al. [2016] Haiti × × ×
Koepke et al. [2016] BoBa × × ×
Lewnard et al. [2016] Haiti × × ×
Baracchini et al. [2016] BoBa × × ×
a Bay of Bengal
b Democratic Republic of the Congo
c Attributes refer to the treatment of space by the models. Explicit treatment of space

means that the model incorporates terms for the spatial spread of disease vehiculed by

human mobility, hydrologic connectivity, etc.
d Attributes describing the treatment of environmental forcings. Simulated refers to

cyclicity based on seasonal and interannual patterns.

often limited by the spatial resolution of the available data. Data from different sources may

have to be aggregated or disaggregated in order to match the resolution of the model. 3

Environmental drivers

Climate variables that have been related to cholera can be categorized into global and local,

where global variables may mediate local ones [de Magny et al., 2006]. Global scale climate

phenomena, such as the El Niño Southern Oscillation (ENSO), have been reported to influence

cholera dynamics mostly in endemic regions, such as the Bay of Bengal [Colwell, 1996; Koelle

et al., 2005; Lipp et al., 2002; Pascual et al., 2000, 2008; Rodó et al., 2002], but also in African

countries [Bompangue et al., 2011; de Magny et al., 2006; Olago et al., 2007; Rebaudet et al.,

2013a, b]. However, the causative mechanistic links between ENSO and disease dynamics re-

mains controversial to date. Some authors pointed out correlations between cholera incidence

and suitably delayed phyto- and zooplankton abundances in coastal waters, which in turn

are driven by local climate anomalies, mediated by ENSO [Bompangue et al., 2011; de Magny

3This paragraph has been adapted from Finger et al. [2014].
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et al., 2008; Ford et al., 2009; Jutla et al., 2010, 2013a; Mishra et al., 2011]. This hypothesis thus

places great importance on the role of aquatic environmental reservoirs in maintaining the

disease. Others argue that the local climate anomalies caused by ENSO may as well influence

disease dynamics via other pathways, such as precipitation, droughts, water salinity, or human

behavior and population dynamics [Pascual et al., 2002; Rebaudet et al., 2013a; Rodó et al.,

2002].4

While the role of local climatic conditions, rainfall, air temperature and sea surface tempera-

ture (SST) on patterns of cholera transmission has long been studied, especially in empirical

frameworks [Altizer et al., 2006; de Magny et al., 2008; Koelle et al., 2005; Leckebusch and

Abdussalam, 2015; Lipp et al., 2002; Ngwa et al., 2016], spatially explicit mechanistic models of

cholera epidemics have incorporated hydroclimatological drivers only more recently, most

notably in models used to study the course of the Haitian epidemic, starting from the very

first months after its outbreak in late 2010 and following disease resurgence (May 2011) in

connection with unusually intense tropical rains [Eisenberg et al., 2013; Gaudart et al., 2013;

Righetto et al., 2013; Rinaldo et al., 2012]. Possible mechanisms of enhanced cholera spread

due to heavy rains include increased bacterial concentration in drinking water due to failure

of sanitation systems, washout of open-air defecation sites [Gaudart et al., 2013; Rinaldo

et al., 2012], or the modification of human water sources and human behavior [Gaudart et al.,

2013].4

Spatially explicit models of cholera epidemics and their application

As highlighted in the previous section, models can help to understand epidemiological pro-

cesses and may be used to evaluate alternative intervention strategies or to predict the future

course of epidemics. This thesis aims at advancing the evolution of spatially explicit epidemi-

ological models of cholera outbreaks through methodological developments and practical

applications. It is organized in four chapters, each of them describing an epidemiological

model best suited for the application to a practical epidemiological problem in a given region.

In Chapter 1, a spatially explicit metapopulation model is developed and applied to the

first year of the cholera outbreak in Haiti. The model includes additional epidemiological

processes, such as the differentiation between symptomatic and asymptomatic infection.

It is used to evaluate the potential population-level impact of changing the type of oral

rehydration solution employed, which has previously been shown to have a significant effect

at the individual level.

In Chapter 2, the problem of getting accurate information about large-scale population move-

ments for a spatially explicit metapopulation model is tackled via a new approach consisting

in directly incorporating human mobility estimates derived from mobile phone call records.

The method is applied to a recent outbreak in Senegal, where cholera spread from a single

4This paragraph has been adapted from Finger et al. [2014].
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district to the entire country within a few days through important population movements

before and after a mass gathering.

In Chapter 3, a stochastic, agent-based, spatially explicit model at the scale of a single city

(N’Djamena, Chad) is developed. Every individual is assigned a position within the model

space according to the population distribution. The model is calibrated to match the spa-

tiotemporal clustering of cases repeatedly observed in cholera outbreaks. Subsequently, it

is used to evaluate the benefits of novel, case-centered intervention strategies, which aim to

provide preventive interventions, such as WaSH, antibiotics or oral cholera vaccine, to people

living within a given radius around reported cases.

Chapter 4 aims at evaluating the drivers of seasonality of cholera in the Lake Kivu Region,

Democratic Republic of the Congo, by using a semi-mechanistic model which, in addition

to environmental forcings such as precipitation, chlorophyll a concentration in the lake or

ENSO, incorporates a mechanistic description of human mobility.

A set of conclusions and perspectives for further research in this field closes the thesis.
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1 Modeling the Haiti cholera epidemic:
the effect of rice-based oral rehydra-
tion solution (ORS)

The main analysis presented in this chapter has been published in PLOS Neglected Tropical

Diseases as a part of Kühn et al. [2014]. The article consists of two main parts: an experimental

analysis of the molecular mechanisms related to the performance of rice-based ORS, and a

modeling analysis to estimate the effect of this alternative treatment on large-scale outbreaks.

The latter was designed by Flavio Finger, Enrico Bertuzzo, Lorenzo Mari, Marino Gatto and

Andrea Rinaldo and led by Flavio Finger, who implemented and calibrated the model, and pro-

duced and described the results. The same model setup has also been used in other publications

co-authored by Flavio Finger [Bertuzzo et al., 2016; Mari et al., 2015a; Pasetto et al., 2016], from

which certain text passages of this chapter have been adapted.

Kühn, J., F. Finger, E. Bertuzzo, S. Borgeaud, M. Gatto, A. Rinaldo, and M. Blokesch, Glucose- but

not rice-based oral rehydration therapy enhances the production of virulence determinants

in the human pathogen Vibrio cholerae, PLoS Neglected Tropical Diseases, 8(12), e3347, doi:

10.1371/journal.pntd.0003347, 2014

Overview

Country: Haiti

Study domain: country

Surface: 27750 km2

Population: 10911819 (2015)

Cholera: Outbreaks have been occurring every

year since the introduction in 2010.

Period studied: October 2010 to December

2011

Number of reported cases: 520000
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Chapter 1. Modeling the Haiti cholera epidemic: the effect of rice-based oral rehydration
solution (ORS)

1.1 Introduction

Starting in October 2010, only months after a disastrous earthquake, Haiti was hit by the largest

cholera epidemic in recent history. The outbreak was most likely triggered by the importation

of a toxigenic strain of V. cholerae [Chin et al., 2011; Frerichs et al., 2012; Hendriksen et al.,

2011; Piarroux, 2011], flared up in the Artibonite valley, home to one of the largest rivers of the

country, and spread to the entire Haitian territory within less than two months. After one year,

almost 500000 cases and over 6200 deaths had been reported [Barzilay et al., 2013; Gaudart

et al., 2013].

The general treatment of cholera patients is based on a so-called oral rehydration therapy

(ORT), which is a cost-effective and easily applicable method to replace lost fluids and elec-

trolytes. For the latter purpose, the administered solution contains a mixture of several

compounds that were designated oral rehydration salts, including sodium, chloride, and

potassium ions as well as glucose. Indeed, glucose is the most commonly added carbohydrate

because it stimulates water absorption in the small intestine [Farthing, 2002]. However, field

studies have shown that ORS might be improved by alternative carbon sources [Atia and

Buchman, 2009]. Moreover, a meta-analysis comparing the treatment with standard, glucose-

versus rice-based ORS illustrated the beneficial effects of the latter composition, such as

reduced episodes of vomiting, a decrease of the stool volume, and a shortened recovery time

[Dutta et al., 2000; Gore et al., 1992; Guarino et al., 2001; Molla et al., 1985].

This chapter was written as a retrospective analysis of the potential impact on the course of

the Haitian epidemic of the main findings of Kühn et al. [2014], which unravels the molecular

mechanisms underlying the better performance of rice-based ORS. Results show that glucose

leads to an increased expression of the major virulence genes in the pathogen and, accordingly,

to an enhanced production of cholera toxin during in vitro experimentation. Because the

cholera toxin is primarily responsible for the severe symptoms that are associated with the

disease, findings highlight the negative effects of glucose-based ORT.

To understand whether the advantages that rice-based ORS has on individual patients can

also be beneficial in limiting the transmission of the disease in the whole community, a

spatially explicit model has been developed and applied to the first year of the epidemic in

Haiti. The novel approach has been developed along the lines of previous work [Bertuzzo

et al., 2008; Rinaldo et al., 2012]. The model consists of 365 nodes corresponding to Haitian

watersheds. The epidemiological state (susceptible, infected and recovered) of the population

of each node is followed over time. Nodes are connected through hydrological connectivity

and human mobility. Infected individuals contribute to the local environmental bacterial

concentration, where V. cholerae survive for a certain duration and may infect susceptible

individuals. The pathogens can also be subject to hydrological transport to downstream nodes.

Moreover, rainfall increases the local bacterial concentration through deterioration of sanitary

conditions [Gaudart et al., 2013].

To predict the effect of using rice-based instead of standard (glucose-based) ORS, the disease
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1.2. Methods

duration and the bacterial shedding rate of the symptomatic infected have been reduced by

ten percent each, an assumption consistent with clinical results [Dutta et al., 2000; Guarino

et al., 2001; Molla et al., 1985] as well as with the findings of in-vitro studies [Kühn et al., 2014].

The reduction was only applied after an initial period of 30 days, which is assumed to be

necessary to switch from standard to rice-based ORS.

1.2 Methods

1.2.1 Model setup and data

The model domain is the Haitian mainland, subdivided into 365 hydrological subunits (wa-

tersheds) with an average surface of 76 km2, each one corresponding to a node in our model

(Figure 1.1B). The subdivision has been derived from a digital terrain model (DTM) (Data

available from the U.S. Geological Survey, http://earthexplorer.usgs.gov/) using established

hydrological methods [Band, 1986; Montgomery and Dietrich, 1988, 1992; Rodríguez-Iturbe

and Rinaldo, 2001; Tarboton, 1997] (Figure 1.1A). The procedure consists of the determination

of the unique steepest descent flow path from every pixel of the DTM to the sea. Pixels draining

to one and the same outlet belong to the same river basin. As this leads to a very heterogeneous

watershed size distribution, the larger basins had to be split into smaller units according to

catchment divides, whereas the coastal (smaller) watersheds needed to be aggregated.

The use of hydrologically defined units allowed for a straightforward identification of the

hydrological connection from each watershed to its unique downstream neighbor (or to

the ocean, for coastal watersheds). The hydrologic connectivity matrix Pi j , which contains

information about which watershed drains into which one, follows directly (Section 1.2.2).

Differently from previous applications [Rinaldo et al., 2012], where euclidean distance was

used, in this study nodes are connected through the actual road network (Figure 1.1C, Open-

StreetMap contributors, available online at http://www.openstreetmap.org under the Open

Database License), from which the shortest distance between each pair has been computed

[Dijkstra, 1959] and taken as input to build the distance matrix Qi j , necessary to compute

human mobility (Equation 1.3).

The population of each subunit (Figure 1.1E) was derived from the remotely sensed population

distribution [Oak Ridge National Laboratory, 2011], which has been updated in order to

correspond to the most recent population estimates [Mukandavire et al., 2013].

Daily precipitation fields were obtained from a remotely sensed dataset by the National

Aeronautics and Space Agency (NASA), which has a spatial resolution of 0.25° latitude and

longitude [Huffman et al., 2010] (Figure 1.1F).
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Figure 1.1 – DTM of the Haitian mainland (A) used to extract the 365 model nodes (e.g.
watersheds) (B, principal rivers also shown). Road network (C) used to derive the distance
matrix between model nodes. Estimates of daily human mobility (number of persons) from
the Haitian capital Port-au-Prince to other model nodes according to the calibrated gravity
model (Section 1.2.2) (D). Population of each model node (E). Rainfall depth (mm/day) in
each watershed on November 5, 2010 (day when hurricane Thomas passed close to the island)
(F).
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1.2. Methods

1.2.2 Spatially explicit epidemiological model

The spatially explicit epidemiological model builds on the one presented by Rinaldo et al.

[2012]. In the latter, the difference between symptomatic and asymptomatic infections are

not explicitly considered, with parameters such as the rate of infection and the rate of loss of

acquired immunity representing an average value between symptomatic and asymptomatic

infections. For this study, the specific application to treatment, i.e. ORS, which is only allocated

to reported and thus symptomatic cases, makes it necessary to separate the two groups,

allowing to apply specific sets of parameters to each of them.

The epidemiological dynamics were modeled using a system of differential equations, which

take into account hydrological pathogen transport, human mobility as well as precipitation

(Figure 1.2).

dSi

d t
=μ (Hi −Si )−Fi (t )Si +ρRi

d IS,i

d t
=σFi (t )Si −

(
γ+μ+α

)
IS,i

d I A,i

d t
= (1−σ)Fi (t )Si −

(
εγ+μ

)
I A,i

dRi

d t
= γ

(
IS,i +εI A,i

)− (
ρ+μ

)
Ri

dBi

d t
=−μB Bi − l

(
Bi −

n∑
j=1

P j i
Wj

Wi
B j

)

+ 1

Wi
[1+λJi (t )]

(
pS qSGS,i (t )+p A qAGA,i (t )

)

(1.1)

Individuals living at node i can be susceptible (Si ), symptomatic infected (IS,i ), asymptomatic

infected (I A,i ) or recovered (Ri ). Bi represents the bacterial concentration in the water reser-

voir of the node. The population is assumed to be in demographic equilibrium, with newborns

considered susceptible. μ is the mortality rate (unrelated to cholera) and Hi the total popula-

tion size.

The force of infection, i.e. the rate at which susceptible individuals get infected, is:

Fi (t ) =β

[
(1−m)

Bi

(K +Bi )
+m

n∑
j=1

Qi j
B j(

K +B j
)
]

(1.2)

where β stands for the exposure rate. Bi /(K +Bi ) is the probability to get infected after

exposure, K being a half-saturation constant [Capasso and Paveri-Fontana, 1979; Codeço,

2001].

The fraction of the population traveling to other nodes is given by the parameter m. The
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Si
IA,i

IS,i
Ri

Bi

Figure 1.2 – Schematic representation of the model. Si stands for susceptible individuals at
node i , IS,i and I A,i for symptomatic and asymptomatic infected respectively, Ri for recovered
and Bi for bacterial concentration. Blue and red solid arrows indicate fluxes of individuals
and bacteria respectively, whereas the red dashed arrow indicates that the bacterial concentra-
tion governs infection. stands for human mobility between nodes and for hydrological
transport of V. cholerae. represents mortality due to cholera. Natural mortality is not shown.

probability to get infected depends on the bacterial concentration of the environmental water

reservoir at the home node i for individuals who are not traveling, and at a remote node j for

the rest. The probability Qi j to travel from node i to node j is based on a gravity-like pattern,

used to model short-term displacements and thus does not change the actual population of

every node [Erlander and Stewart, 1990]:

Qi j =
H j e−di j /D∑n

k �=i Hk e−di k /D
(1.3)

where the attractiveness of node j is governed by its population size, whereas deterrence

exponentially increases with distance di j between nodes i and j according to a shape factor D .

Infected individuals show symptoms with probability σ. They may recover with rate γ or die

from cholera or other causes with rate α or μ respectively. Asymptomatic infected individuals

do not die from cholera and recover faster by a factor ε [Nelson et al., 2009]. Recovered

individuals lose their acquired immunity with rate ρ, or die at rate μ.

The bacterial concentration at each node is a product of the the bacterial shedding rate p

of the infected individuals and the probability q that the freshly shed bacteria reach the

environmental water reservoir, divided by the volume of the latter. The reservoir is to be seen

as a conceptual element uniting different possible transmission routes, such as water, food,

surfaces etc., rather than an actual, well designed body of water (see Introduction). Its volume

is taken to be directly proportional to the population size at the node Wi = aHi [Bertuzzo

et al., 2008]. Parameters p and q take different values for symptomatic (S) and asymptomatic

(A) individuals because people without symptom shed less bacteria [Nelson et al., 2009] and

because of different sanitation conditions. See section 1.3.1 for a thorough discussion of these

aspects. Symptomatic individuals are assumed to stay within their home node, whereas the
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movement of asymptomatics is modeled similarly to that of susceptibles, i.e. via equation (1.2).

Asymptomatic people leave their node j with probability m and reach node i based on the

gravity factor Q j i . We thus have, in (1.1):

GS,i = IS,i

GA,i = (1−m) I A,i +m
n∑

j=1
Q j i I A, j

(1.4)

We further consider that rainfall events cause a deterioration of sanitary conditions and a

higher probability of contamination of water reservoirs [Gaudart et al., 2013]. The shedding

term in equation (1.1) thus increases with precipitation intensity Ji (t) according to factor λ

[Rinaldo et al., 2012]. In addition, V. cholerae pathogens are subject to natural mortality at

rate μB and hydrological transport at rate l . In our case the probability Pi j that pathogens

travel from node i to j is equal to one if j is the downstream nearest neighbor of i , and zero

otherwise.

1.2.3 Modeling the effect of rice-based ORS in the Haiti epidemic

Our model can be used to estimate the impact of the two presumed effects of changing glucose-

to rice-based ORS [Dutta et al., 2000; Gore et al., 1992; Guarino et al., 2001; Molla et al., 1985], a

reduction of disease duration and stool volume of infected individuals, on the overall dynamics

of the epidemic in space and time. To include these effects into the model, we assume that

the reported cases correspond to the symptomatic infected, and that all of them got at least

basic treatment with ORS (in a hospital, at home or at a so-called rehydration point [Walton

and Ivers, 2011]). In addition, we assume that the reduction in stool volume goes along with a

reduction in the number of V. cholerae shed per unit time and that a reduced disease duration

also shortens the period of bacterial shedding. The effects can then be integrated into the

model by reducing the infectious period as well as the bacterial shedding rate for symptomatic

individuals. Two additional adjustable parameters (τ1 and τ2) have thus been added to the

model:
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Wi
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(1.5)

where χ= p A qA/pS qS (Section 1.3.1). τ1 and τ2 can be used to adapt the recovery rate as well

as the bacterial shedding rate of the symptomatic only. τ1 is the reduction in disease duration

whereas τ2 is the reduction in bacterial shedding rate, both expressed as a fraction of one. For

calibration against observed data, both parameters have been fixed to zero (no effect), thus

the equations were equivalent to (1.1). To show the influence of a given treatment effect on

the overall disease dynamics, τ1 and τ2 were set to appropriate values after an initial phase

of 30 days we assume necessary to initiate systematic treatment with rice-based ORS. The

calibrated parameters were kept fixed.

1.2.4 Initial condition

At the beginning of the epidemic the entire population is assumed to be susceptible (Si (t0) =
Hi ), an assumption suitable for the Haitian epidemic, as no cholera had been recorded for the

previous decades [Bertuzzo et al., 2011; Enserink, 2010; Piarroux, 2011; Rinaldo et al., 2012;

Sack, 2011; Walton and Ivers, 2011]. As an initial condition a number of infected individuals

was introduced to selected nodes in the Centre and the Artibonite departments according

to a detailed report about the state of the epidemic on October 20, 2010 [Piarroux, 2011].

Additionally an initial equilibrium bacterial concentration (1.6) was imposed to the same

nodes. We further assume that no recovered individuals were present at the beginning of the

epidemic (Ri (t = t0) = 0 for every node i ).

Bi (t = t0) = (pS qS IS,i (t0)+p A qA I A,i (t0))

WiμB
(1.6)
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1.2.5 Model calibration and parameter estimation

In order to reduce the number of unknown parameters, we introduced the dimensionless bac-

terial concentrationBi = Bi /K along with the aggregated contamination rate for symptomatics

θ = pS qS/(cK ).

Parameters that could not be derived from previous work or from the literature were calibrated

using data from daily epidemiological reports available on the website of the Ministry of Public

Health (Ministère de la Santé Publique et de la Population) of Haiti [Barzilay et al., 2013].

The calibration period starts at the beginning of the epidemic (20 October 2010) and ends

in December 2011. As the case-data are freely available at department level only, our model

outputs need to be upscaled for comparison. We assume that the number of reported cases

corresponds to the number of newly infected symptomatic individuals. In order to derive the

number of reported cases from the model, one thus needs to solve the following equation for

Ci (the modeled cumulative reported cases):

dCi

d t
=σFi (t )Si (1.7)

The sum of squared residuals between the reported cases and the model output computed

according to (1.7) was used as the objective function to minimize, which is equivalent to maxi-

mizing the model likelihood while assuming normal, homoscedastic residuals [Sorooshian and

Dracup, 1980]. For calibration we relied on a Markov Chain Monte Carlo (MCMC) approach

with several chains (DREAMZS, Vrugt et al. [2008, 2009]). See Table 1.1 for other parameter

values and references.

1.3 Results

In vitro experiments (Section 1.1 and Kühn et al. [2014]) suggest a strong reduction of the

amount of cholera toxin when using rice-based ORS, which matches the observed reduction of

shedding rates from field studies [Dutta et al., 2000; Gore et al., 1992; Guarino et al., 2001; Molla

et al., 1985]. This reduction can be as high as 50% (especially compared to glucose-based ORS,

which was recommended by the WHO before 2002 (WHO-ORS)). The reduction of diarrheal

duration is usually no larger than 30%. If one assumes a 10% reduction of both, duration

and shedding rate, for rice-based compared to glucose-based ORT (for HYPO-ORS, Dutta

et al. [2000]), the model predicts a considerable decrease in disease incidence over the entire

country (Figure 1.3) as well as in individual departments (Figure 1.4). Indeed, the total number

of cholera cases within the first 14 months of the epidemic would be reduced from 520,000

cases (as reported by the Haitian Ministry of Health, our model predicts 535,000 cases) to

375,000 cases (i.e. 30% (95% CI 22% – 39%) less total cases until the end of 2011) according

to the model. More importantly, if these parameters could be reduced by 15%, then the
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Table 1.1 – Model parameters with their values and references. Parameters in the upper part
of the table have been taken from literature or estimated. Calibrated parameters (with 95%
confidence intervals) are shown in the lower part.

Parameter Units Value References

β d−1 1.0 Codeço [2001]; Rinaldo et al. [2012]; Tuite et al. [2011]

α d−1 4.0×10−3 Pan American Health Organization [2011]; Rinaldo

et al. [2012]

μ d−1 1/(61×365) Central Intelligence Agency [2009]; Rinaldo et al.

[2012]

γ d−1 0.2 Andrews and Basu [2011]; Bertuzzo et al. [2008];

Codeço [2001]

μB d−1 0.2 Bertuzzo et al. [2008]; Codeço [2001]; Mari et al.

[2012b]

ρ d−1 1/(3×365) Koelle et al. [2005]; Rinaldo et al. [2012]

ε – 5 Nelson et al. [2009]

p A/pS – 10−3 Andrews and Basu [2011]; Kaper et al. [1995]; Nelson

et al. [2009]

qA/qS – 200 (10−1 to 104) (see section 1.3.1 and Figure 1.8)

θ – 0.55 [0.49 0.63] –

l d−1 0.20 [0.14 0.24] –

m – 0.037 [0.026 0.050] –

D km 343 [221 398] –

λ d mm−1 0.081 [0.073 0.094] –

σ – 0.10 [0.10 0.11] –

total number of cholera cases would drop by 59% (95% CI 47% – 67%), and if the parameters

were reduced by 20%, the number of cases would even decrease by 74% (95% CI 71% – 76%)

(Figure 1.5). The ranges of variation shown reflect the 2.5 – 97.5 percentiles of the uncertainty

related to parameter estimation. Such behavior (i.e. the more than doubled reduction of

total infections owing to a 10% – 20% reduction in bacterial shedding and disease duration)

is typical of nonlinear epidemiological dynamics [Gatto et al., 2012]. Interestingly, owing to

a higher number of susceptibles (Figure 1.6), a larger number of cholera cases would have

been predicted for November 2011, one year after the initial onset of the outbreak, triggered

by important rainfall events. However, such a one-year time span would have allowed other

intervention strategies to be put into place, which could potentially avoid later cholera case

peaks e.g., by reducing exposure rates via improved sanitary conditions.
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Figure 1.3 – Evolution of the epidemic: sum of weekly cases in the entire Haiti over time.
Observed cases (gray bars), the calibrated model (dark blue) and model runs with a ten
percent reduction of the symptomatic shedding rate as well as duration of the infectious
period due to rice-based ORT (light blue). Shaded ares show the 95% credibility intervals
resulting from parameter uncertainty, solid lines show the median trajectory. The replacement
of glucose-based with rice-based ORS was assumed to take place 30 days after the onset of the
epidemic.

1.3.1 Sensitivity to the (a)symptomatic contamination probability

While the relative value of asymptomatics versus symptomatics shedding rate (p A/pS) can

be found in the literature [Andrews and Basu, 2011; Kaper et al., 1995; Nelson et al., 2009],

the relative probability that asymptomatics contaminate the local environment (qA/qS) is

difficult to estimate. Assuming that a high fraction of symptomatics is admitted to hospitals

or treatment centers, this ratio indeed depends on the sanitary conditions in health care

facilities compared to regular households. One would expect sanitation to be a key issue

in hospitals. However, little functional sewer systems exist in Haiti [Farmer et al., 2011]. In

addition, during the peak phases of the epidemics, health care facilities were subject to over-

occupancy [Walton and Ivers, 2011]. Furthermore, during cholera outbreaks, symptomatic

patients are released as soon as their condition starts improving (less than three liters of stool

in six hours [Bauernfeind et al., 2004]), even if they might still shed V. cholerae. Therefore,

depending on the relative impact of the various effects stated above, the ratio qA/qS can take

a broad range of values. By adding it to the calibration procedure as a parameter we were not

able to identify its value uniquely due to a very flat posterior distribution caused by a high

correlation with other parameters (e.g. θ). In addition, the Akaike information criterion (AIC)

[Akaike, 1974; Burnham and Anderson, 2002] indicates that the improvements of the model fit

by adding this additional parameter are not significant (see table 1.2). We thus decided not to

calibrate qA/qS . To assess the sensitivity of the remaining calibration parameters as well as the

model outputs with respect to changes of the ratio qA/qS we calibrated the model with a range
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Figure 1.4 – Evolution of the epidemic: sum of weekly cases in the Haitian departments over
time. Observed cases (gray bars), the calibrated model (dark blue) and model runs with a
ten percent reduction of the symptomatic shedding rate as well as duration of the infectious
period due to rice-based ORT (light blue). Shaded ares show the 95% credibility intervals
resulting from parameter uncertainty, solid lines show the median trajectory. The replacement
of glucose-based with rice-based ORS was assumed to take place 30 days after the onset of
the epidemic. Departments are (from left to right, top to bottom): Artibonite, Centre, Grande
Anse, Nippes, Nord, Nord-Est, Nord-Ouest, Ouest, Sud, and Sud-Est. Daily rainfall in each
department is also shown (top of each panel).

Table 1.2 – Number of calibrated parameters and AIC scores for calibration with and without
qA/qS (Section 1.3.1). The last column shows the Akaike difference, which must be > 4 for
significance.

Model Parameters AIC ΔAIC

calibration with qA/qS = 200 6 12205 –

calibrating also qA/qS 7 12217 12

of different values (0.1 to 10000, see Figure 1.7). We were able to calibrate the model almost

equally well independently of the value of qA/qS , while the values of the calibrated parameters

varied. θ is particularly sensitive to changes in qA/qS because both parameters directly affect

the bacterial shedding and they thus compensate. Figure 1.8 shows the important influence

qA/qS has on the result of a ten percent reduction of the bacterial shedding rate as well as

the disease duration (using parameters τ1 and τ2 according to Section 1.2.3). This is because

qA/qS directly acts on the relative contribution of symptomatics versus asymptomatics to

the environmental bacterial concentration, whereas only symptomatic are treated with ORS.

It can further be seen that only a very high value of qA/qS (above 200) reduce the impact of

rice-based ORS significantly. Based on the above analysis, it can, however, be considered

highly unlikely that this fraction takes even higher values under Haitian conditions, and that

assuming a value of qA/qS = 200 constitutes a conservative assumption.

1.4 Discussion

Model results suggest that observed reductions of shedding rate and disease duration by

changing the type of ORS [Dutta et al., 2000; Gore et al., 1992; Guarino et al., 2001; Kühn

et al., 2014; Molla et al., 1985] used during the Haitian cholera epidemic could have led to a

considerable reduction in the number of cases in all Haitian departments. The reduction in

the number of cases immediately follows the switch to rice-based ORS after an initial period

of 30-days. The second, rainfall-related peak of the epidemic in November 2011, however,

is predicted to be much larger in all departments when changing ORS, owing to the higher

number of susceptibles present.
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Figure 1.5 – Reduction of the number of cases when reducing shedding rate and disease
duration. Contour plot of the percentage of total cases in the whole country until December
2011, predicted by the model when applying variable reductions of the shedding rate (y-axis)
and disease duration (x- axis), compared to the cases predicted by the calibrated model.

Figure 1.6 – Evolution of modeled susceptibles and symptomatically infected. The solid lines
show the modeled evolution of the number of total susceptibles over time as calibrated (dark
blue) and with a 10% reduction in bacterial shedding rate as well as disease duration (light
blue). Dashed lines: idem for the number of symptomatically infected. Trajectories shown
correspond to the best performing parameter set. Note the higher number of susceptibles in
fall 2011 after introducing the reductions, which leads to the more pronounced peak of total
infections in November 2011.
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Figure 1.7 – Evolution of the epidemic. Observed cases (gray bars) and model calibrated with
different values of qA/qS (blue lines, see Figure 1.8).

The number of model nodes and their size is determined by the procedure used to derive

the hydrologic subdivision from the DTM (Section 1.2.1). The optimal spatial aggregation

of the model might, however, depend upon factors such as the population distribution and

the available data and needs to be investigated further. In addition, the model incorporates

two mechanisms through which the cholera epidemic spreads among watersheds, hydrologic

dispersal as well as human mobility. Their relative importance on the disease dynamics, which

possibly varies with time and between different phases of the epidemic, is unknown and

should be subject to in-depth analysis.

While the model fits the sum of cases over the whole country well, the epidemic curves in

certain departments are followed less accurately, particularly where the number of cases is low

(Figure 1.4). This is due to the fact that the same parameter sets are applied to all model nodes

and that the likelihood formulation emphasizes higher values. Departments with a higher

number of cases thus have a higher influence on the calibration results. Our main conclusions,

however, should not be affected by this limitation, as the reduction of the number of cases

in the model results can be observed throughout the country, with the highest reduction in

departments with high numbers of cases, well fit by the model. Future work should investigate

spatially explicit parameterizations of models in presence of heterogeneous distributions of

cases.

The proportion of averted cases by changing ORS, which is the main result of this chapter,

depends on the environmental bacterial concentration and on the way this concentration

influences the force of infection (Section 1.2.2). Whereas the reduction in the concentration of

bacteria present in the environment due to reduced shedding and reduced disease duration

has been estimated using literature values and by performing a sensitivity analysis for effects

that are difficult to quantify (Section 1.3.1), the way in which this bacterial concentration

influences the force of infection has remained the same. The nonlinearity observed in the
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Figure 1.8 – Total cases up to December 2011 according to the model calibrated with different
values for qA/qS (dark blue). Light blue bars show model runs using the exact same parameters
except for the addition of a ten percent decrease of shedding rate and a ten percent shortening
of the disease duration (Section 1.3).

number of averted cases depending on the reduced bacterial load (Section 1.3) might result

from the logistic function linking the bacterial concentration to the force of infection [Codeço,

2001; Grad et al., 2012]. Whereas we advocate that the principal conclusion of this chapter,

namely an important impact of changes in bacterial shedding rate and duration on the number

of cases, is robust to changes in this formulation, the sensitivity of numerical results to such

changes remains unknown.

1.5 Other studies based on the same model setup

Since the end of 2011, when the principal study presented in this chapter ends, outbreaks

alternating with lull phases have been recorded in Haiti every year [Rebaudet et al., 2013c].

As of September 25, 2016, the Ministry of Public Health and Population has reported more

than 790000 cases [Ministère de la santé publique et de la population (MSPP), 2016], which

correspond to an average cumulative attack rate of around 8%. With more than 9400 deaths,

the resulting cumulative case fatality rate is 1.2%.

The model setup described previously has been used in several other studies over the past few

years, notably one addressing the probability of extinction of the Haitian cholera epidemic

by the means of a stochastic formulation of the model [Bertuzzo et al., 2016]. Another study

investigated the benefits of using a spatially explicit model formulation depending on the

available data by assessing the predictive ability of models using different spatial aggregation

levels, among them the one presented in this chapter, and different ways of parameterizing

the model [Mari et al., 2015a]. Pasetto et al. [2016] showed how the model presented above, in
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conjunction with data assimilation tools such as the ensemble Kalman filter [Evensen, 2009]

and suitable rainfall forecasts, can be used to issue short- to mid-term forecasts of the number

of cholera cases in Haitian regions.
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2 Mobile phone data highlights the role
of mass gatherings in the spreading of
cholera outbreaks
This chapter has been published in the Proceedings of the National Academy of Sciences of the

United States of America [Finger et al., 2016]. In close collaboration with Lorenzo Mari, Enrico

Bertuzzo and Andrea Rinaldo, Flavio Finger has formulated the research questions, designed

the study and adapted the model formulation from previous work by his colleagues and himself.

The mobile phone data has been analyzed by Lorenzo Mari, Enrico Bertuzzo and Flavio Finger,

the final extraction of mobility patterns has been performed by Lorenzo Mari. Flavio Finger

has supervised the work of a master student (Tina Genolet) who implemented the first version

of the model and performed a preliminary analysis with parts of the data. Flavio Finger has

re-implemented an adapted, improved version of the model and calibrated it to case-data

provided by Guillaume Constantin de Magny and Noël Magloire Manga. He has produced

and analyzed the results, performed all additional analyses and written the draft of the article.

Lorenzo Mari, Enrico Bertuzzo and Andrea Rinaldo have contributed to the writing. All authors

have contributed to the interpretation of the results.
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Overview

Country: Senegal

Study domain: country

Surface: 196712 km2

Population: 13508715 (2013)

Cholera: Outbreaks occurring at irregular in-

tervals

Period studied: January 2011 to January 2012

Number of reported cases: 27000

Abstract

The spatiotemporal evolution of human mobility and the related fluctuations of population

density are known to be key drivers of the dynamics of infectious disease outbreaks. These

factors are particularly relevant in case of mass gatherings, which may act as hotspots of

disease transmission and spread. Understanding these dynamics, however, is usually limited

by the lack of accurate data, especially in developing countries. Mobile phone call data

provides a new, first-order source of information which allows the tracking of the evolution of

mobility fluxes with high resolution in space and time. Here, we analyze a dataset of mobile

phone records of approximately 150000 users in Senegal to extract human mobility fluxes and

directly incorporate them into a spatially explicit, dynamic epidemiological framework. Our

model, which also takes into account other drivers of disease transmission such as rainfall,

is applied to the 2005 cholera outbreak in Senegal which totaled more than 27000 reported

cases. Our findings highlight the major influence that a mass gathering, which took place

during the initial phase of the outbreak, had on the course of the epidemic. Such effect could

not be explained by classic, static approaches describing human mobility. Model results also

show how concentrated efforts towards disease control in a transmission hotspot could have

an important effect on the large-scale progression of an outbreak.

2.1 Introduction

Human mobility is undisputedly one of the main spreading mechanisms of infectious diseases.

Understanding the propagation of an epidemic in a population at any spatial scale of analysis

inevitably calls for the understanding of the underlying mobility patterns [Bajardi et al., 2011;

Balcan et al., 2009; Colizza et al., 2006; Meloni et al., 2011; Tizzoni et al., 2014; Wesolowski

et al., 2012b]. Researchers have commonly focused on infectious diseases transmitted through

direct contact between persons (e.g. [Bajardi et al., 2011; Balcan et al., 2009; Colizza et al., 2006;

Meloni et al., 2011]). The key role of human mobility has only recently been acknowledged
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also for water-related diseases (where transmission is mediated by water, which influences the

habitat’s suitability for the pathogen and/or its possible intermediate hosts), as highlighted

by the development and widespread application of spatially explicit epidemiological models

[Chao et al., 2011; Gurarie and Seto, 2009; Mari et al., 2012b; Rinaldo et al., 2012]. Such

models translate our comprehension of the mechanisms driving disease transmission (such as

rainfall [Rinaldo et al., 2012]) and spread (such as hydrologic transport of pathogens [Bertuzzo

et al., 2008; Gurarie and Seto, 2009], besides human mobility) into a simplified mathematical

form. They may be used not only to predict the spatiotemporal pattern of the spread of a

disease [Bertuzzo et al., 2011, 2016; Reiner et al., 2012], but also to test alternative model

implementations [Mari et al., 2015a], or to evaluate the effects of various interventions on

disease dynamics [Azman et al., 2012; Kühn et al., 2014; Tuite et al., 2011].

To include population movement in epidemiological models, researchers often rely on ap-

proaches such as the gravity (e.g. [Erlander and Stewart, 1990]) or radiation [Simini et al.,

2012] models, where the fluxes between any two sites are expressed as a function of their

relative distance and the embedded population distribution. Such models have primarily

been developed and tested for countries in the western world, where transportation networks

are dense and efficient, supraregional travel is cheap and regular commuting patterns are

predominant. Lack of data has so far frustrated a thorough validation of such models in

the developing world, where mobility drivers and patterns may be different with respect to

those of western countries. In some applications, the absence of information about mobility

fluxes has been circumvented by inferring the parameters of the mobility model directly from

epidemiological data [Mari et al., 2012b; Rinaldo et al., 2012; Tuite et al., 2011]. This, however,

contributes to increasing uncertainty in model identification because many different factors

concur in the spreading of an epidemic. Another important shortcoming of current mobility

models is their inability to adapt to seasonal and sub-seasonal changes in mobility patterns.

With the increasing diffusion of mobile phones, which have become very widely used even

in developing countries [Palchykov et al., 2014; Wesolowski et al., 2014a], a new source of

information about human mobility has emerged. Each time a phone emits or receives a call

or text message, the antenna which the cell phone is logged in to is registered by the service

provider along with the time of the event [Candia et al., 2008]. It is thus possible to track the

movement of cell phone users as they advance from antenna to antenna. Suitably aggregated

and properly anonymized to prevent privacy issues [de Montjoye et al., 2013], a sample of

this data can be used to estimate fluxes of people between areas in a region by assigning a

set of antennas to each geographical area in the study domain (e.g. based on administrative

boundaries). The resolution in time can be as high as the typical frequency of calls allows,

whereas the spatial resolution is limited only by the typical distance between two antennas

[Candia et al., 2008]. Using mobile phone records of a sufficiently large number of users,

one can thus estimate human mobility fluxes with high accuracy, including spatiotemporal

variability across a variety of scales [de Montjoye et al., 2013] and without resorting to any

particular model.
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A number of recent studies focuses on the use of mobile phone data to extract human mobility

patterns in developing countries at different scales in space and time [Lu et al., 2012, 2013;

Perkins et al., 2014]. Others compare the movement patterns extracted from mobile records to

traditional data sources such as censuses [Wesolowski et al., 2013a] and surveys [Wesolowski

et al., 2014b]. Several studies deal with the comparison to human mobility models [Bengtsson

et al., 2015; Palchykov et al., 2014]. In the context of infectious disease spread in developing

countries, this new source of information enables previously unseen kinds of analyses. Exam-

ples are the derivation of magnitude and destination of population fluxes following a sudden

outbreak [Bengtsson et al., 2011; Lu et al., 2012], and the quantification of the importance of

human mobility and its seasonal variations on the spread of disease in terms of increased

outbreak risk in and infectious pressure on connected areas [Bengtsson et al., 2015; Mari et al.,

2015b; Tatem et al., 2014; Wesolowski et al., 2012b, 2015].

Mass gatherings, such as pilgrimages, sport events, or music festivals, can be critical in the

spread of infectious diseases following various transmission routes [Abubakar et al., 2012;

Memish et al., 2015]. When it comes to orofecally transmitted diseases, such as shigellosis

[Wharton et al., 1990] or cholera [de Magny et al., 2012; World Health Organization, 2008],

insufficient safe drinking water supply and sanitary infrastructure related to overcrowding

are often the main causes of local disease outbreaks and subsequent spread by homecoming

infected attendees. To model the effect of mass gatherings, one needs to account for the

spatiotemporal dynamics of human mobility and the associated short-term fluctuations of

population distribution. Mobility models and static data sources, such as censuses or surveys,

are therefore unsuitable. Conversely, mobile phone records contain all required information

at the desired timescales and thus represent an excellent new data source for epidemiological

models.

Here, we study the cholera epidemic that spread throughout Senegal in 2005. A distinctive

feature of this outbreak was its sudden flare. It started from the order of magnitude of hundreds

of cases per week during the first three months of the year, localized in the region of Diourbel

and surroundings, and abruptly jumped to thousands of cases at the end of March, rapidly

spreading to 10 out of 11 regions of the country, with over 27000 reported cases (Table 2.1).

Anecdotal evidence [Echenberg, 2011; International Federation of Red Cross and Red Crescent

Societies, 2007; World Health Organization, 2008] suggests that this first peak was related to a

religious pilgrimage, the Grand Magal de Touba (GMdT), that took place in late March, when

an estimated 3 million pilgrims traveled to Touba in the region of Diourbel. During later stages,

the outbreak evolved showing distinct dynamics in different regions of the country, rainfall

and the associated floods being important drivers especially in the capital city of Dakar [de

Magny et al., 2012].

We develop a spatially explicit, fully mechanistic model for the 2005 cholera outbreak in Sene-

gal, based on previous work [Bertuzzo et al., 2016; Mari et al., 2012a; Rinaldo et al., 2012]. In

addition to human mobility, we take into account rainfall as an important driver of disease

transmission [de Magny et al., 2012; Rinaldo et al., 2012] and we incorporate the effect of over-
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Table 2.1 – Regions of Senegal (as of 2005) with their population (2005 estimates), the total
number of reported cases during the epidemic, cumulative incidence and the mobile phone
sample size (relative to 2013 population).

Region Population Cases Incidence Sample size

(×106) (‰) (‰)

Dakar 2.62 6573 2.51 22.64

Diourbel 1.22 11772 9.61 4.11

Fatick 0.64 1928 3.00 4.63

Kaolack 1.06 1014 0.96 5.19

Kolda 0.89 57 0.06 3.86

Louga 0.68 1806 2.64 5.43

Matam 0.50 0 0 7.12

Saint-Louis 0.75 1653 2.20 8.99

Tambacounda 0.58 87 0.15 6.11

Thiès 1.28 2515 1.97 9.60

Ziguinchor 0.31 124 0.40 9.79

crowding by assuming an increase in exposure and contamination rates caused by unusually

high density of people, and the related pressure on water and sanitation infrastructures (Sec-

tion 2.2). Daily population fluxes between the 123 arrondissements of Senegal are estimated

from a dataset of roughly 150000 randomly selected mobile phone users tracked during the

entire year 2013 (Section 2.2, [de Montjoye et al., 2014]). We specifically aim at testing the

role played by human mobility and mass gatherings in the spread of a cholera epidemic, with

implications for disease control.

2.2 Methods

2.2.1 Study domain and administrative subdivision of Senegal

The domain of our study is the country of Senegal, subdivided into 123 arrondissements as

of 2013 (Figure 2.1). The administrative subdivision of the country has changed in 2008, in

particular the number of regions changed from 11 to 14. Epidemiological data refers to the

regions as of 2005. To upscale the model output from the 2013 arrondissement scale to that of

the epidemiological data, each 2013 arrondissement was assigned to a 2005 region. For 2013

arrondissements belonging to more than one 2005 region, cases were assigned proportionally

to the population living in each region.
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Figure 2.1 – Population density (people per km2) per arrondissement in Senegal (2010). Re-
gions (according to the 2005 subdivision) are numbered from 1-11: Dakar, Diourbel, Fatick,
Kaolack, Kolda, Louga, Matam, Saint-Louis, Tambacounda, Thiès, Ziguinchor.

2.2.2 Data

Mobile phone records

Mobile phone call records belong to a dataset which has been released by Orange/Sonatel,

an important mobile phone provider in Senegal, for the D4D-Senegal challenge (http://d4d.

orange.com, accessed on November 10, 2015) [de Montjoye et al., 2014]. The dataset used

herein has been coarse-grained by the provider from antenna to arrondissement level (Section

2.2.1) and contains the arrondissement where 146352 randomly selected users were located

while making calls or sending text messages throughout the year 2013.

Population

Spatially distributed population estimates for the year 2010 with a resolution of approximately

100 m have been obtained from AfriPop (http://www.afripop.org, accessed on November 14,

2014) [Linard et al., 2012], and spatially aggregated to the 123 arrondissements of Senegal

(Figure 2.1). As the total population of Senegal has increased by 15% between 2005 and

2010, an average growth rate per region has been computed using official data from the

Agence Nationale de la Statistique et de la Démographie (http://donnees.ansd.sn, accessed

on November 14, 2014), and the population in each arrondissement adapted accordingly.

Cholera cases

Reported cholera case data were obtained from the website of the Senegalese Ministry of

Health [de Magny et al., 2012] and from the WHO national office in Dakar.
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Precipitation

Daily remotely acquired precipitation estimates (CPC/Famine Early Warning System Daily Es-

timates) for the year 2005 with a resolution of approximately 0.1° have been obtained from the

National Oceanic and Atmospheric Administration (NOAA) (http://www.cpc.ncep.noaa.gov/

\penalty\exhyphenpenaltyproducts/\penalty\exhyphenpenaltyfews/\penalty\exhyphenpenaltyrfe.

shtml, accessed on October 14, 2015). They have been spatially averaged over each of the 123

arrondissements (Figure 2.2).

Figure 2.2 – Daily precipitation depth in 2005 averaged over all arrondissements.

2.2.3 Inference of human mobility patterns

Human mobility has been estimated from a dataset containing the locations of calls and

text messages (hereafter calls) made by 146352 randomly selected users throughout the year

2013 at arrondissement level (Section 2.2.2, Table 2.1). A record in the dataset consists of an

anonymous user id, a time stamp and the arrondissement where the call was made. First the

home of each user, e.g. the arrondissement where the most calls were made during night hours

(7 pm to 7 am), was determined. Then, for every day t , the quantity Qi j (t ) was computed as

the number of calls made while in arrondissement j by users with home node i divided by

the total number of calls made by users with home node i . Under the assumptions that the

number of phone calls made by a user while in arrondissement j is proportional to the time

spent there, the value Qi j (t) represents the community-level average fraction of time that

users living in arrondissement i spen in arrondissement j during day t . Qi i (t ) thus represent

the fraction of time spent at the home arrondissement [Mari et al., 2015b].

As the Islamic calendar is based on a lunar scheme with 354 days per year, the dates of the
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Figure 2.3 – (A) Daily evolution of the total number of moving people (i.e. people leaving their
home arrondissement) throughout 2013 estimated from mobile phone records. Numbered
peaks correspond to the following mass gatherings: Grand Magal de Touba (1 and 4), Gamou
de Tivaouane (2), Magal de Kazu Rajab (3). (B and C) Number of people present in each
arrondissement on December 22, 2013, during the Grand Magal de Touba (B) and averaged
over the year (C) divided by the number of people living there. Regions (according to the
2005 subdivision, see 2.2.1) are numbered from 1-11: Dakar, Diourbel, Fatick, Kaolack, Kolda,
Louga, Matam, Saint-Louis, Tambacounda, Thiès, Ziguinchor.

pilgrimages change within every Gregorian year. The GMdT, for instance, took place twice

in 2013, on January 1 and December 22, whereas in 2005 it was held just once, on March

29. To develop a model for the 2005 cholera outbreak, it was thus necessary to reconstruct

the 2005 mobility matrix accordingly. For the purpose of this study we averaged the human

mobility matrix throughout 2013, excluding only the periods of the two occurrences of the

GMdT. We used the resulting mobility matrix for all days in 2005, except for the period of the

GMdT (March 29±3 days), which in turn was assigned the mobility of the December 2013

event. Alternative ways of reconstructing the mobility matrix of 2005 from that of 2013, also

accounting for seasonal components in the mobility and/or for other pilgrimages, have been

tested but were not retained in model selection (Section 2.2.7, Figure 2.4 and Table 2.4).

2.2.4 Spatially explicit epidemiological model

The spatially explicit epidemiological model used herein builds on previous works [Bertuzzo

et al., 2016; Kühn et al., 2014; Mari et al., 2012a; Rinaldo et al., 2012]. In addition to the different

formulation of human mobility and the addition of the overcrowding effect (see below), the

main difference to the model presented in Chapter 1 is that here asymptomatically infected

are assumed not to contribute significantly to the bacterial load and can thus be considered

recovered [Kaper et al., 1995; King et al., 2008; Nelson et al., 2009]. Furthermore, the spreading

of the disease is thought to be caused mainly by human mobility and hydrologic connectivity

can thus be neglected. The model domain is the country of Senegal, each arrondissement

(Figure 2.1A, N = 123) being a node i with population Hi (Section 2.2.2). The population of

each node i is subdivided into three compartments, namely susceptibles Si , infected Ii and

recovered Ri . Every node is considered to have an ambient bacterial concentration Bi of Vibrio
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cholerae. We thus get the following set of differential equations describing the evolution of

4×N state variables (terms and parameters of the equations will be explained hereafter):

dSi

d t
=μ (Hi −Si )−Oi (t )Fi (t )Si +ρRi

d Ii

d t
=σOi (t )Fi (t )Si −

(
γ+μ+α

)
Ii

dRi

d t
= γIi + (1−σ)βi (t )Oi (t )Fi (t )Si −

(
ρ+μ

)
Ri

dBi

d t
=−μB Bi + p

aHi
[1+λJi (t )]Oi (t )Gi (t )

(2.1)

where

Oi (t ) = exp

(
ω

Hi

N∑
j=1

M j i (t )H j

)
(2.2)

Fi (t ) = β
N∑

j=1
Mi j (t )

B j

K +B j
(2.3)

Gi (t ) =
N∑

j=1
M j i (t )I j . (2.4)

The population is assumed to be in demographic equilibrium, with per capita birth and

natural death rate μ. Equations of different nodes are coupled via the human mobility matrix

Mi j (t ), which is derived from matrix Qi j (t ) estimated from mobile phone data. To account for

a possible underestimation of the number of people staying at their home node due to e.g.

bias in mobile phone ownership [Wesolowski et al., 2012a, 2013b], we introduce a calibration

parameter c which relates the two matrices as follows:

Mi i (t ) = cQi i (t ) (2.5)

Mi j (t ) = c ′i (t )Qi j (t ), j �= i (2.6)

c ′i (t ) = 1−cQi i (t )∑
h �=i Qi h(t )

, (2.7)

where c ′i (t ) ensures that rows sum to 1.
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Susceptibles living at node i get infected at rate Oi (t )Fi (t ). Fi (t ) is the rate at which a person

living at node i comes into contact with contaminated water at node j during day t and

becomes infected depending on the bacterial concentration B j through a semi-saturation

function with parameter K and rate of exposure β. Oi (t ) accounts for the effects of the increase

in exposure and contamination rate due to the increased population density (overcrowding).

This increase is modeled as an exponential function with the exponent composed of parameter

ω and the number of people present at the node at time t divided by its actual population. We

assume that only a fraction σ of infections are symptomatic. Asymptomatically infected hosts

do not significantly contribute to the bacterial load in the environment nor die of cholera

[Bertuzzo et al., 2016; King et al., 2008; Kühn et al., 2014], and can thus, for the purpose of the

model, be considered recovered immediately. Symptomatically infected people may recover

at rate γ or die from cholera-unrelated causes at rate μ or from cholera at rate α, whereas

recovered lose their acquired immunity at rate ρ or die from causes not related to cholera.

Bacteria are shed at rate p by infected Gi (t) present at node i at time t and reach the local

environmental compartment, whose size is proportional to the population Hi with a propor-

tionality constant a. The contamination of the environment is increased by local rainfall Ji (t )

via parameter λ [Rinaldo et al., 2012] (Section 2.2.2), and by overcrowding through the factor

Oi (t ). The environmental bacteria population decays with rate μB . We define B∗
i = Bi /K . Ex-

pressing the system of equations in this term, parameters a and K gets absorbed in θ = p/aK

so that the number of free parameters is reduced by 2.

2.2.5 Initial conditions

The initial conditions characterize the epidemiological state of the population at the begin-

ning of January 2005. An initial number of cases was assigned to each arrondissement in

Diourbel, region where the first cases were reported, which was either manually fixed (1 case

per arrondissement) or calibrated (see Section 2.2.6 and Table 2.3). The rest of the population

is assumed to be susceptible. We consider that there is no initial immunity, because the last

major cholera epidemic in Senegal had occurred in 1996 [World Health Organization, 2008]

and thus the period of time between the two events is much longer than reported immu-

nity duration in endemic settings [Koelle et al., 2005]. The initial bacterial concentration

is assumed to be in equilibrium with the initial number of infected in absence of mobility:

B∗
i ,0 = Ii ,0θ/(μB Hi ) [Kühn et al., 2014; Rinaldo et al., 2012].

2.2.6 Parameter estimation

While some parameters were assigned using values from the literature (Table 2.2), others

(number depending on the model, Section 2.2.7 and Table 2.3) were calibrated, including the

initial number of cases in the region of Diourbel, equally distributed among arrondissements.

Model calibration was performed using a parallel implementation of the Markov chain Monte

Carlo (MCMC) method called EMCEE PT sampler [Foreman-Mackey et al., 2013], which
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allows exchange of information among walkers. To explore the largest possible portion of the

parameter space a total of 300 walkers running at 3 different “temperatures”, which set the

probability of accepting jumps to less favorable regions, and starting from the region of a well

performing hand-tuned parameter set were used. We employed wide uniform priors (Table

2.2). The walkers were run up to visual convergence (5000 – 8000 iterations) and all but the

last 1000 iterations were discarded as burn-in.

Table 2.2 – Fixed (top) and calibrated (bottom) parameters of the best performing model (A
in Table 2.3). For the latter the 95% confidence intervals of the posterior distribution are also
shown.

Parameter Units Prior Value Reference

γ day−1 0.2 Rinaldo et al. [2012]

μ day−1 1/(61 ·365) Central Intelligence Agency [2013]

α day−1 0.004 Bertuzzo et al. [2011]; Rinaldo et al.

[2012]

μB day−1 0.2 Bertuzzo et al. [2011]; Rinaldo et al.

[2012]

ρ day−1 1/600 Koelle et al. [2005]

β day−1 1 Bertuzzo et al. [2008]; Codeço [2001]; Ri-

naldo et al. [2012]

θ day−1 [0 2] 0.34 [0.28 0.41]

λ mm−1 [0 1] 0.049 [0.040 0.061]

σ – [0 0.5] 0.019 [0.016 0.021]

ω – [0 2] 0.86 [0.824 0.889]

c – [1 2] 1.40 [1.375 1.410]

I0
a – [1 500] 301 [204 416]

a Initial number of infected in the region of Diourbel equally distributed among arrondisse-

ments

The models were evaluated against reported numbers of cases in all 11 regions. Weekly

cumulative cases Ci were computed from the model using the following equation:

Ci (τ) =σ

∫τ

τ−Δt
Oi (t )Fi (t )Si dt

where τ corresponds to the end of the week and Δt is 1 week. The results were then upscaled

from the arrondissement to the regional scale for comparison with reported cases. Model

likelihood was computed assuming mutually independent, homoscedastic and normally

distributed residuals [Sorooshian and Dracup, 1980] across regions.
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2.2.7 Model selection

To determine relevant processes to be included in the model and to find an appropriate com-

promise between accuracy and model complexity, hereby preventing overfitting, candidate

models were compared using the Deviance Information Criterion (DIC) [Spiegelhalter et al.,

2002] as well as the coefficient of determination. DIC, which allows for the ranking of differ-

ent models while preventing overfitting, is straightforward to compute from the output of

our Bayesian calibration procedure, as it is based on the likelihood values of the posterior

distribution. Processes and mechanisms tested for their significance are the coupling of the

local models in individual arrondissements through human mobility fluxes, the overcrowding

effect, the correction of bias in mobile phone ownership, the inclusion of precipitation, and

the calibration of the initial number of infected in Diourbel as a parameter. We also include

a model that makes use of the gravity model instead of mobile phone data to determine

human mobility. Model A (described in Section 2.2.4 and Equation 2.1) was selected as the

best performing candidate. Descriptions of all other candidate models, as well as results of

the model comparison, are reported in Section hereafter.

Processes

We evaluated models which consider mobile phone data to be unbiased (c = 1) (model B) or

with a fixed initial condition (one initial case in each arrondissement of Diourbel, model C).

In model D the mobile phone data are used to determine temporal variations in population

distribution due to human mobility, and thus to account for overcrowding, whereas the mobil-

ity fluxes between individual arrondissements are not considered. Model E includes mobility

fluxes but not the overcrowding. Model F does not take into account human mobility at all.

The absence of fluxes in models D and F leads to a de facto uncoupling of the local models,

which makes it necessary to calibrate the initial number of cases and equally distributing

them among arrondissements. Model G does not take precipitation into account, and Model

H adapts the gravity model (see Chapter 1 for implementation) instead of mobile phone data

to determine the human mobility.

Alternative ways of reconstructing the mobility of 2005

The mobility matrix extracted from the mobile phone records contains not only information

about mobility during exceptional events such as the Grand Magal de Touba (GMdT) or other

pilgrimages (Figure 2.3), but also about seasonal and sub-seasonal variations of mobility. To

exploit this information, and to test if its use leads to improvements in model performance with

respect to our baseline mobility matrix presented in Section 2.2.3, we compared 5 alternative

mobility matrices by incorporating them into our best performing model (A) and recalibrating:

I. The baseline mobility matrix, as presented in Section 2.2.3. We averaged the human

mobility matrix throughout 2013, excluding only the periods of the two occurrences of

42



2.2. Methods

Figure 2.4 – Evolution of the total number of moving people (i.e. people leaving their home
arrondissement) throughout 2005 estimated using methods I (blue), II (red) and III (green)
(Section 2.2.7). The first spike, present in all scenarios, corresponds to the GMdT. The four
spikes present only in scenario 3 correspond to the following events (chronological order):
Gamou de Tivaouane, Magal de Porokhane, Magal de Kazu Rajab, Magal de Darou Mouhty.

the GMdT. We used the resulting mobility matrix for all days in 2005, except for the period

of the GMdT (± 3 days), which in turn was assigned the mobility of the GMdT that had

taken place in December 2013.

II. The purpose of this mobility matrix is to test if seasonal and sub-seasonal variations

of mobility other than the GMdT should also be considered in our model (instead of

assuming constant mobility throughout the year, except from the GMdT). We thus first

extracted the seasonal signal, defined as the mobility matrix excluding the effect of the

GMdT as well as other important and clearly identifiable mobility pulses. We followed

the following procedure:

• Exclusion of both editions of the GMdT and replacement by the average mobility of

the previous and following weeks.

• Idem with four other clearly identifiable mobility pulses caused by the following

events: Gamou de Tivaouane, Magal de Porokhane, Magal de Kazu Rajab, Magal de

Darou Mouhty.

• Idem with four irregularities present in the mobility matrix, identified by visual

inspection, which might correspond to cell phone network breakdowns or electric

power cuts.

• Application of a 7 day moving average to smooth out the weekly cycle and get a

purely seasonal signal.
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• Determine individual contribution of the GMdT by subtracting the seasonal signal

from the original mobility matrix during the period of the event.

The contribution of the GMdT in December 2013 was then added to the seasonal signal

during the period of the GMdT 2005 to obtain a mobility matrix for the entire year 2005.

III. As 2., except that, in addition to the GMdT, we also added the contribution of four other

events (Gamou de Tivaouane, Magal de Porokhane, Magal de Kazu Rajab, Magal de Darou

Mouhty) to the seasonal signal.

IV. As 1., but without considering the GMdT, e.g. constant mobility throughout the year.

V. As 2., but without considering the GMdT, e.g. considering the seasonal variation of

mobility only.

Variants IV and V have been included to evaluate if the mobility during the GMdT is essential

for our model to perform well. A comparison of the countrywide number of mobile people

every day according to variants I to III is shown in Figure 2.4.

2.2.8 Potential effects of local interventions

To investigate the potential effects of local interventions, we run our best fit model with 10%

and 20% reduction of the rates of exposure to contaminated water and bacterial shedding.

Such reductions are assumed to be concentrated in Touba during the GMdT, and could have

been achieved by providing additional drinking water and sanitation facilities to the pilgrims.

2.3 Results

Figure 2.3 shows the evolution of the estimated number of mobile people (i.e. people having

left their home arrondissement on a given day) throughout the year 2013. Seasonal fluctu-

ations, weekly patterns and sudden peaks can clearly be identified. The latter correspond

to mass gatherings, most notably the GMdT (which took place twice in 2013, Section 2.2.3),

and during which the number of people traveling outside their home arrondissement almost

doubles with respect to an average day. Figure 2.3B shows the estimated fraction of people

present in every arrondissement of Senegal during the GMdT. Major differences can be noted

with respect to the yearly average (Figure 2.3C). People traveled to Touba from all over the

country, and the estimated number of people present during the GMdT in the arrondissement

where the city is located was nearly six times its usual population.

Model results and estimated uncertainties of the best performing candidate, model A, are

shown in Figure 2.5 (total cases and the regions most severely hit) and 2.7 (all regions). The

values of the calibrated parameters are reported in Table 2.2. The model accurately reproduces

the important peak of cases in Diourbel coinciding with the GMdT (coefficient of determina-

tion between modeled and reported weekly cases R2 = 0.78 in the region of Diourbel) as well
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Figure 2.5 – Reported (red line) and modeled number of new cases per week for the entire
contry of Senegal (A), and for the regions of Diourbel (B), Dakar (C) and Thiès (D). Blue
lines correspond to runs of model 2.1 with the best posterior parameter set. Shaded bands
correspond the 2.5–97.5% percentiles of the uncertainty related to parameter estimation
(dark blue) and of the total uncertainty assuming Gaussian, homoscedastic error (light blue).
Modeled cases under the assumption of a 10% (solid green line) and 20% (dashed green line)
reduction in transmission in Touba during the Grand Magal de Touba are also shown.

as the spread of the disease throughout Senegal by pilgrims returning to their homes. The

second peak, most probably related to the rainy season, is also well reproduced (R2 = 0.72 in

the region of Dakar). The overall value of R2, computed using all data points in all regions,

is equal to 0.77. Figure 2.6 shows the spatial distribution of cases in the country during the

GMdT, and during two other key periods of the outbreak according to the reported cases and

to our model.

2.3.1 Model selection

Results show that models including human mobility (to estimate fluxes between arrondisse-

ments and/or overcrowding effect) clearly outperform model F, which does not account for

those effects (Figure 2.8 Table 2.3). The gravity model does not provide an appropriate de-

scription of human mobility for the case of this study. Indeed, model H provides a reasonable

fit for the region with the highest number of cases, however, lacking a proper description of

spatiotemporal variations of human mobility, it does not correctly capture the spread of the

disease to other regions. This also leads to convergence problems and unrealistic posterior

parameter values. The overcrowding effect alone leads to a model performing relatively well

(D), which, however, does not correctly reproduce the spread of the epidemic, and which is

outcompeted by models accounting also for human mobility fluxes between the arrondisse-

ments (A and B). The bias correction of mobility data leads to a slight improvement in model

performance, as does the calibration of the initial number of infected in Diourbel. Interesting

insight is provided by results of model G, implying that the overall results can still be reason-
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Table 2.3 – Comparison of models including different mechanisms (see Section
2.2.7) using the Deviance Information Criterion (DIC) as well as the coefficient
of determination R2, computed including weekly case data from all or from one
selected region.
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A + + + + c 6 -3256 6533 0.77 0.72 0.78 0.20

B + + + - c 5 -3328 6669 0.71 0.68 0.69 0.41

C + + + + d 5 -3279 6573 0.75 0.73 0.75 0.04

D - + + + a 6 -3308 6631 0.72 0.71 0.75 −0.47

E + - + + c 5 -3595 7204 0.25 0.10 0.08 −0.02

F - - + - a 4 -3641 7295 0.12 0.60 −0.19 0.31

G + + - + c 5 -3302 6615 0.73 0.22 0.81 0.13

He + + + - c 7 -3459 6943 0.54 −0.50 0.73 −0.50

a Note that human mobility fluxes and overcrowding both depend on human

mobility estimates, but can be taken into account separately. See Section 2.2.7

for more details.
b Absence of bias correction with c = 1.
c Initial number of infected. c: calibrated (only Diourbel), a: calibrated (all

arrondissements), d: fixed (only Diourbel).
d Highest log-likelihood value in the posterior sample.
e For model H, human mobility has been determined using a gravity model (e.g.

Rinaldo et al. [2012]) instead of deriving it from mobile phone data.
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Figure 2.6 – Spatial distribution of reported (A,B and C) and modeled (D,E and F) cases from
March 28 to May 29, the first weeks after the Grand Magal de Touba (A and D), from June 30 to
September 4 (B and E), and from September 5 to December 31 (C and F).

ably good without rainfall, but that its addition is necessary to be able to capture the autumn

peak in Dakar (among other regions), previously associated to rainfall [de Magny et al., 2012].

The comparison of model performance under different assumptions about mobility shows

that the inclusion of the GMdT in the mobility matrix is crucial for the model to perform well,

but that including the baseline seasonality as well as additional but smaller mass gatherings

decreases the model’s ability to reproduce the data (Table 2.4). This might be due to the fact

that the seasonality in 2005 was different from the one in 2013, or that mobility was of high

importance only during the GMdT but not during the rest of the year.

2.3.2 Impact of reduced transmission during the GMdT

We tested several scenarios to quantify the influence of control measures that could possibly

have attenuated the 2005 cholera epidemic. Modeling results suggest Touba as a promising

focal point for actions aimed at containing disease spread. Therefore, we focused our attention

on interventions localized (in space and/or) time around the GMdT. We assume that by

providing additional sanitation facilities and clean drinking water, a reduction of disease

transmission through a reduced bacterial shedding rate (parameter θ), also accounting for a

reduced contamination of environmental water bodies with fecal matter [Kühn et al., 2014],

and through a reduced rate of exposure to contaminated water (parameter β) can be achieved.

We run our best performing model reducing both relevant parameters by a varying percentage

in Touba either only during the GMdT (± 10 days) or throughout the year. According to our

model, the number of averted cases increases with the duration of the interventions not only

in Diourbel but throughout Senegal (Figure 2.9 and Table 2.4). When reducing exposure and
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Figure 2.7 – Reported (red line) and modeled number of cases per week (blue line), resulting
from model A run with the best paramter set (Table 2.2), in the 11 regions of Senegal. Shaded
bands show the 2.5–97.5% percentile bounds of the uncertainty related to parameter estima-
tion (dark blue) and of the total uncertainty assuming Gaussian, homoscedastic error (light
blue).
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Figure 2.8 – Reported (red line) and modeled number of new cases per week for the entire
contry of Senegal (first row), and for the regions of Diourbel (second row), Dakar (third row)
and Thiès (last row) according to models D (first column, not including mobility fluxes), E
(second column, not including the overcrowding effect) and G (third column, not including
rainfall). Blue lines correspond to model runs with the best posterior parameter set. Shaded
bands shown correspond the 2.5–97.5% percentiles of the uncertainty related to parameter
estimation (dark blue) and of the total uncertainty assuming Gaussian, homoscedastic error
(light blue).
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Table 2.4 – Recalibration of model A using different mobility matrices (Section 2.2.7 and Figure
2.4).

Mobility

matrix

Log-

likelihooda

DIC R2 overall R2 Dakar R2 Diourbel R2 Thiès

Ib,c -3256 6533 0.77 0.72 0.78 0.20

IIc,d -3306 6632 0.73 0.38 0.79 −0.25

IIIc,d,e -3267 6559 0.76 0.74 0.77 0.15

IVb -3474 6974 0.51 −0.50 0.66 −0.51

Vd -3579 7229 0.30 −0.49 0.32 −0.51

a Highest Log-likelihood value in the posterior sample.
b constant mobility
c GMdT
d seasonal variations of mobility
e other events

contamination only during the GMdT the number of averted cases grows less rapidly than

when applying the reductions throughout the year, which might be the result of less cases and

a smaller bacterial concentration in Touba just before the GMdT.

2.4 Discussion

The case study of the 2005 Senegal cholera outbreak illustrates the crucial role played by

human mobility (and its spatiotemporal variability) in a cholera epidemic whose sudden

flare and subsequent spread can be explained by the repercussions of a mass gathering that

took place during the initial phase of the outbreak. Indeed, the temporary high density of

people in Touba during the pilgrimage and the related pressure on water, sanitation and health

infrastructure are likely to have created favorable conditions for cholera transmission. After

the initial peak, homecoming infected pilgrims spread the disease throughout vast parts of

the country. No approach to quantify human mobility other than mobile phone data analysis

could have provided the required level of detail to capture such phenomena. In addition, the

comparison of different models shows that the actual epidemiological dynamic cannot be

reproduced accurately without including mobility fluxes and the related effect of overcrowding,

nor using a gravity model.

The high temporal and spatial resolution of the mobility patterns extracted from mobile

phone data allows to identify disease transmission hotspots suggesting intervention strategies

to control the evolution of an epidemic, whose expected benefits can be evaluated using

epidemiological models. In our case study, concentrated effort to reduce the transmission

rate at the mass gathering site, for example by providing safe drinking water or sanitation for a

higher number of people, could have had important effects, preventing numerous infections
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Figure 2.9 – Modeled number of total averted cases in 2005 overall Senegal (A) and in the region
of Diourbel (B) when reducing the rates of exposure to contaminated water and bacterial
shedding by a varying percentage in Touba during the GMdT only (± 10 days, circles) and
throughout the year (squares).

not only locally but throughout the whole country.

Although our model has a high explanatory power at the whole-country scale and in regions

with high cumulative incidence, it does not perform equally well in less affected regions. While

the timing of disease introduction and rainfall-related autumn peaks is well captured in all

regions, the simulated temporal evolution of the number of cases deviates from the reported

numbers of cases especially in some of the regions less impacted by the disease. Possible

reasons for this include higher influence of demographic stochasticity when the number of

infected is low , but also biased case reporting and/or identification [de Magny et al., 2012] in

regions with lower numbers of cases or with low population density (e.g. Matam). Also, one

should consider that our likelihood formulation emphasizes peak values because it includes a

square error term (Section 2.2.6).

Even if mobile phone data provides an excellent source of information about human mobility,

several downsides still exist. One of them is the strong assumptions (Section 2.2.3 and Mari

et al. [2015b]) made when translating mobile phone records to human mobility patterns,

especially considering that they are difficult to validate due to the lack of alternative data

sources. Studies comparing different methods and their underlying assumptions would

be necessary to determine the sensitivity of the resulting mobility patterns. In addition, a

potential source of inaccuracy in the analysis of mobile phone data is the possible presence of

a bias in device ownership. A Kenya-based case study [Wesolowski et al., 2012a] has shown

that mobile phone owners are more likely to be wealthy, male and well educated, and that

a bias exists between urban and rural populations. Urbanites with higher income tend to

travel more often and further, leading to overestimations of frequency and distance of trips
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Table 2.5 – Estimated (according to model A) number of cases and percentage of averted cases
in all regions in 2005 when reducing the rates of exposure to contaminated water and bacterial
shedding in Touba by 10% or 20% during the GMdT or during the entire year.

Region Modeled

cases

10% during

GMdT [%]

20% during

GMdT [%]

10% entire

year [%]

20% entire

year [%]

Dakar 7062 12 21 20 34

Diourbel 8276 23 38 51 72

Fatick 579 19 41 47 68

Kaolack 1609 17 41 50 71

Kolda 435 16 47 54 74

Louga 940 25 47 53 73

Matam 90 28 48 55 74

Saint-Louis 104 28 47 53 69

Tambacounda 341 24 47 54 71

Thiès 1802 21 42 45 65

Ziguinchor 229 3 37 46 62

Senegal 21467 18 34 40 59

[Wesolowski et al., 2013b]. In our study, this effect was at least partially addressed by the

introduction of a parameter (Section 2.2.4) accounting for the underrepresentation of people

staying at their home node in the mobility fluxes extracted from mobile phone call records.

The values taken by this parameter during calibration might indeed indicate the presence of a

bias, but might also be due to the fact that long-distance human mobility has played a major

role in the propagation of the outbreak only during the pilgrimage, whereas local factors, such

as precipitation and flooding, might have been more important in later stages. Additional

sources of bias could arise from the fact that not all social classes are equally represented

among the pilgrims [Boone, 2003], as well as from the uneven coverage of the mobile phone

network between different areas of the country.

The reconstruction of the 2005 mobility matrix from that of 2013 is based on the implicit

assumption that general mobility patterns on relevant scales did not change significantly

between the two years. Although several ways of reconstructing the 2005 mobility matrix have

been compared (Section 2.2.7), their validity cannot be verified due to the lack of alternative

data sources. Among numerous factors that might have influenced mobility patterns is the

cholera outbreak itself, which might have led to behavioural change of individuals in 2005, in

turn affecting the disease dynamics [Funk et al., 2010; Mari et al., 2012a; Meloni et al., 2011].

In conclusion, we demonstrate that mobile phone records allow for an unprecedentedly

accurate quantification of spatiotemporal fluctuations in human mobility, whether short

term, seasonal, or during rare events such as mass gatherings. The resulting mobility patterns

allow for a deeper understanding of epidemiological dynamics. Inclusion in epidemiological
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models is straightforward and may lead to higher accuracy with respect to other approaches,

as human movement patterns can be directly derived from data rather than inferred from

models (e.g. gravity or radiation).
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3 The impact of case-centered inter-
ventions in response to cholera out-
breaks: a modeling study
This chapter is currently in preparation to be published as an article. The study has been

designed by Flavio Finger, Enrico Bertuzzo and Andrew Azman1,2, with the help of Andrea

Rinaldo, Francisco Luquero3,4 and Justin Lessler1. Data has been collected and provided by

MSF2, Epicentre4 and the Ministry of Public Health of the Republic of Chad. Flavio Finger has

implemented and calibrated the model, run all simulations and produced the results. The

results have been interpreted by Flavio Finger, Andrew Azman and Francisco Luquereo. Flavio

Finger has written the draft of the article in close collaboration with Andrew Azman, all other

authors have contributed to the writing.

Overview

Country: Chad

Study domain: N’Djamena (capital)

Surface: 225 km2

Population: 993492 (2013)

Cholera: Outbreaks occurring at irregular in-

tervals.

Period studied: April 2011 to April 2012

Number of reported cases: 4352

1Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,
United States of America

2Médecins sans Frontières, Geneva, Switzerland
3Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,

United States of America
4Epicentre, Paris, France
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Abstract

Cholera cases tend to cluster in space and time, with the risk of another person becoming

infected increasing the closer she/he lives to a case and the closer to the time when the

case becomes infectious. Therefore, interventions, including improved water, sanitation

and hygiene, oral cholera vaccine, and prophylactic antibiotics, may most efficiently curb

epidemics when applied in proximity to reported cases, leading to fewer cases and deaths

and ultimately save scarce public health resources during an epidemic. Here, we investigate

the effectiveness and efficiency of case-centered interventions using a model fit to detailed

spatiotemporal cholera data from Chad. We explore key determinants of impact, including

the mix of different interventions, ’ring’ size, and timing of interventions to provide practical

guidance on how these interventions might be used.

We developed a spatially explicit, individual-based stochastic transmission model and cal-

ibrated it to both the epidemic curve and a random set of 1585 spatial coordinates of case

households from a large 2011 cholera outbreak in N’Djamena, Chad, using an approach based

on Approximate Bayesian Computation. We simulated 1000 epidemics, and explored the

impact of intervention scenarios using different combinations of antibiotics, oral cholera

vaccine and/or water, sanitation and hygiene measures. The benefits of interventions were

compared with regard to the number of averted cases and the resource utilization. We show

that, compared to allocating interventions to a large fraction of the population in mass cam-

paigns, case-centered interventions are more resource-efficient. For a campaign using oral

cholera vaccine and starting at the epidemic peak, case-centered interventions at a radius

of 100 m are 64 [95% credible interval (CI) 11 – 518] times more efficient than a mass inter-

vention campaign in terms of the number of people targeted per case averted. Combining

several types of case-centered interventions even increases their benefits. Further, results

show that the earlier during an epidemic interventions are started, the higher is the number of

averted cases, and the more resource-efficient is the intervention. Optimal ranges to apply

case-centered interventions depend on the type of intervention. In the case of antibiotics, the

optimal distance is around 30 m – 45 m, whereas for oral cholera vaccine and water, sanitation

and hygiene interventions, the intervention impact increases with distance and saturates

around 70 m – 100 m.

We show that case-centered interventions are an effective and efficient way to fight cholera

epidemics and present a complementary approach to mass intervention campaigns. The

former imply heavier logistics than the latter but offer a more resource-efficient way to achieve

similar results.

3.1 Introduction

Cholera continues to be a major public health threat in developing countries, with over 170000

cases and 1300 deaths reported globally in 2015, the largest proportion occurring in Africa
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[World Health Organization, 2016a]. The true number of cases is likely orders of magnitude

higher due to under-reporting [Ali et al., 2015]. Many cities in Sub-Saharan Africa are regularly

ravaged by cholera outbreaks [Rebaudet et al., 2013a, b], causing disruption and thwarting

societal and economic development. These cities may act as sub-national, national and

international hubs of disease spread due to regular travel and migration[Finger et al., 2016]

and quickly quelling cholera outbreaks in these areas may avert substantial cases both within

the cities and afar.

The main-stay of cholera prevention and control has been improved access to safe water,

sanitation and hygiene (WaSH) and case management. WaSH interventions include a hetero-

geneous mix of interventions ranging from provision of safe water through infrastructure or

point-of-use water treatment tools to latrine building and hygiene behavior change measures.

Antibiotics have been used to shorten the duration of shedding in cholera cases and, in some

instances, to provide short-term prophylaxis for their household contacts [Guévart et al., 2007;

Leibovici-Weissman et al., 2014]. Recently, oral cholera vaccines (OCVs) have been added to

this arsenal, with the increased availability as a result of the global cholera vaccine stockpile

and the addition of a new affordable WHO-prequalified vaccine [Desai et al., 2016; Martin

et al., 2012]. OCVs have been shown to be safe, immunogenic and protective, with two-doses

(the standard regimen) lasting up to five years [Bhattacharya et al., 2013] and a single-dose at

least 6-months [Azman et al., 2016; Qadri et al., 2016], a similar time scale to many cholera

epidemics.

These tools are used either preventively [Abubakar et al., 2015] in areas deemed at high risk

for cholera transmission, or reactively, in response to a cholera outbreak [Azman et al., 2016;

Ciglenecki et al., 2013; Ivers et al., 2015]. Typically, control measures are given to the population

at-large within areas of high risk through mass campaigns, although targeted interventions

to households or neighborhoods, including delivery of antibiotics and WaSH [Farmer et al.,

2011; Guévart et al., 2007; Piarroux et al., 2009; Reveiz et al., 2011], are common and part of the

national control policy in a number of countries (e.g., South Sudan, Chad, Kenya).

Spatiotemporal clustering of cholera cases, at distances ranging from tens to hundreds of

meters, has been observed in many cholera outbreaks in endemic and epidemic areas [Ali

et al., 2016; Blackburn et al., 2014; Carrel et al., 2009; Debes et al., 2016a; Luquero et al., 2011;

Snow, 1855; You et al., 2013]. Previous analyses have shown that cases were significantly

clustered up to a radius of 320 m within the first five days of a case presenting for care during

the 2011 epidemic in N’Djamena, Chad [Azman et al., in prep.]. In the past, this clustering

has been attributed to common risk factors in those living close to one another in addition

to the risk of transmission often being higher the closer one lives to an infected individual.

Intervention strategies targeting disease hotspots [Azman and Lessler, 2015], particularly

vulnerable neighborhoods and camps [Abubakar et al., 2015] and other communities are

known and have been successfully applied in the past. Limited literature exists, however, on

case-centered reactive intervention campaigns, which take advantage of the inherent spa-

tiotemporal clustering of cholera cases by preventively targeting people living within a given
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distance around reported cases. Such strategies could not only present efficient alternatives to

reactive mass intervention campaigns in outbreak situations, where resources may be limited

or their availability delayed, but may also be used as a complementary approach to the latter

when only low numbers of cases are present, such as during initial phases of epidemics or to

shorten the tail of a declining epidemic.

Here, we use a spatially explicit, stochastic, individual-based model fit to detailed spatiotempo-

ral data from a 2011 cholera epidemic in Chad to evaluate the potential impact of case-centered

reactive interventions. Specifically, we explore whether OCV, WaSH and/or prophylactic an-

tibiotics (combined or separate) have the potential to curb epidemics, and how mixes of

interventions and intervention timing may influence the ultimate impact of these control

measures. We provide practical suggestions on how to optimize case-centered interventions

and compare their efficiency to more traditional mass-campaigns to help decision makers

weigh the costs and benefits of these different approaches.

3.2 Materials and Methods

3.2.1 Case study and data

During the 2011 cholera epidemic in N’Djamena, Chad, field staff from Médecins sans Fron-

tières (MSF) collected the household coordinates of all suspected cholera case presenting at

the main cholera treatment center/unit, by visiting people at their home starting on June 22

(Figure 3.1). In early October, when the caseload began to rapidly increase, household coor-

dinates were collected for every third patient, through the end of the epidemic in December.

The resulting dataset, combining the overall epidemic curve of suspected cholera cases with

GPS coordinates of patients homes, has been described previously [Azman et al., in prep.].

3.2.2 Spatial setup and population distribution

The domain of our model is the city of N’Djamena, Chad, subdivided into regular grid cells

(30 m by 30 m). The remotely sensed built-up density (Figure 3.2) [Esch et al., 2012, 2013] was

used as a proxy for the small scale spatial population density.

Every inhabitant (N = 993492) was randomly assigned to a grid cell with a probability propor-

tional to the estimated average built-up density of the cell. The euclidean distances between

the centers of the two cells were used to compute the value of the infection kernel (3.4) be-

tween persons living in distinct grid cells were taken to be . A distance of 10 m was assumed

between two persons living in the same grid cell.
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Figure 3.1 – Map of the city of N’Djamena with the locations of cases with available GPS
coordinates by time of reporting. (Background map: Tiles by CartoDB, under CC BY 3.0. Data
by OpenStreetMap, under ODbL.)

Figure 3.2 – Proxy for population density. Map of the city of N’Djamena with built-up density
(in percent) [Esch et al., 2012, 2013] of each 30 m by 30 m grid cell. Values equal to 0 or located
outside the city boundary are transparent. (Background map: Tiles by CartoDB, under CC BY
3.0. Data by OpenStreetMap, under ODbL.)
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Figure 3.3 – Daily precipitation depth in N’Djamena from April 2011 to April 2012.

3.2.3 Rainfall data

Daily precipitation (Figure 3.3) was obtained from the NASA TRMM Version 7 Daily Precipita-

tion Estimates [Huffman et al., 2010]5.

3.2.4 Quantification of spatiotemporal clustering

We use the τ statistic introduced by Lessler et al. [2016], which has been shown to be an good

measure of global spatial clustering for epidemiological applications [Grabowski et al., 2014;

Salje et al., 2012, 2016b], to quantify spatiotemporal clustering of cholera cases. Here, we

consider two cases to be potentially transmission related (e.g. to potentially share a recent

common ancestor) if they occurred within a time interval of 0 – 4 days from each other (using

upper bounds between 2 and 6 days gives similar results, see Figure 3.4). τ is then defined as

the relative risk that a person in a given distance range [d1,d2] from a disease case also becomes

a case that is potentially transmission related (i.e. to become infected within a time interval

of 0 – 4 days), compared to the risk of any person in the population becoming a potentially

transmission related case. τ̂(d1,d2) can be computed by dividing the estimated odds ratio

θ̂(d1,d2) of the number of potentially transmission related cases against non-transmission

related cases within [d1,d2] by the same odds ratio computed for the whole domain θ(0,∞)

5http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GES-DAAC/.TRMM_L3/.TRMM_3B42/.v7/.daily/
.precipitation/X/15.0/15.25/RANGEEDGES/Y/12/12.25/RANGEEDGES/T/(01%20Apr%202011)(01%20May%
202012)RANGEEDGES/, accessed on June 29, 2016
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Figure 3.4 – Comparison of relative risk τ evaluated in 15m distance ranges for different time
ranges.

[Lessler et al., 2016]:

θ̂(d1,d2) =
∑

i
∑

j I1(i , j )∑
i
∑

j I2(i , j )
(3.1)

τ̂(d1,d2) = θ̂(d1,d2)

θ̂(0,∞)
, (3.2)

where I1(i , j ) denotes an indicator function which is equal to one if cases i and j are within

the distance range [d1,d2] from each other and within the time interval of 0 – 4 days, and zero

otherwise. I2(i , j ) is an indicator function which is equal to one if cases i and j are within the

distance range [d1,d2] from each other but not transmission related (i.e. with the time interval

between the cases longer than 4 days), and zero otherwise.

3.2.5 Epidemiological model

We employ a spatially explicit, individual-based stochastic epidemiological model (see e.g.

Keeling and Rohani [2008]) with a timestep Δt of 1 day. The N individuals in the model space

are assigned random positions according to the population distribution (Section 3.2.2) and can

either be susceptible (S), exposed (E), infected (I ) or recovered (R). Every individuals state is
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Figure 3.5 – Schematic representation of the epidemiological model and evolution of the
infectious state of inhabitants of a neighborhood. A: Flow chart of the model representing the
different epidemiological states a person can be in and the processes that lead to a change of
state. The force of infection acting on a susceptible depends on the number of infected and the
distance to each of them as well as on rainfall during the last 10 days. Orange boxes represent
pathways through which interventions (antibiotics, OCV and WaSH) influence the processes
in the model. B: Schematic representation of the evolution of the epidemiological state of the
inhabitants of a neighborhood in N’Djamena during three time-steps. The closer susceptible
people (blue) live to an infected (red), the higher the force of infection (red contours) they face.
Susceptibles can get symptomatically infected, which means that they get exposed (green)
for a given duration before becoming symptomatically infected (red) and thus contribute
to the force of infection, or asymptomatically infected, in which case they are assumed to
recover (purple). Infected recover after a given duration. Between time t1 and t2 one infected
recovered and four susceptibles got exposed. At t3, the only infected at t2 has recovered and
all exposed have become symptomatic.

tracked during the outbreak (Figure 3.5A). Demographic processes, like births and deaths, are

assumed to be negligible during the short time course of the outbreak. A power-law-shaped,

isotropic transmission kernel originating from the position of every infected accounts for the

spread of the disease (Figure 3.5B):
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K (d) = cd−a (3.3)

c =
( 1

N

N∑
i=1

N∑
j=1
j �=i

d−a
i , j

)−1
, (3.4)

where d is the distance from the infected. a is a calibration parameter which affects the shape

of the kernel and c a normalization constant which corresponds to the inverse of the spatial

mean of the kernel in the case where every individual is infected, and ensures that the values

of the kernel are comparable for different parameter values. The force of infection Fi affecting

a susceptible i depends on his position in the model space relative to infected individuals and

can be computed by taking the sum of the kernels originating from all infected evaluated at

the position of i and multiplying it with individual exposure parameters, as well as a term

accounting for rainfall, which has been shown to be an important environmental driver of

cholera epidemics in several settings [de Magny et al., 2012; Finger et al., 2016; Gaudart et al.,

2013; Ngwa et al., 2016; Rinaldo et al., 2012]:

Fi (t ) =βi (1+λr (t ))
N∑

j=1
j �=i

II( j )K (di , j ), (3.5)

where βi is an individual exposure parameter, II( j ) is an indicator function whose value is

equal to 1 if individual j is infected and 0 otherwise. λ is a parameter that multiplies daily

precipitation r (t ).

Exposure events are assumed to follow a Poisson process with rate Fi (t ). The interarrival time

of exposure events follows a Poisson process. The resulting probability of susceptible i being

exposed during Δt is given in (3.6). A fraction σi of infections is symptomatic. Asymptomatic

individuals recover immediately after exposure, their contribution to the environmental

bacterial concentration is assumed to be negligible [Kaper et al., 1995; King et al., 2008; Nelson

et al., 2009]. Symptomatic individuals stay in the exposed state for a time tE and in the infected

state for a time tI , which are drawn from gamma distributions according to (3.7) [Azman et al.,

2013] and (3.8) [Kaper et al., 1995].

P (Si → Ei ) = (
1−eFi (t )Δt ) (3.6)

tE ∼ Γ (2,0.5) (3.7)

tI ∼ Γ (10,0.5) . (3.8)
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A timestep t of a model simulation thus consists of the following steps:

1. update states of individuals from E to I or from I to R if their tE or tI is reached

2. compute Fi (t ) (3.5) at the position of every susceptible i

3. use (3.6) to determine susceptibles who get exposed by drawing a uniform random

number pi for each of them. If pi < P (Si → Ei ) the individual gets exposed

4. for every exposed individual, draw a random number qi to determine if he becomes

symptomatic or asymptomatic. If qi <σi , i is symptomatic the individual goes to the

infected class I , otherwise she/he recovers and goes to class R.

To accelerate the model runs for big populations and large areas, the model space is a discrete

grid (Section 3.2.2) and the convolution between the kernel and the distance matrix is done

using the Fast Fourier Transform.

3.2.6 Initial conditions

An initial number of 25 randomly chosen individuals in the model space are set to be symp-

tomatically infected. They are assumed to be infectious for a period tI according to (3.8),

starting from a point in time between 4 and 1 days before the start of the model. The remain-

ing part of the population is assumed to be susceptible.

3.2.7 Calibration

In the absence of treatments, parameters values are assumed to be the same for all individuals

(i.e. βi =β and σi =σ). Four free parameters of our model (σ,β, a and λ) were calibrated to

match the characteristics of the real epidemic in N’Djamena.

We employed a Python implementation of the Approximate Bayesian Computation Popula-

tion Monte Carlo (ABC-PMC) algorithm [Akeret et al., 2015; Beaumont et al., 2009], using a

multivariate normal kernel with optimal local covariance matrix [Filippi et al., 2013]. Two

summary statistics were used: the sum of squared residuals (3.9) on the reported number of

cases (Figure 3.6A) and on the τ statistic over 4 different distance ranges (0 m–15 m, 15 m–45 m,

45 m–105 m and 105 m–225 m) and with a time range of 0–4 days (Figure 3.6B). The distance

ranges have been chosen to fit the spatial discretization of the model domain (Section 3.2.2).

The calibration was run with 512 particles, which were accepted if the summary statistics

were under an initial threshold of 100000 and 1800 respectively. After each calibration step

the thresholds were adapted to the 85th percentile of the summary statistic values taken by the

particles of the previous step [Akeret et al., 2015].
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Figure 3.6 – Calibration results. Daily new cholera cases (A) and relative risk (τ statistic) for
days 0 – 4 (B) computed from reported cases (red) and according to the calibrated model
(blue). The shaded areas represent the interquartile range (dark blue) and the 2.5th and
97.5th percentiles (light blue) of the posterior computed from 1000 samples. 95% confidence
intervals on the τ-statistic represent the 2.5th and 97.5th percentiles of the bootstrapped
estimate distribution with 1000 iterations. Red ticks at the top axis of (A) represent the three
times when interventions start.

ssr(x, x̂) =
N∑

i=1
(xi − x̂i )2 (3.9)

3.2.8 Simulation

To run a simulation, a parameter set is drawn from the posterior distribution with probability

proportional to the posterior weight, and used to run the model. All results and figures

presented are derived from a set of 1000 simulation runs. Note that the outcome of two model

runs with identical parameter sets may differ because of stochastic processes. Simulations are
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Figure 3.7 – Distributions of intervention parameters. Intervention parameters related to
antibiotics (reduction of symptomatic fraction (A) and reduction of duration of shedding (B)),
OCV (reduction of symptomatic fraction (C)) and WaSH (reduction of exposure (D)). A has
been obtained from Lewnard et al. [2016] directly, whereas B (normal), C (log-normal) and D
(log-normal) have been fit to the corresponding confidence intervals given in Table 3.1.

run either until the end of the epidemic (no infected or exposed present in the model), or up

to a maximal duration of 1 year.

3.2.9 Intervention strategies

We consider three different types of preventive interventions and combinations thereof: the

administration of a single-dose of antibiotics, household scale water, sanitation and hygiene

(WaSH) measures and the administration of a single-dose of oral cholera vaccine (OCV). The

implementation of the effects of those interventions are described below. Values and refer-

ences are summarized in Table 3.1 and Figure 3.7. In addition to these types of interventions

and their possible combinations, we also consider different strategies to select people to bene-

fit from the interventions, and different points in time when the application of interventions

start. Appendix A.1 summarizes all interventions tested for this study together with their

outcome.

Antibiotics

We consider the joint effect of two mechanisms of protection against cholera by antibiotics: a

reduced probability of acquiring infection [Reveiz et al., 2011] and a lower probability to get

symptoms if exposed [Echevarria et al., 1995]. As studies have not yet quantified the combined

effect [Reveiz et al., 2011], we follow Lewnard et al. [2016] and estimate the joint effect from

individual effects by multiplying them. Finally, the joint effect is translated into a reduction in

the symptomatic fraction (parameter σ) by a random factor 0.045 [95% CI 0.001 – 0.296].

Antibiotics have also been found to reduce the duration of bacterial shedding [Leibovici-

Weissman et al., 2014; Lewnard et al., 2016], which we model through an additive reduction of

tI by -2.74 [95% CI -3.07 – -2.40] days.
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Table 3.1 – Effects of the three types of interventions as implemented in the model.

Antibiotics OCV WaSH

Reduction of the

symptomatic fraction

(parameter σ)a

0.045 [0.001 – 0.296]c 0.37 [0.18 – 0.76]c –

Reduction in exposure

(parameter β)a

– – 0.74 [0.65 – 0.85]c

Reduction of the infec-

tious period [days]b

-2.74 [-3.07 – -2.40]c – –

Lag – 7 daysd –

Duration of the effect 2 days –e –e

References Khan et al. [2002];

Leibovici-Weissman

et al. [2014]; Lewnard

et al. [2016]; Reveiz et al.

[2011]

Qadri et al. [2016] Fewtrell et al. [2005]

a Reduction factors of symptomatic fraction and exposure are multiplied with the corre-

sponding parameter.
b The reduction of the infectious period is subtracted from the value without intervention.
c 95% confidence intervals are given in brackets.
d To account for a possible earlier onset of OCV protection [Azman et al., 2016], a shorter lag

of 2 days is tested alternatively.
e The effect is assumed to last at least as long as the current epidemic.
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We estimate that the beneficial effects of antibiotics last for 2 days, as the drug concentration

in stools has been shown to be sufficient to eliminate V. Cholerae during this period of time

after the administration of a single-dose of Azithromycin in a clinical trial [Khan et al., 2002].

OCV

The administration of a single-dose of OCV affects the chances of an exposed individual i to

become symptomatic (e.g. to get severe cholera) through the reduction of parameter σi by

a multiplication with 0.37 [95% CI 0.18 – 0.76], which corresponds to one minus the vaccine

efficacy reported by Qadri et al. [2016] for severe cholera episodes. As beneficial effects of the

vaccine have only been confirmed after a lag of 7 days [Qadri et al., 2016], we assume that the

vaccine takes effect only 1 week after administration. To account for the fact (at least partial)

protection by OCV might actually occur much earlier [Azman et al., 2016], we also included a

scenario where this lag time is shortened to 2 days.

WaSH

WaSH interventions reduce the probability of individuals to get exposed to an infectious dose

of V. Cholerae. In the model, this is achieved via the reduction of the exposure parameter βi

for targeted individuals i by a multiplication with a factor 0.74 [95% CI 0.65 – 0.85], reported

by Fewtrell et al. [2005] for water quality interventions in (peri-)urban settings.

Combined interventions

We also consider combinations between the three main type of interventions (Appendix A.1).

This is achieved by simultaneously applying the estimated effects of several interventions to

the targeted population.

Duration of intervention effects

Whereas the duration of the effects of antibiotics is short (2 days, see above), we consider

that protection from OCV and WaSH lasts (at least) until the end of the current epidemic.

This implies that people who benefited from OCV or WaSH interventions once don’t need

to be treated again. In the case of antibiotics, as the effect vanishes rapidly, we consider two

scenarios, one in which every person can get antibiotics only once during the epidemic, and

one in which a single person can be allocated antibiotics several times, with a minimal interval

of 2 weeks.
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Uncertainty of intervention effects

To propagate uncertainty regarding intervention effects we use the distributions shown in

Figure 3.7, which have been obtained by fitting normal or log-normal distributions to the

reported 95% confidence intervals shown in Table 3.1 or directly from the cited references.

During the simulation, a different set of reduction parameters is drawn for every person

treated.

Intervention timing

We consider three different scenarios as to when interventions start (Figure 3.6):

early (day 50, May 31, 2011) interventions are launched during the flat phase early in the

epidemic,

peak (day 130, August 19) around the paeak of the epidemic,

late (day 150, September 8) after the epidemic peak, during the recession phase.

During simulation, we assume that intervention scenarios are only started when at least 10

new cases were reported during the week before the start date.

3.2.10 Allocation strategies

Case-centered allocation

In addition to the different kinds of interventions we consider different intervention strategies.

The first strategy takes advantage of the clustering of cases. It consists in targeting people

with an increased risk of getting exposed to V. cholerae because they are living within a given

distance (in time and space) to a known case. Every time a case gets reported (e.g. when a

person in the model changes from the exposed (E) to the symptomatically infected state (I )),

people who live within a distance of 100 m of the reported case’s home are targeted by the

intervention. In N’Djamena a cluster of this radius typically consists of 100 – 500 people (Figure

3.8). We also evaluate the effect of reducing this radius to 70 m, 45 m, 30 m and 15 m, measured

within the gridded model space (Figure 3.9). To account for the fact that an intervention team

visiting the target area will not be able to reach all inhabitants, because they might be absent

or might not agree to receive preventive treatment or not comply with WaSH measures, we

consider that a random sample of 70% of the people who live within the designated area

can be effectively reached. In addition, we account for the delay between the reporting of

the initial case and the deployment of an intervention team to the corresponding cluster by

drawing it from a distribution given in Table 3.2, considering that all clusters can be targeted

within 7 days counting from the reporting of the initial case (day 0), with the mode on day 2.
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Figure 3.8 – Histograms of the number of people living within a circle with radius 15 m (A),
30 m (B), 45 m (C), 70 m (D) and 100 m (E) in N’Djamena obtained by sampling the population
distribution at 1000 random points.

Figure 3.9 – Circles of given radius (in m) as implemented in the regular model grid with. The
side length of each square is 30 m.

We assume that interventions continue until the end of the epidemic (i.e. no more reported

cases) or the maximal duration of the simulation (Section 3.2.8).

Random allocation to the same number of people

To estimate the comparative advantage of case-centered interventions, we also simulated a

second strategy, where we allocated the interventions at the same starting time as we would

have in the targeted interventions and to the same total number of people for each simulation

run, though randomly in space. We consider that all interventions can be administered within

14 days from the start date.

Table 3.2 – Distribution of the delay between the reporting of the initial case in a cluster and
the deployment of an intervention team.

Day 0 1 2 3 4 5 6

Probability 0.05 0.23 0.35 0.23 0.1 0.02 0.02
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Random allocation to 70% of the population

To estimate the effect of randomly allocated interventions to a high number of people (i.e.

mass interventions), we simulated a strategy where we allocated the interventions at the same

time as we would have in the targeted interventions, but randomly to 70% of all people living

in the city. We consider that all interventions can be administered within 14 days from the

start date.

3.3 Results

3.3.1 Calibration

The model was able to reproduce the key characteristics of the epidemic, i.e. the evolution of

new cases over time and the spatiotemporal clustering of cases (τ, Figure 3.6). The calibration

was stopped after 14 steps because the posterior had reached a stable state (Figure 3.10).

3.3.2 Individual case-centered Interventions

All three primary interventions - WaSH, OCV and antibiotics - achieve a rapid decrease in

the incidence of new cases when targeted to individuals living within 100 m of a suspected

case. Antibiotics lead to the sharpest short-term drop due to the immediate high degree of

protection, while the onset of protection by OCV is subject to a lag and the degree of protection

offered by WaSH is lower relative to the other types of intervention (Figure 3.11). Because

protection by OCV and WaSH is assumed to last for the whole epidemic, their overall benefit

is higher, leading to the extinction of the simulated epidemics within 33 [95% CI 12 – 121]

days (OCV) to 150 [95% CI 11 – 289] days (WaSH) when applying interventions early in the

epidemic; 39 [95% CI 13 – 85] days (OCV) to 102 [95% CI 18 – 216] days (WaSH) when applying

interventions around the epidemic peak; and 35 [95% CI 13 – 70] days (OCV) to 87 [95% CI

115 – 208] days (WaSH) when applying interventions after the epidemic peak. This effect of

short versus long-lasting protection is also visible (Figure 3.11) when comparing the number

of protected people who received antibiotics, which decreases after an initial increase, with

the ones who received OCV or WaSH, where the level of protection saturates after an initial

increase. Similar qualitative results were seen with people living at different distances being

targeted (Table A.1).

The total number of averted cases varies and depends on the actual number of cases in the

epidemic without intervention as well as on the timing and type of intervention (Figure 3.12A).

Regardless of the intervention type, the sooner an intervention starts, the more cases are

averted. Interventions that avert more cases in a shorter period of time and bringing the

epidemic to a halt quickly require less resources (people and clusters targeted) (Figures 3.12B

and 3.12C).
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Figure 3.10 – Marginal posterior parameter distributions computed from 1000 samples. Blue
shaded ranges along the axes show the intervals within which parameters were allowed to vary
during calibration.

Figure 3.11 – Comparison of the simulated evolution of the epidemics with and without case-
centered interventions. Upper panels show the simulated evolution of the epidemics without
intervention and with case-centered allocation of antibiotics, OCV and WaSH within a 100 m
radius starting at the epidemic peak. Lower panels show the corresponding number of people
targeted during each time-step and the number of people protected by each intervention.
Solid lines designate the median over all simulations, shaded areas the 2.5th and 97.5th
percentiles. The red bars at the top of the axes mark the period during which interventions
were applied.
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Figure 3.12 – Boxplots of the number of averted cases, the number of targeted persons and the
number of targeted clusters predicted by the model for the three main intervention types with
case-centered allocation in a 100 m radius starting at three different times. Whiskers mark the
2.5th and 97.5th percentiles. Negative numbers of averted cases, such as visible for antibiotics,
are due to stochastic effects which arise when an intervention alters the course of a particular
epidemic without halting it and leads to a higher number of cases at a later point in time.

3.3.3 Combined case-centered Interventions

Combining different types of case-centered interventions leads to merging their main advan-

tages, e.g. the immediate effect of antibiotics and the long-term protection of OCV, which

can result in an even higher number of averted cases in even shorter time. Combined in-

terventions with OCV and antibiotics in a radius of 100 m leads to the extinction of 97.5%

of the simulated epidemics within only 64, 65 and 57 days when starting to intervene early,

around the peak or late during the epidemic respectively (Figure 3.13). Combining WASH and

OCV within a radius of 100 m, 97.5% of the epidemics vanish within 67, 70 and 57 days when

starting interventions early, around the peak and late. For the combinations of antibiotics and

WaSH, 97.5% of the epidemics end 273, 215 and 204 days, respectively, after the start of the

intervention. Combining all three types of interventions results in epidemic extinction by 49,

58 and 48 days from the start of the intervention in 97.5% of the simulations (Figure 3.14). The

faster a combination of interventions leads to the extinction of epidemics, the higher is the

number of averted cases and the lower are the numbers of people and clusters targeted, even

if the differences are only small for combinations of interventions that lead to a fast epidemic

extinction (Figure 3.15).

3.3.4 Distance range of case-centered interventions

For OCV and WaSH, the number of averted cases steadily increases with the radius of case-

centered allocations, showing signs of saturation between 70 m and 100 m. In the case of

antibiotics, however, the curves of averted cases are hump-shaped, with the maximum at 30 m,

roughly twice as high as at 100 m, and similar to OCV at 100 m (Figure 3.16). This effect results

from the short duration of the preventive protection offered by antibiotics, in combination
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Figure 3.13 – Simulated evolution of the epidemics without intervention (blue) and with simul-
taneous Case-centered allocation (red) of antibiotics and OCV within a 100 m radius starting
around the epidemic peak. The lower panel shows the number of people targeted during each
time-step, and the number of people protected by antibiotics and OCV respectively. Solid lines
show the median over all simulations, shaded areas the 2.5th and 97.5th percentiles. The red
bar at the top of the figure marks the period during which the intervention was applied.

with the limitation that every person can only be targeted once. In addition, the epidemic

wave arrives at distances farther from the primary case after the protective effect has vanished.

The number of clusters targeted decreases with increasing ability to rapidly stop epidemics.

The number of persons targeted over different radii is governed by two contrasting effects, a

decrease with better performing interventions and an increase with larger cluster radii.

3.3.5 Efficiency compared to other modes of intervention allocation

The efficiency of a type of intervention was computed as the number of people targeted per

case averted (Figure 3.17). Only model runs with a positive number of averted cases were

considered. The most efficient type of case-centered intervention at a radius of 100 m is

OCV, with an efficiency of 2 [95% CI 0.7 – 42] people to target per case averted when starting

interventions early, 6 [95% CI 2 – 53] when starting around the peak, and 9 [95% CI 4 – 60]

when starting late. For WaSH, the 97.5% CI of efficiency goes from 1 – 71 people to target per

averted case when starting interventions early, 4 – 119 when starting around the peak and 5 –

170 when starting late. For antibiotics the 97.5% CI ranges from 2 – 168 when starting early,

from 5 – 365 when starting around the peak and from 6 – 360 when starting late.

Mass intervention strategies, where a large proportion (i.e. 70% in our case) of the population

is targeted in a short period of time can achieve similar numbers of averted cases (Figure 3.18),
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Figure 3.14 – Simulated evolution of the epidemics without intervention and with case-
centered allocation of combination of the three main intervention types within a 100 m radius
starting around the epidemic peak. The lower panels show the number of people targeted
during each time-step, and the number of people protected by to the interventions. Solid lines
show the median over all simulations, shaded areas the 2.5th and 97.5th percentiles. The red
bar at the top of each panel marks the period during which interventions are applied.
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Figure 3.15 – Boxplots of the number of averted cases, the number of targeted persons and
the number of targeted clusters predicted by the model for combinations of the three main
intervention types with case-centered allocation in a 100 m radius starting at three different
times. Abx stands for Antibiotics. Abx* stands for administering antibiotics only within a range
of 15 m, while OCV is administered within the whole cluster. The range between the whiskers
comprises 95% of the values from all simulations.

but typically require hundreds to tens of thousands of doses to avert a single case (Figure 3.17).

For an intervention campaign starting around the epidemic peak, case-centered interventions

within a radius of 100 m are 64 times [95% CI 11 – 518] more efficient than a mass intervention

campaign using OCV and 46 times [95% CI 8 – 727] using WaSH.

Random allocation of the same number of doses as with case-centered interventions through-

out the entire model domain does not effectively stop epidemics nor reliably avert significant

numbers of cases (Figure 3.19), with almost 50% of the simulated epidemics with interventions

showing no improvement or even a higher number of cases than those without the interven-

tions. When taking into account simulated epidemics with a positive number of averted

cases, case-centered interventions starting around the epidemic peak at a 100 m buffer from a

primary case lead to 4-fold [95% CI 1 – 48] higher reduction in cases using OCV and 3 times

[95% CI 1 – 69] using WaSH than their non-targeted counterparts (Figure 3.17).

3.3.6 Additional scenarios

Despite the high efficiency of the case-centered allocation of antibiotics, especially at smaller

radii or in combination with OCV, the administration of such drugs to a high number of

people unavoidably raises concerns about the development of antimicrobial resistances. As

an alternative, we consider scenarios where antibiotics are administered only to household

members and closest neighbors of cholera patients, combined with the allocation of OCV in a

larger radius, limiting the number people getting antibiotics and thus the, perhaps unjustified,

risk of widespread antimicrobial resistance. We evaluate the administration of antibiotics

within the same model cell (i.e. a radius of 15 m) as the reported case and the simultaneous

allocation of OCV within a larger radius, varying between 30 and 100 m, thus combining the

advantage of the rapid onset of protection by antibiotics at short distances with the long

lasting protective effect of OCV. More cases are averted for this strategy than for for OCV
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Figure 3.16 – Intervention outcomes as a function of distance in case-centered allocations. The
numbers of averted cases, targeted persons and targeted clusters predicted by the model for
the three main intervention types with case-centered allocation and variable radius, starting
at three different times. The error bars cover the range between the 25th and the 75th quantile
over all simulations.
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Figure 3.17 – Efficiency (persons to treat per case averted) of different modes of intervention
allocation. Boxplots show the efficiency, computed as the number of persons targeted per
case averted, of three modes of intervention allocation for Antibiotics, OCV and WaSH. Mass
allocation of antibiotics was not considered. Case-centered allocation refers to a radius
of 100 m. Random allocation means randomly targeting the same number of people as in
case-centered allocation. The range between the whiskers comprises 95% of the values from
all simulations. Only model runs with a positive number of cases averted were considered.
Numbers within the axis show the percentage of such runs among all simulations.
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Figure 3.18 – Outcome of the three main intervention types in a mass intervention campaign
randomly targeting 70% of the population. Boxplots of the number of averted cases pre-
dicted by the model. The range between the whiskers comprises 95% of the values from all
simulations.
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Figure 3.19 – Outcome of the three main intervention types with random allocation. Boxplots
of the number of averted cases and the number of targeted persons predicted by the model.
The number of targeted persons has been fixed to the same values for case-centered allocation
with a 100 m radius (Figure 3.12). The range between the whiskers comprises 95% of the values
from all simulations.

alone, particularly at low and intermediate radii (Figure 3.20 and Table A.1). Adding the

administration of antibiotics within the first 15 m around cases to an OCV campaign at a

radius of 45m starting early, the number of cases averted increases 1.13-fold [95% CI -3.89 –

3.95]. The effect is less pronounced at larger radii because OCV alone already leads to high

numbers of averted cases in a radius of 100 m when starting early 1.02-fold [95% CI 0.92 –

1.37] increase of averted cases). With respect to the combined administration of OCV and

antibiotics at a radius of 100 m starting early, reducing the radius for antibiotics to 15 m only

leads to a 1.01-fold [95% CI 0.87 – 1.20] decrease in the number of averted cases.

Restricting the number of doses of antibiotics a person can receive to one during the whole

study period, combined with the short duration of protection offered, limits the efficiency

of case-centered interventions with antibiotics. In alternative scenario, we assume that a

person can get several doses of antibiotics, with a minimal interval of 2 weeks, if he/she lives

within the intervention radius of several cases reported at different times. By allowing for

repeated targeting of a single person, we see an improved efficacy of case-centered allocation

of antibiotics (Table A.1), even at high radii, such as 100 m, starting arount the epidemic peak,

the averted cases increasing by a factor of 1.4 [95% CI -8.7 – 12.4], at the cost of a 1.4-fold [95%

CI 0.70 – 2.5] higher number of people to target (i.e. doses to administrate, Figure 3.21).

Regardless of the fact that the level of protection after a single-dose of OCV has been assessed

starting after a lag of 7-days only [Qadri et al., 2016], some evidence suggests that the onset of

(at least partial) protection may occur much earlier [Azman et al., 2016]. If OCV recipients were

indeed protected two days after vaccination, we find a much higher efficiency of case-centered
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Figure 3.20 – Intervention outcomes of case-centered allocation of OCV within a varying
radius combined with the allocation of antibiotics within a radius of 15 m. The number of
averted cases, the number of targeted persons and the number of targeted clusters predicted
by the model for the three main intervention types with case-centered allocation and variable
radius, starting at three different times. The error bars mark the interquartile range over all
simulations.

81



Chapter 3. The impact of case-centered interventions in response to cholera outbreaks: a
modeling study

single repeated
−2000

0

2000

4000

6000

8000

10000

12000
Cases averted

single repeated
0

20000

40000

60000

80000

100000

120000

140000

160000
Persons targeted

single repeated
0

2000

4000

6000

8000

10000

12000
Clusters targeted

early peak late

Figure 3.21 – Comparison between single and repeated antibiotics administration through
case-centered allocation in a 100 m radius. Boxplots of the number of averted cases, the
number of targeted persons and the number of targeted clusters predicted by the model for
two different strategies of allocating antibiotics in a case-centered allocation in a 100 m radius
starting at three different times. The range between the whiskers comprises 95% of the values
from all simulations. Single allocation designates the standard mode where every person
can receive a single-dose of antibiotics only once during the epidemic. Repeated allocation
designates a mode where one and the same person can get antibiotics several times, with a
minimal interval of 2 weeks, if he/she lives within the intervention radius of several cases.

OCV allocations, even within small radii (Figure 3.22 and Table A.1). Within a radius of 30 m

and when starting interventions around the epidemic peak, this leads to a 1.8-fold [95% CI

-12.0 – 24.7] increase of the number of averted cases. Within a radius of 45 m the increase in

the number of averted cases is 1.7-fold [95% CI -9.3 – 8.4], within a radius of 70 m 1.2-fold [95%

CI 0.94 – 2.6] and within a radius of 100 m 1.1-fold [95% CI 1.0 – 1.9].

Discussion

Using a micro-simulation model calibrated to real-world data, we illustrated that case-centered

interventions with antibiotics, OCV and/or WaSH can efficiently and effectively mitigate the

impact of cholera epidemics in urban areas. Among the three interventions types, OCV most

effectively stops epidemics (e.g. 97.5% of all simulated epidemics were stopped within 39 [95%

CI 13 – 85] days when intervention start around the epidemic peak), whereas antibiotics have

the most important short-term impact. Combinations of the three types of interventions can

be used to reduce even more cases and deaths, although adding a third intervention to any

two delivers only marginal gains. Further, we found that case-centered interventions, which

require tens to hundreds of people treated per case averted, are by far more resource efficient

than mass intervention campaigns, which typically require several hundred to hundreds of

thousands people to be treated per case averted. The optimal buffer around a case depends

on the type of intervention. For antibiotics, which offer a limited duration of preventive pro-

tection, the optimal distance is around 30 m – 45 m, whereas for OCV and WaSH, which offer
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Figure 3.22 – Comparison between a 7- and 2-days lag between the administration of a single-
dose of OCV and the onset of protection in a case-centered allocation framework in a 30 m
radius. The range between the whiskers comprises 95% of the values from all simulations.

protection lasting several months at least, the intervention impact increases with distance and

saturates around 70 m – 100 m.

The practice of visiting households of (or around) cases is not new to public health [Hitchings

et al., 2016; Kucharski et al., 2016; Merler et al., 2016] nor cholera[Guévart et al., 2007]. In a

number of countries, it is standard practice to visit case households to provide health/hygiene

education for household members of cases, soap and sometimes water and/or latrine disin-

fectants and antibiotics. Timely case-centered interventions, such as those proposed in this

study, depend on a well performing epidemiological surveillance, are logistically complex to

implement and require well-trained staff. First, the rapid detection and confirmation of cases

is key, so that true cholera cases are correctly prioritized. The use of cholera rapid tests may

provide one such avenue given that traditional diagnostics (culture) requires days to complete

for some patients [Debes et al., 2016b]. Other challenges to implementation, which two studies

have shown feasible [Guévart et al., 2007; Parker et al., in prep.], include finding the case’s

household and negotiating with local leaders to efficiently deliver the interventions.

While effective and efficient, it remains unclear when case-centered approaches should be

used, particularly in contrast to mass campaigns, the current standard for outbreak response.

As shown, early initiated case-centered interventions can have profound impacts on the

epidemic trajectory. If resources, like OCV, are limited as they are today, case-centered inter-

ventions may be the most appropriate strategy to target those at highest risk. When only a few

cases are detected, Ministries of Health may want to initiate case-centered interventions to

efficiently quell the epidemic with supplies already in the country, while making contingency

plans for mass interventions if the epidemic continues to grow. Finally, these strategies may

be used late in epidemics or epidemic seasons, possibly after a mass campaign, to quickly

stop the often protracted tail of the epidemic [Parker et al., in prep.; Rebaudet et al., 2013c].

Case-centered approaches with WaSH interventions, using larger radii than in this paper, are
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currently being deployed to fight the cholera epidemic in Haiti, although their effectiveness in

reducing cases and deaths remains unknown [Santa-Olalla et al., 2013].

While our study used a rigorous approach to calibrate the models and capture uncertainty in

both the epidemic process and the intervention effects, it comes with a number of limitations,

which may narrow the inference and generalizability of the results.

The highly stochastic nature of the processes involved, resulting from the number of possible

epidemic trees within a population close to 1 million, together with the fact that the observed

epidemic represents only one realization thereof, make finding an exact model fit to the

epidemic curve difficult. In addition, calibrating on two distinct criteria simultaneously

(the epidemic curve and the τ values) inherently introduces a trade-off between the two.

A combination of those two effects ultimately leads to the high variability observed in the

calibrated epidemic curve (Figure 3.6A). Moreover, data on reported cases used in this study

represent suspected cholera cases, only some of which have been confirmed [Azman et al., in

prep.].

The quantification of the effects and mechanisms of each intervention were based on limited

data and ultimately depend on large clinical trials across multiple epidemiological and envi-

ronmental settings. Effect estimates assumed for antibiotics are taken from meta-analyses

and large studies representative of the current state of evidence. However, the variability in

the effect estimate is high, both resulting from the limited data for prophylactic antibiotic

use and from the diversity of different drugs used [Leibovici-Weissman et al., 2014]. For OCV,

there exists only one clinical trial estimating the single-dose efficacy in Bangladesh over a

six-month period, where cholera is hyper-endemic [Qadri et al., 2016], and one observational

study in South Sudan measuring short-term protection in the first 2-months after vaccination

[Azman et al., 2016]. In the case of WaSH interventions, such trials are particularly laborious

and difficult to implement because other than just measuring benefits, the behavior of study

populations has to be followed over long periods of time. Study participants might, in addition,

alter their behavior when being observed, leading to a biased results. The diversity of possible

WaSH measures and protocols used adds additional variability among different studies. All

those factors lead to high heterogeneity and uncertainties in the estimated beneficial effects

of WaSH interventions, some of which may not have been fully captured in our analyses

[Fewtrell and Colford, 2004; Fewtrell et al., 2005]. Finally we assumed that WaSH interventions

maintained their effectiveness throughout the study period, which may not be true, given that

behavior change has been shown to wane quite quickly in different situations.

Although our results are based on a single case study, the underlying property they rely on

is the spatiotemporal clustering of cholera cases in urban areas, which has been shown to

exist in similar extents in epidemic and endemic settings around the globe [Ali et al., 2016;

Azman et al., in prep.; Blackburn et al., 2014; Carrel et al., 2009; Debes et al., 2016a, b; Luquero

et al., 2011; Snow, 1855; You et al., 2013]. We thus advocate that case-centered intervention

strategies can be a promising approach to control cholera epidemics in urban settings. Optimal

84



3.3. Results

intervention ranges in other cities may, however, depend on population density, mobility

patterns of inhabitants and other factors that influence the transmission routes and spread

of cholera within a population. However, the optimal radii for interventions with antibiotics

will presumably remain lower in comparison to OCV and WaSH, as it is a result of the delay to

onset of protection and duration of protection of each, which is unlikely to vary considerably

across settings.

Although for distance ranges above 15 m the modeled relative risk τ matches the observed data

well, the values at very short ranges, i.e. between 0 m and 15 m, are subject to underestimation

(Figure 3.6). This is potentially due to the limited resolution of the model, and the fact that

the population distribution used does not include the structure of households and close

neighborhoods, which have been shown to have significant impacts on transmission for other

diseases [Salje et al., 2016a]. Those limitations may, however, only lead to underestimation of

the effect of clustered interventions, as one would expect the results to show even stronger

support for case-centered interventions with additional short-range clustering.

The purpose of this study being the evaluation of the impact of interventions on the course of

a single outbreak, long-term effects of interventions potentially influencing future epidemics

have not been evaluated. Given that the effectiveness of OCV and WaSH interventions likely

wane differently over time, it is possible that there are different optimal mixes of interventions

depending on the time-scale of interest. One might, however, expect the number of susceptible

individuals to remain smaller for a duration exceeding the study period in areas where OCV has

been used, even if more clinical trials are necessary to evaluate the duration of the protective

effect of single-dose OCV application.

The way global spatial clustering is measured in this study solely depends on the number of

cases within certain distance and time ranges from other cases. We do not dispose of any

information from which transmission chains could be derived. The spatial clustering which

we thus observe and employ in our model results from a combination of the transmission

kernel of the disease with exogenous risk factors and heterogeneous distribution of disease

susceptibility within the population [Lessler et al., 2016; Salje et al., 2012]. Interventions such

as the ones proposed in our study, however, rely on the combined spatiotemporal clustering

of cases, which is thus more relevant than the ability to reconstruct individual transmission

chains [Lessler et al., 2016].

Mobility has been shown to have a major influence on the transmission patterns of cholera

epidemics [e.g. Finger et al., 2016] at the scales of regions and countries, and is also expected

to impact the way cholera spreads within cities [Azman and Lessler, 2015]. In our model,

alongside with other mechanisms leading to the spread of cholera, mobility is incorporated

into an isotropic kernel which does not depend on the position of its origin within the study

domain. Incorporating more information about actual distances and frequencies of travel of

people living in different parts of the city could lead to models fitting the actual epidemiological

data better and the disease spread being more representative of reality.
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The results of this study suggest that case-centered intervention strategies may be an effective

and resource-efficient approach reducing morbidity and mortality in cholera epidemics. While

one intervention may perform better than another in different settings, our results suggest

that combining any two of the interventions can quickly bring epidemics to an end. More

work is needed to understand how and when to best use this approach in outbreaks across

different settings, taking into account both human-resource capacity and supply availability.
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4 Cholera in the Lake Kivu region
(DRC): Integrating remote sensing
and spatially explicit epidemiological
modeling
This chapter has been published in Water Resources Research [Finger et al., 2014]. The study has

been designed by Flavio Finger, Allyn Knox, Enrico Bertuzzo, Lorenzo Mari, Didier Bompangue,

Marino Gatto and Andrea Rinaldo, and led by Flavio Finger. The draft of the article has been

written by Flavio Finger, all authors have contributed to the final version.

Finger, F., A. Knox, E. Bertuzzo, L. Mari, D. Bompangue, M. Gatto, I. Rodriguez-Iturbe, and

A. Rinaldo, Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially

explicit epidemiological modeling, Water Resources Research, pp. 5624–5637, doi: 10.1002/

2014WR015521, 2014

Overview

Country: Democratic Republic of the Congo

Study domain: Lake Kivu area

Surface: 3981 km2

Population: 1800000

Cholera: Outbreaks occurring every year.

Period studied: 2004 – 2011

Number of reported cases: 45000
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Abstract

Mathematical models of cholera dynamics can not only help identifying environmental drivers

and processes that influence disease transmission, but may also represent valuable tools for

the prediction of the epidemiological patterns in time and space as well as for the allocation of

health care resources. Cholera outbreaks have been reported in the Democratic Republic of the

Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east of the coun-

try repeatedly during the last decades. Here, we employ a spatially explicit, inhomogeneous

Markov chain model to describe cholera incidence in eight health zones on the shore of the

lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and

indices of global climate anomalies are used as environmental drivers in addition to baseline

seasonality. In addition, the effect of human mobility is modelled mechanistically. We test

several models on a multi-year dataset of reported cholera cases. The best fourteen models,

accounting for different environmental drivers and selected using the Akaike information

criterion, are formally compared via proper cross-validation. Among these, the one accounting

for seasonality, El Niño Southern Oscillation, precipitation and human mobility outperforms

the others in cross-validation. Some drivers (such as human mobility and rainfall) are retained

only by a few models, possibly indicating that the mechanisms through which they influence

cholera dynamics in the Lake Kivu area will have to be investigated further.

4.1 Introduction

The risk, loss and social disruption brought by cholera outbreaks can hardly be overestimated

and the global relevance of preventive assessments and controls of cholera spreading is

manifest. The recent epidemics in Haiti, the Congo river basin, Cuba, Sierra Leone and the

Sahel region [Al-Tawfiq and Memish, 2012; Bompangue et al., 2011; Fernández et al., 2009;

Gaudart et al., 2013; Kelvin, 2011] witness the ongoing, widespread inadequacy of reliable

drinking water supply and sanitation infrastructure all over the developing world. As a result,

cholera remains a major cause of morbidity and mortality in developing countries even to

date, despite all public health policies and humanitarian efforts deployed worldwide. As an

example, according to the World Health Organization, as much as 85% increase in the number

of reported cholera cases has been observed globally in 2011 relative to 2010, with 58 countries

involved and a total of 589854 yearly cases leading to an overall case fatality rate of 1.3% [World

Health Organization, 2012].

Here we use a semi-mechanistic, spatially explicit modeling framework to describe cholera

dynamics around Lake Kivu, Democratic Republic of the Congo (DRC). Our approach builds

on the multidimensional inhomogeneous Markov chain (MDIMC) method proposed by Reiner

et al. [2012]. This method requires the discretization of the variable to be modeled (i.e. cholera

incidence) into a finite number of states, and applies a semi-mechanistic description of the

transitions between discrete dynamical states. Transition probabilities vary in time as they

account for environmental drivers (estimated through remotely sensed datasets) and human
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mobility patterns. Routinely collected surveillance data have been used to construct epidemic

curves of cholera cases and map the spatio-temporal evolution of the disease [Bompangue

et al., 2009]. Datasets of precipitation, chlorophyll a concentration in Lake Kivu as well as

indices of global climate phenomena are used as model input, together with a mechanistic

description of human mobility among the health zones adjacent to the lake. Specifically, the

MDIMC model is fed with all possible combinations of environmental drivers, with variable

lags. The performances of different model settings are compared using formal model selection

techniques in order to draw conclusions about the relative importance of environmental

drivers for the proliferation of cholera in the study area. Furthermore, cross-validation is

applied to assess the possibility of predictive modelling of epidemiological dynamics based

on environmental data.

4.2 Case study

4.2.1 Spatial setting

Lake Kivu is situated in eastern DRC on the border with Rwanda (Figure 4.1). In this study

we concentrate on eight health zones (or their aggregations) located on the Congolese shore,

which include the two major cities of Goma and Bukavu, at the northern and southern ends of

the lake respectively. Areas further from the lake are not considered due to their low number

of cholera cases and limited population. The total population size of the study area is of about

1.8 millions.

4.2.2 Pathogen transport

The Lake Kivu catchment consists of numerous small subcatchments along steep slopes

leading down to the lake and a northern region characterized by porous volcanic soils that

allow for little (to no) surface runoff. Therefore we assume that the hydrological transport

of the pathogen (sensu Bertuzzo et al. [2010] and Rinaldo et al. [2012]) is negligible at the

regional scale. However, rainfall can facilitate local pathways of transmission and/or amplify

contamination through failure of inappropriate sanitation systems. The health zones in our

model are connected through human mobility fluxes, simulated here by a gravity model.

Given the stark difference in sociopolitical stability between the eastern DRC and neighboring

Rwanda, and the low number of cases reported in Rwanda during the study period, we assume

fluxes between the two countries to be negligible.

4.2.3 Climate

Local climate in the study area is characterized by a rainy season from October to May

[Bompangue et al., 2009; Plisnier et al., 2000], which is interrupted by a short dry period

early in the year. The annual precipitation corresponds to around 1200mm. Monthly av-
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Figure 4.1 – Study area. Lake Kivu is one of the African Great Lakes (a), located to the north of
Lake Tanganyika and west of Lake Victoria (b), at the border between the DRC and Rwanda
(c). The eight lakeside health zones included in this study (1: Goma, 2: Minova, 3: Kirotshe, 4:
Kalehe, 5: Katana, 6: Miti Murhesa, 7: Kabare, 8: Bukavu) as well as Goma and Bukavu, the two
main cities on its shore, are shown in panel (c).
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erage temperatures are fairly constant, close to 20◦C throughout the year (available from:

http://en.climate-data.org/location/1074/). Plisnier et al. [2000] reported highly complex and

spatially differentiated effects of ENSO on local climate, such as a positive correlation of ENSO

with rainfall, air pressure and temperature in the area. According to Stager et al. [2007] ENSO

also influences lake levels in the African Great Lakes Region. Marchant et al. [2007] found

that the the Indian Ocean Dipole (IOD), a cyclic climate phenomenon independent of ENSO,

influences the rainfall in East Africa too, in accordance with Becker et al. [2010], who revealed

an influence of ENSO and IOD on the total water storage in the area. The exact mechanisms

leading to all the above so-called teleconnections are yet to be determined [Marchant et al.,

2007; Plisnier et al., 2000].

4.2.4 Data

Cholera

Weekly cholera incidence data (2004–2011) were made available through the work of Bom-

pangue et al. [2009]. Briefly, data were collected from registries at each Cholera Treatment

Center, aggregated weekly and by health zone, and reported to the Ministry of Health, where

they were preserved in electronic or paper format [Bompangue, 2009; Bompangue et al.,

2008, 2009, 2012, 2011; Piarroux and Bompangue, 2007; Piarroux et al., 2009]. For the purpose

of this study we aggregated the data to obtain monthly numbers of cases for the eight lakeside

health zones described above (Figure 4.2).

The time scale of this study has been chosen to be monthly because of the level of noise and the

number of missing values in both reported cholera cases and remotely sensed Chlorophyll a

concentrations. Note for instance that in order to get a high-quality time series of Chlorophyll

a data, every time-step must contain a certain number of cloudless days, which is sometimes

difficult to enforce during the rainy season in the study region.

Demography

A remotely sensed dataset of the estimated 2010 population distribution (available from

http://www.worldpop.org.uk) was used to approximate the population of each health zone,

serving as a base to compute monthly cholera incidence (reported cases divided by population

abundance of each health zone).

Plankton

The optimization of remotely-sensed plankton biomass estimates for Lake Kivu, described

in Knox et al. [2014], enabled the selection of the plankton biomass proxy best-suited for this

study. Here, we use a chlorophyll a database generated with the OC3 bio-optical algorithm

and a coastal atmospheric correction model with 90% relative humidity, spanning the years
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Figure 4.2 – Cholera incidence data for the eight health zones considered. Low (state 1), mild
(state 2) and high incidence (state 3) are denoted by respectively blue, green and red color.
Note that in some health zones data are available only during parts of the study period.

2002–2012 (Figure 4.3). Daily data were spatially averaged across the entire lake, and monthly

averages were created by weighting each day by the number of data yielding pixels.

Precipitation

Daily precipitation fields were obtained from a remotely sensed dataset by the National

Aeronautics and Space Agency (NASA) [Huffman et al., 2010]. The resolution of the dataset is

0.25 degrees of latitude and longitude. Precipitation estimates were then projected to each

health zone and aggregated monthly (Figure 4.3). The projection was done by assigning the

corresponding precipitation value to each cell in a rasterized version of the health zones

delimitation and subsequently taking the mean over each health zone.

ENSO and IOD

In order to account for possible relations between global climate anomalies and the dynamics

of the disease in the study region, as reported by Bompangue et al. [2011], we included

two additional climatic drivers in our study (Figure 4.3). SST anomaly from the Niño 3.4

region made available by the National Oceanic and Atmospheric Administration (NOAA,

available online at http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices), was used as

index for ENSO. For IOD we used the so-called Dipole Mode Index (DMI) [Saji et al., 1999],
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Figure 4.3 – Environmental drivers. (a) Total monthly precipitation averaged over all consid-
ered health zones. (b) Remotely sensed, spatially averaged chlorophyll a concentration in
Lake Kivu. (c) Global climate anomalies. ENSO SST anomaly in the Niño 3.4 region (blue) and
IOD Dipole Mode Index (green). Note that the chlorophyll a and climate anomalies start 6
months before cholera incidence data in order to allow for lags in the model.

a measure of the SST gradient between two regions in the Indian Ocean (available online at

http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.ascii).

In order to quantify correlations between the different environmental drivers (precipitation,

chlorophyll a, ENSO and IOD), we computed their cross-correlation functions. Precipitation

and chlorophyll a show low significant correlations (r ≈ 0.2) between lags 0 and 2 months,

whereas DMI and ENSO are weakly correlated at lags around 1 month (r ≈ 0.2) as well as

anti-correlated at higher lags. All other combinations do not show significant correlations

(p > 0.05).

4.3 Model

4.3.1 Inhomogeneous Markov chain model for endemic cholera

The theoretical framework adopted here builds on a previous deterministic modeling ap-

proach (MDIMC) for endemic cholera developed by Reiner et al. [2012] that is based on

finite-state Markov chain modeling. This approach requires cholera incidence data to be

categorized into discrete states. It assigns a probability to the transitions between epidemic

states in a given spatial setting and with a defined time-step. The Markov chain model can be

made inhomogeneous by allowing transition probabilities to depend on temporal and spatial
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environmental drivers, namely precipitation, chlorophyll a concentration in the lake, ENSO

and IOD, as well as on spatial interactions induced by human mobility.

Following Reiner et al. [2012] we categorize cholera incidence into three discrete states, namely

low (state 1), mild (state 2) and high (state 3). We select the monthly incidence thresholds

for the definition of the three discrete states such that half of the records fall in the low inci-

dence category and the remaining data are equally partitioned into the two other categories.

Therefore the thresholds correspond to the 50th (0.0133% incidence) and the 75th (0.0415%)

percentiles of the monthly incidence data, respectively.

Figure 4.2 shows cholera incidence in the eight health zones considered, and the category each

data point belongs to. Low (state 1), mild (state 2) and high (state 3) incidence are denoted

by blue, green and red color respectively. The categorization of the data into finite classes

causes the merging of the events in the tail of the incidence distribution with less severe ones.

Although some information is therefore discarded, the model focuses on levels of variation

that are relevant to public health.

We first define a baseline homogeneous Markov chain model that does not account for en-

vironmental drivers and spatial interactions. Let Xk,t = 1,2,3 be the state of health zone k

at time t . According to this model, the generic transition (Xk,t = i ) → (Xk,t+1 = j ) occurs, at

any time t , with probability pi , j . The baseline model is therefore completely defined by the

following transition probability matrix P :

P =

⎡
⎢⎣

p1,1 (1−p1,1 −p1,3) p1,3

p2,1 (1−p2,1 −p2,3) p2,3

p3,1 (1−p3,1 −p3,3) p3,3

⎤
⎥⎦ (4.1)

where the probabilities of transition to state 2 are expressed so as to enforceP to be a stochastic

matrix (i.e. row-wise sums equal to 1).

We further assume that environmental drivers and spatial interactions among neighboring

human communities can modify baseline transition probabilities (4.1). In particular, we

hypothesize that these external drivers can modify, through a multiplicative factor, the prob-

abilities of transition from low/mild cholera incidence to a worse state (pi , j , i < j ), as well

as the probability of remaining in the highest incidence state (p3,3). The resulting transition

probabilities p ′
i , j ,k,t are thus site- and time-specific, as both environmental drivers and cholera

incidence patterns vary in space and time. We adopt the following formulation:

p ′
i , j ,k,t =pi , j (1+ f r ai n

k,t )(1+ f chl
t )(1+ f E N SO

k,t )

(1+ f IOD
k,t )(1+ f mob

k,t )(1+ f sea
t )

for i < j or i = j = 3 .

(4.2)

The remaining probabilities are adjusted, proportionally to their baseline values, to ensure
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that matrix P ′
k,t = (p ′

i , j ,k,t ) is stochastic, i.e.:

p ′
1,1,k,t = 1−p ′

1,2,k,t −p ′
1,3,k,t

p ′
i ,1,k,t = (1−p ′

i ,3,k,t )
pi ,1

pi ,1 +pi ,2
for i = 2,3 (4.3)

p ′
i ,2,k,t = (1−p ′

i ,3,k,t )
pi ,2

pi ,1 +pi ,2
for i = 2,3 .

The term f r ai n
k,t is assumed to be linearly dependent on the actual precipitation intensity

f r ai n
k,t =αJk (t), where Jk (t) is the mean normalized monthly precipitation of health zone k

during month t . Precipitation data have been normalized to span the range [0,1]. Therefore,

to enforce p ′
i , j ,k,t > 0 we impose the constraint α ≥ −1. As an example, if α > 0, rainfall

enhances cholera transmission and therefore all the probabilities to make a transition to a

higher incidence state (or to stay at the highest) increase. Consequently, all the other transition

probabilities decrease. Analogously, the potential effect of chlorophyll a concentration on

cholera transmission is modelled as f chl
t = βC (t − tC ) (β ≥ −1), where C (t) is the mean

normalized (i.e. rescaled in the range [0,1]) monthly chlorophyll a concentration of month t .

The lag tC is introduced to possibly account for a delay between the dynamics of phyto- and/or

zoo-plankton and favorable conditions for bacteria survival in the lake. To account for the

possible enhancing effect of climatic drivers on disease dynamics we model the terms f E N SO
t

and f IOD
t equivalently to f chl

k,t , i.e. f E N SO
t =φE N SO(t − tE N SO) and f IOD

t =ψIOD(t − tIOD ),

where E N SO(t ) is the normalized SST anomaly in the Niño 3.4 region during month t , IOD(t )

is the normalized DMI (Section 4.2.4) during month t , tE N SO and tIOD are time lags and φ≥−1

as well as ψ≥−1 are proportionality constants.

Cholera transmission in a health zone can also be enhanced by the mobility of people toward

health zones with ongoing outbreaks. This potential effect is accounted for in equation (4.2)

by the term f mob
k,t , which reads

f mob
k,t = γ

∑
z �=k

Qkz X ν
z,t ,

where Qkz is the probability that a traveller from zone k visits zone z, and γ and ν are two

positive parameters. We model human mobility through a gravity model [Erlander and Stewart,

1990]. Accordingly, connection probabilities are defined as

Qkz =
Hz e−dkz /D∑

n �=k Hne−dkn /D
,

where the attractiveness factor of zone z depends on its population size Hz , while the deter-

rence factor is assumed to be dependent on the distance dkz between the two communities

and represented by an exponential kernel (with shape factor D). Distances between health

zones are measured along the road network.
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Finally the term f sea
k,t in equation (4.2) accounts for the seasonality possibly induced by drivers

other than those explicitly considered above. Baseline seasonality is modelled through a

simple sinusoidal function:

f sea
t = δ

(
1+ sin

(
2π

t − ts

12

))
,

where δ≥−1 and ts is the lag of seasonality.

4.3.2 Model calibration and validation

We consider all the 26 = 64 model combinations obtained by accounting for or neglecting the

effects of rainfall, chlorophyll a, human mobility, ENSO, IOD and baseline seasonality. Models

are fitted by maximizing their likelihood. In the most complex setting we must optimize the

values of 17 parameters, including the set of lags (if applicable) up to 6 months that produces

the best fit to data. Under the Markovian assumption of the model, the transition from one

month to the next is independent of all other transitions. Therefore, likelihood can be defined

as the product of the probabilities of the transitions actually observed for each month. We

use the simplex search algorithm proposed by Nelder and Mead [1965] to maximize the log-

likelihood. We enforce the constraint that each transition probability must be between 0

and 1 by a barrier method, i.e. we set likelihood to 0 whenever a transition probability falls

outside these limits [Reiner et al., 2012]. Because the Nelder-Mead method can only ensure the

identification of local stationary points of the considered objective function, the optimization

algorithm is run 100 times with different initial starting points to better approximate the global

maximum of the likelihood function. The best model is then selected out of all candidate

model combinations through the Akaike information criterion (AIC) which evaluates model

performance and discounts for complexity.

The Markovian nature of the model also allows to implement a simulation algorithm. Let us

consider a generic health zone k with discretized cholera incidence i at time t , i.e. Xk,t = i .

Knowing the epidemic state of the other health zones and the magnitude of the environmental

forcing at the same time t , it is possible to compute the transition probabilities p ′
i , j ,k,t for

j = 1,2,3 through equations (4.2) and (4.3). A random variable U , uniformly distributed in the

[0,1] interval, is drawn to determine which transition occurs. If U < p ′
i ,1,k,t , the considered

health zone transitions to the low incidence state in the next month, i.e. Xk,t+1 = 1. Otherwise,

if U < p ′
i ,1,k,t + p ′

i ,2,k,t , a transition to a mild cholera state occurs, i.e. Xk,t+1 = 2. In the

remaining case the transition is to a high incidence state, i.e. Xk,t+1 = 3. Repeating this

procedure for all the health zones gives a 1-month time-step simulation. The simulated state

can be used to advance the chain for another time-step and so on to simulate the model for

any number of time-steps.

To evaluate the predictive ability of the different models, we perform a validation analysis.

Specifically, we perform leave-one-out cross-validation, i.e. we remove one month of data
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for all the health zones and recalibrate the model being tested using the remaining data.

Starting from the state of the system observed in the month before the one removed, we

simulate the model for one time-step, using the newly calibrated parameter set, and compare

model prediction to the removed data. The accuracy of the different models in validation

is estimated by computing the likelihood of the observed state. To that end, we infer the

probability distribution of the predicted state performing 10000 independent simulations.

This procedure is then sequentially repeated removing, once at a time, all the monthly data

points available. We also perform a validation analysis removing 2 and 3 contiguous months

of data at a time. In this case the chain is advanced for 2 and 3 time-steps, respectively.

Performance is evaluated through the likelihood of the state observed in the latest month

removed. Note that likelihood values evaluated at different lags or between validation and

calibration runs cannot be compared because of different numbers of data points.

4.4 Results

Table 4.1 shows the results of the calibration procedure described above. The 20 best combi-

nations of model components are shown, ranked according to their AIC score. All 64 possible

combinations are shown in Appendix A.2. The best ranked model accounts for the effects of

SST anomalies and seasonality only (parameters are shown in Table 4.2). However, models

number 2 to 14 have an AIC score close to that of the top-ranked candidate (ΔAIC < 4) and

thus cannot be safely discarded [Burnham and Anderson, 2002]. All these models include

seasonality. To test the significance of the individual components of models 1 to 14 (alterna-

tive hypothesis) against the model including seasonality only (number 8, null hypothesis) we

employ a likelihood ratio test. Improvements in likelihood for models 1 and 2 are significant,

and so are the effects of ENSO alone, as well as ENSO combined with precipitation (p < 0.05).

Improvements in likelihood for models 4 to 7 and 9 to 14 are not significant at p = 0.05.

Model validation is performed using the 14 models retained in model selection. Table 4.3

shows log-likelihood values obtained by applying cross-validation at lags of one, two and

three months. Model 13 has the highest likelihood values for all lags. Figure 4.4 shows the

validation of model 13 at respective lags of one, two and three months. Note the decreasing

accuracy of the median as predictor of cholera incidence as well as the higher uncertainty of the

simulations as the lag increases. A less formal but more intuitive measure of model accuracy

is the fraction of times in which the model correctly predicts the observed cholera incidence

state. If we assume the mode of the distribution over 10000 runs as the best predictor, model

13 predicts 68% of the state correctly at lag one month, 62% at lag two months and 59% at lag

three months.

In addition to the results reported above, we also tested the effect of adding the water surface

temperature of Lake Kivu [MacCallum and Merchant, 2012; Thiery et al., 2014a, b] as a further

explanatory variable. No significant improvements were found (result not shown for brevity).
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Table 4.1 – Results of the fitting procedure ordered by increasing AIC score (first 20 lines).a
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A
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A

IC

1 + - - - + - 11 −470.02 962.03 0

2 + - + - + - 12 −469.22 962.45 0.4

3 + - - - + + 13 −468.89 963.78 1.6

4 + - - + + - 13 −468.95 963.89 1.9

5 + - - - - + 11 −471.03 964.05 2.0

6 + - + - + + 14 −468.07 964.15 2.1

7 + - - + - + 13 −469.26 964.52 2.5

8 + - - - - - 9 −473.27 964.53 2.5

9 + - + + + - 14 −468.37 964.74 2.7

10 + - - + + + 15 −467.38 964.76 2.7

11 + - + - - + 12 −470.6 965.2 3.2

12 + - + - - - 10 −472.84 965.67 3.6

13 + + + - + - 15 −467.84 965.68 3.6

14 + - + + + + 16 −466.9 965.79 3.8

15 + - + + - + 14 −469.16 966.31 4.3

16 + + + - - - 13 −470.27 966.53 4.5

17 + - - + - - 11 −472.36 966.72 4.7

18 + + - - + - 14 −469.75 967.51 5.5

19 + + - - - - 12 −471.85 967.71 5.7

20 + - + + - - 12 −471.95 967.89 5.9

a See Appendix A.2 for all 64 lines.
b Number of parameters plus one (residual variance)
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Table 4.2 – Parameter sets corresponding to the best ranked models in calibration and cross-
validation (respectively models 1 and 13 in Table 4.1).

Model 1 Model 13

p1,1 0.8841 0.9203

p2,1 0.3822 0.4021

p3,1 0.1151 0.1394

p1,3 0.02575 0.01879

p2,3 0.1366 0.09161

p3,3 0.3736 0.2446

δ 0.4029 0.3702

ts 6.358 5.755

γ 0.2697

D 30.53

ν 0.7578

α 0.5598

φ 0.5014 0.3642

tE N SO 0 0

4.5 Discussion

In this work we have applied a MDIMC-based approach to model cholera dynamics in eight

health zones in the Lake Kivu region (DRC). The framework chosen allows for a mechanistic

description of processes such as human mobility or the enhancing effect of rainfall on disease

transmission, as well as for an explicit treatment of space. Its discrete nature allows to char-

acterize spatiotemporal cholera dynamics robustly, even if the reported case-data available

present high uncertainties because of over- and under-reporting and missing records. This ro-

bustness is especially important in endemic regions such as the eastern DRC, where incidence

is generally lower than in epidemic settings. Conversely, classical SIR-type models (like, e.g.,

the one applied in Rinaldo et al. [2012] to describe the Haiti cholera epidemic) rely on detailed

epidemiological datasets for parameter estimation and are thus very difficult to apply to the

current case at a fine spatial resolution because of the low signal to noise ratio.

Several models were retained during model selection. All of them account for seasonality,

which is thus found to be an important factor to explain endemic cholera transmission in the

study area. The model that performed best according to AIC accounts for the effect of ENSO in

addition to seasonality. During validation, though, a more complex model, including also the

effects of mobility and precipitation, proved to perform best. This might indicate that higher

complexity in this case does not lead to overfitting but to improved predictive abilities.

99



Chapter 4. Cholera in the Lake Kivu region (DRC): Integrating remote sensing and
spatially explicit epidemiological modeling

2004 2005 2006 2007 2008 2009 2010 2011

0

0.1

0

0.1

0.1

inc
ide

nc
e 

[%
]

2003
0

inc
ide

nc
e 

[%
]

inc
ide

nc
e 

[%
]

a

b

c

Figure 4.4 – Simulations of model 13, which accounts for mobility, precipitation and SST
anomaly in addition to seasonality, at one (a), two (b) and three (c) months lags using the
cross-validation procedure described in Section 4.3.2. The blue line shows the average over
the states of the eight health zones, where each state is represented by its mean incidence. The
blue dots show the median of the simulated values and the grey bars the 5th–95th percentile
range over 10000 simulations.

Global climate anomalies (ENSO and IOD) seem to be the most important environmental

factors, as they appear in all but two of the best performing models. Because of the known

interactions between these anomalies and local climate [Marchant et al., 2007; Plisnier et al.,

2000; Stager et al., 2007] this is not surprising. The effect of precipitation alone did not prove

significant compared to a model with seasonality only. However, its combination with ENSO

and IOD is significant, presumably because of rainfall deteriorating sanitary conditions.

Chlorophyll a concentration in Lake Kivu as a driver of cholera dynamics was retained only

by 5 of the models selected in calibration. Apart from the interaction between V. cholerae

and plankton, possibly more complex than presumed here, significant correlations might be

clouded by other environmental factors such as precipitation, or by the fact that the estimates

of chlorophyll a concentrations used here are of insufficient accuracy and/or spatial detail.

The subtleties involved in the remote sensing of chlorophyll a concentrations in lakes indeed

deserve further investigations [Knox et al., 2014]. However, we maintain that the search

for remotely sensed proxies for parameters of mechanistic epidemiological models is an

important field of study towards a new concept of mathematical epidemiology.

The effect of human mobility has been retained only by one of the models selected in cali-

bration, which may be an artifact of our decision to limit the study to the lakeside region of

Lake Kivu, with only two distant population centers separated by mostly rural areas. Indeed,

the most important mobility patterns identified in the eastern DRC are between the lakeside
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Table 4.3 – Log-likelihood values obtained during validation by comparing one, two or three
months in advance simulations with reported incidence.

Lag (months) 1 2 3

Modela1 −482.35 −559.28 −583.37

Model 2 −482.79 −558.34 −581.98

Model 3 −476.72 −552.91 −579.46

Model 4 −472.56 −549.97 −573.83

Model 5 −472.78 −548.69 −575.05

Model 6 −470.53 −546.38 −571.45

Model 7 −479.03 −556.25 −583.36

Model 8 −483.40 −563.09 −591.90

Model 9 −477.77 −554.54 −578.10

Model 10 −473.55 −549.05 −575.05

Model 11 −475.61 −552.38 −579.58

Model 12 −485.75 −564.61 −592.76

Model 13 −469.67 −543.63 −569.04

Model 14 −471.28 −547.75 −571.63

a Model numbering corresponds to the rank ob-

tained according to Table 4.1.

regions and non-lakeside regions [Bompangue et al., 2009] and are thus not accounted for in

this study. In addition, since the description of mobility in the model includes three param-

eters, it is penalized in model selection relative to other model components. Note however

that the best performing model in validation accounts for human mobility as well, which thus

proves to be important for epidemiological projections.

All models including seasonality have shown to perform better than models not including it.

This can be interpreted as a clear indication that other environmental and/or social factors,

which have not been explicitly accounted for, might play a major role in the dynamics of the

disease in the study area. In particular, the influence of population movements due to war,

civil unrest or seasonal migrations [Bompangue et al., 2009], particularly from and to other

endemic areas in the country, would merit further investigation.

We have been able to show that cholera incidence in the region is influenced by global (ENSO,

IOD) and local (rainfall) climatic variables. Thus it seems clear that climatic and environmental

conditions play an important role in the disease dynamics. Our results do not support the

hypothesis of phyto- and zooplankton being a major factor for persistence and proliferation

of the disease in this area, as indicated by the lack of any significant effect of chlorophyll
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a. Alternative explanations exist, such as the influence of climate on human behaviour and

metapopulation dynamics [Bompangue et al., 2011; Pascual et al., 2002; Rebaudet et al., 2013a;

Rodó et al., 2002].

Note that, although the framework applied here allows for prediction of epidemic state a few

months in advance, our results did not identify specific environmental drivers with long lead

times. Thus, in order to use the model for the purpose of longer-term predictions, projections

of environmental drivers have to be made first.

Our results provide further evidence that different geographic and social contexts call for

different dominant infection mechanisms, and hence for proxies and modeling approaches

shifting on a case-dependent basis. As an example, chlorophyll a acts as a suitable proxy

in Bangladesh, whereas rainfall is the most important environmental driver in Haiti. The

proposed modeling framework is flexible and capable of selecting the dominant infection

mechanisms. Thus it can easily be exported to the study of other regions.
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In this thesis, a set of metapopulation and individual-based epidemiological models, either

mechanistic or semi-mechanistic, has been developed. They have been applied to cholera

outbreaks at spatial scales ranging from a city to entire countries. The models explicitly take

into account the spatial heterogeneity and temporal variability of epidemiological processes,

such as the spread of the disease through hydrological connectivity or human mobility, the

micro-scale spatiotemporal clustering of cases in densely populated areas, or the dependence

on environmental drivers. The models have been applied to recent cholera outbreaks in

Haiti, Senegal, Chad and the Democratic Republic of the Congo, and have been used to tackle

real-world epidemiological questions.

Different problem scales in space and time call for different levels of abstraction of epidemi-

ological processes. The spatiotemporal propagation of epidemics has been shown to be

realistically reproduced by a detailed and accurate description of hydrological connectivity

and human mobility (e.g. from mobile phone call records) at the country scale. At the scale

of a single neighborhood, many processes contribute to the spread of the disease, human

mobility being just one of them. A description of the infectious pressure by an isotropic spatial

kernel around cases has been shown to be an appropriate choice at this scale.

Rainfall and other climatic variables, along with the floods and inundations they may cause,

have been shown to be key drivers of cholera in several settings. They need to be taken into

account along with their spatial heterogeneity in order to be able to explain highs and lows of

transmission and thus to allow models to accurately reproduce decrease and revamping of

epidemics.

Applications have demonstrated how models can inform epidemiological policy and show the

effect of alternative intervention strategies on the course of epidemics. Using an individual-

based stochastic model, the preventive allocation of oral cholera vaccine, antibiotics and/

or water, sanitation and hygiene interventions within a given radius around reported cases

in densely populated areas have been shown to be effective and efficient alternatives to

mass intervention campaigns. Further, using a spatially explicit metapopulation model, an

alternative type of oral rehydration solution has been shown to have a significant, large-scale

effect on the course of a simulated epidemic.
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The spatial resolution of the metapopulation models used in this thesis could even be refined

in cases where the necessary data is available. This may allow for a more detailed description

of local processes by the model, but also require a higher resolution of case data to calibrate

on, which are likely to be subject to higher noise and stochasticity the model would have

to address. In addition, a spatially explicit parametrization might be necessary in order to

account for the heterogeneity of epidemiological processes. It is, however, well known that

increasing a model’s complexity does not necessarily increase its predictive power, even if it

may fit calibration data better. There is no exception when it comes to refining the spatial

resolution of a model, critical analysis of the predictive power of more refined models would

thus be necessary in order to compare its performance to the one of coarse-grained models.

Even with detailed knowledge regarding epidemiological processes and the use of accurate

data at the appropriate scale, models always depend on a set of simplifying assumptions which

allow to translate real-world processes into mathematical terms. It lies within the responsibility

of the modeler to be aware of those assumptions and of the limitations and uncertainties they

cause regarding model results, especially in real-world applications such as the ones shown in

this thesis. Model uncertainties have to be explored and suitably conveyed, especially when

communicating results to non-modelers. The usefulness of model results depends on their

robustness to changes in the underlying assumptions and on the way uncertainties influence

the strength of a models conclusions.

Phylogenetic data of pathogen evolution during epidemics and outbreaks has become in-

creasingly used in epidemiological models of infectious diseases. This data allows to directly

observe the transmission chain of pathogens, which can reveal important epidemiological

processes, e.g. who infected whom at the local scale, or from which geographical area the

pathogen got imported to which other area. This data thus constitutes a rich source of infor-

mation, and may, in the case of cholera, allow to improve the knowledge about the spread of

epidemics and the way it is represented in mathematical models. Such data and suitable mod-

els may even provide insights into one of the most controversial topics in cholera epidemiology,

the one of its long-term persistence and possible environmental reservoirs.

In recent years, decisive progress has been achieved in the domain of epidemiological model-

ing. Current developments, notably using methods described in this thesis, have shown that

real-time predictions of the unfolding of cholera epidemics in space and time is within reach.

Models are not meant to replace classical epidemiology, field observations and clinical trials,

but rather to provide additional, objective and efficient tools and insights to allow experts

to take the right management decisions. The work presented here highlights how suitable

models based on accurate data can be used to objectively evaluate different intervention

strategies, inform epidemiological policy and may, within the near future, be routinely used to

inform experts about the possible course of ongoing epidemics and the impact of epidemic

management in real-time.
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A Appendix

A.1 Supplementary Table to Chapter 3

Table A.1 – Table showing all intervention scenarios considered, specifically showing the type
of intervention, the timing and the type of allocation together with median values (2.5% and
97.5% percentiles in brackets) of the number of targeted clusters, the total number of targeted
people and the total number of averted cases computed using 1000 model simulations.
a Every person can get antibiotics only once during the epidemic.
b Every person can get antibiotics several times with a minimum delay of 2 weeks between
two administrations.
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Clusters 100m

Clusters 70m
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Entire population
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Clusters targeted

People targeted
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A.2 Supplementary Table to Chapter 4

Table A.2 – Results of the fitting procedure ordered by increasing AIC score.
M

o
d

el
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o
n
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M
o

b
il

it
y

P
re
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p
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at
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n

C
h
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p
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E
N

SO

IO
D

D
eg

re
es

o
ff

re
ed

o
m

a

lo
g(

Li
ke

li
h

o
o

d
)

A
IC

Δ
A

IC

1 + - - - + - 11 −470.02 962.03 0

2 + - + - + - 12 −469.22 962.45 0.4

3 + - - - + + 13 −468.89 963.78 1.6

4 + - - + + - 13 −468.95 963.89 1.9

5 + - - - - + 11 −471.03 964.05 2.0

6 + - + - + + 14 −468.07 964.15 2.1

7 + - - + - + 13 −469.26 964.52 2.5

8 + - - - - - 9 −473.27 964.53 2.5

9 + - + + + - 14 −468.37 964.74 2.7

10 + - - + + + 15 −467.38 964.76 2.7

11 + - + - - + 12 −470.6 965.2 3.2

12 + - + - - - 10 −472.84 965.67 3.6

13 + + + - + - 15 −467.84 965.68 3.6

14 + - + + + + 16 −466.9 965.79 3.8

15 + - + + - + 14 −469.16 966.31 4.3

16 + + + - - - 13 −470.27 966.53 4.5

17 + - - + - - 11 −472.36 966.72 4.7

18 + + - - + - 14 −469.75 967.51 5.5

19 + + - - - - 12 −471.85 967.71 5.7

20 + - + + - - 12 −471.95 967.89 5.9

21 + + - - - + 14 −470.34 968.68 6.7

22 + + + - - + 15 −469.39 968.78 6.7

23 + + + - + + 17 −467.57 969.13 7.1

24 + + + + + - 17 −467.58 969.16 7.1

25 + + - + + - 16 −468.7 969.4 7.4

26 + + - - + + 16 −468.76 969.52 7.5

27 + + + + - - 15 −470.11 970.22 8.2

28 + + - + - + 16 −469.19 970.38 8.4

29 + + - + - - 14 −471.26 970.52 8.5

30 - - - + - + 11 −474.37 970.73 8.7

31 + + - + + + 18 −467.39 970.79 8.8

32 + + + + - + 17 −468.65 971.29 9.3
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A
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Δ
A
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33 + + + + + + 19 −466.67 971.33 9.3

34 - - + + - + 12 −474.26 972.53 10.5

35 - - - - - + 9 −478.68 975.36 13.3

36 - - + - - + 10 −477.95 975.9 13.9

37 - - + - + - 10 −478.06 976.12 14.1

38 - - - - + - 9 −479.06 976.13 14.1

39 - - - + + + 13 −475.28 976.56 14.5

40 - + - + - + 14 −474.28 976.57 14.5

41 - - + - + + 12 −476.34 976.69 14.7

42 - - - + + - 11 −477.38 976.77 14.7

43 - - - - + + 11 −477.41 976.81 14.8

44 - - - - - - 7 −481.42 976.84 14.8

45 - - + + + + 14 −474.49 976.97 14.9

46 - + + + + - 15 −473.51 977.01 15.0

47 - + + + - + 15 −473.67 977.33 15.3

48 - - + - - - 8 −480.7 977.4 15.4

49 - + - + + - 14 −474.77 977.53 15.5

50 - - + + + - 12 −476.92 977.83 15.8

51 - + - - - + 12 −477.1 978.2 16.2

52 - - - + - - 9 −480.16 978.33 16.3

53 - + + - - - 11 −478.27 978.54 16.5

54 - + + - - + 13 −476.4 978.79 16.8

55 - - + + - - 10 −479.62 979.24 17.2

56 - + + + - - 13 −476.63 979.25 17.2

57 - + - - - - 10 −479.65 979.29 17.3

58 - + - + - - 12 −477.96 979.93 17.9

59 - + + - + - 13 −477.04 980.09 18.0

60 - + - - + - 12 −478.47 980.95 18.9

61 - + + - + + 15 −475.75 981.49 19.5

62 - + - - + + 14 −476.92 981.84 19.8

63 - + + + + + 17 −473.94 981.88 19.9

64 - + - + + + 16 −475.19 982.38 20.3

a Number of parameters plus one (residual variance)
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